
© 2015 Carnegie Mellon University

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

Multicore Real-Time

Scheduling
Bjorn Andersson and Dionisio de Niz

2
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Copyright 2015 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No.

FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute,

a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING

INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY

MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER

INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR

MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.

CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH

RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or

electronic form without requesting formal permission. Permission is required for any other use. Requests

for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM-0002404

3
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

C. L. Liu, “Scheduling algorithms for multiprocessors in a hard real-time environment,” JPL Space

Programs Summary, pp. 37-60, 1969:

NASA related Roadmaps

4
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

NASA/TM-2013-217986/REV1, Flight Avionics Hardware Roadmap, Avionics Steering

Committee, January 2014:

page (i):

“The ASC’s specific recommendations for near-term investments are: … Rad Hard Multicore

Processor”

page 34:

“CD07: Advanced COTS-Based Instrument Processor…As a follow on to CD3, this C&DH

subsystem will utilize future generations of COTS devices.”

Steering Committee for NASA Technology Roadmaps; National Research Council of the National

Academies, “NASA Space Technology Roadmaps and Priorities: Restoring NASA's Technological

Edge and Paving the Way for a New Era in Space”:

page S-7 and S-8 in section “TOP TECHNICAL CHALLENGES”:

“C9) Improved Flight Computers: Develop advanced flight-capable devices and system

software for real-time flight computing with low power, radiation-hard and fault-tolerant

hardware that can be applied to autonomous landing, rendezvous and surface hazard

avoidance.

NASA related Roadmaps

5
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

6
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Flight control

Fly to the right position

Avoid collisions

with space debris

other satellites

7
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Flight control

Feedback controller

1. Sleep until the

right time

2. Read sensor

3. Compute actuation

command

4. Actuate command

5. Go to 1.

8
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

The delay must

be at most

x milliseconds

Flight control

Feedback controller

1. Sleep until the

right time

2. Read sensor

3. Compute actuation

command

4. Actuate command

5. Go to 1.

9
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Question:

How to verify timing of software

Outline:

1. Challenges in verifying timing of software

2. Our track record

3. Specific challenges in verifying timing of software in

autonomous systems

10
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Challenges in verifying timing of software

11
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Challenge 1: One processor, many threads

Thread 1 Thread 2

12
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Challenge 1: One processor, many threads

Thread 1

timeThread 1 arrives Deadline of Thread 1

Thread 2 arrives Deadline of Thread 2

Thread 2

13
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Challenge 1: One processor, many threads

Thread 1

timeThread 1 arrives Deadline of Thread 1

Thread 2 arrives Deadline of Thread 2

Thread 2

Thread 1 misses its deadline.

14
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Challenge 1: One processor, many threads

Thread 1

timeThread 1 arrives Deadline of Thread 1

Thread 2 arrives Deadline of Thread 2

Thread 2

All deadlines are met

15
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Challenge 1: One processor, many threads

Thread 1

timeThread 1 arrives Deadline of Thread 1

Thread 2 arrives Deadline of Thread 2

Thread 2

Good idea: priority of a thread is a function of its deadline.

Deadline-Monotonic (DM)

16
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Challenge 2: Priority inversion, critical sections

Thread 1 Thread 2 Thread 3

Thread 1 and Thread 3 use
critical section S

Assign priorities so a
thread with short deadline
has high priority (DM)

17
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Challenge 2: Priority inversion, critical sections

Thread 1

timeThread 1 arrives Deadline of Thread 1

Thread 2 arrives Deadline of Thread 2

Thread 2 Thread 3

Thread 3 arrives Deadline of Thread 3

Thread 1 and Thread 3 use
critical section S

Assign priorities so a
thread with short deadline
has high priority (DM)

18
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Challenge 2: Priority inversion, critical sections

Thread 1

timeThread 1 arrives Deadline of Thread 1

Thread 2 arrives Deadline of Thread 2

Thread 2 Thread 3

Thread 3 arrives Deadline of Thread 3

Thread 1 and Thread 3 use
critical section S

Assign priorities so a
thread with short deadline
has high priority (DM)

Thread 3: Lock S

19
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Challenge 2: Priority inversion, critical sections

Thread 1

timeThread 1 arrives Deadline of Thread 1

Thread 2 arrives Deadline of Thread 2

Thread 2 Thread 3

Thread 3 arrives Deadline of Thread 3

Thread 1 and Thread 3 use
critical section S

Assign priorities so a
thread with short deadline
has high priority (DM)

20
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Challenge 2: Priority inversion, critical sections

Thread 1

timeThread 1 arrives Deadline of Thread 1

Thread 2 arrives Deadline of Thread 2

Thread 2 Thread 3

Thread 3 arrives Deadline of Thread 3

Thread 1 and Thread 3 use
critical section S

Assign priorities so a
thread with short deadline
has high priority (DM)

21
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Challenge 2: Priority inversion, critical sections

Thread 1

timeThread 1 arrives Deadline of Thread 1

Thread 2 arrives Deadline of Thread 2

Thread 2 Thread 3

Thread 3 arrives Deadline of Thread 3

Thread 1 and Thread 3 use
critical section S

Assign priorities so a
thread with short deadline
has high priority (DM)

Thread 1: Try to Lock S, failed, Thread 1 is blocked

22
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Challenge 2: Priority inversion, critical sections

Thread 1

timeThread 1 arrives Deadline of Thread 1

Thread 2 arrives Deadline of Thread 2

Thread 2 Thread 3

Thread 3 arrives Deadline of Thread 3

Thread 1 and Thread 3 use
critical section S

Assign priorities so a
thread with short deadline
has high priority (DM)

Thread 2 executes

23
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Challenge 2: Priority inversion, critical sections

Thread 1

timeThread 1 arrives Deadline of Thread 1

Thread 2 arrives Deadline of Thread 2

Thread 2 Thread 3

Thread 3 arrives Deadline of Thread 3

Thread 1 and Thread 3 use
critical section S

Assign priorities so a
thread with short deadline
has high priority (DM)

Thread 2 has finished; Thread 3 executes

24
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Challenge 2: Priority inversion, critical sections

Thread 1

timeThread 1 arrives Deadline of Thread 1

Thread 2 arrives Deadline of Thread 2

Thread 2 Thread 3

Thread 3 arrives Deadline of Thread 3

Thread 1 and Thread 3 use
critical section S

Assign priorities so a
thread with short deadline
has high priority (DM)

Thread 3 has finished;

Thread 1 executes

25
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Challenge 2: Priority inversion, critical sections

Thread 1

timeThread 1 arrives Deadline of Thread 1

Thread 2 arrives Deadline of Thread 2

Thread 2 Thread 3

Thread 3 arrives Deadline of Thread 3

Thread 1 and Thread 3 use
critical section S

Assign priorities so a
thread with short deadline
has high priority (DM)

Thread 1 misses its deadline.

Thread 3 has finished;

Thread 1 executes

26
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Challenge 2: Priority inversion, critical sections

Thread 1 Thread 2 Thread 3

Thread 1 and Thread 3 use
critical section S

Assign priorities so a
thread with short deadline
has high priority (DM)

Thread 1 misses its deadline.

time
Thread 1 waits for both lower

priority thread

27
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Challenge 2: Priority inversion, critical sections

Thread 1 Thread 2 Thread 3

Thread 1 and Thread 3 use
critical section S

Assign priorities so a
thread with short deadline
has high priority (DM)

time
Thread 1 waits for a lower

priority thread

with whom it does not

share

a critical section

This situation almost caused a mission failure of an

autonomous system (see NASA Mars Pathfinder 1997).

28
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Challenge 3: Memory interference in multicore
processors

Thread 1 Thread 2

Let us consider a system with a single processor first.

29
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Challenge 3: Memory interference in multicore
processors

Thread 1 Thread 2

All deadlines are met

timeThread 1 arrives Deadline of Thread 1

Thread 2 arrives Deadline of Thread 2

30
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Challenge 3: Memory interference in multicore
processors

Thread 1 Thread 2

Let us migrate this software to a multiprocessor with two processors.

timeThread 1 arrives Deadline of Thread 1

Thread 2 arrives Deadline of Thread 2

31
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Challenge 3: Memory interference in multicore
processors

Thread 1 Thread 2

Processors share memory bus

Processors share last-level cache

Last-level cache

Memory bank 0 Memory bank 1

32
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Challenge 3: Memory interference in multicore
processors

Thread 1 Thread 2

Processors share memory bus

Processors share last-level cache

Last-level cache

Memory bank 0 Memory bank 1

Thread 1 can evict a cache block

that Thread 2 brought into the

last-level cache.

 slowdown of execution

33
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Challenge 3: Memory interference in multicore
processors

Thread 1 Thread 2

Processors share memory bus

Processors share last-level cache

Last-level cache

Memory bank 0 Memory bank 1

Thread 1 and Thread 2 may request

the memory bus simultaneously but

only one can be served at a time

 slowdown of execution

34
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Challenge 3: Memory interference in multicore
processors

Thread 1 Thread 2

Assuming no memory contention: All deadlines are met

timeThread 1 arrives Deadline of Thread 1

Thread 2 arrives Deadline of Thread 2

Processors share memory bus

Processors share last-level cache

35
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Challenge 3: Memory interference in multicore
processors

Thread 1 Thread 2

With contention for resources in the memory system:

Thread 1 misses its deadline

timeThread 1 arrives Deadline of Thread 1

Thread 2 arrives Deadline of Thread 2

36
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Challenge 3: Memory interference in multicore
processors

Thread 1 Thread 2Thread 1 Thread 2

Meets deadlines Misses deadlines

Upgrading a software system to multicore hardware

can cause a deadline miss.

37
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Challenge 4: Execution overruns

Thread 1

timeThread 1 arrives Deadline of Thread 1

Thread 2 arrives Deadline of Thread 2

Thread 2

This is believed to be the worst-case

execution time (WCET) of thread 1

38
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Challenge 4: Execution overruns

Thread 1

timeThread 1 arrives Deadline of Thread 1

Thread 2 arrives Deadline of Thread 2

Thread 2

This is believed to be the worst-case

execution time (WCET) of thread 2

39
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Challenge 4: Execution overruns

Thread 1

timeThread 1 arrives Deadline of Thread 1

Thread 2 arrives Deadline of Thread 2

Thread 2

If a thread executes for longer than its believed worst-case execution

time, then a deadline may be missed.

40
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Challenge 5: Mode change

Thread 1 Thread 2

41
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Challenge 5: Mode change

Thread 1 Thread 2

timeAutonomous system

is requested to adapt

Thread 1 Thread 3

42
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Challenge 5: Mode change

Thread 1 Thread 2

timeAutonomous system

is requested to adapt

Thread 1 Thread 3

We need to prove that Thread 1 does not miss a deadline

during the transition from Mode 1 to Mode 2.

Mode 1 Mode 2

43
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Our track record

44
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Challenge 1,2,3:

𝑹𝒊 = 𝑪𝒊 +

𝒋∈𝒉𝒑 𝒊

𝑹𝒊
𝑻𝒋
∗ 𝑪𝒋

Previous work on single processor

RM, 0.69

𝑹𝒊 = 𝑪𝒊 +
𝟏

𝒎
∗

𝒋∈𝒉𝒑 𝒊

𝑹𝒊
𝑻𝒋
+ 𝟏 ∗ 𝑪𝒋

Our work on multiprocessor

RM-US(0.33), 0.33*m

Priority ceiling protocol and

priority inheritance protocol

First analysis of priority

inheritance protocol for (global)

multiprocessor (RTSS’09)

First method for analyzing contention

on memory bus (RTSS-WIP’09)

First coordinated cache and bank

coloring (ICESS’13)

First method for analyzing contention

on memory bus considering bank

sharing (RTAS’14)

45
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Challenge 4,5:

First implementation of mixed-criticality scheduler in OS-kernel

VX Works, under evaluation by NASA

First locking protocol for mixed-criticality scheduling

(RTAS’11)

First mode change protocol and analysis for EDF

(OPODIS’08)

First mode change protocol with mode-independent tasks on a

multiprocessor

(ECRTS’11)

46
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Timing challenges specific to autonomous systems

47
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Challenge 6: The execution time of a thread is
highly variable.

Challenge 7: A thread may not even terminate.

Challenge 8: The environment is unknown and
hence the number of events that the software
needs to process is not known before run-time.

Challenge 9: The execution of the software
depends on the physical world and the physical
world depends on the software.

48
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Sharing of Multiple Hardware Resources

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

L1/L2

Core N
…

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM

Bank 0

DRAM

Bank 1

DRAM

Bank 2

DRAM

Bank 3

DRAM

Bank B
…

49
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Need of Coordinated Protection

Need to constrain interference through each resource type

• CPU cycles

• Cache

• Memory Banks

• Memory Bus / inter-core network

Ensure no inconsistent configuration

• Configuration for one resource does not invalidate configuration of

another

50
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Cache Partitioning (Coloring)

Cache

Main Mem

Set associativity

16 15 14 13 12Address bits

Cache Index

6

Cache sets

One page

51
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Bank Partitioning (Coloring)

Main Mem

Cache Index

19 18 17 16 15Address bits

XOR

1420

XOR
XOR

13 12

Bank Index

DRAM

Bank 0

DRAM

Bank 1

DRAM

Bank N

…

52
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Cache and Bank Address Bits

Cache Index

19 18 17 16 15Address bits

XOR

1420

XOR
XOR

13 12

Bank Index

E.g. 2 bank bits

2 cache bits

1 shared bit

53
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Row-Bank Address Bit Xoring Improves
Coverage

Bank Colors

row bank row bank row bank row bank

00 00 01 00 10 00 11 00

01 01 = 00 00 01 = 01 11 01 = 10 10 01 = 11

10 10 11 10 00 10 01 10

11 11 10 11 01 11 00 11

00 X X X X

Cache 01 X X X X

Colors 10 X X X X

11 X X X X

If two additional bits are xor with bank bits we can

get all combinations

54
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Coordinated Cache and Bank Partitioning &
Core Allocation

Avoid conflicting color assignments

Take advantage of different conflict behaviors

• Banks can be shared within same core but not across cores

• Cache cannot be shared within or across cores

• Coordinated core and bank color allocation

Take advantage of sensitivity of execution time to cache

• Task with highest sensitivity to cache is assigned more cache

• Diminishing returns taken into account

Two algorithms explored

• Mixed-Integer Linear Programming

• Knapsack

55
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Implementation of Cache+Bank Coloring

Linux / RK : Kernel Memory Manager

Memory reserves with set of bank and cache colors

Pages are classified in cache and bank colors

Added to resource sets that are attached to multiple processes/threads

56
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Experimental Results

80%

90%

100%

110%

120%

130%

140%

150%

160%

170%

180%

P
S

.c
a
n

n
e
a

l

P
S

.s
tr

e
a

m
-

c
lu

s
te

r

P
S

.f
e
rr

e
t

P
S

.f
lu

id
-

a
n

im
a
te

P
S

.f
a
c
e
s
im

P
S

.f
re

q
m

in
e

P
S

.x
2
6

4

S
P

E
C

.l
e
s
lie

3
d

S
P

E
C

.m
c
f

S
P

E
C

.m
ilc

S
P

E
C

.s
p
h
in

x
3

Cache coloring only

Our coordinated approach

57
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Limited Number of Private Partitions

Private partitions significantly reduces usable memory

• Number of bank/cache cells in memory

• Number of cells = (B*H). Size of cell 𝐶 =
𝑀

(𝐵∗𝐻)

• With: M = size of memory, B= # bank colors, H = # cache

colors

• E.g. Intel core i7 2600

• M = 4GB, B = 16, H = 32 𝐶 =
4𝐺𝐵

16∗32
= 8𝑀𝐵

• Private partitions ≡ one cell per cache color & one cell per bank

color

• Number of private partitions 𝑃𝑃 = min 𝐵,𝐻

• E.g. Intel core i7 2600 : 𝑃𝑃 = min 16,32 = 16

• Extreme (using all private partitions) total usable private partition

memory

• 𝑃𝑃𝑀 = 𝑃𝑃 ∗ 𝐶

Intel core i7 2600 :

58
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Allowing Sharing

In Partitioned Scheduling OK to share banks within core

• Number of banks are no longer a restriction: 𝑃𝑃 = 𝐻

• Partitions sharing banks in a core

• # Sets of independent partitions 𝐼 = 𝑁 ; N = number of cores

• Memory utilization (uniform partitions) =
𝑀

𝐼

• Intel Core i7 2600: 𝐼 = 𝑁 = 4

• Memory utilization (uniform partitions) =
4𝐺𝐵

4
= 1𝐺𝐵 = 25%

Need better utilization

Partitions may not be enough for number of tasks

59
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Predictable Sharing

Exploit different sensitivity

Bounding interference

Policing and enforcement

0

200

400

600

800

1000

1200

N
o

rm
.
e
x
e
c
u
ti
o
n
 t
im

e
 (

%
)

black-
scholes

body-
track

canneal ferret fluid-
animate

freq-
mine

ray-
trace

stream-
cluster

swap-
tions

vips x264

12x increase

observed

Isolate

extremes

Share among

low sensitive

60
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Bank Partitioning (Coloring) + Timing Analysis

Explicitly considers the timing characteristics of major

DRAM resources

• Rank/bank/bus timing constraints (JEDEC standard)

• Request re-ordering effect

Bounding memory interference delay for a task

• Combines request-driven and job-driven approaches

Software DRAM bank partitioning awareness

• Analyzes the effect of dedicated and shared DRAM banks

Task’s own memory requests Interfering memory requests

during the job execution

61
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Response-Time Test

• Memory interference delay cannot exceed any results from

the RD and JD approaches

– We take the smaller result from the two approaches

• Extended response-time test

Classical iterative response-time test

Request-Driven (RD)

Approach

Job-Driven (JD)

Approach

62
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Memory-Interference Aware Task Allocation

Observations

• Memory interference due to tasks running in other cores

• Tasks running on same core do not interfere with each other

• Collocate memory-intensive tasks on same core

Graph 𝐺 = 𝑉𝑖 , 𝐸𝑖,𝑗 : 𝑉𝑖 = 𝜏𝑖 , 𝐸𝑖,𝑗 = 𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝜏𝑖 , 𝜏𝑗 ,

𝑤𝑒𝑖𝑔ℎ𝑡 𝐸𝑖,𝑗 =
𝑅𝑖−𝐶𝑖

𝑇𝑖
+
𝑅𝑗−𝐶𝑗

𝑇𝑗

Following BFD:

1. Try to deploy first un-deployed subgraph on bin (core)

2. If cannot

• break graph with minimum cut (minimize edge weights)

• One piece that fits largest gap + rest

3. Add to undeployed subgraphs

4. Goto 1

63
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Minimum-Cut Memory Interference Packing

𝝉𝟏

𝝉𝟔

𝝉𝟐

𝝉𝟑

𝝉𝟓

𝝉𝟒

𝑅2 − 𝐶2
𝑇2
+
𝑅3 − 𝐶3
𝑇3

Core 1 Core 2 Core 3

64
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Minimum-Cut Memory Interference Packing

𝝉𝟏

𝝉𝟔

𝝉𝟐
𝝉𝟑

𝝉𝟓

𝝉𝟒

Core 1 Core 2 Core 3

65
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Minimum-Cut Memory Interference Packing

𝝉𝟏

𝝉𝟔

𝝉𝟐
𝝉𝟑

𝝉𝟓
𝝉𝟒

Core 1 Core 2 Core 3

66
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Minimum-Cut Memory Interference Packing

𝝉𝟏

𝝉𝟔

𝝉𝟐

𝝉𝟑 𝝉𝟓

𝝉𝟒

Core 1 Core 2 Core 3

67
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Minimum-Cut Memory Interference Packing

𝝉𝟏
𝝉𝟔

𝝉𝟐

𝝉𝟑 𝝉𝟓

𝝉𝟒

Core 1 Core 2 Core 3

68
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Minimum-Cut Memory Interference Packing

𝝉𝟏

𝝉𝟔

𝝉𝟐
𝝉𝟑 𝝉𝟓

𝝉𝟒

Core 1 Core 2 Core 3

69
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Minimum-Cut Memory Interference Packing

𝝉𝟏

𝝉𝟔

𝝉𝟐
𝝉𝟑 𝝉𝟓

𝝉𝟒

Core 1 Core 2 Core 3

70
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Memory-Interference Aware Task Allocation
(MIAA)

IA3 M. Paolieri, E. Qui~nones, F. Cazorla, R. Davis, and M. Valero. IA3: An interference aware allocation

algorithm for multicore hard real-time systems. RTAS 2011.

71
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Resource Conflicts for Parallelized Workloads

Parallelization

• Computation time > Deadline

• Must parallelized to meet deadline

• Guarantee always finish before deadline

Resource interference within a task

• Due to parallel subtasks

• Need to share memory to communicate

Predictable sharing

• Compatible with efficient parallelized task schedulers

Deadline

72
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Parallelized Task Scheduling

Developed a staged execution model

Scheduled under Global Earliest-Deadline First

• Most efficient scheduling for staged execution

• If task schedulable under optimal scheduler our scheduler need

at most twice the speed to schedule task

73
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Challenges for Parallelized Task Resource
Management

Intra-task partitions

• Threads with different sensitivities

• Assign different partitions to different parts of same tasks

• Down to different colors for each page of a task

Inter-task shared partitions

• Shared partitions between parts of different tasks

Intra-task memory bus interference

74
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Hardware and Software Profiling

Hardware

• Mapping of memory bits for cache and bank index

• Randomization strategies

Software

• Bound on number of memory accesses

• Temporal and spatial locality of accesses

• Techniques

• Model checking (better term?)

• Variable placement and access

• Control-flow-based temporal and spatial locality

• Profiling

• Performance counters

• Valgrind

75
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Bjorn Andersson

Senior Member of Technical Staff

Telephone: +1 412.268.9243

Email: baandersson@sei.cmu.edu

Contact Information

mailto:baandersson@sei.cmu.edu

