

NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release;distribution is unlimited

RUNWAY DETECTION FROM MAP, VIDEO AND

AIRCRAFT NAVIGATIONAL DATA

by

Jose R. Espinosa Gloria

March 2016

Thesis Advisor: Roberto Cristi

Co-Advisor: Oleg Yakimenko

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB

No. 0704–0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing

instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection

of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215

Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork

Reduction Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY

(Leave blank)

2. REPORT DATE
March 2016

3. REPORT TYPE AND DATES COVERED
Master’s thesis

4. TITLE AND SUBTITLE

RUNWAY DETECTION FROM MAP, VIDEO AND AIRCRAFT

NAVIGATIONAL DATA

5. FUNDING NUMBERS

6. AUTHOR(S) Jose R. Espinosa Gloria

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School

Monterey, CA 93943-5000

8. PERFORMING

ORGANIZATION REPORT

NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND

ADDRESS(ES)

N/A

10. SPONSORING /

MONITORING AGENCY

REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the

official policy or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release;distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

As part of the reinforcement of operations performed by the Mexican Navy, unmanned aerial vehicles

(UAV) have been equipped with daylight and infrared cameras. Processing the video information obtained

from these devices opens the door to a number of strategic opportunities. By recognizing patterns in visual

sources, we address one problem in particular: how to achieve corresponding runways using a map and an

individual frame of video.

An approach to runway detection using two tools is presented in this thesis. The first tool is a

geographical information program, which is used to set the runway map we want to detect. The second

tool is a video frame of the same runway, recorded in a camera mounted on a UAV. The needed equations

and related algorithms are developed and tested on a simulation that reconstructs the three-dimensional

view of the aircraft camera employing the map and navigational data. Next, the algorithms are

implemented using actual video frames. Finally, mismatches in the runway detection due to sensor noise

and to an assumption made on the aircraft roll orientation angle are corrected using image-processing

techniques, such as the Hough transform for linear features.

14. SUBJECT TERMS
runway, map, aircraft, video, detection, rotation matrix, Hough transform.

15. NUMBER OF

PAGES
87

16. PRICE CODE

17. SECURITY

CLASSIFICATION OF

REPORT
Unclassified

18. SECURITY

CLASSIFICATION OF THIS

PAGE

Unclassified

19. SECURITY

CLASSIFICATION

OF ABSTRACT

Unclassified

20. LIMITATION

OF ABSTRACT

UU

NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89)
 Prescribed by ANSI Std. 239–18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release;distribution is unlimited

RUNWAY DETECTION FROM MAP, VIDEO AND AIRCRAFT

NAVIGATIONAL DATA

Jose R. Espinosa Gloria

Lieutenant Commander, Mexican Navy

B.S., Mexican Naval Academy, 2002

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

March 2016

Approved by: Roberto Cristi

Thesis Advisor

Oleg Yakimenko

Co-Advisor

R. Clark Robertson

Chair, Department of Electrical and Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

As part of the reinforcement of operations performed by the Mexican Navy,

unmanned aerial vehicles (UAV) have been equipped with daylight and infrared cameras.

Processing the video information obtained from these devices opens the door to a number

of strategic opportunities. By recognizing patterns in visual sources, we address one

problem in particular: how to achieve corresponding runways using a map and an

individual frame of video.

An approach to runway detection using two tools is presented in this thesis. The

first tool is a geographical information program, which is used to set the runway map we

want to detect. The second tool is a video frame of the same runway, recorded in a

camera mounted on a UAV. The needed equations and related algorithms are developed

and tested on a simulation that reconstructs the three-dimensional view of the aircraft

camera employing the map and navigational data. Next, the algorithms are implemented

using actual video frames. Finally, mismatches in the runway detection due to sensor

noise and to an assumption made on the aircraft roll orientation angle are corrected using

image-processing techniques, such as the Hough transform for linear features.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1

A. PREVIOUS APPROACHES ..1

B. THESIS OBJECTIVE ...4

C. THESIS STRUCTURE ...4

II. ANALYTICAL FRAMEWORK ..7

A. OVERVIEW ...7

B. CAMERA PINHOLE MODEL ..7

C. ROTATION MATRICES ...8

D. FRAMES ...9

1. Map Frame ...10

2. World Frame ..10

3. Aircraft Frame ...11

4. Camera Frame ...12

E. PROJECTION OF A LINE ..12

F. HOUGH TRANSFORM ...20

1. Mathematical Foundation ...21

2. Practical Computation of Hough Transform22

III. MAP AND SIMULATED IMAGE MATCHING ...25

A. OVERVIEW ...25

B. TRANSFORMATIONS: MAP TO IMAGE AND IMAGE TO

MAP ..25

1. Rotation from Map Frame to World Frame26

2. Rotation from World Frame to Aircraft Frame27

3. Rotation from Aircraft Frame to Camera Frame28

4. Rotation from Camera Frame to Image Frame29

C. COMPUTER SIMULATION ...31

IV. MAP AND REAL IMAGE MATCHING ..39

A. REAL DATA COLLECTION ..39

1. Salinas Municipal Airport Approximation41

2. Monterey Regional Airport Approximation43

B. REAL DATA EXPERIMENT ..46

1. Matching Line Parameters and ...49

C. MISMATCH CORRECTION ..50

 viii

V. CONCLUSIONS AND FUTURE WORK ...55

A. CONCLUSIONS ..55

B. FUTURE WORK ...55

APPENDIX ...57

LIST OF REFERENCES ..67

INITIAL DISTRIBUTION LIST ...69

 ix

LIST OF FIGURES

Figure 1. Original Image (Left) with the Runway Enclosed in Dashed Lines.

Detected Runway Blocks are Shown in Red (Right)2

Figure 2. Reference Frames Used for Comparison ...3

Figure 3. Detection Results for Runway and Horizon, Highlighted with a

White Line ...3

Figure 4. Pinhole Camera Model to Project 3D Coordinates onto 2D Plane

(Left) and Triangular Similarities (Right)..7

Figure 5. Coordinate System A and Object Coordinate System B.9

Figure 6. N Rows by M Columns Image of Salinas Municipal Airport Map10

Figure 7. Arbitrary Object with Coordinates x, y and z in World Frame11

Figure 8. Roll, Pitch and Yaw Positive Rotation Angles in the Aircraft Frame11

Figure 9. Roll, Tilt and Pan Positive Rotation Angles in Camera Frame12

Figure 10. Line on a Plane and Its Basic Equation ...13

Figure 11. Side View of the y-z Plane (the Airplane and Camera Frame in

Orange and Black, Respectively) ...14

Figure 12. Planes y-z and yc- zc with Angle Formed between Them15

Figure 13. Correspondence between Points and Lines in Planes x-y and m-b21

Figure 14. Line Described by Parameters Angle Theta θ and Distance r to the

Origin ...22

Figure 15. Four Points Form a Line in x-y Plane ..23

Figure 16. Four Sinusoids Intersect Each Other in One Point in θ -r Plane23

Figure 17. Map Frame (Left) and World Frame (Right) ...26

Figure 18. Aircraft Frame (Left) and World Frame (Right)..27

Figure 19. Aircraft Frame (Up) and Camera Frame (Down)29

Figure 20. Image Frame (Left) and Camera Frame (Right) ..30

Figure 21. Salinas Municipal Airport and Aircraft Position (Red Dot)32

Figure 22. Monterey Regional Airport and Aircraft Positon (Red Dot)33

Figure 23. Virtual Camera View of Salinas Municipal Airport34

Figure 24. Virtual Camera View of Monterey Regional Airport34

Figure 25. Salinas Municipal Airport with Runway Edges Highlighted in Red35

Figure 26. Monterey Regional Airport with Runway Edges Highlighted in Red35

 x

Figure 27. Virtual Frame (Yellow) of the Camera on Salinas Municipal Airport36

Figure 28. Virtual Frame (Yellow) of the Camera on Monterey Regional

Airport ..36

Figure 29. Runway Detected in the Camera Virtual View of Salinas Municipal

Airport ..37

Figure 30. Runway Detected in the Camera Virtual View of Monterey

Regional Airport ..37

Figure 31. Camera TASE200 Mounted on the Cessna 206 Airplane40

Figure 32. Aircraft Altitude and Heading for All the Frames of the Salinas

Municipal Airport Approximation ...42

Figure 33. Aircraft and Camera Orientation Angles for All the Frames of the

Salinas Municipal Airport Approximation ..43

Figure 34. Aircraft Altitude and Heading for All the Frames of the Monterey

Regional Airport Approximation ...45

Figure 35. Aircraft and Camera Orientation Angles for All the Frames of the

Monterey Regional Airport Approximation ..46

Figure 36. Runway Detected on the Real Camera View from Salinas Municipal

Airport ..47

Figure 37. Runway Detected on the Real Camera View from Monterey

Regional Airport ..47

Figure 38. Line Projection Mismatch in Real Implementation (Left) and Match

in Simulation (Right) for Salinas Municipal Airport48

Figure 39. Line Projection Mismatch in Real Implementation (Left) and Match

in Simulation (Right) for Monterey Regional Airport49

Figure 40. Edge Detection in the Real Image of Salinas Municipal Airport51

Figure 41. Left Edge (Green) of Salinas Municipal Runway Detected by the

Hough Transform Closer to the Projected Left Line (Red)52

Figure 42. Right Edge (Green) of Salinas Municipal Runway Detected by the

Hough Transform Closer to the Projected Right Line (Red)53

Figure 43. Mismatch in Projected Lines (Red) and Correction by Hough

Transform (Green) in Salinas Municipal Airport53

Figure 44. Mismatch in Right Projected Line and Correction by Hough

Transform in Monterey Regional Airport ..54

 xi

LIST OF TABLES

Table 1. TASE200 Camera Specifications ..40

Table 2. Aircraft and Camera Orientation Angles for the First Ten Frames of

the Salinas Municipal Airport Approximation ..41

Table 3. Aircraft Position and Horizontal Field of View of the Camera for the

First Ten Frames of the Salinas Municipal Airport Approximation41

Table 4. Aircraft and Camera Orientation Angles for the First Ten Frames of

the Monterey Regional Airport Approximation ..44

Table 5. Aircraft Position and Horizontal Field of View of the Camera for the

First Ten Frames of the Monterey Regional Airport Approximation44

Table 6. Comparison between Slope α and Intercept β Values for Salinas

Municipal Airport Using Two Different Methods50

Table 7. Comparison between Slope α and Intercept β Values for Monterey

Regional Airport Using Two Different Methods50

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

2D Two-dimensional

3D Three-dimensional

HFOV Horizontal field of view

ISR Intelligence, surveillance and reconnaissance

LTP Local tangent plane

UAV Unmanned aerial vehicle

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

First and foremost, I would like to thank my wife, Alma, for her support, love and

patience during my time at Naval Postgraduate School, especially during the last nine

months when I literally worked all day. In addition, I would like to thank my daughters,

María Fernanda and María José, for motivating me to be my best. You bring meaning to

my life. I love you so much.

My deepest gratitude goes to my advisor, Roberto Cristi, for providing his time

despite his tight schedule and for explaining to me both easy and difficult concepts with a

lot of patience. I could not have completed this thesis without his help.

I also would like to thank my co-advisor, Oleg Yakimenko, for the explanations

about the TASE200 camera and the MATLAB algorithm that you provided for collecting

the real data of the video frames. I wish I had more time here to learn more from you.

A special thanks also goes to Commander Mariano Lizarraga of the Mexican

Navy for believing in me and giving me this great educational opportunity, which surely

will change my life. His professionalism has been an example of excellence for me

during my time here at NPS.

Finally, I want to thank to the professors who taught classes and helped me to

succeed at NPS, especially James Calusdian and Xiaoping Yun.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have become vastly more popular during the

last few years. In the military, it is no surprise why. These vehicles and their payload

capabilities allow the military to accomplish missions more effectively. UAVs with

cameras attached gather zone-specific tactical information that operators can use to make

decisions. They support intelligence, surveillance and reconnaissance (ISR) operations,

providing invaluable data for ground forces. Furthermore, during natural disasters,

cameras mounted on UAVs provide an edge to first-responder teams by delivering broad

aerial views so teams can navigate directly to survivors instead of wasting valuable time.

Today, in most applications, the videos recorded by these cameras are usually not

processed with image processing techniques. For example, an image of a runway

captured in this way allows for a variety of questions to be addressed such as, how large

is the runway? What is the runway number? How many airplanes are there? Are people

or buildings surrounding the runway?

An approach for processing an image of an airport to obtain information to detect

a runway by its corresponding map is presented in this thesis.

A. PREVIOUS APPROACHES

There are many studies in the area of runway detection and recognition. Some of

the most relevant of these studies are described in this section.

The approach developed in [1] proposes the use of a methodology based on the

textural characteristics of runways since these properties “are the most descriptive element

of an airport.” This method uses the AdaBoost algorithm [2], which selects runway-useful

features, such as image intensity and gradient or Zernike Moments, and extracts them on a

set of 57 satellite images to achieve the runway detection. The results of using this

methodology on satellite images to detect runways are illustrated in Figure 1.

 2

Figure 1. Original Image (Left) with the Runway Enclosed in Dashed Lines.

Detected Runway Blocks are Shown in Red (Right)

Source: [1] Ö. Aytekin, U. Zöngür, and U. Halici, “Texture-based airport runway

detection,” IEEE Geosci.Remote Sensing Lett., vol. 10, no. 3, pp. 471–475, May 2013.

Another approach from [3] points out how the location of a runway is estimated.

It uses video frames from a forward-looking camera mounted on an UAV and compares

the frames against a set of previously recorded images with different altitudes and

positions along the glide path of a runway of a known location. This approximation uses

the geometrical properties of the video frame—namely runway offset, runway angle and

runway distance—rather than feature recognition. The video frames used as a reference

for the comparison are shown in Figure 2.

 3

Figure 2. Reference Frames Used for Comparison

Source: [3] A. Miller, M. Shah, and D. Harper, “Landing a UAV on a runway using

image registration,” in Proceedings International Conference on Robotics and

Automation, Pasadena, CA., 2008, pp. 182–187.

A third approach that utilizes video data [4] presents a system based on the

runway area and some visual representative points. This approach also introduces the use

of the Hough transform and the least-square fit technique to detect the runway edges. The

results of this methodology are shown in Figure 3.

Figure 3. Detection Results for Runway and Horizon, Highlighted with a

White Line

Source: [4] J. Shang, and Z. Shi, “Vision-based runway recognition for UAV autonomous

landing,” Int. Journal of Computer Sci. and Network Security, vol. 7, no.3, pp. 112–117,

Mar. 2007.

 4

B. THESIS OBJECTIVE

The intent of this thesis is to present a method that allows runway detection using

two tools. The first tool is a map and geographical information program that is available

for use on any computer. This software is used to set the runway to be detected. The

second tool is a video frame of the same runway recorded in a camera mounted on a

UAV. To start, we identify and set four points on the map, forming the two edges of the

runway, and consider other parameters such as the position and attitude of the UAV (roll,

pitch and yaw). Then we apply geometrical transformations to project these two edges on

the map into the video frame in such a way that allows us to match the map runway with

the runway in the frame of video.

As previously mentioned, there are many approaches to solve the runway

detection problem. The method presented in this research differs from others in the sense

that a map is used as a reference in addition to the video frame. Google Earth was used to

retrieve the maps.

This methodology is meant to capitalize on new technologies, including UAVs,

which the Mexican Navy has integrated into its operations.

C. THESIS STRUCTURE

The remainder of this thesis is organized as follows:

In Chapter II, the problem of runway detection and matching is defined, and the

mathematical process behind the matching of a line that lies on a plane with the same line

in the camera view is described. Concepts such as the pinhole camera model, reference

frames (map, aircraft and camera), rotation matrices, roll, pitch, yaw, tilt and pan are used

to derive the equations needed to implement the runway detection and matching.

In Chapter III, how the equations from previous chapter are implemented in an

algorithm that conducts a simulation method is described. This virtual scenario presents

the camera view of a runway and compares it against the runway map.

In Chapter IV, how runway matching and detection are achieved using an image

from a TASE200 camera rather than the simulated camera view is demonstrated. Small

 5

corrections are applied due to sensor noise, and the Hough transform methodology is

utilized to correct this mismatch by detecting the external edges of the runway that are

closer to the lines that were first detected.

Finally, the results, conclusions and recommendations for future work are

summarized in Chapter V.

 6

THIS PAGE INTENTIONALLY LEFT BLANK

 7

II. ANALYTICAL FRAMEWORK

A. OVERVIEW

Important concepts used as a basis to develop the algorithms in this thesis are

introduced in this chapter. First, we discuss the pinhole camera model, which is used to

describe the geometrical relationship between a point in three-dimensional (3D) space

and the two-dimensional (2D) coordinate system. We also address the concept of a

rotation matrix since we must perform several transformations between coordinate

systems. Once the projection from 3D to 2D has been introduced, particular attention is

given to the concept of mapping relevant features such as lines since we are interested in

detecting runway boundaries. The methodology derived in this thesis allows points

between a map and the projected 2D coordinate system to be matched.

B. CAMERA PINHOLE MODEL

A camera model mathematically maps a 3D scene in space on to a 2D image. In

this research, we use the pinhole model shown in Figure 4 to describe the geometrical

relationship between the x and y coordinates of a point in the 2D plane and its real

coordinates in the 3D world.

Figure 4. Pinhole Camera Model to Project 3D Coordinates onto 2D Plane

(Left) and Triangular Similarities (Right)

Source [5]: R. Hartley and A. Zisserman. (2004). Multiple View Geometry in Computer

Vision. [Online]. Available: https://itun.es/us/_pvzW.l

https://itun.es/us/_pvzW.l

 8

The relation between the x, y 2D coordinates in the camera plane and the X, Y, Z

coordinates of the 3D object is computed from simple triangular similarities

x Xf

y YZ

 (1)

where f is the focal length of the camera, X, Y, Z are the three coordinates in 3D space

(real world), and x , y are the two coordinate in 2D plane (image).

In general, the two reference frames (world and camera) are different.

Consequently, it is necessary to transform the world frame coordinates into the camera

frame coordinates. The relation is obtained by a sequence of translations and rotations,

which are defined by the specific location and orientation of the camera in world

coordinates.

In some cases, such as the descriptions of certain reference frames like the world,

camera, aircrafts, ships or vehicles, the frames are defined by standard conventions,

which also define the terminology used to identify rotations and translations.

In the following section, we define these conventions, which are central to our

research.

C. ROTATION MATRICES

One important aspect to consider when projecting an object from the 3D real

world into the 2D plane is that we must to execute several transformations between

coordinate systems. These conversions are performed by rotation matrices [6], which are

a way to describe the orientation of coordinate system B with respect to another

coordinate system A. Both coordinate systems are shown in Figure 5.

 9

Figure 5. Coordinate System A and Object Coordinate System B.

There are three basic rotation matrices, depending about which axis (x, y or z)

performs the rotation. These matrices are

1 0 0

0 cos() sin()

0 sin() cos()

x x x

x x

R

 (2)

cos() 0 sin()

0 1 0

sin() 0 cos()

y y

y

y y

R

 (3)

cos() sin() 0

sin() cos() 0

0 0 1

z z

z z zR

. (4)

D. FRAMES

When doing the projection of a point (or a set of points) from the map to the

image, it is important to consider the convention used for each of the frames. There are

five frames: map, world, aircraft, camera, and image.

 10

1. Map Frame

Once the location of the runway is determined, a section of the map is cropped to

get an N by M image that represents the map. For this image representation, a convention

was established, namely rows (down), columns (right) and elevation (up). The Salinas

Municipal Airport Map image representation is shown in Figure 6.

Figure 6. N Rows by M Columns Image of Salinas Municipal Airport Map

Adapted from [7]: “Salinas Municipal Airport.” 2016. [Online]. Available:

https://www.google.com/maps/@36.6612306,-121.6066075,2805m/data=!3m1!1e3.

Accessed Jan. 22, 2016.

2. World Frame

Consider an object situated in the real world. Its location is given by the

coordinates x, y and z, which are shown in Figure 7. This reference system is defined as

the world frame, also known as the local tangent plane (LTP). The convention used for

these three coordinate points is as follows: north for x, east for y and down for altitude

(z). The origin can be anywhere of significance on the specific problem.

https://www.google.com/maps/@36.6612306,-121.6066075,2805m/data=!3m1!1e3

 11

Figure 7. Arbitrary Object with Coordinates x, y and z in World Frame

Map adapted from [7]: “Salinas Municipal Airport.” 2016. [Online]. Available:

https://www.google.com/maps/@36.6612306,-121.6066075,2805m/data=!3m1!1e3.

Accessed Jan. 22, 2016.

3. Aircraft Frame

The orientation of the coordinate system of an aircraft with respect to another is

described by the angles formed about its x, y and z axes. These three angles are known as

roll, pitch and yaw, respectively. The sign convention for these angles was established as

positive when they perform a clockwise rotation, and negative otherwise, considering that

the axes’ direction with respect to the aircraft is roll forward, pitch right and yaw down,

as depicted in Figure 8.

Figure 8. Roll, Pitch and Yaw Positive Rotation Angles in the Aircraft Frame

Source [8]: Understanding Euler Angles. [Online]. Available:

http://www.chrobotics.com/library/understanding-euler-angles. Accessed Jan. 22, 2016.

East(y)

North(x)

Down(z)

https://www.google.com/maps/@36.6612306,-121.6066075,2805m/data=!3m1!1e3
http://www.chrobotics.com/library/understanding-euler-angles

 12

4. Camera Frame

The orientation of the coordinate system of a camera with respect to another is

described by the angles formed about its x, y and z axes. These three angles are roll, tilt

and pan, respectively. They represent the Euler angles, and their rotations have to be

executed in a specific order. This is called the camera frame. The sign convention for

these angles was established as positive for a clockwise rotation and negative otherwise,

considering that the axes’ direction with respect to the camera is roll forward, tilt right

and pan down, as illustrated in Figure 9.

Figure 9. Roll, Tilt and Pan Positive Rotation Angles

in Camera Frame

Adapted from [9]: Cloud Cap Technology TASE 200 camera. [Online]. Available:

http://www.cloudcaptech.com/products/detail/tase-200. Accessed Jan. 23, 2016.

E. PROJECTION OF A LINE

Some features are invariant when projected from a 3D world frame to a 2D image

frame, based on the pinhole model. Particular interest in this research is the fact that lines

in the 3D world are projected into lines on an image plane. The goal of this section is to

establish these when the lines are borders of runways.

Roll

Pan

Tilt

http://www.cloudcaptech.com/products/detail/tase-200

 13

Let us consider a line on the plane with equation y ax b and with the z axis

pointing toward the sheet, as shown in Figure 10. This is the case of a linear feature on a

map.

Figure 10. Line on a Plane and Its Basic Equation

Now, take a camera mounted on an airplane with an altitude h and tilt it by an

angle around the x-axis. A side view of the y-z plane and a point P on the ground are

depicted in Figure 11. The three axes of the camera frame are defined as xc, yc and zc,

with the xc axis pointing out of the sheet. In particular, the zc axis is orthogonal to the

camera plane. On the other hand, the three axes of the airplane frame are defined as xp, yp

and zp, with the positive x axis pointing also out of the paper.

The coordinates of the point P on the ground are

T

g g gP x y (5)

and in the airplane frame, assuming the plane is flying at zero pitch in the north direction,

they are

T

p p pP x y h (6)

x

y

z axis points toward

the sheet

y = ax+b

 14

where h is the height of the airplane, namely the positive zp axis.

Figure 11. Side View of the y-z Plane (the Airplane and Camera Frame in

Orange and Black, Respectively)

We have set the coordinates of a point on the ground from the perspective of the

airplane frame. The final objective is to know these coordinates in the camera frame.

Recalling the rotation matrices mentioned previously, we need to perform a rotation

about the x-axis; therefore, the rotation matrix we need is

1 0 0

0 cos() sin()

0 sin() cos()

R

 (7)

which represents the projection of the camera frame on the airplane frame, where is

the angle between both frames.

By multiplying the position of the point P in the airplane frame by the rotation

matrix (7), we get cP , which is the position of the point with respect to the camera frame:

Ground

y
a

z
a

δ

x axis points toward

the sheet

h

P

 15

1 0 0

0 cos() sin()

0 sin() cos()

c

x

P y

h

 (8)

and

 cos() y sin()

sin() y cos() h

c

x

P h

. (9)

Recall that the projection of a vector into another is related to the cosine or sine of

the angle formed between them.

Let us consider two planes, y-z and yc-zc, as depicted in Figure 12.

Figure 12. Planes y-z and yc- zc with Angle Formed between Them

The relationship between vectors yc, zc and vectors y, z is given by

cos() sin()cy y z

 (10)

sin() cos()cz y z

 (11)

where from (10) and (11), we observe that

cos() sin()

sin() cos()
c cy z y z

 (12)

y

z

δ

y
c
 z

c

δ

 16

and solving for y z yields

cos() sin()

sin() cos()
c cy z y z

 . (13)

If we have two random points p1 and p2 in the y-z plane, such that

 1

2

p
P y z

p

 (14)

their location, considering (13), with respect to the yc-zc plane is given by

cos() sin() 1

sin() cos() 2
c c c

p
P y z

p

. (15)

Now, consider a line on the ground with equation y = ax + b. All the points P(x)

on the line have the form

 (x)
x x

P
y ax b

. (16)

Substituting y by ax b in (9) gives

 () cos()() sin()

sin()() cos()

c

x

P x ax b h

ax b h

 (17)

 17

with

 cos()() sin()

-sin()() cos()

x x

y ax b h

z ax b h

 (18)

which is the position x, y and z (height) of all the points P(x) on the camera frame.

Substituting x, y and z from (17) into the pinhole camera model (1) yields the

position of any point in the image frame as

1

2 cos()() sin()sin()() cos()

M xf

M ax b hax b h

. (19)

Simplifying this equation results in

1

2

sin()() cos()

cos()() sin()

sin()() cos()

fx

M ax b h

M f ax b f h

ax b h

. (20)

Discretizing 1M and 2M by the pixel size () of the image yields

 1 1M m (21)

 2 2M m . (22)

Substituting (21) and (22) into (20), we get

 18

1

2

sin()() cos()

cos()() sin()

sin()() cos()

fx

m ax b h

m f ax b f h

ax b h

. (23)

As a result,

1

2

(sin()() cos())

cos()() sin()

(sin()() cos())

fx

m ax b h

m f ax b f h

ax b h

 (24)

and, finally, we get

1

2

sin()() cos()

cos()() sin()

sin()() cos()

f x

m ax b h

m f ax b f h

ax b h

 (25)

with

f

f

. (26)

Now it is necessary to find a set of equations that relates the line y ax b in the

map frame with the line y x in the image frame.

 19

This relationship can be derived from (25), where we equate
1 ()m g x and

2 ()m g x . The result is

 ()
sin()() cos()

f x
g x

ax b h

 (27)

and

cos()() sin()

()
sin()() cos()

f ax b f h
g x

ax b h

. (28)

Substituting (27) into (28), we get

cos()() sin()

sin()() cos() sin()() cos()

f ax b f h f x

ax b h ax b h

. (29)

Now (29) can be written in the form

 cos()() sin() (sin() sin() cos())f ax b f h f x ax b h . (30)

Grouping terms in (30) yields

cos() (cos() sin()) (sin()) sin() cos())f ax f b f h x f a b h . (31)

Equating terms from both sides of (31), we get

 cos() sin()f a f a (32)

 20

 cos() sin() sin() cos()f b f h b h , (33)

and solving (33) for yields the solution

(sin() cos())

cos() sin()

f h b

h b

. (34)

Solving (32) for and substituting the value of , we get

cos() sin()

ha

h b

. (35)

From (34) and (35), we solve for a and b with the result

cos() sin()

f
a

f

 (36)

and

cos() sin()

cos() sin()

f
b h

f

. (37)

After all the derivations, (34), (35), (36) and (37) describe the relationship that

exists between a line with equation y ax b in the map frame and the line with

equation y x in the image frame.

F. HOUGH TRANSFORM

In order to be able to detect the boundary lines of the runway and compensate for

the mismatch due to sensor noise, the Hough transform is applied. The Hough transform

algorithm [10] is a method used to detect linear features using the parametric

 21

representation of a line as cos() sin()o or x y . This method and its practical

applications are described in the following paragraphs.

1. Mathematical Foundation

The equation that describes a line in the 2D x-y plane is y mx b where m is the

slope and b the intercept. For every parameter m and b, there is a line lying on this plane.

From the two parameters cited above, set the m-b plane. Each line on this plane

corresponds to a point p in the x-y plane. If we choose a point o ox y in the x-y plane,

then an infinite number of lines go through this point with n equations o n o ny m x b

defining them. Each one of these n lines is represented in the m-b plane by n points. In

other words, a line in the x-y plane is a point in the m-b plane. Likewise, infinite lines (or

one point) in the x-y plane is a line in the m-b plane.

All the lines in the m-b plane that intersect each other represent common lines in

the x-y plane. Points and lines that correspond with each other have the same color. This

relation is shown in Figure 13. The region with more lines intersected (one point) in the

m-b plane represents a line that is common to a set of points, meaning they have same

slope and intercept. Essentially, the Hough transform finds the correspondence between

lines in the x-y plane and points in the m-b plane.

Figure 13. Correspondence between Points and Lines in Planes x-y and m-b

x

y

m

b

 22

2. Practical Computation of Hough Transform

In practice for the Hough transform computation we represent a line using another

way that involves two parameters, namely distance r and angle theta θ. This

representation is illustrated in Figure 14.

Figure 14. Line Described by Parameters Angle Theta θ and

Distance r to the Origin

The line equation is written as

 cos() sin()o or x y (38)

where θ is the angle between the positive x axis and the perpendicular line formed from

the actual line to the origin, r is the distance from the origin to the actual line, measured

over the perpendicular line.

As mentioned before, when using the regular line equation y mx b , we

represent the x-y plane in the m-b plane. Similarly, using (38), we characterize the x-y

plane in the θ-r plane. Thus, a line in the x-y plane is a point in the θ-r plane, and a point

x

y

θ

 23

in the x-y plane is a sinusoid in the θ-r plane. All the sinusoids in the θ-r plane that

intersect each other represent common lines in the x-y plane. This relation is shown in

Figures 15 and 16. The region with more sinusoids intersected (one point) in the θ-r plane

represents a line that is common to a set of points, meaning all the points lie on the same

line.

Figure 15. Four Points Form a Line in x-y Plane

Figure 16. Four Sinusoids Intersect Each Other in One Point in θ -r Plane

 24

THIS PAGE INTENTIONALLY LEFT BLANK

 25

III. MAP AND SIMULATED IMAGE MATCHING

A. OVERVIEW

A simulation to validate and test the analytical framework introduced in Chapter

II is presented in this chapter.

The simulator we developed manipulates real data in Google Maps taken from

aerial photographs to construct an estimate of the camera view on an airplane under

different altitude conditions as well as aircraft and camera orientations. The simulation

was needed to validate the mathematical and geometrical techniques to map line features

between different frames of reference in the pinhole camera model.

The virtual scenario corresponds to a simulated frame of video that shows a

runway at an airport. The goal is to match the exterior lines of the runway displayed in

the map with those shown in the virtual frame of video.

B. TRANSFORMATIONS: MAP TO IMAGE AND IMAGE TO MAP

To get a virtual image from a camera’s perspective that emulates a view of a

runway on a map, it is necessary to perform a series of rotations, starting with the map

frame up to the image frame. The goal is to reconstruct the 3D view of the aircraft camera

from the map and simulated navigational data (i.e., the camera and aircraft orientation

angles, position of the aircraft with respect to a reference, and so on).

In the following subsections, each of the rotations is discussed. It is important to

keep in mind the convention used for each one of the frames since this property affects

the components that are part of the rotation matrices.

In addition, the representation of any rotation from frame a to frame b is defined

by b

aR and vice versa.

 26

1. Rotation from Map Frame to World Frame

In Chapter II, we introduced the convention used for the map and world frames

where the y-axis has the same direction for both of the frames. On the other hand, axes x

(rows and north) and z (up and down) have opposite direction, as shown in Figure 17.

Figure 17. Map Frame (Left) and World Frame (Right)

Maps adapted from [7]: “Salinas Municipal Airport.” 2016. [Online]. Available:

https://www.google.com/maps/@36.6612306,-121.6066075,2805m/data=!3m1!1e3.

Accessed Jan. 22, 2016.

To move from the map frame to the world frame, we multiply the map frame

vectors by the following rotation matrix

1 0 0

0 1 0

0 0 1

w

mR

. (39)

By doing this, we can describe the position of a point in the world frame.

https://www.google.com/maps/@36.6612306,-121.6066075,2805m/data=!3m1!1e3

 27

2. Rotation from World Frame to Aircraft Frame

Now that we have established the desired point in the world frame, let us move to

the next step, which is to find the coordinates of the point in the aircraft frame.

To achieve this, we need to compare world and aircraft frames and to perform the

needed rotation matrix according to the direction and convention of each axis. As

illustrated in Figure 18, the directions of all the axes are the same for both frames.

Figure 18. Aircraft Frame (Left) and World Frame (Right)

Aircraft from [8]: Understanding Euler Angles. [Online]. Available:

http://www.chrobotics.com/library/understanding-euler-angles. Accessed Jan. 22, 2016.

To move from the world frame to the aircraft frame, we need to perform three

rotations about the roll , pitch θ and yaw orientation angles of the aircraft as

follows:

 a

w roll pitch yawR R R R . (40)

http://www.chrobotics.com/library/understanding-euler-angles

 28

The matrices used in (40) for rotations around each orientation angle are,

respectively,

1 0 0

0 cos() sin()

0 sin() cos()

rollR

, (41)

cos() sin() 0

0 1 0

sin() 0 cos()

pitchR

, (42)

and

cos() sin() 0

sin() cos() 0

0 0 1

yawR

. (43)

3. Rotation from Aircraft Frame to Camera Frame

Since the camera is attached to the aircraft, it is expected that the three axes of the

camera frame have the same direction of the respective aircraft frame axes. This is shown

in Figure 19.

 29

Figure 19. Aircraft Frame (Up) and Camera Frame (Down)

Camera adapted from [9]: Cloud Cap Technology TASE 200 camera. [Online]. Available:

http://www.cloudcaptech.com/products/detail/tase-200. Accessed Jan. 23, 2016.

To go from the aircraft frame to the camera frame, we need to execute three

rotations about the roll , tilt θ and pan orientation angles of the camera.

The matrices used for rotations around each orientation angle are the same as in

Equations (24), (25) and (26), with pan, tilt and roll replacing yaw, pitch and roll,

respectively.

The rotation from the aircraft frame to the camera frame is given by

 c

a roll tilt panR R R R . (44)

4. Rotation from Camera Frame to Image Frame

At this point, we have gone from the map frame to the camera frame. This means

that we know the position of a point in the map with respect to the camera frame. The last

of the rotation matrices takes the point from the camera frame to the image frame. To

http://www.cloudcaptech.com/products/detail/tase-200

 30

understand the relation between these two frames, let us first compare the direction of

their respective axes.

The convention used for the camera and image frames is such that the y-axis has

the same direction for both of the frames. The x-axes (roll and rows) and z-axes (pan and

up) have opposite directions, as shown in Figure 20.

Figure 20. Image Frame (Left) and Camera Frame (Right)

Camera adapted from [9]: Cloud Cap Technology TASE 200 camera. [Online]. Available:

http://www.cloudcaptech.com/products/detail/tase-200. Accessed Jan. 23, 2016.

The transformation from the camera frame to the image frame is given by

1 0 0

0 1 0

0 0 1

i

cR

, (45)

and the equation that yields the transformation from map to image is defined by

 i i c a w

m c a w mR R R R R . (46)

http://www.cloudcaptech.com/products/detail/tase-200

 31

By transposing all the rotation matrices in equation (46), we can perform the

transformation from image to map as

 m c a w m

i i c a wR R R R R . (47)

C. COMPUTER SIMULATION

The mathematical operations related to the rotations explained previously were

performed in two functions called map2image and image2map within a main MATLAB

program (see Appendix). These functions map a number of points in the image plane to

the corresponding points on the map plane. Since we are relating points on planar

surfaces (image and map), the relation is one-to-one without ambiguity. In this operation,

we clearly assume that the aircraft is flying at a sufficient high altitude so that the heights

of the buildings are negligible. The points on the two planes (image and map) are

represented as columns of two matrices, defined as

XYi: 2 by N points positions in image frame.

XYm: 2 by N points positions in map frame.

The main camera parameter is defined as the field of view (FOV). Dimensionless

aircraft and camera orientations together with aircraft position and altitude are given as

thRPYaw: roll pitch yaw angles of aircraft

thRTPca: roll-tilt-pan angles of camera

posNEAw: position of the aircraft (north-east-altitude) in the world frame

Scale: size of pixel in the map, in meters/pixel.

The first part of the algorithm presents a virtual view of the aircraft camera using

the map and the navigational data. The maps in Figures 21 and 22 of the Municipal

Salinas and Regional Monterey Airport regions, respectively, were used to simulate the

virtual view of the camera. The aircraft position is represented by the red dot.

 32

Figure 21. Salinas Municipal Airport and Aircraft Position (Red Dot)

Adapted from [7]: “Salinas Municipal Airport.” 2016. [Online]. Available:

https://www.google.com/maps/@36.6612306,-121.6066075,2805m/data=!3m1!1e3.

Accessed Jan. 22, 2016.

https://www.google.com/maps/@36.6612306,-121.6066075,2805m/data=!3m1!1e3

 33

Figure 22. Monterey Regional Airport and Aircraft Positon (Red Dot)

Adapted from [11]: “Monterey Regional Airport.” 2016. [Online]. Available:

https://www.google.com/maps/@36.5857303,-121.8427775,2790m/data=!3m1!1e3

Accessed Jan. 22, 2016.

The algorithm presents an image by using the real location of the aircraft, its

simulated navigational data and the camera orientation angles. The image portrays what

the camera would show if the aircraft was flying in the location indicated in Figures 21

and 22 with the camera pointing toward the airport. These simulated views of the aircraft

camera are shown in Figures 23 and 24, respectively.

https://www.google.com/maps/@36.5857303,-121.8427775,2790m/data=!3m1!1e3

 34

Figure 23. Virtual Camera View of Salinas Municipal Airport

Adapted from [7]: “Salinas Municipal Airport.” 2016. [Online]. Available:

https://www.google.com/maps/@36.6612306,-121.6066075,2805m/data=!3m1!1e3.

Accessed Jan. 22, 2016.

Figure 24. Virtual Camera View of Monterey Regional Airport

Adapted from [11]: “Monterey Regional Airport.” 2016. [Online]. Available:

https://www.google.com/maps/@36.5857303,-121.8427775,2790m/data=!3m1!1e3

Accessed Jan. 22, 2016.

https://www.google.com/maps/@36.6612306,-121.6066075,2805m/data=!3m1!1e3
https://www.google.com/maps/@36.5857303,-121.8427775,2790m/data=!3m1!1e3

 35

Once the virtual view is presented, we need to validate the matching of the edges

of the runway in the map with the same edges in the virtual view. To do so, we add four

points, which form two red lines in the map frame, as shown in Figures 25 and 26.

Figure 25. Salinas Municipal Airport with Runway Edges Highlighted in Red

Adapted from [7]: “Salinas Municipal Airport.” 2016. [Online]. Available:

https://www.google.com/maps/@36.6612306,-121.6066075,2805m/data=!3m1!1e3.

Accessed Jan. 22, 2016.

Figure 26. Monterey Regional Airport with Runway Edges Highlighted in Red

Adapted from [11]: “Monterey Regional Airport.” 2016. [Online]. Available:

https://www.google.com/maps/@36.5857303,-121.8427775,2790m/data=!3m1!1e3

Accessed Jan. 22, 2016.

https://www.google.com/maps/@36.6612306,-121.6066075,2805m/data=!3m1!1e3
https://www.google.com/maps/@36.5857303,-121.8427775,2790m/data=!3m1!1e3

 36

The algorithm takes these four points on the map frame and performs a

transformation to get the same points in the virtual image frame. A virtual view of the

camera frame (highlighted in yellow) superimposed on the map frame is shown in

Figures 27 and 28.

Figure 27. Virtual Frame (Yellow) of the Camera on

Salinas Municipal Airport

Adapted from [7]: “Salinas Municipal Airport.” 2016. [Online]. Available:

https://www.google.com/maps/@36.6612306,-121.6066075,2805m/data=!3m1!1e3.

Accessed Jan. 22, 2016.

Figure 28. Virtual Frame (Yellow) of the Camera on

Monterey Regional Airport

Adapted from [11]: “Monterey Regional Airport.” 2016. [Online]. Available:

https://www.google.com/maps/@36.5857303,-121.8427775,2790m/data=!3m1!1e3

Accessed Jan. 22, 2016.

https://www.google.com/maps/@36.6612306,-121.6066075,2805m/data=!3m1!1e3
https://www.google.com/maps/@36.5857303,-121.8427775,2790m/data=!3m1!1e3

 37

In Figures 29 and 30, the virtual view of the camera is depicted with the runway

edges highlighted in red. As illustrated, the correspondence between the map frame

runway and the virtual image frame runway was achieved.

Figure 29. Runway Detected in the Camera Virtual View of

Salinas Municipal Airport

Adapted from [7]: “Salinas Municipal Airport.” 2016. [Online]. Available:

https://www.google.com/maps/@36.6612306,-121.6066075,2805m/data=!3m1!1e3.

Accessed Jan. 22, 2016.

Figure 30. Runway Detected in the Camera Virtual View of

Monterey Regional Airport

Adapted from [11]: “Monterey Regional Airport.” 2016. [Online]. Available:

https://www.google.com/maps/@36.5857303,-121.8427775,2790m/data=!3m1!1e3

Accessed Jan. 22, 2016.

https://www.google.com/maps/@36.6612306,-121.6066075,2805m/data=!3m1!1e3
https://www.google.com/maps/@36.5857303,-121.8427775,2790m/data=!3m1!1e3

 38

We have described how the rotation matrices and the equations that relate the

points on the map frame with those on the camera image frame are implemented in the

MATLAB algorithm and shown that it is feasible to match the runway edges on the map

frame with their corresponding edges in the image frame.

The values selected for the simulated navigational data were purposely set equal

to the ones from the real experiment. By doing this, are able to compare the results from

this simulation with the real experiment that is described in the next chapter.

 39

IV. MAP AND REAL IMAGE MATCHING

We have observed how the correspondence between the map and the virtual

image is achieved in an ideal simulated environment. In this chapter, we describe how to

associate the map frame and the real image frame.

Based on Chapter III and equations (46) and (47), the rotations performed by the

developed function called map2image to go from the map frame to the image frame are

essentially the same. The key variation is that we are using real parameters, namely

navigational data of the aircraft (roll, pitch, and yaw), orientation angles of the camera

(roll, tilt, and pan) and position of the aircraft (latitude, longitude, and altitude).

The real navigational data and camera orientation angles were obtained from

another MATLAB algorithm that extracts the metadata from the frames of a video

recorded by a TASE200 camera, which is mounted on a Cessna 206 airplane. Data for

Salinas and Monterey airports were collected on several flights performed in 2015.

It is important to take into account that the input value of the aircraft position

(posNEAw) for the MATLAB function map2image should be given in meters with

respect to a defined reference in the map frame. This reference could be anywhere in the

map, but for convenience, we utilized the map center.

To find this particular variable we proceeded as follows: first, we obtained the

aircraft latitude and longitude from the data, and then we took the difference in latitude

and longitude between this position and the reference and converted the result into

meters. This should be the input value for the aircraft position.

A. REAL DATA COLLECTION

In June and December 2015, the Cessna 206 airplane made several flights with a

mounted TASE200 daylight and infrared camera, manufactured by Cloud Cap

Technology, which is illustrated in Figure 31.

 40

Figure 31. Camera TASE200 Mounted on the Cessna 206 Airplane

The main characteristics of the camera are shown in Table 1.

Table 1. TASE200 Camera Specifications

MECHANICAL SPECIFICATIONS

Diameter 4.4 inches

Height 7.5 inches

Weight 2.34 lbs

PERFORMANCE

Use Daylight and infrared imaging

Pan limits 360˚ continuous

Tilt limits +23˚/-203˚

IR camera Resolution:640x480

HFOV: 10.5˚

Daylight camera Optical zoom: 31x

HFOV:55.7˚-1.94˚

Adapted from [9] Cloud Cap Technology TASE 200 camera. [Online]. Available:

http://www.cloudcaptech.com/products/detail/tase-200. Accessed Jan. 25, 2016.

During these flights, several videos of approaches to the Salinas and Monterey

airports were recorded. The videos were then processed by using the MATLAB

algorithm called ReadingJpegSeries.m that reads each of the video frames separately and

extracts useful navigational information (metadata) about the flights.

http://www.cloudcaptech.com/products/detail/tase-200

 41

1. Salinas Municipal Airport Approximation

The two-minute video of the approach to the Salinas Municipal Airport was

composed of 638 frames. As a reference, the data generated from the first ten frames is

shown in Tables 2 and 3.

Table 2. Aircraft and Camera Orientation Angles for the First Ten Frames of

the Salinas Municipal Airport Approximation

Frame
Aircraft orientation Camera orientation

Roll Pitch Yaw Roll Tilt Pan

1 -1.5985˚ -19.7326˚ -78.5525˚ 2.7437˚ -2.5517˚ -91.0439˚

2 -1.5985˚ -19.7326˚ -78.5525˚ 2.7437˚ -2.5517˚ -91.0439˚

3 -1.9938˚ -19.6925˚ -78.7301˚ 2.4309˚ -2.4947˚ -91.5041˚

4 -1.9938˚ -19.6925˚ -78.7301˚ 2.4309˚ -2.4947˚ -91.5041˚

5 -1.9938˚ -19.6925˚ -78.7301˚ 2.4309˚ -2.4947˚ -91.5041˚

6 -1.9938˚ -19.6925˚ -78.7301˚ 2.4309˚ -2.4947˚ -91.5041˚

7 -1.9938˚ -19.6925˚ -78.7301˚ 2.4309˚ -2.4947˚ -91.5041˚

8 -1.9938˚ -19.6925˚ -78.7301˚ 2.4309˚ -2.4947˚ -91.5041˚

9 -1.9938˚ -19.6925˚ -78.7301˚ 2.4309˚ -2.4947˚ -91.5041˚

10 -1.9938˚ -19.6925˚ -78.7301˚ 2.4309˚ -2.4947˚ -91.5041˚

Table 3. Aircraft Position and Horizontal Field of View of the Camera for the

First Ten Frames of the Salinas Municipal Airport Approximation

Frame
Aircraft Position

HFOV
Altitude (m) Latitude Longitude

1 60.96 36.6601˚ -121.5906˚ 20.83˚

2 60.96 36.6601˚ -121.5906˚ 20.83˚

3 59.97 36.6601˚ -121.5907˚ 20.83˚

4 59.97 36.6601˚ -121.5907˚ 20.83˚

5 59.97 36.6601˚ -121.5907˚ 20.83˚

6 59.97 36.6601˚ -121.5907˚ 20.83˚

7 59.97 36.6601˚ -121.5907˚ 20.83˚

8 59.97 36.6601˚ -121.5907˚ 20.83˚

9 59.97 36.6601˚ -121.5907˚ 20.83˚

10 59.97 36.6601˚ -121.5907˚ 20.83˚

The overall altitude and heading of the aircraft during the length of the video (638

frames) is depicted in Figure 32.

 42

Figure 32. Aircraft Altitude and Heading for All the Frames of the Salinas

Municipal Airport Approximation

Equally, the aircraft and the camera orientation angles are depicted in Figure 33.

 43

Figure 33. Aircraft and Camera Orientation Angles for All the Frames of the

Salinas Municipal Airport Approximation

2. Monterey Regional Airport Approximation

Similar to the procedure for Salinas Municipal Airport, a two-minute video of the

approach to the Monterey airport was also recorded. This video is composed of 3862

frames. The data generated from the first ten frames of this approach is shown in Tables 4

and 5.

 44

Table 4. Aircraft and Camera Orientation Angles for the First Ten Frames of

the Monterey Regional Airport Approximation

Frame
Aircraft orientation Camera orientation

Roll Pitch Yaw Roll Tilt Pan

1 7.9412˚ -21.9672˚ -92.9452˚ 1.7245 -4.0699˚ -76.6173

2 7.9412˚ -21.9672˚ -92.9452˚ 1.7245 -4.0699˚ -76.6173

3 7.9412˚ -21.9672˚ -92.9452˚ 1.7245 -4.0699˚ -76.6173

4 7.9412˚ -21.9672˚ -92.9452˚ 1.7245 -4.0699˚ -76.6173

5 7.9412˚ -21.9672˚ -92.9452˚ 1.7245 -4.0699˚ -76.6173

6 7.9412˚ -21.9672˚ -92.9452˚ 1.7245 -4.0699˚ -76.6173

7 7.9412˚ -21.9672˚ -92.9452˚ 1.7245 -4.0699˚ -76.6173

8 7.9412˚ -21.9672˚ -92.9452˚ 1.7245 -4.0699˚ -76.6173

9 7.3682˚ -21.8469˚ -93.1400˚ 1.0947 -4.1112˚ -76.6300

10 7.3682˚ -21.8469˚ -93.1400˚ 1.0947 -4.1112˚ -76.6300

Table 5. Aircraft Position and Horizontal Field of View of the Camera for the

First Ten Frames of the Monterey Regional Airport Approximation

Frame
Aircraft Position

HFOV
Altitude (m) Latitude Longitude

1 460.50 36.5642˚ -121.7753˚ 6.2338˚

2 460.50 36.5642˚ -121.7753˚ 6.2338˚

3 460.50 36.5642˚ -121.7753˚ 6.2338˚

4 460.50 36.5642˚ -121.7753˚ 6.2338˚

5 460.50 36.5642˚ -121.7753˚ 6.2338˚

6 460.50 36.5642˚ -121.7753˚ 6.2338˚

7 460.50 36.5642˚ -121.7753˚ 6.2338˚

8 460.50 36.5642˚ -121.7753˚ 6.2338˚

9 459.12 36.5642˚ -121.7754˚ 6.2338˚

10 459.12 36.5642˚ -121.7754˚ 6.2338˚

The overall altitude and heading of the aircraft during the length of the video is

shown in Figure 34.

 45

Figure 34. Aircraft Altitude and Heading for All the Frames of the Monterey

Regional Airport Approximation

Likewise, the orientation angles of camera and aircraft for the Monterey approach

are depicted in Figure 35.

 46

Figure 35. Aircraft and Camera Orientation Angles for All the Frames of the

Monterey Regional Airport Approximation

B. REAL DATA EXPERIMENT

Once the navigational information had been gathered from the metadata, we

extracted the parameters needed for the MATLAB algorithm in order to perform the map

and real-image runway matching. For this implementation, we started by defining four

points on the map frame as described in page 32 of Chapter III in order to generate the

two lines of the runway. Next, we substituted the real values from Tables 2, 3, 4 and 5

into the variables needed for the algorithm.

 47

With this data, the algorithm performed a transformation from the map frame to

the image frame, projecting the runway edges into the real image as depicted in Figures

36 and 37.

Figure 36. Runway Detected on the Real Camera View from Salinas Municipal

Airport

Figure 37. Runway Detected on the Real Camera View from Monterey

Regional Airport

 48

If we compare the results of the simulation against the experimental

implementation, we notice that there is a slight mismatch when projecting the map

runway lines into the real frame. In other words, the projected lines do not lie exactly on

the image runway.

This discrepancy is due to several factors, including the presence of sensor noise

as well as a simplifying assumption that the aircraft roll is close to zero. This assumption

was made because aircrafts usually have small roll angles when they are approaching a

runway. This simplified the equations derived in Chapter II.

The comparison between the simulations and the real experiments is illustrated in

Figures 38 and 39, where it is shown that the estimated line boundaries of the runway

must be corrected. This operation is performed by the Hough transform of the image and

estimating the closest features in the image.

Figure 38. Line Projection Mismatch in Real Implementation (Left) and Match

in Simulation (Right) for Salinas Municipal Airport

 49

Figure 39. Line Projection Mismatch in Real Implementation (Left) and Match

in Simulation (Right) for Monterey Regional Airport

1. Matching Line Parameters and

As discussed in Chapter II, the equations that describe the relationship between

the line in the map frame and the line in the image frame were defined as

(sin() cos())

cos() sin()

f h b

h b

cos() sin()

ha

h b

cos() sin()

f
a

f

cos() sin()

cos() sin()

f
b h

f

 .

These equations were implemented within the main MATLAB algorithm to test

and validate them. The percentage of error between slope α and intercept β obtained by

 50

using (34) and (35) and their values when using two points of the projected lines to

calculate α and β are shown in Table 6 and Table 7.

Table 6. Comparison between Slope α and Intercept β Values for Salinas

Municipal Airport Using Two Different Methods

Using equations (19)

and (20)

Calculating slope and

intercept
Error

(%)
Parameter Value Parameter Value

α -2.6366 α -2.6364 0.0099

β 213.2586 β 212.3636 0.4214

Table 7. Comparison between Slope α and Intercept β Values for Monterey

Regional Airport Using Two Different Methods

Using equations (19)

and (20)

Calculating slope and

intercept
Error

(%)
Parameter Value Parameter Value

α -11.1278 α -11.1538 0.2340

β -1096..3 β -1098.8 0.2217

C. MISMATCH CORRECTION

As described in Chapter II, the Hough transform algorithm is an image processing

technique that detects linear features. The correction presented here is based on the fact

that the Hough transform performs the line detection on the real image about the edges

that are closer to the projected lines.

The use of the Hough transform in conjunction with the estimate from map

information helps to eliminate line features that are not related to the specific target under

consideration (a runway in this case) such as highways, roads and lines of buildings. In

this way, once the parameters of the runway are estimated, a search can be performed by

the Hough algorithm to evaluate the image feature closest to the one estimated from the

map.

 51

This procedure helps to detect just the lines of interest on the image that have

similar angles to the projected ones. The detected lines that are closest to the projected

ones are the actual runway lines.

Once we determine the angles of the projected lines by inspection, θ1 and θ2, we

need to perform another step prior to the Hough transform. This stage executes an edge

detection algorithm on the real image, and from there, the line detection becomes more

efficient. The result obtained on the image after this previous process is implemented is

shown in Figure 40.

Figure 40. Edge Detection in the Real Image of Salinas Municipal Airport

The Hough transform can now be performed on the image depicted in Figure 40

for the lines closer to the angles θ1 and θ2. For angle θ1, the Hough transform detects the

left external line of the runway, which is certainly closer to the projected left line (in red);

this circumstance is shown in Figure 41.

 52

Figure 41. Left Edge (Green) of Salinas Municipal Runway Detected by the

Hough Transform Closer to the Projected Left Line (Red)

Likewise, for angle θ2, the algorithm detects the right external line of the runway,

which is in fact closer to the projected right line. This detection is illustrated in Figure 42.

 53

Figure 42. Right Edge (Green) of Salinas Municipal Runway Detected by the

Hough Transform Closer to the Projected Right Line (Red)

By adding together both Hough transforms results, we can correct the mismatch

and make the detection of the runway as shown in Figure 43.

Figure 43. Mismatch in Projected Lines (Red) and Correction by Hough

Transform (Green) in Salinas Municipal Airport

 54

The same procedure is applied to the Monterey airport case. Recalling from

Figure 37, we notice that the mismatch is just the right side of the runway; therefore, the

Hough transform is performed only on this region. The right edge of the runway is

subsequently detected as illustrated in Figure 44.

Figure 44. Mismatch in Right Projected Line and Correction by Hough

Transform in Monterey Regional Airport

From the results on both airports, we observe that after the Hough transform

correction, the runway detection was achieved in the experimental implementation. In

addition, the results were better for the Monterey airport, which only needed the

correction for one side of the runway, while the Salinas Municipal Airport data required

the correction on both sides.

 55

V. CONCLUSIONS AND FUTURE WORK

A. CONCLUSIONS

The main objective of this thesis was to present the development and

implementation of a methodology that performs the detection of a runway from map, video

and aircraft navigational data. The algorithm was tested in a simulation method where ideal

conditions were set, and as a result, it achieved an accurate runway detection.

This methodology was then verified using actual video and aircraft data. The results

were not as precise as the simulation due to factors such as noise present in the sensors as

well as assumptions made on the aircraft roll behavior, which was assumed to be zero in

order to simplify the equations derived in Chapter II. These discrepancies were corrected

through the use of the Hough transform for linear features, which resulted in accurate

detection of the runway.

As described in Chapter I, many approaches perform runway detection by image-

processing techniques on video frames or satellite images. The approach presented in this

thesis differs from others in that it uses the satellite map of the runway that we want to

detect, the aircraft data, the camera data, and the video frames (image). The use of these

four tools in the algorithm provide more data and improves upon the runway detection that

can be achieved.

B. FUTURE WORK

The work done in this thesis is the initial contribution to perform the detection of

runways using not just an image by itself but data from other sources. Future work could

address the suppression of the mismatching when the algorithm is implemented using real

world video. By doing this, the algorithm will not need to perform the Hough transform,

saving computational time.

The methodology presented here used one frame of video to achieve runway

detection. It would be interesting to implement the algorithm on a group of frames in such a

way that the detection results could be displayed on a sequence of video frames.

 Also in the future, this method could be implemented to perform the runway

detection in real time.

 56

THIS PAGE INTENTIONALLY LEFT BLANK

 57

APPENDIX

This Appendix includes the MATLAB code implemented in this thesis.

%%///
%Roberto Cristi /Jose Espinosa. Naval Postgraduate School ECE

Department.
%March 2016.
%This program has four parts:
%Part 1: Show image from map for different aircraft and camera

positions and orientations.
%Part 2: Show correspondence of lines between map and image.
%Part 3 : Compare parameters of corresponding lines in map and image:
%Part 4: Test Hough transform (to correct the matching map-real frame).
%%///
clear
close all

%Load GoogleMap data.
Imap=imread(‘runway_map.jpg’);
Imap=rgb2gray(Imap);
Nmap=size(Imap);

%Camera Parameters.
FOV=20.87; %Field of View
N=[464,696];%[rows, columns] of image.

%Aircraft rotation angles.
%Enter roll, pitch and yaw angles of aircraft in degrees.
thR =0; thP = 88; thY = -86;

%Camera rotation angles.
%Enter roll, tilt and pan angles of camera in degrees.
throll=0; thtilt=0; thpan=0;

%World frame: [North-East-Down (NED)]
%Aircraft Position [North, East] (in pixels).Origin is center of
%the map divided by the scale.
Tne=[-97.543;1213.602]/1.25;

%Aircraft height (in meters) divided by the scale.
h=60/1.25;

%Scale of map (meters per pixel).
scale=1.0;

%% PART 1: Image from Map

%Compute fbar.
fbar=N(2)/(2*tan(FOV*pi/360));

 58

%Aircraft position in World Frame (in meters with respect to center of

map):
Tw=[Tne; h];

thRPYaw=[thR; thP; thY]; %Roll, pitch and yaw of aircraft.
thRTPca=[throll; thtilt; thpan];%Roll, tilt and pan of camera.
posNEAw=Tw; %Position of aircraft.

%Compute points on map corresponding to pixels in image.
XYm=image2map(N, FOV, thRPYaw, thRTPca, posNEAw, scale);

%Highlight them on the map
im_min=min(XYm(1,:)+Nmap(1)/2); im_max=max(XYm(1,:)+Nmap(1)/2);
jm_min=min(XYm(2,:)+Nmap(2)/2); jm_max=max(XYm(2,:)+Nmap(2)/2);
Area_spanned=0.5*ones(Nmap);

%Compute intensities from map by interpolation (closest point in map

grid).
for i=1:N(1),
 for j=1:N(2),
 k=(j-1)*N(1)+i; %Add shift from center.
 im=XYm(1,k)+(Nmap(1)/2);
 jm=XYm(2,k)+(Nmap(2)/2);
 im=max([im,1]); im=min(im, Nmap(1));
 jm=max([jm,1]); jm=min(jm, Nmap(2));
 Image(i,j)=Imap(uint16(im),uint16(jm));
 Area_spanned(uint16(im),uint16(jm))=1.0;
 end
end

%% PART 2: Correspondences between lines in map and image.
%Enter two points (A,B) on the map (origin left-upper corner, row and
%column).

Am=[593; 288]; Bm=[758; 1593]; % two points on one side of runway
Cm=[548; 295]; Dm=[722; 1602]; % two points on other side of runway

%Display on map.
Area_spanned=Area_spanned.*single(Imap);
figure, imshow(Area_spanned,[0,255])
hold on
XY=[Am, Bm, Cm, Dm];
plot(XY(2,1:2), XY(1,1:2), ‘r’) % line 1
plot(XY(2,3:4), XY(1,3:4), ‘r’) % line 2
XYcentermap=round(Nmap/2); % origin of map
XYcenterscene=image2map2(N, N’/2, FOV, thRPYaw, thRTPca, posNEAw,

scale);
XYcenterscene=XYcenterscene+Nmap’/2;

%Display on Images (Estimated and Actual Frame).
%Convert to map coordinates (with respect to center of map).
Am=round(Am-Nmap’/2); Bm=round(Bm-Nmap’/2);
Cm=round(Cm-Nmap’/2); Dm=round(Dm-Nmap’/2);
XYm=[Am, Bm, Cm, Dm];

 59

XYi=map2image(XYm,thRPYaw, thRTPca, posNEAw, N, FOV,scale);

%Estimated Image.
figure, imshow(Image),
title(‘estimated frame’)
hold on
XYcenterimage=round(N/2); % origin of map.
plot(XYcenterimage(2), XYcenterimage(1),’*g’)
plot(XYi(2,1:2), XYi(1,1:2), ‘r’) % line 1.
plot(XYi(2,3:4), XYi(1,3:4), ‘r’) % line 2.

%Actual image.
Frame=imread(‘Test1.jpg’); %to compare with actual image.
Frame=rgb2gray(Frame);
figure, imshow(Frame),
title(‘actual frame’)
hold on
XYcenterimage=round(N/2); % origin of map.
plot(XYcenterimage(2), XYcenterimage(1),’*g’)
plot(XYi(2,1:2), XYi(1,1:2), ‘r’) % line 1.
plot(XYi(2,3:4), XYi(1,3:4), ‘r’) % line 2.

%% PART 3 : Compare parameters of correponding lines in map and image:
%Line in map y=ax+b (x=horizontal(column),

y=vertical(row),origin=center)

YXm=[XYm(2,:); XYm(1,:)]; % switch XY with YX.

%Compute “a” and “b” parameters from 2 points on the line in the map.
a=(YXm(2,1)-YXm(2,2))/(YXm(1,1)-YXm(1,2));
b=(YXm(2,1)-a*YXm(1,1))/2 + (YXm(2,2)-a*YXm(1,2))/2;

%Correct “a,” “b” for shift.
as=a; bs=b+a*Tne(2)+Tne(1);
%Correct “a,” “b for rotation.
sY=sin(thY*pi/180); cY=cos(thY*pi/180);
ar=(as*cY-sY)/(cY+as*sY); br=bs/(cY+as*sY);

%Line in image y=alpha x + beta
%Use the corresponding points XYi on the image.
%First shift to the reference in the center
XYi(:,1)=round(XYi(:,1)-N’/2); XYi(:,2)=round(XYi(:,2)-N’/2);

YXi=[XYi(2,:); XYi(1,:)]; % switch XY with YX.
%Compute “alpha” and “beta.”
alpha=(YXi(2,1)-YXi(2,2))/(YXi(1,1)-YXi(1,2));
beta=(YXi(2,1)-alpha*YXi(1,1))/2 + (YXi(2,2)-alpha*YXi(1,2))/2;

%Verify correspondence alpa_hat and beta_hat with computed “alpha” and

“beta.”
sP=sin(thP*pi/180); cP=cos(thP*pi/180);
alpha_hat=h*ar/(cP*h-sP*br);
beta_hat=fbar*(sP*h+cP*br)/(cP*h-sP*br);

 60

%Should get alpha close to alpha_hat and beta close to beta_hat.

%Error percent between both calculaitons.
alpha_errorpercent=100*abs((alpha-alpha_hat)/alpha);
beta_errorpercent=100*abs((beta-beta_hat)/beta);

%% PART 4: Test Hough transform (to correct the matching map-real

frame).

%Left side of the runway
runway = rgb2gray(imread(‘Test1.jpg’));
X0=runway;
X=single(X0);
Y=edge(X,’canny’,[]);
figure
imshow(Y,[0, max(max(Y))]);
[H, theta, rho]=hough(Y,’Theta’,11.5:0.5:12.5);
figure
imshow(imadjust(mat2gray(H)),’XData’,theta,’YData’,rho,

‘InitialMagnification’,’fit’);
title(‘Hough Transform’);
xlabel(‘\theta’), ylabel(‘\rho’);
axis on,
axis normal,
hold on;
colormap(gray);

%Find peaks.
F = houghpeaks(H,3);
hold on
plot(theta(F(:,2)),rho(F(:,1)),’s’,’color’,’green’);

%Lines (show the correct lines of the runway in the real frame).
lines = houghlines(Y, theta, rho, F);
figure
imshow(X0), hold on

Am=[593; 288]; Bm=[758; 1593]; % Two points on one side of runway.
Cm=[548; 295]; Dm=[722; 1602]; % Two points on other side of runway.
Am=round(Am-Nmap’/2); Bm=round(Bm-Nmap’/2);
Cm=round(Cm-Nmap’/2); Dm=round(Dm-Nmap’/2);
XYm=[Am, Bm, Cm, Dm];
XYi=map2image(XYm,thRPYaw, thRTPca, posNEAw, N, FOV,scale);
plot(XYi(2,1:2), XYi(1,1:2), ‘r’) % line 1.

max_len = 0;
 for k = 1:length(lines)
 xy = [lines(k).point1; lines(k).point2];
 plot(xy(:,1),xy(:,2),’LineWidth’,2,’Color’,’green’);

 %Plot beginnings and ends of lines.
 plot(xy(1,1),xy(1,2),’x’,’LineWidth’,2,’Color’,’yellow’);
 plot(xy(2,1),xy(2,2),’x’,’LineWidth’,2,’Color’,’red’);

 61

 %Determine the endpoints of the longest line segment.
 len = norm(lines(k).point1 - lines(k).point2);
 if (len > max_len)
 max_len = len;
 xy_long = xy;
 end
 end
title(‘left side’)

%Right side of the runway.
[H, theta, rho]=hough(Y,’Theta’,-23.5:0.5:-22.5);
figure
imshow(imadjust(mat2gray(H)),’XData’,theta,’YData’,rho,’InitialMagnific

ation’,’fit’);
title(‘Hough Transform’);
xlabel(‘\theta’), ylabel(‘\rho’);
axis on,
axis normal,
hold on;
colormap(hot);

%Find peaks.
F = houghpeaks(H,3);
hold on
plot(theta(F(:,2)),rho(F(:,1)),’s’,’color’,’green’);

%Lines (show the correct lines of the runway in the real frame).
lines = houghlines(Y, theta, rho, F);
figure
imshow(X0), hold on

Am=[593; 288]; Bm=[758; 1593]; % Two points on one side of runway.
Cm=[548; 295]; Dm=[722; 1602]; % Two points on other side of runway.
Am=round(Am-Nmap’/2); Bm=round(Bm-Nmap’/2);
Cm=round(Cm-Nmap’/2); Dm=round(Dm-Nmap’/2);
XYm=[Am, Bm, Cm, Dm];
XYi=map2image(XYm,thRPYaw, thRTPca, posNEAw, N, FOV,scale);
plot(XYi(2,3:4), XYi(1,3:4), ‘r’) % line 2.

max_len = 0;
 for k = 1:length(lines)
 xy = [lines(k).point1; lines(k).point2];
 plot(xy(:,1),xy(:,2),’LineWidth’,2,’Color’,’green’);

 %Plot beginnings and ends of lines.
 plot(xy(1,1),xy(1,2),’x’,’LineWidth’,2,’Color’,’yellow’);
 plot(xy(2,1),xy(2,2),’x’,’LineWidth’,2,’Color’,’red’);

 %Determine the endpoints of the longest line segment.
 len = norm(lines(k).point1 - lines(k).point2);
 if (len > max_len)
 max_len = len;
 xy_long = xy;

 62

 end
 end

title(‘right side’)

%%///
%Roberto Cristi /Jose Espinosa. Naval Postgraduate School ECE

Department.
%March 2016.
%This function converts points on map frame to points on image frame.
%%///
function XYi=map2image(XYm,thRPYaw, thRTPca, posNEAw, N, FOV, scale)
%XYi=map2image(XYm,thRPYaw, thRTPca, posNEAw, N, FOV, scale)
%XYi = 2xNpoints positions in Image Frame.
%XYm = 2xNpoints positions in Map Frame.
%thRPYaw = 3x1 Roll, Pitch Yaw angles(deg.)World to Aircraft Frames.
%thRTPca = 3x1 Roll, Tilt, Pitch angles(deg.) Aircraft to Camera

Frames.
%posNEAw = 3x1 North,East,Altitude of Aircraft in World Frame.
%FOV=Field of View of Camera in degrees.
%N=[number of rows, number of columns] of image. It has to be EVEN.
%scale = length, in meters, of one pixel in the map (meters/pixel).
%Map Frame: [Row (down), Column (right), Elevation (up)].
%World Frame: [North, East, Down].
%Aircraft Frame: [Roll (forward), Pitch (right), Yaw (down)].
%Camera Frame: [Roll (forward), Tilt (right), Pan (down)].
%Image Frame: Rows (Down), Columns (Left) , Down (View direction).
%Rotation Matrices (Rba=Rotation from frame “a” to frame “b”).

%Map frame to world frame and viceversa.
Rwm=diag([-1, 1, -1]); Rmw=Rwm’;

%Aircraft frame to world frame and viceversa.
thR=thRPYaw(1); thP=thRPYaw(2); thY=thRPYaw(3);
thR=thR*pi/180; thP=thP*pi/180; thY=thY*pi/180;

Ry=[cos(thY), sin(thY), 0;
 -sin(thY), cos(thY), 0;
 0,0,1];

Rp=[cos(thP), 0, sin(thP);
 0,1,0;
 -sin(thP), 0, cos(thP)];

Rr=[1,0,0;
 0 cos(thR), -sin(thR);
 0, sin(thR), cos(thR)];

Raw=Rr*Rp*Ry; Rwa=Raw’;

%Aircraft frame to camera frame and viceversa.
throll=thRTPca(1); thtilt=thRTPca(2); thpan=thRTPca(3);

 63

throll=throll*pi/180; thtilt=thtilt*pi/180; thpan=thpan*pi/180;

Rpan=[cos(thpan), sin(thpan), 0;
 -sin(thpan), cos(thpan), 0;
 0,0,1];

Rtilt=[cos(thtilt), 0, -sin(thtilt);
 0,1,0;
 sin(thtilt), 0, cos(thtilt)];

Rroll=[1,0,0;
 0 cos(throll), -sin(throll);
 0, sin(throll), cos(throll)];

Rca=Rroll*Rtilt*Rpan; Rac=Rca’;

%Camera frame to image frame and viceversa.
Ric=diag([-1, 1, -1]); Rci=Ric’;

%Rotation Map frame to image frame and viceversa.
Rim=Ric*Rca*Raw*Rwm; Rmi=Rim’;

%% Transformation
% Convert aircraft position from meters to pixels
posNEAw=posNEAw/scale; % position of aicraft in pixels
Npoints=size(XYm,2);
Tm=Rmw*posNEAw;
XYm(1,:)=XYm(1,:)-Tm(1);
XYm(2,:)=XYm(2,:)-Tm(2);
XYZi=Rim*[XYm; -Tm(3)*ones(1,Npoints)];
fbar=N(2)/(2*tan(FOV*pi/360));
w=fbar./XYZi(3,:);
XYi(1,:)=XYZi(1,:).*w+N(1)/2;
XYi(2,:)=XYZi(2,:).*w+N(2)/2;

%%///
%Roberto Cristi /Jose Espinosa. Naval Postgratuade School ECE

Department.
%March 2016.
%This function converts points on image frame to points on map frame.
%%///
function XYm=image2map(N, FOV, thRPYaw, thRTPca, posNEAw, scale)
%XYm=image2map(N, FOV, thRPYaw, thRTPca, posNEAw,scale).
%XYZi = 3xNpoints positions in Image Frame.
%XYm = 2xNpoints positions in Map Frame.
%thRPYaw = 3x1 Roll, Pitch Yaw angles (deg.)World to Aircraft Frames.
%thRTPca = 3x1 Roll, Tilt, Pitch angles (deg. Aircraft to Camera

Frames.
%posNEAw = 3x1 North,East,Altitude of Aircraft in World Frame.
%FOV=Field of View of Camera in degrees.
%N=[number of rows, number of columns] of image. It has to be EVEN.

 64

%scale = size of pixel in the map, in meters/pixel.
%Map Frame: [Row (down), Column (right), Elevation (up)].
%World Frame: [North, East, Down].
%Aircraft Frame: [Roll (forward), Pitch (right), Yaw (down)].
%Camera Frame: [Roll (forward), Tilt (right), Pan (down)].
%Image Frame: Rows (Down), Columns (Left) , Down (View direction).
%Rotation Matrices (Rba=Rotation from frame “a” to frame “b”).

%Map frame to world frame and viceversa.
Rwm=diag([-1, 1, -1]); Rmw=Rwm’; % Map to World and viceversa

%Aircraft frame to world frame and viceversa.
thR=thRPYaw(1); thP=thRPYaw(2); thY=thRPYaw(3);
thR=thR*pi/180; thP=thP*pi/180; thY=thY*pi/180;

Ry=[cos(thY), sin(thY), 0;
 -sin(thY), cos(thY), 0;
 0,0,1];

Rp=[cos(thP), 0, sin(thP);
 0,1,0;
 -sin(thP), 0, cos(thP)];

Rr=[1,0,0;
 0 cos(thR), sin(thR);
 0, -sin(thR), cos(thR)];

Raw=Rr*Rp*Ry; Rwa=Raw’;

%Aircraft frame to camera frame and viceversa.
throll=thRTPca(1); thtilt=thRTPca(2); thpan=thRTPca(3);
throll=throll*pi/180; thtilt=thtilt*pi/180; thpan=thpan*pi/180;

Rpan=[cos(thpan), sin(thpan), 0;
 -sin(thpan), cos(thpan), 0;
 0,0,1];

Rtilt=[cos(thtilt), 0, sin(thtilt);
 0,1,0;
 -sin(thtilt), 0, cos(thtilt)];

Rroll=[1,0,0;
 0 cos(throll), sin(throll);
 0, -sin(throll), cos(throll)];

Rca=Rroll*Rtilt*Rpan; Rac=Rca’;

%Camera frame to image frame and viceversa.
Ric=diag([-1, 1, -1]); Rci=Ric’;

%Rotation Map frame to image frame and viceversa.
Rim=Ric*Rca*Raw*Rwm; Rmi=Rim’;

 65

%% Transformation
% Convert aircraft position from meters to pixels
posNEAw=posNEAw/scale; % position of aicraft in pixels
L1=round(N(1)/2); N(1)=2*L1; L2=round(N(2)/2); N(2)=2*L2;
Ii=reshape((-L1:L1-1)’*ones(1,N(2)), 1, N(1)*N(2));
Ji=reshape(ones(N(1),1)*(-L2:L2-1), 1, N(1)*N(2));
fbar=N(2)/(2*tan(FOV*pi/360));
XYZi=[Ii; Ji; fbar*ones(1,N(1)*N(2))];
Tm=Rmw*posNEAw;
XYZm=Rmi*XYZi;
w=-Tm(3)./XYZm(3,:);
XYm=XYZm(1:2,:).*[w;w];
XYm(1,:)=XYm(1,:)+Tm(1);
XYm(2,:)=XYm(2,:)+Tm(2);

%%///
%Roberto Cristi /Jose Espinosa. Naval Postgratuade School ECE

Department.
%March 2016.
%This function presents de virtual view of the camera.
%%///
function XYm=image2map2(N, XYi, FOV, thRPYaw, thRTPca, posNEAw, scale)
%XYm=image2map(N, XYi, FOV, thRPYaw, thRTPca, posNEAw, scale);
%XYi = 2xNpoints positions in Image Frame
%XYm = 2xNpoints positions in Map Frame
%thRPYaw = 3x1 Roll, Pitch Yaw angles(deg.)World to Aircraft Frames
%thRTPca = 3x1 Roll, Tilt, Pitch angles(deg.) Aircraft to Camera Frames
%posNEAw = 3x1 North,East,Altitude of Aircraft in World Frame.
%FOV=Field of View of Camera in degrees.
%N=[number of rows, number of columns] of image. It has to be EVEN.
%scale = length, in meters, of one pixel in the map (meters/pixel).
%Map Frame: [Row (down), Column (right), Elevation (up)].
%World Frame: [North, East, Down].
%Aircraft Frame: [Roll (forward), Pitch (right), Yaw (down)].
%Camera Frame: [Roll (forward), Tilt (right), Pan (down)].
%Image Frame: Rows (Down), Columns (Left) , Down (View direction).
%Rotation Matrices (Rba=Rotation from frame “a” to frame “b”).

%Map frame to world frame and viceversa.
Rwm=diag([-1, 1, -1]); Rmw=Rwm’;

%Aircraft frame to world frame and viceversa.
thR=thRPYaw(1); thP=thRPYaw(2); thY=thRPYaw(3);
thR=thR*pi/180; thP=thP*pi/180; thY=thY*pi/180;

Ry=[cos(thY), sin(thY), 0;
 -sin(thY), cos(thY), 0;
 0,0,1];

Rp=[cos(thP), 0, sin(thP);
 0,1,0;
 -sin(thP), 0, cos(thP)];

 66

Rr=[1,0,0;
 0 cos(thR), -sin(thR);
 0, sin(thR), cos(thR)];

Raw=Rr*Rp*Ry; Rwa=Raw’;

%Aircraft frame to camera frame and viceversa.
throll=thRTPca(1); thtilt=thRTPca(2); thpan=thRTPca(3);
throll=throll*pi/180; thtilt=thtilt*pi/180; thpan=thpan*pi/180;

Rpan=[cos(thpan), sin(thpan), 0;
 -sin(thpan), cos(thpan), 0;
 0,0,1];

Rtilt=[cos(thtilt), 0, sin(thtilt);
 0,1,0;
 -sin(thtilt), 0, cos(thtilt)];

Rroll=[1,0,0;
 0 cos(throll), -sin(throll);
 0, sin(throll), cos(throll)];

Rca=Rroll*Rtilt*Rpan; Rac=Rca’;

%Camera frame to image frame and viceversa.
Ric=diag([-1, 1, -1]); Rci=Ric’;

%Rotation Map frame to image frame and viceversa.
Rim=Ric*Rca*Raw*Rwm; Rmi=Rim’;

%% Transformation
% Convert aircraft position from meters to pixels
posNEAw=posNEAw/scale; % position of aicraft in pixels
Npoints=size(XYi,2);
fbar=N(2)/(2*tan(FOV*pi/360));
XYi(1,:)=XYi(1,:)-N(1)/2;
XYi(2,:)=XYi(2,:)-N(2)/2;
XYZi=[XYi; fbar*ones(1,Npoints)];
Tm=Rmw*posNEAw;
XYZm=Rmi*XYZi;
w=-Tm(3)./XYZm(3,:);
XYm=XYZm(1:2,:).*[w;w];
XYm(1,:)=XYm(1,:)+Tm(1);
XYm(2,:)=XYm(2,:)+Tm(2

 67

LIST OF REFERENCES

[1] Ö. Aytekin, U. Zöngür, and U. Halici, “Texture-based airport runway detection,”

IEEE Geosci.Remote Sensing Lett., vol. 10, no. 3, pp. 471–475, May 2013.

[2] Robert E. Schapire, “A brief introduction to boosting,” in Proceedings 16th

International Joint Conference on Artificial Intelligence, 1999, vol. 2, pp. 1401–

1406.

[3] A. Miller, M. Shah, and D. Harper, “Landing a UAV on a runway using image

registration,” in Proceedings International Conference on Robotics and

Automation, Pasadena, CA, 2008, pp. 182–187.

[4] J. Shang, and Z. Shi, “Vision-based runway recognition for UAV autonomous

landing,” Int. Journal of Computer Sci. and Network Security, vol. 7, no. 3, pp.

112–117, Mar. 2007.

[5] R. Hartley and A. Zisserman. (2004). Multiple View Geometry in Computer

Vision. [Online]. Available: https://itun.es/us/_pvzW.l

[6] O. J. Woodman, “An introduction to inertial navigation,” Cambridge Univ. Comp.

Lab., Cambridge, England, Tech. Report. UCAM-CL-TR-696, Aug. 2007.

[7] “Salinas Municipal Airport.” 2016. [Online]. Available: https://www.google.com/

maps/@36.6612306,121.6066075,2805m/data=!3m1!1e3. Accessed Jan. 22,

2016.

[8] Understanding Euler Angles. [Online]. Available: http://www.chrobotics.com/

library/understanding-euler-angles. Accessed Jan. 22, 2016.

[9] Cloud Cap Technology TASE 200 camera. [Online]. Available:

http://www.cloudcaptech.com/products/detail/tase-200. Accessed Jan. 25, 2016.

[10] D. H. Ballard, C. M. Brown, Computer Vision, 1st. ed. Englewood Cliffs, NJ:

Prentice Hall, 1982, pp. 123–131.

[11] “Monterey Regional Airport.” 2016. [Online]. Available:

https://www.google.com/maps/@36.5857303,121.8427775,2790m/

data=!3m1!1e3. Accessed Jan. 22, 2016.

https://itun.es/us/_pvzW.l
https://www.google.com/maps/@36.6612306,121.6066075,2805m/data=!3m1!1e3
https://www.google.com/maps/@36.6612306,121.6066075,2805m/data=!3m1!1e3
http://www.chrobotics.com/library/understanding-euler-angles
http://www.chrobotics.com/library/understanding-euler-angles
http://www.cloudcaptech.com/products/detail/tase-200
https://www.google.com/maps/@36.5857303,121.8427775,2790m/data=!3m1!1e3
https://www.google.com/maps/@36.5857303,121.8427775,2790m/data=!3m1!1e3

 68

THIS PAGE INTENTIONALLY LEFT BLANK

 69

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

 Ft. Belvoir, Virginia

2. Dudley Knox Library

 Naval Postgraduate School

 Monterey, California

