
NAVAL
POSTGRADUATE

SCHOOL
MONTEREY, CALIFORNIA

THESIS
AUTOMATIC INFERENCE OF CRYPTOGRAPHIC KEY
LENGTH BASED ON ANALYSIS OF PROOF TIGHTNESS

by

Derek L. Swenningsen

June 2016

Thesis Advisor: Mark Gondree
Second Reader: George Dinolt

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302, and
to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE
June 2016

3. REPORT TYPE AND DATES COVERED
Master’s Thesis 07-01-2015 to 06-17-2016

4. TITLE AND SUBTITLE

AUTOMATIC INFERENCE OF CRYPTOGRAPHIC KEY LENGTH BASED ON
ANALYSIS OF PROOF TIGHTNESS

5. FUNDING NUMBERS

6. AUTHOR(S)

Derek L. Swenningsen

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

N/A
10. SPONSORING / MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this document are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government. IRB Protocol Number: N/A.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Currently, reasoning about key lengths within a security scheme involves utilizing generalized recommendations or
conducting lengthy manual analyses of how security parameters relate to the security of the scheme. In this paper, we provide the
tools necessary for automating reasoning about key lengths and effective security within a security scheme. We first formalize the
reasoning about cryptographic proofs within an attack tree structure, then expand attack tree methodology to include cryptographic
reductions. We then provide the algorithms for maintaining and automatically reasoning about these expanded attack trees. We
provide a software tool that utilizes machine-readable proof and attack metadata and the attack tree methodology to provide rapid and
precise answers regarding security parameters and effective security. This eliminates the need to rely on generalized
recommendations and provides timely reanalysis when newfound attacks or proofs surface. We validate our software tool within the
Schnorr public-key signature scheme as a case study.

14. SUBJECT TERMS

keylength analysis, automated reasoning, attack tree, attack tree analysis, cryptographic reasoning
15. NUMBER OF

PAGES 65
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2–89)

Prescribed by ANSI Std. 239–18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release; distribution is unlimited

AUTOMATIC INFERENCE OF CRYPTOGRAPHIC KEY LENGTH BASED ON
ANALYSIS OF PROOF TIGHTNESS

Derek L. Swenningsen
Major, United States Marine Corps

B.S., Embry-Riddle Aeronautical University, 2011

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 2016

Approved by: Mark Gondree
Thesis Advisor

George Dinolt
Second Reader

Peter Denning
Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

Currently, reasoning about key lengths within a security scheme involves utilizing
generalized recommendations or conducting lengthy manual analyses of how security pa-
rameters relate to the security of the scheme. In this paper, we provide the tools necessary
for automating reasoning about key lengths and effective security within a security scheme.
We first formalize the reasoning about cryptographic proofs within an attack tree structure,
then expand attack tree methodology to include cryptographic reductions. We then provide
the algorithms for maintaining and automatically reasoning about these expanded attack
trees. We provide a software tool that utilizes machine-readable proof and attack metadata
and the attack tree methodology to provide rapid and precise answers regarding security
parameters and effective security. This eliminates the need to rely on generalized recom-
mendations and provides timely reanalysis when newfound attacks or proofs surface. We
validate our software tool within the Schnorr public-key signature scheme as a case study.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction 1
1.1 Organization . 2

2 Background 3
2.1 Keylength Analysis . 3
2.2 Methods for Achieving Provable Security. 4
2.3 Automated Proof Generation. 5

3 Cryptographic Attack Tree Analysis Model 7
3.1 Attack Trees . 7
3.2 Attack Trees with Reductions 10
3.3 Case Study: The Schnorr Signature Scheme. 14

4 Concept of Operations and Design 17
4.1 Concept of Operations . 17
4.2 Design Goals . 18
4.3 Software Design . 19

5 Implementation 23
5.1 Notation . 23
5.2 Overview . 24
5.3 First Pass . 27
5.4 Second Pass . 31
5.5 Python Implementation . 32
5.6 Case Study: The Schnorr Signature Scheme. 33

6 Conclusion 43
6.1 Future Work . 43

List of References 45

vii

Initial Distribution List 49

viii

List of Figures

Figure 3.1 A simple attack tree, showing the relationship between goals and
subgoals. 8

Figure 3.2 An attack tree with cost annotations. 10

Figure 3.3 Reductions as relations between variables associated with subgoals. 10

Figure 3.4 Each reduction yields a different relation, and may yield a different
GMC. 11

Figure 3.5 A simple attack tree, showing multiple reductions. 12

Figure 3.6 Symbols and relations for the tree in Figure 3.5. 13

Figure 3.7 The Schnorr signature scheme attack tree. 15

Figure 4.1 UML diagram for the AttackEdge class. 20

Figure 4.2 UML diagram for the AttackNode class. 21

Figure 5.1 Pseudocode for the Subgraph function. 25

Figure 5.2 Pseudocode for the InitTraceback function. 25

Figure 5.3 Pseudocode for the NormalizeTraceback function. 25

Figure 5.4 Pseudocode for PhaseOne. 27

Figure 5.5 Pseudocode for the PopulateKnowns function. 28

Figure 5.6 Pseudocode for the RemoveFree function. 28

Figure 5.7 Pseudocode for the AdvantagingSubstitution function. 29

Figure 5.8 Pseudocode for the ConservativeSubstitution function. 29

Figure 5.9 Pseudocode for the ResolveObjective function. 30

Figure 5.10 Pseudocode for the ResolveMultiEdge function. 31

Figure 5.11 Pseudocode for PhaseTwo. 32

ix

Figure 5.12 Graph for the Schnorr case study, generated by our software tool. 33

Figure 5.13 Attack and objective symbols for the Schnorr case study. 35

Figure 5.14 Case 1 output, showing node data when solving for cost. 36

Figure 5.15 Case 1 output, showing edge data when solving for cost. 37

Figure 5.16 Case 2 output, showing node data when solving for security param-
eters. 38

Figure 5.17 Case 2 output, showing edge data when solving for security param-
eters. 39

Figure 5.18 Parameters for discrete log schemes, for key size 160 and a discrete
log group size 1024. 40

Figure 5.19 Parameters for discrete log schemes, comparable in strength to 128-
bit symmetric encryption. 41

Figure 5.20 Results from our software tool using 128-bit effective security. . . 41

x

List of Acronyms and Abbreviations

BSI Bundesamt fur Sicherheit in der Informationstechnik

EF-ACMA existential forgery under an adaptively chosen-message attack

GMC guaranteed minimum cost

GNFS general number field sieve

GPC guaranteed peak cost

NIST National Institute of Standards and Technology

UML Unified Modeling Language

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

Acknowledgments

There are many people without whom I would not have been able to produce this thesis.
First, I extend the richest gratitude to my advisor, Dr. Mark Gondree, with whom it was a
distinct honor to work. Romans 12:6-7 says, “We have different gifts, according to the grace
given to each of us. If your gift is prophesying, then prophesy in accordance with your
faith; if it is serving, then serve; if it is teaching, then teach.” I firmly believe Dr. Gondree’s
grace-given gift is teaching. Throughout this endeavor, I found myself thanking God for
Mark’s patience when I was troubled, understanding when I was confused, and dedication
to ensuring I grew in my knowledge and progressed toward attaining my goals. I know he
guided me under the principles of Psalm 32:8, which says, “I will instruct you and teach
you in the way you should go; I will counsel you with my loving eye on you.” Dr. Gondree
is a phenomenal counselor and I wish him the best as he sets out to further his career. Mark,
may you find your new home an enriching environment in which your career will flourish.

To my second reader, Dr. George Dinolt, I extend my warmest thanks. Dr. Dinolt’s joy
in his work is infectious, his input pivotal, and his commitment perpetual. Throughout my
research, I found myself going to his office for professional advice and staying too long
exchanging life stories about family, friends, and our shared joy, flying. Sir, I thank you for
your advice in both academia and life.

To my son, Braden, I give my deepest thanks. Braden always understood and never
complained when I needed to put in a few extra hours of work. At only 11, but with the
maturity of a grown man, he grounded me by reminding me to stop, enjoy life, and play a
little. After a few hours with him, I was rejuvenated and ready to forge on. Braden, I could
not be more proud of you than I am. You are already on your way to becoming a better man
than I could ever be.

Finally, to my wife Lisa, my rock, I love you. Over the past 13 years, through all the
workups and Waffle Houses, deployments and natural disasters, late-night flights and last-
minute duties, you have led our family with love, grace, strength, and dignity. I thank you
for being there not only for me, but for our son, too. From but a glance of your smile, I am
lifted and inspired. Without you, and the inspiration you sparked in me, none of this was
possible.

xiii

THIS PAGE INTENTIONALLY LEFT BLANK

xiv

CHAPTER 1:
Introduction

Currently, when an organization reasons about keylength, it is left to choose from an
array of sometimes conflicting recommendations provided by several organizations. These
recommendations are typically generalized and furnish conservative values. Furthermore,
the organizations that maintain them tend to update them with a periodicity of a year or
more regardless of newly published papers or newly found attacks that may affect them.

The alternative to this method involves a cryptographer reasoning about keylength through
an analysis relating security parameters of a particular scheme to its effective security. This
is done with security proofs (typically manual) that relate the parameters and effective
security. This method is less general than the recommendations and can be updated as often
as one can afford; however, it can be arduous and requires experts to complete.

We explore developing a software tool that can automate the reasoning about keylength
for a cryptographic scheme. This software tool applies machine-readable proof and attack
metadata using an attack tree approach to provide timely and accurate answers concerning
security parameters and effective security. Being derived from an attack tree methodology,
this approach naturally inherits extensibility and modularity. This research expands tradi-
tional attack tree analysis to consider symbolic constraints related to proof tightness and
attack cost. This allows experts in one domain (e.g., attacks employing the general number
field sieve) to inform experts from another domain (e.g., the relationship between the sub-
group discrete log problem and some, specific hybrid signature scheme) by supplying new
modules with appropriate metadata. This makes this type of reasoning significantly more
dynamic. Its modular design allows organizations to incorporate new attack metadata and
make prompt, informed reactions to new attacks or security announcements. Furthermore,
precisely and immediately re-generating analyses related to security parameters enables
counter-factual reasoning about these proofs: would improving the tightness bounds of
prior work effectively strengthen the security of a scheme (or does some other factor cre-
ate a bottleneck)? Given some selection parameters, what is the effective security of the
resulting scheme? What parameters should one select to yield a desired, target effective
security?

1

Our research contributes the following to the area of reasoning about the effective security
of a security scheme:

• We formalize a method for reasoning about cryptographic proofs using attack trees;
• We expand attack tree analysis to include cryptographic reductions and provide al-
gorithms for maintaining and automatically reasoning about these enhanced, crypto-
graphic attack trees;

• We provide a proof-of-concept software tool, implemented in Python and leveraging
the SymPy symbolic solver library; and

• We validate our tool using the Schnorr public-key signature scheme as a case study,
comparing the results of our automated analysis with relevant, existing keylength
recommendations.

1.1 Organization
In Chapter 2, we discuss existing methods for determining an appropriate keylength for a
security scheme and review existing work on automated cryptographic proving. In Chap-
ter 3, we formalize reasoning within attack tree structures, expand attack tree
methodology to include cryptographic reductions and introduce our case study, the
Schnorr signature scheme. In Chapter 4, we cover the concept of operations of our
software tool and some characteristics we set to achieve with our design. In Chapter 5,
we discuss our software tool implementation and discuss the algorithms driving the
analysis engine of our software tool. We then examine some of the results of the
software tool and compare these results with existing methods. In Chapter 6, we conclude
and discuss future work.

2

CHAPTER 2:
Background

In this chapter, we review current keylength analysis techniques, the properties of crypto-
graphic proofs required to perform a detailed keylength analysis and related research on
automated proving for cryptographic constructions.

2.1 Keylength Analysis
Reasoning about cryptographic parameters requires an mathematical analysis relating the
schemes’ security parameters to the effective security of the resulting scheme. When a
scheme is argued to have effective security of n bits given some choice of parameters, this
characterizes the cost of attacking the scheme as equivalent in cost to brute-forcing some
notional, symmetric system with an n-bit secret key, i.e., an effort of approximately 2n

operations [1]. For many schemes, there is a discrepancy between the security parameter
and effective security for that scheme, based on the details of the construction and its
proof of security. For example, 3DES uses three keys each of length 56 bits yet it is well-
understood this construction does not yield a block cipher with 168-bits of effective security
(3× 56 bits); instead, 3DES has been shown to have an effective security of 112-bits. More
efficient attacks against any systemmay exist, utilizing vulnerabilities in its implementation,
in the properties of its underlying building-blocks, in its environment or via its users [1].
The scope of our analysis is to those properties and attacks covered by the security proof
associated with the scheme.

Cryptography requires a security proof relating parameters to effective security. Both proof
construction and proof analysis entails domain-expert knowledge and can be a laborious
and nuanced process. New questions may not be able to re-use the results of prior analysis
(i.e., when the prior assumptions were not general or when the context is slightly different).
Instead, new questions may require whole-cloth re-analysis.

When organizations determine policy or select cryptographic parameters, they may find it
too costly to conduct an in-depth proof analysis. Instead, they rely on guidance published by
academic, government and private organizations such as the National Institute of Standards

3

and Technology (NIST), the Bundesamt fur Sicherheit in der Informationstechnik (BSI),
the National Security Agency and the Internet Engineering Task Force. For example, NIST
presents “best practice” parameters codified in look-up tables in publications which undergo
periodic update, every two to four years [2]. During this period, the cost of some attacks
may reduce, e.g., because of the increase in computer performance, decrease in resource
cost or the discovery of new attack methods [1]. While the effects of Moore’s law can be
projected, the effect of new attacks on a system’s effective security may not be apparent
without a whole-cloth re-analysis. These impacts may not be disseminated until guidance is
updated, if it is updated. In general, these published “best practice” parameters are intended
to be relatively conservative; however, as periodic review is a human process, opportunities
to re-think guidance is perhaps not as timely as circumstances may warrant. Beyond the
possibility of being outdated, the limited context of the analysis codified in this guidance
makes it inappropriate to leverage to answer new questions regarding security.

Referring to one of these “best practice” key length publications is certainly more accessible
than a complete re-analysis, but it can be cumbersome as well. Furthermore, these guide-
lines are not always in agreement, creating a new hardship involving deciding upon which
cryptographic guidance is most appropriate. Giry aggregates the keylength guidance from
organizations, providing this as a resource through an interactive website [3]. It allows one
to quickly compare the results of each report against one another to aide organizations in
making a decision about security parameters [3]. While this reduces the workload associ-
ated with reading and interpreting this guidance, by putting each in relatively comparable
terminology, the timeliness of information and resolving discrepancies remain as problems.

2.2 Methods for Achieving Provable Security
To date, it has been common to describe reductionist security proofs in one of two ways,
as asymptotic guarantees or as concrete guarantees. The asymptotic setting was arguably
first employed by Rabin in 1979 [4] and has been in relatively common use since. In a
reductionist security argument, a proof of security involves a reduction between breaking
the security of the system to solving a computationally hard problem [5]. In the asymptotic
setting, this reduction yields statements such as “for a sufficiently large security parameter
λ, no polynomial-time adversary has more than non-negligible probability of success in
breaking the security property for the scheme” [5]. In the concrete setting, introduced

4

by Bellare and Rogaway, the goal is to produce more practice-oriented statements [6].
A concrete proof of security yields statements such as “an attacker, within time t and
employing q queries to a problem-solving oracle O, is able to break the security property
for the scheme under security parameter λ with at most ε probability of success” [7].

Each type of proof has advantages and disadvantages. For example, it appears some schemes
are simpler to prove secure in the asymptotic setting. It is not the goal of our research,
however, to criticize these two paradigms or to determine if one setting is more useful
than the other, generally. The purpose of our software tool is to provide accurate answers
regarding security parameters and effective security; thus, we have chosen to reason in the
concrete security setting. This allows us to precisely characterize the cost of security due
to the tightness of proof reductions and it allows us to interpret more accurate values for
attack cost for given security parameters [8].

2.3 Automated Proof Generation
The academic community is continuously striving to create new cryptographic proof tech-
niques, firmly grounded in mathematical foundations, to provide more easily verifiable
guarantees with stronger results when analyzing cryptographic constructions [9]. Building
on the work of Dolev and Yao [10], Kilian and Rogaway [11], Bellare and Rogaway [12]
and others, the community has sought new methods to verify the correctness of machine-
readable cryptographic proofs and to generate cryptographic proofs, in either a fully auto-
matic or machine-assisted manner.

For some examples, Cortier and Warinschi [9] employ an existing tool called Casrul for
automatically generating sound proofs in the computational model. Barthe et al. intro-
duce EasyCrypt, a tool for machine-assisted security proofs from proof sketches using the
CertiCrypt framework and available proof verifiers [13]. Blanchet introduces ProVerif,
a cryptographic protocol verifier in the formal model [14]. Blanchet later extends this
tool as CryptoVerif, an automatic protocol prover sound in the computational model [15]
demonstrated to prove secrecy for a number of key exchange protocols.

Our software tool does not provide automatic proof generation, rather providing automatic
analysis derived from proofs. The goal of our software tool is to employ concrete security
proofs to determine guidance about security parameters or deriving effective security. Our

5

software tool uses metadata about concrete proofs to reason about security parameters and
effective security. In the future, it may be possible to bridge automatic proof generation
and our software tool. It may be possible to analyze the proofs from automated tools, or
interpret it directly using a modified version of our software tool. This would allow the
chain of automation to be extended from proof generation to including reasoning about
effective security and recommending parameters.

6

CHAPTER 3:
Cryptographic Attack Tree Analysis Model

The target outcome of this research is a proof-of-concept software tool able to reason about
effective security, automatically and dynamically, given different parameter options. It uses
machine-readable proof and attack metadata to provide accurate answers regarding security
parameters and effective security within a security scheme. Here, we propose a method
to analyze this metadata based on attack trees. Since our methodology is based on attack
trees, our software tool inherits many benefits traditionally associated with attack trees, e.g.,
extensibility and modularity.

We discuss the model and concepts traditionally associated with attack trees in Section 3.1.
Our methodology expands typical attack tree analysis, however, to consider symbolic con-
straints related to proof tightness and attack costs. Inclusion of those constraints related
to proof metadata, however, requires attack cost calculations associated with traditional
attack trees to become more complicated, especially when multiple reductions may exist
between attack objectives, which we discuss in Section 3.2. We present a case study for this
methodology in Section 3.3, employing Schnorr’s digital signature scheme.

3.1 Attack Trees
To better understand the weaknesses within a system, one can examine the system based on
known methods of attacking it. An attack tree is a method of representing attacks against
the system in a tree structure, allowing analysis of attack dependencies and costs. This
method has been popularly discussed by Schneier and is considered mature [16]. Several
projects exist allowing security researchers to employ attack trees for formalized red-team
brainstorming and prioritizing systemweaknesses, including ADTool [17], AttackTree [18],
and SeaMonster [19].

In a typical attack tree, a goal G is related to a set of subgoals, s1, . . . , s j , each represented
as nodes in a directed graph (see Figure 3.1). To achieve goal G, an attacker must satisfy
its subgoal dependencies. When two subgoals must both be satisfied to achieve the goal,
its edges are labeled with a boolean “and” expression to express this dependency. Unless

7

otherwise noted, edges represent subgoals in an “or” relationship, where satisfying any
subgoal achieves the goal. We denote an edge connecting goals G and dependency subgoal
si as G → si.

G

s1 . . .s2 s3 si si+1

G ! s1

Figure 3.1: A simple attack tree, showing the relationship between goals and
subgoals.

Figure 3.1 is a representation of a small attack tree. In a larger tree, each subgoal si may
have subgoals itself, modeled as the children of node si, and so on. When the attack tree is
complete, the objective G can be achieved by finding a set of paths from the leaves to the
root, while satisfying the boolean restrictions attached to the edges involved in that path.
In the remainder of our work, we do not utilize any “and” edges in our attack trees and all
subgoals are in an “or” relationship. Thus, for this case, accomplishing G is equivalent to
following a path from any leaf to G.

Consider the following example proposed by Schneier [16]. A thief wishes to access a
3-hour safe (G). The thief can pick the lock (s1), use a blow torch to cut into the safe (s2) or
guess the combination (s3). Achieving any of these subgoals is sufficient to achieve the goal
G, but each have different costs, in terms of money, time, skill, etc. Attaining each subgoal
may, itself, incur some prerequisites (e.g., buying the blowtorch), which can be modeled as
further subgoals.

In order to characterize the relative security of the system, one can annotate the nodes of
the tree to support attack cost-analysis. These annotations may represent the time or money
required to achieve a subgoal. The values assigned to nodes are not limited in any fashion:
one can assign a value indicating probability of attack success, level of attack complexity,
pre-requisite skills or required equipment [16]. These values allow for flexible reasoning

8

about the security of the system. With these annotations, one can use the attack tree to
reason about which attack may be launched with the highest probability of success and the
lowest complexity, or the analysis of which attack is the cheapest [16]. We refer the reader
to Schneier for further explanation of the utility of attack tree methodology for modeling
computer systems [16].

When calculating the cost to execute a successful attack against the system in question,
one must make some assumptions about the adversary potentially performing the attack.
In this work, we assume the adversary is capable of utilizing any attack path and will
choose the path with the minimum cost. Thus, no subgoal is impossible to achieve and we
consider all node annotations to characterize cost, in some sense. We denote the cost to
reach node x as Cost(x). Given edge x → y , the cost to achieve goal x using subgoal y
is Cost(x → y). In many cases, Cost(x → y) = Cost(y). Consider, however, our prior
example: if cost is dollars, y is “renting a blowtorch for an hour,” x is “attacking a 3-hour
safe” and Cost(y) = $100, then it may be the case that Cost(x → y) = $300. To calculate
the minimum cost to the attacker for achieving G, we consider the minimum cost attack
terminating at G:

Cost(G) = min
j

{Cost(G → s j)}. (3.1)

For example, in Figure 3.2 we show that the lowest cost associated with any of the attack
paths from the subgoals of G is Cost(G → s1). As a result, we have propagated that value,
in this case 20, to Cost(G). We can apply this procedure for calculating costs from the
leaves of a completed tree all the way to the root to arrive at the overall cost to break the
system.

9

G

s1 s2 s3

Cost(s1) = 20

Cost(G) = 20

Cost(s2) = 30 Cost(s3) = 25

Cost(G ! s1) = 20 Cost(G ! s2) = 30 Cost(G ! s3) = 25

Figure 3.2: An attack tree with cost annotations.

3.2 Attack Trees with Reductions
We expand traditional attack trees, allowing a node to be annotated with an arbitrary set of
parameters and an edge to be associated with a set of reductions (see Figure 3.3).

rs!g
cost

rg!s
cost

Vars

t 2 Costg ✓ Varg

Varg

p
t

p 2 Params ✓ Vars

Figure 3.3: Reductions as relations between variables associated with sub-
goals.

Let node s be associated with the set of free variables Vars, which can be partitioned
into two types: security parameters (Params) and cost parameters (Costs). For example,
p ∈ Params ⊆ Vars may be a variable characterizing key length and τ ∈ Costs ⊆ Vars

may be a variable related to time complexity. Every variable σ ∈ Vars has an associated
domain Dom(σ) over which this free variable ranges and, given any finite set of values in
this domain, the minimum and maximum are well-defined. Edge g → s may be annotated
with a reduction r . A reduction r is a group of relations among Vars and Varg:

r =
{
r s→g

cost , r
g→s
cost , r

s→g
param, r

g→s
param

}
where rg→s

cost is a relation f : Vars → Costg

10

For example, rg→s
cost is a relation expressing cost, in terms of variables from Costg, to achieve

g by employing subroutine s and instantiating its variables Vars.

Reduction r can be interpreted as a guarantee that an adversary, given a subroutine solving
s, will incur a cost greater than or equal to some guaranteed minimum cost (GMC) to solve
g. We define the GMC indicated by reduction r when subroutine s is instantiated with
variables p as:

GMCg→s
r (p) = rg→s

cost (p) (3.2)

Returning to our prior example, consider an experiment to determine the minimum time to
access a particular safe with a blow torch. The analysts are given some characteristics p

for the blow torch (e.g., it uses acetylene gas, burns at 6000°F). The experiment predicts a
conservative lower-bound for attack time to be at least two hours. The experiment is a type
of reduction, specific to that goal (g), employing a general attack using a blowtorch (s) in
the context of that torch’s parameters (p) yielding two hours as the GMC.

As a result of ongoing efforts to improve or tighten security reductions, there may be several
reductions relating subgoals (see Figure 3.4). Returning to our example, this is analogous to
new experiments yielding improved bounds on the time to open the safe with the blowtorch,
finding it takes at least three hours based on a more careful analysis, rather than at least two
hours. We note that had experiments revealed that the safe could be opened in one hour
using the blowtorch, this would not be a tighter reduction but, in fact, a refutation of the
prior reduction, demonstrating it to have been unsound. In our model, we assume all our
reductions are mathematically correct and sound.

Vars

t 2 Costg ✓ Varg

Varg

p
t

p 2 Params ✓ Vars

r1
s!g
cost

r2
s!g
cost

ri
s!g
cost

Figure 3.4: Each reduction yields a different relation, and may yield a differ-
ent GMC.

11

3.2.1 Propagating Values “Up” the Tree
Let R(g, s) = {r1, . . . , ri} be the set of all reductions relating s to g. Each reduction ri

may yield a different GMC under conditions p ∈ Vars, yielding different relations for cost
(see Figure 3.4). Given multiple reductions yielding different GMCs, we must determine
which GMC to utilize in determining the cost along that particular attack path. Assuming all
reductions are sound, the greatest lower bound (infimum) yields the overall GMC expressing
cost for edge g → s. The cost to achieve goal g via the attack path using subgoal s is therefore
the maximum over all GMCs for reductions relating s to the cost of solving g:

GMC(g → s) = max
i

(GMCg→s
ri) (3.3)

In order to calculate the cost of achieving G when dealing with multiple attack paths to G,
one must first determine the GMCs of each reduction relating each subgoal to the goal (from
Equation 3.2). Then, the cost along each attack path is resolved by taking the maximum
along that path (from Equation 3.3). Finally, we determine the cost to achieve G (from
Equation 3.1).

For example, consider the example tree from Figure 3.5 and its related information from
Figure 3.6.

g

s

r1

r2

u

ru

Figure 3.5: A simple attack tree, showing multiple reductions.

12

• s.t ∈ Costs ⊆ Vars, a variable related to time complexity
• u.t ∈ Costu ⊆ Varu, a variable related to time complexity
• g.t ∈ Costg ⊆ Varg, a variable related to time complexity
• r1 has relation s.t ≤ 210 × g.t3
• r2 has relation s.t ≤ 220 × g.t2
• ru has relation u.t = 2 × g.t

Figure 3.6: Symbols and relations for the tree in Figure 3.5.

If we find that s.t = 280, r1 yields g.t ≥ 220 and r2 yields g.t ≥ 230. So, reduction r1 states
that goal g is secure against an adversary running in time < 220 while reduction r2 states that
goal g is secure against an adversary running in time ≤ 230. We choose the value yielded
by reduction r2 (applying Equation 3.2) because it makes the stronger security claim. We
then can say that the cost to achieve goal g via the attack path using subgoal s is 230. If
we find u.t = 280, ru yields g.t = 279. So, we apply Equation 3.1 to determine the cost to
achieve goal g = 230.

3.2.2 Propagating Values “Down” the Tree
Thus far, we have discussed and given examples of propagating values “up” the attack tree,
from subgoals to goals. We now discuss propagating values “down” the attack tree from
goals to subgoals. There are differences that surface when propagating values “down” the
tree. These differences are mainly in how security parameters and costs are reduced between
two nodes and how we choose which values will get propagated into a node from its edges.

When traversing down the tree, instead of employing the guaranteed minimum cost, we
employ the guaranteed peak cost (GPC). The GPC characterizes the smallest security
parameters guaranteeing some lower-bound cost on attacker effort. Given t ∈ Costg, we
define GPC as:

GPCg→s
r (t) = rg→s

param(t) = p ∈ Params (3.4)

When dealing with multiple reductions, each will produce a lower-bound on the time for
attacker effort. Assuming all reductions are sound, the least upper bound (supremum) yields
the smallest guaranteed attack cost for g given the ability to solve s. The cost to parameters
to employ g via the attack path using subgoal s is therefore the minimum over all GPCs for

13

reductions relating g to the cost of solving s:

GPC(g → s) = min
i

(GPCg→s
ri) (3.5)

Again, consider the example tree in Figure 3.5 and related information from Figure 3.6. If
we are given g.t = 280, r1 yields s.t ≤ 2250 and r2 yields s.t ≤ 2180. So, reduction r1 states
that, given an adversary breaking g in time 280 then there exists an adversary breaking s in
time ≤ 2250, while reduction r2 states that, under the same condition, there is an adversary
breaking s in time ≤ 2180. We choose the value yielded by reduction r2 because is portrays
the tighter bound and represents the stronger adversarial ability. We can then resolve these
two reductions and claim the cost to achieve subgoal s = 2180, when given an adversary
against g running in time 280. The reduction ru yields u.t = 281. Since there is only one
reduction between goal g and subgoal u, we can say the cost to achieve subgoal u = 281.
Thus, to achieve an effective security of 280 for g, we must select parameters forcing s to
have effective security of at least 2180 and forcing u to have effective security 281.

3.3 Case Study: The Schnorr Signature Scheme
To express these ideas in the context of a non-trivial case study, we consider the Schnorr
public-key signature scheme, with known relevant attacks and reductions. We selected this
target scheme because it has the ability to demonstrate a variety of the features previously
discussed for our methodology. In particular, the Schnorr signature scheme presents us the
opportunity to reason about multiple reductions, given the original reduction presented by
Schnorr [20] and the tighter reduction by Pointcheval and Stern [7]. It also allows us to
demonstrate the situation where multiple attack subgoals must be analyzed, and subgoals
are re-used within the tree in different contexts.

Employing the notation introduced thus far, we can express pictorially the attack tree for
our Schnorr case study, annotated with variables and reductions (see Figure 3.7). The root,
Schnorr Signature, represents a generic, high-level goal to break some aspect of the signature
scheme. There are several notions of security applicable to the signature schemes—
e.g., security against no-message attacks, security against chosen-message attacks—each
yielding different trees. We have chosen to analyze one notion of security, existential forgery
under an adaptively chosen-message attack (EF-ACMA).

14

Figure 3.7: The Schnorr signature scheme attack tree. Nodes (black boxes)
represent subgoals and edges (green lines) are annotated with reductions
(green dots).

The subgoal of Break EF-ACMA is Break Subgroup Discrete Log Problem. The relationship
between these goals are provided by two proofs: S89, the reduction originally provided
Schnorr [20]; and PS00, the reduction provided by Pointcheval and Stern [7]. This is an
example of the scenario discussed in Section 3.2. In this case, PS00 provides the tighter
bounds, improving a query bound from O(q3) to O(q).

The Break Subgroup Discrete Log Problem has two subgoals: an attack via Pollard’s Rho
and reduction to a related problem, Break Discrete Log Problem. The Break Discrete Log
Problem goal has subgoals, most of which are attacks or generalizations of attacks. One
attack is, again, Pollard’s Rho, demonstrating how a goal and its subgoals may share a
common leaf.

The leaves in the tree each represent an attack, employing a specific algorithm to attack
the properties of a goal. These are annotated with both variables and relations. Very
general attacks like Exhaustive Search can be applied directly to most subgoals, but we
omit those edges for brevity and clarity. The interested reader is referred to the following

15

resources for details on the attack nodes in this case study: Pollard’s Rho algorithm [21],
Shank’s Baby-step Giant-step algorithm [22] and the general number field sieve (GNFS)
algorithm [23].

16

CHAPTER 4:
Concept of Operations and Design

In this chapter we discuss concept of operations of our software tool to include propagating
values in both directions, described briefly in Section 3.2. We discuss target features for
our software tool and a high-level design supporting extensibility and modularity.

4.1 Concept of Operations
In its simplest use, our software tool should be capable of resolving two types of questions:

1. Given some set of security parameters (e.g., n, p and q), what effective security is
provided?

2. For a desired target effective security, what security parameters should be used?

In the former case, the user provides n, p, and q and the tool returns the effective security
λ. In the latter case, the user provides a target effective security λ and the program returns
a set of satisfying parameters n, p and q.

Being able to re-run the above analyses enables interesting counter-factual analyses for
prioritizing new research. This would enable us to pose questions, like, would improving
the tightness bounds of this proof effectively strengthen the security of the scheme, or does
some other factor create a bottleneck?

To illustrate the possible operation of the analysis engine consider our case study as an
example (see Section 3.3). The user may desire to calculate the security parameters required
to achieve a target level of effective security for the EF-ACMA property for the Schnorr
signature scheme. The level of effective security can be expressed in terms of a lower-
bound time required to break this property. Thus, the user provides some target value, like
tEF-ACMA = 280, as the time budget within which no adversary can break EF-ACMA. In
response, the user expects the tool to provide recommended values of security parameters,
such as p (the size of the prime-order group) and q (the size of the subgroup) for the scheme.

17

To accomplish this task, the analysis engine propagates the cost values down the tree as
discussed in Section 3.2.2. The desired cost of tEF-ACMA = 280 is passed through the two
relations in the reductions leading to the subgoal Break Subgroup Discrete Log Problem
(see Figure 3.7) to determine their GPCs as in the example provided in Section 3.2.2. The
cost of Break Subgroup Discrete Log Problem is then determined utilizing the equations
given in Chapter 3. In this case we derive tSDL = 2177 This procedure is then repeated
to determine the costs for the subgoals of Break Subgroup Discrete Log Problem. For
simplicity we opt not to step through each calculation down the tree. This process continues
until we have propagated all cost values to each node from EF-ACMA to each of the leaves
shown in Figure 3.7. We recall from Section 3.3 that each of these nodes is a generalized
attack.

It is in these leaf nodes (attacks) where the cost value is directly translated into a security
parameter that requires an attacker to undergo a particular cost. In other words, the leaf node
reduces to no other problem. In our example, we have now populated the value tPR = 2177

into the Pollard’s Rho attack. We can now utilize the approximation tPR =
√

nPR to conclude
nPR = 2354. This can be done for all leaf nodes.

Now that we have values for each security parameter in each leaf node, we can propagate
those values up the tree as described in Section 3.2.1. Again, we opt not to step through
every calculation. The user now has access to the value of every possible security parameter
for every node in the attack tree that would make it impossible for an adversary to break the
EF-ACMA property within the 280 budget given. For instance, the user can now see that
p = 2354.

This example exhibits the need to make two passes through the tree (up and down) in order
to provide values for parameters when given a target effective security. The process is
also necessary when the analysis engine provides the effective security when given a set of
security parameters.

4.2 Design Goals
Our software tool should reason about machine-readable proofs and attack metadata, to
provide accurate conclusions regarding the relationship between security parameters and
effective security. In addition, our software tool should be both modular and extensible.

18

Modularity allows expertise from one domain (e.g., using the general number field sieve to
perform attacks against a cryptosystem) to be combined with that of another domain (e.g.,
the state of attacks against a particular hash function). It should be possible to develop
modules independently, each defining their own symbols, cost parameters and relations. A
new system employing both number-theoretic assumptions and hash functions may, then,
employ these modules to reason about complex schemes. It should be possible to extend
the tool, to incorporate new reductions, new objectives and new attacks. An extensible
design allows organizations to incorporate new information for prompt, informed reactions
to newly published attacks.

4.3 Software Design
We identify two base classes, related directly to our use of attack trees for reasoning about
data: the AttackEdge and AttackNode classes. Figure 4.1 is a detail of the AttackEdge
base class and its subclasses. Figure 4.2 is a detail of the AttackNode base class and its
subclasses.

4.3.1 Attack Edges
The AttackEdge class represents the edge in a directed graph, and has an attribute named
parent and child representing the nodes it connects. Each of these attributes reference
an appropriate AttackNode class instance (see Section 4.3.2). Reduction is a subclass of
AttackEdge, representing an edge annotated with a reduction. The Reduction subclass has
a number of attributes: full_name is intended to be assigned a string that describes the
reduction; expr lists the expressions describing how values are mapped between the goal
and subgoal; symbols_list lists the symbols used in the reduction; conservative_substitutions
lists a set of conservative substitutions for potential free variables in the reduction.

19

Figure 4.1: UML diagram for the AttackEdge class.

The remaining classes in Figure 4.1 are example subclasses of theReduction class containing
metadata specific to our case study. For example,PS00 is the Pointcheval and Stern reduction
between Break EF-ACMA and Break Subgroup Discrete Log Problem. DlPr is the reduction
between Break Discrete Log Problem and Pollard’s Rho.

4.3.2 Attack Nodes
The AttackNode base class has the full_name and symbols_list attributes, and they serve the
same role as in the AttackEdge class. Our attack tree manages two types of nodes: Objective
nodes and Attack nodes. All Attack nodes are leaf nodes, i.e., do not have children. All
Objective nodes represent an objective or subgoal, such as “solving the discrete log problem.”
An Objective node may have one or more children (of any AttackNode type) and one or
more parents (of Objective node type).

20

Figure 4.2: UML diagram for the AttackNode class.

The Attack class has the attribute expr, a list containing one or more expressions relating
cost parameters and security parameters. An example of an expression contained within
the expr list is TPR =

√
n from the Pollard’s Rho node in Figure 3.7. In comparison, the

Objective class has the attribute constraints, a list of zero or more expressions describing
any constraints on the symbols within the objective. For example, in our Schnorr case study,
the Break Subgroup Discrete Log Problem node employs the constraint q < p, expressing
that the order of the subgroup q must be less than the order of the group p.

21

THIS PAGE INTENTIONALLY LEFT BLANK

22

CHAPTER 5:
Implementation

In this chapter we discuss how our software tool and its routines are implemented. In
Sections 5.1–5.4, we introduce notation and describe the routines for our analysis engine. In
Section 5.5, we discuss the software implementation of this analysis engine. In Section 5.6,
we provide sample analyses, compared with existing guidance.

5.1 Notation
The pseudocode expressing the algorithms for building and maintaining our data structures
employs the following notation.

Graph Notation. Each graph G = (N, E) is a directed, acyclic multigraph. We let E(G)
denote the edge multiset and N (G) denote the node set.

Nodes. There are two distinct types of nodes, Objective nodes and Attack nodes (see
Section 4.3.2). We let O(G) denote the set of Objective nodes and A(G) denote the
set of Attack nodes, where N (G) = O(G)

⋃
A(G) and O(G)

⋂
A(G) = ∅

Edges. We letR (G) denote the set of reductions associatedwithG. Every edge is annotated
with a reduction, so |E(G) | = |R (G) |. For e ∈ E(G), we let R (e) ∈ R (G) be the
reduction associated with edge e. Alternative notation for edge e = (x, y) and its
reduction r = R (e) include x → y , x

r
−→ y and r (x, y).

Predecessor and Successor. Given edge x → y ∈ E(G), we say x is an immediate
predecessor (parent) of y , and y is an immediate successor (child) of x. For edge e =

(x, y), we denote x = e.parent and y = e.child. Similarly, we denote x ∈ y.parents
for the set of immediate predecessors and y ∈ x.children for the set of immediate
successors. More generally, we say ni is a predecessor of n j if there exists a series of
edges ni → ni+1, ni+1 → ni+2, . . . , n j−1 → n j connecting ni to n j . By definition, if
ni is a predecessor of n j , then n j is a successor of ni.

Symbols. For x ∈ R (G)
⋃
O(G)

⋃
A(G), x has an attribute x.symbols. This is a list of

symbols associatedwith the node (see Section 4.3.1 and Section 4.3.2). The variant at-
tribute x.symbolscost and x.symbolsparam selects the symbols from x.symbols that are
cost or security parameter symbols, respectively. For different nodes n , m, symbols

23

are unambiguous, i.e., m.symbols
⋂

n.symbols = ∅. For any reduction x
r
−→ y , sym-

bols are consistent with adjacent nodes, i.e., r .symbols ⊆ x.symbols
⋃
y.symbols.

Relations. For x ∈ R (G)
⋃
O(G)

⋃
A(G), x has an attribute x.relations. This is a list

of formulae expressed in terms of constants, relations and symbols in x.symbols.
When x ∈ O(G), x.relations is synonymous with the x.constraints attribute (see Sec-
tion 4.3.2). When x ∈ R (G)

⋃
A(G), x.relations is synonymous with x.expressions

attribute (see Section 4.3.1 and Section 4.3.2).
Values. For x ∈ O(G)

⋃
A(G), x has an attribute x.values. This is a list of values associ-

ated with x.symbols. Initially, this list has no values, i.e., x.values = {(s,⊥) | for s ∈

x.symbols}. When a value for symbol s is derived, then (s, v) ∈ x.values and s is no
longer considered a free symbol.

Expressions. Each expression x has a number of attributes and support functions. The
attribute x.free_symbols yields the set of free symbols in expression x. The function
x.substitute(s, s′) syntactically replaces the symbol s with symbol s′. The function
x.solve(s) solves expression x for the value for free symbol s.

Assignment. In our pseudocode, x ← y is the assignment operator and modifies the
original object x. For lists, we abuse this notation to denote both insertion and
update, depending on context. For example if S ← ∅, then S ← (x, y) updates the
list to be S = {(x, y)}. Subsequent insertions with related tuples, e.g., S ← (x, y′)
and S ← (x′, y′′), update the list to be S = {(x, y′), (x′, y′′)}.

5.2 Overview
Our software tool first builds the Master Graph G of reductions and the objectives defined
in its database. Given a target objective σ0, we prepare the data structure used for analysis,
called the Traceback Graph, using the following steps:

1. Given target objective σ0 ∈ O(G), derive the subgraph of G comprised of σ0 is its
successors to form W , the Working Graph (see Figure 5.1).

2. Using W , initialize T , the Traceback Graph (see Figure 5.2).
3. Normalize T so that it has a tree structure, by duplicating those subtrees with multiple

parents (see Figure 5.3).

24

1: function Subgraph(graph G, target σ0 ∈ O(G))
2: graph W ← (∅, ∅)
3: for all n ∈ N (G) where σ0 ∈ n.parents do
4: add n to N (W)
5: for all e ∈ E(G) where e = (n, n′) do
6: add e to E(W)
7: end for
8: end for
9: return W
10: end function

Figure 5.1: Pseudocode for the Subgraph function.

1: function InitTraceback(graph W)
2: graph T ← W
3: for all x ∈ R (T)

⋃
O(T) do

4: x.values← ∅
5: for all s ∈ x.symbols do
6: x.values← (s,⊥)
7: end for
8: end for
9: return T
10: end function

Figure 5.2: Pseudocode for the InitTraceback function.

1: function NormalizeTraceback(graph T , target σ0 ∈ O(G))
2: for n ∈ N (T) where |n.parents| > 1 and depth(n, σ0) is max over N (T) do
3: d ← |n.parents|
4: remove n from N (T)
5: create d copies of n and its successors to produce subtrees p1, . . . , pd
6: add p1, . . . , pd to T
7: modify all edges (xi, n) ∈ E(T), so that the i-th edge is (xi, pi)
8: T ← Normalize(T)
9: end for
10: return tree T with root σ0
11: end function

Figure 5.3: Pseudocode for the NormalizeTraceback function.

The Traceback Graph is used to hold values associated with the symbols for objectives and
reductions in theWorking Graph, derived as we traverse up or down the attack tree. For the

25

Master Graph andWorking Graph, it is possible for a node to have multiple parents. Thus,
before normalization, traversing down the Traceback Graphmight cause nodes to be visited
twice, via entirely different parents. Since derived values will be based on attributes of both
parent and child, it would be incorrect to discard or update a value based on information
from an unrelated parent. Thus, the Traceback Graph is normalized to form a tree, ensuring
each node has only one parent. This is accomplished by duplicating subtrees that would
otherwise be re-visited. After normalization, the Traceback Graph has the same number of
edges as theWorking Graph and is structurally identical to traversing theWorking Graph in
depth-first order. As an added benefit, the intermediate values generated as expressions and
constraints are processed closely follows walking theWorking Graph. Thus, the Traceback
Graph allows one to “trace back” the symbols resolved and values derived at each step of
walking the graph.

At this point, the attack tree is prepared for analysis. Analysis solves for either effective
security (in terms of cost) or settings (in terms of security parameters) needed to achieve
a particular level of security (see Section 4.1). For example, if a user wants to solve for
the cost to break the objective, the user will provide the security parameters for the scheme
as input. Since we must propagate values in both directions within our attack tree (see
Section 4.1), analysis is a two-pass process. PhaseOne derives values from the root to the
leaves, and PhaseTwo from the leaves to the root.

1. The user selects target symbols related to objective σ0, placing these in the global
SOLV E list.

2. The user builds K , a set of known values for other parameters related to σ0.
3. We build traverseList, the list of r ∈ R (T), in depth-first order starting at σ0.
4. PhaseOne: we utilize Reductions in T to populate values down the tree, where we

will use the expressions in the Attack nodes to derive the values needed for analysis
and save these in T (see Figure 5.4).

5. PhaseTwo: we utilize values stored in T during the first pass to solve for remaining
free variables (see Figure 5.11).

6. If successful, a value (s, v) ∈ σ0.values will exist for any symbol s ∈ SOLV E.

In the following sections, we elaborate on PhaseOne and PhaseTwo and the routines sup-
porting these.

26

5.3 First Pass
During PhaseOne, we populate-down values from the root the leaves (see Figure 5.4). We
begin by moving known values from K into root σ0.

1: function PhaseOne(tree T with root σ0, known values K , traverseList)
2: for (s, v) ∈ K where s ∈ σ0.symbols and (s,⊥) ∈ σ0.values do
3: σ0.values← (s, v)
4: end for
5: for r (σi, σ j) ∈ traverseList do
6: r ← PopulateKnowns(σi, r)
7: r ← RemoveFree(r .values, r)
8: if σ j ∈ A(T) then
9: σ j ← RemoveFree(r .values, σ j)
10: else if σ j ∈ O(T) then
11: if there are multiple edges for (σi, σ j) then
12: σ j ← ResolveMultiEdge(r .values, σ j, σi)
13: else
14: σ j ← ResolveObjective(r .values, σ j)
15: end if
16: end if
17: end for
18: return T
19: end function

Figure 5.4: Pseudocode for PhaseOne.

We visit each edge in depth-first order, populating known values, using expressions to derive
more known values, simplifying expressions and populating values to adjacent objectives.
At each edge, values are populated from parent to edge (see Figure 5.5), changing these
according to their symbol type.

Next, known values at edges are substituted into expressions, following the same process
employed at attack nodes, i.e., leaves (see Figure 5.6). If there are enough known values
to eliminate all but one free symbol, we will have effectively determined a value for that
symbol. We can solve for the free variable and store the value.

27

1: function PopulateKnowns(node σ, r ∈ R (T))
2: for (s, v) ∈ σ.values and s ∈ σ.symbols

⋂
r .symbols do

3: if PhaseOne then
4: r .values← (s, v) ∈ σ.values
5: else if (s, v′) ∈ σ.values and s ∈ σ.symbolscost and v < v′ then
6: r .values← (s, v) ∈ σ.values
7: else if (s, v′) ∈ σ.values and s ∈ σ.symbolsparam and v > v′ then
8: r .values← (s, v) ∈ σ.values
9: end if
10: end for
11: return r
12: end function

Figure 5.5: Pseudocode for the PopulateKnowns function.

1: function RemoveFree(vals, p ∈ R (T)
⋃
A(T))

2: for expr in p.relations do
3: for (s, v) ∈ vals where s ∈ expr .free_symbols do
4: expr ← expr .substitute(s, v)
5: end for
6: if s ∈ expr .free_symbols and |expr .free_symbols| == 1 then
7: value ← AdvantagingSubstitution(expr , s)
8: if PhaseOne and p ∈ R (T) and s < SOLV E then
9: p.values← (s, value)
10: else if (PhaseOne and p ∈ A(T)) or PhaseTwo then
11: p.values← (s, value)
12: end if
13: else if p ∈ R (T) then
14: p← ConservativeSubstitution(expr .free_symbols, p)
15: if a new value was just uncovered by the previous step then
16: p← RemoveFree(T , vals, p)
17: end if
18: else if P ∈ A(T) then
19: error . analysis fails if attack nodes have too many free variables
20: end if
21: end for
22: return p
23: end function

Figure 5.6: Pseudocode for the RemoveFree function.

28

The process for removing a free variable involves deriving values for symbols based on re-
lationships in reductions (see Figure 5.7) and employing conservative symbol substitutions
(see Figure 5.8).

1: function AdvantagingSubstitution(relation, symbol)
2: if relation is “=” then
3: exp← relation
4: else if relation is either “<” or “>” then
5: exp← GreaterSide(exp) = (LesserSide(exp) + 1)
6: else if relation is either “≤” or “≥” then
7: exp← GreaterSide(exp) = LesserSide(exp)
8: end if
9: value ← exp.solve(symbol)
10: return value
11: end function

Figure 5.7: Pseudocode for the AdvantagingSubstitution function.

1: function ConservativeSubstitution(f ree_symbols, r ∈ R (T))
2: if PhaseOne then . during PhaseOne
3: σ ← r .child
4: else . during PhaseTwo
5: σ ← r .parent
6: end if
7: if σ.symbols

⋂
f ree_symbols , ∅ then

8: for expr ∈ r .conservative_substitutions do
9: for (s, v) ∈ r .values where s ∈ expr .free_symbols do
10: expr ← expr .substitute(s, v)
11: end for
12: if s ∈ expr .free_symbols and |expr .free_symbols| == 1 then
13: value ← AdvantagingSubstitution(expr, s)
14: r .values← (s, value)
15: end if
16: end for
17: end if
18: return r
19: end function

Figure 5.8: Pseudocode for the ConservativeSubstitution function.

Conservative substitutions are “safe” substitutions based on bounds, selecting parameters

29

that most advantage the adversary. This is often required when reductions employ under-
constrained expressions or when free symbols have a bound but no known parameter
(discussed in Section 4.3.1). Similar rationale is employed when deriving new values based
on relations, re-arranging equations and selecting bounds that most advantage the adversary.

Next, after edge expressions are simplified and new values have been derived, we populate
down values to child nodes (see Figure 5.9). The values stored at the objective node are
updated, depending on the type of symbol. If the symbol represents a cost variable, the
edge value updates the value if it is smaller, i.e., the adversary cost is smaller using the
new edge. The opposite is true for security parameters, i.e., the new edge implies a larger
parameter is required.

1: function ResolveObjective(vals, σ ∈ O(T))
2: for (s, v) ∈ vals where s ∈ σ.symbols do
3: if (s,⊥) ∈ σ.values then
4: σ.values← (s, v)
5: else if (s, v′) ∈ σ.values and s ∈ σ.symbolscost and v < v′ then
6: σ.values← (s, v)
7: else if (s, v′) ∈ σ.values and s ∈ σ.symbolsparam and v > v′ then
8: σ.values← (s, v)
9: end if
10: end for
11: return σ
12: end function

Figure 5.9: Pseudocode for the ResolveObjective function.

For the case when multiple edges exist, i.e., due to multiple reductions, populating values
down to the child node requires modification, as potential values populated at the node
must be withheld until all reductions are processed (see Figure 5.10). The new values from
each edge are held temporarily, this multi-edge value group is managed analogously to how
values are updated at the child, before they are populated to the child. When the final edge
is processed, the values are resolved as normal.

30

1: function ResolveMultiEdge(vals, σ1, σ2)
2: if this is the first (σ1, σ2) edge processed then
3: σ1.mvals[σ2]← ∅ . holds values for edges between σ1 and σ2
4: σ1.count[σ2]← total number of edges between (σ1, σ2)
5: end if
6: let multv ≡ σ1.mvals[σ2] . an alias, for notational convenience
7: let count ≡ σ1.count[σ2] . an alias, for notational convenience
8: . now, process one edge, i.e., associated with the reduction annotated with vals
9: count ← count − 1
10: for (s, v) ∈ vals where s ∈ σ1.symbols do
11: if PhaseOne then . during PhaseOne
12: if (s,⊥) ∈ multv then
13: multv ← (s, v)
14: else if (s, v′) ∈ multv and s ∈ σ1.symbolscost and v < v′ then
15: multv ← (s, v)
16: else if (s, v′) ∈ multv and s ∈ σ1.symbolsparam and v > v′ then
17: multv ← (s, v)
18: end if
19: else . during PhaseTwo
20: if (s,⊥) ∈ multv then
21: multv ← (s, v)
22: else if (s, v′) ∈ multv and s ∈ σ1.symbolscost and v > v′ then
23: multv ← (s, v)
24: else if (s, v′) ∈ multv and s ∈ σ1.symbolsparam and v < v′ then
25: multv ← (s, v)
26: end if
27: end if
28: end for
29: if count == 0 then . this was, in fact, the last edge
30: σ1 ← ResolveObjective(multv , σ1)
31: end if
32: return σ1
33: end function

Figure 5.10: Pseudocode for the ResolveMultiEdge function.

5.4 Second Pass
After our first, top-to-bottom pass where values are populated across the tree, a bottom-to-
top pass is performed (see Figure 5.11). This PhaseTwo pass is similar to PhaseOne and
utilizes the same support routines. To traverse back up the attack tree, we re-visit edges in

31

reverse order.

1: function PhaseTwo(tree T , traverseList)
2: for r (σi, σ j) ∈ reverse(traverseList) do
3: if σ j ∈ O(T) then
4: r ← PopulateKnowns(σ j , r)
5: end if
6: r ← RemoveFree(r .values, r)
7: if there are multiple edges for (σi, σ j) then
8: σi ← ResolveMultiEdge(r .values, σi, σ j)
9: else
10: σi ← ResolveObjective(r .values, ni)
11: end if
12: for expr ∈ r .relations do
13: for (s, v) ∈ r .values where s ∈ expr .free_symbols do
14: expr ← expr .substitute(s, v)
15: end for
16: end for
17: end for
18: return T
19: end function

Figure 5.11: Pseudocode for PhaseTwo.

Attack nodes should now be fully populated with values, and those values can be popu-
lated up the tree from child to parent. Values for objectives and multi-edges are resolved
analogously to prior logic. As described in Section 3.2, walking up the tree in the presence
of multiple reductions requires slightly different logic: assuming all reductions are sound,
when the parent’s cost is determined to be greater, we consider this to be a tighter proof and
select the more accurate result (with analogous reasoning when the more accurate reduction
allows us to select a smaller security parameter).

5.5 Python Implementation
We implement our software tool in the Python programming language version 3.5.1 [24]
using the Anaconda package and environment manager [25]. We select Python because it
is open source, widely used and relatively accessible, all of which support the extensibility
goals of our software tool. To implement our attack tree data structures, we employ the

32

NetworkX Python module version 1.11 [26]. Of interest to us, NetworkX supports directed,
multi-graphs and provides support functions to iterate through graph components, to assign
and manage data associated with nodes and edges, to traverse graphs and to export graphs
to formats usable by graph visualization software. To manipulate expressions associated
with objectives, attacks and reductions, we employ the Sympy Python module [27]. This
provides support for expression re-writing and symbolic solving.

5.6 Case Study: The Schnorr Signature Scheme
We validate our software tool using the Schnorr case study introduced in Section 3.3.
Figure 5.12 is a graphical representation of the tree—its objectives, reductions and attacks—
comparable to Figure 3.7. The software producing this visualization does not draw explicit
multi-edges, and represents edge direction using line thickness rather than arrow heads.

Figure 5.12: Graph for the Schnorr case study, generated by our software
tool.

33

We consider two analysis cases in the context of this case study, both employing the target
objective Break EF-ACMA for σ0, the root of our analysis tree.

Case 1. We supply our software tool with a set of security parameters and use it to solve for
the cost to break the Schnorr scheme in the EF-ACMA sense. This requires setting
(i) SOLV E to include the relevant time parameter for σ0 and (ii) known values that
include relevant security parameters for σ0. We are essentially asking the question
“what is the effective security for EF-ACMAwith the Schnorr signature scheme using
the chosen security parameters?”

Case 2. We supply our software tool with a set of cost parameters and use it to solve for
security parameters for the Schnorr scheme. This requires setting (i) SOLV E with
relevant security parameters and (ii) known values that include 2` as the target time-
cost parameter. We are essentially asking “under what parameters will the Schnorr
signature scheme achieve an effective security of 2` for EF-ACMA?”

The full list of symbols associated with attacks and objectives in the subgraph associated
with components connected to σ0 is given in Figure 5.13.

34

Figure 5.13: Attack and objective symbols for the Schnorr case study.

For Case 1, a sample run of our software tool is provided in Figures 5.14 and 5.15, showing
values associated with each node and edge. In this case, the level of effective security is

35

determined to be ≈ 231.6 when using the following security parameters: the order of the
group is 21024, the order of the subgroup is 2160, the probability of success to 1.0, the number
of queries to the both Break EF-ACMA random oracles as 231.5, the number of queries to
the random oracle within the Schnorr reduction to 219. In reality, the random oracle
parameters are inferable based on running time bounds; however, we defer to future work
enhancements to employ conservative symbolic substitution—i.e., symbolic re-writing of
expressions based on conservative relations—rather than our more simple approach of
conservative value substitution.

Figure 5.14: Case 1 output, showing node data when solving for cost.

36

Figure 5.15: Case 1 output, showing edge data when solving for cost.

For Case 2, a sample run of our software tool is provided in Figures 5.16 and 5.17, showing
values associated with each node and edge. Providing 231.5 as the time bound for node
Break EF-ACMA corresponds to declaring that the best-known attacks breaking EF-ACMA
must take a time exceeding 231.5, which provides 31.5 bits of effective security. The analysis
yields that, to ensure this level of security, one must choose the order of the subgroup to be
at least ≈ 2160.

37

Figure 5.16: Case 2 output, showing node data when solving for security
parameters.

38

Figure 5.17: Case 2 output, showing edge data when solving for security
parameters.

39

While testing our software tool, we discovered it was capable of solving for time within
the GNFS attack, however solving for parameters proved more complex. We suspect
the problem involved limits associated with the symbolic solver: SymPy appears to lack
solvers able to handle computing n, given T and c, in the super-polynomial sub-exponential
relationship for attacks employing the general number field sieve:

T = exp(c ln n1/3 ln ln n2/3).

As a result, the node for the GNFS attack and the edge connecting it to the rest of the tree
are missing from Figures 5.16 and 5.17. We leave for future work further verification of
this problem and investigation into solutions or alternatives for this scenario.

Comparing the results of our analyses to existing guidance, Figure 5.18 displays a selection
of the key-length guidance for schemes based on the security of the discrete log problem,
equating these to the cost of security for a symmetric scheme (i.e., characterizing its
effective security). The Schnorr signature scheme employs discrete log assumptions. The
“key” and “group” parameters from Figure 5.18 can be equated to the symbols Sdl.q and
Sdl.p, respectively, in our case study (see Figure 5.13).

Figure 5.18: Parameters for discrete log schemes, for key size 160 and
a discrete log group size 1024. Source [3]: D. Giry. (2015). BlueKrypt-
cryptographic key length recommendation. [Online]. Available: http://www.
keylength.com.

40

http://www.keylength.com
http://www.keylength.com

Given a 160-bit subgroup and 1024-bit group, our software tool returns an effective security
of 80 bits for the Break Subgroup Discrete Log Problem security objective (see Figure 5.14),
matching the effective security for many recommendations from Figure 5.18. Given 224-bit
subgroup and 2048-but group, our software tool returns an effective security of 112 bits;
interestingly, this is less than that claimed by the BSI recommendation from Figure 5.18.
Using a 128-bit target effective security, Figure 5.19 summarizes the discrete log parameters
from existing guidance and Figure 5.20 shows our results.

Figure 5.19: Parameters for discrete log schemes, comparable in strength
to 128-bit symmetric encryption. Source [3]: D. Giry. (2015). BlueKrypt-
cryptographic key length recommendation. [Online]. Available: http://www.
keylength.com.

Figure 5.20: Results from our software tool using 128-bit effective security.

41

http://www.keylength.com
http://www.keylength.com

THIS PAGE INTENTIONALLY LEFT BLANK

42

CHAPTER 6:
Conclusion

We have described the current complexity and methodology to reason about cryptographic
schemes, using reductionist proofs and data about known attacks for the practice-oriented
goal of parameter selection. State-of-the-art is to employ generic, conservative recommen-
dations published periodically, which are not necessarily current or informed by recently
disclosed attacks. We developed a proof-of-concept software tool capable of reasoning
about keylength for cryptographic schemes using machine-readable proof metadata. In
support of this, we formalized reasoning about cryptographic adversaries within the attack
tree model, and expanded attack trees to include proof reductions.

For this tool, we described a concept of operations, use cases and design goals. We argued
the software tool should be able to provide recommendations about keylength when given
a set of parameters, as well as provide parameters necessary to achieve a target effective
security. From there we presented the software design to achieve the stated goals and
provided the algorithms to implement the software. We validate our software tool utilizing
the Schnorr public-key signature scheme as a non-trivial case study.

While our prototype had some limitations unrelated to our methodology, overall we showed
that automating reasoning about keylength and effective security is achievable. When
the attack and proof metadata is provided in a machine-readable format, our software
tool achieved the desired goals of providing accurate and timely information specific to a
particular scheme. Additionally, modularity and extensibility were achieved by designing
the software tool in a way that allows experts to contribute knowledge from their domain,
connecting it to a graph of other proof knowledge and facilitating its use in an automated
framework.

6.1 Future Work
Further investigation into the limitations of our implementation, as presented in Section 5.6,
is warranted. It will be necessary to verify that the limitations stem from the solver’s
inability to handle particular situations, rather than a mistake in the implementation of

43

our software tool. Then, once the problem is properly framed, the implementation can
be refitted. We also believe it is fruitful to expand the library of attacks and objectives
to include other case studies employing concrete security reductions. Lastly, work can be
done to bridge automatic proof generation as explored in prior work, and automatic proof
analysis as explored here.

44

List of References

[1] A. K. Lenstra, “Key lengths,” Wiley, Tech. Rep., 2006.

[2] E. Barker and Q. Dang, “Recommendation for key management part 3: Application-
specific key management guidance,” NIST, Gaithersburg, MD, Tech. Rep. Special
Publication 800-57 Pt 3 Rev 1, Jan. 2015.

[3] D. Giry. (2015). BlueKrypt-cryptographic key length recommendation. [Online].
Available: http://www.keylength.com

[4] M. Rabin, “Digitalized signatures and public-key functions as intractable as fac-
torization,” Massachusetts Institute of Technology, Cambridge, Mass, Tech. Rep.
MIT/LCS/TR-212, Jan. 1979.

[5] S. Micali and L. Reyzin, “Improving the exact security of digital signature schemes,”
Journal of Cryptology, vol. 15, no. 1, pp. 1–18, 2002.

[6] M. Bellare and P. Rogaway, “The exact security of digital signatures-how to sign
with rsa and rabin,” in Advances in Crytology-EUROCRYPT ’96, U. Maurer, Ed.
Berlin, Germany: Springer-Verlag, 1996, pp. 399–416.

[7] D. Pointcheval and J. Stern, “Security arguments for digital signatures and blind sig-
natures,” Journal of cryptology, vol. 13, no. 3, pp. 361–396, 2000.

[8] B. Blanchet and D. Pointcheval, “Automated security proofs with sequences of
games,” in Advances in Cryptology-CRYPTO 2006. Springer-Verlag, 2006, pp. 537–
554.

[9] V. Cortier and B. Warinschi, “Computationally sound, automated proofs for secu-
rity protocols,” in Programming Languages and Systems, M. Sagiv, Ed. Berlin, Ger-
many: Springer-Verlag, 2005, pp. 157–171.

[10] D. Dolev and A. C. Yao, “On the security of public key protocols,” IEEE Transac-
tions on Information Theory, vol. 29, no. 2, pp. 198–208, 1983.

[11] J. Kilian and P. Rogaway, “How to protect des against exhaustive key search,” in Ad-
vances in Cryptology—CRYPTO’96, N. Koblitz, Ed. Berlin, Germany: Springer-
Verlag, 1996, pp. 252–267.

[12] M. Bellare and P. Rogaway, “The game-playing technique,” International Associa-
tion for Cryptographic Research (IACR) ePrint Archive: Report, vol. 331, pp. 1–29,
2004.

45

http://www.keylength.com

[13] G. Barthe, B. Grégoire, S. Heraud, and S. Z. Béguelin, “Computer-aided security
proofs for the working cryptographer,” in Advances in Cryptology–CRYPTO 2011,
P. Rogaway, Ed. New York, USA: Springer, 2011, pp. 71–90.

[14] B. Blanchet, “An efficient cryptographic protocol verifier based on prolog rules,” in
CSFW-14. Washington, D.C.: IEEE Computer Society Press, 2001, pp. 82–96.

[15] B. Blanchet, “A computationally sound mechanized prover for security protocols,”
Dependable and Secure Computing, IEEE Transactions on, vol. 5, no. 4, pp. 193–
207, 2008.

[16] B. Schneier, “Attack trees,” Dr. Dobb’s Journal, vol. 24, no. 12, pp. 21–29, 1999.

[17] B. Kordy, P. Kordy, S. Mauw, and P. Schweitzer, “Adtool: security analysis with
attack–defense trees,” in Quantitative Evaluation of Systems.

[18] isograph, Alpine, UT. (2015). AttackTree. [Online]. Available: http://www.isograph.
com/download-products/. Accessed June 12, 2016.

[19] SINTEF,Trondheim, Norway. (2013). SeaMonster. [Online]. Available: https:
//sourceforge.net/projects/seamonster/. Accessed June 12, 2016.

[20] C.-P. Schnorr, “Efficient identification and signatures for smart cards,” in Advances
in cryptology—CRYPTO’89 proceedings. Berlin, Germany: Springer-Verlag, 1989,
pp. 239–252.

[21] J. M. Pollard, “Monte carlo methods for index computation (mod\ p),” Mathematics
of computation, vol. 32, no. 143, pp. 918–924, 1978.

[22] H. Cohen, A course in computational algebraic number theory. New York, NY:
Springer Science & Business Media, 2013, vol. 138.

[23] D. M. Gordon, “Discrete logarithms in gf(p) using the number field sieve,” SIAM
Journal on Discrete Mathematics, vol. 6, no. 1, pp. 124–138, 1993.

[24] Python Software Foundation, Columbia, DE. (2015). Python 3.5.1. [Online]. Avail-
able: https://www.python.org/downloads/release/python-351/. Accessed Apr. 15,
2016.

[25] Continuum Analytics, Inc., Austin, TX. (2015). Anaconda 4.0.0. [Online]. Available:
https://www.continuum.io/. Accessed Apr. 15, 2016.

[26] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network structure, dynam-
ics, and function using NetworkX,” in Proceedings of the 7th Python in Science
Conference (SciPy2008), Pasadena, CA USA, Aug. 2008, pp. 11–15.

46

http://www.isograph.com/download-products/
http://www.isograph.com/download-products/
https://sourceforge.net/projects/seamonster/
https://sourceforge.net/projects/seamonster/
https://www.python.org/downloads/release/python-351/
https://www.continuum.io/

[27] Sympy Development Team, Los Alamos, NM. (2016). Sympy 1.0: Python library
for symbolic mathematics. [Online]. Available: http://www.sympy.org. Accessed
Apr. 15, 2016.

47

http://www.sympy.org

THIS PAGE INTENTIONALLY LEFT BLANK

48

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

49

	Introduction
	Organization

	Background
	Keylength Analysis
	Methods for Achieving Provable Security
	Automated Proof Generation

	Cryptographic Attack Tree Analysis Model
	Attack Trees
	Attack Trees with Reductions
	Case Study: The Schnorr Signature Scheme

	Concept of Operations and Design
	Concept of Operations
	Design Goals
	Software Design

	Implementation
	Notation
	Overview
	First Pass
	Second Pass
	Python Implementation
	Case Study: The Schnorr Signature Scheme

	Conclusion
	Future Work

	List of References
	Initial Distribution List

