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1 SUMMARY 
This report presents three main contributions of the SPARTA project, which was 

part of DARPA’s APAC program. 
The first contribution, is a model for collaborative verification of information 

flow for a high-integrity app store. Current app stores distribute some malware to 
unsuspecting users, even though the app approval process may be costly and time-
consuming. High-integrity app stores must provide stronger guarantees that their apps are 
not malicious. We propose a verification model for use in such app stores to guarantee 
that the apps are free of malicious information flows. In our model, the software vendor 
and the app store auditor collaborate — each does tasks that are easy for her/him, 
reducing overall verification cost. The software vendor provides a behavioral 
specification of information flow (at a finer granularity than used by current app stores) 
and source code annotated with information-flow type qualifiers. A flow-sensitive, 
context-sensitive information-flow type system checks the information flow type 
qualifiers in the source code and proves that only information flows in the specification 
can occur at run time. The app store auditor uses the vendor-provided source code to 
manually verify declassifications. 

We have implemented the information-flow type system for Android apps written 
in Java, and we evaluated both its effectiveness at detecting information-flow violations 
and its usability in practice. In an adversarial Red Team evaluation, we analyzed 72 apps 
(576,000 LOC) for malware. The 57 Trojans among these had been written specifically to 
defeat a malware analysis such as ours. 

Nonetheless, our information-flow type system was effective: it detected 96% of 
malware whose malicious behavior was related to information flow and 82% of all 
malware. In addition to the adversarial evaluation, we evaluated the practicality of using 
the collaborative model. The programmer annotation burden is low: 6 annotations per 
100 LOC. Every sound analysis requires a human to review potential false alarms, and in 
our experiments, this took 30 minutes per 1,000 LOC for an auditor unfamiliar with the 
app. 

The manual for the SPARTA toolset, which includes the information-flow type 
checker and also other tools, is available   
https://types.cs.washington.edu/sparta/current/sparta-manual.pdf. 

The second contribution is analyses for implicit control flow that improve 
precision of downstream analyses. Implicit or indirect control flow is a transfer of control 
between procedures using some mechanism other than an explicit procedure call. Implicit 
control flow is a staple design pattern that adds flexibility to system design. However, it 
is challenging for a static analysis to compute or verify properties about a system that 
uses implicit control flow. 

We present static analyses for two types of implicit control flow that frequently 
appear in Android apps: Java reflection and Android intents. Our analyses help to resolve 
where control flows and what data is passed. This information improves the precision of 
downstream analyses, which no longer need to make conservative assumptions about 
implicit control flow. 
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We have implemented our techniques for Java. We enhanced an existing security 
analysis with a more precise treatment of reflection and intents. In a case study involving 
ten real-world Android apps that use both intents and reflection, the precision of the 
security analysis was increased on average by two orders of magnitude. The precision of 
two other downstream analyses was also improved. 

The third contribution is improvements to the Checker Framework. The Checker 
Framework is an open-source tool that enhances Java’s type system to make it more 
powerful and useful. This lets software developers detect and prevent errors in their Java 
programs. The Checker Framework includes compiler plug-ins (“checkers”) that find 
bugs or verify their absence. It also permits you to write your own compiler plug-ins. 
Each plug-in replaces Java’s type system with a more powerful one that prevents certain 
errors. 

All of the work described so far was built upon the Checker Framework. Our 
work pushed the limits of what can be expressed as a pluggable type system. During the 
course of this work, we discovered and fixed bugs in the Checker Framework, but more 
importantly we enhanced its capabilities. 

2 INTRODUCTION 

2.1 COLLABORATIVE VERIFICATION OF INFORMATION FLOW 
App stores make it easy for users to download and run applications on their 

personal devices. App stores also provide a tempting vector for an attacker. An attacker 
can take advantage of bugdoors (software defects that permit undesired functionality) or 
can insert malicious Trojan behavior into an application and upload the application to the 
app store. 

For current app stores, the software vendor typically uploads a compiled binary 
application. The app store then analyzes the binary to detect Trojan behavior or other 
violations of the app store’s terms of service. Finally, the app store approves and 
publishes the app. Unfortunately, the process offers few guarantees, and every major app 
store has approved Trojans [12,36,41,44,46,70,73,85]. 

We explored the practicality of a high-assurance app store that gives greater 
understanding of, and confidence in, its apps’ behavior in order to reduce the likelihood 
that a Trojan is approved and distributed to users. A high-assurance app store would be 
particularly valuable in certain sensitive settings. For example, corporations already 
provide lists of apps approved for use by employees (often vetted by ad hoc processes). 
More relevantly to our sponsor, the U.S. Department of Defense is also actively pursuing 
the creation of high-assurance app stores. 

Four contributing factors in the approval of Trojans by existing app stores are: (1) 
Existing analysis tools are poorly automated and hard to use; much manual, error-prone 
human effort is required. (2) The vendor provides only a very coarse description of 
application behavior in the form of permissions it will access: system resources such as 
the camera, microphone, network, and address book. This characterization provides 
insufficient limitations on the application’s behavior. (3) The binary executable lacks 
much semantic information that is available in the source code but has been lost or 
obfuscated by the process of compilation. (4) The vendor has little incentive to make the 
application easy for the app store to analyze and understand. 



Approved for Public Release; Distribution Unlimited. 
3 

We have developed a new approach to verifying apps that addresses each of these 
factors. (1) We have created a powerful, flow-sensitive, context-sensitive type system 
that verifies information flows. The type system is easy to use and works with Java and 
Android. (2) Our type system proves that apps conform to finer-grained information-flow 
specifications than current app stores. These specifications indicate not just which 
resources may be accessed but which information flows are legal — how the resources 
may be used by the program. (3) Our approach uses source code rather than binaries, 
because source code provides more information, enables more accurate and powerful 
analyses, and allows an auditor to evaluate false positive warnings. While not all 
application developers may wish to provide their source code to an app store, we argue 
that this requirement is reasonable for app stores in certain settings, e.g., in the context of 
corporate, military, government, or medical applications. (4) We propose a collaborative 
verification methodology in which the vendor participates in and contributes to the 
verification process, rather than casting the vendor and the app store in an antagonistic 
relationship. However, the developer is not trusted: all information provided by the 
developer is verified. 

We report on initial experience with this system, including an adversarial Red 
Team exercise in which 5 corporate teams (funded externally, not by us) were given 
access to our source code and design documents then tasked with creating Trojans that 
would be difficult to detect. Our type system detected 82% of the Trojans, and 96% of the 
Trojans whose malicious behavior was related to information flow. 

(We have identified an enhancement to our system that would increase the latter 
number to 100%.) As with any program analysis, a human must investigate tool warnings 
to determine whether they are false positives. On average, it took an auditor unfamiliar 
with the programs 30 minutes per KLOC to analyze the information flow policy and the 
tool warnings. The annotation burden for programmers (application vendors) is also low. 

Overall, our goal is to make it difficult to write Trojans and easy to determine 
when code is not a Trojan. Our information-flow type-checker cannot catch all malware, 
but it raises the bar for malware authors and thus improves security. 

2.2 STATIC ANALYSIS OF IMPLICIT CONTROL FLOW 
Programs are easier to understand and analyze when they use explicit control 

flow: that is, each procedure call invokes just one target procedure. However, explicit 
control flow is insufficiently flexible for many important domains, so implicit control 
flow is a common programming paradigm. For example, in object-oriented dispatch a 
method call invokes one of multiple implementations at run time. Another common use 
of implicit control flow is in design patterns, many of which add a level of indirection in 
order to increase expressiveness. This indirection often makes the target of a procedure 
call more difficult to determine statically. 

Implicit control flow is a challenge for program analysis. When a static analysis 
encounters a procedure call, the analysis usually approximates the call’s behavior by a 
summary, which conservatively generalizes the effects of any target of the call. If there is 
only one possible target (as with a normal procedure call) or a small number that share a 
common specification (as with object-oriented dispatch), the summary can be relatively 
precise. But if the set of possible targets is large, then a conservative static analysis must 
use a very weak specification, causing it to yield an imprecise result. 
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The imprecision is caused by a lack of information about possible call targets and 
about the types of data passed as arguments at each call. Our goal is to provide a sound 
and sufficiently precise estimate of potential call targets and of the encapsulated data 
communicated in implicit invocations, in order to improve the precision of downstream 
program analyses. 

Our evaluation focuses on a particular domain — Android mobile apps — in 
which implicit invocation significantly degrades static analysis. In our experience [23], 
the largest challenge to analyzing Android apps is their use of reflection and intents, and 
this led us to our research on resolving implicit invocation. We are not aware of a 
previous solution that handles reflection and intents soundly and with high precision. 

Reflection permits a program to examine and modify its own data or behavior 
[74]. Our interest is in use of reflection to invoke procedures. For example, in Java an 
object m of type Method represents a method in the running program; m can be constructed 
in a variety of ways, including by name lookup from arbitrary strings. Then, the Java 
program can call m.invoke(...) to invoke the method that m represents. Other 
programming languages provide similar functionality, including C#, Go, Haskell, 
JavaScript, ML, Objective-C, PHP, Perl, Python, R, Ruby, and Scala. 

Android intents are the standard inter-component communication mechanism in 
Android. They are used for communication within an app (an app may be made up of 
dozens of components), between apps, and with the Android system. An Android 
component can send or broadcast intents and can register interest in receiving intents. The 
Android architecture shares similarities with blackboard systems and other message-
passing and distributed systems. 

By default, a sound program analysis must treat reflection and intents 
conservatively — the analysis must assume that anything could happen at uses of 
reflection and intents, making its results imprecise. We have built a simple, conservative, 
and quite precise static analysis that models the effects of reflection and intents on 
program behavior. The key idea is to resolve implicit control and data flow first to 
improve the estimates of what procedures are being called and what data is being passed; 
as a result, those constructs introduce no more imprecision into a downstream analysis 
than a regular procedure call does.1 

Both control flow and data flow are important. For reflection, our approach 
handles control flow by analyzing reflective calls to methods and constructors to estimate 
which classes and methods may be manipulated, and it handles data flow via an enhanced 
constant propagation. For intents, our approach handles control flow by using previous 
work [64] to obtain component communication patterns, and it handles data flow by 
analyzing the payloads that are carried by intents. 

We have implemented our approach for Java. We evaluated our implementation 
on open-source apps, in the context of three existing analyses, most notably an 
information flow type system for Android security [23]. Most Android apps use 
reflection and/or intents, so accurately handling reflection and intents is critical in this 
domain. Unsoundness is unacceptable because it would lead to security holes, and poor 
precision would make the technique unusable due to excessive false-positive alarms. The 
reflection and intent analyses increased the precision of the information flow type system 

                                                 
1 Our approach does not change the program’s operations, either on disk or in memory in 
the compiler. 
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by two orders of magnitude, and they also improved the precision of the other two 
analyses. Furthermore, they are easy to use and fast to run. Our implementation is freely 
available in the SPARTA toolset 
(http://types.cs.washington.edu/sparta/), including source code and
user manual, and the reflection analysis is also integrated into the Checker Framework 
(http://checkerframework.org/).

3 METHODS, ASSUMPTIONS, AND PROCEDURES 

3.1 COLLABORATIVE VERIFICATION OF INFORMATION FLOW 

3.1.1 Introduction 
An app store can be made more secure by requiring vendors to provide their 

applications in source code, and then performing strong verification on that source code. 
While today’s commercial app stores do not require source code, we discuss in 3.1.1.1 
the market forces that enable an app store such as we propose. This app store would 
analyze the source code, compile it, and distribute it as a binary (signed by the app store’s 
private key) to protect the vendor’s intellectual property. Availability of source code 
fundamentally changes the approval process in favor of verification by providing more 
information to both the analysis and the analyst. 

Source code verification is relevant for other domains than high-integrity 
application stores. One public example of inserting malicious behavior into an open 
source program is an attempt to insert a backdoor in the Linux kernel [45]. As another 
example, Liu et al. developed proof-of-concept malware as Chrome extensions [53], 
which are essentially distributed as source code. The Heartbleed bug appeared in open-
source software. We believe that source code analysis for security will become 
increasingly important, so it is worthy of attention from security researchers. 

Our approach is for Java source code, but since the type qualifiers are persisted to 
the classfile, it would be possible to re-implement our type system for bytecode in order 
to verify compiled apps. 

3.1.1.1 Collaborative verification model 
Most app store approval policies assume an adversarial, or at least non-

cooperative, relationship between the developer and the app store. The developer delivers 
an app in binary form, and the app store uses an opaque process to make a decision about 
whether to offer the app on the app store. 

We propose to augment existing app store approval processes with a collaborative 
model (Figure 1) for verification of information flow. The application vendor provides 
more information to the auditor (an app store employee). This information is easy for the 
vendor to provide, but it would be difficult for the auditor to infer. The auditor is able to 
make a decision about information flow more quickly and with greater confidence, which 
is advantageous to both parties. 
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Figure 1 The collaborative verification model for information flow. The flow 
policy is a high-level specification that expresses application behavior in terms of 

user-visible information flows. 

As shown in Figure 1, the auditor receives two artifacts from the vendor. The first 
vendor-provided artifact is the flow policy, a high-level specification of the intended 
information flows in the program from the user point of view. In our experiments, this 
averaged 6 lines long. For example, it might state that location information is permitted to 
flow to the network and that camera images may be written to the local disk. Any 
information flow not stated in the flow policy is implicitly forbidden. The second vendor-
provided artifact is the source code, annotated with information flow type qualifiers. The 
annotation burden is low: on average 6 annotations per 100 lines of code. 

Both the annotations and the vendor are untrusted. Our implementation, 
Information Flow Typechecker (IFT), automatically ensures that the type qualifiers are 
both permitted by the flow policy and are an accurate description of the source code’s 
behavior (modulo any auditor-verified declassifications). If not, the app is rejected. 
Unannotated apps are also rejected. Thus, the application vendor must provide accurate 
type qualifiers and flow policy. 

The auditor has two tasks, corresponding to the two vendor-provided artifacts. 
The first task is to evaluate the app’s flow policy. This is a manual step, in which the 
auditor compares the flow policy to the app’s documentation and to any app store or 
enterprise policies. The app store analyst must approve that the requested flows are 
reasonable given the app’s purpose; apps with unreasonable flow policies are rejected as 
potential Trojans. The second task is to verify each declassification, using some other 
verification methodology (e.g., [9]). Sect. 4.1.3.1 further describes the auditing process. 

Not every app store will desire to differentiate itself through increased security, 
and not every vendor will desire to participate in high-assurance app stores. But market 
forces will enable such stores to exist where there are appropriate economic incentives — 
that is, whenever some organizations or individuals are willing to pay more for increased 
security. Increased security is especially important in sensitive contexts such as 
government, corporate, and medical applications. Even if some vendors will never 
participate in a high-assurance app store, we believe there is value in researchers 
investigating and improving the practicality of such stores. 

It makes economic sense for the vendor to annotate their code and possibly to be 
paid a premium: based on our experience, the effort is much less for the author of the 
code than for an auditor who would have to reverse-engineer the code before writing 
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down the information about the information flows. The effort is small compared to 
overall development time and is comparable to writing types in a Java program. If the 
type qualifiers are written as the code is first developed, they may even save time by 
preventing errors or directing the author to a better design. 

Some vendors may be concerned with confidentiality of their source code. Large 
organizations already require their vendors to provide and/or escrow source code. For 
Android apps, it is easy to decompile a Java program from .class or .dex format, so even 
an app in binary format does not protect the vendor’s algorithms, protocols, and other 
secrets. These facts may reduce vendors’ reluctance to provide source code. 

The U.S. Department of Defense is also interested in high-assurance app stores, 
for example through DARPA’s “Transformative Apps” and “Automated Program 
Analysis for Cybersecurity,” along with related software verification programs such as 
“High-Assurance Cyber Military Systems” and “Crowd-Sourced Formal Verification”. 
Although it is funded by APAC, our collaborative verification model is novel and differs 
from the proposals on which DARPA’s programs were built. 

3.1.1.2 Threat model 
While there are many different types of malicious activities, we focus on Trojans 

whose undesired behavior involves information flow from sensitive sources to sensitive 
sinks. This approach is surprisingly general: we have found that our approach can be 
adapted to other threats, such as detecting when data is not properly encrypted, by 
treating encryption as another type of resource or permission. 

More specifically, IFT uses a flow policy as a specification or formal model of 
behavior. If IFT issues no warnings, then the app does not permit information flows 
beyond those in the flow policy 

— that is, each output value is affected only by inputs specified in the flow 
policy. IFT issues a warning at every declassification, and manual checking is required 
for each one. IFT does not perform labor-intensive full functional verification, only 
information-flow verification, which we show can be done at low cost. 

Our threat model includes the exfiltration of personal or sensitive information and 
contacting premium services. However, it does not cover phishing, denial of service, or 
side channels such as battery drain or timing. It does not address arbitrary malware (such 
as Slammer, Code Red, etc.). We treat the operating system, our type checker, and 
annotations on unverified libraries as trusted components — if they have vulnerabilities 
or errors, then an app could be compromised even if it passes our type system. App 
developers and app source code (including type qualifiers) are not trusted. There have 
been previous studies of the kinds of malware present in the wild [28, 93]. Felt et al. [28] 
classify malware into 7 distinct categories based on behavior. Our system can catch 
malware from the 4 most prevalent and important ones: stealing user information (60%), 
premium calls or SMSs (53%), sending SMS advertising spam (18%), and exfiltrating 
user credentials (9%). The other 3 categories are: novelty and amusement (13%), search 
engine optimization (2%), ransom (2%). 

Our approach is intended to be augmented by complementary research and app 
store activities that focus on other threats. Our approach raises the bar for attackers rather 
than providing a silver bullet. 

Sect. 3.2.8.1discusses limitations of our system in greater detail. 
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3.1.1.3 Contributions 
The idea of verifying information flow is not new, nor is using a type system. 

Rather, our contributions are a new design that makes this approach practical for the first 
time, and realistic experiments that show its effectiveness. In particular, the contributions 
are: 

We have proposed a collaborative verification model that reduces cost and 
uncertainty, and increases security, when investigating the information flow of apps 
submitted to an app store. Our work explores a promising point in the trade-off between 
human and machine effort. 

We have extended information-flow verification to a real, unmodified language 
(Java) and platform (Android). Our design is easy to use yet supports polymorphism, 
reflection, intents, defaulting, library annotations, and other mechanisms that increase 
expressiveness and reduce human effort. 

We have designed a mechanism for expressing information flow policies, and we 
have refined the existing Android permission system to make it less porous. 

We have implemented our design in a publicly-available system 
(http://types.cs.washington.edu/sparta/), and we have experimentally
evaluated our work. Our system effectively detected realistic malware targeted against it, 
built by skilled Red Teams. The effort to use our system was low for both programmers 
and auditors: our system is powerful, yet it requires less annotation overhead than 
previous systems and is simpler to use and understand. 

3.2 INFORMATION FLOW TYPE-CHECKER 
This section describes our implementation, called Information Flow Type-checker 

(IFT), and the type system it enforces. IFT guarantees that if a program is well typed, no 
information flows exist in the program beyond those expressed in the flow policy that 
expresses the high-level specification. IFT is sound and conservative: if IFT approves a 
program, then the program has no undesired information flows, but if IFT issues a 
warning, then the program might or might not actually have undesired information flows 
at run time. The guarantee is modulo human examination of a small number of 
declassifications, including ones about implicit information flow through conditionals. 

As shown in Fig. 2.1, a programmer using IFT provides two kinds of information 
about the information flows in the program. First, the programmer provides a flow policy 
file, which describes the types of information flows that are permitted in the program (see 
Sect. 3.2.3). For example, a simple app for recording audio to the file system would have 
a flow policy containing only RECORD_AUDIO→FILESYSTEM. It would be suspicious if this 

app’s flow policy contained RECORD_AUDIO→INTERNET, because that flow allows audio to 

be leaked to an attacker’s server. 
Second, the programmer writes Java type annotations to express information-flow 

type qualifiers. Each qualified type includes a set of sensitive sources from which the 
data may have originated and a set of sinks to which the data may be sent. For example, 
the programmer of the audio recording app would annotate the type of the recorded data 
with @Source(RECORD_AUDIO) @Sink(FILESYSTEM). IFT uses type-checking over an 
information flow type system to verify that the annotated code is consistent with the flow 
policy. 
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Figure 2 Partial qualifier hierarchy for source and sink type qualifiers @Source and 
@Sink. 

3.2.1 Types: sources and sinks 
The type qualifier @Source on a variable’s type indicates what sensitive sources 

might affect the variable’s value. The type qualifier @Sink indicates where (information 
computed from) the value might be output. These qualifiers can be used on any 
occurrence of a type, including in type parameters, object instantiation, and cast types. 

As an example, consider the following declaration: 

@Source(LOCATION) @Sink(INTERNET) double loc; 

The type of variable loc is @Source(LOCATION)@Sink(INTERNET)double. The 
type qualifier @Source(LOCATION) indicates that the value of loc might have been 
derived from location information. The type qualifier @Sink(INTERNET) indicates that 
loc might be output to the network. 

The arguments to @Source and @Sink are permissions drawn from our enriched 
permission system (Sect. 3.2.2). The argument may be a set of permissions to indicate 
that a value might combine information from multiple sources or flow to multiple 
locations. The special constant ANY denotes the set of all sources or the set of all sinks; 
the empty set denotes the absence of sources or sinks. 

3.2.1.1 Subtyping 
Adding type qualifiers to the Java type system only requires extending the 

subsumption rule in a standard way; other Java typing rules remain unchanged. A type 
qualifier hierarchy indicates which assignments, method calls, and overridings are legal, 
according to standard object-oriented typing rules. Figure 2 shows parts of the @Source
and @Sink qualifier hierarchies. 

@Source(B) is a subtype of @Source(A) iff B is a subset of A [16]. For example, 
@Source(INTERNET) is a subtype of @Source({INTERNET, LOCATION}). This rule 
reflects the fact that the @Source qualifier places an upper bound on the set of sensitive 
sources that were actually used to compute the value. If the type of x is qualified by 
@Source({INTERNET, LOCATION}), then the value in x might have been derived from 
both INTERNET and LOCATION data, or only from INTERNET, or only from LOCATION, or 
from no sensitive source at all. 

The opposite rule applies for sinks: @Sink(B) is a subtype of @Sink(A) iff A is a 
subset of B. For example, the type @Sink({INTERNET, FILESYSTEM}) indicates that the 
value is permitted to flow to both INTERNET and FILESYSTEM. This is a subtype of 

Source@

@Source({INTERNET, LOCATION}) 

@Source(INTERNET) @Source(LOCATION) 

@Source({}) 

@Sink({}) 

@Sink(INTERNET) @Sink(FILESYSTEM) 

@Sink({INTERNET, FILESYSTEM}) 

@Sink(ANY) 
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@Sink(INTERNET), as the latter type provides fewer routes through which the information 
may be leaked. 

Based on these rules, the top type qualifiers of these hierarchies are 
@Source(ANY) and @Sink({}), and the bottom type qualifiers are @Source({}) and 
@Sink(ANY). 

3.2.1.2 Polymorphism 
Information flow type qualifiers interact seamlessly with parametric 

polymorphism (Java generics). For example, a programmer can declare 

List<@Source(CONTACTS) @Sink(WRITE_SMS) String> myList; 

to indicate that the elements of myList are strings that are obtained from 
CONTACTS and that may flow to WRITE_SMS. 

IFT also supports qualifier polymorphism, in which the type qualifiers can change 
independently of the underlying Java type. This allows a programmer to write a generic 
method that can operate on values of any information flow type and return a result of a 
different Java type with the same sources/sinks as the input. It also enables qualifier 
polymorphism even for non-generic Java methods. For example, the method 
@PolySource int f(@PolySource int x) can be passed an int with any sources, and 
the result has exactly the same sources as the input. This qualifier polymorphism can be 
viewed as the declaration and two uses of a type qualifier variable. The implicit type 
qualifier variable is automatically instantiated by IFT at the point of use. Given variable 
netarg of type @Source(INTERNET) int, in an invocation f(netarg) the type qualifier 
variable is instantiated to @Source(INTERNET) and the return type of this method 
invocation is therefore @Source(INTERNET) int. 

Polymorphism allows IFT to be context-sensitive. 

3.2.2  Comparison to Android permissions 
IFT’s permission model differs from the Android permission model in three ways. 

(1) IFT’s permissions are statically guaranteed at compile time, whereas Android 
permissions are enforced at run time, potentially resulting in an exception during 
execution. If an app inherits a permission from another app with the same sharedUserId, 
IFT requires that permission to be listed in the flow policy. (2) IFT’s permission flows 
are finer-grained than standard Android manifest permissions. Android permits any flow 
between any pair of permissions in the manifest — that is, an Android program may use 
any resource mentioned in the manifest in an arbitrary way. (3) IFT refines Android’s 
permissions, as discussed in this section. 

3.2.2.1 Sinks and sources for additional resources 
IFT adds additional sources and sinks to the Android permissions. For example, 

IFT requires a permission to retrieve data from the accelerometer, which can indicate the 
user’s physical activity, and to write to the logs, which a colluding app could potentially 
read. Table 2.1 lists the additional sources and sinks. We selected and refined these by 
examining the Android API and Android programs, and it is easy to add additional ones. 
Our system does not add much complexity — it only adds 26 (18%) to the 145 Android 
permissions. 
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Some researchers feel that the Android permission model is already too 
complicated for users to understand [27], but our perspective is that of a full-time auditor 
who is trained to analyze applications. The flow policy is examined once per application 
by that skilled engineer, not on every download by a user, so the total human burden is 
less (Sect. 4.1.3.1 provides empirical measurements). The more detailed flow policy 
yields more insight than standard Android permissions, because the flow policy makes 
clear how each resource is used, not just that it is used. 

We now discuss two permissions, LITERAL and CONDITIONAL, whose meaning 
may not be obvious.  

Table 1 Additional sources and sinks used by IFT, beyond the built-in 145 Android 
permissions. 

Sources Sinks Both source and sink 

ACCELEROMETER CONDITIONAL CAMERA_SETTINGS 

BUNDLE DISPLAY CONTENT_PROVIDER 
LITERAL SPEAKER DATABASE 
MEDIA WRITE_CLIPBOARD FILESYSTEM 
PHONE_NUMBER WRITE_EMAIL PARCEL 
RANDOM WRITE_LOGS PROCESS_BUILDER 
READ_CLIPBOARD SECURE_HASH 
READ_EMAIL SHARED_PREFERENCES 
READ_TIME SQLITE_DATABASE 
USER_INPUT SYSTEM_PROPERTIES 

Literal The LITERAL source is used for programmer-written constants (in the source 
code, Android manifest, or resource files) such as "Hello world!", and for any variable 
whose value is computed using only those constants. This enables IFT to distinguish 
information derived from the program source code from other inputs. Program literals are 
not trusted, since the app vendor may be malicious. The flow policy shows how they are 
used in the program. 

Conditional The CONDITIONAL sink is used for conditional expressions — every value 
used in a conditional expression flows to that sink. This enables IFT to raise a warning at 
locations where the control flow of the program branches on sensitive information. The 
auditor reviews those warnings to detect implicit information flows, as explained in 
greater detail in Sect. 3.2.7. 

3.2.2.2 Restricting existing permissions 
The standard Android permissions might be too coarse-grained to express the 

developer’s intention. For example, Android’s INTERNET permission represents all 
reachable hosts on the Internet. IFT allows this permission to be parameterized with a 
domain name, as in INTERNET(“*.google.com”). Other permissions can be parameterized in 
a similar style, and the meaning of the optional parameter varies based on the permission 
it refines. For example, a parameter to FILESYSTEM represents a file or directory name or 
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wildcard, whereas the parameter to SEND_SMS represents the phone number that 
receives the SMS. Other permissions that can be parameterized include CONTACTS, 
*_EXTERNAL_FILESYSTEM, NFC, 

*_SMS, and USE_SIP. Several of the additional sources and sinks (Table 1) can also 
be parameterized, such as USER_INPUT to distinguish sensitive from non-sensitive user 
input. 

IFT performs intraprocedural constant value propagation to enable precise 
analysis of parameterized permissions. 

3.2.3 Flow policy 
A flow policy is a list of all the information flows that are permitted to occur in an 

application. A flow policy file expresses a flow policy, as a list of flowsource → flowsink 
pairs. Just as the Android manifest lists all the permissions that an app uses, the flow 
policy file lists the flows among permissions and other sensitive locations. 

Consider the “Block SMS” application of Table 3, which blocks SMS messages 
from a blacklist of blocked numbers and saves them to a file for the user to review later. 
Its flow policy must contain READ_SMS→FILESYSTEM to indicate that information 
obtained using the READ_SMS permission is permitted to flow to the file system. 

The flow policy specifies what types are legal  Every flow in a program is explicit in 
the types of the program’s expressions. For example, if there is no expression whose type 
has the type qualifiers @Source(CAMERA) @Sink(INTERNET), then the program never
sends data from the camera to the Internet (modulo conditionals and transitive flows). 
The expression’s type might be written by a programmer or might be automatically 
inferred by IFT. 

IFT guarantees that there is no information flow except what is explicitly 
permitted by the flow policy. If the type of a variable or expression indicates a flow that 
is not permitted by the flow policy, then IFT issues a warning even if the program 
otherwise would type-check. For example, the following declaration type-checks, but IFT 
would still produce an error unless the flow policy permits the CAMERA→INTERNET 
flow: 

@Source(CAMERA) @Sink(INTERNET) Video video = getVideo(); 

Transitive flows Transitive flows through on-device source-sink pairs must be 
explicitly written in the flow policy. This is because apps can use on-device sinks to 
whitewash sensitive information. For example, if a flow policy permits 
USER_INPUT→FILESYSTEM and FILESYSTEM→INTERNET, then an application might write 
user input to a file and then send the contents of that file to a malicious server. Therefore, 
the transitive flow USER_INPUT→INTERNET must be explicitly stated in the flow policy. 

Parameterized permissions (Sect. 3.2.2.2) reduce the number of transitive flows. 
For example, if user input is only written to files in the notes directory 
(USER_INPUT→FILESYSTEM(“notes/*”)INTERNET) and only), then files in the cat-photos 
directory are sent to the Internet (FILESYSTEM(“cat-photos/*”)→ the transitive flow 
USER_INPUT→FILESYSTEM is not required. 
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On-device source-sink pairs involving resources that may be accessed by other 
apps could be used by colluding apps to leak information. To prevent this, the flow 
policies of all apps on a device or in an app store are checked against each other for inter-
app transitive flows. If a transitive flow is found that violates a flow policy of an app, 
then one or more apps may need to be excluded or rewritten. In practice, app stores will 
specify standard policies for flows including these source-sink pairs, so that developers 
can avoid writing conflicting apps. 

An off-device sink, such as a website or the recipient of an SMS, might leak data 
to some sink not allowed by the flow policy. Off-device sinks must be either trusted or 
verified by other means. 

3.2.4 Inference and defaults 
A complete type consists of a @Source qualifier, a @Sink qualifier, and a Java 

type. To reduce programmer effort and code clutter, most of the qualifiers are inferred or 
defaulted rather than written as type annotations. A programmer need not write type 
annotations within method bodies, because such types are inferred by IFT. For method 
signatures and fields, a programmer generally writes either 

@Source or @Sink, but not both. We now explain the inference and defaulting 
features. 

3.2.4.1 Type inference and flow-sensitivity 
A programmer does not write information flow types within method bodies. 

Rather, local variable types are inferred. 
IFT implements this inference via flow-sensitive type refinement. Each local 

variable declaration (also casts and resource variables) defaults to the top type qualifiers, 
@Source(ANY) @Sink({}). At every properly-typed assignment statement, the type of 
the left-hand side is flow-sensitively refined to that of the right-hand side, which must be 
a subtype of the left-hand side’s declared type. The refined type applies until the next side 
effect that might invalidate it. 

Consider the following simple method: 
 

void process(@Source(INTERNET) int netint, 
             @Source(LOCATION) int locint) { 
  int x; // x is defaulted to @Source(ANY) @Sink({}) int  
  x = netint;  // x is refined to @Source(INTERNET)  
  int x = locint;  // x is refined to @Source(LOCATION) int 
} 
 

Flow-sensitive type refinement spares the programmer from writing type 
qualifiers on local variable x, and the system automatically determines the most precise 
type in each context. 

IFT limits type inference to method bodies to ensure that each method can be 
type-checked in isolation, with a guarantee that the entire program is type-safe if each 
method has been type-checked. It would be possible to perform a whole-program type 
inference, but such an approach would be heavier-weight, would need to be cognizant of 
cooperating or communicating applications, could cause a change in one part of a 
program to cause new type-checking errors elsewhere, and would provide fewer 
documentation benefits. 
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3.2.4.2 Determining sources from sinks and vice versa 
If a type is annotated with only a source or only a sink, the other qualifier is filled 

in with the most general value that is consistent with the flow policy. If the programmer 
writes @Source(α), IFT defaults this to @Source(α) @Sink(ω) where ω is the set of sinks 
that all sources in α can flow to. Similarly, 

@Sink(ω) is defaulted to @Source(α)@Sink(ω) where α is the set of sources allowed 
to flow to all sinks in ω. Defaults are not applied if the programmer writes both a source 
and a sink qualifier. 

Suppose the flow policy contains the following: 

CAMERA -> DISPLAY,DATABASE 
LOCATION -> DATABASE 

Table 2 Default information flow qualifiers for unannotated types. 

Location Default information flow qualifier 

Method parameters & receivers @Sink(CONDITIONAL) 

Return types @Source(LITERAL)
Fields @Source(LITERAL) 
null @Source({}) @Sink(ANY)
Other literals @Source(LITERAL)
Type arguments @Source(LITERAL)
Upper bounds @Source(ANY) @Sink({})
Local & resource variables @Source(ANY) @Sink({}) 

Then these pairs are equivalent: 

@Source({LOCATION}) = @Source({LOCATION}) @Sink(DATABASE) 
@Sink(DATABASE) = @Source({CAMERA,LOCATION}) @Sink(DATABASE) 

This mechanism is useful because oftentimes a programmer thinks about a 
computation in terms of only its sources or only its sinks. The programmer should not 
have to consider the rest of the program that provides context indicating the other end of 
the flow. 

An example of a method that uses only a @Source qualifier is the File constructor: 
a newly-created readable file should be annotated with @Source(FILESYSTEM), but there 
is no possible @Sink qualifier that would be correct for all programs. Instead, the @Sink
qualifier is omitted, and our defaulting mechanism provides the correct value based on 
the application’s flow policy. 

This defaulting mechanism is essential for annotating libraries. We wrote manual 
annotations for 

10,470 methods of the Android standard library. Only 7 of the API methods 
annotated so far use both a @Source and a @Sink qualifier. For example, 

Camera.setPreviewDisplay( 
@Source(CAMERA) @Sink(DISPLAY) SurfaceHolder holder) 
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The parameter holder both receives photos from the camera and displays them. 
This mechanism can be viewed as another application of type polymorphism: 

defaulting of types depends on the flow policy and the same source code can be reused in 
different scenarios by using a different flow policy. 

3.2.4.3 Defaults for unannotated types 
Table 2 shows the default qualifiers for completely unannotated types. When the 

default is only a source or only a sink, the other qualifier is inferred from the flow policy 
as explained in Sect. 3.2.4.2. 

Most unannotated types (including field types, return types, generic type 
arguments, and non-null literals) are given the qualifier @Source(LITERAL). This is so 
that a simple computation involving only constants does not require annotations. 

As is standard, the null literal is given the bottom type qualifiers @Source({}) 
@Sink(ANY), enabling an assignment to any variable. 

3.2.5 Declassifications 
Every sound static analysis is conservative: that is, there exists source code that 

never misbehaves at run time, but the static analysis cannot prove that fact and issues a 
warning about possible misbehavior. Every downcast in a Java program is an example of 
such conservatism in the Java type system. In the context of information flow analyses, 
an example would be a database: in general, a database query can return arbitrary 
sensitive data, but application invariants might guarantee that a particular query always 
returns non-sensitive data. IFT would warn about use of any database query result in a 
context that could leak the result, but in the example the warning would be a false 
positive. 

In order to suppress a warning that is a false positive, the developer declassifies 
data that was typed too conservatively using a downcast. The developer is required by the 
app store to write a justification for each declassification. The app store auditor manually 
verifies both the justification and the declassification. Thus, the auditor validates the 
developer’s claim that the code is well-behaved for some reason that is beyond the 
precision of the type checker. 

In 11 Android apps (9437 LOC), IFT suffered 26 false positives, or fewer than 3 
per 1,000 LOC. 

3.2.6 Indirect control flow 
Indirect control flow, for example in reflection, intents, or exception handling, is 

challenging for a static analysis. IFT soundly handles these constructs through additional 
analyses and conservative assumptions. 

IFT analyzes Java reflection to determine the target method of a reflective call. 
This enables a downstream analysis, such as IFT’s information-flow type-checking, to 
treat the reflective code as a direct method call, which has a much more precise annotated 
signature than does Method.invoke. IFT’s analysis resolves the reflective call to a single 
concrete method in 96% of cases in our experiments, including malicious examples 
where reflection is used intentionally as a form of code obfuscation. The library’s 
conservative annotations for Method.invoke ensure that any unresolved reflective call is 
treated soundly. 
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Intents are an Android mechanism for interprocess communication, and they can 
also create processes (Android activities). To handle intents, we extended IFT with map 
types (similar to record types) that represent the mappings of data in an intent payload. 
Each app implements intent-receiving methods, and their type signatures act as interface 
specifications and permit modular checking. As long as new apps are consistent with 
annotations on previously-checked apps that they may communicate with, the old apps 
need not be re-checked. 

IFT soundly handles other indirect control flows, such as exception handling. For 
example, types in catch clauses are enforced to be supertypes of any exception they may 
catch. 

3.2.7 Implicit information flow 
Implicit information flow through conditionals can leak private information. For 

example, consider the following code and a flow policy containing LITERAL→INTERNET: 

@Source(USER_INPUT) long creditCard = getCC(); 
final long MAX_CC_NUM 9999999999999999; 
for (long i = 0 ; i < MAX_CC_NUM ; i++) {  
  if (i == creditCard) sendToInternet(i); 
} 

This code leaks the credit card number to the Internet using the flow 
LITERAL→INTERNET and the fact that i is only sent to the Internet when i == 
creditCard evaluates to true. 

The classic approach of Denning and Denning [17] to detect implicit information 
flow is to taint all computations in the dynamic scope of a conditional statement with all 
the sources from the conditional’s predicate. This includes all statements in the body of 
the conditional and all statements in any method directly or indirectly called by the body. 
Over-tainting of computations within the dynamic scope of conditionals leads to many 
false positive alarms. These alarms occur far from the conditional statement or other 
statement(s) that caused them. In order to determine whether an implicit information flow 
truly occurs, the auditor has to work backward from the location of an alarm to the 
conditional statement or statements that caused it. 

In our approach, the auditor reviews every conditional statement that uses a 
sensitive source in its predicate. The auditor first decides whether the knowledge about 
the boolean result of the predicate is sensitive information. For example, checking 
whether a credit card number has 16 digits does not reveal anything sensitive — in this 
case, the auditor need not review the body of the conditional. However, if the auditor 
decides that the conditional predicate is sensitive, he/she must rule out any implicit 
information flow that violates the flow policy. In order to determine whether an implicit 
information flow truly occurs, the auditor works from the body of the conditional forward 
to all statements in dynamic scope that might implicitly leak information. 

In both the classic approach and our approach, the auditor has to carefully review 
the dynamic scope of the conditional body to rule out false positives. However, unlike the 
classic approach, in our approach, the reviewer is aware of the context of the conditional 
and can make a more informed decision about whether an implicit information flow 
might occur at runtime. 
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The auditors in our experiments (Sect.4.1.3.1) felt that our approach was easier 
for them than the classic one. They preferred to think about an entire conditional 
expression at once rather than statement-by-statement. Oftentimes, examining a 
conditional expression enabled the auditors to rule out bad behavior without needing to 
examine any statement in its dynamic scope; this was particularly true for simple 
conditionals such as tests against null. 

3.2.8 Implementation 
IFT is implemented as a pluggable type system built on top of the Checker 

Framework [18] and uses standard Java type annotations. The implementation of IFT 
consists of 3,731 lines of Java, plus annotations for 10,470 library methods. IFT’s source 
code is available at http://types.cs. washington.edu/sparta/. Version
0.9.6 was used for the experiments presented here. 

3.2.9 Limitations 
IFT is focused on Trojans that cause an undesired information flow, as indicated 

by the threat model of Sect. 3.1.1.2. IFT should be used in conjunction with 
complementary techniques that address other security properties. This section discusses 
further limitations. 

As with any static analysis, IFT’s soundness guarantee only extends to code that 
is analyzed at compile time. Use of native code and un-analyzed Android activities 
requires a different analysis or trusted annotations that describe the information flows 
induced by those components. IFT currently forbids dynamic code loading, because IFT 
type-checks source code. Dynamic class loading could be soundly allowed if the loaded 
classes type-check and their public signatures are the same as were assumed at compile 
time. To achieve this would require load-time type-checking of compiled (.class or .dex) 
files. Re-implementing the IFT type rules for binaries would be an engineering challenge, 
but not a conceptual one. 

Our cooperative verification model means that the vendor knows one of the 
techniques that the app store will use to verify an app. This knowledge might permit a 
malicious developer to design Trojans that are beyond the capabilities of IFT or that 
exploit IFT’s limitations. 

As with many security mechanisms, human judgment can be a weak link. A 
malicious developer could write a misleading explanation for an information flow in the 
flow policy or for a declassification, in an effort to convince the auditor to approve 
malware. Our work does not address how to establish an app store’s policies. 

Despite these limitations, use of IFT increases the difficulty of hiding Trojans in 
source code. The requirement that code be accepted by IFT may also make the Trojan 
more likely to be detected using other tools or manual verification. 

3.2.10 Future work 
We plan to enrich flow policies in three ways, while retaining the simple and 

high-level flavor of these specifications. (1) We will refine permissions, such as splitting 
the WRITE_CONTACTS permission so that separate policies can be specified for email 
addresses, phone numbers, and notes fields. (2) The flow policy will indicate not just the 
endpoints of the information flow, but an entire path. For example, it might be valid to 
send personal information to the Internet only if it has passed through an encryption 
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module first. (3) The flow policy will indicate conditional information flows, such as 
permitting information flow from the microphone to the network only when the user 
presses the “transmit” button. 

 

3.3 STATIC ANALYSIS OF IMPLICIT CONTROL FLOW 
Our work improves the precision of a downstream static analysis, by eliminating 

false positive warnings in cases of implicit control flows. Imprecision due to implicit 
control flow affects every static analysis. 

1 class ArticleViewActivity extends Activity { 

2   void onCreate(Bundle savedInstanceState) { 
3     if (android.os.Build.VERSION.SDK_INT >= 11) { 
4     // Android version 11 and later has Action Bar 
5     Method getActionBar = 
6                           getClass().getMethod("getActionBar"); 
7     @Low Object actionBar = getActionBar.invoke(this); 
8       ... 
9     } 
10   } 
11 } 
12 
13 // Library annotations: 
14 class Method { 
15   @High Object invoke(Object obj, Object... args) {...} 
16 } 
17 class Activity { 
18   // Only exists in Android SDK 11 and above. 
19   @Low ActionBar getActionBar() {...} 
20 } 

Figure 3: A noninterference type-checker produces a false positive warning on line 7, 
where the return type of Method.invoke, of type High, is assigned to variable 
actionBar which has declared type Low. The call on line 7 always returns a Low value at 
run time (even though other calls to invoke may in general return a High value), so the 
assignment is safe. When the noninterference type system is augmented by our reflection 
analysis, it no longer issues the false positive warning. 
 

For concreteness, consider a noninterference type system [84], which guarantees 
that the program does not leak sensitive data. 

The noninterference type system distinguishes high-security-level values from 
low-security-level values; for brevity, High and Low values. The static property checked 
is that values in High variables are not assigned to Low variables, which could leak 
sensitive data. Variables and expressions marked High may hold a Low value at run time; 
this is also expressed as Low <: High, where the symbol “<:” denotes subtyping. To use 
this type system, a user annotates each type with High or Low, the default being Low. The 
type system is conservative: if it issues no warnings, then the program has no interference 
and running it does not leak any High data to Low contexts. 
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When run on the Android app Aard Dictionary (http://aarddict.org/), the 
noninterference type system issues false positive warnings due to its conservative 
handling of implicit control flows. When our reflection and intent analyses are integrated 
into it, the type system remains sound but no longer issues the false positive warnings. 
The examples in this section use a noninterference type system, but other type systems 
suffer similar false positives. Our reflection and intent analyses also help other 
downstream analyses, as demonstrated in Section 4.4.4. 

3.3.1 Reflection 
Some calls to Method.invoke return a High value at run time. Thus, the 

signature of Method.invoke (line 15 of Figure 3) must have a High return type; any other 
return type in the summary would be unsound. Some calls to Method.invoke always 
return a Low value. The conservative signature of Method.invoke causes false positive 
warnings in such cases. 

Figure 3 illustrates the problem in Aard Dictionary. The component 
ArticleViewActivity uses an 

1 class DictionaryMain extends Activity { 

2 void translateWord(int source, int target, String word){
3 Intent i = new Intent(this, WordTranslator.class);
4 i.putExtra("source", source);
5 i.putExtra("target", target);
6 i.putExtra("word", word);
7 startActivity(i);
8 }
9 }
10 
11 class WordTranslator extends Activity { 
12 void onCreate(Bundle savedInstanceState)
13 Intent i = getIntent();
14 @Low int source = i.getIntegerExtra("source");
15 @Low int target = i.getIntegerExtra("target");
16 @Low String word = i.getStringExtra("word");
17 showResult(translate(source, target, word));
18 }
19 String translate(int source, int target, String word) {...}
20 Intent getIntent() {...}
21 void showResult(String result) {...}
22 }
23 
24 // Library annotations: 
25 class Intent {
26 @High Integer getIntegerExtra(String key) {...}
27 @High String getStringExtra(String key) {...}
28 } 

Figure 4: A noninterference type-checker produces false positive warnings on lines 
14–16, where the return type of get*Extra, of type High, is assigned to variables with
declared type Low. The calls on lines 14–16 always return a Low value at run time (even

though other calls to get*Extra may in general return a High value), so the assignments
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are safe. When the noninterference type system is augmented by our intent analysis, it no 
longer issues the false positive warnings. 

ActionBar, which is a feature that was introduced in version 11 of the Android 
API. In order to prevent run-time errors for a user who has an older version of Android 
(and also to enable the app to compile when a developer is using an older version of the 
Android API), this app uses reflection to call methods related to the ActionBar. The 
noninterference type-checker issues a false positive due to the use of reflection; our 
reflection analysis (Section 3.4) eliminates the false positive warning. 

3.3.2 Android intents 
An Android component might send a High value via an intent message to another 

component; therefore, the summary for methods that retrieve data from an intent (lines 
26–27 of Figure 4) must conservatively assume that the data is a High value. This 
conservative summary may cause false positive warnings when the data is of type Low at 
run time. 

Figure 4 shows another example from Aard Dictionary. The components 
DictionaryMain and 

WordTranslator use Android intents to communicate. Android intents are 
messages sent between Android components, and those messages contain “extras”, which 
is a mapping of keys to objects. Component DictionaryMain creates an intent object i, 
adds Low-security extra data to i’s extras mapping, and on line 7 calls the Android library 
method startActivity to send the intent. The Android system then calls 
WordTranslator.onCreate, which is declared on line 12. The noninterference type-
checker issues a false positive due to the use of intents; our intent analysis (Section 3.5) 
eliminates the false positive warning. 

3.4 REFLECTION RESOLUTION 
Reflection is a metaprogramming mechanism that enhances the flexibility and 

expressiveness of a programming language. Its primary purpose is to enable a program to 
dynamically exhibit behavior that is not expressed by static dependencies in the source 
code. 

Reflection is commonly used for the following four use cases, among others. (1) 
Provide backward compatibility by accessing an API method that may or may not exist at 
run time. The reflective code implements a fallback solution so the app can run even if a 
certain API method does not exist, e.g., on older devices. (2) Access private API methods 
and fields, which offer functionality beyond what is provided by the public API. (3) 
Implement design patterns such as duck typing. (4) Code obfuscation to make it harder to 
reverse-engineer the program, e.g., code that accesses premium features that require a 
separate purchase. The Android developer documentation encourages the use of 
reflection to provide backward compatibility and for code obfuscation (cases 1 and 4 
above), and 39% of apps in the F-Droid repository [26] use reflection. 

Not all uses of reflection can be statically resolved, but our experiments show that 
many of them can. Whenever the developer runs a code analysis, it is beneficial to the 
analysis if as much reflection as possible is resolved, in order to reduce false positive 
warnings. Obfuscation is not compromised, because analysis results, annotations, and 
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other information that is used in-house by the developer need not be provided to users of 
the software. 

Approach for reflection resolution 

Without further information about what method is reflectively called, a static 
analysis must assume that a reflective call could invoke any arbitrary method. Such a 
conservative assumption increases the likelihood of false positive warnings. 

At each call to Method.invoke, our analysis soundly estimates which methods 
might be invoked at runtime. Based on this estimate, our analysis statically resolves the 
Method.invoke call — that is, it provides type information about arguments and return 
types for a downstream analysis. The results are soundly determined solely based on 
information available at compile time. 

The reflection resolution consists of the following parts: Reflection type system: 
Tracks and infers the possible names of classes, methods, and constructors used by 
reflective calls. (Section 3.4.1) 

Reflection resolver: Uses the reflection type system to estimate the signatures of 
methods or constructors that can be invoked by a reflective call. (Section 3.4.2) 

3.4.1 Reflection type system 
Our reflection type system refines the Java type system to provide more 

information about array, Class, Method, and Constructor values. In particular, it 
provides an estimate, for each expression of those types, of the values they might 
evaluate to at run time. 

For arrays, the refined type indicates the length of the array: for example, 
@ArrayLen({3,4}) indicates that the array will be of length 3 or 4. For expressions of 
type Class, there are two possible type qualifiers, @ClassVal and @ClassBound, 
representing either an exact Class value or an upper bound of the Class value. The list of 
possible values is expressed as an array of strings representing fully-qualified types; for 
example, @ClassVal("java.util.HashMap") indicates that the Class object represents 
the java .util.HashMap class. Alternatively, @ClassBound("java.util.HashMap") 
indicates that the Class object represents java.util.HashMap or a subclass of it. 

For expressions of type Method and Constructor, the type qualifier indicates 
estimates for the class, method name, and number of parameters. For example, 

@MethodVal(cn="java.util.HashMap", mn={"containsKey", "containsValue"}, 
np=1) 

indicates that the method represents either HashMap.containsKey or 
HashMap.containsValue, with exactly 1 parameter. Likewise, the MethodVal type may 
have more than one value for the class name or number of parameters. The represented 
methods are the Cartesian product of all possible class names, method names, and 
numbers of parameters. For a constructor, the method name is “<init>”, so no separate 
@ConstructorVal type qualifier is necessary. 

The MethodVal type is imprecise in that it indicates the number of parameters that 
the method takes, but not their type. This means that the type system cannot distinguish 
methods in the uncommon and discouraged [10] case of method overloading. This was a 
conscious design decision that reduces the verbosity and complexity of the annotations, 
without any practical negative consequences. In our experiments with more than 300,000 
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lines of Java code, this imprecision in the type system never prevented a reflective call 
from being resolved. 

Our implementation caps the size of a set of values at 10. This cap was never 
reached in our case studies. If a programmer writes, or the type system infers, a set of 
values of size larger than 10, then the type is widened to its respective top type. A top 
type indicates that the type system has no estimate for the expression: the type system’s 
estimate is that the run-time value could be any value that conforms to the Java type. The 
top type is the default, and it is represented in source code as the absence of any 
annotation. 

3.4.1.1 Type checking 
The reflection type system enforces standard type system guarantees, e.g. that the 

right-hand side of an assignment is a subtype of the left-hand side. These typing rules 
follow those of Java, they are standard for an object-oriented programming language, and 
they are familiar to programmers. Therefore, we do not detail them in this document. The 
reflection type system and our implementation are compatible with all Java features, 
including generics (type polymorphism). 

3.4.1.2 Type inference 
Programmers do not need to write type annotations within method bodies, 

because our system performs local type inference. More specifically, for local variables, 
casts, and instanceof expressions, the absence of any annotation indicates that the type 
system should infer the most precise possible type from the context. For all other 
locations — notably fields, method signatures, and generic type arguments — a missing 
annotation is interpreted as the top type qualifier. 

Figure 5: Inference rules for @StringVal, @IntVal, and @ArrayLen. 
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Figure 6: Selected inference rules for the @ClassVal, @ClassBound, and @MethodVal 
annotations. Additional rules exist for expressions with similar semantics but that 
call methods with different names or signatures, and for fields/returns. 
 

The local type inference is flow-sensitive. It takes advantage of expression typing 
rules that yield more precise types than standard Java type-checking would. 
 
Estimates for values of expressions We have designed and implemented a dataflow 
analysis that infers and tracks types providing an estimate for the possible values of each 
expression. Our implementation goes beyond constant folding and propagation: it 
evaluates side-effect-free methods, it infers and tracks the length of each array, and it 
computes a set of values rather than just one. For example, @ArrayLen({3,4}) indicates 
that at run time the array has length 3 or 4. Figure 5 shows selected inference rules. The 
reflection type system builds on top of this dataflow analysis. 
 
Inference of @ClassVal and @ClassBound The reflection type system infers the exact 
class name (@ClassVal) for a Class literal (C.class), and for a static method call (e.g., 
Class.forName(arg), ClassLoader.loadClass(arg), ...) if the argument has a 
sufficiently precise @StringVal estimate. In contrast, it infers an upper bound 
(@ClassBound) for instance method calls (e.g., obj.getClass()). 

An exact class name is necessary to precisely resolve reflectively-invoked 
constructors since a constructor in a subclass does not override a constructor in its 
superclass. Either an exact class name or a bound is adequate to resolve reflectively-
invoked methods because of the subtyping rules for overridden methods. 
Inference of @MethodVal The reflection type system infers MethodVal types for methods 
and constructors that have been created via Java’s Reflection API. A nonexhaustive list 
of examples includes calls to Class.getMethod(String name, Class<?>... 
paramTypes) and Class.getConstructor(Class<?>... paramTypes). For example, 
the type inferred for variable getActionBar on line 5 of Figure 3.1 is 

@MethodVal(cn="ArticleViewActivity", mn="getActionBar", np=0). 
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Although Figure 3.1 uses raw (non-parameterized) types, our inference supplies 
the missing type argument information. 

Inference of field types For private fields, our type inference collects the types of all 
assignments to the field, and sets the field type to their least upper bound (lub). If the lub 
is not a subtype of the declared type, this step is skipped and a type-checking error will be 
issued at some assignment. The same mechanism works for non-private fields, but the 
entire program has to be scanned for assignments. At the end of type-checking, the type-
checker outputs a suggestion about the field types. The user may accept these suggestions 
and re-run type-checking to obtain more precise results; we did so in our experiments. 
Field type inference works for every type system, not just those related to reflection. 

Method signature inference Similarly to field type inference, private method parameters 
are set to the lub of the types of the corresponding arguments, and private method return 
types are set to the lub of the types of all returned expressions, when those are consistent 
with the declared types. For non-private methods, the entire program is scanned for 
calls/overriding and the type-checker outputs suggestions. 

Figure 6 shows selected inference rules for the reflection type system. 

3.4.2 Reflection resolver 
Prior work (see Section 4.6.4) commonly re-writes the source code or changes the 

AST within the program analysis tool, changing a call to Method.invoke into a call to 
the method that is reflectively invoked before analyzing the program. This approach 
interferes with the toolchain, preventing the code from being compiled or run in certain 
environments. This approach is also at odds with the very purpose of reflection: the 
program no longer adapts to its run-time environment and loses properties of obfuscation. 
A final problem is that an analysis may discover facts that cannot be expressed in source 
code form. 

Our reflection resolver operates differently: it leaves the program unmodified but 
narrows the procedure summary — the specification of parameter and return types used 
during modular analysis — for that particular call site only. When the downstream 
analysis requests the summary at a call to Method.invoke, it receives the more precise 
information rather than the conservative summary that is written in the library source 
code. This transparent integration means that the downstream analysis does not need to 
be changed at all to be integrated with the reflection analysis. 

3.4.2.1 Example 
Recall the example of Figure 3. When the noninterference type system analyzes 

getActionBar.invoke(this) on line 7, it uses a method summary (like a declaration) to 
indicate the requirements and effects of the call. Ordinarily, it would use the following 
conservative declaration for Method.invoke: 

@High Object invoke(Object recv, Object ... args) 

However, the reflection type system inferred that the type of variable getActionBar is 
@MethodVal(cn="ArticleViewActiv mn="getActionBar", np=0). In other words, 
at run time, the invoked method will be the following one from class 
ArticleViewActivity: 

@Low ActionBar getActionBar () 
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Thus, the noninterference type system has a precise type, Low, for the result of the invoke
call. The reflection resolver provides the following precise procedure summary to the 
downstream analysis, for this call site only: 

@Low Object invoke(Object recv, Object ... args) 

As a result, the type system does not issue a false positive warning about the assignment 
to variable actionBar on line 7. 

The summary contains not just refined procedure return types as shown above, 
but also refined parameter types, enabling a downstream analysis to warn about clients 
that pass arguments that are not legal for the reflectively-invoked method. It would be 
possible to refine the Java types as well as the type qualifiers (for instance, to warn about 
possible run-time type cast errors or to optimize method dispatch), but our 
implementation does not do so. 

If the reflectively-called method or constructor cannot be resolved uniquely, the 
reflection resolver determines the least upper bound of all return values and the greatest 
lower bound of all parameter and receiver types. 

3.5 ANDROID INTENT ANALYSIS 
An Android app is organized as a collection of components that roughly 

correspond to different screens of an application and to background services.2 Some apps 
consist of dozens of components. Intents are used for inter-component communication, 
both within an app and among different apps. Intents are similar to messages, 
communicated asynchronously across components. Sending an Android intent implicitly 
invokes a method on the receiving component, just as making a reflective procedure call 
implicitly invokes a method. The use of intents is prevalent in Android apps: all top 50 
popular paid apps and top 50 popular free apps from the Google Play store use intents 
[14], the top 838 most popular apps contain a total of 58,989 inter-component 
communication locations [64], and intents are a potential target for attackers to introduce 
malware [14]. 

Intents present two challenges to static analyses: (i) control flow analysis, or 
determining which components communicate with one another, and (ii) data flow 
analysis, or determining what data is communicated. Both parts are important. An 
existing analysis, Epicc [64], partially solves the control flow challenge. Section 3.5.1 
describes how our implementation uses Epicc to compute component communication. 
Our key research contribution is to address the data flow challenge, which has resisted 
previous researchers. Section 3.5.2 presents a novel static analysis that estimates the data 
passed in an Android intent.  

The structure of Android intents 

In addition to attributes that specify which components may receive the intent, an 
intent contains a map from strings to arbitrary data, called “extras”. The extras map is 
used to pass additional information that is needed to perform an action. For example, an 
intent used to play a song contains the song’s title and artist as extras. An invocation of 
the putExtra method adds a key–value entry to the intent map, which can be looked up 

2 Activity, Service, BroadcastReceiver, and ContentProvider are the four kinds of Android components. See 
http: 
//developer.android.com/guide/components/fundamentals.html#Components. 
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via the getExtra method call. Without loss of generality, we will consider that every 
intent attribute is an entry in the map of extras. The use of extras is prevalent in Android: 
of the 1,052 apps in the F-Droid repository [26], 69% use intents with extra data. Figure 
3.2 shows the common use case of an Android app sending and receiving an intent 
containing extras. 

3.5.1 Component communication patterns 
To precisely analyze the types of data sent through intents, our analysis requires 

sendIntent calls to be matched to the declarations of onReceive methods they 
implicitly invoke. We express this matching as a component communication pattern 
(CCP): a set of pairs of the form (sendIntent(a,i), onReceive(b,j)). Each pair in the 
CCP indicates that components a and b, possibly from different apps, may communicate 
through intents i and j, which intuitively denote the actual arguments and formal 
parameters of the implicit invocation. 

To precompute an approximated CCP, our current implementation uses 
APKParser [4], Dare [62], and Epicc [64]. Our implementation inherits Epicc’s 
limitations. Note, however, that Epicc’s limitations are not inherent to our intent analysis, 
and they would disappear if we used a better analysis to compute CCP. As better CCP 
techniques become available, they can be plugged into our implementation. IC3 [63] is 
Epicc’s successor, created by the same research group. We attempted to use IC3, but we 
discovered a soundness bug: dynamically-registered Broadcast Receivers were not being 
analyzed. The IC3 authors have confirmed but not fixed the bug3, so we used Epicc 
instead. We now discuss sources of imprecision and unsoundness due to Epicc. 

Epicc’s sources of imprecision  Epicc’s lack of support for URIs leads to imprecision 
since intents with the same action and category but different URIs are conservatively 
considered equal. As expected of a static analysis, Epicc also cannot handle cases where 
dynamic inputs determine the identity of receiver components. Epicc also handles this 
conservatively: all components are considered possible receivers. Furthermore, the 
points-to and string analyses used by Epicc are also sources of imprecision. 

Even with these limitations, all mentioned in [64], Epicc reports 91% precision in 
a case study with 348 apps. 

Epicc’s sources of unsoundness Epicc unsoundly assumes that Android apps use 
no reflection. We used the type system of Section 3.4.1 to circumvent this limitation; see 
Section 4.4. Epicc also unsoundly assumes that Android apps use no native calls, a 
standard limitation of static analysis that is shared by IC3. We do not circumvent this 
limitation. Another unsoundness is the closed-world assumption; that is, Epicc assumes 
that it knows all the apps installed on a device. Our work shares this assumption.  
Compatibility with Epicc’s ananlysis could be checked whenever an app is installed. 

Recall that while finding CCP is necessary, it is not sufficient. Since acceptable 
solutions exist for finding CCP, the focus of our intent analysis is the unsolved problem 
of estimating the payloads of intents, which is discussed below. 

3 https://github.com/siis/ic3/issues/1 
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3.5.2 Intent type system 
This section presents a type system for Android intents. The type system verifies 

that the type of data stored within an intent conforms to the declared type of the intent, 
even in the presence of implicit invocation via intents. 

For simplicity, this document abstracts all methods that send intents as the method 
sendIntent, and all methods that receive an intent as the method onReceive. For 
example, in Figure 3.2, startActivity(), called on line 7, is an example of a 
sendIntent method, and the method getIntent(), declared on line 20, is an example of 
an onReceive method. 

The type system verifies that for any sendIntent method call and any onReceive 
method declaration that can be invoked by the call site, the intent type of the argument in 
the sendIntent call is compatible with the intent type of the parameter declared in the 
onReceive method signature. 

3.5.2.1 Intent types 
We introduce intent types, which hold key–type pairs that limit the values that can 

be mapped by a key. 
 
Syntax of intent types This document uses the following syntax for an intent map type: 

 
@Intent("K1" → t1, ..., "Kn" → tn) Intent i = ...; 

 
where {"K1",...,"Kn"} is a set of literal strings and {t1,...,tn} is a set of types. The type of 
variable i above consists of a type qualifier @Intent(...) and a Java type Intent. The 
regular Java type system verifies the Java type, and our intent type system verifies the 
type qualifier. 

The actual Java syntax used by our implementation is slightly more verbose than 
that in this document: 

@Intent(@Entry(key="K1", type="t1"), ..., 
@Entry(key="Kn", type="tn")) Intent i = ...; 

 
Semantics of intent types If variable i is declared to have an intent type T, then two 
constraints hold. (C1) The keys of i that are accessed must be a subset of T’s keys. It is 
permitted for the run-time value of variable i to have more keys than those listed in T, 
but they may not be accessed. It is also permitted for the run-time value of variable i to 
have fewer keys than those listed in T; any access to a missing key will return null. (C2) 
For every key k in T, either k is missing from the run-time key set of i, or the value 
mapped by k in the run-time value of i has the type mapped by k in T. This can be more 
concisely expressed as ∀k ∈ domain(T).i[k] : T[k], where “:” indicates typing and null is 
a value of every non-primitive type. 
 
Example  The example below illustrates the declaration and use of intent types. The 
symbols @A, @B, and @C denote type qualifiers, such as @High and @Low of the 
noninterference type system. On the left is the type hierarchy of these type qualifiers. 
(C1) and (C2) are the two constraints described above. 

   @Intent("akey" → @C) Intent i = ... 
 @A  @A int e1 = i.getIntExtra("akey"); // legal 
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/ \ @C int e2 = i.getIntExtra("akey"); // legal 
@B   @C @B int e3 = i.getIntExtra("akey"); // violates (C2) 

i.getIntExtra("otherKey"); // violates (C1)

3.5.2.2 Type system rules 
Figure 7 shows the typing rules for the intent type system. These rules are 

organized into three categories, according to their purpose. Subtyping rules define a 
subtyping relation for intent types, well-formedness rules define which constructions are 
acceptable, and typing judgment rules define the types associated with different language 
expressions. 

Subtyping (ST) Intent type τ1 is a subtype of intent type τ2 if the key set of τ2 is a 
subset of the key set of τ1 and, for each key k in both τ1 and τ2, k is mapped to the same 
type. 

@Intent("akey" → t, "anotherkey → t) Intent i1 = ...; 
 @Intent("akey" → t)) Intent i2 = ...; 
@Intent("anotherkey" → t) Intent i3 = ...; 
i2 = i1; // legal  
i1 = i3; // illegal 

The mapped types must be exactly the same; use of a subtyping requirement τ1[k] 
<: τ2[k] instead of equality τ1[k] = τ2[k] would lead to unsoundness in the presence of 
aliasing. The example below illustrates this problem. (On the left is the type qualifier 
hierarchy.) 

@C String c; 
@A @Intent("akey" → @B) Intent i1; 
/ \ @Intent("akey" → @A) Intent i2; 

@B    @C i2 = i1;  // illegal  
i2.putExtra("akey", c); 

It would be incorrect to allow the assignment i2 = i1 in this example, even though 
the assignment is valid according to standard object-oriented typing. In this case, the call 
to putExtra would store, in the object pointed by i1, a value of incorrect type at key 
akey. This happens because the references i1 and i2 are aliased to the same intent object. 
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Figure 7: Type system for Android intents. Standard rules are omitted. 

 
Copyable (CP)  Copyable is a subtyping-like relationship with the weaker requirement 
τ1[k] <: τ2[k].  It may be used only when aliasing is not possible, which occurs when 
onReceive is invoked by the Android system, as explained in the (SI) rule below. 

 
Declarations of onReceive (OR)  A declaration of onReceive always type-checks. The 
standard Java overriding rules do not apply to declarations of onReceive: the intent type 
of the formal parameter of onReceive is not restricted by the type of the parameter in the 
overridden declaration. This is allowable because by convention onReceive is never 
called directly but rather is only called by the Android system. The type-checker prohibits 
direct calls to onReceive methods; this constraint is omitted from Figure 7 for brevity. 
 
Calls to sendIntent (SI) A sendIntent call can be viewed as an invocation of one or 
more onReceive methods. A sendIntent call type-checks if its intent argument is 
copyable to the formal parameter of each corresponding onReceive method. CCP (see 
Section 3.5.1) is used to determine each onReceive method of a sendIntent call. The 
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type comparison uses the copyable relation, not subtyping. This is sound because the 
Android system passes a copy of the intent argument to onReceive, so aliasing is not a 
concern. 
 
Calls to putExtra (PE) If the receiver of a putExtra call might have aliases, then the 
argument’s type must be a subtype of the type with the specified key in the map. This 
prevents an alias from modifying an intent in such a way that it violates the type of 
another alias. For example: 
 

@Intent("akey" → @Low) Intent a = new Intent(); 
@Intent() Intent b = a; 
@High String hs = ...; 
b.putExtra("akey", hs); // does not type-check 
a.getExtra("akey"); 
 

If the receiver has no aliases, then the key is permitted to be missing from the map 
type. 
 
Calls to getExtra (GE)  The rule for getExtra is straightforward. 

For both the PE and GE rules, the call (putExtra or getExtra) type-checks only 
if the key is a statically computable expression, according to the dataflow analysis of 
Section 3.4.1.2. For all 1,052 apps in the F-Droid repository, 93% of all keys could be 
statically computed. 

3.5.2.3 Type inference 
Annotations are rarely required within method bodies, because the intent type 

system performs flowsensitive local type inference. Consider the following example: 
 

@Intent Intent i = new Intent(); // i has type @Intent() 
i.putExtra "akey", h); // i now has type @Intent("akey"→@High) 
i.putExtra("akey", l); // i now has type @Intent("akey"→@Low) 

 
Because the receiver expression of these putExtra calls is an unaliased local 

variable, its type can be refined by adding the key–type pair from the putExtra call. We 
implemented a modular aliasing analysis that determines whether an expression is 
unaliased. 

Figure 8 shows two cases for the putExtra type inference rules for intent types. 
For both cases, the key argument of the putExtra call must be a statically computable 
expression (Section 3.4.1.2) and the receiver expression must be unaliased. For the first 
case, if the intent type of the receiver expression does not have a key–type pair with the 
same key passed as an argument, then the intent type is refined with the new key 
mapping to the type of the value passed as argument. For the second case, if the intent 
type already has a key–type pair with the same key, then the type in this key–type pair is 
replaced by the type of the value passed as an argument. A further standard condition 
(omitted from Figure 8 for brevity) is that the new intent type must be a subtype of the 
declared type. 
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3.5.3 Example 
Recall the example of Figure 4. A noninterference type-checker would report 

false-positive warnings on lines 14–16 because the type system is unable to deduce that 
all extra data from the corresponding intent is of type Low. A developer can express this 
intended design by annotating the method WordTranslator.getIntent (inherited from 
class Activity): 

 
Figure 8: Flow-sensitive type inference rules for intent types: the conclusion shows 
the type of e after the call to putExtra. Standard rules are omitted. 

 
@Override 
@Intent("source" → @Low, "target" → @Low, "word" → @Low)  
Intent getIntent() { return super.getIntent(); } 

 
The startActivity(i) statement on line 7 still type-checks after this change 

because the type-checker refines the type of i to @Intent("source" → @Low, 
"target" → @Low, "word" → @Low) as a result of the putExtra calls on lines 4–6. 

The copyable typing rule enforces that the intent variable i in method 
DictionaryMain.translateWord() has a compatible type with the return type of 
WordTranslator.getIntent(). 

By extending the noninterference type system with our intent type system and 
adding the correct annotations to the return type of WordTranslator.getIntent(), the 
Aard Dictionary example type-checks and the developer is assured that the program does 
not contain security vulnerabilities that could leak private data. Note that any developer-
written annotations in the program are checked, not trusted. 

4  RESULTS AND DISCUSSION 

4.1 COLLABORATIVE VERIFICATION OF INFORMATION FLOW  
 This section describes three different evaluations of IFT. Sect. 4.1.1 describes the 

effectiveness of IFT in an adversarial Red Team evaluation. Sect. 4.1.2 evaluates the 
effectiveness and efficiency of IFT in a control team study. Sect. 4.1.3 presents a study of 
IFT’s usability for vendors during the development of apps and for app store auditors 
while reviewing those apps. 

4.1.1 Red Team evaluation 
The sponsor of our research (DARPA) wished to evaluate IFT. To this end, they 

hired five development companies (in the following referred to as Red Teams) to create 
Android applications with and without Trojans. We had neither control over the Red 
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Teams nor any knowledge of the malware they were creating. While they were creating 
the malware, the Red Teams had access to a current version of IFT, including source 
code, documentation, and our own analysis of IFT’s vulnerabilities. A total of 

20 people worked on the Red Teams. On average they had more than 2 years of 
Android experience. Other than two interns, they hold BS or MS degrees and work full-
time as computer security analysts. Most have been exposed to information flow theory, 
with the maximum experience being 6 years working with information flow. 

The Red Teams created both malware and non-malware apps. The malware had to 
be written in 

Java. The Red Teams started out by surveying real-world mobile malware. They 
tried to produce diverse malware, including malware that is representative of that found 
in the wild, novel malware that they devised, and malware specifically targeting the 
limitations of IFT. They had two goals: to evaluate how well IFT might work in practice, 
and to see how IFT could be defeated. 

Overall, the Red Teams created 72 Java applications. Our sponsor provided us 
with the apps in five batches over an eight-month period. For each batch, we were given a 
few hours or days to analyze the applications with IFT. The Red Teams were given our 
results for the first three batches, and they used this information to create malware that 
was harder for IFT to find. 

We received the applications in source code form. IFT does not run the 
applications. The applications were not obfuscated, but they were also not well-
documented, and the Red Teams had no motivation to make them understandable. The 
user documentation was only a few sentences stating the general purpose of the app, but 
usually omitting significant details about the functionality 

— considerably less than a typical app has in an app store. The Red Teams also 
had no incentive to provide code documentation or follow a specific design — code 
comments and design documentation 

were absent, and the apps contained neither flow policies nor the information flow 
annotations used by IFT. 

4.1.1.1 Summary of results 
Of the 72 apps, 57 are malicious (see Table 3 for details). 

4.1.1.2 Unjustified information flows 
For 19 apps, the Android permissions in the manifest can be justified based on the 

purpose of the app; however, the apps leak information from one Android permission to 
another. For example, the app 2D Game has a malicious flow, 
READ_EXTERNAL_STORAGE→INTERNET. The app accesses the external storage to load 
photos in the game, so READ_EXTERNAL_STORAGE is justified. The app description states 
that the app sends high scores to a leaderboard on a server, so INTERNET is justified. The 
description says nothing about uploading the photos directly to the server, nor would a 
user expect the game to do so. Therefore, READ_EXTERNAL_STORAGE→INTERNET is a 
malicious flow. 

An unjustified Android permission would be grounds for rejection from a high-
assurance app store; however, some permissions can be easily justified. For example, one 
of the Red Teams used an automatic update functionality as a reason to justify the 
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INTERNET permission. In our experiments, we did not reject any app based on requested 
permissions since none of them were at odds with the app’s purpose or description. 

4.1.1.3 Information flows using new sources/sinks 
For 17 apps, the malicious information flow is apparent only via use of the 

additional permissions listed in Table 2.1. For example, RSS Reader has a malicious flow 
of RANDOM→VIBRATE. RANDOM is not an Android permission and the description of the 
app gives no reason to use a random number. The app is supposed to vibrate the phone 
when one of the user’s feeds is updated, so VIBRATE is listed in the manifest file as 
expected. However, the app’s user would not expect the app to cause random vibrations, 
so RANDOM→VIBRATE is malicious. 

The CONDITIONAL sink detected triggers for malicious behavior in 2 apps. 
Countdown Timer and System Monitoring 3 triggered non-information-flow related 
malware after receiving SMSes with certain characters. 

Other apps used time of day, random numbers, or location to trigger information-
flow malware. 

We found these triggers while reviewing the conditional statements. 

4.1.1.4 Flows using parameterized permissions 
For 11 apps, the malicious information flow is apparent only via use of 

parameterized permissions (Sect. 3.2.2.2). For example, in GPS 3, the location data 
should only flow to maps.google.com, but it also flows to maps.google-cc.com. To 
express this, the flow policy lists LOCATION→INTERNET(“maps.google.com”) but not 
LOCATION→INTERNET(“maps.google-cc.com”). Another app, Geocaching, should only send 
data from specific geocaching NFC tags to the server, but it collects all NFC tags in range 
and sends them to the server, NFC(“*”)→INTERNET. 

For two apps (PGP Encryption 2 and Password Saver) the leaked information is 
allowed to flow to the sensitive sink, but only if it is encrypted first. IFT cannot yet 
express this property, but Sect. 3.2.10 describes how to extend IFT to catch this sort of 
vulnerability. 

4.1.1.5 Malware not related to information flow 
The malware in 10 out of the 57 malicious applications is not related to 

information flow — these apps do not exhibit an unjustified information flow and 
implement types of attacks that are out of the scope of IFT. For example, Backup 
transposes digits in a phone number during backup. This is a functional correctness error, 
which IFT does not address. In a high-assurance app store, IFT would be used with 
complementary tools designed to find malware not related to information flow. The 
auditor’s confidence that an app has no information-flow malware would let the auditor 
spend more time looking for other malware, such as denial of service. 

4.1.1.6 Bugdoors 
In 8 apps, IFT found a bugdoor (undesired, exploitable functionality) that the Red 

Team was unaware of. Even though the Red Team had written and/or modified the app 
before presenting it to us for analysis, they had not noticed these. GPS 1 passes the device 
ID as a way-point ID to the remote server. This allows the remote server to correlate 
location to specific devices and to other information collected using the device ID. 
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Password Saver saves unencrypted passwords in shared preferences, where they are 
accessible to other applications on the device. 

Furthermore, 6 apps exfiltrated sensitive data to the log, which Android does not 
require a permission to write. It does, however, require a permission in our finer-grained 
permission model (see Sect. 3.2.2). Consequently, IFT reported an information flow 
violation. 

4.1.2 Control team study 
For the third and fifth batches of applications, our sponsor hired a control team to 

evaluate the applications and search for malware. The control team consisted of 4 PhD 
students with, on average, 11 years of Java experience and .5 years of Android 
experience — very similar to our team. The control team used both static and dynamic 
analysis tools, including Androguard, Eclipse, and emulators. 

For the third batch of apps, the control team took an average of 9.5 hours per 
application to declare it malicious or benign, and their answer was right 60% of the time. 
Our team, using IFT plus simple tools that search for suspicious code, spent 42 minutes 
on average per application and correctly classified 80% of the applications. 

For the fifth batch of apps, the control team took an average of 2.3 hours per 
application and correctly classified 63% of the apps. Our team spent 1.25 hours per app 
on average and correctly classified 75% of the apps. 

 

4.1.3  Usability study 
The collaborative verification model and IFT provide guarantees, but can they be 

used in the real world? This section presents three studies addressing this question. Sect. 
4.1.3.1 measures the time to add information-flow type annotations to apps. Sect. 4.1.3.2 
measures how quickly and accurately the app store auditors can approve or reject apps. 
Sect. 4.1.3.3 evaluates how hard it is for information-flow type system novices to learn to 
use IFT. 

4.1.3.1 Annotation burden 
In order to estimate the cost of adding information flow annotations, five 

members of our team annotated 11 arbitrarily chosen applications. 1 app was a malicious 
app written by the Red Teams and 10 apps were benign apps written by third-party 
developers or the Red Teams. Each annotator was given an unannotated application and a 
flow policy file. The annotators annotated the application until IFT issued no more 
warnings; if they found malware, they used a declassification and continued the task. The 
annotators had never seen the applications before, so the vast majority of their time was 
spent reverse-engineering the application. 

Table 3 shows the results. On average, the annotators annotated 6 lines of code 
per minute, which was primarily the effort to understand the code. This compares 
favorably with industry-standard averages of about 20 lines of delivered code per day 
[13, 42, 57, 76]. (On average, the annotators annotated 20 lines of code in 3.3 minutes.) 
Recall that in the proposed collaborative verification model, the app’s developer would 
annotate the code, which would be faster. 

The annotated code contained on average 6 annotations per 100 lines of code. 
This is less than 
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1/4 of the annotation burden for Jif, another information-flow system for Java 
[5,15,92]. In our case studies, the annotator wrote an annotation in 4% of the places an 
annotation could have been written; the other locations were defaulted or inferred. 

 
Table 3: Results from the annotation burden experiment 

App Name LOC 
Time 
(min.) 
 

De- 
class. 

Annotations 
src.+sink=total 

 

 
ratio 

CameraTest 92 20 .22 1 6 + 5 = 11 .12 6% 
Shares Pictures† 141 10 .07 0 12 + 0 = 12 .09 4% 
BusinessCard 183 10 .05 1 9 + 0 = 9 .05 3% 
Calculator 3 520 40 .08 0 7 + 0 = 7 .01 1% 
Dynalogin 625 300 .48 0 66 + 0 = 66 .11 6% 
TeaTimer 1098 295 .27 7 51 + 3 = 54 .05 3% 
FourTrack 1108 120 .11 0 27 + 18 = 45 .04 3% 
RingyDingy 1322 180 .14 2 41 + 26 = 67 .05 4% 
VoiceNotify 1360 185 .14 11 68 + 44 =112 .08 4% 
Sky 1441 240 .17 5 33 + 35 = 68 .05 3% 
Pedometer 1547 165 .11 0 71 + 58 =129 .08 5% 
Total 9437 1565 .17 26 391+189=580 .06 4% 

 
Boldfaced numbers (time, annotations) are per line of code. “Declass.” is 

declassifications. Annotation ratio compares the number of annotations written to how 
many could have been written — the number of uses of types in the app’s source code. 
Throughout this document, lines of code (generated using David A. Wheeler’s 
“SLOCCount”) omit whitespace and comment lines. †Malicious applications. 
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Table 4: Results from the collaborative app store experiment. 
App Name Review 

time (min.) 
Reviewed 
Declass. Cond. 

Accepted? 

CameraTest 26 .28 1 0 0% Accept 
Shares Pictures† 5 .04 0 0 0% Reject 
BusinessCard 11 .06 1 1 14% Accept 
Calculator 3 11 .02 0 3 5% Accept 
Dynalogin 10 .02 0 10 37% Accept 
TeaTimer 50 .05 7 20 22% Accept 
FourTrack 61 .06 0 11 14% Accept 
RingyDingy 20 .02 2 11 9% Accept 
VoiceNotify 35 .03 11 73 47% Accept 
Sky 25 .02 5 19 15% Accept 
Pedometer 15 .01 0 65 57% Accept 
Total 269 .03 27 213 27% 

Boldfaced times are per line of code. All declassifications were reviewed. The 
Reviewed Cond. column gives the number and percentage of conditions with a sensitive 
source, all of which were reviewed. †Malicious applications. 

The number of annotations per application is not correlated with the number of 
lines of code nor the number of possible annotations. Rather, the number of annotations is 
dependent on how, and how much, information flows through the code. When 
information flow is contained within procedures, type inference reduces the number of 
annotations required (Sect. 3.2.4.1). 

4.1.3.2 Auditing burden 
Another cost in the use of a static tool is the need to examine warnings to 

determine which ones are false positives. This cost falls on the developer who writes 
declassifications to suppress false positives, then again on the auditor who must review 
the declassifications. We wished to determine the cost of approving an app, which in 
addition to reviewing declassifications requires auditing the flow policy and reviewing 
implicit information flow. 

Two graduate students acted as app store auditors. Neither one had previously 
used IFT or a similar framework. The auditors had never before seen the applications that 
they reviewed, and they did not know whether the apps were malware. The review was 
split into two phases: a review of the app description and flow policy, then a review of 
the declassifications and conditionals in the source code. 

This is exactly the same workflow as an app store auditor. Table 4 summarizes 
the results. 

The first part of the review ensures that the description of the app matches the 
flow policy. An auditor begins by reading the app description and writing a flow policy; 
then the auditor compares that to the submitted flow policy. If there is any difference, the 
developer must modify the description or flow policy. The flow policy review took 35% 
of total auditing time. 
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The second part of the review ensures that all declassifications and implicit 
information flows are valid. The auditor first reviewed the developer-written justification 
for each declassification. Only CameraTest had one rejected justification, which the 
developer rectified in a re-submission. The other justifications were accepted by the 
auditors. Then, the auditors investigated possible implicit information flow via 
conditionals (Sect. 3.2.7). Out of a total of 789 conditional statements, only 27% 
contained data from a sensitive source, so the auditors only reviewed those to rule out 
implicit information flows. For some of these conditionals, the auditor did not need to 
review the conditional body, because the conditional expression did not reveal anything 
about the content of the source. For example, 41 of the 271 conditionals with sensitive 
data (15%) were comparisons against null. 

After the experiment, auditors mentioned that there were many unexpected flows, 
which ended up being necessary. Also, they wanted clear guidelines to accept or reject 
flow policies. We believe that both concerns will be resolved as auditors and app stores 
get more experience; this was their first time to audit apps. 

We have not evaluated the effort of analyzing an update to an existing app, but 
this should be low. An update can re-use most or all of the previous flow policy 
specification, annotations, and justifications for declassifications. 

4.1.3.3 Learnability 
IFT integrates smoothly with Java and re-uses type system concepts familiar to 

programmers. Nonetheless, learning about information flow, or learning how to use IFT, 
may prove a barrier to some programmers. The programmers in the study of Sect. 4.1.3.1 
were already familiar with Android and IFT. We wished to determine how difficult it is 
to come up to speed on IFT. 

We conducted a study involving 32 third-year undergraduate students enrolled in 
an introductory compilers class. 60% of the students had no previous experience with 
Android. They received a two-hour presentation, then worked in pairs to annotate an app 
of 1000–1500 LOC. The apps came from the f-droid.org catalog; we used F-Droid
because we do not have access to the source code of most apps in the Google Play Store. 

The students’ task was to learn Android, information flow theory, and IFT, then to 
reverse-engineer and to annotate the app such that IFT issues no warnings. On average 
the task required 15 hours. The students reported that the first annotations were the most 
time-consuming because they were still learning to understand IFT; after that the task 
was easier. 

This learnability study was extremely preliminary, but it does suggest that a 
developer with little experience can quickly come up to speed on IFT. 

4.1.4 Lessons learned 
This section states a few lessons we learned during our experiments. 
Generality of our analysis Our information-flow based approach turned out to be 

surprisingly general. IFT revealed malicious data flow of the payload as well as the 
injected triggers. We found, for instance, malware in applications that give wrong results 
based on a certain time of day or a random value. Perhaps more importantly, we were 
able to easily extend our system as we discovered new properties that we wished IFT to 
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handle — we did so over the course of our own usage and also between batches of 
malware analysis in the experiments. 

In response to Red Team apps, we added new permissions (like RANDOM and 
READ_TIME), inference, intents, reflection, parameterized permissions, and more. 

Effectiveness of CONDITIONAL Initially, the Red Teams used location data, time 
of the day, or random numbers to trigger malware. They stopped because IFT warnings 
made it quite easy to detect those triggers. None of the Red Teams’ apps used implicit 
information flow maliciously — we do not know if this was because it was too hard for 
them or if they did not consider this attack vector. 

4.1.5 Threats to validity 
IFT’s success in the experiments shows promise for our approach. Nonetheless, 

we highlight a few of the most important threats to validity in this section. 
Characteristics of malware The malware we analyzed was created by five 

different Red Teams, each consisting of multiple engineers working full-time on the task 
of creating malware. The teams had previously surveyed real malware, and they created 
malware representative both of commercial malware that makes a profit and of advanced 
persistent threats who aim to steal information. Nonetheless, we have no assurance that 
this malware was representative of malware in the wild, either in terms of types of 
malware or its quality. It is also possible that IFT became tuned to the sort of malware 
created by those five Red Teams. 

Skill of the analysts The same instrument may be more or less effective 
depending on who is using it. It is possible that our team was particularly skilled or lucky 
in classifying the apps that it analyzed — or that another team would have done a better 
job. An analyst needs time to come up to speed on IFT; we have found that a few weeks 
is sufficient for an undergraduate working part time, as confirmed by experiments (Sect. 
4.1.3.3). Training only needs to occur once, and our team’s unfamiliarity with the apps 
was a bigger impediment. 

Collaborative app verification model Our model assumes that application 
vendors are willing to annotate their source code. We believe this is true for high-
assurance app stores, but our approach may not be applicable to ordinary app stores.  
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4.2 SUMMARY OF MALICIOUS APPS 
Table 5: Applications analyzed by IFT. All listed applications are malicious 

and were written by 5 independent corporate Red Teams. 

Description LOC Information Flow Violation IFT 
  Information flow violations involving only Android permissions  

1 Adventure Game 17,896 READ_EXTERNAL_STORAGE!WRITE_EXTERNAL_STORAGE  
2 Note Taker 3,251 CAPTURE_AUDIO_OUTPUT!INTERNET  
3 SMS Pager 1,834 READ_SMS!INTERNET  
4 Battery Indicator 4,214 READ_EXTERNAL_STORAGE!INTERNET  
5 Block SMS 2,087 RECEIVE_SMS!INTERNET  
6 Fortune 2,998 READ_PHONE_STATE!INTERNET  
7 WiFi Finder 852 ACCESS_FINE_LOCATION!INTERNET  
8 Replacement launcher 1,069 READ_PHONE_STATE!WRITE_EXTERNAL_STORAGE  
9 2D Game 33,017 READ_EXTERNAL_STORAGE!INTERNET  
10 Displays source code 242 READ_PHONE_STATE!INTERNET  
11 System Monitoring 2 9,530 ACCESS_FINE_LOCATION!WRITE_EXTERNAL_STORAGE  
12 SMS Encryption 27,764 READ_SMS!SEND_SMS  
13 Bible 19,775 INTERNET!WRITE_EXTERNAL_STORAGE  
14 GPS 1 720 READ_PHONE_STATE!INTERNET  
15 GPS Logger 6,907 ACCESS_FINE_LOCATION!INTERNET  
16 Shares Pictures 135 READ_EXTERNAL_STORAGE!INTERNET  
17 Cat Pictures 639 READ_EXTERNAL_STORAGE!INTERNET  
18 SMS Messenger 1,210 READ_SMS!WRITE_SMS  
19 Running Log 1,333 READ_PHONE_STATE!NFC  

  Information flow violations involving IFT’s additional permissions  

20 Countdown Timer 1,065 RECEIVE_SMS!CONDITIONAL  
21 Cookbook 2,542 LITERAL!WRITE_CONTACTS  
22 SMS Notification 9,678 READ_SMS!WRITE_LOGS  
23 Calculator 2 640 USER_INPUT!FILESYSTEM  
24 SMS Backup 293 READ_EXTERNAL_STORAGE!WRITE_LOG  
25 Password Protects Apps 11,743 RANDOM!MODIFY_PHONE_STATE  
26 System Monitoring 1 9,402 LITERAL!WRITE_SETTINGS  
27 Calculator 1 510 RANDOM!DISPLAY  
28 RSS Reader 3,503 RANDOM!VIBRATE  
29 Text to Morse code 263 USER_INPUT!FILESYSTEM  
30 Shares Location 248 ACCESS_FINE_LOCATION!PROCESS_BUILDER  
31 Calculator 4 482 RANDOM!DISPLAY  
32 Device Admin 1 1,474 ACCESS_FINE_LOCATION!INTENT  
33 Device Admin 2 1,700 FILESYSTEM!INTERNET  
34 DropBox Uploader 5,902 DISPLAY!INTERNET  
35 System Monitoring 3 3,334 RECEIVE_SMS!CONDITIONAL  
36 Phone silencer 1,415 LITERAL!MODIFY_PHONE_STATE  

  Information flow violations involving parameterized permissions   
37 Screen Saver 1 147 LITERAL("")!WRITE_EXTERNAL_STORAGE  
38 GPS 3 1,512 LOCATION!INTERNET("maps.google-cc.com")  
39 Geocaching 27,892 NFC("*")!INTERNET  
40 Instant Messenger 1,253 LITERAL("0xFFFF")!INTERNET  
41 App Backup 2,010 LITERAL!WRITE_EXTERNAL_STORAGE("*")  
42 Mapping 5,587 LOCATION!INTERNET("mapxplore.com")  
43 SIP VoIP Phone 1,480 USER_INPUT !USE_SIP("2233520413@sip2sip.info")  
44 Word Game 1,191 LITERAL !SEND_SMS("12025551212")  
45 PGP Encryption 1 9,904 USER_INPUT("EditText.passPhrase")!EMAIL  
46 PGP Encryption 2 9,945 USER_INPUT("EditText.message")!EMAIL  
47 Password Saver 508 USER_INPUT("EditText.createPassword")!SHARED_PREFERENCES  

  Malware not related to information flow   
48 Podcast Player 1,711 none — Battery DoS  
49 Screen Saver 2 419 none — Battery DoS  
50 To Do List 5,123 none — Battery DoS  
51 Sudoku 1,505 none — Battery DoS  
52 Expense reports 2,293 none — Performance DoS  
53 Automatic SMS replies 33,296 none — Performance DoS  
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54 Screen Saver 3 457 none — Performance DoS  
55 Backup 2,554 none — Data corruption  
56 SMS Reminders 2,917 none — Data corruption  
57 Game 3 1,211 none — Clickjacking28  

 The malicious flows or permissions in these apps were found using IFT. 
* These malicious flows will be caught by IFT after future work is complete.

4.3 STATIC ANALYSIS OF IMPLICIT CONTROL FLOW 
Our implementation works on Java code: it does not analyze native calls. For 

efficiency, it relies on trusted annotations for system libraries. These are standard 
limitations of a static analysis. Section 3.5.1 notes other limitations regarding the 
estimation of component communication patterns. 

Modulo these limitations, our analysis is sound. That is, if a program type-checks, 
then the type of any expression is a sound estimate of its possible run-time values. 

For reflection, this means that the value for a Class or Method expression is 
contained within the set of possible values in its type, and likewise for array lengths. 

For intents, this means that if an expression has a type with an intent key–type 
pair, then at run time the expression’s value is an intent whose extra data maps the key to 
a value of that type, or the key does not appear in the map. 

Equally importantly, the resolution preserves any soundness property for a 
downstream analysis. If the downstream analysis is sound when using the conservative 
library annotations, then it remains sound when using more precise summaries supplied 
by the reflection and intent resolvers. 

It is possible to state formal type-correctness, progress, and preservation theorems 
for our type systems. The theorems are standard and their proofs would be 
straightforward. 

Table 6 Selected subject apps from the F-Droid repository. The number of 
reflective invocatons is given for Methods and Constructors, and intent uses count
the number of putExtra and getExtra calls. The last three columns show the 
annotation overhead for the technique IFT+INT+RR. The column IFT shows the 
number of @Source and @Sink information flow annotations. The column refl shows 
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the number of @MethodVal and @ClassBound annotations (no @ClassVal annotations 
were required). The column int shows the number of @Intent annotations. 

4.4 IMPROVING A DOWNSTREAM ANALYSIS 
We evaluated our work in two ways. First, this section reports how much our 

reflection and intent analyses improve the precision of a downstream analysis, which is 
their entire purpose. Second, Section 4.5 measures how well our type inference rules 
reduce the programmer annotation burden. 

4.4.1 Subject programs and downstream analysis 
We used open-source apps from the F-Droid repository [26] to evaluate our 

approach. F-Droid contains 1,052 apps that have an average size of 9,237 LOC4 and do 
not use third-party libraries. 

415 out of 1,052 F-Droid apps (39%) use reflection, and each app that uses 
reflection has on average 11 reflective method or constructor invocations. 726 out of 
1,052 F-Droid apps (69%) use intents with extra data, and each app that uses intents with 
extra data has on average 24 calls to putExtra or getExtra. 254 out of 1,052 F-Droid 
apps (24%) use both reflective calls and intents with extra data. 

These numbers support our motivation to pursue static analysis of reflection and 
intents. 

We aimed to select subject apps of typical complexity. We excluded excessively 
simple apps: those with less than 2,000 LOC or that did not have at least one call to 
putExtra, getExtra, and Method.invoke. We also excluded excessively complex apps: 
those with more than 15,000 LOC or that used more than five Android permissions, 
which is the average number of permissions used by an F-Droid app. 

4 Non-comment, non-blank lines of code, as reported by David A. Wheeler’s SLOCCount. 
See http://www.dwheeler.com/sloccount/.
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Overall, 40 apps satisfied our requirements, and we randomly sampled 10 apps, 
which are listed in Table 6. Each of the 10 apps contains on average 5,261 LOC, 3 
reflective method or constructor invocations5, and 37 calls to putExtra or getExtra. 

Our evaluation uses three downstream analyses. Sections 4.4.2-4.4.3 discuss the 
Information Flow Checker (IFT); Section 4.4.4 briefly discusses the other two case 
studies. IFT is a type system and corresponding type-checker that prevents unintended 
leakage of sensitive data from an application [23]. Given a program and an information-
flow policy (a high-level specification of information flow, expressed as source–sink 
pairs), IFT guarantees that no other information flows occur in the program. IFT is sound: 
it issues a warning if the information flow type of any variable or expression does not 
appear in the information-flow policy. IFT is also conservative: if it issues a warning, 
then the program might or might not misbehave at run time. 

We evaluated the effectiveness of our techniques by studying the following two 
research questions. 

4.4.2 How much do our reflection and intent analyses improve the precision of 
IFT? 

We measured the precision and recall of IFT’s static estimate of possible 
information flows. To compute precision and recall, we manually determined the ground 
truth: the actual number of flows that could occur at run time in an app.6 Precision is the 
number of ground-truth flows, divided by the total number of flows reported by the 
analysis. Recall is the number of real flows reported by the analysis, divided by the total 
number of ground-truth flows. We confirmed that IFT has 100% recall both with and 
without the reflection and intent analyses, i.e., IFT is sound and misses no real flows. 

To evaluate this research question, we compared the precision of the following 
techniques. 

IFT-unsound makes optimistic assumptions about every reflective and intent-
related call. Its recall is only 95% — it unsoundly misses 5% of the information flows in 
the apps, which makes it unacceptable for use in the security domain. Its precision was 
100%, for this set of apps. 

IFT treats reflection and intents conservatively. Data in an intent may be from 
any source and may flow to any sink. Data used as an argument to a reflective invocation 
may flow to any sink, and data returned from a reflective invocation may be from any 
source. In the absence of reflection and intents, IFT is an effective analysis with high 
precision, as shown by IFT-unsound. However, for our subject programs, which use 
reflection and intents, IFT’s precision is just 0.24%. 

IFT+RR augments IFT with reflection resolution and can therefore treat data that 
is used in reflection precisely when the reflection can be resolved. Data in intents, 
however, is treated conservatively. Since all apps send intents, which may trigger the use 
of any permissions, reflection resolution alone does not help; the average precision 

                                                 
5 This is smaller than the F-Droid average: most uses of reflection in F-Droid appear in a 

few huge apps (>500 kLoC) that contain hundreds of reflective calls. 
6 This enormous manual effort is the reason we did not run the experiments on all 1,052 

F-Droid apps. It would be easy to run our analyses on all the apps, but doing so would not 
indicate whether our analyses were useful. 
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remains 0.24%. In a (non-Android) program that does not use intents, IFT+RR would 
outperform IFT. 
IFT+INT augments IFT with intent analysis. It reports precise information flows for 
method calls involving intents. Differently from intent invocations, reflective calls are 
only allowed to use permissions listed in the app’s manifest. Therefore, data passed to a 
reflective invocation is treated as flowing to any sink the app may access. Similarly, data 
returned from a reflective invocation is treated as if it could have come from all sources 
listed in the manifest. However, since Epicc generates CCP and unsoundly assumes that 
reflective calls do not invoke sendIntent methods, IFT+INT must issue a warning any 
time a method is reflectively invoked. For each such warning, the developer must 
manually verify that the reflective method does not invoke sendIntent. The average 
precision is 53%. 

Figure 9 Comparison of precision among techniques. 

IFT+INT+RR augments IFT with both reflection resolution and intent analysis. 
When reflection resolution cannot resolve a method or when it resolves a method to 
sendIntent, it still issues a warning. The precision is 100% for each of the 10 randomly-
chosen apps, but might be smaller for other apps. 

Figure 9 plots the precision for the sound techniques.7 Being the most basic 
technique, IFT has the worst precision among all approaches. At the other extreme, 
IFT+INT+RR has the highest precision for all cases. This occurs because this technique 
provides custom support for both reflective calls and intents. Such high precision is 
obtained at the expense of adding annotations in the code. Section 4.4.3 discusses the 
overhead associated with the annotation process. 

7 All sound techniques achieve 100% recall. 
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IFT+INT has perfect precision for AbstractArt, MultiPicture, PrimitiveFTP, 
and RemoteKeyboard, because these apps use reflection for control flow but not data 
flow — data returned from reflective calls is not sent to a sensitive sink and no sensitive 
information is passed as an argument to a reflective method call. For the other 6 apps, 
IFT+INT is more precise than IFT, but still reports flows that cannot happen at run time. 
For these apps, the reflection resolver is needed to reach 100% precision as reported by 
IFT+INT+RR. The results confirm that both techniques, reflection resolution and intent 
analysis, are necessary and that they are complementary and synergistic. 

The 10 apps in Figure 9 use both reflection and intents with extras, like 24% of all 
apps in the F-Droid repository. For apps that use just one of the features, IFT+RR or 
IFT+INT would achieve the same precision as IFT+INT+RR. 

All uses of reflection could be resolved except for one in the RemoteKeyboard 
app. For that case, the reflection resolver could determine the name of the invoked 
method (createShell) and the number of parameters (0), but the class name is obtained 
from preferences that the user can edit at run time. However, this method is not 
sendIntent, its returned object is not sent to any sink, and it takes no parameters; 
therefore, treating that call conservatively did not decrease the precision of 
IFT+INT+RR. 

We attempted to compare our approach with IccTA [50]. IccTA crashed when run 
on 1 of the 10 apps. For the other 9 apps, IccTA outputted some static analysis data, but 
no data regarding information flows. We contacted the IccTA authors about these issues 
but didn’t hear back from them. 

4.4.3 What is the annotation overhead for programmers? 
Developers must write source code annotations in order to use our analyses. This 

is not extra work, since the alternative would be to spend time reviewing false-positive 
warnings. 

Table 6 shows the annotations required to type-check each app. Less than 2% as 
many annotations are required due to reflection and intents, compared to annotations 
related to information flow (the downstream analysis). If the programmer omits an 
annotation, or writes one that is inconsistent with the source code or with other 
annotations, then the analyses issue user-friendly warnings that pinpoint and explain the 
type inconsistency. The average time to add each annotation related to our analyses was 
roughly one minute, for a member of our team.8 Thus, the annotation overhead is small in 
absolute and relative terms, especially considering the significant improvements in 
precision due to reflection and intent analysis. 

Part of the need for annotations is because the downstream analysis is a modular 
analysis — a type-checker that verifies programmer-written types. If the downstream 
analysis were a whole-program analysis such as pointer analysis, type inference, or 
abstract interpretation, these would not be necessary. Other annotations are needed to 
express facts that no static analysis can infer; in these cases, human intervention is 
unavoidable. 

                                                 
8 A developer who is familiar with the subject programs might take less time. The 

developer would need to learn to use IFT, but we have found that doing so is straightforward 
for someone who understands information flow. 
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4.4.4 Precision improvements for other downstream analyses 
We demonstrated the generality of our approach by integrating our reflection and 

intent analyses with two other downstream analyses. The Nullness Checker [67] verifies 
the absence of null pointer dereferences: if the Nullness Checker issues no errors for a 
given program, then that program is guaranteed to not throw a NullPointerException
at runtime. The Interning Checker [67] verifies equality tests: if the Interning Checker 
issues no errors for a given program, then all reference equality tests (i.e., ==) are over 
canonicalized data, and thus are consistent with .equals(). 

These analyses suffer false positives due to reflection and intents. Consider the 
Nullness Checker. 

Its library annotations must mark the return type of Method.invoke as 
@Nullable, for soundness. The reflection analysis can determine that some calls to 
invoke return a non-null value, and thus it eliminates false positives in the nullness 
analysis. 

Reflection resolution improved the precision of the Nullness Checker for 3 of the 
10 apps. There were no reference equality tests over values returned by a reflective 
method invocation, and therefore reflection resolution did not improve the precision of 
the Interning Checker for these 10 apps. 

The intent analysis improved the precision of the Interning Checker for 2 of the 
10 apps. The intent analysis does not improve the precision of the Nullness Checker for 
any app, because getExtra can return null if a key does not exist in an intent map. The 
intent type system does not guarantee the existence of a key in an intent map — only that 
if it exists, it has a certain type. 

4.5 EVALUATION OF TYPE INFERENCE 
As shown in Section 4.3, programmers have to write very few annotations to aid 

the reflection and intent analysis. This section explains why, by evaluating our type 
inference rules. 

4.5.1 Reflection resolution 
In addition to the 10 subject apps of Section 4.4, we arbitrarily selected 25 apps 

from F-Droid that use reflection. Using the entire set of 35 apps, we evaluated the 
reflection resolution by answering the following three research questions. 

4.5.1.1 How is reflection used in practice? 
The 35 apps contain 142 invocations of reflective methods or constructors. 81% 

are used to provide backward compatibility, 6% access a non-public API, and 13% are 
for other use cases. 

4.5.1.2 How often can reflection be resolved at compile time? 
Our reflection resolution resolved 93% of instances of reflective method or 

constructor invocations. It failed on the other 7% because the reflectively invoked 
method or constructor cannot be determined statically by any analysis. As an example, 
the RemoteKeyboard app uses reflection for extensibility and duck typing: the user can 
configure the class name for a shell implementation, and the app reflectively invokes a 
factory method on this class. Moreover, these shell implementations do not have a 



Approved for Public Release; Distribution Unlimited. 
46 

common interface that defines the factory method, rendering static reflection resolution 
impracticable. 

4.5.1.3 How effective is type inference for reflection resolution? 
To enable modular reflection resolution, a developer may have to write type 

annotations in a program. We evaluated the effectiveness of our type inference (see 
Section 3.4.1.2) that reduces the annotation burden. Specifically, we determined how 
many instances of reflection can be resolved without any developer-written annotation 
and whether the remaining instances require stronger inference or developer-written 
annotations. 

For 52% of reflective invocations, our intra-procedural type inference enabled 
fully automated reflection resolution. This means that our type inference determined the 
exact method that is reflectively invoked without requiring a single annotation. 

For 41% of reflective invocations, our inter-procedural, intra-class type inference 
determined the exact method that is reflectively invoked. A common example is the 
initialization of a private field of type Class or Method. These fields are only assigned 
once but are initialized within a method that provides exception handling. Another 
example is the use of a helper method that manipulates Strings and returns an object of 
type Method that is used within the class. 

We also implemented an inter-class inference, but it did not improve the results 
for the selected apps, beyond the intra-class analysis results. 

The other 7% of reflection invocations cannot be resolved by any static analysis 
(for an example, see Section 4.5.1.2). Code inspection and developer intervention are 
required in those cases. 

Table 6 gives the number of developer-written annotations that were required. 
Recall that all annotations in an app are checked, not trusted. Thus, use of developer-
supplied annotations does not compromise the soundness of our approach. 

4.5.1.4 Bug detection 
Our reflection resolver revealed a bug in the arXiv app. The reflection resolver 

reported an unresolvable method even though it precisely inferred the class name, method 
name, and the number of parameters. The bug was a misspelled method name, and it 
prevented a menu from being updated. The developer confirmed the bug. 

4.5.2 Intent type inference 
Section 3.5.2.3 introduced rules to refine the type of an intent, which reduce the 

number of developer written annotations required in a program. This section evaluates 
how effective they are in practice. We only implemented type refinement for sent intents. 
A limitation of our implementation is that declarations of onReceive methods must have 
a precise intent type, so sendIntent calls can be typechecked against these declarations. 
Therefore, we evaluated type refinement of sent intents (68% of all intents). We defer 
inferring intent types on declarations of onReceive methods to future work. We 
considered only intents with extras (51% of all sent intents), as an empty intent requires 
no developer-written annotation. 

To measure the effectiveness of the intent type inference (Section 3.5.2.3), we 
used a similar approach as when measuring the reflection resolution type inference: we 



Approved for Public Release; Distribution Unlimited. 
47 

determined the number of sent intents with extras that required no annotations and 
compared it with the overall number of sent intents with extras. 

For 67% of the cases, our intra-procedural inference determined that the sent 
intent had no aliases and precisely inferred the type of the sent intent. For those cases, 
developer-written annotations are not necessary. 

For 21% of the cases, our inter-procedural inference correctly infers the type of 
the sent intent. 

For 12% of the cases, the sent intent was stored in a field. Our alias analysis 
(Section 3.5.2.3) treated such intents as possibly-aliased, so the intent type cannot be 
refined using the putExtra rule. 

The 10 apps require a total of 7 developer-written annotations for sent intents with 
extras. Without intent type inference, the apps would have needed an additional 52 
developer-written annotations in order to type-check9. This result shows that intent type 
inference greatly reduces the annotation burden. 

4.6 RELATED WORK 

4.6.1 Information flow 
Information flow tracking has been investigated for several languages and 

paradigms [29,38,51,69,88]. These approaches are largely complementary to our work as 
they are theoretical or do not employ type systems to achieve static guarantees of 
information flow properties. Besides statically verifying properties, several approaches 
for enforcing information flow properties have been proposed, such as refactoring [75], 
dynamic analysis [56], or encoding as safety properties [61,79]. Milanova and Huang 
[58] recently presented a system that combines information flow with reference 
immutability to improve precision. Yet, the system has not been applied in a security 
context. Engelhardt et al. [22] discuss handling intransitive information-flow policies; 
IFT makes transitive flows explicit. Sun et al. [77] discusses modular inference for 
information flow; IFT does inference within method bodies. 

In the domain of information flow tracking for Java programs, the closest related 
work is Jif (Java information flow) [59,60,72]. Jif uses an incompatible extension of the 
Java programming language and its own compiler to express and check information flow 
properties of a program. In contrast, IFT uses standard Java annotations and the code can 
be compiled with the standard Java compiler. Furthermore, IFT achieves its effects with a 
simpler, easier-to-use type system. While Jif focuses on the expressiveness and flexibility 
of the type system and trust model, IFT aims at practicality and scalability to be 
applicable on large real-world Android applications. IFT has better support for defaults, 
inference, reflection, intents, libraries, separate compilation, and many other language 
features. Jif has not been evaluated in an adversarial challenge exercise comparable to our 
experiments using IFT. 

In the context of implicit information flow, the classic approach is to taint all 
computations within the dynamic scope of a conditional statement. Suggested by 
Denning and Denning [17] and formulated as a type system by Volpano et al. [83], this 

9 88% 6= 52/(7+52) because some developer-written annotations solve multiple 
cases where intent type inference does not succeed. 
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approach causes over-tainting and suffers from taint explosion. Kang et al. [43] 
investigated the problem of under-tainting in benign applications. They found that under-
tainting usually occurs at only a few locations and proposed an analysis to identify and 
taint such additional targets. However, malicious applications are out of scope. 

WebSSARI [40] focuses on web applications written in PHP and aims at 
preventing vulnerabilities such as Cross-Site Scripting or SQL Injection. In this context, 
static analysis is applied to reveal existing weaknesses and to insert run-time checks. In 
contrast, IFT statically verifies information flow properties for Android applications. 

4.6.2 Android malware 
Many Android apps are overprivileged, i.e., they are granted more permissions 

than they use [8,27,82]. These studies also provided a mapping of API calls to required 
permissions. IFT utilizes those existing mappings and enhances the Android permission 
system by adding finer-grained sources and sinks for sensitive APIs. Chin et al. [14] 
described a weakness of Android Intents: implicitly sent intents can be intercepted by 
malicious applications. IFT analyzes communication through intents to detect such 
attacks. 

The Google Play Store runs Bouncer to detect and reject malicious applications. 
Unfortunately, Bouncer can be circumvented [44,68], which motivates our work. 
Ongtang et al. [65] suggest an application-centric security model to strengthen Android’s 
security. 

Woodpecker [34] uses static analysis to detect capability leaks. ComDroid [14] 
uses static analysis to locate Intent-related vulnerabilities. Several systems have been 
proposed to detect the leakage of personal data (e.g., [31,55]). In this context, PiOS [19] 
detects privacy leaks in iOS applications by constructing a control flow graph from 
compiled code and performing data flow analysis. FlowDroid [6] is a static taint analysis 
tool for Android apps that that has not been used to find malware. FlowDroid propagates 
sources and sinks found using SuSi [71], which uses machine learning to classify and 
categorize Android library methods as source and sinks. Unlike those existing 
approaches, IFT uses a finer-grained model for sources and sinks, operates on the source 
code, and is not limited to explicit information flow. RiskRanker [35] and DroidRanger 
[94] combine multiple analyses in an attempt to detect likely malware. 

Beyond detection, dynamic enforcement tools have been proposed to monitor the 
execution of an application at run time and intervene, if necessary, to ensure safe 
behavior [21,39,89,90]. These techniques are non-portable or suffer high overheads. 
Another disadvantage of a dynamic analysis is that it may cause an app to fail at run time. 
By contrast, a static analysis such as IFT gives a guarantee ahead of time, with no run-
time overhead, no special runtime environment, and no risk of failures in the field. 

4.6.3 Collaborative model 
A similar collaborative verification model has been proposed in prior work on the 

verification of browser extensions. For example, Guha et al. [37] describe a model in 
which browser extension developers specify a policy; as in our approach, the program’s 
adherence to the policy is statically verified, and the reasonableness of the policy is 
manually verified by an auditor. IFT applies the collaborate verification approach to 
Android, with a significantly simpler policy language, easing the auditor’s burden of 
verifying the reasonableness of the policy. 
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Similarly, Lerner et al. [48, 49] extend JavaScript with a type system to statically 
verify that extensions do not violate the browser’s private browsing mode; their approach 
requires developers to write annotations only where code might violate private browsing 
expectations. It also requires a skilled auditor to manually verify declassifications. IFT 
poses a lower annotation and audit burden and supports a broader range of information 
flow guarantees. 

Our collaborative verification model requires a trained auditor to ensure an app’s 
description matches the app’s flow policy. Other work has used crowd-sourcing [1], 
natural language processing [66], or clustering [33] to verify that an app’s description 
matches an app’s functionality. The functionality is modeled by private information 
accessed, permissions requested, or APIs used. These techniques could be modified to 
compare a flow policy to an app’s description, thereby reducing the auditors effort. 

4.6.4 Reflection 
The most common approach for improving precision of a static analysis in the 

presence of reflection is profiling from an observed set of executions, assuming that the 
observed program exercises all possible behaviors. Livshits [54] requires user annotations 
or dynamic information from casts to estimate reflection targets as part of static call 
graph construction. Tatsubori [78] earlier built a system with similar qualities. TamiFlex 
[11] performs unsound dynamic analysis of reflection and dynamic class loading. It 
replaces uses of reflection by standard method calls, and supplies the modified call 
graphs to existing static-analysis tools. In other words, an unsound analysis can be built 
on top of TamiFlex, just as a sound analysis can be built on top our work. An example is 
that Averroes [2] can use TamiFlex when building call graphs, to unsoundly improve 
precision over its conservative defaults. All of these approaches that use dynamic 
information are unsound. By contrast, our approach is sound: it makes conservative 
assumptions about any occurrence of reflection that it cannot handle. 

In some special cases, reflection can be resolved based on assumptions about the 
run-time execution context. For example, Zhang’s GUI error detection tool [91] builds 
reflection-aware call graphs for Android applications, enabling it to find more GUI errors 
than without. However, it only handles a particular scenario — it converts reflective calls 
into explicit constructor invocations based on the contents of configuration files at 
compile time. This approach is sound if the same configuration files will be installed at 
run time as at analysis time. This is the same assumption made by Epicc [64] to handle 
inter-component communication, which our system uses. 

A few static analyses partially handle reflection. Javari [81] introduces a new API 
to invoke reflection that does a single dynamic check of the method signature rather than 
of the object. Programs using that API can be soundly type-checked. Our approach could 
eliminate that special API and the run-time check. Li et al. [52] developed an unsound 
self-inferencing reflection resolution to improve the precision of a pointer analysis for 
Java programs. They additionally analyzed how reflection is used in open-source Java 
applications. In contrast, our approach is sound and our evaluation focuses on the use of 
reflection in Android apps. 
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4.6.5 Android 
We evaluated our reflection and intent analyses in the context of detecting and 

preventing malicious behavior in mobile apps [14,20,21,30,31,34,35,39,55,89,90,94]. We 
discuss some closely related work. 

SCanDroid [30] applies data flow analysis to check security properties in Android 
apps. It analyzes intra-component and inter-component information flows for 
vulnerabilities. The analysis cannot handle interactions between apps and provides 
limited support to handle intent extras, making no distinction between the flows of 
permissions that result from the entries of an intent. Several other techniques came after it 
[7,14,20,31,34,35,55,94], improving precision and recall of reported warnings. However, 
to the best of our knowledge, no later technique has focused on handling the important 
aspect of data encapsulation in intents. Our technique is complementary to push-button 
static analysis techniques such as SCanDroid: our analysis requires a small number of 
annotations from the developer but requires less examination of false positives and 
provides stronger guarantees. It preserves soundness, achieves good precision, and 
remains easy to use. 

FlowDroid [7] is a technique that performs taint analysis on Android apps with 
the goal of finding security vulnerabilities. FlowDroid does not support Android’s 
implicit intents nor reflection. In experiments, the tool achieved 83% precision and 93% 
recall for apps containing different types of vulnerabilities. 

Our implementation currently relies on Epicc [64] to approximate the set of 
component pairs that actually communicate. See Section 3.5.1 for a discussion. 

Our implementation has been publicly available since December 12, 2013. In 
forthcoming work, IccTA [50] adopts a similar approach that performs static taint 
analysis in the presence of intercomponent communication. IccTA’s reflection resolution 
is much more limited than ours: it only processes string constants. Although IccTA is 
applied to taint analysis, IccTA is neither sound nor complete; by contrast to our work, it 
provides no security guarantees to its user and is not applicable in the context of high-
assurance app stores [23]. Even if the analysis flaws were addressed, IccTA would 
remain vulnerable because its taint model uses an insufficient set of sensitive sources and 
sinks. Another difference is the evaluation: we measured the precision and recall of our 
information-flow analysis on real Android apps and achieved 100% precision and recall, 
but IccTA was evaluated on 22 examples hand-crafted by its authors, where it achieved 
96% precision and recall. 

4.6.6 Other 
Xiao et al. [88] proposed a semi-automatic approach to analyze TouchDevelop 

mobile app scripts for privacy. Their workflow is similar to ours: users annotate APIs and 
code, and the analyzer uses a dataflow analysis to check conformance of inferred flows 
against a specification of the app. However, their static analysis does not handle implicit 
control flows. 

Google’s Android NDK [3] allows parts of an app to be implemented using 
native-code languages such as C and C++. Our toolset does no analysis of native code: 
summaries for native methods are trusted. The Checker Framework, on which our 
implementation is built, treats unannotated methods conservatively. 

Our work has some similarities to call graph construction in object-oriented 
programs [47,80]. Dynamic dispatching can be viewed as an implicit control flow 
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mechanism, much as Java reflection and Android intents can. Most call graph 
construction algorithms do whole-program pointer analysis. Our approach is modular but 
relies on user annotations. A whole-program type inference or pointer analysis could 
eliminate the need for programmers to write annotations. 

4.7 CHECKER FRAMEWORK IMPROVEMENTS 
Over the course of the project we fixed over 210 issues in the Checker 

Framework’s bug tracker. In addition, we added significant new functionality to the 
Checker Framework. The bug fixes and enhancements were important to the SPARTA 
project, and they also aid other users of the Checker Framework. This section highlights a 
few of these improvements. 

The Checker Framework’s verification methodology — pluggable typechecking 
— was so compelling that Oracle supported an extension to the Java language to support 
it. This feature is called type annotations and is also known by its codename JSR 308. 
Type annotations are an official part of the Java 8 language and are supported by every 
Java implementation. The Checker Framework uses Java’s type annotation capability 
when present, though the Checker Framework is also backward-compatible 

with earlier versions of the Java language. 

4.8 DATAFLOW FRAMEWORK 
The dataflow framework enables more accurate analysis of source code. (Despite 

their similar names, the dataflow framework is independent of the (Information) Flow 
Checker of chapter 2.) In Java code, a given operation may be permitted or forbidden 
depending on previous actions; for example, a file should be read only if it has been 
previously opened. 

The primary purpose of the Dataflow Framework is to enable flow-sensitive type 
refinement in the Checker Framework. In other words, a variable can have a different 
type on different lines of code, depending on reassignments, tests, and method calls. As 
an example, a variable x might be possibly null, but after a test if (x = null) or after a 
reassignment x = methodThatReturnsNonNull(), the variable is known to be non-null. 
flow-sensitive type refinement reduce the programmer’s burden of annotating a program. 

The Dataflow Framework’s result is an abstract value for each expression (an 
estimate of the expression’s run-time value) and a store at each program point. A store 
maps variables and other distinguished expressions to abstract values. An expression’s 
abstract value, as computed by the dataflow framework, 

As a pre-pass, the Dataflow Framework transforms an input AST into a control 
flow graph consisting of basic blocks made up of nodes representing single operations. 
To produce its output, the Checker 

Framework performs iterative data flow analysis over the control flow graph. The 
effect of a single node on the dataflow store is represented by a transfer function, which 
takes an input store and a node and produces an output store. Once the analysis reaches a 
fixed point, the result can be accessed by client code. 

In the Checker Framework, the abstract values to be computed are annotated 
types. An individual checker can customize its analysis by extending the abstract value 
class and by overriding the behavior of the transfer function for particular node types. 

The dataflow framework contains distinct components for building a control flow 
graph (CFG) and performing the fixed-point dataflow analysis itself. It contains a semi-
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declarative mechanism for specifying the transfer functions and a fixpoint mechanism for 
terminating the iteration. It handles multiple type hierarchies simultaneously and is able 
to transfer information between the CFG and the dataflow analysis. This framework is 
useful for other analyses beyond type-checking. For instance, Google’s Error Prone tool 
(http://errorprone.info/) discarded its dataflow analysis and now uses our dataflow 
framework instead. As a result, the new version of Error Prone discovered many new 
flaws in Google’s codebase. 

The Dataflow Framework was designed with several goals in mind. First, to 
encourage other uses of the framework, it is written as a separate package that can be 
built and used with no dependence on the Checker Framework. Second, the framework is 
currently intended to support analysis but not transformation, so it provides information 
that can be used by a type checker or an IDE, but it does not support optimization. Third, 
the framework aims to minimize the burden on developers who build on top of it. In 
particular, the hierarchy of analysis classes is designed to reduce the effort required to 
implement a new flow-sensitive type checker in the Checker Framework. The Dataflow 
User’s Guide (http://types.cs.washington.edu/checker-
framework/current/checker-framework-manual. 

html#dataflow) explains how to customize dataflow to add checker-specific 
enhancements. 

4.9 NEW TYPE SYSTEMS 
In addition to the type systems described in chapters 2 and 3, we implemented 

several other new type systems. These are publicly distributed with the Checker 
Framework, and each one is fully described by a chapter of the Checker Framework 
Manual. 

Initialization Checker Code can suffer a NullPointerException when using a non-
null field, if the code uses the field during initialization. That is because every object’s 
fields start out as null. By the time the constructor finishes executing, the non-null fields 
have been set to a different value. The Initialzation Checker determines which fields are 
initilaized. This information is used by the Nullness Checker, which warns whenever an 
uninitialized field may be accessed. 

Lock Checker The Lock Checker prevents certain concurrency errors by 
enforcing a locking discipline. A locking discipline indicates which locks must be held 
when a given operation occurs. A programmer expresses the locking discipline via the 
type qualifier @GuardedBy("lockexpr"). This indicates that the expression’s value may 
be dereferenced only if the given lock is held. Our semantics and analysis [24,25] are 
unique in that they analyze program values, just as the run time system does, rather than 
an unsound approximation such as field names. 
Format String Checker The Format String Checker [86,87] prevents use of incorrect 
format strings in format methods such as System.out.printf and String.format. The 
Format String Checker warns programmers if they write an invalid format string, and it 
warns if the other arguments are not consistent with the format string (in number of 
arguments or in their types). 
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Internationalization Format String Checker The Internationalization Format 
String Checker, or I18n Format String Checker, prevents use of incorrect i18n format 
strings. If the I18n Format String Checker issues no warnings or errors, then 
java.text.MessageFormat.format will raise no error at run time. 

Internationalization Checker The Internationalization Checker, or I18n Checker, 
verifies that code is properly internationalized. Internationalization is the process of 
designing software so that it can be adapted to different languages and locales without 
needing to change the code (only resource files need to be changed). Localization is the 
process of adapting internationalized software to specific languages and locales. 

The checker focuses on one aspect of internationalization: user-visible strings 
should be presented in the user’s own language, such as English, French, or German. This 
is achieved by looking up keys in a localization resource, which maps keys to user-visible 
strings. For instance, one version of a resource might map "CANCEL_STRING" to "Cancel", 
and another version of the same resource might map "CANCEL_STRING" to "Abbrechen". 

The Internationalization Checker verifies these two properties: 

1. Any user-visible text should be obtained from a localization resource. For
example, String literals should not be output to the user.

2. When looking up keys in a localization resource, the key should exist in that
resource. This check catches incorrect or misspelled localization keys.

GUI Effect Checker One of the most prevalent GUI-related bugs is invalid UI update or 
invalid thread access: accessing the UI directly from a background thread. 

Most GUI frameworks (including Android, AWT, Swing, and SWT) create a 
single distinguished thread — the UI event thread — that handles all GUI events and 
updates. To keep the interface responsive, any expensive computation should be 
offloaded to background threads (also called worker threads). If a background thread 
accesses a UI element such as a JPanel (by calling a JPanel method or reading/writing a 
field of JPanel), the GUI framework raises an exception that terminates the program. To 
fix the bug, the background thread should send a request to the UI thread to perform the 
access on its behalf. 

It is difficult for a programmer to remember which methods may be called on 
which thread(s). The GUI Effect Checker [32] solves this problem. The programmer 
annotates each method to indicate whether: 

• It accesses no UI elements (and may run on any thread); such a method is said to
have the “safe effect”.

• It may access UI elements (and must run on the UI thread); such a method is said to
have the “UI effect”.

The GUI Effect Checker verifies these effects and statically enforces that UI 
methods are only called from the correct thread. A method with the safe effect is 
prohibited from calling a method with the UI effect. 

Signedness Checker The Signedness Checker guarantees that signed and unsigned 
values are not mixed together in a computation. In addition, it prohibits meaningless 
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operations, such as division of an unsigned value. The Signedness Checker uses type 
annotations to indicate the signedness that the programmer intends an expression to have. 

Signedness is primarily about how the bits of the representation are interpreted, 
not about the values that it can represent. An unsigned value is always positive, but just 
because a variable’s value is positive does not mean that it should be marked as 
@Unsigned. If variable v will be compared to a signed value, or used in arithmetic 
operations with a signed value, then v should have signed type. 

Constant Value Checker The Constant Value Checker is a constant propagation 
analysis: for each variable, it determines whether that variable’s value can be known at 
compile time. Whenever all the operands of an expression are compile-time constants 
(that is, their types have constant-value type annotations), the Constant Value Checker 
attempts to execute the expression. This is independent of any optimizations performed 
by the compiler and does not affect the code that is generated. 

The Constant Value Checker statically executes operators that do not throw 
exceptions (e.g., +, -, <<, !=), and also calls to methods annotated with 
@StaticallyExecutable. 

Aliasing Checker The Aliasing Checker identifies expressions that definitely have no 
aliases. 

Two expressions are aliased when they have the same non-primitive value; that is, 
they are references to the identical Java object in the heap. Another way of saying this is 
that two expressions, exprA and exprB, are aliases of each other when exprA==exprB at 
the same program point. 

Assigning to a variable or field typically creates an alias. For example, after the 
statement a = b;, the variables a and b are aliased. 

Knowing that an expression is not aliased permits more accurate reasoning about 
how side effects modify the expression’s value. 

4.10 OTHER IMPROVEMENTS 
Compound checkers Sometimes, it is desirable to run multiple checkers in 

tandem; running one checker as a pre-pass can improve the precision of a downstream 
type system. For example, the Nullness Checker uses the Map Key Checker to decide if 
the result of a map.get call can be non-null. To leverage existing checkers in this way, 
we designed a way to run two (or more) checkers. A compound checker is one that uses 
other checkers. A compound checker can access the annotated type computed by a 
subchecker. The Constant Value Checker is often used by other checkers in this manner. 

Eclipse plug-in We created an Eclipse plug-in that improves integration of our type 
systems with the Eclipse IDE. This was in response to requests from people who were 
annotating apps. The plug-in integrates errors into the Eclipse Problem View and allows 
customization of how the type-checker is run and which type-checkers are run. 

Support for Java 8 features All our type systems now correctly check subtyping 
relationships involving lambdas, method references, and default methods of interfaces — 
these are language features new to Java 8. We also made a number of other changes, 
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including adapting to changes in the Java 8 specification: annotation syntax for receivers 
(the "this" parameter), default behavior of the @Target meta-annotation, etc. 

Mutation and polymorphism We discovered that when a type system uses all three of 
type variables, mutation, and polymorphic qualifiers, then it is unsound. This helps to 
explain seemingly-odd design choices by previous languages, and it prevents users from 
creating unsound type systems. 

Qualifier Framework The Checker Framework represented a type qualifier as a Java 
annotation. However, it can be useful to give type qualifiers richer data and behavior. 
Therefore, we designed a variant of the Checker Framework in which a user-defined 
object can act as a type qualifier. We implemented a simple version of the information-
flow checker using the qualifier framework. The implementation supports qualifier 
polymorphism that is sound even when it is used in combination with annotated type 
variables and mutation. It does not support the more advanced features of the 
information-flow checker. 

5 CONCLUSIONS 

We have described a collaborate verification model for high assurance app stores, 
in which app developers provide annotated source code whose information flow 
properties are verified by the app store’s auditors. In this model, the application 
developer and the auditor each do tasks that are easy for them, reducing the overall cost. 

We designed IFT, a flow-sensitive, context-sensitive type system that enables 
collaborative verification of information flow properties in Android applications. Its 
design focuses on usability and practicality, and it supports a rich programming model. 

We evaluated IFT by analyzing 72 new applications (57 of them malicious), 
which were written by 5 different corporate Red Teams who were not under our control. 
IFT detected 96% of the information flow-related malware (Sect. 3.2.9 describes an 
extension to IFT that would increase this to 100%) and 82% of all malware. Other 
experiments show that IFT is easy to use for both programmers and auditors, making a 
collaborative verification model practical for a high-assurance app store. 

We have presented novel analyses for two programming paradigms — Java 
reflection and Android intents — that are useful to programmers but challenging for 
static analysis. Our analyses statically resolve reflection targets and intent payloads. 
Though sound and conservative, they achieve high precision in practice, as confirmed by 
experiments on real-world Android apps. Our implementations are publicly available as 
open source, and they can be integrated with an arbitrary downstream analysis to improve 
its precision. 

Our system is freely available at 
http://types.cs.washington.edu/sparta/, including source code, library
API annotations, user manual, and example annotated applications. 
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