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ABSTRACT 

Human designed systems are growing in complexity, with increasing numbers of 

components and behavior combinations, resulting in more emergent and unintended 

behaviors evident in operations. This thesis explores various behavior modeling 

approaches and their potential for exposing emergent behaviors, highlighting trends and 

modeling approaches. The report defines key concepts and provides a context for a 

comparative analysis of approaches. In particular, this report assesses a relatively new 

approach to behavior and architecture modeling, Monterey Phoenix (MP), and compares 

it with Petri nets, a well-established method. The comparison involves a simple 

communication process between two components, which is modeled and compared to an 

equivalent Petri net model. Shared outcomes involve a successful communication 

between the components and failure modes of the components not receiving or 

processing data. The models produce identical state space results. The combined state 

space graph of the Petri model allowed a quick assessment of all potential states but was 

more cumbersome to build than the MP model. A comparison of approaches charts the 

modeling methods against the key concepts, revealing the differences among methods, 

contrasted with the aspects of MP. 

 



 vi 

THIS PAGE INTENTIONALLY LEFT BLANK 



 vii 

TABLE OF CONTENTS 

I. INTRODUCTION..................................................................................................1 

A. PURPOSE ...................................................................................................1 

B. RESEARCH QUESTION .........................................................................1 

C. RESEARCH METHODOLOGY .............................................................2 

D. SCOPE ........................................................................................................3 

E. STRUCTURE .............................................................................................3 

II. CONCEPT OVERVIEWS ....................................................................................5

A. INTRODUCTION......................................................................................5 

B. MODEL-BASED ENGINEERING ..........................................................5 

1. Model-Driven Engineering ............................................................6

2. Model-Driven Architecture ...........................................................6

C. CONCEPTS ................................................................................................7 

1. Frameworks ....................................................................................7

2. Behavior Modeling and Emergent Behavior ...............................8

3. Abstraction .....................................................................................9

4. Separation of Concerns ...............................................................10

5. Stepwise Refinement ....................................................................10

6. Formal Methods and the Small Scope Hypothesis ...................10

D. SUMMARY ..............................................................................................11 

III. BEHAVIOR MODELING APPROACHES......................................................13

A. INTRODUCTION....................................................................................13 

2. Survey of Self-Adaptive Systems and Formal Methods ...........14

C. DOMAIN-SPECIFIC APPROACHES ..................................................18 

1. Automotive Requirements Modeling .........................................18

2. Automotive Control Modeling ....................................................20

D. GENERAL APPROACHES ...................................................................22 

1. Systems Modeling Language .......................................................22

2. System Dynamics Models ............................................................24

3. Monterey Phoenix ........................................................................25

4. Agent-Based Modeling.................................................................28

5. Petri Nets.......................................................................................29

E. SUMMARY ..............................................................................................30 

IV. PETRI NETS COMPARED AND CONTRASTED WITH MP .....................33

A. INTRODUCTION....................................................................................33 



 viii 

B. EXAMPLE MODEL—MP COMPARED WITH PETRI NETS ........33 

1. MP Example .................................................................................33

2. MP Example Results ....................................................................35

3. Petri Net Example ........................................................................36

4. Results and Comparison with MP Example..............................39

C. SUMMARY ..............................................................................................44 

V. CONCLUSIONS AND FUTURE RESEARCH ................................................45 

A. INTRODUCTION....................................................................................45 

B. RESEARCH QUESTION .......................................................................45 

C. CONCLUSIONS ......................................................................................45 

D. LIMITATIONS OF RESEARCH ..........................................................48 

E. FUTURE RESEARCH ............................................................................49 

APPENDIX .   MP MODEL RESULTS.............................................................................51 

LIST OF REFERENCES ................................................................................................59 

INITIAL DISTRIBUTION LIST ...................................................................................65 



 ix 

LIST OF FIGURES 

 Spiral Model.................................................................................................3 Figure 1.

 Approaches in Modeling Scaled by Level of Abstraction. Source: Figure 2.

(Borshchev) 2004 .........................................................................................6 

 Projects Using Formal Methods by Domain Source: Woodcock et al. Figure 3.

(2009) .........................................................................................................14 

 Formal Methods in Self-Adaptive Systems. Source: (Weyns et al.) 2012 .....15 Figure 4.

 Specification Approaches Source: (Weyns et al.) 2012 .............................15 Figure 5.

 Formal Verification Properties. Source: Weyns et al. (2012) ....................16 Figure 6.

 State Space of Behaviors to Properties, Numbered References. Figure 7.

Source: Weyns et al. (2012) .......................................................................17 

 Proposed Automotive Architecture Framework. Source: Yu et al. Figure 8.

(2015) .........................................................................................................19 

 Automotive Control System Utilizing Agents Source: Sengstacken, Figure 9.

DeLaurentis, and Akbarzadeh-T (2007) ....................................................21 

 SysML Diagram Hierarchy. Source OMG (2015) .....................................23 Figure 10.

 Activity Diagram .......................................................................................23 Figure 11.

 System Dynamics Process. Source: Forrester (1993) ................................24 Figure 12.

 Example SD Model. Source: Sterman (2001)............................................25 Figure 13.

 Event Trace A:B C (note that MP Analyzer notation uses dashed for Figure 14.

inclusion, and solid for precedence) Source: Auguston (2009) .................27 

 Example Event Trace Output .....................................................................36 Figure 15.

 Petri Net Data Transfer Example (Open Loop) .........................................38 Figure 16.

 Petri Net Data Transfer Example (Closed Loop) .......................................38 Figure 17.

 Reachability Output (Open Loop) .............................................................39 Figure 18.

 Reachability Output (Closed Loop) ...........................................................40 Figure 19.

 Petri Net Transition Example.....................................................................41 Figure 20.



 x 

 Classification Results Closed Loop Model ................................................43 Figure 21.

 Classification Results Open Loop Model ..................................................43 Figure 22.

 

  



 xi 

LIST OF TABLES 

Table 1. Example MP Operators. Adapted from NPS (2015) .................................27 

Table 2. Select Approaches Related to Concepts ....................................................46 

 

 



 xii 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xiii 

LIST OF ACRONYMS AND ABBREVIATIONS 

AADL  analysis and design language 

ABM  agent-based modeling 

ASE   International Conference on Automated Software Engineering 

 

BPM  business process modeling 

 

CPN  colored Petri nets 

 

DEAS   design and evolution of autonomic application  

DoDAF  Department of Defense Architecture Framework 

 

EBM  events-based modeling 

 

FEAF  Federal Enterprise Architecture Framework   

FMEA  failure modes and effects analysis 

FSE   Foundations of Software Engineering  

 

GUI  graphical user interface 

 

ICAC   International Conference on Autonomic Computing 

ICSE   International Conference on Software Engineering 

 

JSS   Journal of Systems and Software 

 

MBE  model-based engineering 

MBR  model-based reasoning 

MBSE  model-based systems engineering 

MDA  model-driven architecture 

MDE  model-driven engineering 

MP  Monterey Phoenix 

 

OEM  original equipment manufacturer 

 

PIPE  Platform Independent Petri net Editor 

 

R&M  Reliability and Maintainability 

 

SASO   Self-Adaptive and Self-Organizing Systems 

SAVI  System Architecture Virtual Integration 

SD  system dynamics 

SE  systems engineering 

SEAMS  Software Engineering for Adaptive and Self-Managing Systems 



 xiv 

SysML  Systems Modeling Language 

SoS  system of systems  

 

TAAS   Transactions on Autonomous and Adaptive Systems 

TEAF  Treasury Enterprise Architecture Framework 

TOGAF The Open Group Architectural Framework 

TSE   Transactions on Software Engineering  

 

UML   Unified Modeling Language 

 

WICSA  Working International Conference on Software Architecture 

WOSS  Workshop on Self-Healing  

 

  



 xv 

EXECUTIVE SUMMARY 

Monterey Phoenix (MP) is a recent behavioral modeling framework that seeks to 

advance the development of formal system architecture specifications. Some of the 

foundational concepts that MP relies on are frameworks, abstraction, separation of 

concerns, stepwise refinement, small-scope hypothesis, and the use of formal methods.  

To relate MP to other current Model-Based Systems Engineering (MBSE) 

approaches, this thesis reviews selected modeling approaches, summarizing relevant 

trends in the context of MP concepts. Of note, a novel automotive MBSE framework 

proposed by Yu et al. (2015) uses generic behavior models as a central approach for 

linking supplier specifications to the system specification. Additionally, two modeling 

surveys were reviewed, showing adaptation rates of MBSE approaches.  

One approach, behavior modeling with Petri nets, was selected for 

experimentation. A simple communications model (two entities passing information to 

each other) was coded and executed in the MP Analyzer environment, producing the 

possible behaviors (results) of the system as event traces. The communications model 

also was translated into an equivalent Petri net model, to compare Petri net with MP. The 

Petri net model was simulated in the PIPE2 program (a popular editor), producing a state 

space equivalent to the MP results. In this limited example, results showed that MP and 

Petri nets could produce equivalent possible state spaces.  

Following this, the selected approaches were compared with the concepts central 

to MP. The primary conclusions follow:  

1. MP makes use of the concepts utilized by MP as any other method or 

framework reviewed. These concepts include: frameworks, behavior 

modeling, abstraction, separation of concerns, stepwise refinement, 

formal methods and the small scope hypothesis 

Of the publications reviewed, no other formal, executable approach claims to 

search exhaustively for all possible scenarios (within a given scope) while also 

supporting event attributes, assertion checking, and different viewpoints. 

The Virtual Integration concept described by Yu et al. could benefit from the use 

of MP. 



 xvi 

None of the approaches researched fully support all of the concepts (without the 

use of extensions or multiple specifications/approaches) reviewed in this thesis 

as well as MP does, specifically, frameworks, abstraction, behavior modeling, 

stepwise refinement and formal methods. 

Additionally, this research determined that none of the cited research focused on 

the application of modeling to supportability or life cycle costs.  

Notable limitations in this research include the use of a simplistic model in the 

Petri net and MP experimental comparison, the preliminary nature of many of the topics 

covered, and a limited body of research on MP available to date. Recommended future 

research areas span use-case specific experimentation with MP, the expansion of MP 

tools and features, and the further exploration of MP limitations. 
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I. INTRODUCTION 

Right requires justification, wrong requires conviction. If you stay on the 

path of right, the guideposts are many, and you never stray. But there is no 

one path for wrong, no lit way, no signposts, no guide. 

—Gary Langford 

Engineering Systems Integration, 2012 

 

A. PURPOSE 

Often asserted in the multi-disciplinary field of behavior modeling are the 

problems associated with capturing or exposing emergent behavior, unintended or 

undesired interactions. The primary purpose of this thesis is to perform a literature review 

of Model-Driven Architecture (MDA) and Model-Based Engineering (MBE) approaches, 

focusing on methods and practices pertaining to exposing unwanted, unneeded or 

undesired interactions. A relatively new approach to formalized software system 

architecture specification, primarily concerned with behavior modeling in light of these 

issues, is proposed in Monterey Phoenix (MP) (Auguston 2009). As a secondary purpose, 

a simple case study of a communication process between two components is modeled in 

MP and compared with an equivalent model utilizing an established behavioral method, 

Petri nets.  

B. RESEARCH QUESTION 

 Primary research question: How does the Monterey Phoenix behavior 

modeling approach compare with other approaches that claim to expose 

unintended, unneeded, or undesired system interactions? 

The goal of this research is to put MP into the context of existing behavior 

modeling approaches. The primary research question is addressed by surveying 

publications relevant to the key concepts of MP. A multidisciplinary literature review 

surveys articles, journals, books and conference proceedings that advance methods 

congruent with the goals and methods of MP. From the survey and MP papers, an 

overview of key MBE concepts and characteristics provides an overall context for the 
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thesis. To relate MP to other approaches, this thesis reviews a selection of behavior 

modeling methods representing a sampling of the general state of behavior modeling 

approaches. Following this, this research contrasts one of the approaches (Petri nets) with 

MP via experimentation with a simple behavior model. 

C. RESEARCH METHODOLOGY 

This research is multi-disciplinary, covering a diversity of topics within systems 

and software engineering and multiple domain applications. As such, multiple academic 

databases (general and domain-specific) were employed. Sources were limited to those 

published within the last two decades to maximize the maturity of sources and minimize 

ambiguity in conclusions. However, certain fundamental concepts date back to the 1970s, 

such as the idea of abstract data types (Wulf 1980). The broadness in topic areas and the 

varying maturity of source material necessitated extensive review. Of the 115 items 

reviewed, this report cites approximately 75 articles. It excludes sources with little to no 

connection to either a general form of modeling or a direct claim of exposing latent 

behavior. Emphasis was placed on research that shared common characteristics and 

concepts employed by MP, further detailed in Chapter II. 

A spiral model was chosen for researching and structuring this thesis, shown in 

Figure 1. This approach allowed multiple iterations of source material review (extraction 

of key concepts), synthesis (documenting concisely), and analysis (drawing conclusions) 

of interim results. The goal of this approach is the production of a set of clear conclusions 

relevant to the behavior modeling approach comparisons by integrating relevant concepts 

and applications and refining through iteration. 
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 Spiral Model Figure 1. 

 

D. SCOPE 

The research is limited to a literature review, limited experimentation, and a 

comparison of methods and approaches pertinent to the concepts employed by MP. A 

possible limiting factor in conducting this research is that MP is maturing. This research 

is limited to the current state of MP at the time of this writing. 

E. STRUCTURE 

Chapter I introduces the purpose, the research question, methodology, scope, and 

structure. Chapter II provides general background and context for the primary research 

question, and a discussion of general modeling concepts relevant throughout this thesis. 

To provide a general understanding of relevant modeling concepts, topics such as 

frameworks, abstraction, and separation of concerns are described. Chapter III presents 

selected surveys highlighting trends and adoption rates of formal and self-adaptive 

systems modeling methods. It introduces selected behavior modeling approaches, 

focusing specifically on SysML, System Dynamics, MP, ABM and Petri nets. Chapter IV 

explores the relationship of MP to Petri nets by comparing models experimentally. It 

provides a summary of the design of each model, the experimentation process and the 

results. Chapter V provides primary conclusions, limitations, and recommendations for 



 4 

further research. The research question is revisited, and the selected modeling approaches 

are compared against the concepts from Chapter II.  

THIS PAGE INTENTIONALLY LEFT BLANK 
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II. CONCEPT OVERVIEWS 

A. INTRODUCTION 

The following introduces a summary of key concepts and characteristics that 

underpin MP as a basis for the research supporting the thesis. The concepts are later 

cross-referenced in the literature review and compared with selected approaches. 

B. MODEL-BASED ENGINEERING 

Model-based engineering, model-based systems engineering (MBSE), and model 

and simulation-based Engineering (M&SBE) all refer to the use of models and 

simulations versus traditional document-based engineering artifacts (Stefan 2007). There 

are numerous and growing approaches, methodologies and frameworks. The Unified 

Modeling Language (UML) and Systems Modeling Language (SysML) are popular 

languages. The Department of Defense Architecture Framework (DoDAF) is a popular 

architecture framework, which describes the visualization of the different stakeholder, 

operational, and systems viewpoints and models (Giammarco 2007). One aspect each 

framework shares, primarily concerned with interaction, is behavior modeling. 

Behavior modeling approaches can be differentiated by the level of abstraction 

supported and whether they are mainly continuous or discrete (Borshchev 2004). Figure 2 

shows general categories and characteristics, separated by level of abstraction and time 

(discrete or continuous). These are discussed in more detail in Chapter III. The following 

two sections describe subsets of MBE. 
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 Approaches in Modeling Scaled by Level of Abstraction. Figure 2. 

Source: (Borshchev) 2004 

 
 

1. Model-Driven Engineering 

Model-driven engineering (MDE) is a subset of MBE, distinguished by a 

structured and coordinated use of models and simulations in the engineering (or in the 

software engineering) development process. A major motivation for adoption of MDE is 

to provide the means of dealing with the increased complexity of many facets of modern 

development and research (Hutchinson 2011). The F-35 Joint Strike Fighter is on such 

example of a complex development program utilizing MDE, with an estimated 24 million 

lines of code (in comparison to the F-22’s 1.7 million lines of code (Hagen and Sorenson 

2013). In the context of software, MDE records the organization and mapping of models 

by combining “process and analysis with architecture” (Kent 2002, 286). The use of 

MDE can aid in verification, integration and interoperability. 

2. Model-Driven Architecture 

Model-Driven Architecture (MDA) complements and facilitates MDE, providing 

guiding principles for applying MDE (Bézivin 2004). MDA provides standards, toolsets, 

and defined frameworks are guiding and promoting interoperability and allow executable 

models (Mellor et al. 2004). “MDA advocates modeling systems from three viewpoints: 
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computation independent, platform independent, and platform specific viewpoints” 

(France and Rumpe 2007, 44). Multiple viewpoints allow tailoring to a stakeholder’s 

specific use case, decoupling tasks that are not needed for a specific user. Architectures 

contain a language, which defines the semantics that can be utilized and the rulesets that 

apply. Modeling languages have a vocabulary (components of a model) and grammar 

(how they relate) (Maier 2009). This grammar, or code, can then be automated, letting the 

user quickly build models that are interoperable, independent of the other parts of the 

system (Mellor et al. 2004). In this author’s understanding, this interoperability allows 

models to be more useful as a tool, rather than as a design artifact. Common concepts in 

MDE and MDA are explained in the following section. 

C. CONCEPTS 

Some general MBE concepts are summarized here. To provide the reader context; 

each is introduced and briefly described. These concepts are fundamental and 

independent of the modeling approach. The research in the following chapters explores 

the extent to which the approaches in scope implement these concepts.    

1. Frameworks 

A framework guides development through modeling or simulation by providing a 

structure for concepts and views (Balci 1988). In other words, a framework can provide a 

foundation for modeling and simulation scenarios that supports commonality and reuse, 

streamlining and tailoring tasks specific to the stakeholder. Typical frameworks for 

verification have formalisms for modeling and properties for verification and an 

algorithm for checking the system against a specification (Valmari 1998). Krogstie 

(2003) argues that a focus on frameworks and language quality is necessary to advance 

areas of modeling improvement. Modeling should be constructive, sharing relationships 

with linguistic theory, making models understandable and relatable to the stakeholders of 

a particular project utilizing modeling. Frameworks can define the use of schemas, an 

early example being the set of diagrams, which are used to draw electrical schematics 

(Ogren 2000). While frameworks pre-date computing, electronic schematics can now be 

edited and simulated by software tools. 
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Many popular architecture frameworks for MBE have evolved, each catering to 

different stakeholders based on their community’s needs (Urbaczewski and Mrdalj 2006). 

Popular methods include DoDAF, Zachman, Federal Enterprise Architecture Framework 

(FEAF), Treasury Enterprise Architecture Framework (TEAF) and The Open Group 

Architectural Framework (TOGAF). While each framework specifies the use of models 

and viewpoints, there are many differences, such as scope and users, and whether time 

and motivating factors are inputs to the execution of the model (Urbaczewski and Mrdalj 

2006). 

2. Behavior Modeling and Emergent Behavior 

Behavioral modeling is broadly defined and multidisciplinary. Among a few 

example categories, its application can be seen in systems and software engineering, 

biology, and astrophysics. For example, it can represent human behavior and interaction 

in the field of cognitive science (Penaloza et al. 2012). Astrophysicists use behavior 

models to represent the interaction of planetary orbits (Barnes and Greenberg 2007). One 

of many examples related to technological design can be seen in the use of a behavioral 

model as a method of performing an advanced Failure Modes and Effects Analysis 

(FMEA), which determines the potential failure mechanisms and their impact on the 

overall system (Eubanks, Kmenta, and Ishii, 1997). “[Behavioral models] are what the 

system does (how it behaves) as opposed to what the system is (which are models of 

form)” (Maier 2009, 232). A more specific definition is the measure of interaction 

(events) between components (Moshirpour et al. 2013). 

According to Gore et al. (2007, 113), “Emergence can represent a valid behavior 

arising from seemingly unrelated phenomena, or it can reflect an error in a model or its 

implementation.” Broadly, emergent behavior is only evident at a system level and not 

directly apparent as the resultant interaction of constituent entities (the individual parts of 

a system) (Checkland 1993). This is significant, as system level, behaviors can be missed 

in design, resulting in undesirable behavior. System level emergent behavior can 

contribute to cases where individual elements or sub-systems can lead to unexpected 

behaviors that cut across system boundaries, due to the coupling of structure and 
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behaviors (Grogan 2013). While there does not seem to be a consensus in the research 

reviewed as to how emergent behavior can arise, it is characterized as unexpected until 

explained and seen at a system level. Johnson (2006) describes some researchers as 

viewing emergence as simply unexpected behavior at one extreme, while others argue it 

is simply properties of a system that cannot be shown by functional decomposition.  

3. Abstraction 

According to Buede (2009), a model can be defined as an abstraction of reality, 

usually associated with the filtering of unnecessary detail for a given viewpoint. More 

simply put, “a model is an abstraction” (Krogstie 2012, 89). Abstraction is important for 

human understanding because of our finite level of attention, becoming indispensable 

when dealing with complex systems. MBE relies on abstraction as a method of reducing 

design and analysis complexity, as well as increasing comprehension. A model can be a 

tool for creating and exploiting abstraction (Kent 2002). In other words, abstraction can 

tailor a viewpoint to the user’s needs. For example, an Internet browser does not show a 

user all of the various code used to process a web page, only content. Furthermore, many 

web pages are tailored between desktop viewing and smartphone viewing, the latter often 

in simpler format to accommodate a smaller screen and mobile nature. “Models of 

software requirements, structure and behavior at different levels of abstraction help all 

stakeholders deciding how this goal should be accomplished and maintained” (Mens and 

Van Gorp 2005, 126). Dale and Walker (1996) emphasize that most programming 

languages utilize abstract data types, which when used to define procedures (through 

semantics), separate the properties of the data type from its implementation details. An 

abstract model, using abstract data types to describe the underlying model, can be used to 

produce product specifications (Dale and Walker 1996). 

When dealing with verification of a system, it can be more judicious to deal with 

a higher level of abstraction than with the details of the states in which one is interested 

(Valmari 1998). In other words, assertions or claims at a detailed level can be abstracted 

to a smaller level of claims on their properties. This allows fewer assertions to be checked 

while providing validation of more granular claims.  
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4. Separation of Concerns 

Pressman (2015) defines a concern as a feature or behavior as specified by a 

model. Separation of concerns is a conceptual approach to dealing with complexity; 

problems can be “separated” (or modularized) and dealt with individually, reducing the 

perceived complexity (Pressman 2015). “This separation allows for the locality of 

different kinds of information in the programs, making them easier to write, understand, 

reuse and modify” (Hürsch and Lopes 1995, 1). The concept relates to the grouping 

(increased cohesion) of similar functions or traits of behavior and interaction. Combined 

with abstraction, separation of concerns is another powerful method of reducing 

complexity providing for different ways to organize and group considerations about a 

given model. For example, an electrical engineer on a project is not necessarily 

concerned with the structural properties of a product, whereas the opposite may be true 

for a mechanical engineer. Separating electrical from mechanical product specifications 

would result in simpler, easier to understand design from either individual’s perspective.  

5. Stepwise Refinement 

Wirth (1971) details the importance of decomposing tasks into subtasks, refining 

steps into progressively smaller design decisions. Stepwise Refinement refers to the top-

down process of elaboration; starting with a high-level function or requirement and 

gradually creates hierarchy through lower levels with more detail and less abstraction 

(Pressman 2015). Broadly defined, it deals with a progression from general and 

qualitative to specific and Quantitative (Maier 2009). By this definition, an example such 

as the systems engineering (SE) process of functional decomposition is a process of 

refinement. 

6. Formal Methods and the Small Scope Hypothesis 

Formal methods were born out of the software community and deal with 

developing systems in such a way that indicates functional and non-functional 

compliance with a given specification (Maier 2009). In the case of theorem proving, this 

can be a guarantee (Valmari 1998). 
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Methods for modeling the possible states a system can take are problematic; they 

can quickly overwhelm computing resources for even simple problems. This challenge is 

known as the state explosion problem (Valmari 1998). According to Valmari, there are 

two approaches to checking the correctness of a concurrent system against its 

specification: state space methods and theorem proving. Valmari describes state space 

methods as an automated method of determining the structure of all possible states 

reachable within a system. Theorem proving, in contrast, is the process of using 

mathematical formula(s) to show a measure of correctness (Valmari 1998).  

The common problem that arises with either method is that even a small 

program’s state space can be exponential. However, Jackson argues that certain 

approaches to model checking (searching for instances that violate a given property) can 

reveal errors in relatively few instances of a model. “Even a small scope defines a huge 

space, and thus often suffices to find subtle bugs” (Jackson 2012, 14). However, Jackson 

argues that this requires precise, unambiguous use of a formalized set of abstractions. 

Dolby et al. (2007) maintain that there is a compromise between static analysis and 

comprehensive testing when a model checker is focused on a specific property, called 

systematic under-approximation. Although this may limit the comprehensiveness of 

testing, it can reduce the complexity of the testing. A related paper, discussing the small 

scope hypothesis as applied to test set programs shows a high number of errors can be 

found through a small number of examples (Oetsch et al. 2012). 

D. SUMMARY 

General concepts related to MBE were summarized and defined. These serve to 

provide a baseline for understanding the common themes involved in using modeling for 

system design. The concepts, particularly abstraction and frameworks, are a broad means 

of dealing with increasing complexity in system development. The application of these 

concepts in various behavior modeling approaches is discussed in the next chapter. 
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III. BEHAVIOR MODELING APPROACHES 

A. INTRODUCTION 

This chapter serves to summarize the specific methodologies and claims of the 

primary sources surveyed in this research, representing the general state of 

multidisciplinary approaches to behavior modeling and simulation. Following the 

introduction of common MBSE concepts in the preceding chapter, two surveys related to 

formal methods (one specific to self-adaptive systems) adoption are summarized in this 

chapter. Based on these surveys and from this author’s survey of sources pertaining to the 

concepts in the prior chapter, several modeling approaches are highlighted. These 

approaches are categorized into domain-specific and general approaches. A summary 

comparison of approach to the concepts discussed in Chapter II is provided after each is 

introduced. Additional supporting source material is used throughout this chapter to 

support analysis and conclusions.  

B. FORMAL METHODS BACKGROUND 

Use of formal methods is an approach to enable the creation of reliable systems 

despite the increased complexity. From the aspect of creating and verifying system 

specifications, formal specification makes use of a language with mathematically defined 

semantics, or syntax (Clarke 1996). As noted in Chapter II, the use of formal methods is 

noteworthy as a mechanism for distinguishing valid from invalid behavior, which can be 

useful in avoiding undesirable behavior. This section highlights two existing surveys 

found in the literature on where and how formal methods are used today. 

1. Formal Methods Survey  

Formal methods can be used to specify software and hardware requirements in 

any phase of the life cycle, utilizing abstraction where systems are complex. A 

comprehensive survey of the various applications of formal methods, focusing on the 

early application in product life cycles, claims to highlight the state of the art in their 

industrial application (Woodcock, et al. 2009). In this survey, the authors utilized a 



 14 

questionnaire to gather data on 62 industrial projects known to use formal methods. The 

results were broken out by application domain, as seen in Figure 3. 

 

 Projects Using Formal Methods by Domain Figure 3. 

Source: Woodcock et al. (2009) 

 

The results of the survey showed that for the majority of those surveyed (75%), the 

perceived effects on time, cost and quality were positive, leading to the desire to continue 

using formal methods on future projects. Of note, the authors argue that while the use and 

acceptance of formal methods appear to be rising, widespread adoption has not yet been seen 

outside of the development of critical systems. Some key takeaways the authors note is that 

formalism may not need to be applied equally to all components or stages of a product in 

development, and that more robust, automated tools are needed for wider acceptance. 

2. Survey of Self-Adaptive Systems and Formal Methods 

A second survey was reviewed, specific to the adoption of formal methods in self-

adaptive systems (Weyns et al. 2012). The authors’ goal was to identify the approaches, 

trends, tools and applications of formal methods used for self-adaptive systems. Self-

adaptation is defined as the ability of a system to change its behavior as a result of a 

change in its perception of itself and the surrounding environment (De Lemos et al. 

2013). Source material was limited to those that dealt with formal methods and separation 
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of concerns within the context self-adaptive systems; 1,027 of 6,353 studies were 

analyzed. Figure 4 and Figure 5 show the authors’ findings concerning the trends of 

research broken out by venue and specification language. 

 

 Formal Methods in Self-Adaptive Systems. Source: (Weyns et al.) 2012 Figure 4. 

 

 

 Specification Approaches Source: (Weyns et al.) 2012 Figure 5. 

 



 16 

Of note in the survey, the use of algebraic methods for formalization is the most 

common, and that there was no trend in approach over time. Additionally, 40% of the 

sources employed the use of tools, of which one-third was applied for model checking. 

The authors observe that the consideration of formal methods is lacking for the concerns 

of security and scalability and in the domains of telecommunication and scientific 

(climatic, bioinformatics) research. Figure 6 shows the distribution of verification 

properties that were the focus. Notable results were that the majority of researchers 

focused on formal methods for reasoning (as opposed to modeling or proving). Weyns et 

al. (2012) also note that “…only 23 studies employ formal methods to actually provide 

evidence for the self-adaptive concerns of interest.” Weyns et al. remark that of the latter, 

one-third applied formal methods at run time, two-thirds applied offline, with only one 

study showing an application from design to runtime. Of interest, no sources surveyed 

covered the concerns of maintainability or portability (Weyns et al. 2012). 

 

 

 Formal Verification Properties. Source: Weyns et al. (2012) Figure 6. 

 

Focusing on the studies concerned with modeling and model checking, the 

authors mapped the state space of self-adaptive behaviors to properties of interest, shown 

in Figure 7 (Weyns et al. 2012). The transitions between behavior states are of interest, 
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showing the properties involved and referenced sources on those properties. The authors 

offer this model as a reference point for future research and that tools for automated 

model checking, particularly at runtime, provide an underutilized opportunity for 

maturation. Noted is that few researchers provided publicly available models and results, 

which is offered as an indication of lack of integration in research. They conclude that 

many of the sources in the survey introduce modeling language constructs, but that the 

majority assume or ignore mathematical soundness, implying a lack of concern for 

formalism (Weyns et al. 2012).  

 

 State Space of Behaviors to Properties, Numbered References. Figure 7. 

Source: Weyns et al. (2012) 
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C. DOMAIN-SPECIFIC APPROACHES 

Moving on from the general state of the use of formal methods in modeling, this 

section covers two examples of domain-specific behavior modeling approaches in the 

literature. The automotive domain was chosen as an active area of research into the 

behavioral modeling of complex systems. 

1. Automotive Requirements Modeling 

In the automotive domain, a novel domain-specific approach for formal 

behavioral modeling is highlighted. Challenges are recognized in modeling and design 

approaches owing to increasing complexity of embedded software and electronics in 

automotive development, compounded by original equipment manufacturer (OEM) and 

supplier development taking place in isolation. One proposed method to address 

interoperability and timing issues, utilizing a form of Architecture Analysis and Design 

Language (AADL), uses an expressive timing relationship language and an expression of 

component-level requirements inclusive of validation (Yu et al. 2015). Yu et al. argue 

that safety and integration of continual new functions (in particular autonomous driving) 

will require design validation at the earliest possible phase to keep cost from being 

prohibitive. UML, SysML, Modelica, SCADE and MATLAB/Simulink are languages 

and tools that are commonly used for high-level modeling along with other 

heterogeneous models, the diversity of which the authors argue present a challenge to 

model integration. Integration solutions, such as AUTOSTAR (automotive) and System 

Architecture Virtual Integration (SAVI) are mentioned, but dismissed as problematic, 

suggesting integration frameworks instead. Virtual Integration is proposed as an approach 

to overcome the timing relation, component execution, composability and architectural 

constraints: a virtual model framework encompassing functions, architecture, viewpoints 

and optimization. Encompassing this approach is a “dual design” methodology called 

Inside-out and Outside-in; the first being concerned with decomposition into supplier 

contracts and the second focused on accomplishing an integration of subsystems that 

satisfies all contracts (Yu, et al. 2015). 
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The primary characteristics of the approach support are 

 a system-level design model that encompasses both architecture and 

behavior 

 an intermediate common formal model, which serves to facilitate 

semantics interoperability between dissimilar models through translation 

 formal analysis, verification and formal timing specifications 

 ual-design methodology, which decomposes a contract into sub-contracts 

and integration of sub-systems 

 contract-based design, correct by construction and system optimization 

(Yu et al. 2015) 

Figure 8 shows the authors’ proposed integration framework. Key to this approach 

is contract-based design, which the authors describe as bringing further rigor into current 

automotive methods and practices. Two problems are suggested. The first problem 

identified is that models (specifically those that are translated into executable code) tend to 

be insensitive to differences in hardware characteristics, such as latencies and processor 

speeds; resulting in a departure from the platform characterization and the design. 

 

 Proposed Automotive Architecture Framework. Figure 8. 

Source: Yu et al. (2015) 
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The second problem identified is that while sub-systems may meet their 

individual requirements, this does not necessarily lead to successful integration, due to 

the unidentified subsystem to subsystem incompatibilities (including those that may arise 

in the future due to inflexible interfaces). The dual design approach mentioned above 

aims to solve these issues. Inside-out is an algorithmic decomposition process of system 

level properties to provide sub-system contracts (vice natural language) to suppliers, with 

the goal of exactly meeting the supplier contract. Outside-in relates to the supplier’s 

viewpoint, ensuring that the sub-system contracts are designed to meet optimally the 

platform characteristics. The authors conclude that further adoption of their framework 

approach, in conjunction with AADL and the associated forthcoming synchronous timing 

annex, will help to overcome the integration challenges discussed in the first part of the 

paper.  

The framework proposed by Yu et al. (2015) is noteworthy as it proposes a 

modeling methodology to improve issues noted in automotive development, such as 

system verification and requirement specification at the lowest and highest levels of 

hierarchy. Multiple modeling languages are proposed depending on the viewpoint, such 

as Simulink as the primary behavior modeling approach, specifically focused on 

modeling timing and synchronicity as hardware and software events. The software 

architecture is defined by AADL. Hardware and software timing constraints are 

represented by logical and algebraic abstractions. Separation of concerns is not explicitly 

mentioned; however, it is noted that different tools and models are better suited for the 

separate areas of optimization, behavior, and contract specifications. A forthcoming 

timing annex to AADL will be used to apply formalism to both the architecture and the 

behavior models (Yu et al. 2015). 

2. Automotive Control Modeling 

Sengtacken, DeLaurentis, and Akbarzadeh-T (2007) present a novel approach to 

utilizing behavior models in a hypothetical automotive control system. They present a 

potential future of wirelessly interconnected autonomous vehicles (swarm) and offer a 

notional method of balancing the level of human versus autonomous control. In this case 
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study, an agent-based modeling (ABM) framework is employed as a control system to 

determine the level of autonomy between the driver and the car, with consideration given 

to other vehicles, the sensors employed and the environment (Sengstacken, DeLaurentis 

and Akbarzadeh-T 2007). ABM is discussed in more detail in a forthcoming section.  

Shown in Figure 9, two agents are assigned to model the driver, while two agents 

model the control system. The driver agents are goal-oriented, supporting abstract 

deduction, with a deliberately slow reaction time. The control agents are modeled as 

fuzzy logic rule sets to represent vehicle’s autonomy, and the relationship between the 

two offers the ability to explore shared autonomy approaches (Sengstacken, DeLaurentis 

and Akbarzadeh-T 2007). In the study, fuzzy logic algorithms are used for simulating 

control of path tracking, obstacle avoidance, and information feedback. A swarm of six 

vehicles was then simulated, varying the degree of human versus machine control over 

the same functions; showing a method of minimizing hazards (crashes) while maintaining 

an element of human control (Sengstacken, DeLaurentis and Akbarzadeh-T 2007).  

 

 Automotive Control System Utilizing Agents Figure 9. 

Source: Sengstacken, DeLaurentis, and Akbarzadeh-T (2007) 

 

The framework described by Sengstacken, DeLaurentis, and Akbarzadeh-T 

(2007) proposes a method of quickly exploring automotive control architecture changes 

with respect to achieving the desired balance of human and vehicle control. Behavior is 
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modeled by the use of fuzzy logic-based agents, abstracted to essential sensor 

information and control functions. The concepts, stepwise refinement, and formal 

methods are not expressed or apparent in the paper (Sengstacken, DeLaurentis, and 

Akbarzadeh-T 2007). Abstraction is not explicitly discussed, but may be inherent, as the 

level of abstraction is tailorable with the use of ABM (Borshchev and Filippov 2004). 

Additionally, separation of concerns is not mentioned explicitly, though the agents are 

separated by role (human, machine) as well as further decomposed into internal/external 

stimuli (Sengstacken, DeLaurentis and Akbarzadeh-T 2007). 

D. GENERAL APPROACHES 

In this section, the following modeling constructs are explored to provide 

coverage of a range of approaches to behavior modeling. 

1. Systems Modeling Language 

The Object Management Group (OMG) adopted the first version (1.0) of UML in 

1997 as a standardized modeling language to aid in software development (Kobryn 1999). 

Systems Modeling Language is a customized version of UML adopted in 2006, tailored to 

the needs of engineers (specifically related to requirements linkage) (Hause 2006). The 

SysML specification contains four primary means (viewpoints) of expressing behavior, 

borrowed from UML – activity, sequence, use case, and the state machine diagrams (Fowler 

2004). The SysML diagram hierarchy, showing differences from UML, can be seen in Figure 

10. Of these, activity and state machine diagrams (circled in the figure) are best suited for 

representing behavior, as the use case and sequence diagrams are focused more on the 

specifics of interaction. An example activity diagram can be seen in Figure 11. 
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 SysML Diagram Hierarchy. Source OMG (2015) Figure 10. 

 

 

 

 Activity Diagram Figure 11. 

 

The framework defined by the SysML specification is a general-purpose design 

and analysis language, supporting behavioral, structural and requirements modeling 

(OMG 2015). Models can be designed at the desired level of abstraction, and can be 

refined to lower levels of detail. Separation of concerns can be achieved using multiple 

viewpoints, but results in at least one diagram per actor, with inputs and outputs between 

each. Stepwise refinement is not an inherent feature of SysML though Miyazawa and 

Cavalcanti propose a method of utilizing refinement as an extension of SysML (2014). 

The use of formal methods is not inherently supported by the current specification. 

However, Graves and Bijan give an example of integrating SysML with formal logic-

based semantics to minimize inconsistencies and support assertion checking (2011). 
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2. System Dynamics Models 

System Dynamics (SD) arose from the concepts of control and feedback in order 

to model some of the first computer simulations in the late 1950s (Forrester 1993). Figure 

12 shows the steps in the process, beginning with formulating the problem to be solved 

(generally correcting for undesired behavior in a system), and formulating equations to 

describe the system. Feedback is central to the system dynamic approach: each step is 

iterative and recursive, drawing on and improving the prior steps (Forrester 1993). 

 

 System Dynamics Process. Source: Forrester (1993) Figure 12. 

 

System Dynamics deals with complex behavior in which the system can be non-

linear, is constantly changing, actors are coupled, is self-organizing, is adaptive, and past 

events govern future events (Sterman 2001). Figure 13 provides an example SD model. 

In this example, Sterman develops equations that govern positive and negative feedback 

for each actor, which can be simulated to show the behavior of an adoption system. Over 

time, different actors dominate the system flow, which can be used by a decision maker 

to change their business practices (Sterman 2001). 
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 Example SD Model. Source: Sterman (2001) Figure 13. 

 

Systems Dynamics is a general modeling approach. While there are shared core 

concepts of conceptualization and notations, differing frameworks and approaches exist 

(Martinez‐Moyano and Richardson 2013). System behavior is represented by flows, 

levels and causal loops (Forrester 1993). System Dynamics models are abstract by nature, 

as they are limited to closed loop systems and the number of causal factors. The ability to 

separate concerns is difficult when causal factors are differing but inter-relate (Forrester 

1993). The use of stepwise refinement is not explicitly mentioned in the literature. While 

the publications reviewed did not directly mention the use of formal methods with respect 

to SD, the models are built upon mathematical equations. The resulting parameters can be 

compared against real-world observables (Forrester 1993). 

3. Monterey Phoenix 

Monterey Phoenix is a novel approach to systems and software architecting, and 

process modeling. Monterey Phoenix began as an approach to specification modeling of 

software system architecture with behavior models (Auguston 2009). Auguston’s premise 

is that a major concern of software architecture design is capturing the behavior of the 

system. This is proposed through utilizing behavior models, represented as a set of event 

traces to model system requirements with formalized event grammar. Following the 

initial paper, MP has been expanded from a software architecture approach to include 
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system architecture and business process and workflow modeling (Auguston 2014). The 

grammar is combined with constraints to produce schemas, which are an executable 

representation of a system’s architecture (Auguston 2014).  

While there are many existing tools and languages for software and system 

architecture modeling and design, one of the primary characteristics of MP is attempting 

to solve the common “single flowchart” problem (Auguston et al. 2015). Instead of 

attempting to capture all behavior or activity in one place, MP produces an output for 

each possibility (an exhaustive set of the event traces). Event traces have two basic 

relations: precedence and inclusion (Auguston 2015). System behavior is defined by the 

set of event traces that satisfy event grammars and constraints, collectively the schema 

(Auguston et al. 2015). A schema is defined by MP source code, with formal, structured 

syntax.  

According to Auguston (2015), an MP schema contains one or more root events, 

where trace derivation starts. Event grammar rules define relationships and constraints 

when applying composition operations on the traces assembled from root events. “A 

grammar rule specifies structure for a particular event type (in terms of IN and 

PRECEDES relations)” (Auguston 2009, 1032). Sequencing of events can be controlled 

by the order of these relations. Figure 14 shows a simple event trace example. If IN is 

shown as a solid arrow and PRECEDES is shown as a dashed arrow, the rule A: B C 

shows that the parent event A is an ordered set of event B preceding the occurrence of 

event C. Operators can change the relationships between events, some examples of which 

can be seen in Table 1. There are many more MP expressions, and composition 

operations used to tailor execution of a model, such as Boolean operators, assigning event 

probability, variables and assertion checking (Auguston et al. 2015). However, behavior 

models can produce complex results solely with the syntax introduced. 
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 Event Trace A:B C (note that MP Analyzer notation uses dashed for Figure 14. 

inclusion, and solid for precedence) Source: Auguston (2009) 

Table 1.   Example MP Operators. Adapted from NPS (2015) 

Natural Language Description of Pattern Pattern Expressed as MP Event 

Grammar Rule 
Unordered set of zero or more events B A: {* B *}; 
Unordered set of one or more events B A: {+ B +}; 

Unordered set of events B and C (B and C may 

happen concurrently) 

A: {B, C}; 

Ordered sequence of zero or more events B A: (* B *); 
Ordered sequence of one or more events B A: (+ B +); 

Ordered sequence of events (B followed by C) A: B C; 

Optional event (B or no event at all) A: [B]; 

Alternative events (B or C) A: (B | C); 

 

Monterey Phoenix models are executable by way of an event trace generator 

(Auguston 2015). At the beginning of model execution, for each root event described, all 

valid traces within the scope N (provided by the user) are derived, with dependencies 

determining event order. Following the small-scope hypothesis, N can be relatively small 

(single digits) and produce the majority of possible states. Traces are produced based on 

the order of appearance of root events, while considering composition operations, such as 

SHARE ALL or COORDINATE. Constraints such as ENSURE allow more efficient 

execution by pruning state space search. The set of traces produced within the scope and 

constraints provided can be analyzed for examples of unexpected behavior. These 

counterexamples can then be removed by modifying the model’s code (e.g., through the 

ordering of events or modifying constraints), starting the process of process of validation 

early in the life cycle (Auguston 2015). Chapter IV gives an example MP model. 

Auguston (2015) describes the MP framework as facilitating an architecture that 

serves to facilitate bridging requirements and implementation. Models allow for 

simulation of system behavior and demonstration of potential emergent properties. 
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Models at the system level show the earliest form of design, facilitating analysis of 

alternatives. Abstraction is central to MP, in that architecture descriptions should ignore 

implementation details. Separation of concerns is achieved by separating the interaction 

description from the behavior. Furthermore, MP supports execution of the architecture 

specification through stepwise refinement (Auguston 2015). 

4. Agent-Based Modeling  

Agent-based modeling and simulation (ABM) is a broadly defined and emerging 

method of modeling complex systems using “agents” with defined behavior(s) and the 

relationship(s) between one another and the environment (Macal 2010). In general, 

agents interact (influence one another), are unique (facilitating heterogeneous 

populations), autonomous (independent) and have time-varying states. Optional agent 

characteristics can include adaptivity (an agent may or may not “learn” from its behavior) 

and goal-orientedness (seeking outcomes). An example application of agents in 

automotive control was seen earlier in Section C.2. 

Agent-based modeling approaches, definitions, and applied disciplines span a 

wide array of designs and applications, and there are not yet broadly accepted or 

standardized definitions for ABM (Borshchev and Filippov 2004). Further highlighting 

the breadth of ABM, agent attributes and the rules applied to them can range from 

extremely simple, static to complex and dynamic (Borshchev and Filippov 2004). 

Common features of ABM approaches include a decentralized system representation, and 

localized agent interaction and information sharing. The sum of this interaction is the 

topology (connectedness), changing over time as agents change their behavior or their 

neighbors. The topology can be represented in a number of different fashions, such as 

linked networks, in two or three-dimensional space or as unrelated to spatial dimensions 

(random interaction). The environment can serve as a simple reference, or it can impose 

its own information or constraints on the agents.  

As an ABM model is decentralized, system behavior emerges from agent 

interactions, rather than being explicitly defined by the model. This leads to ABM being 

called a “bottom-up” modeling approach (Borshchev and Filippov 2004). Assuming 
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agent behavior attributes are known, modeling can be done without a solid understanding 

of system interdependencies and behavior. “ABM replicates independent agents in order 

to study their interdependencies” (Baldwin 2015, 365).  

In addition to the example shown in Section C.2, another example application of 

ABM can be seen in the study of mathematical biology. There is recognition in the 

usefulness in ABM to simulate complex, dynamic and heterogeneous biological systems 

(such as tumors). However, Hinkelmann et al. argue that tools for mathematical analysis 

of discrete models in biological applications are limited, mostly restricted to qualitative 

versus quantitative analysis (2011). The authors argue that the Overview, Design 

Concepts and Details (ODD) protocol is a potential solution to this problem.  

ABM is a broadly defined and applied methodology for modeling the dynamics of 

systems. Some aspects are similar to MP – both are primarily concerned with the 

behavior of complex systems. In particular, MP and ABM share separation of concerns of 

agent behaviors and agent interactions, in theory capturing latent behavior that may not 

easily be found with other methods. However, ABM currently lacks the level of 

standardization and representation needed for formal verification. ABM is inherently 

“bottom-up” and inherently difficult to verify (Pullum 2012).  

As discussed, ABM approaches vary by domain and application, and there are 

multiple frameworks and specific approaches. System level behavior is seen as a result of 

agent interaction, showing emergent behavior in simulation results. According to 

Baldwin, ABM is used at all levels of abstraction, from granular elements, such as 

pedestrians, to complex entities, such as companies. From the literature reviewed, the 

relationship of ABM to the concepts of separation of concerns, stepwise refinement and 

formal methods is unclear at this time, warranting further research. In particular, none of 

the literature reviewed explicitly mentions the small scope hypothesis in conjunction with 

ABM. 

5. Petri Nets 

One specific area of research into formal models of self-adaptive systems focuses 

on capturing emergent requirements, specifically at runtime using Petri nets. There is a 
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well-established body of research on Petri net modeling, dating to the 1960s (Krogstie 

2012). Petri nets are stepwise, iterative and concurrent state transition systems. The basic 

components of a Petri net, a form of a directed bipartite graph, are states (also called 

places) and transitions, with flow denoted by arcs. One or more tokens traverse a Petri 

net by firing, indicating the occurrence of transitions (Petri and Reisig 2008). Petri nets 

are well established as a behavior modeling approach, facilitating graphical 

representation based on formal semantics (Jensen 2013). According to Jackson, a static 

model only describes a system’s states, while a dynamic model also describes the 

system’s transitions (2012). By this definition, Petri nets are dynamic models.   

One issue with traditional Petri nets is the problem of modeling systems with a 

large number of states, causing the model itself to become complex. A method of dealing 

with this comes in the form of colored Petri nets (CPN). A CPN is one type of high-level 

Petri net that allows tokens and transitions to be assigned colors (and variable 

information), which permits differences in routing behavior, as well as more compact 

models (Jensen 2013).  

Some characteristics are shared with MP: abstraction (via encapsulation), 

mathematical formalism, and graphical notation. They also provide hierarchical 

representation with abstraction in many different domains with a variety of tools (Girault 

and Valk 2013). Petri nets are also being used in the study of business workflow 

modeling, an example of which can be seen in Self-Adaptive Recovery Nets (SARN) 

(Rachid and Benatallah 2004). Separation of concerns can be accomplished with Petri 

nets (Abdelzad and Aliee 2010). However, whereas MP explicitly separates processes for 

each actor (interleaving them later to produce scenarios), a secondary method or process 

must be applied using Petri nets to segregate aspects or behaviors from one another. MP 

and Petri nets will be further compared by contrasting a simple model in Chapter IV. 

E. SUMMARY 

This chapter summarized selected behavior modeling approaches, each of which 

was then related to the concepts in Chapter II. The surveys presented some general trends 

in the application of formal methods broken out by domain and approach. Examples of 
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domain-specific frameworks were summarized, introducing novel concepts such as 

virtual integration and multi-scale modeling. 

General behavioral modeling approaches were introduced. Core characteristics of 

Monterey Phoenix were summarized. It is shown that MP shares common characteristics 

of MBSE. In summary, the aim of MP is in leveraging these traits to deal with the 

challenges of unpredictable behavior resulting from complexity, while overcoming some 

of the recognized shortfalls of current approaches. Some semantics were introduced to 

impart an understanding of MP code and usage. Agent-Based Modeling is introduced. 

Finally, Petri nets are introduced, discussing the basic concepts of one of the older and 

more popular behavioral modeling approaches.  
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IV. PETRI NETS COMPARED AND CONTRASTED WITH MP 

A. INTRODUCTION 

To support the summary of behavior modeling approaches introduced in Chapter 

III, simple experimentation was undertaken. This chapter compares MP with Petri nets by 

way of a basic model, to compare and contrast the two approaches. Petri nets were 

chosen, in part, because it is shown as an area of current research in the formal methods 

survey presented in Chapter III, as well as sharing some characteristics and goals with 

MP. The selected MP model is shown first, followed by an approximate Petri model, 

methodology, and comparison of results. 

B. EXAMPLE MODEL—MP COMPARED WITH PETRI NETS 

1. MP Example  

To minimize errors in interpretation introduced by model translation and varying 

toolsets, a rudimentary behavior model for communication between two nodes is utilized 

for a baseline comparison. The scenario is commonplace and well understood. The 

schema for the model and a prototype MP simulation environment, MP Analyzer, can be 

found and executed online (NPS 2015). An alternative online tool, Eagle6, is also 

accessible (Rivera Consulting 2015). However, at the time of this writing, it does not 

implement COORDINATE statement. The MP schema for the model is as follows: 
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SCHEMA Communication 

ROOT A_getDataFrom_B:  (* A_requestDataFrom_B  

     A_waitDataFrom_B 

                         (  A_failReceivingDataFrom_B  |                                

               A_receiveDataFrom_B )       *); 

ROOT B_answerRequestDataFrom_A: (* (  

B_receiveDataFrom_A                                

( (B_processDataFrom_A                  

 B_sendDataTo_A ) | 

B_failProcessingDataFrom_A)  

|  

B_failReceivingDataFrom_A ) 

         *); 

COORDINATE $x: A_requestDataFrom_B FROM A_getDataFrom_B,  

$y: ( B_receiveDataFrom_A| 

B_failReceivingDataFrom_A                                     

FROM B_answerRequestDataFrom_A 

DO ADD $x PRECEDES $y; OD; 

COORDINATE $x: ( B_failReceivingDataFrom_A | 

B_failProcessingDataFrom_A )   

       FROM B_answerRequestDataFrom_A,  

          $y: A_failReceivingDataFrom_B    

      FROM A_getDataFrom_B 

          DO ADD $x PRECEDES $y; OD; 

COORDINATE $x: B_sendDataTo_A     

FROM B_answerRequestDataFrom_A,  

$y: A_receiveDataFrom_B    

FROM A_getDataFrom_B 

DO ADD $x PRECEDES $y; OD; 

 

This example model has two root events, node A requesting data from node B 

(“A_getDataFrom_B”) and B answering the request for data to A 

(“B_answerRequestDataFrom_A”). The “A: (* B *)” notation denotes that A 

contains an ordered sequence of zero or more B events. Child Events of each root follow 

and end with a semicolon. The “COORDINATE” syntax is a composition operation that 

coordinates the behaviors of the root events in terms of message passing (Auguston, 

Behavior Models for Software Architecture 2014). Alternatively, a “SHARE ALL” 

statement (not used in this example) could be used: if there is event type of one or more 

of the events, and there is an event trace that satisfies the schema, both root nodes share 

those event types (Auguston 2009). For example, if there is a satisfactory event trace 



 35 

solution that contains “A_requestDataFrom_B,” it could be shared between both 

root events “A_activity” and “B_Activity.”   

2. MP Example Results 

Every MP model can be run through a number of iterations, or its event scope (set 

at two in this case). Following the small scope hypothesis, the event scope is set at two 

and the model executed. The results are a set of 13 possible event traces (which satisfy 

the schema), listed in Appendix A. An example output is shown in Figure 15. Each box 

represents an event (green boxes are root events, blue are the resulting composite events). 

The dashed arrows represent inclusion (IN) (e.g., “A_requestDataFrom_B” is a 

composite event included in the root event “A_getDataFrom_B”). The solid arrows 

represent precedence (PRECEDES) (e.g., “A_requestDataFrom_B” is an event 

preceding “A_waitDataFrom_B”). This example shows a failure, followed by a 

successful transmission of data. While there 13 event traces, it should be noted that all 

but three involved another iteration of the model from the starting event 

“A_requestDataFrom_B.” In every instance, the trace will arrive at either 

“A_failReceivingDataFrom_B” or “A_receiveDataFrom_B.” This 

explanation discounts the event trace that only contains the root events (as explained 

earlier, this is due to the * operator), because, for the purpose of this comparison, some 

activity is assumed to take place. Alternatively, events with zero instances would be 

removed if the (* … *) operator was replaced with the (+ … +) operator, as 

described in Chapter III. 
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 Example Event Trace Output Figure 15. 

 

3. Petri Net Example 

Of the numerous Petri net tools available, Platform Independent Petri net Editor 2 

(PIPE2) was chosen for being platform independent (using JAVA), currently supported, 

open-source, and supporting analysis modules such as reachability, state space and timing 

(Bloom et al. 2007). The behavior model for communication between two nodes was 

manually translated from MP into a Petri net with equivalent states (Figure 16). The MP 

model event names were preserved for clarity. To maintain simplicity and equivalency 

with the MP model, arcs (which can be modified to allow more than one token at a time) 

are set at the default of one. Likewise, transitions (which can have timing properties) are 
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set at a delay of zero. The two MP root events are not included, as they are always 

assumed to occur.   

As MP is only concerned with events, which may be considered abstractions of 

states, it should be noted that all states (places – Petri net circles) are actually describing 

the transition(s) preceding that state. For example, “A_receive_dataFrom_B” 

properly worded in Petri convention would be “A_receivedDataFrom_B.” It should 

be noted that the event labels could have been assigned to transitions; however, this 

would have necessitated adding additional states, as tokens can only be assigned to states. 

Supporting this choice, Raschke (2009) shows some success in formal translation of 

UML activity diagrams into token-based state machines. 

Figure 17 shows a closed loop variation, which allows continuous running of the 

model. The closed loop variation involved the addition of three transitions and nine 

 arcs. One of these arcs is an inhibitor arc (going into transition T11), which 

enables a transition to fire only when a token is not present at the preceding state 

(however, T11 will not fire without the other arc also receiving a token from state 

“A_failReceivingDataFrom_B”). This allows the model to synchronize after an 

iteration, because in some cases, multiple tokens can be present. After an iteration, only a 

single token will be present at the beginning state “A_requestDataFrom_B.”  A 

single token was placed in the “A_requestDataFrom_B” state, and 500 firings were 

performed on each model.  

The observed difference between the open and closed loop models is that the 

open loop shows tangible states – that is, possible end states. For example, the 

open loop model has three states, S5, S6 and S8 (corresponding to 

“A_failReceivingDataFrom_B,” “A_waitDataFrom_B,” and 

“A_receiveDataFrom_B,” respectively) that a token will terminate (no more 

possible firings). However, S5 and S6 are essentially a shared end-state, since they will 

always occur together. This is discussed further in the next section.  
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 Petri Net Data Transfer Example (Open Loop) Figure 16. 

 
 

  

 Petri Net Data Transfer Example (Closed Loop) Figure 17. 
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4. Results and Comparison with MP Example

From a behavioral perspective, reachability is defined as the entirety of possible 

states (i.e., those states that are fireable, or where a token is able to progress), supported 

by mathematical formalism (Lambert 1992). A reachability report was run on both the 

open loop and closed loop models, seen in Figure 18 and Figure 19 respectively. In 

comparison with the MP model results, all possible states are shared. This was verified by 

comparing the MP model outputs to the sequence of firings seen for each run of the Petri 

net models. PIPE2 does not support generating a graphical output of individual iterations; 

however, the model was observed to transition through each of the MP example event 

traces (found in Appendix A). The one exception is the case of only the root events, with 

no observed behavior. This is because the (* *) operator applied to the root events 

specifies iteration of its contents zero or more times. In contrast, the Petri net will always 

fire if the transition is enabled by a token (set by default at the beginning state 

“A_requestDataFrom_B.”  

 Reachability Output (Open Loop) Figure 18. 
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 Reachability Output (Closed Loop) Figure 19. 

 

In comparison to the MP results, an observed difference is that 

“A_waitDataFrom_B” is shown as preceding “A_failReceivingDataFrom_B.” 

The open loop Petri net model, in this case, will terminate with a token in each state, 

which means that A will continue waiting for data from B indefinitely. In the MP model, 

a transition is shown to “A_failReceivingDataFrom_B” from both 

“A_waitDataFrom_B” and “B_failReceivingDataFrom_A.” In other words, 

both the MP and the Petri net models share two primary end states, but in the case of the 

open loop Petri net model, an additional token is “stuck” at “A_waitDataFrom_B” in 

one of the two end states. A more complex model could potentially account for this, 

matching the MP results more closely. There are three possible end states for a token 

because an end state is possible with tokens in both S5 and S6. Otherwise, the observed 

transitions between the two Petri net models matched. In contrast, the closed loop model 

accounts for this state and is a better translation of the MP model. This results in a single 
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token beginning again at “A_requestDataFrom_B,” aligning with the MP results as 

a new transition is started. 

One difficulty encountered in translation of the MP model into a Petri net was the 

relative increase in complexity. Simple MP statements can result in a comparatively 

intricate Petri net representation. As an example (unrelated to the experimentation 

model), in root event D, starting from State A, if there is the possibility of a transition to 

B and then to C (or B again) or to C and then to B (or C again), or to both B and C 

simultaneously, all must be accounted for. An illustration of this as a Petri net can be seen 

in Figure 20 (tokens fired once or twice). In MP, this would simply be accomplished with 

the syntax D: A (+ ( B | C ) +); where D includes A, which precedes B or C. 

The Petri net model is relatively complex without the use of extensions, such as CPN. 

This is an example of the “single flowchart” paradigm, which increases the difficulty of 

accurately designing and maintaining a model, resulting from combining aspects of all or 

most of a system’s behavior into one viewpoint (Auguston, et.al. 2015). The 

experimentation discussed in this chapter suggests that Petri nets (without extensions) 

suffer from this issue, as far more time was spent designing and debugging the Petri 

model relative to the MP model. 

 

 Petri Net Transition Example Figure 20. 
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Finally, a classification report was run for each variant, seen in Figure 21 and 

Figure 22. Of note, the open loop model is a free choice net (which means there is more 

than one potential path a token can take), while the closed loop model is not. In other 

words, the closed-loop net shows both concurrency and conflict between the transitions 

of tokens. A free choice net means that every transition from an arc to a place or a place 

to an arc is unique (Sgroi et al. 1999). 

Comparing the observed transitions of the Petri net models and the MP event 

traces, all end states were shared. This implies that, at least for a simple example, both 

approaches can be made to show identical results of the behavior of a system. It should 

be noted that this does not necessarily indicate the approaches are equivalent in analysis 

capability. On the contrary, there was a qualitative difference in ease of use and time of 

experimentation. A more complex scenario may make it unwieldy to replicate in Petri 

nets, as inherent guidance to separate the concerns of each root event is not explicitly 

provided in Petri nets in comparison to MP. For this author, the MP model setup and run 

time was faster than with the Petri nets, even though the Petri net model provided a visual 

editor (versus MP source code). These differences could be attributable to the tools and 

not the frameworks. As the MP framework is refined and grows to support more features 

(e.g., timing constraints and measurements), future research should be undertaken to 

compare and contrast MP with other executable discrete modeling approaches. 

Specifically, a more complex model (with more possible end states, or more than two 

root events) should be compared to a Petri net or similar model. Additionally, the Petri 

net model in this research did not attempt to explicitly model A as a separate entity from 

B, whereas the MP model parses A and B independently from one another and interlaces 

the results at execution. PIPE2 has the capability of abstracting A from B, but it is not 

known if they could be executed independently but interlaced into one another, which 

future experimentation could show. 
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 Classification Results Closed Loop Model Figure 21. 

 

 

 

 Classification Results Open Loop Model Figure 22. 
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C. SUMMARY 

This chapter introduced a simple MP model describing the communication 

between two systems. Utilizing the online MP environment MP Analyzer, a schema for 

the model was executed and analyzed for possible events within a given scope. The MP 

model was translated into an approximate Petri net model with two variations and 

executed in the PIPE2 simulator. The primary difference between the two is that the MP 

model treats the two root events as independent of one another, modeling their 

interactions at execution. In contrast, the Petri net models treated the root events as a 

single dependent model. However, in this simple example, the resulting state spaces in 

the MP model and the closed loop Petri net model are shown to be logically equivalent. It 

is not implied that the approaches are equal in nature, only that they share characteristics 

that can be used to produce the same logical state space. 



 45 

V. CONCLUSIONS AND FUTURE RESEARCH 

A. INTRODUCTION 

The intent of this research was to capture key modern MBSE approaches with respect 

to behavior modeling and in the context of MP characteristics. Throughout this thesis, many 

of the common concepts introduced in Chapter II are significant attributes of the approaches 

presented. The research question is revisited, followed by a summary of comparisons 

between concepts and reviewed approaches. The conclusions section presents notable 

insights from the comparison of approaches and the experimental comparison.   

B. RESEARCH QUESTION 

The primary research question is as follows: “How does the Monterey Phoenix 

behavior modeling approach compare with other approaches that claim to expose 

unintended, unneeded or undesired system interactions?” The research was accomplished 

through a review of the literature on the current state of behavioral modeling, contrasting 

with MP through a comparison of key concepts, and through experimentation with MP 

and Petri net models. 

C. CONCLUSIONS 

The following conclusions arise from review of the researched publications: 

1. MP makes use of the concepts covered in Chapter II at least as much as 

any other method or framework reviewed. 

2. Of the publications reviewed, no other formal, executable approach 

claims to exhaustively search for all possible scenarios (within a given 

scope) while also supporting event attributes, assertion checking, and 

different viewpoints. 

3. The Virtual Integration concept described by Yu et al. may benefit from 

the use of MP, as the framework makes use of multiple modeling 

languages depending on viewpoint and is concerned with precise 

behavior modeling. 

4. None of the approaches researched fully support all of the concepts 

(without the use of extensions or multiple specifications/approaches) 

reviewed in this thesis as MP does: frameworks, abstraction, behavior 
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modeling, abstraction, separation of concerns, stepwise refinement and 

formal methods/small scope hypothesis. 

Table 2 shows a summary of researched approaches and the relationship of each 

to the general concepts described in Chapter II. Relations are drawn where supported by 

the research. Some relations are inconclusive based on this research, and as such are 

marked as “unclear” or “not explicit” with an explanation. These areas may be 

particularly supportive of future research. 

Table 2.   Select Approaches Related to Concepts 
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Expanding upon Conclusion 1, MP is the only approach researched that fully 

employs all of the concepts summarized in Chapter II. All of the general approaches are 

well reflected as being used for behavioral modeling across domains. However, each 

approach has notable gaps. One example is the use of formal methods in ABM. While 

well suited towards qualitative simulations with many unknowns, the lack of qualitative 

ABM methods can present difficulty in verification. In contrast to this, SD and Petri nets 

are well suited for quantitative problems, as models are described mathematically. 

However, SD does not appear to have practical methods for separation of concerns or 

stepwise refinement, and Petri nets are limited (encapsulation for stepwise refinement) or 

require extensions (e.g., colored Petri nets) to deal with separation of concerns 

effectively. 

In further depth, experimentation with Petri nets and MP are shown to produce a 

logically equivalent state-space (reachability) for a simple communications model. 

However, the Petri model did not treat the root events (system A and B) as separate 

entities, as MP does prior to execution. This is notable, as the state transitions internal to 

each node are not distinguished from the state transitions between nodes. In this case, the 

states of A and B are combined into a single model that does not show a measure of 

coupling or cohesion between nodes. In contrast, MP separates component behavior from 

the interaction of components (applying separation of concerns). Most significantly, all 

possible state transitions and the order in which they can occur must be explicitly 

modeled in a Petri net. While MP must account for all possible states, the possible 

transitions and the order in which they can occur can be stated more abstractly.  

A Virtual Integration approach was discussed in Chapter III (Yu et al. 2015). In 

common with MP, the authors are supportive of some of the same goals of abstraction, 

formal specification, and separation of concerns, with emphasis on timing. Attributes of 

correct by construction and contract extraction are distinctive to their approach. Of note, 

the authors recognize that the key characteristic of semantics interoperability may not be 

feasible due to the constraint of semantics preservation. The authors call for the use of 

behavior models that link supplier specifications to the system specification. These 

models are referred to generically, so MP may be of benefit to such a construct. A key 
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assumption is made in assuming suppliers are able to provide designs that optimally meet 

the functional and non-functional requirements in the contracts that they are provided. 

While this may be more achievable in the automotive industry, it is a questionable 

assumption the defense industry, given the proliferation and mandates applying to the use 

of Commercial Off-The-Shelf (COTS) (Oberndorf 1998). This off-the-shelf usage can 

impose additional complexity and incompatibilities and may restrict the flexibility such 

an approach would require (Alves 2003). However, MP may be suitable for use in the 

proposed virtual integration framework, as it is composable, testable and executable, and 

may be suited to the task of identifying subsystem-to-subsystem incompatibilities.   

The comparison of approaches in Chapter IV shows that both approaches can 

produce identical state space possibilities, at least in the case of the simple 

communications model in this research. However, it does not conclusively show that MP 

and Petri nets are equivalent in studying the behavior of a system. One of the benefits of 

Petri-nets is the ability to pass a defined number of tokens at each decision point, but it 

requires explicitly defining at each state. Mentioned in Chapter IV, Petri net editors can 

support features such as control and measurement of timing, arc capacity. While these are 

not utilized in the example models, they are apparent candidate features for future MP 

environments. Additionally, Petri net tools allow graphical editing, while existing MP 

tools currently rely on building a schema. However, from experimentation, it appears 

Petri net models currently suffer from the “single flowchart” paradigm, increasing the 

effort relative to MP to design and maintain equivalent models (Auguston et.al. 2015). 

D. LIMITATIONS OF RESEARCH 

As discussed in Chapter I, this thesis is primarily focused on reviewing state-of-

the-art approaches to exposing latent and undesired behavior. As such, limited 

experimentation was performed to supplement multi-disciplinary findings through 

literature review and surveys of current methods.  

Sources and content are generally limited to recent research. Despite the multi-

disciplinary and multi-domain track of this thesis, few sources dealt with concrete, 

comprehensive, real-world experimentation. One particular example modeling approach, 
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ABM, appears to have near-ubiquitous adoption across science and industry. 

Counterintuitively, ABM appears to have very little standardization across domains, 

particularly in verification and validation. 

Although the results in Chapter IV show that a Petri net model and an equivalent 

MP model can produce identical state spaces, the models are simplistic, and further 

testing of models that are more complex should be done to verify the breadth of this 

conclusion. Additional comparisons between MP and Petri net with increased 

complexity, including the use of abstraction in a Petri net model would add more 

evidence to the relationship between MP and Petri nets.  

ABM was only qualitatively explored in this thesis, explicit experimentation 

comparing MP to analogous MP models would further help to relate or distinguish the 

two approaches. As there is no currently published research relating MP to ABM, the 

relationship is inconclusive, warranting further research.  

E. FUTURE RESEARCH 

The SAE standard AADL, discussed in Section III, may offer further insight into 

formalized semantics (Yu et al. 2015). Additionally, a future synchronous behavior annex 

to AADL is mentioned, which may be of interest, though it is domain specific, 

conflicting with the desire for MP to be domain-independent. 

Chapter III provided a review of two comprehensive surveys of the state of 

research on formal methods, with one specifically focused on self-adaptive systems. The 

surveys highlight growing interest in formal methods applied to MBSE while presenting 

some issues seen in research and adoption. A key question Woodcock et al. ask is 

whether tailoring of when and where formal methods are applied in product development 

would aid in increased adoption of formal methods based modeling (Woodcock, et al. 

2009). It follows that future research into the suitability of MP as applied specific 

development areas would help to build a stronger case for adoption. A recent study 

investigating the utility of MP for Business Process Modeling (BPM) is a good example 

(Auguston et al. 2015). 
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Of note, none of the sources focused specifically on modeling applications for the 

concern of maintainability or life-cycle cost. Further research on how MP could be 

applied to maintainability scenarios, perhaps building on existing reliability studies, 

would be of benefit to the defense industry. Model-based reasoning (MBR) is a 

knowledge-based method that has shown promise in significantly reducing the ambiguity 

(increasing the accuracy) of fault diagnosis and reporting (Berenji, Wang and Saxena 

2005). Future research investigating the potential utility of MP in the study of fault 

propagation or as a complementary toolset for MBR is a good example, given ever-

increasing Reliability and Maintainability (R&M) standards. 

Further research into the design of MP tools is warranted. As shown with the 

ability to perform timing analysis with Petri nets, and any number of other modeling and 

simulation environments, capturing more than just the potential state space is useful. 

From a tool perspective, the potential to capture other behavioral traits, such as 

temporality should be explored. Additionally, a method of translating graphical objects 

into MP schema into would provide an additional method of creating MP models. 

Monterey Phoenix has an established baseline of syntax, but it is currently growing to 

accommodate additional use cases (for example, assertion checking). Furthermore, efforts 

to enhance MP Analyzer with additional views of event traces could aid in the analysis of 

results. One such example would be analogous to the reachability output graph of the 

Petri net PIPE2 tool as seen in this thesis – showing a summary of all possible states in 

one view. 

An up-to-date listing of MP information published research and presentations can 

be found at the following link: https://wiki.nps.edu/display/MP/Bibliography. An 

experimental web-based Graphical User Interface (GUI) for designing and running MP 

Analyzer can be found at http://firebird.nps.edu/. A practical venue of future effort would 

simply be for interested parties to contribute to the documentation supporting MP 

(particularly known use cases, standards, tools), which would aid most future research.  
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APPENDIX.   MP MODEL RESULTS 
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