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Abstract—Expanded use of commercial components has increased the complexity of system assurance verification.  Model-

based engineering (MBE) offers a means to design, develop, analyze, and maintain a complex system architecture. 

Architecture Analysis & Design Language (AADL), which has tools for modeling and compliance verification, provides an 

effective capability to model and describe all component units in a sourced product and implement practical measures for 

their management and assurance throughout the acquisition life cycle.  

Supply Chain Context 

The manner in which we develop complex software and systems has changed considerably 

since the dawn of the Internet age [1, 2]. Much of that change has occurred because software 

has become big business.  The most recent estimate of the size of the industry is $407.3 billion 

per annum, with a 4.8% annual growth [3]. As a result of the vast increase in the scope of the 

marketplace, commercial components are ubiquitous in our infrastructure [4]. This is especially 

true in government where the Clinger-Cohen Act has directed federal agencies to maximize 

their use of commercial-off-the-shelf (COTS) products [5].  

COTS applications, especially those that are developed for commercial purposes, are often 

vulnerable to exploitation [5]. This is especially true when the unique risks faced by government 

systems are factored in [5].  For instance, the conventional approach in most organizations is to 

look for a COTS product1 to solve some functional need. That choice is understandable, due to 

the cost advantage and availability that COTS components represent [3].  However, 

implementing these products can represent a serious security challenge since we rarely have 

the option to fully understand what we are buying [6].   

                                                           
1 Many of the same challenges apply to open source 



More importantly COTS products are typically integrated up a sourced supply chain, which 

creates a problem of security assurance and control at every level.  It is a well-documented fact 

that we have lost all visibility into what is going on at the bottom of that generic chain [7]. So 

we are left with “trust” as the only viable option for establishing assurance. But what evidence 

can we use to justify the trust?  Since market forces favor functionality over security and 

reliability, the challenges of addressing this supply chain problem are increasing [6]. 

It would be valuable to have a formal, well-defined, standard and systematic means for 

evaluating the assurance of systems which may contain security vulnerabilities inserted through 

insecure information and communications technology (ICT) supply chains. That formal solution 

is a practical necessity  if we ever want to be assured that our adversaries cannot, “destroy 

power grids, water and sanitary services, induce mass flooding, release toxic/radioactive 

materials, or bankrupt any business by inserting malicious objects into the (ICT) components 

that comprise our infrastructure”[8].  

The Problem: Why ICT Supply Chain Security is so Easy to Compromise 

Because of the potentially critical impact of insecure supply chains on the U.S. infrastructure, 

the  General Accounting Office has placed ICT Supply Chain Risk Management on its annual 

“Key Issues, High Risk” list [9].  A primary contributor to security vulnerabilities is the standard 

approach used for integration [5].   We no longer build single purpose systems from the ground 

up using a conventional design-build-test structure of creating well-defined components 

assembled into a predicted whole. Instead, we integrate a system from existing and reusable 

components in a hierarchy that extends up from the modular level through an increasingly 

sophisticated larger collection of integrated modules.  

Due to the cost advantage the components that we integrate are obtained through a world-

wide ICT supply chain that favors low cost [4].  In effect our products can be composed of 

software artifacts from India, chips and programmed logic from Korea and small components 

from Vietnam and China [4, 7].  These components were not designed and built to work 

together smoothly and effectively, instead they are cobbled together using standardized 

interfaces for information passing.  These components were not built to only perform the 



selected activities needed for a specific system and may provide a wide range of additional 

functionality that supports unintended consequences. 

The organization implementing this assembled collection of international components needs to 

ensure consistency in performing all aspects of supply chain risk management by providing a 

uniform, disciplined repeatable assessment that establishes an appropriate level of trust.   One 

source of evidence would be a means of confirming that the practices involved in developing 

each level of the final product were consistently executed using a uniform standard 

management process starting from the basic components through to the final assemble within 

a planned and documented environment.  Another source of evidence would be an assessment 

of “what could go wrong in the construction process (i.e., assessing risks), determining which 

risks to address (i.e., setting mitigation priorities), implementing actions to address high-priority 

risks and bringing those risks within tolerance must be well defined and uniform” [10].   

Correct application of these control and assurance activities requires a detailed understanding 

of how the product will be built and the ability to monitor the construction process to assure 

security and correctness throughout. That is easier said than done since the basic component 

elements for a system are likely to be complex code segments that are sourced outside of the 

direct control of the system manufacturer, who is actually an integrator of a range of 

components from many sources.  

Problem Statement: The Weakest Link 

Typically, supply chains are hierarchical, with the primary supplier forming the root of a number 

of levels of parent-child relationships.  From an assurance standpoint, what this requires is that 

every individual product of each individual node within that hierarchy be secure as well as 

correctly integrated with all other components up and down the production ladder. [7].  

In the world of software, the locus of assurance is typically in the manufacturing process rather 

than the product itself. That is because the actual product is both too complex, as well as too 

virtual to be able to see and control. Ensuring a complex, distributed process like a supply chain 

would require a coordinated set of standard, consistently executed activities to enforce the 



requisite level of visibility and control. Yet, because the development process is usually 

occurring in a number of disconnected global locations, typically at the same time, the requisite 

level of understanding needed to assure the security and correctness of the component is hard 

to achieve [10].  

For effective supply chain risk management, system engineering staff need to be able to 

evaluate the likelihood and impact of a potential vulnerability appearing at any stage in the 

product development. This evaluation mechanism is needed in order to identify appropriate 

mitigations.  Best practice suggests that this identification and evaluation should take place 

during the early acquisition stages, because the form of the final product is being defined at 

that point [4, 5].   This challenge for the identification of potential security vulnerabilities 

extends the typical system engineering security considerations beyond the borders of the 

acquirer-supplier relationship. In that respect the correctness and security of the supply chain 

that comprises the development environment also impacts security [11]. To address complex 

supply chain risks, systems engineers need to be able to analyze the potential for the 

components to be exploited or subverted at any level of the construction process, and then 

consider the potential actions that need to be taken in order to detect exploitation and devise 

the necessary mitigations to continue to operate [11].  

Systems engineers would want to have the ability to identify potential vulnerabilities early in 

the system-acquisition process. This would require that systems engineers be able to fully 

dictate the system concepts and critical functions and access paths of the entire product as it is 

being built.  However, the typical approach in use today is to simply test for known common 

vulnerabilities of the system, supply chain, and development environment when all the pieces 

are assembled at integration. These tests are drawn from industry databases [1, 11], or in the 

case of the Federal Government from the Defense Acquisition Guidebook [12]. This is 

insufficient to evaluate and assign trust to the end product.   It is desirable, in some manner, to 

assure each component at the bottom of the supply chain process and then every successive 

integration to the final product. While we may not have the mechanisms to fully address this 

need, we can greatly improve current practice. 



Utilizing Formal Structured Design Approaches to Establish Assurance Control  

The identification and detailed understanding of all of the outsourced units in a supply chain 

can be an impossible task where the product might be composed of 10,000 individual 

components at the 4th or 5th level down in the integration process.  

The logical way to draw up such a schematic is through a formal system modelling process, 

which will uniquely identify each component at all levels in the hierarchy. Such a modeling 

approach, if properly supported by a formal design language and kept under configuration 

management control, could create a very precisely detailed representation of the functional 

and security requirements for all components. And that schematic model would allow for the 

rational imposition of structured assurance activities at all levels in the integration process.   

The acquirer must establish specific properties that the integrators must meet in order to 

satisfy the acquisition contract.  If the system engineers for the acquirer assemble the first level 

decomposition of the system into AADL and incorporate the required properties that each 

component must contribute to the system into the model, the planned composition can be 

formally verified using available tools.  The developer of each component must deliver an AADL 

model that establishes the properties of their component as built along with the actual product.  

In addition to executing acceptance testing of the component, the acquiring engineer can 

import this decomposition into the original model and confirm that the expected properties are 

still met.  The result, from an assurance control standpoint, is the assembly of a complete and 

explicitly detailed set of design schematics that can be used to guide the process of monitoring 

the award and assurance of the outsourced work.  

Safety-critical verification of cyber-physical systems (CPS) has benefited from the use of 

architecture fault modeling capabilities provided by Architecture Analysis & Design Language 

(AADL).  Architecture led hazard analysis using architecture description languages (ADLs) such 

as AADL has become an effective capability in safety fault management.  The cost of 

successfully addressing safety compliance has been greatly reduced through the use of 

extensions to AADL that automate safety analysis and produce safety assessment reports to 

meet recommended practice standards (such as SAE ARP4761) [16].   AADL is a relatively well 



known architectural description language that was first developed as the Avionics Architecture 

Description Language [14]. It was eventually standardized by the Society of Automotive 

Engineers as AADL [14].   The Software Engineering Institute (SEI) at Carnegie Mellon University 

(CMU) has used AADL to effectively address design verification for the qualities of safety, 

reliability, and performance [18, 19].  Other researchers have incorporated selected attack 

scenarios into modeling languages (e.g., OCL [20], OWL-DL and SWRL [21], and SysML [22]).  

Avionics vendors have successfully used formal modeling to ensure safety properties from 

components developed by multiple vendors. 

Acquirers can leverage these successful capabilities to address security as well as safety in 

supply chain risk management.  The AADL modeling process ensures all three of the requisite 

criteria for successful management of a system product under development. These are, 

understanding, through modeling, assurance through formal validation and verification and 

finally accurate control of the integration of components, through reference to well-defined 

baseline expected behaviors. 

Understanding: it is essential to have a detailed description of the structural elements of the 

system architecture in order to enforce assurance. The major problem with ensuring 

trustworthy product security at the component level using standard systems engineering 

approaches is the inability to precisely document the behavior of the specific contents of 

secured products along with the exact process by which they are built. Consequently, it would 

seem impossible to verify that the design requirements and tenets of best practice have been 

satisfied for each unit, especially if the system code has already been written, which is the case 

with commercial products.  However, expected operational properties can be described and 

evaluated across the composition.  The behaviors for each component can be formally 

described using a modeling language that captures the detail evidence.  AADL is supported by 

tools that can capture properties about each component as well as the selected integration 

mechanisms for each component into the composition.  Assumptions can be checked for 

consistency across all components to meet critical system behaviors. 



Assurance: The necessary level of visibility for assurance requires knowing what the code that 

comprises each component is supposed to do and how that will affect the assembled whole.  

The confirmation of correctness of a complex system is normally presented in the form of an 

assurance case [11].  An assurance case is a well-thought-out argument, which is often 

represented notionally. An assurance case proposes and supports whatever claims are made 

about a given set of planned behaviors for a system [11]. An assurance case can be structured 

as a proof of trustworthiness based on evidence assembled through a formal model. 

The supporting evidence for an assurance case may combine different kinds of documentation 

and data to justify its generic claim [11]. So a structured model of the system architecture, 

down to the unit level, is needed to let the engineer confirm the correctness of each 

component in the system [11]. In that respect, the assurance claim starts with the development 

of a general statement about a system goal such as an operational timing requirement. It is 

then decomposed down to a detailed, structured system model, which provides the concrete 

description needed to evaluate the detailed system architecture and its security properties at 

all levels in the development process as well as up and down the supply chain [11].  Claims for 

supply chain assurance can also be decomposed into an assurance case that assigns various 

desired (and necessarily avoided) characteristics to each component. 

Control: In most approaches for systems engineering, modeling and validating of the attributes 

of a system are typically done using existing threat modeling and analysis technologies which 

are separate from the actual components and known characteristics of the system. The focus is 

on the creation of threat models to inform requirements and development decisions instead of 

formally evaluating the system composition to see how well it addresses the needed assurance. 

This provides no mechanisms for verification of delivered results to determine if threat 

concerns have been appropriately addressed.  Moreover, these models are typically not 

maintained or updated throughout the life cycle, making it difficult to predict the impact of 

downstream change on attributes that cut across unit boundaries within the system [13]. AADL 

provides a means to model expected system behaviors that address threat concerns and 

formally verify consistency of these behaviors in modelled components that are outsourced. 



The impact of component decomposition choices, which can include COTS, open source, and 

other outsourced subcontractors, need to become the responsibility of the integrator assigned 

to deliver the component to prove that desired system properties are met.  The model of their 

resulting product must include downstream alterations made during the coding and even 

testing stages that are likely to produce discrepancies between the original design and its 

assurance case [13].  If the lower level components can embody undesired and unanticipated 

emergent behavior that can propagate up the ladder as the system evolves to higher levels of 

integration [11] this can be identified if the product behavior is appropriately modelled.   

Modelled properties must be applied to both component development and their 

interconnections.  

AADL implements a basic language construct that centers on use of a standardized notation. 

The existence of a single common notation makes AADL relatively easy to automate since it 

underwrites a single standard view of all aspects of the system [14]. The notation language 

allows the engineer to specify system-specific characteristics by describing the unique set of 

user properties as well as any behavior involving state machines. It also allows the engineer to 

specify all of the associated error and dissemination concerns along with the specific data 

constraints [15].  

The value of the AADL modeling scheme lies in the ability to isolate the basic components of a 

system to the right level of abstraction. This is called kernelling [4]. Kernelling allows for specific 

understanding and verification of the correctness of all components at a specified level of the 

design. The ability to describe discrete units within security levels in the architecture enables 

the practical work of validation and other forms of black-box testing. It is possible to consider 

each unit as an individual component of the proper functional level. Interactions of components 

both within that level and with objects at a higher level can be understood for the purposes of 

targeted testing of each individual component, or the testing of an integrated set of functions 

at whatever level designated.  

AADL provides tools that capture the assurance case so that it can be verified against the formal 

design to identify inconsistencies.  By keeping both the model and the assurance case current 



throughout the development life cycle and across the supply chain, this consistency checking 

can be used when COTS components are replaced with updated versions or other components, 

when new components are added that change the overall composition, and when segments of 

a system are modernized to meet changing business needs. 

AADL is not a simplistic solution to supply chain risk management.  To take advantage of this 

modeling capability, the system and its expected properties must be clearly established within 

the model prior to outsourcing.  The assurance case must be assembled and verified against the 

system model to ensure the desired properties are consistently applied to the components.  

Security concerns expressed in a threat model must be analyzed and design mitigations 

characterized as expected properties within the model.  Trust boundaries between components 

must be clearly described with properties that formalize allowed behaviors.  Current SEI 

research is exploring the range of security behaviors that can be modelled to establish a level of 

effectiveness and the potential for code generation capabilities to carry formally defined 

behaviors directly into the resulting product. 

Conclusion: Application of AADL to Assurance in the Supply Chain 

The use of AADL to provide a model-based engineering approach (MBE) offers a better way to 

design, develop, analyze, and maintain a system architecture that is supported by a supply 

chain. AADL, provides an effective capability to model and describe all component units in a 

sourced product and implement practical measures for their management and assurance 

throughout the acquisition life cycle [14, 15].   Modeling enhances the engineer’s ability to 

identify and address potential design weaknesses, an important category of security problems 

as noted in the common weakness enumerations [23].   

Through the application of MBE system engineers, architects and product developers can 

reduce risk by performing early and repeated analysis of the system architecture [14] as 

outsourced components are delivered. This level of control and assurance can reduce cost by 

ensuring fewer system integration problems as the product moves up the supply chain.  



A formal model can also simplify and ensure more effective evaluations of the organization-

wide impacts of architectural choices and, by increasing understanding, make for simpler life-

cycle support [14]. MBE can also increase confidence in the security of the implemented 

product because the assumptions that are captured in the modeling can be shown to have been 

validated as the product moves up to implementation in the operational system [14].  

Formal modeling of all system components at all levels of decomposition gives the engineer the 

opportunity to define the detailed security characteristics of a delivered sourced product. Thus 

the MBE approach based on AADL design descriptions should provide the potential for use in 

the overall verification and validation work through confirmation of an assurance case to 

confirm the correctness of all components in a product [14, 15].  AADL modeling can be used to 

evaluate the correctness of components as well as the integration of components provided 

through the supply chain from multiple suppliers [13]. 

AADL has been successfully utilized to model both software and hardware applications in 

industries where the need for safety and reliability is paramount [14, 15].   SEI research is 

working to expand the security analysis capabilities of AADL [14, 15] to incorporate the design 

characteristics and constraints needed in formal modeling to anticipate and avoid two critical 

security design challenges: acceptance of tainted input and allowing inappropriate elevation of 

privileges. AADL offers opportunities for improvement in supply chain risk management. 
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