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ABSTRACT

Analysts often concern themselves with the tail regions of distributions, sometimes
called “extreme events,” in order to measure or predict risk. One risk metric, the superquan-
tile, possesses several properties that make it particularly well-suited for risk quantification.
Observable data, however, often lack information on extreme events due to various resource
constraints, resulting in sample superquantile estimates that often undervalue the true level
of risk. By leveraging the dual relationship between superquantiles and superexpectations,
we apply constrained optimization on second-order epi-splines to arrive at incrementally
better approximations of superquantile values. With these improved estimates, we incorpo-
rate additional constraints to improve the fidelity of density estimates in tail regions. We
limit our investigation to data with heavy tails, where risk quantification is typically the
most difficult. Demonstrations are provided in the form of a known distributional bench-
mark, historical financial data, and a fluid dynamics model used in the development of a
high-speed naval vessel. Results show that accurate quantile and superquantile constraint
implementation, in conjunction with empirical statistics and distributional knowledge, can
improve tail density estimates by up to 15% for small samples of various heavy-tailed

distributions.
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Executive Summary

Experimental data collection is often limited in the number of observations due to bud-
getary constraints, computational complexity, or time. In these cases, samples often lack
the “extreme events” that constitute the tail regions of the underlying probability density
function. In order to assess and quantify risk, analysts must often extrapolate probability
estimates into regions beyond the range of observable data. This risk assessment is partic-
ularly important for distributions that exhibit heavy-tailed behavior, where extreme events

occur more frequently.

Our goal is to provide a set of accurate risk quantification constraints for limited
data that enhance the fidelity of probability density estimates in outlying tail regions. Due
to its desirable qualities as a risk metric, we use the superquantile at a given percentile to
help inform tail density estimates. By incorporating an accurate superquantile estimate (or
set of estimates) into a constrained optimization problem using first- and second-order epi-
splines, we allow for the incorporation of a flexible combination of empirical knowledge and

distributional soft information that can be uniquely tailored to the application in question.

This thesis proposes a two-step process that first approximates superquantile val-
ues before using them within an overall density estimation framework. Superquantiles are
estimated using constrained second-order epi-spline optimization that leverages the dual
relationship between superquantiles and superexpectations as well as additional soft in-
formation to help inform shape constraints. We investigate the impact of distributional
knowledge on both quantile and superquantile predictions, demonstrating how enhanced
constraint formulations arrive at incrementally better estimates. Once obtained, these quan-
tile and superquantile estimates are incorporated into a second constrained optimization
problem that estimates the underlying density function using first-order epi-splines. Within
this second phase, we explore optimizations under both maximum likelihood and maximum

entropy formulations.

The method posited here is evaluated across three cases. In the first case we assess
the method against two well-defined parametric benchmarks, demonstrating and measuring
the impact of additional information. Next, we apply the method to a heavy-tailed set of

financial data, comparing our results with those attained via a widely used existing method.

XV



Finally, we investigate a multi-fidelity data set from a fluid dynamics model to assess the
feasibility of surrogacy for quantile estimates and the benefits of mixture modeling in risk

quantification.

Results show that accurate quantile and superquantile predictions are key to suc-
cessful constraint implementation for overall density estimation. Given accurate estimates
for outlying quantiles and superquantiles, overall density estimation improves by up to
15%, with tail density estimates improving by up to 80% in the case of maximum entropy
formulations. The impact here is improved accuracy in tail density estimation, providing
better risk mitigation planning for “extreme events,” and without the need for large sample

sizes.
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CHAPTER 1:
Background

The world is filled with uncertainty — a lack of total knowledge that forces us to make
decisions with access to only a fraction of the complete picture. How much money should
a city allocate in the budget to cover the recovery costs of the next category-five hurricane?
How confident are engineers that the tensile strength of the steel cables they tested will live
up to the design specifications for a new bridge? In attempting to answer these questions,
risk analysts rely heavily on data to provide accurate estimates or bounds on the likelihood
of an event, and their findings represent a significant and growing area of research in
numerous fields including insurance, financial management, and reliability engineering.
The question, however, of how to estimate the probability of events that exist beyond the
range of observed data requires extrapolation that often leads to inaccurate estimates for
the probability of extreme events. Within this thesis, we look at a specific risk measure
(superquantiles) to help inform probability density estimates for rare or extreme events

coming from an unknown distribution with access to limited samples of data.

1.1 Probability Density Estimation

Probability density estimation is the construction of probability density functions (PDFs)
from an observed set (or sets) of data for which the true underlying distribution is unknown.
By estimating the underlying density of a random variable, we hope to predict future ob-
servations according to some probabilistic model, where predictions become more accurate
as the fidelity of the model improves. Methods for density estimation include both para-
metric methods such as the maximum likelihood estimation (MLE) formulations proposed
by Fisher between 1912 and 1922 [1], as well as non-parametric techniques such as kernel
smoothing [2], support vector machines (SVM) [3], and quasi-MLE for unspecified mod-
els [4]. While parametric techniques can be quite powerful even with limited sample sizes,
they are highly dependent on the assumption of the density’s underlying parametric struc-
ture. If one assumes an invalid distributional family, or if the data itself is non-parametric

in nature, these methods can result in grossly inaccurate predictions.

Nonparametric techniques provide more flexibility in modeling data, but can often

1



rely heavily on sample size to arrive at accurate density estimates. In theory, if one were
afforded millions of observations, a nonparametric density estimate would perform quite
well, even for wildly nonparametric distributions. When provided only limited samples,
however, nonparametric techniques can perform poorly in estimating densities for outlying
tail regions where observations are likely to be absent. In fact, in a sample of 30 independent
and identically distributed (IID) observations, there is a roughly 20% chance the data will

lack an observation coming from the 5% upper tail region, as shown in Figure 1.1.

Figure 1.1: Upper Tail Data Inclusion by Sample Size

1.0
0.8
0.6 - me
0.4 —
0.2
— 5% Upper Tail
0.0 4 — = 1% Upper Talil
I I I I I I
0 10 20 30 40 50
Sample Size

Probability of not seeing any values within the 5% (solid) and 1% (dotted) upper tail regions
for IID observations. Clearly, sample size is of great consequence in estimating tail density.

Inaccurate estimates on tail densities become especially problematic when one
attempts to answer questions regarding the uncertainty or risk of extreme events, such as
the probability of falling above or below some threshold value. Given realistic constraints
on resources, analysts are often forced to confront limited data sets possessing few or no
observations from the extreme tail regions. This shortfall is especially prominent in densities
where extreme events are more likely to occur, a characteristic referred to as heavy-tailed.
An example of this is offered in Figure 1.2, which displays a prototypical underestimation

of tail density from a well-known heavy-tailed distribution.
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Figure 1.2: Example of Tail Density Underestimation

0.30 1 —— True Density
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0.20

0.15

0.10

0.05
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PDF estimate for 20 observations coming from a Weibull distribution with shape parameter
k = 1.5 and scale parameter A = 3. Optimization of first-order epi-splines was performed on
the basis of maximizing log-likelihood subject to various constraints such as monotonicity
and tail convexity. Notice that no data exists beyond the 90th quantile. As a result, the
estimate fails to provide sufficient density in the tail region.

1.2 Tail Density Characterizations

The risk implications for tail estimation can depend greatly on the distribution’s tail behavior.
Take for instance a normal random variable, X ~ N(u, o). We know by virtue of its light
tails that 99.7% of the data is bounded within three standard deviations of the mean. Now
compare this to a Cauchy random variable (known to have a heavy tail) with an undefined
variance, and the prospect of bounding the uncertainty becomes much more difficult. In fact,
even something as simple as estimating the mean for a heavy-tailed distribution can be quite
difficult, as explained in [5]. In cases where the underlying distribution exhibits behavior
that can be characterized as heavy-tailed, the consequences of inaccurate tail estimation
become of greater consequence. Given our specific interest in such distributions, we limit
the remainder of our analysis to those distributions and data sets for which we know, or

suspect, heavy-tailed behavior.



1.2.1 Heavy Tails

Heavy-tailed distributions have tails which are not exponentially bounded, with common ex-
amples including the Pareto, Burr, and Cauchy distributions. Since the tail of an exponential
distribution is (by definition) exponentially bounded, these can serve as illustrative compar-
isons to demonstrate characteristics of heavy-tails. Defined more explicitly, a distribution

is characterized as heavy-tailed if

lim e Pr[X > x] =00 ¥A>0. (1.1)

X—00

Heavy-tails can be further defined as one of three general types: fat-tailed, long-
tailed, or sub-exponential. Specialized algorithms for simulating heavy-tailed distributions
can be found in [6], with more detailed methodologies proposed for handling specific cases.

Here, we explore the particular characteristics of fat-tailed distributions.

1.2.2 Fat Tails

Fat-tailed distributions are a sub-class of heavy-tailed distributions for which the probability
density function goes to zero as a power of a for large x. As such, they are always
bounded below by the probability density of an exponential distribution. Mathematically, a

distribution is said to have a fat tail if
Pr[X > x]~x% asx —> o0, a>0, (1.2)

where ~ refers to the asymptotic equivalence of functions. Fat tails are frequently used to
model financial and economic applications where extreme events must be accounted for,
such as the insurance industry and commodity markets [7]-[9]. Another application is in
modeling natural disasters [ 10], where the question posed earlier regarding the category-five
hurricane serves as an illustrative example. A visual comparison between a fat tail and an

exponential case is provided in Figure 1.3.

1.3 Superquantiles as a Risk Measure
The methods by which we interpret, measure, and communicate uncertainty forms the

basis for risk quantification. The probability of exceeding a threshold value (as mentioned
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Figure 1.3: Comparison of Heavy vs. Exponentially Bounded Tails

3.0 1

Exponential

- - - Pareto

0.015

Exponential
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0.010 4

0.005

0.000 —|

(a) Density Functions

(b) Tail Region

PDF plots with an expanded view of the tail region (left) for an exponential (solid blue) and
Pareto (dotted red) distribution possessing equal expected values. Notice the lower bounding
performed by the exponential case in comparison to the fat-tailed Pareto distribution in the
tail region.

earlier) is one such risk measure, which in this case uses a particular quantile value as the
risk measure. Quantiles, however, are just one of many such risk measures that can be
used. In fact, a quantitative evaluation of risk relies on a measure that properly relates to
the specific application in question, where certain desirable qualities can make a measure
more or less useful and appropriate for a given circumstance [11]. Of particular note are
superquantiles, which possess several features that make them particularly well-suited as
risk measures. Known more commonly as “conditional value-at-risk,” “average value-
at-risk,” “tail value-at-risk,” and “expected shortfall” from their applications in financial
analysis, many analysts have come to recognize superquantiles for their desirable properties
of coherency and regularity in assessing risk under incomplete or inaccurate probabilistic
models [11], [12]. The analysis of superquantiles originated in financial engineering where
risk lies predominantly in the lower tail of the underlying distribution. We modify this
convention for our purposes here to assess the upper tails instead, realizing that the methods

are equally valid with the addition of a simple sign change on the data of interest.

Given arandom variable X, we can calculate the quantile of X at a certain percentile
p as the threshold value below which proportion p of the underlying density function exists.
If X is continuous, then the quantile function Q(p) is simply the inverse of the cumulative

distribution function (CDF). A super-quantile is (generally) an average of quantiles for
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percentiles above a given threshold. When the CDF of X is continuous, the superquantile
becomes the conditional expectation of X above the given quantile threshold value [11].
Put another way, a superquantile is the expected outcome provided you are known to be
operating in the top p-tail of the underlying probability distribution. Visual depictions of
these relations between superquantiles and the density and quantile functions are provided
in Figure 1.4. Mathematically, we define the superquantile Qx of the distribution as a
function of a specific percentile p, where Qx (p) equals the expectation in the upper p-tail

distribution of X, for p € (0, 1). As such, the superquantile function becomes

_ 1 1
Ox(p) = / Ox(P)dp for pe(0,1). (13)
1

Provided the knowledge of a distribution’s superquantile at a given percentile, we
seek to leverage this information in order to make better estimates of that distribution’s tail
density. By arriving at better estimates of superquantile values for p in ranges closer to one,

we hope to more accurately assess the probability of exceeding a particular risk threshold.

Figure 1.4: Quantile and Superquantile Relationship

Qdp) Qx(p)

f(x) Qdp)

X p
(a) Density Function (b) Quantile Function
PDF and quantile plots for a Weibull distribution. Quantile and superquantile values are

identified by the dotted red lines, with the upper tail region shaded. With continuity in the
density, the superquantile value is the expected value of this upper tail region.



1.4 Superexpectations and their Dual

Related to the superquantile function, the superexpectation function Ex of arandom variable
X is the expected value of the maximum of X and some threshold value x, which we term

the level. Thus, the value Ex (x) is the superexpectation of X at level x defined by

1
Ex(x) = E[max{x, X}] = /0 max{x, Qx(p)}dp. (1.4)

If we require E|X| < oo, then the superexpectation function has the properties of being
closed, proper, and convex. Using the Legendre-Fenchel transform, we are able to arrive
at a conjugate (“‘dual”) function of the superexpectation which is also closed, proper, and
convex [11]. We refer to this as the dual of superexpectations (DSE) E% (p), here denoted

with a star, and defined as a function of p such that

—(1-p)Ox(p) forpe (0,1),
—-E[X] for p =0,
Ey(p) = | P (15)
0 for p =1,
00 for p ¢ [0, 1].

1.4.1 Relation of Dual of Superexpectation to Superquantile

Of importance is the relationship of the DSE to superquantiles, where one can simply be
written as a function of the other on the interval p € (0, 1), as in Equation 1.5. Furthermore,
we note the known endpoints for cases where p = 0 and p = 1, as well as the fact that the
left-derivative of E} at a percentile p is in fact the underlying density function’s quantile

value at that same p, as can be seen in Figure 1.5 [11]. That is,

d
%Eﬂp) = Ox(p). (1.6)

Additionally, if X possesses a finite second moment, there exist upper and lower bounds on

superquantile estimates for values between the endpoints [11]. In this way, for p € [0, 1),

7



superquantiles are bounded according to
o(X)
V1= p’

provided that E|X 2| < o0, and where o (X) is the standard deviation of X. This requirement

E[X] < Ox(p) < EX]1+

(1.7)

is not extraneous, as several known heavy-tailed distributions, such as the Cauchy distribu-
tion mentioned earlier, do not in fact meet this criterion. Nonetheless, these characteristics
provide the foundation for estimating the superquantile for a set of data, which underpins

much of the methodology pursued here and outlined in Chapter 2.

Figure 1.5: Heavy-Tailed Quantile Characteristics

20 5 ! 0
—— Exponential 1 .
—— Exponential

- - Pareto [
! - = Pareto .

Known Endpoints

(a) Quantiles (b) DSE

A comparison of the quantile (left) and DSE (right) functions for the exponential distribution
(blue solid) and Pareto (dotted red). Notice that the quantile function values correspond
exactly to the slope of the DSE function. Furthermore, note the bounding provided by the
exponential case in (b). This exponential upper-bounding is related to the lower-bounding it
performs on the tail density seen before in Figure 1.4b.

1.5 First- and Second-Order Epi-Splines

Epi-splines are a flexible set of piecewise polynomial functions that can be used to describe
practically any function one could reasonably expect to encounter. By modifying a set of
constraints that define the problem either through empirical information from the data itself
or from external soft information one can develop a framework that identifies the coefficient
values that define the piecewise epi-spline function. Epi-splines are well suited to handling

multiple shape-constraints and approximating density functions through the maximization

8



of either a likelihood function or entropy function, even for small sets of data, as shown
in [13].

1.5.1 Epi-Splines Model Formulations

Given a closed interval [/, u] constituting the bounds of estimation within R, we segment
the interval into evenly spaced mesh segments. Here, we will distinguish between a
second-order epi-spline mesh k used for DSE estimation from a first-order mesh m used
for density estimation. As such, we have K evenly spaced second-order mesh segments
defining p according to p = {pk | Kk =1,2,...,K}, and M evenly spaced first-order mesh
segments defining x according to x = {x"" | m = 1,2,..., M}. Mesh segments are right-
continuous, with endpoints defined as either left (p;, xr) or right (pgr, xr) respectively, as
seen in Figure 1.6. Our epi-spline segments are thus defined either as first- or second-order

polynomials according to their mesh assignment.

Second Order:  E5(p) = alg + a’fp + a’z‘p2 for p € [p%, p&) (1.8)

First Order:  f(x) = by + b'x for x € [x], x7%) (1.9)

To differentiate notation between formulations, we use a-coefficients for the second-
order optimization defined via mesh index k, and b-coefficients for the first-order optimiza-
tion defined via mesh index m. The details of epi-spline implementations are covered in
Chapter 2.

1.6 Soft Information Incorporation

Shortfalls in sample size can often be partially mitigated through the incorporation of soft
information that provides qualitative information on the underlying density function in ad-
dition to the empirical information provided by the data itself. Examples of soft information
include density characteristics such as monotonicity, tail convexity, uni-modality, and many
others. Combinations of soft information through constrained optimization leads to better

density estimates for limited data sets when implemented in an intelligent framework, as
shown in [14], [15].



Figure 1.6: First- and Second-Order Epi-Spline Meshes
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(a) First-Order Epi-Splines (b) Second-Order Epi-Splines

First- and second-order epi-splines with associated mesh. First-order epi-splines are on the
left, with second-order epi-splines displayed on the right. Notice the lower semi-continuous
(Ics) property enforced at mesh intersections. This will require continuity to be enforced
throughout. By increasing the mesh resolution, we can arrive at arbitrarily close approxima-
tions to virtually any curve using these low-order splines.

1.7 Overview

Expanding on earlier work done using epi-splines for density estimation, we plan to im-
plement an additional set of constraints within the constrained optimization formulations
to incorporate information on tail characteristics and superquantile bounds. In Chapter 2,
we provide detailed steps for constrained optimization formulation for both superquantile
estimation and density estimation, identifying objective functions and a set of possible con-
straints used. In Chapter 3, we estimate the superquantile values and density functions
for two parametric distributions, exploring the impact of the superquantile constraint on
overall tail density estimation by comparison to known benchmarks. Following this,
Chapter 4 applies our method to samples from a financial data set known to possess
heavy-tailed characteristics with comparisons made another commonly used density
estimation method. Chapter 5 provides an application of the technique on a mixed data
set of both high- and low-fidelity observations to show the method’s use in a

hierarchical model framework. Finally, Chapter 6 provides conclusions from our findings.
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CHAPTER 2:
Methodology

2.1 Analytic Framework

We ultimately seek to estimate the underlying distribution of a data set for which limited
observations exist. Epi-splines, shaped through multiple design constraints informed by both
the data and additional soft information, and formulated to optimize either log-likelihood
or entropy, provide the foundation of our approach. In general, the formulation follows the

process outlined in the flow diagram in Figure 2.1.

Figure 2.1: Density Estimation Methodology

Soft—
X Data Information

The generalized methodology for estimating probability density from a sample of data. Note
the inclusion of both statistical information derived from the sample itself as well as soft
information that can describe known tail behavior or other distributional characteristics. We
hope that the additional steps shown via the dotted lines will help inform tail estimation.

We begin with an IID set of univariate sample data xi,...x, for which we wish
to estimate the underlying density. From the data, we calculate sample statistics (such as
mean, variance, median, and quartile values), as well as associated confidence intervals as
per the methods outlined in section A.3 and section A.4. Second-order epi-spline segments

that approximate the DSE of the underlying distribution are obtained using constrained
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optimization subject to various constraints as outlined in section 2.3. The choice of second-
order epi-splines allows us to leverage the rigidly defined shape constraints imposed on
DSE functions without requiring an ultra-fine mesh. Additionally, as we will later see, the
objective function for DSE approximation will require epi-splines of at least the second-
order. From these epi-spline estimates, we acquire quantile and superquantile estimates
for right-tailed p-values which we will subsequently incorporate into a second constrained
optimization problem. This second optimization uses first-order epi-splines to approximate
the underlying density function, using soft information to inform shape characteristics and
optimized in the form of either a maximum log-likelihood problem (MLP) or a maximum
entropy problem (MEP) as detailed in section 2.4. We elect first-order splines for this
second optimization so as to enable a much finer mesh resolution subject to simpler con-
straint formulations. This choice helps to balance computational run time and formulation

complexity, though higher-order epi-splines could certainly be utilized if desired.

2.2 Modeling Assumptions

We assume all data are IID from an unknown, but well-defined, density function with both
finite mean and variance structure. The distribution need not be parametric, as epi-splines
are well suited to nonparametric estimation, however, without a finite second moment on
the underlying distribution, some methods posited here will have an improper application
due to the attempts to estimate both mean and variance for use in select constraints within
the optimizations. Furthermore, the data is assumed to possess no time dependence, or

other ordering structure.

We further assume the data are free from measurement error or noise, making no
attempt at deconvolution. If data is known or suspected of possessing Gaussian noise,
application of a deconvolution constraint within the constrained density optimization can

be applied as in [14].

2.3 Superquantile Estimation Formulation
We intend to show how the estimation of a desired superquantile can be arrived at from a
constrained optimization of second order epi-splines. Using known characteristics of the

DSE and its relation to superquantiles, we conduct our constrained optimization to arrive
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at estimates of Ey (p). We then convert these to estimates of Ox(p) via the relationship

outlined in Section 1.4.

Given that we know Ej (p) exists only for p € [0, 1], we are able to freely define the
length of our second-order epi-spline segments according to a desired mesh resolution. We

refer back to subsection 1.5.1 in defining our epi-spline segments.

2.3.1 Dual of Superexpectation Objective

We desire conservative approximations for right-tailed densities such that our estimates for
quantiles and superquantiles near p = 1 are at least as high as the actual values. To achieve
this, we select an objective function that maximizes the curvature of the individual epi-
spline segments, which we will term «(k), in order to achieve a shape similar to that seen in
Figure 1.5b. In order to promote curvature over the entire mesh (rather that at a few
individual segments) we apply an additional smoothing term that penalizes changes to a,
between consecutive epi-splines. The degree of penalization is governed by a smoothing
parameter p which we initialize at zero and increase as necessary to achieve smooth DSE
estimates based on visual observation. Thus, given the second order of our epi-splines and
our objective of maximizing curvature across the entire mesh, we arrive at an objective

formulation defined by

max 1 (1 - )Zk(k) _ / d—zE*( ) zd Objective Function:
ap, ai, a p - P dp? X\P Pr Dual of Superexpectations
2a’2‘
k(k) = 5 Curvature Function
(1 + 4 Jak + 2a’2‘)
d? 2 2
p/ (ﬁ ;((P)) dp=p (alz‘ - aé‘“) ) Smoother Penalty
14

We note here that maximization of the sum of curvatures displayed a reasonable
shape response for estimating E(p), though other objective functions could reasonably be
utilized. Values for the penalty parameter p ~ 0.01 — 0.1 were shown to work reasonably

well when smoothing was required.
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2.3.2 Constraints on E7 (p)

We impose constraints according to known criteria as well as external information as
available. The following examines the significant constraints in formulations used here,

though this does not constitute an all-inclusive list.

Convexity, Continuity, and Differentiability

From Theorem 1 of the characterization of superexpectations [11], we know E% to be

convex. We can therefore impose convexity on each epi-spline segment by requiring
a¥ >0 VkeKk. (2.1)

This requirement further ensures that all curvature values will be positive, thus avoiding
any potential cancellation across the sum of segments. If we further require continuity
across the segments by tying mesh endpoints together and impose equal slopes at these
intersections, we enforce convexity across the entire epi-spline function. This also has the
added benefit of providing a smoother curve. Again, for pg and p; corresponding to the

right and left ends of the mesh segment accordingly, we arrive at

k k _k ko kN2 k+1 k+l _k+1 k+l, k+12
ag+aprta,(pr) =ay +a; p;" ta, (p; ), 2.2)

k k k _ _k+1 k+1 k+1
ay +2a,pp =a;" +2a;, p;. (2.3)

Density Continuity

If we assume the underlying distribution to have a continuous CDF, we can require a; to
be strictly positive across the mesh. This, again, relies on the DSE-quantile relationship of
Equation 1.6 so that if the quantile is constant across an interval p, there is a vertical jump
at that quantile value on the CDF, as demonstrated in Figure 2.2. As such, we can tighten

our convexity constraint to a strict inequality so that

as>0 VkeKk. (2.4)
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Figure 2.2: Relationship of CDF to Quantile Function
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CDF and quantile plots for an arbitrary, but non-continuous distribution. Notice that in areas
where Qx (p) is constant there is a corresponding jump in the CDF that prohibits continuity.

Endpoints

From Equation 1.5 we know that £} (0) = —E[X] and E} (1) = 0. Provided we may not
know E[X] exactly, we can approximate it from our sample data as either a point estimate
or as a confidence interval on the sample mean X. The Lower Confidence Bound (LCB)
and Upper Confidence Bound (UCB) for X can be determined via a number of statistical
techniques such as the student’s 7T-distribution or bootstrap sampling depending on a desired
confidence level. As such, we can impose a starting point constraint at p = 0 depending on
our knowledge of X and the degree of flexibility we wish to provide our formulation as one

of either

ay = E[X], (2.5)

Xicp <af < Xycp,  fork=1. (2.6)

Additionally, the end point is always fixed, thus providing a constraint for the right-most
epi-spline segment as
at +a¥ +ak =0  fork=K. 2.7)
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Lower Bounds
As per Equation 1.7, we have a lower bound on E% (p) according to whether or not we
have a known mean, known variance (o (X)), or some combination thereof. We therefore

impose a lower-bounding constraint as

k k k.2 Ox
ao+%P+aﬂ7S(p—D<EBJ+ ) (2.8)
vi-p
k k k.2 o S
a0+%P+aﬂ’S(P—U<X+ ) (2.9)
vi-p

where s refers to the sample standard deviation. If E[X] or o(X) are unknown, we can
again estimate their values within some range of a confidence interval. Although there exists
the corresponding upper bound for E;(p) as well, due to the requirement for convexity, it

becomes a redundant constraint, and is therefore omitted.

Quantile Constraints

We recall from earlier that the slope of the DSE function is in fact the distribution’s quantile
function as per Equation 1.6. As such, if we know quantile values for X at specific p, we
can enforce

d sk
%EX@) =a¥+2dkp=0x(p)  forpelpt, pkl, (2.10)

within each epi-spline segment containing such p. Furthermore, although mean and standard
deviation are notoriously difficult to estimate for small, asymmetric distributions, quantiles
are robust to outliers and can be estimated quite easily via binomial confidence intervals [16].
Even in relatively small samples, reasonable intervals for the median, 25th, and 75th
quantiles (p = 0.50, 0.25, and 0.75 respectively) can be arrived at for modest confidence
levels. Utilizing this non-parametric technique, we modify our constraint to include quantile

lower and upper bound estimates Q(p) for any desired p as

Orca(p) < a¥ +2akp < Ques(p)  forp € [p¥, phl. (2.11)

For the remainder of this thesis, we use the 25th, 50th, and 75th quantiles to bound epi-spline
slopes for DSE estimation. An illustration of this constraint, as well as those for the end

points and lower bounding, can be seen in Figure 2.3.
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Figure 2.3: Visualization of Constraints for DSE Optimization
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A graphical depiction of several constraints (green) imposed on the DSE optimization for an
exponential random sample. The leftmost vertical confidence interval implies the approxi-
mation of expected value, while the three slope constraints seen at p = 0.25, 0.50, and 0.75
imply unknown but estimated quantile intervals. The lower bound constraint is informed
through an estimation of both the sample mean and variance as per Equation 2.9.

Tail Weight

If the distribution is known to be heavy-tailed, meaning the tail decays sub-exponentially,
we can apply an additional constraint by leveraging knowledge of the exponential quantile
function. As identified in subsection 1.4.1, we know that the left derivative of E} (p) is
in fact the quantile value for the distribution. For the exponential case, we take the ratio
of consecutive quantile values to obtain a relative rate of slope change for the epi-spline
estimate. Heavy-tailed distributions will have a quantile function derivative that is bounded
above by this change rate within the tail region, as exemplified in Figure 2.4. Thus, if we

know or suspect heavy-tailed behavior, we enforce

Q(py*h) _log(l-pp) _ aj+2a;p;

Vk € Tail Region,

0pf) log(1-pf) —  al+2akpf
(a’f + 2a’2‘pf) log(1 —pﬁ) < (a'f + 2a’2‘p§) log(1 —pf). (2.12)
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Figure 2.4: Relative Gradient Change of Quantile Comparison
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Ratio of quantile values for the exponential (solid blue) and Pareto (dotted red) densities
possessing equal means. Note the lower bounding performed by the exponential on the
fat-tailed Pareto, particularly in the tail region right of p ~ 0.8.

Minimal and Maximum Values

Since we know that the distribution’s Oth quantile must be at most as small as the minimum
observation, and that its 100th quantile must be at least as large as the maximum observation
in the sample, we can develop constraints on the starting and ending slopes according to

Equation 1.5, and implemented as

a¥ +2af > max{x;}  fork =K, (2.13)
a¥ < min{x;} fork =1. (2.14)

\%

Similarly, if we know the distribution’s minimum or maximum value (or perhaps some
reasonable bound on it), we can apply these equations as equalities or inequalities on the

known value in the form of

a¥ +2ak = max{f(x)}  fork =K, (2.15)
a¥ = min{f(x)} for k = 1, (2.16)
af +2d5 < f(x)ucs for k = K, (2.17)
af > f(x)rcs for k = 1. (2.18)
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Monotonicity

We leverage the DSE-quantile relation as per Equation 1.6 in order to enforce a characteristic
of quantile gradients in regions of monotonicity. Within the underlying density, any region
of monotonic increase or decrease will have a corresponding quantile gradient that is
negative or positive respectively. Secondly, given the second-order of our epi-splines, we

know that
d2
dp?

Because we segment our mesh into evenly spaced segments, we combine these two relations

Ey = Q%(p) = 245 for p € [p}, phl. (2.19)

to form a DSE constraint on a; enforced over regions of known or suspected monotonicity.

This relationship is depicted in Figure 2.5 and is applied as

alz‘ > a’z‘+1 Vk € Monotonically Increasing Region, (2.20)
aé‘ > alz‘_1 Vk € Monotonically Decreasing Region. (2.21)

2.4 Density Estimation Formulation

In contrast to the situation with DSE estimation where endpoints for the mesh p were
predefined on the interval [0, 1], for density estimation we typically will not know the
endpoints of the underlying distribution beforehand (if they are even finite). As such, our
mesh x is defined by both a resolution M as well as endpoints / and u, as formulated in
subsection 1.5.1.

2.4.1 Density Objectives
Given our choice of objective function as outlined earlier, the general formulations for

density become

MLP: log (f(x) t. feF, (2.22)
m?X; og (f X ) s f
MEP:  max / ~f(0)log (f(x)) dx st. feF, (2.23)
f
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Figure 2.5: Quantile Gradient Relationship to Monotonicity
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The Weibull distribution from before with several quantile values plotted. Since quantiles are
shown for evenly spaced p segments (0.50, 0.65.,...) the corresponding areas under the curve
between them are equal (in this case 0.15). Since the PDF is monotonically decreasing in this
region, basic geometry tells us that the distances between our quantiles must increase over
the same region. This increase directly corresponds to our change in a'z‘ across our epi-spline

mesh.

where the set of constraints F are determined by properties of density functions (non-
negative, integrate to one), as well as soft information such as continuity and shape con-

straints. With first-order epi-splines, we optimize our segment coefficients according to one

of either

n

MLP: =max » log(bl +b'x;) Vi,m| x; € m,
bbzlj g(bfy + b'xi) | %,

MEP: = max / —(by + b'x)log(by + b x)dx
0, O1

=max E
b
m

m o, m
m m m m m m Zp T2
Zrlog(zy) + zj log(z)) +2(zk + 27 )log (T)] )

by, by

Here we use z}ﬁ’ = bg‘ + b’I"x’I’g and z? = bg’ + b’I”x’L” as substitution variables, and make
use of Simpson’s Rule for approximating the integration contained in the MEP. Given

that Simpson’s Rule provides exact results for polynomials of degree three or lower, we

implement it in later quantile and superquantile constraints to simplify terms.
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2.4.2 Constraints on Density

We provide the minimal set of constraints that define a valid PDF, as well as those additional
constraints dealing with quantile and superquantile estimates. Many other shape constraints,
or soft information, such as monotonicity, unimodality, and convexity can be incorporated
depending on one’s knowledge of the underlying distribution. These methods are utilized
throughout the remainder of this study, though the exact constraint derivations are omitted

for the sake of brevity. Many of these derivations can be found in [14].

Unity
By definition, the density function must integrate to one. We can formulate this integrality

constraint in linear form, where A, is the mesh resolution (# — [)/M, shown here as

o
m

2

x4+ x"
by + b (u)] = 1. (2.26)

Continuous
We further assume densities explored here come from the family of continuous functions
so that

b+ b X = bt By m < M. (2.27)

Non-Negative
Finally by definition of a density function, our estimates must contain all non-negative

values such that

B +b"X" >0 Yme M, (2.28)
BB >0 Yme M. (2.29)

Quantile Constraints
If we know (or believe we have accurately estimated) the value of a particular quantile, we

can, in much the same way that we formulate the unity constraint (Equation 2.26), require
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that some percentage of density occupy the region left or right of the value itself. This works
for not just quantiles estimated from the data itself, which we used to inform Equation 2.11,
but also for quantile values closer to p = 0 or p = 1 by estimating the slope of the DSE

function. In either case, quantile constraints for a specific p can be implemented as

> s

mx=0(p)

m

x4+ x"
b+ b (%)] =1-p. (2.30)

Superquantile Constraints

We wish to incorporate a constraint utilizing our estimate of the superquantile(s) derived
from the previous optimization. Using the definition of superquantile outlined in Equa-
tion 1.3, and leveraging Simpson’s Rule to simplify the expression, we arrive at a superquan-

tile constraint for a particular quantile p as

1 Ac, -
= D, Tht=0w) (231)

mlx}'=0(p)
h(x) = 36§ (X + xj) + B ()7 + (x])?) + B (xf + x])’ (2.32)

which remains convex in by and b;. The corresponding quantile value Q(p) can be estimated
if unknown. One may also recall that since the superquantile at p = O is in fact the expected
value, we see that the above formulation doubles as an expected value constraint for m

summed across the entire mesh.

2.4.3 Quantile/Superquantile Constraint Implementation

In subsection 2.4.2, we formulated our quantile and superquantile constraints as equalities.
Given the approximate nature of our quantile/superquantile values from DSE estimation, in
practice we implement our constraints as either lower or upper bounds, the choice of which
depends on the objective function for density (MLP vs. MEP) as well as any assumption

made regarding a potential bias in estimates.

Typically, MLP formulations utilize lower bounding so as to “push” density into

the tails, while MEP formulations use upper bounding to “rein in” density from the tails.
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Conversely, if one believes the values attained though DSE approximation to overestimate
the true superquantile values then perhaps the implementation of superquantile constraint
as an upper bound may be more appropriate. When not otherwise stated, we assume that all
MLP formulations incorporate expected value, quantile, and superquantile constraints via a
lower-bounding of right-tailed densities, while MEP formulations use an upper-bounding of
right tailed densities. With this in mind, we present the following quantile and superquantile
constraints, where both Q(p) and é(p) are the results of DSE estimation in the previous

step for quantiles and superquantiles respectively.

[ xe + X7\
Z Ay b+ b ( - ) <1-p  (Quantile Upper Bound) (2.33)
mix">0(p) ]
[ X+ xM\ ]
DAy ( - L) >1-p  (Quantile Lower Bound) (2.34)
mix">0(p) ]
1 A =
-5 Z ?xh(x) < Q(p) (Superquantile Upper Bound) (2.35)
— p d
m|x7'=Q(p)
1 Ay =
E Z ?h(x) > 0(0p) (Superquantile Lower Bound) (2.36)

m|x"">Q(p)

Given the possibility of inaccurate and perhaps even infeasible quantile and su-
perquantile estimates, we further introduce a highly-penalized set of slack variables by
which we elasticize the constraint bounds to ensure feasibility in the solution space. In

nearly all cases, these slack variables remain zero.

2.5 Approximation Metrics

In order to assess the validity of our method, we must quantify the error of our estimates
numerically. For evaluation of the quantile and superquantile estimates, we use the average
absolute deviation (AAD) and the median absolute deviation (MAD) between the estimated
and known values at various p across all optimization iterations (j € J). Here we evaluate

our DSE estimation results at p = 0.80, 0.90, 0.95, and 0.99. Since we are dealing with
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heavy-tailed densities, we prefer two centrality measures so as to assess the impact of

potential outlier skewing. Thus, we formulate our DSE error metrics as

b

AAD(p) = 5 3" |6 - 0p)
J

MAD(p) = median{
J

o) -0},
with quantile errors calculated in the same manner.

For density estimation, we also propose two metrics. The first is a measure of overall
fit, where we sum the squared errors (SSE) at epi-spline segment endpoints across the entire
mesh. The second metric uses the same measure, but only across endpoints within the tail
region. As such, we term this the sum of squared tail errors, or SSTE, and use the 80th,
90th, and 95th quantiles to define the start of right tail regions according to

A 2
SSE =) (fx) - f)",
m
R 2
SSTE= Y (f)-rfm)".

m|x7'>0(p)
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CHAPTER 3:

Distributional Benchmarks

In order to evaluate and quantify the impact of accurate superquantile estimation within
the density estimation framework, we evaluate the methodology posited in Chapter 2 by
considering samples from known distributional benchmarks. We explore two distributions,
the exponential and the Pareto, making use of their well-defined density and quantile
functions in order to measure estimation errors in quantiles, superquantiles, overall density,

and tail density.

3.1 Exponential Superquantile Estimation

We begin with the exponential case, where a comparison is relevant because an exponential
decay in the tail density serves as the boundary case for classification of heavy tails. Thus,
this exploration serves as a validation for such data that might just barely be considered
heavy-tailed. We begin by taking a sample of 30 IID observations, randomly generated

from an exponential distribution with a rate of one-fifth.

_ 1
X1, X2, o X30 ~ fx = €™, for 1 = 3

Given knowledge of the underlying distribution, we can compare the results attained
via epi-spline estimates with the true values for quantiles and superquantiles at specific
p-values. From the PDF, we derive the following quantile function Qx(p), superquantile
function Qx(p), and DSE function E% (p) for the exponential case. Probability density,

quantile, and DSE plots for the exponential case can be seen in Figure 1.3 and Figure 1.5.

1
0x(p) ==<In(1-p) 3.1)
_ 1
Ox(p) = 7 [1=In(1 - p)] (3.2)
. - -1
EL(p) = (p- 1)0x(p) = "’T [1-In(1-p)] (3.3)
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With our random sample, we apply different combinations of constraints that con-
stitute varying degrees of distributional knowledge and soft information by way of four
progressive scenarios. As the scenarios progress, we gradually increase distributional
knowledge in a manner that seems reasonable. Scenario 1 serves as a base case, with no
prior knowledge outside of what we can deduce from the sample itself. Using bootstrapping,
we obtain 95% confidence intervals for the mean and standard deviation (as per section A.3),
as well as 95% confidence intervals for the median and quartiles using binomial approx-
imations (as per section A.4). In Scenario 2, we acquire knowledge of the distribution’s
median as well as the “heavy-tailed” characteristic. In Scenario 3 we learn its median
and quartile values, as well as the fact that X cannot be negative (i.e., a minimum value
threshold). Finally, given the difficulty in their estimation, we wait until Scenario 4 to add
perfect knowledge of the distribution’s mean and variance, which are used to inform both
the starting conditions and the lower bounding constraint. We also add the knowledge that
the functions is monotonically decreasing. These constraint formulations are summarized

with their associated equations in Table 3.1.

Scenario Constraints Equations
DSE 1 Continuous Equation 2.2
Differentiable Equation 2.3
Convex Equation 2.1
Endpoint Equation 2.7
Startpoint Equation 2.6
Lower Bound Equation 2.9
Quartiles Equation 2.11
Min. Value Equation 2.14
Max. Value Equation 2.13
DSE 2 + Median Known Equation 2.10 (p = 0.5)
+ Heavy-Tailed Equation 2.12
DSE 3 + Quartiles Known Equation 2.10 (p = 0.25, 0.75)
+ Minimum Value Equation 2.18 (x > 0)
DSE 4 + Mean Known Equation 2.5
+ Variance Known Equation 2.8
+ Monotonic Decrease Equation 2.21

Table 3.1: Constraint Configuration Scenarios for Estimating DSE

For each scenario, 100 iterations of the optimization are performed, with each

iteration using a different randomly generated sample of 30 observations and a mesh of
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K = 20 segments. The results of these scenario replications are summarized in Table 3.2.
For the objective function, we begin with p = 0, incrementally increasing the penalty term
if results are determined to require additional smoothing. For the exponential case, no

smoothing was required.

Quantiles 0x(0.80) | 0x(0.90) | Ox(0.95) | Ox(0.99)
Scenario 1 1.129 2.397 4.637 9.426
Scenario 2 2.659 4.000 2.604 5.425
Scenario 3 0.943 1.688 2.334 7.038
Scenario 4 0.313 0.318 0.271 1.771
Superquantiles | Qx(0.80) | Ox(0.90) | Ox(0.95) | 0x(0.99)
Scenario 1 3.496 5.586 7.623 7.190
Scenario 2 3.529 3.791 4.261 4.152
Scenario 3 2.524 3.718 5.287 4919
Scenario 4 0.096 0.473 1.037 2.514

Table 3.2: AAD Estimation Errors for 100 lterations on Exponential Benchmark

We see from Table 3.2 that as the degree of distributional knowledge increases,
the accuracy of both quantile and superquantile estimates generally improves. Somewhat
intuitively, estimates further in the tail (closer to p = 1) are less accurate than those nearer
the center. Additionally, we find a significant jump in accuracy for Scenario 4, suggesting
that knowledge of the mean and variance is valuable in both quantile and superquantile
estimation. A plot of the 100 DSE epi-spline estimates and their associated superquantile
curves for Scenario 2 is provided in Figure 3.1. Additional scenario graphics are included

in Section A.6.

3.2 Exponential Density Estimation

With the estimates of Qx and Qx for p = 0.80, 0.90, 0.95, and 0.99, we now perform
a second constrained optimization to estimate the probability density of the underlying
distribution. As before, we constrain the optimizations to correspond to the same levels
of distributional knowledge as in the DSE scenarios. For example, Scenario 3 here would
assume perfect knowledge of median and quartiles in the same manner as Scenario 3
during DSE estimation. In this way, the scenarios for density estimation represent a logical

progression within the overall methodological framework.
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Figure 3.1: DSE and Superquantile Estimates for Exponential Scenario 2

p p

(a) Scenario 2 DSE Estimates (b) Scenario 2 Superquantile Estimates

Dual of superexpectations (left) and superquantile (right) second-order epi-spline estimates
for the exponential case using constraints via Scenario 2 and optimized for curvature. The true
values are shown in solid red. Notice the generally conservative estimates made, regularly
overestimating the superquantiles in the range near p = 1.

For each scenario we optimize on the basis of both MLP and MEP. In addition, we
run each optimization twice. In the first iteration, we ignore the quantile and superquantile
estimates derived in the previous section. In the second iteration we apply these estimates
for p = 0.80, 0.90, 0.95, and 0.99 so as to assess the impact of the previous step. This
second iteration is denoted by a star (“*”) in the scenario name, indicating that it uses
E% (p) optimization to obtain additional constraints in density estimation. In total, this
requires 16 formulations, each with 100 iterations using different sample data, for 1,600
total optimizations. We recall that constraints for mean, quantile, and superquantiles are
bounded as per subsection 2.4.3 with MLP utilizing lower bounding and MEP utilizing
upper bounding.

Due to potential inaccuracies in sample estimates and quantile/superquantile esti-
mates from DSE optimization, for any constraint reliant upon “less than perfect” knowledge
we incorporate a highly penalized slack variable so as to ensure feasibility throughout the
100 iterations. Finally, soft information is applied consistently throughout scenarios as per
Table 3.3.

The results of our 16 scenarios are depicted in Figure 3.2, which shows the SSE

across the entire mesh for both MLP and MEP formulations and averaged across the 100
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Soft Information for Exponential PDF Estimation
Unity, Continuous, Non-Negative
Lower/Upper Limits: [0, 60]
Monotonic Decrease: x > 0
Convex Right Tail: x > 0
Max. Gradient Change: Ab; < 0.01

Table 3.3: Soft Information for Exponential Density Estimation

Figure 3.2: SSE Results for Exponential Benchmark
MEP MLP
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Constraints
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. PDF*
0.01- I
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Scenario
Sum of Squared Errors (SSE) for first-order epi-spline estimates evaluated across all mesh
segments for both MLP and MEP formulations and averaged across 100 iterations. Results
show an improvement as distributional knowledge increases, and when quantile/superquantile
estimates are incorporated.

iterations. We note two general trends. First, as scenarios increase in their level of
distributional knowledge there is a reduction in overall density error, the degree to which
seems to depend on objective formulation. Second, the inclusion of estimated quantile and
superquantile values causes a noticeable decrease in overall error, especially in early MEP

scenarios. A more detailed numerical summary of these results is included in Table A.1.

The results of density estimation across the 100 iterations for Scenario la* is
provided in Figure 3.3. We include here a second plot on a log-scale to better visualize the

tail region estimates. The plots of additional scenarios are provided in section A.6.

29



Figure 3.3: PDF Estimates for Exponential Scenario 1a*
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Density estimates (left), also shown on a log scale (right), for second-order epi-spline estimates
for Scenario 1a* of the exponential benchmark. The true values are shown in solid red.

3.3 Pareto Superquantile Estimation

For our second benchmark, we explore a distribution known to possess a heavy tail, the
Pareto. Using the same methodology as before, we begin with a sample of 30 observations
taken from a Pareto distribution with shape parameter («) of three and a scale parameter

(x,,,) of ten.

(x 4+ x,)%

ax
fora =3, x,, = 10

X15 X2, oy X30 ~ fx =

From the probability density function, we attain the following quantile function

Ox(p), superquantile function Qx(p), and DSE function E% (p) for the Pareto case. We

again reference Figure 1.3 and Figure 1.5 of Chapter 1 for plots of probability density,
quantile, and DSE functions.

Xm

Ox(p) = m —Xm (3.4)
- axy,

Ox(P) = oy 1y (3.5)
Ex(p) = (;"‘f’f)u ) (1= p) (3.6)
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3.3.1 Superquantile Estimation

Using the same constraint scenarios as outlined for the exponential case, we arrive at the
following results summarized in Table 3.4. We first notice the considerable increase in
quantile and superquantile estimation errors, particularly for higher p-values. Still though,
we continue to see the general trend of decreasing errors as the scenarios progress. Scenario

2 epi-spline estimates are provided in Figure 3.4, where we see similar results to those of

the exponential case.

Figure 3.4: DSE and Superquantile Estimates for Pareto Scenario 2
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Dual of superexpectations (left) and superquantile (right) second-order epi-spline estimates
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(a) Scenario 2 DSE Estimates

(b) Scenario 2 Superquantile Estimates

for Scenarios 2 for the Pareto case. The true values are shown in solid red.

Quantiles 0x(0.80) | 0x(0.90) | 0x(0.95) | 0x(0.99)
Scenario 1 2.107 4952 9.347 13.474
Scenario 2 1.968 2.184 2.181 11.176
Scenario 3 0.882 0.801 2.405 13.032
Scenario 4 1.162 1.064 2.091 5.929
Superquantiles | Ox(0.80) | Ox(0.90) | Ox(0.95) | 0x(0.99)
Scenario 1 6.229 9.222 11.575 22.412
Scenario 2 2.768 4.873 8.577 27.326
Scenario 3 2.841 5.436 9.743 28.872
Scenario 4 0.378 1.866 4.531 22.092

Table 3.4: AAD Estimation Errors for 100 Iterations on Pareto Benchmark
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3.4 Pareto Density Estimation

We again run our optimizations across the 16 formulations, plotting density estimates and
recording errors for each of the 100 iterations. We modify our mesh, expanding it from
[0, 60] (as in the exponential case) to [0, 110] so as to encompass all X observations. All
other soft information remains as before. The numerical results of these error calculations
is provided in Section A.6 and plotted in Figure 3.5. Scenario la* again serves as an
illustrative case for optimization on the basis of log-likelihood with minimal information,

where we again include a log-scale plot to highlight estimation in the tail region (Figure 3.6).

Figure 3.5: SSE Results for Pareto Benchmark
MEP MLP
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Scenario
Sum of Squared Errors (SSE) for first-order epi-spline estimates evaluated across all mesh
segments for both MLP and MEP formulations and averaged across 100 iterations. In contrast
to the exponential case, the addition of additional quantile/superquantile constraints doesn’t
appear to help as much in overall density estimation, at least from a quantitative perspective.

Constraints

. PDF
. PDF*

3 4

3.5 Benchmark Summary

The exponential and Pareto cases provided somewhat mixed results. On one hand, the
exponential benchmark seems to suggest that the addition of quantile and superquantile
constraints informed though DSE approximation can be quite beneficial, particularly for
MEP formulations that have access to very little distributional knowledge (as in Scenarios

1 or 2). Contrast this to the Pareto cases, where the addition of these same constraints
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Figure 3.6: PDF Estimates for Pareto Scenario 1a*
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Density estimates (left), also shown on a log scale (right), for second-order epi-spline estimates
for Scenario 1a of the Pareto benchmark across 100 iterations. The true values are shown in
solid red.

seemed to have almost no impact. This, however, might be slightly misleading. Recall that
the error of quantile/superquantile estimates for the Pareto case was higher than that of the
exponential. If predicted values possess significant error, then it follows that their inclusion
in an density estimation framework could actually be detrimental rather than helpful. For
this reason, we do not rely purely on a numerical evaluation of the technique’s efficacy, but
also include plots displaying the fidelity of the estimates themselves for visual comparison.

Again, these can be found in Section A.6.

3.5.1 Hypothetical Constraint Implementation

One trend that remains consistent, however, is the improvement in accuracy as we move from
Scenario 1 to 4. The addition of new information into the density estimation framework
improves overall estimation considerably, with perhaps the most noticeable improvement
occurring between Scenarios 2 and 3, as seen in Figure 3.2 and Figure 3.5. In light of this
observation, we feel confident that quantile and superquantile constraint incorporation can
improve density estimates provided the constraints are near the true quantile/superquantile
values. To assess this, we provide a fifth scenario, showing MLP and MEP formulations
utilizing a perfect knowledge of the quantile/superquantile constraints used in Scenario 1

and without any other additional information. We refer to these scenarios as run “P,” with
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results depicted in Figure 3.7 and summarized in Table 3.5.

Figure 3.7: PDF Estimates with Perfect Quantile Knowledge
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Scenario 1 runs for both the Exponential case (MLP) and Pareto case (MEP) given a hy-
pothetical perfect knowledge of quantile/superquantile values for p = 0.80, 0.90, 0.95 and
0.99. Compare these to the results shown earlier and it becomes apparent that accurate
quantile/superquantile estimates can greatly enhance density optimization.

Although improvement is not made in every case, we generally find that MEP
formulations are greatly improved by adding accurate quantile/superquantile constraints.
Aggregating the errors across both cases and formulations we calculate an overall improve-
ment in SSE of roughly 25% between Scenarios 1 and P, and an overall improvement in
SSTE (averaged across p = 0.80, 0.90, 0.95) of 15% for MLP and greater than 80% for
MEP.
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Scenario | SSE | SSTE (0.80) | SSTE (0.90) | SSTE (0.95)
Expla | 0.0127 2.11e-03 1.11e-03 5.43e-04
Exp la* | 0.0118 1.52e-03 8.36e-04 4.59¢-04
ExpPa | 0.0119 1.70e-03 9.52e-04 4.82e-04
Exp 1b | 0.0283 2.94e-03 2.66e-03 2.06e-03
Exp 1b* | 0.0079 | 0.55e-03 2.46e-04 1.71e-04
ExpPb | 0.0064 | 0.28e-03 8.64¢e-06 1.96e-06
Par la 0.0253 1.85e-03 6.45e-04 1.85e-04
Par 1a* | 0.0251 1.39¢e-03 5.20e-04 2.16e-04
Par Pa 0.0243 1.23e-03 5.28e-04 2.47e-04
Par 1b 0.0183 0.84e-03 3.38e-04 8.03e-05
Par 1b* | 0.0168 | 0.75e-03 2.92e-04 7.80e-05
Par Pb 0.0164 | 0.21e-03 3.54e-05 1.11e-05

Table 3.5: Impact of Perfect Quantile Knowledge on Error

3.5.2 Observations

The use of second-order epi-splines provides a relatively simple way to leverage a curvature
objective function while requiring relatively few mesh segments (only 20 here). While this
eases computation, it also limits the degrees of freedom afforded the optimization solver
and as such, limits the flexibility of the epi-spline estimates. This issue came to light in
trying to impose multiple simultaneous constraints that exhausted the degrees of freedom

provided by second-order splines, resulting in infeasibility issues.

One could of course simply increase the complexity of the epi-spline model through
enhancing the degree of the polynomial. This would enable a more flexible fit that could
accommodate more elaborate constraint combinations at the expense of increased compu-
tational cost. Alternatively, one could also simply add slack variables to those constraints
deemed desirable, though not necessarily required. This approach would have the added
benefit of providing the marginal costs of taught constraints, which provides the intuitive
appeal of relating to a confidence in imposing the constraint. As such, that was the method

pursued here.
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CHAPTER 4

Non-Parametric Financial Data

Having observed the impact of DSE estimation and the relative merit of the method on
known distributional benchmarks, we now turn our focus to the financial sector, where data
sets are known to commonly exhibit heavy-tailed characteristics. We obtain this data from
Dr. Uryasev, a professor and Director of the Risk Management and Financial Engineering
Lab at the University of Florida. The data includes 1,000 observations of both positive and

negative values of a particular financial measure, which we will term “cost.”

4.1 Data Evaluation

We begin with a summary of the raw data Y, shown in Table 4.1, as well as a PDF estimate
derived using the density function from the R base-package stats, which we will term d(Y),
across all 1,000 observations. Here, the density is estimated using kernel smoothing as
described in [17]. Many other density estimation packages are available, with a comparison

of efficiency and accuracy explored in [18].

Statistic | Minimum | 1st Quartile | Median | Mean | 3rd Quartile | Maximum
Y -603.40 -127.90 | -10.33 | 7.44 118.80 1095.00
dy) —728.30 -129.89 -11.71 | 7.44 125.51 1219.40

Table 4.1: Summary Statistics of Financial Data

We assume the data to have come from some continuous, but unknown distribution.
With 1,000 observations, the PDF estimate arrived at by d(Y') provides us with a qualitatively
acceptable approximation to the true distribution within the range of observed values.
We realize, however, that d(Y) is not “the true” distribution, and that its approximations
(particularly in the extreme tail regions) will invariably be flawed. Without the underlying
ground-truth, a true numerical evaluation of results (as in Chapter 3) remains ill-posed. As
such, we focus the majority of this chapter on a qualitative evaluation of density, avoiding

quantitative comparisons of tail regions.

Inspecting the data, we suspect (as per Figure 4.1a) that the right tail of the data may
be heavy-tailed. In fact, if we look only at the density to the right of the mode (which in this
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case is roughly zero) and rescale accordingly, we see that by comparison with an exponential
(Figure 4.1b), the data does appear to possess a heavy tail. Though in reality an investigation
such as this would not be possible (as we are using all 1,000 observations), we include it
here to show that our data can reasonably be considered heavy-tailed, a specification we
earlier cited in the outline for this approach.

Figure 4.1: Financial Data Density Analysis

0.0025 4 5e-03

/‘ 2e-03
0.0020 |

1e-03

5e-04

0.0015 -
2e-04 H
le-04 H
0.0010 —
5e-05

0.0005 2e-05

1e-05 | — Kernel Est.

0.0000 = = 5e-06 - ~ ~ Exponential MLE
T T T T T T T T T T T T
-500 0 500 1000 5 10 20 50 100 200 500 1000

Cost Cost
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The PDF (left) and tail density (right) for the financial data. The tail density here is compared
with an exponential distribution using MLE to estimate the rate parameter and plotted on a
log-scale. We see evidence here that the data can be considered heavy-tailed.

4.2 Quantile and Superquantile Estimations
We intend to evaluate the efficacy of our approach on small data sets for which limited
knowledge is available. As such, we depart from the scenarios outlined in Chapter 3 to rely

solely on information derived from the sample data itself.

We begin by taking 30 randomly sampled observations (without replacement) from
the original data and calculating summary statistics in the same manner as Chapter 3. Doing
this over 100 replications, we apply constraint equations that closely relate to Scenario 1
from earlier, and outlined in Table 4.2. We again optimize for curvature, in this case
utilizing a smoothing parameter of p = 0.01. The results of the 100 replications for
quantile/superquantile predictions are summarized in Table 4.3, along with their associated

standard errors (SE). We also include the quantile and superquantile values derived from
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both Y and d(Y) as ameans of comparison. From these estimates, and from visual inspection
of Figure 4.2, we find our method routinely overestimating both quantile and superquantile
values. Recall, however, the curvature objective function was implemented with the intent

of achieving conservative predictions.

Constraints
Continuous, Differentiable, Convex
Startpoint, Endpoint, Quantiles
Min. Value, Max. Value
Lower Bound, Heavy-Tailed

Equations
Equation 2.2, Equation 2.3, Equation 2.1
Equation 2.6, Equation 2.7, Equation 2.11
Equation 2.14, Equation 2.13
Equation 2.9, Equation 2.12

Table 4.2: Constraint Configuration for Financial DSE Estimation

Quantiles 0,(0.80) | 0,(0.90) | 0,(0.95) | 0,(0.99)
Y 158.33 278.49 419.09 699.71
d(Y) 163.63 289.41 430.44 750.61
Epi-Spline Est. | 288.89 414.43 537.25 944.34
Epi-Spline SE. 69.10 94.82 124.42 321.01
Superquantiles 0,(0.80) | 0,(0.90) | 0,(0.95) | 0,(0.99)
Y 340.44 472.81 604.03 861.88
d(Y) 343.17 471.17 598.49 781.69
Epi-Spline Est. | 490.27 633.76 791.68 995.23
Epi-Spline SE. | 110.91 145.55 187.39 246.03

Table 4.3: Average Epi-Spline Quantile/Superquanile Estimates

4.3 Density Estimates
Using the quantile and superquantile estimates previously derived, we again estimate the
financial PDF under constrained optimization of both MLP and MEP as in Chapter 3.

Additionally, we apply soft information for all formulations given on Table 4.4.

4.4 Comparison of Methods

We compare the results achieved with epi-splines to densities obtained using kernel smooth-
ing on 100 replications, each with a different sample of 30 observations. Sample kernel
estimates are again obtained using the density function from the stats package in R. For

kernel smoothing, we enforce mesh endpoints and resolution to match that of the epi-spline
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Figure 4.2: DSE and Superquantile Estimates for Financial Data
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DSE and superquantile estimates for the financial data samples of size 30. Constrained
optimization is performed as per Table 4.2. The red line corresponds to the d(Y) kernel
estimate across the entire data set. We can see the general overestimation performed by the
objective curvature function on the superquantile plot, leading to conservative predictions.

Financial Soft Information
Unity, Continuous, Non-Negative
Lower/Upper Limits: [—1, 000, 1,500]

Unimodal Inflection Points: x = =250, 250

Convex Right Tail: x > 250

Convex Left Tail: x < —250

Mode: max{f(x)} € [-50,50]

Minimize Gradient Change: Ab; < 2e — 06

Table 4.4: Constraint Formulations by Scenario for Density Estimation

estimates. This allows for direct comparison of density estimates at each mesh intersec-

tion. The results of these kernel smoothing estimates can be seen in Figure 4.3b, with a

comparison of estimation errors summarized in Table 4.5.

With few assumptions made on the data, we can arrive at decent approximations

that are comparable to those estimates made via naive kernel smoothing. If more soft infor-

mation becomes available, epi-spline estimates can leverage the additional knowledge for

incrementally better approximations. As an illustrative example of this, we run both meth-

ods over a single sample using an epi-spline MEP enhanced with an accurate knowledge of

select superquantile values. In this case, our “accurate” superquantile values are those found
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Figure 4.3: Epi-Spline vs. Kernel Smoothing Density Estimation
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Density estimates for second-order epi-splines under MLP* (left) and kernel smoothing
(right). The d(Y) estimate is shown in solid red.

Estimation Method SSE SE
Epi-Spline MLP* | 3.1720e-06 | 2.3709¢e-06
Epi-Spline MEP* | 7.5303e-06 | 3.0263e-06
Kernel Smoothing | 3.9536e-06 | 3.0835e-06

Table 4.5: PDF Estimation Error for Financial Data

in Table 4.1 for Y. The results are shown in Figure 4.4 and demonstrate the improvements
possible with accurate quantile/superquantile estimates, particularly in the tail region. We
recall that the density approximation of d(Y') in solid black is not the “true” density, and
that in all likelihood, the much smoother epi-spline estimate seen in the log-scale plots are

probably better reflections of the true underlying tail density.
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A comparison of density estimation using MEP optimized epi-splines informed through quan-
tile and superquantile approximations (red), and kernel smoothing (blue). Both methods are
used on a sample of 30 observations. With minimal knowledge, quantiles and superquantiles
can be approximated and incorporated with additional soft information. As the fidelity and
scope of knowledge grows, estimates improve. The left figures use quantile and superquantile
estimates corresponding to Scenario 1 in DSE estimation. If these estimates were 100%
accurate, the improved estimates would correspond to the figures on the right. Bottom
figures are plotted on a log-scale and enhanced to show the right tail region.




CHAPTER 5:
Multi-Fidelity Hydrofoil Data

We now investigate a multi-fidelity data set that comes to us from Dr. S. Brizzolara of the
MIT SeaGrant program. The data contains the output of 878 runs of both high-fidelity and
low-fidelity fluid dynamic models that simulate a particular hydrofoil concept’s drag-to-lift
ratio. Since computational cost can vary significantly between low-fidelity vs. high-fidelity
simulation runs, we wish to explore the accuracy of density estimates that rely on only a
few high-fidelity observations supplemented with many low-fidelity runs. A more detailed
exploration of multi-fidelity modeling and its applications to fluid dynamics simulations

can be found in [19].

5.1 Hierarchical Model Blending

In this endeavor, we explore three options for informing the quantile and superquantile
estimates that ultimately help shape our PDF approximations. In the first, we use only
a small sample of high-fidelity observations, running a two-stage optimization in much
the same way as Chapters 3 and 4. Next, we look at the correlated relation between the
low-fidelity and high-fidelity observations, forming a linear model which we then use to
predict high-fidelity quantiles and superquantiles from low-fidelity observations. Finally,
we look at a blended model which uses a combination of the previous two methods. As our
basis for comparison, we fit a kernel density across 875 of the 878 entries (we omit three
as outliers) for both the high and low fidelity outputs. We will henceforth loosely refer to
these as the kernel estimates for high- or low-fidelity data respectively. These distributions

and their associated sample data are displayed in Figure 5.1.

5.2 High-Fidelity Modeling

With the 10 observation sample of high-fidelity simulation runs, we calculate the sample
statistics and bootstrapped confidence intervals as in Chapter 3. Performing the first opti-
mization using the same constraint formulations provided in Table 4.2, we obtain the results

shown in Figure 5.2, where we see fairly severe overestimation of superquantiles.
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Figure 5.1: Hydrofoil Data Inspection
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Densities of the two hydrofoil data sets formulated via kernel smoothing across 875 obser-
vations. We use 10 high-fidelity (green) and 300 low-fidelity (orange) samples respectively.
Note the unimodality of the low-fidelity kernel estimate vice the dual-modality of the high-

fidelity estimate.
np = 10

Number of High-Fidelity Samples:
Number of Low-Fidelity Samples:  n; = 300

In addition to quantile predictions for upper tail regions, DSE functions can (as per
Equation 1.6) also be used for quantile predictions in the lower tail regions, at least in theory.

Although the fidelity of this approach remains unclear, we will attempt it here so as to obtain
quantile estimates for regions where they cannot be reasonably attained from the sample

itself. In this way, we estimate additional quantile values for p = 0.05, 0.10, and 0.20,
including them as bounded quantile constraints within the density estimation formulation.

Using the estimates attained, we approximate density functions using the following

combination of sample statistics, predicted quantiles/superquantiles, and additional soft
information shown in Table 5.1. We elect here to optimize on the basis of log-likelihood

rather than entropy due to the small sample size so as to provide further emphasis for
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Figure 5.2: High-Fidelity Quantile Estimation
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Results of quantile estimation on the high-fidelity sample data. Notice the log-scale used
to display DSE (left). Although the DSE appears to be well-estimated, we see from the
superquantiles (right) that we are overestimating virtually all superquantiles beyond the mean.

density around the high-fidelity observations. Results are shown with and without the

implementation of the quantile and superquantile constraints in Figure 5.3.

HSV Soft Information
Unity, Continuous, Non-Negative
Lower/Upper Limits: [0.083, 0.088]
Unimodal Inflection Points: x = 0.0825, 0.0845
Convex Right Tail: x > 0.0857
Minimize Gradient Change: Ab; < 10e6

Table 5.1: Constraint Formulations by Scenario for Density Estimation

We see from Figure 5.3 that although constrained optimization of log-likelihood
can help identify the non-parametric dual-modality of the high-fidelity density, poor quan-
tile and superquantile estimates result in tail weights that actually prove detrimental to
overall approximations. Since quantile estimates for low/high p-values were underes-
timated/overestimated due to the nature of our DSE optimization objective, the resulting

constraints for the MLP formulation ended up pushing too much density into the tail regions.
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Figure 5.3: PDF Estimates Using High-Fidelity Sample Only
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Results of PDF estimation on the high-fidelity sample data. Using only soft information
and log-likelihood (left) we see a failure to properly estimate the tail regions for which no
observations are present. Adding additional constraints, however, causes overestimation of
the quantiles and superquantiles leads to an “over-filling” of the tail regions.

5.3 Low-Fidelity Surrogate Modeling

Estimates relying on only 10 observations can lead to predictions that prove either uninfor-
mative or perhaps even counterproductive. As such, we attempt to leverage the plethora of
low-fidelity observations by relying on the underlying correlation between data sets. We
begin by fitting a linear model and assessing the quality of fit for the 10 observations from
the high-fidelity sample and their associated low-fidelity values. A scatter plot showing the
general correlations, as well as the 10 points used for the regression model are provided in

Figure 5.4. As such, the resulting least squares linear model becomes

Xn=PBo+ B1Xi+e
Bo = 8.702 x 1073, (5.1)
B1 = 0.937.

Provided a reasonable fit of the linear model (here we have R? ~ 0.95) and the fact
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Figure 5.4: PDF Estimates Using Low-Fidelity Linear Approximations
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Scatter plot (left) of high-to-low fidelity observations for all 875 observations and the linear
model for predicting high-fidelity output from low-fidelity input values (right). The high-
fidelity sample data (green) is common to both plots.

that linear transformations preserve shape and distribution, we can translate mean, variance,

and quantile values for the low-fidelity sample data into intervals for the high-fidelity set by

Xy ~ Bo+ Bi X, (5.2)
Var(X;) = B2Var(X)), (5.3)
Ox, ~ Bo + B10x,. (5.4)

Additionally, we can estimate superquantile values from the transformed low-fidelity
data itself, and by DSE approximation. For superquantiles estimated from the transformed
low-fidelity data, we can further generate confidence intervals using bootstrapping if desired,
though we will not attempt this here. Due to the larger sample size of 300, we can more
confidently predict quantile/superquantile values for p closer to 0 and 1. In fact, because
sample estimates tend to underestimate both quantile and superquantile values (due to lack
of tail representation), and the tendency for these same estimates to be overestimated in

DSE approximation (as seen earlier), we propose a weighted averaging of these predictions
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to arrive at more accurate values. In this way, our estimates for quantiles and superquantiles

are calculated according to
Ouvg(P) = 00,(p) + (1 - )0, (p), (5.5)

where Qavg represents the weighted averaged of the sample quantile value (Q;) and the epi-
spline estimated quantile value (Q.). 6 provides the ratio of sample to epi-spline estimate
weighting. Here, we will use 8 = 0.6. The results of this process are seen in Figure 5.5,

where we note the greatly improved estimates obtained using a 60/40 weighted average.

Figure 5.5: Quantile & Superquantile Estimation Comparisons
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Comparison of quantile and superquantile estimation techniques. Recall that the constraints
informed via DSE estimation (red) were consistent over-estimators, while those informed

only by sample statistics (blue) were consistent under-estimators. Here, the averaged values
(green) provide the most accurate quantile and superquantile estimates.

Thus, we use the 300 low-fidelity observations to inform distributional characteris-
tics of the high-fidelity data, such as mean, variance, quantiles, and superquantiles. Then,
using these surrogate statistics, we impose the same formulation as before, but now with
log-likelihood on the basis of the transformed low-fidelity observations. Results are seen
in Figure 5.6. We note that by arriving at more accurate quantile and superquantile esti-
mates, our tail densities have improved considerably. Despite this, because we rely solely
on low-fidelity observations, we do not achieve the dual-modality we saw earlier with the

high-fidelity formulations.
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Figure 5.6: Density Using Low-Fidelity Surrogate Constraints
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Density estimation results when using the low-fidelity observations. Estimates are trans-
formed via a linear relationship determined by the correlations of the 10 observations from
the high-fidelity sample. Quantile and superquantile estimates are further estimated by a
weighted average of sample statistics and DSE approximations. Optimization is done via a
MLP for the transformed low-fidelity samples. Results show greatly improved tail densities
when compared to using high-fidelity observations alone.

5.4 High and Low Mixture Modeling

As a third and final method, we intend to combine the strengths of the previous two
techniques so as to achieve both the non-parametric dual-modality of the high-fidelity
model, as well as the improved tail densities observed in the low-fidelity surrogate model.
To do this, we retain our quantile and superquantile averaged estimates from the low-fidelity
sample, and implement them in a MLP formulation on the high-fidelity observations. All
other soft information remains consistent with previous iterations. The results of this

blended model are displayed in Figure 5.7.

The success of this method remains highly dependent on the accuracy of the linear
model developed in section 5.3. In this case, the 10 high-fidelity data points used in
model creation accurately reflected the preponderance of the high-to-low fidelity diagonal
relationship seen in Figure 5.4. With only 10 observations, this will often not be the case,
and in such circumstances, this method may actually be counterproductive. Thus, we point
out not the validity of this method in all circumstances, but rather its potential uses provided

a relatively high confidence in the high-to-low fidelity correlations.
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Figure 5.7: PDF Estimates Using High/Low-Fidelity Mixture
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The results of constrained optimization of log-likelihood on the high-fidelity observations
using a quantile and superquantile constraints derived from averaged low-fidelity sample and
DSE estimates. Notice that we have achieved the dual-modality desired, as well as much
more accurate tail density estimates. When plotted on a log-scale (bottom), we can see the
points corresponding to where our quantile/superquantile constraints take effect.
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CHAPTER 6:

Conclusions

We have introduced a new method for improving density estimates for data coming from
known or suspected heavy tailed distributions. By leveraging the dual relationship between
superquantiles and superexpectations, we incorporate an additional set of constraints within
a density optimization framework in a manner that, to the best of this author’s knowledge,
had not yet been attempted. By incorporating all potential sources of available information,
we are able to provide tailored formulations for density approximations that enhance the

fidelity of estimates for even small sample sizes.

The work presented here represents an initial excursion into epi-spline density
approximations utilizing quantile and superquantile estimates. We demonstrate and quantify
the value of accurate quantile and superquantile estimates in two benchmark examples that
cover exponential tails and a heavy-tailed Pareto distribution. The financial scenario applies
the method to a non-parametric data set where we compare our method against an existing
density estimation technique and show that even gross-level quantile approximations can
improve tail density estimates when properly bounded. Finally, the hydrofoil example
demonstrates the feasibility of informing quantile and superquantile constraints for densities
of limited observations through a linear approximation of more abundant data on the basis

of reasonable correlation.

Although initial results show promise, they represent only a limited application of
quantile and superquantile constraints within constrained epi-spline optimizations. Much
work is left to be done, particularly in the realm of superquantile estimation itself. Second-
order epi-splines, though flexible and relatively easy to formulate, offer limited degrees
of freedom that can limit constraint combinations, a shortcoming that might be overcome
through higher order epi-splines, such as those of the third or fourth order. Additionally, the
choice of objective function in estimating the DSE arose through empirical observation on
limited distributional examples. Better objective functions likely exist that can encourage

the smooth and convex shapes seen in the DSE plots of Chapters 3-5.

Right tail density estimation remained the focus of this work, though we recognize

51



there are numerous applications in which both the left and right tails are of significance.
Although left unexplored, we expect that the addition of a second iteration of superquantile
estimation prior to density approximation could quite reasonably achieve this goal by simply

applying the optimizations of section 2.3 on the negatives of observed values.

Quantification of density estimation accuracy remains an issue throughout this
thesis. In cases where the underlying density is unknown (such as Chapters 4 and 5),
we rely on other density approximations to reflect the “true” distribution. In some cases,
these approximations inaccurately portray what we intuitively believe to be the true tail
densities, as in the example of section 4.3. Additionally, because density values can range
so dramatically between data sets, numerical errors should be scaled to properly reflect the
relative, rather than absolute, impact of constraint implementation. Take, for instance, the
extreme difference in density values between the data sets of Chapters 4 and 5. In light of
these factors, we remain quite reliant on a qualitative evaluation of density approximation

through the use of visual comparisons.

The choice between an MLP and MEP formulation for density estimation remains
an ambiguous issue with no clear answer. Given the objective of each, one can reasonably
conclude that MLP formulations will likely underestimate tail density due to a potential
lack of observations from those regions, thus recommending quantile and superquantile
constraint formulations that utilize lower bounds on tail densities in order to “push” weight
into the tail regions. Likewise, one can envision using these same constraints as an upper
bound within an MEP framework in order to “rein in” the tails. Although this objec-
tive/constraint relationship generally performs as intended, it is important to recognize an
additional aspect distinguishing the two objective functions. For small samples with little
additional soft information, we often cannot foresee issues of modality, non-symmetry,
and other non-parametric characteristics. In these cases, because MEP formulations rely
solely on constraints rather than the sample data itself, these distributional shape attributes
can be overlooked. As in the hydrofoil example of Chapter 5, an MEP formulation would
have failed to identify the dual-modality of the underlying distribution barring the explicit

incorporation of a constraint requiring it.

With the ability to incorporate a flexible and adaptive method of constraint formu-

lation, epi-spline optimizations enable analysts to uniquely modify the process proposed
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here to their particular application of interest, and based on their total available knowledge.
Given the limited data sets explored, we find that incorporation of accurate quantile and
superquantile estimates can significantly enhance density estimation, particularly for those
distributions with heavy tails. The key in this implementation remains in the accuracy of
the quantile/superquantile estimates themselves, which, through more evolved constrained
optimization can be enhanced without the need for additional samples. We expect further
exploration of the methods and processes posed here to engender epi-spline optimization

for more extensive usage.
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APPENDIX: Computations

A.1 Software Interface Algorithm

We utilize the GDXRRW utility suite [20] to provide an interface between R and the General
Algebraic Modeling System (GAMS). We begin by initializing simulation parameters and
indexes such as sample size, iteration number, and parameter values (i.e., 4, @). Passing
these inputs from GAMS to R, we generate the random samples, compute sample statistics,
and pass results back to GAMS for DSE and density optimizations. The results of these
optimizations are then returned to R for plotting and error calculation. The general algorithm
is as follows:

Algorithm 1: DSE and PDF Optimization
Results: Ox(p), Q x(p), and f, Estimation Errors

Initialize Sets, Parameters

foreach Trial do
Generate X sample data for specified distribution;
Calculate sample statistics;
Input soft information for f, per DSE scenario;
Solve for DSE using Maximum Curvature
Record a-coefficients and Qx (p), Ox (p) predictions;
Plot and record AAD, MAD errors;
Apply quantile, superquantile constraints;
Input soft information for f;
if Maximum Log-Likelihood then
‘ Solve for f, using MLP;
else
‘ Solve for f, using MEP;
end
Record b-coefficients;
Plot and record SSE, SSTE errors;
end
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A.2 Computational Time

We performed all statistical and optimization calculations on a 2010 PC laptop with a
2.53 GHZ Intel Core i5 processor and 4GB RAM. Statistical computations and error
calculations were performed using R, while optimization were performed using GAMS.
DSE optimization was done using the CONOPT solver, with 100 iterations taking less than
4 minutes to perform 100 iterations in all scenarios. PDF optimization was performed
using either the CONOPT or COINIPOPT solver depending on the complexity of constraint
configurations. Numerical experimentation using 100 iterations as in Chapter 3 took less
than 10 minutes in all cases for optimizations, with less than 5 minutes required in most

cases.

A.3 Bootstrapped Confidence Intervals

From our original sample of X of size n, we perform B = 1,000 bootstrap iterations in
which we sample from X (with replacement) so that each bootstrapped sample is also of
size n. Calculating statistics of interest on these bootstrapped sample provides 1,000 values
per statistic of interest. Sorting these statistics allows us to identify the corresponding 25th
and 975th largest statistics, s(x*b ), of the distribution of B. These values then correspond

to an approximate 95% confidence interval for the statistic s of the original sample X.

Algorithm 2: Bootstrapping Sample Statistics
Result: 95% CI for s(x)
Generate X sample data for specified distribution;
foreach Iterationin 1 : B = 1,000 do

Generate bootstrap sample: x*b = Sample(X, n, replace = T);

Calculate statistic: s(x*?)
Sort bootstrapped statistics
return 250th and 975th largest s(x*?)

This relatively straightforward method of bootstrapping is called quantile-based
intervals, and though simple, is often affected by bias and tends to provide less than the

nominal coverage. For a more in-depth explanation of bootstrapping, see [16].
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A.4 Non-Parametric Binomial Confidence Intervals

The use of binomial confidence intervals for quantile estimation is well-known. For a more
in-depth explanation on the validity of this technique, see [21]. Here, we use the binomial
approximation for estimating the median and quartile values of small samples, using a 95%
confidence interval, [ X}, X;] where integer values r and s are the indexes of the sorted X

determined as

r =largestr s.r. E (’?)pi(l - p)" < 0.025,
i
i=1

l

N
s = smallest s s.1. (n) i(1-p)" ' >0.975.
i=1

A.5 Quantile and Superquantile Constraint Calculation

Provided their central importance in constraint formulations, details regarding both quantile

and superquantile constraint derivations are provided.

o

Quantile: / f(x)dx=1-p
o)

[ee]

1 -
s / xf(x)dx = Qx(p)
o(p)

Superquantile: I

Using Simpson’s Rule, which provides exact approximations for third order and below

polynomials, we can simplify the integrals as follows.
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Ox ) 7 / xf(x)dx = Z;/f(x)dx ~ Z; — [f(a) +f(b) +4f (a; )]
0(p) % %a @

_ ﬁ 3 (ot + B2 + (s + b )
m

m m m my 2
X7 +Xx X, +X
+4(b6"(—L2 R)+b’f1( L2 R))]

= ﬁ > % 3oy + xp) + B ()2 + ()?) + B (xp + 277

m

For the quantile constraints we sum over all m such that x7" is greater than Q(p). This allows
us to achieve an arbitrarily close approximation to the true integrals as our mesh resolution

approaches zero.
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A.6 Chapters 3 Additional Results

Table A.1: SSE and SSTE for Exponential Benchmark

Scenario SSE SSTE (0.80) | SSTE (0.90) | SSTE (0.95)
PDF la | 1.272e-02 | 2.117e-03 1.114e-03 5.434e-04
PDF la* | 1.180e-02 | 1.524e-03 8.362e-04 4.587e-04
PDF 2a | 1.226e-02 | 2.037e-03 1.098e-03 5.480e-04
PDF 2a* | 1.207e-02 | 1.662e-03 1.156e-03 8.138e-04
PDF3a | 7.179e-03 | 1.129e-03 5.155e-04 3.032e-04
PDF 3a* | 6.849e-03 | 8.079¢-04 4.785e-04 3.169¢e-04
PDF4a | 6.751e-03 | 1.050e-03 4.839¢-04 2.854e-04
PDF 4a* | 6.403e-03 | 8.063e-04 4.692e-04 2.703e-04
PDF 1b | 2.832e-02 | 2.943e-03 2.661e-03 2.057e-03
PDF 1b* | 7.924e-03 | 5.520e-04 2.460e-04 1.714e-04
PDF2b | 4.318e-03 | 9.375e-04 7.304e-04 6.809e-04
PDF 2b* | 2.540e-03 | 5.610e-04 4.077e-04 2.388e-04
PDF3b | 2.056e-03 | 1.100e-03 2.623e-04 2.250e-04
PDF 3b* | 1.480e-03 | 4.209e-04 1.312e-04 9.259¢-05
PDF 4b | 2.578e-05 | < 1.0e-08 < 1.0e-10 < 1.0e-10
PDF 4b* | 2.087e-05 | 2.070e-05 3.697e-06 4.462e-07

The sum of squared errors (SSE) and tail errors (SSTE) of first-order epi-spline estimates
against the true exponential distribution evaluated at each mesh intersection. Notice the impact
of both increased distributional knowledge and the effect of accurate quantile/superquantile
estimates. Here the tails correspond to prediction values to the right of particular exponential
quantiles according to

0(0.80) = 8.05
0(0.90) = 11.51
0(0.95) = 14.98
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Table A.2: SSE and SSTE for Pareto Benchmark

Scenario SSE SSTE (0.80) | SSTE (0.90) | SSTE (0.95)
PDF la | 2.532e-02 | 1.858e-03 6.454¢e-04 1.850e-04
PDF la* | 2.514e-02 | 1.391e-03 5.196e-04 2.164e-04
PDF 2a | 2.648e-02 | 1.914e-03 6.390e-04 1.878e-04
PDF 2a* | 2.570e-02 | 1.599e-03 6.070e-04 2.041e-04
PDF 3a | 1.474e-02 | 9.646e-04 3.452e-04 1.241e-04
PDF 3a* | 1.469e-02 | 8.039e-04 3.601e-04 1.305e-04
PDF4a | 1.460e-02 | 9.121e-04 3.274e-04 1.163e-04
PDF 4a* | 1.406e-02 | 6.856e-04 3.486e-04 1.284e-04
PDF 1b | 1.830e-02 | 8.479e-04 3.381e-04 8.028e-05
PDF 1b* | 1.675e-02 | 7.580e-04 2.917e-04 7.802e-05
PDF 2b | 9.742e-03 | 4.146e-04 2.123e-04 8.107e-05
PDF 2b* | 9.455e-03 | 4.896e-04 2.398e-04 6.041e-05
PDF3b | 1.739e-03 | 3.094e-04 9.100e-05 4.425e-05
PDF 3b* | 1.991e-03 | 2.629e-04 9.746¢-05 1.719e-05
PDF4b | 1.529e-03 | 1.352e-04 6.548e-05 1.328e-05
PDF 4b* | 1.642e-03 | 1.566e-04 6.632e-05 7.796e-06

The sum of squared errors (SSE) and tail errors (SSTE) of first-order epi-spline estimates
against the true Pareto distribution evaluated at each mesh intersection. Here the tails corre-
spond to prediction values to the right of particular Pareto quantiles according to

0(0.80) = 7.10
0(0.90) = 11.51
0(0.95) = 17.14
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Figure A.1: DSE and Superquantile Estimates for Exponential Scenarios 1 and 3
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(a) Scenario 1 DSE Estimates (b) Scenario 1 Superquantile Estimates
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(c) Scenario 3 DSE Estimates (d) Scenario 3 Superquantile Estimates

Dual of superexpectations (left) and superquantile (right) second-order epi-spline estimates
for the exponential case using constraints via Scenario 1 (top) and Scenario 3 (bottom)
and optimized for curvature. The true values are shown in solid red. Notice the generally
conservative estimates made, regularly overestimating the superexpectations.
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Figure A.2: PDF Estimates for Exponential Scenarios 1b and 4b
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Density estimates (left), also shown on a log-scale (right), for first-order epi-spline estimates
for Scenarios 1b (top) and 4b (bottom) of the Exponential benchmark. The true values are
shown in solid red. Increased knowledge between scenarios results in more accurate density
estimates. For Scenario 4b, results are so accurate that epi-spline estimates are no longer

visible.
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Figure A.3: DSE and Superquantile Estimates for Pareto Scenarios 1 and 3

60

50

40

30

20

-12 -
10

-14 4

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 10
p p

(a) Scenario 1 DSE Estimates (b) Scenario 1 Superquantile Estimates

p p
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Dual of superexpectations (left) and superquantile (right) second-order epi-spline estimates for

the Pareto case using constraints via Scenario 1 (top) and Scenario 3 (bottom) and optimized
for curvature. The true values are shown in solid red.

63



Figure A.4: PDF Estimates for Pareto Scenarios 1b and 4b
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Density estimates (left), also shown on a log-scale (right), for first-order epi-spline estimates
for Scenarios 1b (top) and 4b (bottom) of the Pareto benchmark. The true values are shown
in solid red.
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