

STATIC ANALYSIS OF MOBILE PROGRAMS

STANFORD UNIVERSITY

FEBRUARY 2017

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2017-032

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2017-032 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

 / S / / S /
MARK K. WILLIAMS WARREN H. DEBANY, JR.
Work Unit Manager Technical Advisor, Information
 Exploitation and Operations Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

FEBRUARY 2017
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

FEB 2012 – JUN 2016
4. TITLE AND SUBTITLE

STATIC ANALYSIS OF MOBILE PROGRAMS

5a. CONTRACT NUMBER

5b. GRANT NUMBER
FA8750-12-2-0020

5c. PROGRAM ELEMENT NUMBER
61101E

6. AUTHOR(S)

Alex Aiken

5d. PROJECT NUMBER
APAC

5e. TASK NUMBER
97

5f. WORK UNIT NUMBER
71

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RIGB
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2017-032
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research deemed
exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and
AFRL/CA policy clarification memorandum dated 16 Jan 09.
13. SUPPLEMENTARY NOTES
14. ABSTRACT

The goal of the STAMP (STatic Analysis of Mobile Programs) project has been to build tools for proving the absence of
malware in Android applications, also known as apps. The performers focus is on guarantees, their techniques have a
large static component, as static proofs are the only known method of reasoning about all possible program executions.
Like most systems written in modern languages, Android applications heavily use pointer data structures, complex path
conditions, and multiple layers of object-oriented abstractions. Stanford's hypothesis has been that static analysis
techniques have reached the point that sound, precise and scalable static analysis for interesting security properties is
entirely feasible.

15. SUBJECT TERMS
Static Analysis, Mobile Programs, Precise and Scalable Static Analysis

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
MARK WILLIAMS

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

14

Stanford University
353 Serra Mall, Gates 411
Stanford, CA 94305-9045

Contents

1 OVERVIEW 1

2 STAMP 1

3 STATIC ANALYSIS 2
3.1 Hybrid Static Analysis . 2
3.2 Detecting Performance Bugs . 2
3.3 Understanding Bottom-Up Analysis . 3
3.4 Bottom-up Context-Sensitive Pointer Analysis . 3
3.5 Exploring Interprocedureal Control-Flow Properties 3
3.6 Understanding Relationships Among Static Analyses 3

4 DYNAMIC ANALYSIS 4
4.1 Automatic Concolic Testing of Apps . 4
4.2 Test Generation for Android . 4

5 COMBINED STATIC AND DYNAMIC ANALYSIS 4
5.1 Using Data to Drive Equivalence Checking . 5
5.2 Interactive Verification of Information Flow . 5

6 SPECIFICATION AND INVARIANT INFERENCE 5
6.1 Inferring Loop Invariants . 5
6.2 Inferring Library Specifications . 6
6.3 Inferring Information Flow Specifications via CFL Reachability 6
6.4 Inferring Library Information Flow Specifications Using Dynamic Analysis 6

7 OTHER 6
7.1 Semantics-Based Malware Detection . 6
7.2 Bias-Variance Trade-Offs in Program Analysis 7
7.3 Abstraction Refinement for Program Analyses . 7
7.4 User-Guided Program Analysis . 7

8 ACRONYMS/GLOSSARY 8

i

1 OVERVIEW
The goal of the STAMP (STatic Analysis of Mobile Programs) project has been to build tools for
proving the absence of malware in Android applications, also known as apps. Because our focus
is on guarantees, our techniques have a large static component, as static proofs are the only known
method of reasoning about all possible program executions. Like most systems written in mod-
ern languages, Android applications heavily use pointer data structures, complex path conditions,
and multiple layers of object-oriented abstractions. Our hypothesis has been that static analysis
techniques have reached the point that sound, precise and scalable static analysis for interesting
security properties is entirely feasible.

There were two problems with this plan, both of which were highlighted in the original proposal
and recognized as issues that would need to be addressed in the research. The first is that while
static analysis has advanced tremendously in its ability to extract all information available from
the program text, there is still the problem of the information that is simply not in the program.
In particular, whether or not a particular program behavior constitutes malware often depends
on context that is unavailable to the static analysis tool—sending personal information from an
application to a website is legitimate if it is part of the advertised functionality (e.g., a service
that backs-up a phone’s configuration information) but is likely malware if it is done without the
user’s knowledge and at least implicit consent. The vast majority of research in static analysis is
on methods for checking well-known, and fixed, specifications such as memory safety. Thus, a
challenging aspect of the problem of detecting malware in Android applications is the approach
used to specify what a particular app is allowed, and not allowed, to do.

The second issue was that a fully static analysis was never a realistic possibility, because Java,
the programming langauge for Android apps, has several commonly used dynamic features that
are simply not analyzable except at runtime: code reflection, dynamic loading and native methods
are three good examples. Obtaining accurate information about software that contains any of these
features requires at least some analysis at runtime.

As the project evolved, we converged on a standard approach of adding specifications at in-
terfaces that were too difficult to analyze statically. These specifications took the form of aliasing
declarations, saying that two program names may refer to the same memory location, and infor-
mation flow specifications, saying in a polymorphic way which results of a method may be tainted
if some input is tainted. However, writing these specifications required human effort, and more
importantly missing a specification resulted in analysis results that were incomplete, usually incor-
rect, and difficult to understand and debug.

Eventually, we realized that it should be possible to infer the specifications automatically using
dynamic analysis. We would run the program multiple times, gather all of the program state at
the point where we needed a specification of behavior, and then simply use the test data to find
the most likely specification (i.e., a specification consistent with all the test data, but with no extra
features not justified by the test data). This idea came to define the project: use dynamic analyiss
to guess the correct properties a program points of interest, and then use static analysis to verify
them. In the end we pursued this idea successfully for several differnet properties and developed
novel approaches for mining the intial guesses for specifications from traces. In every place where
we tried the idea, the results have been good and much better than alternatives that we tested.

2 STAMP
The main software product of the project is STAMP, a system for analysing Android applications.
While the research purpose of STAMP was to analyze programs for malware, because a goal of

Approved for Public Release; Distribution Unlimited.
1

STAMP was to scale to large programs it had to handle essentially all of the features of Java and
could also be used as a general-purpose analysis engine. The important features of STAMP are:

• An interface for reading and interpreting DEX bytecode, allowing analysis of libraries in
compiled form, both statically and dynamically. The reason analysis of bytecode is necessary
is that many programs, or portions of programs, were only available to us in bytecode form
(e.g., apps downloaded from app stores).

• A scalable pointer analysis. Some form of alias analysis, such as pointer analysis, is required
for any static analysis of imperative languages.

• A framework for adding specifications about the behavior of methods, including methods
that were unavailable as well as methods that were too difficult to analyze accurately with
a pure static analysis. The specification language is fairly general, encompassing both in-
formation flow and aliasing properties. We wrote about a thousand specifications by hand
during the project, and eventually automatically inferred many more.

• A static information-flow analysis framework for constructing global information flows.
There are actually several different information flow analyses that we experimented with.

• An interactive user interface that overlays analysis results on the source program, enabling
users to see the analysis information in context.

In addition to being used for research, the STAMP technology was licensed to a software
security firm.

The specific results from the project are discussed in the following sections, with each section
covering one logically related group of work.

3 STATIC ANALYSIS
Much of the work in the STAMP project involved static analysis, often of very large programs. As
such we ended up exploring a number of questions relevant to the structure and expressiveness of
different approaches, in addition to specific static analyses themselves.

3.1 Hybrid Static Analysis
Interprocedural static analyses are broadly classified into top-down and bottom-up, depending
upon how they compute, instantiate, and reuse procedure summaries. Both kinds of analyses are
challenging to scale: top-down analyses are hindered by ineffective reuse of summaries whereas
bottom-up analyses are hindered by inefficient computation and instantiation of summaries. In
[1],we present a hybrid approach that combines top-down and bottom-up analyses in a manner
that gains their benefits without suffering their drawbacks. The approach is general in that it is
parametrized by the top-down and bottom-up analyses it combines. We show an instantiation on a
type-state analysis and evaluate it on a suite of 12 Java programs of size 60-250 KLOC each. The
hybrid approach outperforms both conventional approaches, finishing on all the programs while
both of the other approaches fail on the larger programs.

3.2 Detecting Performance Bugs
In the course of this project we read the code of hundreds of object-oriented applications and no-
ticed that there were some repeated poor coding practices for performance that are also potential
security vulnerabilities. In [2], we identify and formalizes a prevalent class of asymptotic perfor-
mance bugs called redundant traversal bugs and present a novel static analysis for automatically

Approved for Public Release; Distribution Unlimited.
2

detecting them. We evaluate our technique by implementing it in a tool called CLARITY and
applying it to widely-used software packages such as the Google Core Collections Library, the
Apache Common Collections, and the Apache Ant build tool. Across 1.6M lines of Java code,
CLARITY finds 92 instances of redundant traversal bugs, including 72 that have never been pre-
viously reported, with just 5 false positives. To evaluate the performance impact of these bugs, we
manually repair these programs and find that for an input size of large inputs, all repaired programs
are at least 2.45X faster than their original code.

3.3 Understanding Bottom-Up Analysis
Interprocedural analyses are compositional when they compute overapproximations of procedures
in a bottom-up fashion. These analyses are usually more scalable than top-down analyses (but see
the discussion of hybrid analyses above), which compute a different procedure summary for every
calling context. However, compositional analyses are difficult to develop with enough precision.
In [3], we establish a connection between compositional analyses and modular lattices, which
require certain associativity between the lattice join and meet operations, and use it to develop a
compositional version of the connection analysis by Ghiya and Hendren. Our version is slightly
more conservative than the original top-down analysis in order to meet our modularity requirement.
When applied to real world Java programs our analysis scaled much better than the original top-
down version: The top-down analysis times out in the largest two of five programs, while ours
incurred only 2-5% of precision loss in the remaining programs.

3.4 Bottom-up Context-Sensitive Pointer Analysis
In [4], we describe a new bottom-up, subset-based, and context-sensitive pointer analysis for Java.
The main novelty of our technique is the constraint-based handling of virtual method calls and in-
stantiation of method summaries. Since our approach generates polymorphic method summaries,
it can be context-sensitive without reanalyzing the same method multiple times. We have imple-
mented this algorithm, and compared it with k-CFA and k-obj algorithms on Java applications
from the DaCapo and Ashes benchmarks. Our results show that the new algorithm achieves better
or comparable precision to k-CFA and k-obj analyses at only a fraction of the cost.

3.5 Exploring Interprocedureal Control-Flow Properties
In [5], we describe a general framework–and its implementation in a tool called EXPLORER–for
statically answering a class of interprocedural control flow queries about Java programs. EX-
PLORER allows users to formulate queries about feasible callstack configurations using regu-
lar expressions, and it employs a precise, demand-driven algorithm for answering such queries.
Specifically, EXPLORER constructs an automaton A that is iteratively refined until either the
language accepted by A is empty (meaning that the query has been refuted) or until no further
refinement is possible based on a precise, context-sensitive abstraction of the program. We eval-
uate EXPLORER by applying it to three different program analysis tasks, namely, (1) analysis
of the observer design pattern in Java, (2) identification of a class of performance bugs, and (3)
analysis of inter-component communication in Android applications. Our evaluation shows that
EXPLORER is both efficient and precise.

3.6 Understanding Relationships Among Static Analyses
Many interprocedural static analyses perform a lossy join for reasons of termination or efficiency.
In [6],we study the relationship between two predominant approaches to interprocedural analysis,
the summary-based (or functional) approach and the call-strings (or k-CFA) approach, in the pres-

Approved for Public Release; Distribution Unlimited.
3

ence of a lossy join. Despite the use of radically different ways to distinguish procedure contexts by
these two approaches, we prove that post-processing their results using a form of garbage collec-
tion renders them equivalent. Our result extends the classic result by Sharir and Pnueli that showed
the equivalence between these two approaches in the setting of distributive analysis, wherein the
join is lossless.

We also empirically compare these two approaches by applying them to a pointer analysis that
performs a lossy join. Our experiments on ten Java programs of size 400K-900K bytecodes show
that the summary-based approach outperforms an optimized implementation of the k-CFA ap-
proach: the k-CFA implementation doe not scale beyond k=2, while the summary-based approach
proves up to 46% more pointer analysis client queries than 2-CFA. The summary-based approach
thus enables, via our equivalence result, to measure the precision of k-CFA with unbounded k, for
the class of interprocedural analyses that perform a lossy join.

4 DYNAMIC ANALYSIS
As noted above, exclusively static analyses could not deal with the most dynamic features of the
Android platform. Thus we also invested some research effort in dynamic analyses and in produc-
ing the tests needed to drive those dynamic analyses.

4.1 Automatic Concolic Testing of Apps
In [7], we present an algorithm and a system for generating input events to exercise smartphone
apps. Our approach is based on concolic testing and generates sequences of events automatically
and systematically. It alleviates the path explosion problem by checking a condition on program
executions that identifies subsumption between different event sequences. We also describe our
implementation of the approach for Android and the results of an evaluation that demonstrates its
effectiveness on five Android apps.

4.2 Test Generation for Android
In [8], we present a system Dynodroid for generating relevant inputs to unmodified Android apps.
Dynodroid views an app as an event-driven program that interacts with its environment by means
of a sequence of events through the Android framework. By instrumenting the framework once
and for all, Dynodroid monitors the reaction of an app upon each event in a lightweight manner,
using it to guide the generation of the next event to the app. Dynodroid also allows interleaving
events from machines, which are better at generating a large number of simple inputs, with events
from humans, who are better at providing intelligent inputs. We evaluated Dynodroid on 50 open-
source Android apps, and compared it with two prevalent approaches: users manually exercising
apps, and Monkey, a popular fuzzing tool. Dynodroid, humans, and Monkey covered 55%, 60%,
and 53%, respectively, of each app’s Java source code on average. Monkey took 20X more events
on average than Dynodroid. Dynodroid also found 9 bugs in 7 of the 50 apps, and 6 bugs in 5 of
the top 1,000 free apps on Google Play.

5 COMBINED STATIC AND DYNAMIC ANALYSIS
As our ultimate goal has been to produce sound static guarantees, in the end it has been necessary
for us to combine the static and dynamic components in a way that enables us to make some
factual claim about the program’s security properties. The most robust approach, and the one we
have pursued in the most depth, has been to use the results of the dynamic analysis as a hypothesis
that the static analysis then attempts to verify.

Approved for Public Release; Distribution Unlimited.
4

5.1 Using Data to Drive Equivalence Checking
In [9], we present a data driven algorithm for equivalence checking of two loops. The algorithm
infers simulation relations using data from test runs. Once a candidate simulation relation has been
obtained, off-the-shelf SMT solvers are used to check whether the simulation relation actually
holds. The algorithm is sound: insufficient data will cause the proof to fail. We demonstrate a
prototype implementation of our algorithm, which is the first sound equivalence checker for loops
written in low-level langauges.

5.2 Interactive Verification of Information Flow
App stores are increasingly the preferred mechanism for distributing software, including mobile
apps (Google Play), desktop apps (Mac App Store and Ubuntu Software Center), computer games
(the Steam Store), and browser extensions (Chrome Web Store). The centralized nature of these
stores has important implications for security. While app stores have unprecedented ability to
audit apps, users now trust hosted apps, making them more vulnerable to malware that evades
detection and finds its way onto the app store. Sound static explicit information flow analysis
has the potential to significantly aid human auditors, but it is handicapped by high false positive
rates. Instead, auditors currently rely on a combination of dynamic analysis (which is unsound)
and lightweight static analysis (which cannot identify information flows) to help detect malicious
behaviors.

In [10] and [11], we propose a process for producing apps certified to be free of malicious
explicit information flows. In practice, imprecision in the reachability analysis is a major source of
false positive information flows that are difficult to understand and discharge. In our approach, the
developer provides tests that specify what code is reachable, allowing the static analysis to restrict
its search to tested code. The app hosted on the store is instrumented to enforce the provided
specification (i.e., executing untested code terminates the app). We use abductive inference to
minimize the necessary instrumentation, and then interact with the developer to ensure that the
instrumentation only cuts unreachable code. We demonstrate the effectiveness of our approach in
verifying a corpus of 77 Android appsour interactive verification process successfully discharges
11 out of the 12 false positives.

6 SPECIFICATION AND INVARIANT INFERENCE
Another significant use of dynamic and static analysis has been to infer specifications and other
invariants that are then added as assumptions to the program (i.e., not verified). For truly difficult
to analyze or missing code, we cannot do better. This approach has the advantage of first being
very likely to use the correct specification (using our techniques) and second making explicit what
assumptions the static infrormation flow analysis is making in reaching its conclusions.

6.1 Inferring Loop Invariants
In [12],we describe a “Guess-and-Check” algorithm for computing algebraic equation invariants
of the form ∧ifi(x1, . . . , xn) = 0, where each fi is a polynomial over the variables x1, . . . , xn of
the program. The guess phase is data driven and derives a candidate invariant from data generated
from concrete executions of the program. This candidate invariant is subsequently validated in a
check phase by an off-the-shelf SMT solver. Iterating between the two phases leads to a sound
algorithm. Moreover, we are able to prove a bound on the number of decision procedure queries
which Guess-and-Check requires to obtain a sound invariant. We show how Guess-and-Check can
be extended to generate arbitrary boolean combinations of linear equalities as invariants, which

Approved for Public Release; Distribution Unlimited.
5

enables us to generate expressive invariants to be consumed by tools that cannot handle non-linear
arithmetic. We have evaluated our technique on a number of benchmark programs from recent
papers on invariant generation. Our results show we are able to efficiently compute algebraic
invariants in all cases, with only a few tests.

6.2 Inferring Library Specifications
In [13], we consider the fact that many safety properties in program analysis, such as many memory
safety and information flow problems, can be formulated as source-sink problems. While there are
many existing techniques for checking source-sink properties, the soundness of these techniques
relies on all relevant source code being available for analysis. As noted above, many programs
make use of libraries whose source code is either not available or not amenable to precise static
analysis. We address this limitation of source-sink verifiers through a technique for inferring ex-
actly those library specifications that are needed for verifying the client program. We have applied
the proposed technique for tracking explicit information flow in Android applications, and we have
shown that our method effectively identifies the needed specifications of the Android SDK.

6.3 Inferring Information Flow Specifications via CFL Reachability
In [14], we present a framework for computing context-free language reachability properties when
parts of the program are missing. Our framework infers candidate specifications for missing pro-
gram pieces that are needed for verifying a property of interest, and presents these specifications
to a human auditor for validation. We have implemented this framework for a taint analysis of An-
droid apps that relies on specifications for Android library methods. In an extensive experimental
study on 179 apps, our tool performs verification with only a small number of queries to a human
auditor.

6.4 Inferring Library Information Flow Specifications Using Dynamic Anal-
ysis

In [15], we present a technique to mine explicit information flow specifications from concrete ex-
ecutions. These specifications can be consumed by a static taint analysis, enabling static analysis
to work even when method definitions are missing or portions of the program are too difficult to
analyze statically (e.g., due to dynamic features such as reflection). We present an implementation
of our technique for the Android platform. When compared to a set of manually written specifica-
tions for 309 methods across 51 classes, our technique is able to recover 96.36% of these manual
specifications and produces many more correct annotations that our manual models missed. We
incorporate the generated specifications into STAMP, and show that they enable STAMP to find
additional true flows. Although our implementation is Android-specific, our approach is applicable
to other application frameworks.

7 OTHER
A few things we worked on in the STAMP project do not fit neatly into any of the previous cate-
gories.

7.1 Semantics-Based Malware Detection
In [16], we present Apposcopy, a new semantics-based approach for identifying a prevalent class
of Android malware that steals private user information. Apposcopy incorporates (i) a highlevel
language for specifying signatures that describe semantic characteristics of malware families and

Approved for Public Release; Distribution Unlimited.
6

(ii) a static analysis for deciding if a given application matches a malware signature. The signature
matching algorithm of Apposcopy uses a combination of static taint analysis and a new form of
program representation called Inter-Component Call Graph to efficiently detect Android applica-
tions that have certain control- and data-flow properties. We have evaluated Apposcopy on a corpus
of real-world Android applications and show that it can effectively and reliably pinpoint malicious
applications that belong to certain malware families. The Apposcopy paper has had a significant
impact; at present it is the single most cited paper from the STAMP project.

7.2 Bias-Variance Trade-Offs in Program Analysis
In [17], we observe that it is often the case that increasing the precision of a program analysis leads
to worse results. It is our thesis that this phenomenon is the result of fundamental limits on the
ability to use precise abstract domains as the basis for inferring strong invariants of programs. We
show that bias-variance tradeoffs, an idea from learning theory, can be used to explain why more
precise abstractions do not necessarily lead to better results and also provides practical techniques
for coping with such limitations. Learning theory captures precision using a combinatorial quantity
called the VC dimension. We compute the VC dimension for different abstractions and report on its
usefulness as a precision metric for program analyses. We evaluate cross validation, a technique
for addressing bias-variance tradeoffs, on an industrial strength program verification tool called
YOGI. The tool produced using cross validation has significantly better running time, finds new
defects, and has fewer time-outs than the current production version. Finally, we make some
recommendations for tackling bias-variance tradeoffs in program analysis.

7.3 Abstraction Refinement for Program Analyses
In [18], a central task for a program analysis concerns how to efficiently find a program abstraction
that keeps only information relevant for proving properties of interest. We present a new approach
for finding such abstractions for program analyses written in Datalog (a standard formalism for ex-
pressing program analyses). Our approach is based on counterexample-guided abstraction refine-
ment: when a Datalog analysis run fails using an abstraction, it seeks to generalize the cause of the
failure to other abstractions, and pick a new abstraction that avoids a similar failure. Our solution
uses a boolean satisfiability formulation that is general, complete, and optimal: it is independent
of the Datalog solver, it generalizes the failure of an abstraction to as many other abstractions as
possible, and it identifies the cheapest refined abstraction to try next. We show the performance of
our approach on a pointer analysis and a typestate analysis, on eight real-world Java benchmark
programs.

7.4 User-Guided Program Analysis
Program analysis tools often produce undesirable output due to various approximations. In [19],
we present an approach and a system Eugene that allows user feedback to guide such approxima-
tions towards producing the desired output. We formulate the problem of user-guided program
analysis in terms of solving a combination of hard rules and soft rules: hard rules capture sound-
ness while soft rules capture degrees of approximations and preferences of users. Our technique
solves the rules using an off-the-shelf solver in a manner that is sound (satisfies all hard rules),
optimal (maximally satisfies soft rules), and scales to real-world analyses and programs. We eval-
uate Eugene on two different analyses with labeled output on a suite of seven Java programs of
size 131-198 KLOC. We also report upon a user study involving nine users who employ Eugene to
guide an information-flow analysis on three Java micro-benchmarks. In our experiments, Eugene
significantly reduces misclassified reports upon providing limited amounts of feedback.

Approved for Public Release; Distribution Unlimited.
7

8 ACRONYMS/GLOSSARY
CFA Control-Flow Analysis
CFL Context-Free Language
SDK Software Developers Kit
SMT Satisfiability Modulo Theories
STAMP STatic Analysis of Mobile Programs

Approved for Public Release; Distribution Unlimited.
8

References
[1] X. Zhang, R. Mangal, M. Naik, and H. Yang. Hybrid top-down and bottom-up interproce-

dural analysis. In Proceddings of the Conference on Programming Language Design and
Implementation, June 2014.

[2] O. Olivo, I. Dillig, and C. Lin. Static detection of asymptotic performance bugs in collec-
tion traversals. In Proceedings of the Conference on Programming Language Design and
Implementation, June 2014.

[3] G. Castelnuovo, M. Naik, N. Rinetzky, M. Sagiv, and H. Yang. Modularity in lattices: A case
study on the correspondence between top-down and bottom-up analysis. In Proceedings of
the International Static Analysis Symposium, September 2015.

[4] Y. Feng, X. Wang, I. Dillig, and T. Dillig. Bottom-up context-sensitive pointer analysis for
java. In Proceedings of the Asian Symposium on Programming Languages and Systems,
November 2015.

[5] Y. Feng, X. Wang, I. Dillig, and C. Lin. Explorer : Query- and demand-driven exploration of
interprocedural control flow properties. In Proceedings of the Conference on Object-Oriented
Systems, Languages and Applications, October 2015.

[6] R. Mangal, M. Nak, and H. Yang. A correspondence between two approaches to interpro-
cedural analysis in the presence of joins. In Proceedings of the European Symposium on
Programming, April 2014.

[7] S. Anand, M. Naik, H. Yang, and M. J. Harrold. Automated concolic testing of smarthphone
apps. In Proceedings of the International Symposium on Foundations of Software Engineer-
ing, August 2012.

[8] A. MacHiry, R. Tahiliani, and M. Naik.

[9] R. Sharma, E. Schkufza, and A. Aiken. Data-driven equivalence checking. In Proceedings
of the Conference on Object Oriented Systems, Programming Languages, and Applications,
October 2013.

[10] O. Bastani, S. Anand, and A. Aiken. An interactive approach to mobile app verification,
booktitle=Proceedings of the Workshop on Mobile Development Lifecycle, month = oct,
year = 2015.

[11] O. Bastani, S. Anand, and A. Aiken. Interactively verifying absence of explicit informa-
tion flows in android apps. In Proceedings of the Conference on Object-Oriented Systems,
Languages and Applications, October 2015.

[12] R. Sharma, S. Gupta, B. Hariharan, A. Aiken, P. Liang, and A. V. Nori. A data driven
approach for algebraic loop invariants. In Proceedings of the European Symposium on Pro-
gramming, March 2013.

[13] H. Zhu, T. Dillig, and I. Dillig. Automated inference of library specifications for source-
sink property verification), booktitle=Proceedings of the Asia Conference on Programming
Languages and Systems, month = dec, year = 2013.

Approved for Public Release; Distribution Unlimited.
9

[14] O. Bastani, S. Anand, and A. Aiken. Specification inference using context-free reachability.
In Proceedings of the Symposium on Principles of Programming Languages, January 2015.

[15] L. Clapp, S. Anand, and A. Aiken.

[16] Y. Feng, S. Anand, I. Dillig, and A. Aiken. Semantics-based detection of android malware
through static analysis. In Proceedings of the International Symposium on Foundations of
Software Engineering, November 2014.

[17] R. Sharma, A. Nori, and A. Aiken. Bias-variance tradeoffs in program analysis. In Proceed-
ings of the Symposium on Principles of Programming Languages, January 2014.

[18] X. Zhang, R. Mangal, M. Naik, and Yang H. On abstraction refinement for program anal-
yses in datalog. In Proceddings of the Conference on Programming Language Design and
Implementation, June 2014.

[19] R. Mangal, X. Zhang, A. Nori, and M. Naik. A user-guided approach to program analysis.
In Proceedings of the Symposium on Foundations of Software Engineering.

Approved for Public Release; Distribution Unlimited.
10

	1 OVERVIEW
	2 STAMP
	3 STATIC ANALYSIS
	3.1 Hybrid Static Analysis
	3.2 Detecting Performance Bugs
	3.3 Understanding Bottom-Up Analysis
	3.4 Bottom-up Context-Sensitive Pointer Analysis
	3.5 Exploring Interprocedureal Control-Flow Properties
	3.6 Understanding Relationships Among Static Analyses

	4 DYNAMIC ANALYSIS
	4.1 Automatic Concolic Testing of Apps
	4.2 Test Generation for Android

	5 COMBINED STATIC AND DYNAMIC ANALYSIS
	5.1 Using Data to Drive Equivalence Checking
	5.2 Interactive Verification of Information Flow

	6 SPECIFICATION AND INVARIANT INFERENCE
	6.1 Inferring Loop Invariants
	6.2 Inferring Library Specifications
	6.3 Inferring Information Flow Specifications via CFL Reachability
	6.4 Inferring Library Information Flow Specifications Using Dynamic Analysis

	7 OTHER
	7.1 Semantics-Based Malware Detection
	7.2 Bias-Variance Trade-Offs in Program Analysis
	7.3 Abstraction Refinement for Program Analyses
	7.4 User-Guided Program Analysis

	8 ACRONYMS/GLOSSARY

