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C. L. Liu, “Scheduling algorithms for multiprocessors in a hard real-time environment,” JPL Space 

Programs Summary, pp. 37-60, 1969:

NASA related Roadmaps
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NASA/TM-2013-217986/REV1, Flight Avionics Hardware Roadmap, Avionics Steering 

Committee, January 2014:

page (i):

“The ASC’s specific recommendations for near-term investments are: … Rad Hard Multicore

Processor”

page 34:

“CD07: Advanced COTS-Based Instrument Processor…As a follow on to CD3, this C&DH

subsystem will utilize future generations of COTS devices.”

Steering Committee for NASA Technology Roadmaps; National Research Council of the National 

Academies, “NASA Space Technology Roadmaps and Priorities: Restoring NASA's Technological 

Edge and Paving the Way for a New Era in Space”:

page S-7 and S-8 in section “TOP TECHNICAL CHALLENGES”:

“C9) Improved Flight Computers: Develop advanced flight-capable devices and system

software for real-time flight computing with low power, radiation-hard and fault-tolerant

hardware that can be applied to autonomous landing, rendezvous and surface hazard

avoidance.

NASA related Roadmaps
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Flight control

Fly to the right position

Avoid collisions

with space debris

other satellites
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Flight control

Feedback controller

1. Sleep until the

right time

2. Read sensor

3. Compute actuation

command

4. Actuate command

5. Go to 1.
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The delay must

be at most

x milliseconds

Flight control

Feedback controller

1. Sleep until the

right time

2. Read sensor

3. Compute actuation

command

4. Actuate command

5. Go to 1.



9
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Question:

How to verify timing of software

Outline:

1. Challenges in verifying timing of software

2. Our track record

3. Specific challenges in verifying timing of software in

autonomous systems
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Challenges in verifying timing of software
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Challenge 1: One processor, many threads

Thread 1 Thread 2
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Challenge 1: One processor, many threads

Thread 1

timeThread 1 arrives Deadline of Thread 1

Thread 2 arrives Deadline of Thread 2

Thread 2
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Challenge 1: One processor, many threads

Thread 1

timeThread 1 arrives Deadline of Thread 1

Thread 2 arrives Deadline of Thread 2

Thread 2

Thread 1 misses its deadline.
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Challenge 1: One processor, many threads

Thread 1

timeThread 1 arrives Deadline of Thread 1

Thread 2 arrives Deadline of Thread 2

Thread 2

All deadlines are met
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Challenge 1: One processor, many threads

Thread 1

timeThread 1 arrives Deadline of Thread 1

Thread 2 arrives Deadline of Thread 2

Thread 2

Good idea: priority of a thread is a function of its deadline.

Deadline-Monotonic (DM)
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Challenge 2: Priority inversion, critical sections

Thread 1 Thread 2 Thread 3

Thread 1 and Thread 3 use
critical section S

Assign priorities so a
thread with short deadline
has high priority (DM)
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Challenge 2: Priority inversion, critical sections

Thread 1

timeThread 1 arrives Deadline of Thread 1

Thread 2 arrives Deadline of Thread 2

Thread 2 Thread 3

Thread 3 arrives Deadline of Thread 3

Thread 1 and Thread 3 use
critical section S

Assign priorities so a
thread with short deadline
has high priority (DM)
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Challenge 2: Priority inversion, critical sections

Thread 1

timeThread 1 arrives Deadline of Thread 1

Thread 2 arrives Deadline of Thread 2

Thread 2 Thread 3

Thread 3 arrives Deadline of Thread 3

Thread 1 and Thread 3 use
critical section S

Assign priorities so a
thread with short deadline
has high priority (DM)

Thread 3: Lock S
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Challenge 2: Priority inversion, critical sections

Thread 1

timeThread 1 arrives Deadline of Thread 1

Thread 2 arrives Deadline of Thread 2

Thread 2 Thread 3

Thread 3 arrives Deadline of Thread 3

Thread 1 and Thread 3 use
critical section S

Assign priorities so a
thread with short deadline
has high priority (DM)
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Challenge 2: Priority inversion, critical sections

Thread 1

timeThread 1 arrives Deadline of Thread 1

Thread 2 arrives Deadline of Thread 2

Thread 2 Thread 3

Thread 3 arrives Deadline of Thread 3

Thread 1 and Thread 3 use
critical section S

Assign priorities so a
thread with short deadline
has high priority (DM)
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Challenge 2: Priority inversion, critical sections

Thread 1

timeThread 1 arrives Deadline of Thread 1

Thread 2 arrives Deadline of Thread 2

Thread 2 Thread 3

Thread 3 arrives Deadline of Thread 3

Thread 1 and Thread 3 use
critical section S

Assign priorities so a
thread with short deadline
has high priority (DM)

Thread 1: Try to Lock S, failed, Thread 1 is blocked
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Challenge 2: Priority inversion, critical sections

Thread 1

timeThread 1 arrives Deadline of Thread 1

Thread 2 arrives Deadline of Thread 2

Thread 2 Thread 3

Thread 3 arrives Deadline of Thread 3

Thread 1 and Thread 3 use
critical section S

Assign priorities so a
thread with short deadline
has high priority (DM)

Thread 2 executes
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Challenge 2: Priority inversion, critical sections

Thread 1

timeThread 1 arrives Deadline of Thread 1

Thread 2 arrives Deadline of Thread 2

Thread 2 Thread 3

Thread 3 arrives Deadline of Thread 3

Thread 1 and Thread 3 use
critical section S

Assign priorities so a
thread with short deadline
has high priority (DM)

Thread 2 has finished; Thread 3 executes
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Challenge 2: Priority inversion, critical sections

Thread 1

timeThread 1 arrives Deadline of Thread 1

Thread 2 arrives Deadline of Thread 2

Thread 2 Thread 3

Thread 3 arrives Deadline of Thread 3

Thread 1 and Thread 3 use
critical section S

Assign priorities so a
thread with short deadline
has high priority (DM)

Thread 3 has finished;

Thread 1 executes
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Challenge 2: Priority inversion, critical sections

Thread 1

timeThread 1 arrives Deadline of Thread 1

Thread 2 arrives Deadline of Thread 2

Thread 2 Thread 3

Thread 3 arrives Deadline of Thread 3

Thread 1 and Thread 3 use
critical section S

Assign priorities so a
thread with short deadline
has high priority (DM)

Thread 1 misses its deadline.

Thread 3 has finished;

Thread 1 executes



26
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Challenge 2: Priority inversion, critical sections

Thread 1 Thread 2 Thread 3

Thread 1 and Thread 3 use
critical section S

Assign priorities so a
thread with short deadline
has high priority (DM)

Thread 1 misses its deadline.

time
Thread 1 waits for both lower

priority thread
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Challenge 2: Priority inversion, critical sections

Thread 1 Thread 2 Thread 3

Thread 1 and Thread 3 use
critical section S

Assign priorities so a
thread with short deadline
has high priority (DM)

time
Thread 1 waits for a lower

priority thread

with whom it does not 

share

a critical section

This situation almost caused a mission failure of an

autonomous system (see NASA Mars Pathfinder 1997).
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Challenge 3: Memory interference in multicore 
processors

Thread 1 Thread 2

Let us consider a system with a single processor first.
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Challenge 3: Memory interference in multicore 
processors

Thread 1 Thread 2

All deadlines are met

timeThread 1 arrives Deadline of Thread 1

Thread 2 arrives Deadline of Thread 2
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Challenge 3: Memory interference in multicore 
processors

Thread 1 Thread 2

Let us migrate this software to a multiprocessor with two processors.

timeThread 1 arrives Deadline of Thread 1

Thread 2 arrives Deadline of Thread 2
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Challenge 3: Memory interference in multicore 
processors

Thread 1 Thread 2

Processors share memory bus

Processors share last-level cache

Last-level cache

Memory bank 0 Memory bank 1
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Challenge 3: Memory interference in multicore 
processors

Thread 1 Thread 2

Processors share memory bus

Processors share last-level cache

Last-level cache

Memory bank 0 Memory bank 1

Thread 1 can evict a cache block

that Thread 2 brought into the

last-level cache.

 slowdown of execution



33
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Challenge 3: Memory interference in multicore 
processors

Thread 1 Thread 2

Processors share memory bus

Processors share last-level cache

Last-level cache

Memory bank 0 Memory bank 1

Thread 1 and Thread 2 may request

the memory bus simultaneously but

only one can be served at a time

 slowdown of execution
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Challenge 3: Memory interference in multicore 
processors

Thread 1 Thread 2

Assuming no memory contention: All deadlines are met

timeThread 1 arrives Deadline of Thread 1

Thread 2 arrives Deadline of Thread 2

Processors share memory bus

Processors share last-level cache
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Challenge 3: Memory interference in multicore 
processors

Thread 1 Thread 2

With contention for resources in the memory system:

Thread 1 misses its deadline

timeThread 1 arrives Deadline of Thread 1

Thread 2 arrives Deadline of Thread 2
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Challenge 3: Memory interference in multicore 
processors

Thread 1 Thread 2Thread 1 Thread 2

Meets deadlines Misses deadlines

Upgrading a software system to multicore hardware

can cause a deadline miss.
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Challenge 4: Execution overruns

Thread 1

timeThread 1 arrives Deadline of Thread 1

Thread 2 arrives Deadline of Thread 2

Thread 2

This is believed to be the worst-case

execution time (WCET) of thread 1



38
Multicore Real-Time Scheduling

May 18, 2015

© 2015 Carnegie Mellon University

Challenge 4: Execution overruns

Thread 1

timeThread 1 arrives Deadline of Thread 1

Thread 2 arrives Deadline of Thread 2

Thread 2

This is believed to be the worst-case

execution time (WCET) of thread 2
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Challenge 4: Execution overruns

Thread 1

timeThread 1 arrives Deadline of Thread 1

Thread 2 arrives Deadline of Thread 2

Thread 2

If a thread executes for longer than its believed worst-case execution

time, then a deadline may be missed.
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Challenge 5: Mode change

Thread 1 Thread 2
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Challenge 5: Mode change

Thread 1 Thread 2

timeAutonomous system

is requested to adapt

Thread 1 Thread 3
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Challenge 5: Mode change

Thread 1 Thread 2

timeAutonomous system

is requested to adapt

Thread 1 Thread 3

We need to prove that Thread 1 does not miss a deadline

during the transition from Mode 1 to Mode 2.

Mode 1 Mode 2
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Our track record
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Challenge 1,2,3:

𝑹𝒊 = 𝑪𝒊 +  

𝒋∈𝒉𝒑 𝒊

𝑹𝒊
𝑻𝒋
∗ 𝑪𝒋

Previous work on single processor

RM, 0.69

𝑹𝒊 = 𝑪𝒊 +
𝟏

𝒎
∗  

𝒋∈𝒉𝒑 𝒊

𝑹𝒊
𝑻𝒋
+ 𝟏 ∗ 𝑪𝒋

Our work on multiprocessor

RM-US(0.33), 0.33*m

Priority ceiling protocol and 

priority inheritance protocol

First analysis of priority 

inheritance protocol for (global) 

multiprocessor (RTSS’09)

First method for analyzing contention 

on memory bus (RTSS-WIP’09)

First coordinated cache and bank 

coloring (ICESS’13)

First method for analyzing contention 

on memory bus considering bank 

sharing (RTAS’14)
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Challenge 4,5:

First implementation of mixed-criticality scheduler in OS-kernel

VX Works, under evaluation by NASA

First locking protocol for mixed-criticality scheduling

(RTAS’11)

First mode change protocol and analysis for EDF

(OPODIS’08)

First mode change protocol with mode-independent tasks on a 

multiprocessor

(ECRTS’11)
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Timing challenges specific to autonomous systems
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Challenge 6: The execution time of a thread is 
highly variable.

Challenge 7: A thread may not even terminate.

Challenge 8: The environment is unknown and 
hence the number of events that the software 
needs to process is not known before run-time.

Challenge 9: The execution of the software 
depends on the physical world and the physical 
world depends on the software.
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Sharing of Multiple Hardware Resources

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

L1/L2

Core N
…

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM

Bank 0

DRAM

Bank 1

DRAM

Bank 2

DRAM

Bank 3

DRAM

Bank B
…
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Need of Coordinated Protection

Need to constrain interference through each resource type

• CPU cycles

• Cache

• Memory Banks

• Memory Bus / inter-core network 

Ensure no inconsistent configuration

• Configuration for one resource does not invalidate configuration of 

another
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Cache Partitioning (Coloring)

Cache

Main Mem

Set associativity

16 15 14 13 12Address bits

Cache Index

6

Cache sets

One page
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Bank Partitioning (Coloring)

Main Mem

Cache Index

19 18 17 16 15Address bits

XOR

1420

XOR
XOR

13 12

Bank Index

DRAM

Bank 0

DRAM

Bank 1

DRAM

Bank N

… 
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Cache and Bank Address Bits

Cache Index

19 18 17 16 15Address bits

XOR

1420

XOR
XOR

13 12

Bank Index

E.g. 2 bank bits

2 cache bits

1 shared bit
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Row-Bank Address Bit Xoring Improves 
Coverage

Bank Colors

row bank row bank row bank row bank

00 00 01 00 10 00 11 00

01 01 = 00 00 01 = 01 11 01 = 10 10 01 = 11

10 10 11 10 00 10 01 10

11 11 10 11 01 11 00 11

00 X X X X

Cache 01 X X X X

Colors 10 X X X X

11 X X X X

If two additional bits are xor with bank bits we can 

get all combinations
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Coordinated Cache and Bank Partitioning & 
Core Allocation 

Avoid conflicting color assignments 

Take advantage of different conflict behaviors

• Banks can be shared within same core but not across cores

• Cache cannot be shared within or across cores

• Coordinated core and bank color allocation

Take advantage of sensitivity of execution time to cache

• Task with highest sensitivity to cache is assigned more cache

• Diminishing returns taken into account

Two algorithms explored

• Mixed-Integer Linear Programming

• Knapsack
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Implementation of Cache+Bank Coloring

Linux / RK : Kernel Memory Manager

Memory reserves with set of bank and cache colors

Pages are classified in cache and bank colors

Added to resource sets that are attached to multiple processes/threads
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Experimental Results
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Limited Number of Private Partitions

Private partitions significantly reduces usable memory

• Number of bank/cache cells in memory

• Number of cells = (B*H).       Size of cell 𝐶 =
𝑀

(𝐵∗𝐻)

• With:  M = size of memory, B= # bank colors, H = # cache 

colors

• E.g. Intel core i7 2600

• M = 4GB, B = 16, H = 32    𝐶 =
4𝐺𝐵

16∗32
= 8𝑀𝐵

• Private partitions ≡ one cell per cache color & one cell per bank 

color

• Number of private partitions 𝑃𝑃 = min 𝐵,𝐻

• E.g. Intel core i7 2600 : 𝑃𝑃 = min 16,32 = 16

• Extreme (using all private partitions) total usable private partition 

memory 

• 𝑃𝑃𝑀 = 𝑃𝑃 ∗ 𝐶

Intel core i7 2600 : 
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Allowing Sharing

In Partitioned Scheduling OK to share banks within core

• Number of banks are no longer a restriction: 𝑃𝑃 = 𝐻

• Partitions sharing banks in a core

• # Sets of independent partitions 𝐼 = 𝑁 ; N = number of cores

• Memory utilization (uniform partitions) = 
𝑀

𝐼

• Intel Core i7 2600: 𝐼 = 𝑁 = 4

• Memory utilization (uniform partitions) = 
4𝐺𝐵

4
= 1𝐺𝐵 = 25%

Need better utilization

Partitions may not be enough for number of tasks
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Predictable Sharing

Exploit different sensitivity

Bounding interference

Policing and enforcement 
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Bank Partitioning (Coloring) + Timing Analysis

Explicitly considers the timing characteristics of major 

DRAM resources

• Rank/bank/bus timing constraints (JEDEC standard)

• Request re-ordering effect

Bounding memory interference delay for a task

• Combines request-driven and job-driven approaches

Software DRAM bank partitioning awareness

• Analyzes the effect of dedicated and shared DRAM banks

Task’s own memory requests Interfering memory requests 

during the job execution
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Response-Time Test

• Memory interference delay cannot exceed any results from 

the RD and JD approaches

– We take the smaller result from the two approaches 

• Extended response-time test

Classical iterative response-time test

Request-Driven (RD)

Approach

Job-Driven (JD)

Approach
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Memory-Interference Aware Task Allocation

Observations

• Memory interference due to tasks running in other cores

• Tasks running on same core do not interfere with each other

• Collocate memory-intensive tasks on same core

Graph 𝐺 = 𝑉𝑖 , 𝐸𝑖,𝑗 : 𝑉𝑖 = 𝜏𝑖 , 𝐸𝑖,𝑗 = 𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝜏𝑖 , 𝜏𝑗 ,

𝑤𝑒𝑖𝑔ℎ𝑡 𝐸𝑖,𝑗 =
𝑅𝑖−𝐶𝑖

𝑇𝑖
+
𝑅𝑗−𝐶𝑗

𝑇𝑗

Following BFD:

1. Try to deploy first un-deployed subgraph on bin (core) 

2. If cannot 

• break graph with minimum cut (minimize edge weights)

• One piece that fits largest gap + rest

3. Add to undeployed subgraphs 

4. Goto 1
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Minimum-Cut Memory Interference Packing 

𝝉𝟏

𝝉𝟔

𝝉𝟐

𝝉𝟑

𝝉𝟓

𝝉𝟒

𝑅2 − 𝐶2
𝑇2
+
𝑅3 − 𝐶3
𝑇3

Core 1 Core 2 Core 3
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Minimum-Cut Memory Interference Packing 

𝝉𝟏

𝝉𝟔

𝝉𝟐
𝝉𝟑

𝝉𝟓

𝝉𝟒

Core 1 Core 2 Core 3
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Minimum-Cut Memory Interference Packing 

𝝉𝟏

𝝉𝟔

𝝉𝟐
𝝉𝟑

𝝉𝟓
𝝉𝟒

Core 1 Core 2 Core 3
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Minimum-Cut Memory Interference Packing 

𝝉𝟏

𝝉𝟔

𝝉𝟐

𝝉𝟑 𝝉𝟓

𝝉𝟒

Core 1 Core 2 Core 3
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Minimum-Cut Memory Interference Packing 

𝝉𝟏
𝝉𝟔

𝝉𝟐

𝝉𝟑 𝝉𝟓

𝝉𝟒

Core 1 Core 2 Core 3
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Minimum-Cut Memory Interference Packing 

𝝉𝟏

𝝉𝟔

𝝉𝟐
𝝉𝟑 𝝉𝟓

𝝉𝟒

Core 1 Core 2 Core 3
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Minimum-Cut Memory Interference Packing 

𝝉𝟏

𝝉𝟔

𝝉𝟐
𝝉𝟑 𝝉𝟓

𝝉𝟒

Core 1 Core 2 Core 3
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Memory-Interference Aware Task Allocation 
(MIAA)

IA3 M. Paolieri, E. Qui~nones, F. Cazorla, R. Davis, and M. Valero. IA3: An interference aware allocation 

algorithm for multicore hard real-time systems. RTAS 2011.
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Resource Conflicts for Parallelized Workloads

Parallelization

• Computation time > Deadline

• Must parallelized to meet deadline

• Guarantee always finish before deadline

Resource interference within a task

• Due to parallel subtasks

• Need to share memory to communicate

Predictable sharing

• Compatible with efficient parallelized task schedulers

Deadline
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Parallelized Task Scheduling 

Developed a staged execution model

Scheduled under Global Earliest-Deadline First 

• Most efficient scheduling for staged execution

• If task schedulable under optimal scheduler our scheduler need 

at most twice the speed to schedule task
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Challenges for Parallelized Task Resource 
Management

Intra-task partitions

• Threads with different sensitivities

• Assign different partitions to different parts of same tasks

• Down to different colors for each page of a task

Inter-task shared partitions

• Shared partitions between parts of different tasks

Intra-task memory bus interference
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Hardware and Software Profiling

Hardware

• Mapping of memory bits for cache and bank index

• Randomization strategies

Software

• Bound on number of memory accesses

• Temporal and spatial locality of accesses

• Techniques

• Model checking (better term?)

• Variable placement and access

• Control-flow-based temporal and spatial locality

• Profiling

• Performance counters

• Valgrind
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