

NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

SYSTEM BEHAVIOR MODELS: A SURVEY OF

APPROACHES

by

Scott R. Ruppel

June 2016

Thesis Advisor: Kristin Giammarco

Second Reader: John M. Green

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,

searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to

Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA

22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE

June 2016
3. REPORT TYPE AND DATES COVERED

Master’s Thesis

4. TITLE AND SUBTITLE

SYSTEM BEHAVIOR MODELS: A SURVEY OF APPROACHES
5. FUNDING NUMBERS

6. AUTHOR(S) Scott R. Ruppel

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School

Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION

REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)

N/A
10. SPONSORING/MONITORING

 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy

or position of the Department of Defense or the U.S. government. IRB Protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

 Human designed systems are growing in complexity, with increasing numbers of components and behavior

combinations, resulting in more emergent and unintended behaviors evident in operations. This thesis explores

various behavior modeling approaches and their potential for exposing emergent behaviors, highlighting trends and

modeling approaches. The report defines key concepts and provides a context for a comparative analysis of

approaches. In particular, this report assesses a relatively new approach to behavior and architecture modeling,

Monterey Phoenix (MP), and compares it with Petri nets, a well-established method. The comparison involves a

simple communication process between two components, which is modeled and compared to an equivalent Petri net

model. Shared outcomes involve a successful communication between the components and failure modes of the

components not receiving or processing data. The models produce identical state space results. The combined state

space graph of the Petri model allowed a quick assessment of all potential states but was more cumbersome to build

than the MP model. A comparison of approaches charts the modeling methods against the key concepts, revealing the

differences among methods, contrasted with the aspects of MP.

14. SUBJECT TERMS
Monterey Phoenix, Petri nets, behavior modeling, model-based systems engineering, modeling

approaches, modeling survey

15. NUMBER OF

PAGES
85

16. PRICE CODE

17. SECURITY

CLASSIFICATION OF

REPORT
Unclassified

18. SECURITY

CLASSIFICATION OF THIS

PAGE

Unclassified

19. SECURITY

CLASSIFICATION OF

ABSTRACT

Unclassified

20. LIMITATION OF

ABSTRACT

UU

NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89)

 Prescribed by ANSI Std. 239–18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

SYSTEM BEHAVIOR MODELS: A SURVEY OF APPROACHES

Scott R. Ruppel

Civilian, Department of the Navy

B.S., University of Portland, 2006

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS ENGINEERING MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL

June 2016

Author: Scott R. Ruppel

Approved by: Kristin Giammarco, Ph.D.

Thesis Advisor

John M. Green

Second Reader

Ronald Giachetti, Ph.D.

Chair, Department of Systems Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Human designed systems are growing in complexity, with increasing numbers of

components and behavior combinations, resulting in more emergent and unintended

behaviors evident in operations. This thesis explores various behavior modeling

approaches and their potential for exposing emergent behaviors, highlighting trends and

modeling approaches. The report defines key concepts and provides a context for a

comparative analysis of approaches. In particular, this report assesses a relatively new

approach to behavior and architecture modeling, Monterey Phoenix (MP), and compares

it with Petri nets, a well-established method. The comparison involves a simple

communication process between two components, which is modeled and compared to an

equivalent Petri net model. Shared outcomes involve a successful communication

between the components and failure modes of the components not receiving or

processing data. The models produce identical state space results. The combined state

space graph of the Petri model allowed a quick assessment of all potential states but was

more cumbersome to build than the MP model. A comparison of approaches charts the

modeling methods against the key concepts, revealing the differences among methods,

contrasted with the aspects of MP.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1

A. PURPOSE ...1

B. RESEARCH QUESTION ...1

C. RESEARCH METHODOLOGY ...2

D. SCOPE ..3

E. STRUCTURE ...3

II. CONCEPT OVERVIEWS ..5

A. INTRODUCTION..5

B. MODEL-BASED ENGINEERING ..5

1. Model-Driven Engineering ..6

2. Model-Driven Architecture ...6

C. CONCEPTS ..7

1. Frameworks ..7

2. Behavior Modeling and Emergent Behavior8

3. Abstraction ...9

4. Separation of Concerns ...10

5. Stepwise Refinement ..10

6. Formal Methods and the Small Scope Hypothesis10

D. SUMMARY ..11

III. BEHAVIOR MODELING APPROACHES..13

A. INTRODUCTION..13

2. Survey of Self-Adaptive Systems and Formal Methods14

C. DOMAIN-SPECIFIC APPROACHES ..18

1. Automotive Requirements Modeling ...18

2. Automotive Control Modeling ..20

D. GENERAL APPROACHES ...22

1. Systems Modeling Language ...22

2. System Dynamics Models ..24

3. Monterey Phoenix ..25

4. Agent-Based Modeling...28

5. Petri Nets...29

E. SUMMARY ..30

IV. PETRI NETS COMPARED AND CONTRASTED WITH MP33

A. INTRODUCTION..33

 viii

B. EXAMPLE MODEL—MP COMPARED WITH PETRI NETS33

1. MP Example ...33

2. MP Example Results ..35

3. Petri Net Example ..36

4. Results and Comparison with MP Example..............................39

C. SUMMARY ..44

V. CONCLUSIONS AND FUTURE RESEARCH ..45

A. INTRODUCTION..45

B. RESEARCH QUESTION ...45

C. CONCLUSIONS ..45

D. LIMITATIONS OF RESEARCH ..48

E. FUTURE RESEARCH ..49

APPENDIX . MP MODEL RESULTS...51

LIST OF REFERENCES ..59

INITIAL DISTRIBUTION LIST ...65

 ix

LIST OF FIGURES

 Spiral Model...3 Figure 1.

 Approaches in Modeling Scaled by Level of Abstraction. Source: Figure 2.

(Borshchev) 2004 ...6

 Projects Using Formal Methods by Domain Source: Woodcock et al. Figure 3.

(2009) ...14

 Formal Methods in Self-Adaptive Systems. Source: (Weyns et al.) 201215 Figure 4.

 Specification Approaches Source: (Weyns et al.) 201215 Figure 5.

 Formal Verification Properties. Source: Weyns et al. (2012)16 Figure 6.

 State Space of Behaviors to Properties, Numbered References. Figure 7.

Source: Weyns et al. (2012) ...17

 Proposed Automotive Architecture Framework. Source: Yu et al. Figure 8.

(2015) ...19

 Automotive Control System Utilizing Agents Source: Sengstacken, Figure 9.

DeLaurentis, and Akbarzadeh-T (2007) ..21

 SysML Diagram Hierarchy. Source OMG (2015)23 Figure 10.

 Activity Diagram ...23 Figure 11.

 System Dynamics Process. Source: Forrester (1993)24 Figure 12.

 Example SD Model. Source: Sterman (2001)..25 Figure 13.

 Event Trace A:B C (note that MP Analyzer notation uses dashed for Figure 14.

inclusion, and solid for precedence) Source: Auguston (2009)27

 Example Event Trace Output ...36 Figure 15.

 Petri Net Data Transfer Example (Open Loop) ...38 Figure 16.

 Petri Net Data Transfer Example (Closed Loop)38 Figure 17.

 Reachability Output (Open Loop) ...39 Figure 18.

 Reachability Output (Closed Loop) ...40 Figure 19.

 Petri Net Transition Example...41 Figure 20.

 x

 Classification Results Closed Loop Model ..43 Figure 21.

 Classification Results Open Loop Model ..43 Figure 22.

 xi

LIST OF TABLES

Table 1. Example MP Operators. Adapted from NPS (2015)27

Table 2. Select Approaches Related to Concepts ..46

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

AADL analysis and design language

ABM agent-based modeling

ASE International Conference on Automated Software Engineering

BPM business process modeling

CPN colored Petri nets

DEAS design and evolution of autonomic application

DoDAF Department of Defense Architecture Framework

EBM events-based modeling

FEAF Federal Enterprise Architecture Framework

FMEA failure modes and effects analysis

FSE Foundations of Software Engineering

GUI graphical user interface

ICAC International Conference on Autonomic Computing

ICSE International Conference on Software Engineering

JSS Journal of Systems and Software

MBE model-based engineering

MBR model-based reasoning

MBSE model-based systems engineering

MDA model-driven architecture

MDE model-driven engineering

MP Monterey Phoenix

OEM original equipment manufacturer

PIPE Platform Independent Petri net Editor

R&M Reliability and Maintainability

SASO Self-Adaptive and Self-Organizing Systems

SAVI System Architecture Virtual Integration

SD system dynamics

SE systems engineering

SEAMS Software Engineering for Adaptive and Self-Managing Systems

 xiv

SysML Systems Modeling Language

SoS system of systems

TAAS Transactions on Autonomous and Adaptive Systems

TEAF Treasury Enterprise Architecture Framework

TOGAF The Open Group Architectural Framework

TSE Transactions on Software Engineering

UML Unified Modeling Language

WICSA Working International Conference on Software Architecture

WOSS Workshop on Self-Healing

 xv

EXECUTIVE SUMMARY

Monterey Phoenix (MP) is a recent behavioral modeling framework that seeks to

advance the development of formal system architecture specifications. Some of the

foundational concepts that MP relies on are frameworks, abstraction, separation of

concerns, stepwise refinement, small-scope hypothesis, and the use of formal methods.

To relate MP to other current Model-Based Systems Engineering (MBSE)

approaches, this thesis reviews selected modeling approaches, summarizing relevant

trends in the context of MP concepts. Of note, a novel automotive MBSE framework

proposed by Yu et al. (2015) uses generic behavior models as a central approach for

linking supplier specifications to the system specification. Additionally, two modeling

surveys were reviewed, showing adaptation rates of MBSE approaches.

One approach, behavior modeling with Petri nets, was selected for

experimentation. A simple communications model (two entities passing information to

each other) was coded and executed in the MP Analyzer environment, producing the

possible behaviors (results) of the system as event traces. The communications model

also was translated into an equivalent Petri net model, to compare Petri net with MP. The

Petri net model was simulated in the PIPE2 program (a popular editor), producing a state

space equivalent to the MP results. In this limited example, results showed that MP and

Petri nets could produce equivalent possible state spaces.

Following this, the selected approaches were compared with the concepts central

to MP. The primary conclusions follow:

1. MP makes use of the concepts utilized by MP as any other method or

framework reviewed. These concepts include: frameworks, behavior

modeling, abstraction, separation of concerns, stepwise refinement,

formal methods and the small scope hypothesis

Of the publications reviewed, no other formal, executable approach claims to

search exhaustively for all possible scenarios (within a given scope) while also

supporting event attributes, assertion checking, and different viewpoints.

The Virtual Integration concept described by Yu et al. could benefit from the use

of MP.

 xvi

None of the approaches researched fully support all of the concepts (without the

use of extensions or multiple specifications/approaches) reviewed in this thesis

as well as MP does, specifically, frameworks, abstraction, behavior modeling,

stepwise refinement and formal methods.

Additionally, this research determined that none of the cited research focused on

the application of modeling to supportability or life cycle costs.

Notable limitations in this research include the use of a simplistic model in the

Petri net and MP experimental comparison, the preliminary nature of many of the topics

covered, and a limited body of research on MP available to date. Recommended future

research areas span use-case specific experimentation with MP, the expansion of MP

tools and features, and the further exploration of MP limitations.

LIST OF REFERENCES

Yu, Huafeng, Prachi Joshi, Jean-Pierre Talpin, Sandeep Shukla, and Shinichi Shiraishi.

2015. “The Challenge of Interoperability: Model-Based Integration for

Automotive Control Software.” Proceedings of the 52nd Annual Design

Automation Conference: 58.

 xvii

ACKNOWLEDGMENTS

A debt of gratitude is owed to the Systems Engineering division of Naval Air

Systems Command, which graciously sponsored my participation in the Systems

Engineering Management program (SEM-PD 21). I would also like to thank my advisor,

Kristin Giammarco, for her support, passion for architecture modeling and optimism. I

send love to my family for instilling in me at an early age a passion for literature and

science. The gift of David Macaulay’s book The Way Things Work might be one of the

most pivotal points in my youth. Finally, I thank Elisa for affording time to the pursuit of

this research. Her moral support and understanding made this possible.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

Right requires justification, wrong requires conviction. If you stay on the

path of right, the guideposts are many, and you never stray. But there is no

one path for wrong, no lit way, no signposts, no guide.

—Gary Langford

Engineering Systems Integration, 2012

A. PURPOSE

Often asserted in the multi-disciplinary field of behavior modeling are the

problems associated with capturing or exposing emergent behavior, unintended or

undesired interactions. The primary purpose of this thesis is to perform a literature review

of Model-Driven Architecture (MDA) and Model-Based Engineering (MBE) approaches,

focusing on methods and practices pertaining to exposing unwanted, unneeded or

undesired interactions. A relatively new approach to formalized software system

architecture specification, primarily concerned with behavior modeling in light of these

issues, is proposed in Monterey Phoenix (MP) (Auguston 2009). As a secondary purpose,

a simple case study of a communication process between two components is modeled in

MP and compared with an equivalent model utilizing an established behavioral method,

Petri nets.

B. RESEARCH QUESTION

 Primary research question: How does the Monterey Phoenix behavior

modeling approach compare with other approaches that claim to expose

unintended, unneeded, or undesired system interactions?

The goal of this research is to put MP into the context of existing behavior

modeling approaches. The primary research question is addressed by surveying

publications relevant to the key concepts of MP. A multidisciplinary literature review

surveys articles, journals, books and conference proceedings that advance methods

congruent with the goals and methods of MP. From the survey and MP papers, an

overview of key MBE concepts and characteristics provides an overall context for the

 2

thesis. To relate MP to other approaches, this thesis reviews a selection of behavior

modeling methods representing a sampling of the general state of behavior modeling

approaches. Following this, this research contrasts one of the approaches (Petri nets) with

MP via experimentation with a simple behavior model.

C. RESEARCH METHODOLOGY

This research is multi-disciplinary, covering a diversity of topics within systems

and software engineering and multiple domain applications. As such, multiple academic

databases (general and domain-specific) were employed. Sources were limited to those

published within the last two decades to maximize the maturity of sources and minimize

ambiguity in conclusions. However, certain fundamental concepts date back to the 1970s,

such as the idea of abstract data types (Wulf 1980). The broadness in topic areas and the

varying maturity of source material necessitated extensive review. Of the 115 items

reviewed, this report cites approximately 75 articles. It excludes sources with little to no

connection to either a general form of modeling or a direct claim of exposing latent

behavior. Emphasis was placed on research that shared common characteristics and

concepts employed by MP, further detailed in Chapter II.

A spiral model was chosen for researching and structuring this thesis, shown in

Figure 1. This approach allowed multiple iterations of source material review (extraction

of key concepts), synthesis (documenting concisely), and analysis (drawing conclusions)

of interim results. The goal of this approach is the production of a set of clear conclusions

relevant to the behavior modeling approach comparisons by integrating relevant concepts

and applications and refining through iteration.

 3

 Spiral Model Figure 1.

D. SCOPE

The research is limited to a literature review, limited experimentation, and a

comparison of methods and approaches pertinent to the concepts employed by MP. A

possible limiting factor in conducting this research is that MP is maturing. This research

is limited to the current state of MP at the time of this writing.

E. STRUCTURE

Chapter I introduces the purpose, the research question, methodology, scope, and

structure. Chapter II provides general background and context for the primary research

question, and a discussion of general modeling concepts relevant throughout this thesis.

To provide a general understanding of relevant modeling concepts, topics such as

frameworks, abstraction, and separation of concerns are described. Chapter III presents

selected surveys highlighting trends and adoption rates of formal and self-adaptive

systems modeling methods. It introduces selected behavior modeling approaches,

focusing specifically on SysML, System Dynamics, MP, ABM and Petri nets. Chapter IV

explores the relationship of MP to Petri nets by comparing models experimentally. It

provides a summary of the design of each model, the experimentation process and the

results. Chapter V provides primary conclusions, limitations, and recommendations for

 4

further research. The research question is revisited, and the selected modeling approaches

are compared against the concepts from Chapter II.

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. CONCEPT OVERVIEWS

A. INTRODUCTION

The following introduces a summary of key concepts and characteristics that

underpin MP as a basis for the research supporting the thesis. The concepts are later

cross-referenced in the literature review and compared with selected approaches.

B. MODEL-BASED ENGINEERING

Model-based engineering, model-based systems engineering (MBSE), and model

and simulation-based Engineering (M&SBE) all refer to the use of models and

simulations versus traditional document-based engineering artifacts (Stefan 2007). There

are numerous and growing approaches, methodologies and frameworks. The Unified

Modeling Language (UML) and Systems Modeling Language (SysML) are popular

languages. The Department of Defense Architecture Framework (DoDAF) is a popular

architecture framework, which describes the visualization of the different stakeholder,

operational, and systems viewpoints and models (Giammarco 2007). One aspect each

framework shares, primarily concerned with interaction, is behavior modeling.

Behavior modeling approaches can be differentiated by the level of abstraction

supported and whether they are mainly continuous or discrete (Borshchev 2004). Figure 2

shows general categories and characteristics, separated by level of abstraction and time

(discrete or continuous). These are discussed in more detail in Chapter III. The following

two sections describe subsets of MBE.

 6

 Approaches in Modeling Scaled by Level of Abstraction. Figure 2.

Source: (Borshchev) 2004

1. Model-Driven Engineering

Model-driven engineering (MDE) is a subset of MBE, distinguished by a

structured and coordinated use of models and simulations in the engineering (or in the

software engineering) development process. A major motivation for adoption of MDE is

to provide the means of dealing with the increased complexity of many facets of modern

development and research (Hutchinson 2011). The F-35 Joint Strike Fighter is on such

example of a complex development program utilizing MDE, with an estimated 24 million

lines of code (in comparison to the F-22’s 1.7 million lines of code (Hagen and Sorenson

2013). In the context of software, MDE records the organization and mapping of models

by combining “process and analysis with architecture” (Kent 2002, 286). The use of

MDE can aid in verification, integration and interoperability.

2. Model-Driven Architecture

Model-Driven Architecture (MDA) complements and facilitates MDE, providing

guiding principles for applying MDE (Bézivin 2004). MDA provides standards, toolsets,

and defined frameworks are guiding and promoting interoperability and allow executable

models (Mellor et al. 2004). “MDA advocates modeling systems from three viewpoints:

 7

computation independent, platform independent, and platform specific viewpoints”

(France and Rumpe 2007, 44). Multiple viewpoints allow tailoring to a stakeholder’s

specific use case, decoupling tasks that are not needed for a specific user. Architectures

contain a language, which defines the semantics that can be utilized and the rulesets that

apply. Modeling languages have a vocabulary (components of a model) and grammar

(how they relate) (Maier 2009). This grammar, or code, can then be automated, letting the

user quickly build models that are interoperable, independent of the other parts of the

system (Mellor et al. 2004). In this author’s understanding, this interoperability allows

models to be more useful as a tool, rather than as a design artifact. Common concepts in

MDE and MDA are explained in the following section.

C. CONCEPTS

Some general MBE concepts are summarized here. To provide the reader context;

each is introduced and briefly described. These concepts are fundamental and

independent of the modeling approach. The research in the following chapters explores

the extent to which the approaches in scope implement these concepts.

1. Frameworks

A framework guides development through modeling or simulation by providing a

structure for concepts and views (Balci 1988). In other words, a framework can provide a

foundation for modeling and simulation scenarios that supports commonality and reuse,

streamlining and tailoring tasks specific to the stakeholder. Typical frameworks for

verification have formalisms for modeling and properties for verification and an

algorithm for checking the system against a specification (Valmari 1998). Krogstie

(2003) argues that a focus on frameworks and language quality is necessary to advance

areas of modeling improvement. Modeling should be constructive, sharing relationships

with linguistic theory, making models understandable and relatable to the stakeholders of

a particular project utilizing modeling. Frameworks can define the use of schemas, an

early example being the set of diagrams, which are used to draw electrical schematics

(Ogren 2000). While frameworks pre-date computing, electronic schematics can now be

edited and simulated by software tools.

 8

Many popular architecture frameworks for MBE have evolved, each catering to

different stakeholders based on their community’s needs (Urbaczewski and Mrdalj 2006).

Popular methods include DoDAF, Zachman, Federal Enterprise Architecture Framework

(FEAF), Treasury Enterprise Architecture Framework (TEAF) and The Open Group

Architectural Framework (TOGAF). While each framework specifies the use of models

and viewpoints, there are many differences, such as scope and users, and whether time

and motivating factors are inputs to the execution of the model (Urbaczewski and Mrdalj

2006).

2. Behavior Modeling and Emergent Behavior

Behavioral modeling is broadly defined and multidisciplinary. Among a few

example categories, its application can be seen in systems and software engineering,

biology, and astrophysics. For example, it can represent human behavior and interaction

in the field of cognitive science (Penaloza et al. 2012). Astrophysicists use behavior

models to represent the interaction of planetary orbits (Barnes and Greenberg 2007). One

of many examples related to technological design can be seen in the use of a behavioral

model as a method of performing an advanced Failure Modes and Effects Analysis

(FMEA), which determines the potential failure mechanisms and their impact on the

overall system (Eubanks, Kmenta, and Ishii, 1997). “[Behavioral models] are what the

system does (how it behaves) as opposed to what the system is (which are models of

form)” (Maier 2009, 232). A more specific definition is the measure of interaction

(events) between components (Moshirpour et al. 2013).

According to Gore et al. (2007, 113), “Emergence can represent a valid behavior

arising from seemingly unrelated phenomena, or it can reflect an error in a model or its

implementation.” Broadly, emergent behavior is only evident at a system level and not

directly apparent as the resultant interaction of constituent entities (the individual parts of

a system) (Checkland 1993). This is significant, as system level, behaviors can be missed

in design, resulting in undesirable behavior. System level emergent behavior can

contribute to cases where individual elements or sub-systems can lead to unexpected

behaviors that cut across system boundaries, due to the coupling of structure and

 9

behaviors (Grogan 2013). While there does not seem to be a consensus in the research

reviewed as to how emergent behavior can arise, it is characterized as unexpected until

explained and seen at a system level. Johnson (2006) describes some researchers as

viewing emergence as simply unexpected behavior at one extreme, while others argue it

is simply properties of a system that cannot be shown by functional decomposition.

3. Abstraction

According to Buede (2009), a model can be defined as an abstraction of reality,

usually associated with the filtering of unnecessary detail for a given viewpoint. More

simply put, “a model is an abstraction” (Krogstie 2012, 89). Abstraction is important for

human understanding because of our finite level of attention, becoming indispensable

when dealing with complex systems. MBE relies on abstraction as a method of reducing

design and analysis complexity, as well as increasing comprehension. A model can be a

tool for creating and exploiting abstraction (Kent 2002). In other words, abstraction can

tailor a viewpoint to the user’s needs. For example, an Internet browser does not show a

user all of the various code used to process a web page, only content. Furthermore, many

web pages are tailored between desktop viewing and smartphone viewing, the latter often

in simpler format to accommodate a smaller screen and mobile nature. “Models of

software requirements, structure and behavior at different levels of abstraction help all

stakeholders deciding how this goal should be accomplished and maintained” (Mens and

Van Gorp 2005, 126). Dale and Walker (1996) emphasize that most programming

languages utilize abstract data types, which when used to define procedures (through

semantics), separate the properties of the data type from its implementation details. An

abstract model, using abstract data types to describe the underlying model, can be used to

produce product specifications (Dale and Walker 1996).

When dealing with verification of a system, it can be more judicious to deal with

a higher level of abstraction than with the details of the states in which one is interested

(Valmari 1998). In other words, assertions or claims at a detailed level can be abstracted

to a smaller level of claims on their properties. This allows fewer assertions to be checked

while providing validation of more granular claims.

 10

4. Separation of Concerns

Pressman (2015) defines a concern as a feature or behavior as specified by a

model. Separation of concerns is a conceptual approach to dealing with complexity;

problems can be “separated” (or modularized) and dealt with individually, reducing the

perceived complexity (Pressman 2015). “This separation allows for the locality of

different kinds of information in the programs, making them easier to write, understand,

reuse and modify” (Hürsch and Lopes 1995, 1). The concept relates to the grouping

(increased cohesion) of similar functions or traits of behavior and interaction. Combined

with abstraction, separation of concerns is another powerful method of reducing

complexity providing for different ways to organize and group considerations about a

given model. For example, an electrical engineer on a project is not necessarily

concerned with the structural properties of a product, whereas the opposite may be true

for a mechanical engineer. Separating electrical from mechanical product specifications

would result in simpler, easier to understand design from either individual’s perspective.

5. Stepwise Refinement

Wirth (1971) details the importance of decomposing tasks into subtasks, refining

steps into progressively smaller design decisions. Stepwise Refinement refers to the top-

down process of elaboration; starting with a high-level function or requirement and

gradually creates hierarchy through lower levels with more detail and less abstraction

(Pressman 2015). Broadly defined, it deals with a progression from general and

qualitative to specific and Quantitative (Maier 2009). By this definition, an example such

as the systems engineering (SE) process of functional decomposition is a process of

refinement.

6. Formal Methods and the Small Scope Hypothesis

Formal methods were born out of the software community and deal with

developing systems in such a way that indicates functional and non-functional

compliance with a given specification (Maier 2009). In the case of theorem proving, this

can be a guarantee (Valmari 1998).

 11

Methods for modeling the possible states a system can take are problematic; they

can quickly overwhelm computing resources for even simple problems. This challenge is

known as the state explosion problem (Valmari 1998). According to Valmari, there are

two approaches to checking the correctness of a concurrent system against its

specification: state space methods and theorem proving. Valmari describes state space

methods as an automated method of determining the structure of all possible states

reachable within a system. Theorem proving, in contrast, is the process of using

mathematical formula(s) to show a measure of correctness (Valmari 1998).

The common problem that arises with either method is that even a small

program’s state space can be exponential. However, Jackson argues that certain

approaches to model checking (searching for instances that violate a given property) can

reveal errors in relatively few instances of a model. “Even a small scope defines a huge

space, and thus often suffices to find subtle bugs” (Jackson 2012, 14). However, Jackson

argues that this requires precise, unambiguous use of a formalized set of abstractions.

Dolby et al. (2007) maintain that there is a compromise between static analysis and

comprehensive testing when a model checker is focused on a specific property, called

systematic under-approximation. Although this may limit the comprehensiveness of

testing, it can reduce the complexity of the testing. A related paper, discussing the small

scope hypothesis as applied to test set programs shows a high number of errors can be

found through a small number of examples (Oetsch et al. 2012).

D. SUMMARY

General concepts related to MBE were summarized and defined. These serve to

provide a baseline for understanding the common themes involved in using modeling for

system design. The concepts, particularly abstraction and frameworks, are a broad means

of dealing with increasing complexity in system development. The application of these

concepts in various behavior modeling approaches is discussed in the next chapter.

 12

THIS PAGE INTENTIONALLY LEFT BLANK

 13

III. BEHAVIOR MODELING APPROACHES

A. INTRODUCTION

This chapter serves to summarize the specific methodologies and claims of the

primary sources surveyed in this research, representing the general state of

multidisciplinary approaches to behavior modeling and simulation. Following the

introduction of common MBSE concepts in the preceding chapter, two surveys related to

formal methods (one specific to self-adaptive systems) adoption are summarized in this

chapter. Based on these surveys and from this author’s survey of sources pertaining to the

concepts in the prior chapter, several modeling approaches are highlighted. These

approaches are categorized into domain-specific and general approaches. A summary

comparison of approach to the concepts discussed in Chapter II is provided after each is

introduced. Additional supporting source material is used throughout this chapter to

support analysis and conclusions.

B. FORMAL METHODS BACKGROUND

Use of formal methods is an approach to enable the creation of reliable systems

despite the increased complexity. From the aspect of creating and verifying system

specifications, formal specification makes use of a language with mathematically defined

semantics, or syntax (Clarke 1996). As noted in Chapter II, the use of formal methods is

noteworthy as a mechanism for distinguishing valid from invalid behavior, which can be

useful in avoiding undesirable behavior. This section highlights two existing surveys

found in the literature on where and how formal methods are used today.

1. Formal Methods Survey

Formal methods can be used to specify software and hardware requirements in

any phase of the life cycle, utilizing abstraction where systems are complex. A

comprehensive survey of the various applications of formal methods, focusing on the

early application in product life cycles, claims to highlight the state of the art in their

industrial application (Woodcock, et al. 2009). In this survey, the authors utilized a

 14

questionnaire to gather data on 62 industrial projects known to use formal methods. The

results were broken out by application domain, as seen in Figure 3.

 Projects Using Formal Methods by Domain Figure 3.

Source: Woodcock et al. (2009)

The results of the survey showed that for the majority of those surveyed (75%), the

perceived effects on time, cost and quality were positive, leading to the desire to continue

using formal methods on future projects. Of note, the authors argue that while the use and

acceptance of formal methods appear to be rising, widespread adoption has not yet been seen

outside of the development of critical systems. Some key takeaways the authors note is that

formalism may not need to be applied equally to all components or stages of a product in

development, and that more robust, automated tools are needed for wider acceptance.

2. Survey of Self-Adaptive Systems and Formal Methods

A second survey was reviewed, specific to the adoption of formal methods in self-

adaptive systems (Weyns et al. 2012). The authors’ goal was to identify the approaches,

trends, tools and applications of formal methods used for self-adaptive systems. Self-

adaptation is defined as the ability of a system to change its behavior as a result of a

change in its perception of itself and the surrounding environment (De Lemos et al.

2013). Source material was limited to those that dealt with formal methods and separation

 15

of concerns within the context self-adaptive systems; 1,027 of 6,353 studies were

analyzed. Figure 4 and Figure 5 show the authors’ findings concerning the trends of

research broken out by venue and specification language.

 Formal Methods in Self-Adaptive Systems. Source: (Weyns et al.) 2012 Figure 4.

 Specification Approaches Source: (Weyns et al.) 2012 Figure 5.

 16

Of note in the survey, the use of algebraic methods for formalization is the most

common, and that there was no trend in approach over time. Additionally, 40% of the

sources employed the use of tools, of which one-third was applied for model checking.

The authors observe that the consideration of formal methods is lacking for the concerns

of security and scalability and in the domains of telecommunication and scientific

(climatic, bioinformatics) research. Figure 6 shows the distribution of verification

properties that were the focus. Notable results were that the majority of researchers

focused on formal methods for reasoning (as opposed to modeling or proving). Weyns et

al. (2012) also note that “…only 23 studies employ formal methods to actually provide

evidence for the self-adaptive concerns of interest.” Weyns et al. remark that of the latter,

one-third applied formal methods at run time, two-thirds applied offline, with only one

study showing an application from design to runtime. Of interest, no sources surveyed

covered the concerns of maintainability or portability (Weyns et al. 2012).

 Formal Verification Properties. Source: Weyns et al. (2012) Figure 6.

Focusing on the studies concerned with modeling and model checking, the

authors mapped the state space of self-adaptive behaviors to properties of interest, shown

in Figure 7 (Weyns et al. 2012). The transitions between behavior states are of interest,

 17

showing the properties involved and referenced sources on those properties. The authors

offer this model as a reference point for future research and that tools for automated

model checking, particularly at runtime, provide an underutilized opportunity for

maturation. Noted is that few researchers provided publicly available models and results,

which is offered as an indication of lack of integration in research. They conclude that

many of the sources in the survey introduce modeling language constructs, but that the

majority assume or ignore mathematical soundness, implying a lack of concern for

formalism (Weyns et al. 2012).

 State Space of Behaviors to Properties, Numbered References. Figure 7.

Source: Weyns et al. (2012)

 18

C. DOMAIN-SPECIFIC APPROACHES

Moving on from the general state of the use of formal methods in modeling, this

section covers two examples of domain-specific behavior modeling approaches in the

literature. The automotive domain was chosen as an active area of research into the

behavioral modeling of complex systems.

1. Automotive Requirements Modeling

In the automotive domain, a novel domain-specific approach for formal

behavioral modeling is highlighted. Challenges are recognized in modeling and design

approaches owing to increasing complexity of embedded software and electronics in

automotive development, compounded by original equipment manufacturer (OEM) and

supplier development taking place in isolation. One proposed method to address

interoperability and timing issues, utilizing a form of Architecture Analysis and Design

Language (AADL), uses an expressive timing relationship language and an expression of

component-level requirements inclusive of validation (Yu et al. 2015). Yu et al. argue

that safety and integration of continual new functions (in particular autonomous driving)

will require design validation at the earliest possible phase to keep cost from being

prohibitive. UML, SysML, Modelica, SCADE and MATLAB/Simulink are languages

and tools that are commonly used for high-level modeling along with other

heterogeneous models, the diversity of which the authors argue present a challenge to

model integration. Integration solutions, such as AUTOSTAR (automotive) and System

Architecture Virtual Integration (SAVI) are mentioned, but dismissed as problematic,

suggesting integration frameworks instead. Virtual Integration is proposed as an approach

to overcome the timing relation, component execution, composability and architectural

constraints: a virtual model framework encompassing functions, architecture, viewpoints

and optimization. Encompassing this approach is a “dual design” methodology called

Inside-out and Outside-in; the first being concerned with decomposition into supplier

contracts and the second focused on accomplishing an integration of subsystems that

satisfies all contracts (Yu, et al. 2015).

 19

The primary characteristics of the approach support are

 a system-level design model that encompasses both architecture and

behavior

 an intermediate common formal model, which serves to facilitate

semantics interoperability between dissimilar models through translation

 formal analysis, verification and formal timing specifications

 ual-design methodology, which decomposes a contract into sub-contracts

and integration of sub-systems

 contract-based design, correct by construction and system optimization

(Yu et al. 2015)

Figure 8 shows the authors’ proposed integration framework. Key to this approach

is contract-based design, which the authors describe as bringing further rigor into current

automotive methods and practices. Two problems are suggested. The first problem

identified is that models (specifically those that are translated into executable code) tend to

be insensitive to differences in hardware characteristics, such as latencies and processor

speeds; resulting in a departure from the platform characterization and the design.

 Proposed Automotive Architecture Framework. Figure 8.

Source: Yu et al. (2015)

 20

The second problem identified is that while sub-systems may meet their

individual requirements, this does not necessarily lead to successful integration, due to

the unidentified subsystem to subsystem incompatibilities (including those that may arise

in the future due to inflexible interfaces). The dual design approach mentioned above

aims to solve these issues. Inside-out is an algorithmic decomposition process of system

level properties to provide sub-system contracts (vice natural language) to suppliers, with

the goal of exactly meeting the supplier contract. Outside-in relates to the supplier’s

viewpoint, ensuring that the sub-system contracts are designed to meet optimally the

platform characteristics. The authors conclude that further adoption of their framework

approach, in conjunction with AADL and the associated forthcoming synchronous timing

annex, will help to overcome the integration challenges discussed in the first part of the

paper.

The framework proposed by Yu et al. (2015) is noteworthy as it proposes a

modeling methodology to improve issues noted in automotive development, such as

system verification and requirement specification at the lowest and highest levels of

hierarchy. Multiple modeling languages are proposed depending on the viewpoint, such

as Simulink as the primary behavior modeling approach, specifically focused on

modeling timing and synchronicity as hardware and software events. The software

architecture is defined by AADL. Hardware and software timing constraints are

represented by logical and algebraic abstractions. Separation of concerns is not explicitly

mentioned; however, it is noted that different tools and models are better suited for the

separate areas of optimization, behavior, and contract specifications. A forthcoming

timing annex to AADL will be used to apply formalism to both the architecture and the

behavior models (Yu et al. 2015).

2. Automotive Control Modeling

Sengtacken, DeLaurentis, and Akbarzadeh-T (2007) present a novel approach to

utilizing behavior models in a hypothetical automotive control system. They present a

potential future of wirelessly interconnected autonomous vehicles (swarm) and offer a

notional method of balancing the level of human versus autonomous control. In this case

 21

study, an agent-based modeling (ABM) framework is employed as a control system to

determine the level of autonomy between the driver and the car, with consideration given

to other vehicles, the sensors employed and the environment (Sengstacken, DeLaurentis

and Akbarzadeh-T 2007). ABM is discussed in more detail in a forthcoming section.

Shown in Figure 9, two agents are assigned to model the driver, while two agents

model the control system. The driver agents are goal-oriented, supporting abstract

deduction, with a deliberately slow reaction time. The control agents are modeled as

fuzzy logic rule sets to represent vehicle’s autonomy, and the relationship between the

two offers the ability to explore shared autonomy approaches (Sengstacken, DeLaurentis

and Akbarzadeh-T 2007). In the study, fuzzy logic algorithms are used for simulating

control of path tracking, obstacle avoidance, and information feedback. A swarm of six

vehicles was then simulated, varying the degree of human versus machine control over

the same functions; showing a method of minimizing hazards (crashes) while maintaining

an element of human control (Sengstacken, DeLaurentis and Akbarzadeh-T 2007).

 Automotive Control System Utilizing Agents Figure 9.

Source: Sengstacken, DeLaurentis, and Akbarzadeh-T (2007)

The framework described by Sengstacken, DeLaurentis, and Akbarzadeh-T

(2007) proposes a method of quickly exploring automotive control architecture changes

with respect to achieving the desired balance of human and vehicle control. Behavior is

 22

modeled by the use of fuzzy logic-based agents, abstracted to essential sensor

information and control functions. The concepts, stepwise refinement, and formal

methods are not expressed or apparent in the paper (Sengstacken, DeLaurentis, and

Akbarzadeh-T 2007). Abstraction is not explicitly discussed, but may be inherent, as the

level of abstraction is tailorable with the use of ABM (Borshchev and Filippov 2004).

Additionally, separation of concerns is not mentioned explicitly, though the agents are

separated by role (human, machine) as well as further decomposed into internal/external

stimuli (Sengstacken, DeLaurentis and Akbarzadeh-T 2007).

D. GENERAL APPROACHES

In this section, the following modeling constructs are explored to provide

coverage of a range of approaches to behavior modeling.

1. Systems Modeling Language

The Object Management Group (OMG) adopted the first version (1.0) of UML in

1997 as a standardized modeling language to aid in software development (Kobryn 1999).

Systems Modeling Language is a customized version of UML adopted in 2006, tailored to

the needs of engineers (specifically related to requirements linkage) (Hause 2006). The

SysML specification contains four primary means (viewpoints) of expressing behavior,

borrowed from UML – activity, sequence, use case, and the state machine diagrams (Fowler

2004). The SysML diagram hierarchy, showing differences from UML, can be seen in Figure

10. Of these, activity and state machine diagrams (circled in the figure) are best suited for

representing behavior, as the use case and sequence diagrams are focused more on the

specifics of interaction. An example activity diagram can be seen in Figure 11.

 23

 SysML Diagram Hierarchy. Source OMG (2015) Figure 10.

 Activity Diagram Figure 11.

The framework defined by the SysML specification is a general-purpose design

and analysis language, supporting behavioral, structural and requirements modeling

(OMG 2015). Models can be designed at the desired level of abstraction, and can be

refined to lower levels of detail. Separation of concerns can be achieved using multiple

viewpoints, but results in at least one diagram per actor, with inputs and outputs between

each. Stepwise refinement is not an inherent feature of SysML though Miyazawa and

Cavalcanti propose a method of utilizing refinement as an extension of SysML (2014).

The use of formal methods is not inherently supported by the current specification.

However, Graves and Bijan give an example of integrating SysML with formal logic-

based semantics to minimize inconsistencies and support assertion checking (2011).

 24

2. System Dynamics Models

System Dynamics (SD) arose from the concepts of control and feedback in order

to model some of the first computer simulations in the late 1950s (Forrester 1993). Figure

12 shows the steps in the process, beginning with formulating the problem to be solved

(generally correcting for undesired behavior in a system), and formulating equations to

describe the system. Feedback is central to the system dynamic approach: each step is

iterative and recursive, drawing on and improving the prior steps (Forrester 1993).

 System Dynamics Process. Source: Forrester (1993) Figure 12.

System Dynamics deals with complex behavior in which the system can be non-

linear, is constantly changing, actors are coupled, is self-organizing, is adaptive, and past

events govern future events (Sterman 2001). Figure 13 provides an example SD model.

In this example, Sterman develops equations that govern positive and negative feedback

for each actor, which can be simulated to show the behavior of an adoption system. Over

time, different actors dominate the system flow, which can be used by a decision maker

to change their business practices (Sterman 2001).

 25

 Example SD Model. Source: Sterman (2001) Figure 13.

Systems Dynamics is a general modeling approach. While there are shared core

concepts of conceptualization and notations, differing frameworks and approaches exist

(Martinez‐Moyano and Richardson 2013). System behavior is represented by flows,

levels and causal loops (Forrester 1993). System Dynamics models are abstract by nature,

as they are limited to closed loop systems and the number of causal factors. The ability to

separate concerns is difficult when causal factors are differing but inter-relate (Forrester

1993). The use of stepwise refinement is not explicitly mentioned in the literature. While

the publications reviewed did not directly mention the use of formal methods with respect

to SD, the models are built upon mathematical equations. The resulting parameters can be

compared against real-world observables (Forrester 1993).

3. Monterey Phoenix

Monterey Phoenix is a novel approach to systems and software architecting, and

process modeling. Monterey Phoenix began as an approach to specification modeling of

software system architecture with behavior models (Auguston 2009). Auguston’s premise

is that a major concern of software architecture design is capturing the behavior of the

system. This is proposed through utilizing behavior models, represented as a set of event

traces to model system requirements with formalized event grammar. Following the

initial paper, MP has been expanded from a software architecture approach to include

 26

system architecture and business process and workflow modeling (Auguston 2014). The

grammar is combined with constraints to produce schemas, which are an executable

representation of a system’s architecture (Auguston 2014).

While there are many existing tools and languages for software and system

architecture modeling and design, one of the primary characteristics of MP is attempting

to solve the common “single flowchart” problem (Auguston et al. 2015). Instead of

attempting to capture all behavior or activity in one place, MP produces an output for

each possibility (an exhaustive set of the event traces). Event traces have two basic

relations: precedence and inclusion (Auguston 2015). System behavior is defined by the

set of event traces that satisfy event grammars and constraints, collectively the schema

(Auguston et al. 2015). A schema is defined by MP source code, with formal, structured

syntax.

According to Auguston (2015), an MP schema contains one or more root events,

where trace derivation starts. Event grammar rules define relationships and constraints

when applying composition operations on the traces assembled from root events. “A

grammar rule specifies structure for a particular event type (in terms of IN and

PRECEDES relations)” (Auguston 2009, 1032). Sequencing of events can be controlled

by the order of these relations. Figure 14 shows a simple event trace example. If IN is

shown as a solid arrow and PRECEDES is shown as a dashed arrow, the rule A: B C

shows that the parent event A is an ordered set of event B preceding the occurrence of

event C. Operators can change the relationships between events, some examples of which

can be seen in Table 1. There are many more MP expressions, and composition

operations used to tailor execution of a model, such as Boolean operators, assigning event

probability, variables and assertion checking (Auguston et al. 2015). However, behavior

models can produce complex results solely with the syntax introduced.

 27

 Event Trace A:B C (note that MP Analyzer notation uses dashed for Figure 14.

inclusion, and solid for precedence) Source: Auguston (2009)

Table 1. Example MP Operators. Adapted from NPS (2015)

Natural Language Description of Pattern Pattern Expressed as MP Event

Grammar Rule
Unordered set of zero or more events B A: {* B *};
Unordered set of one or more events B A: {+ B +};

Unordered set of events B and C (B and C may

happen concurrently)

A: {B, C};

Ordered sequence of zero or more events B A: (* B *);
Ordered sequence of one or more events B A: (+ B +);

Ordered sequence of events (B followed by C) A: B C;

Optional event (B or no event at all) A: [B];

Alternative events (B or C) A: (B | C);

Monterey Phoenix models are executable by way of an event trace generator

(Auguston 2015). At the beginning of model execution, for each root event described, all

valid traces within the scope N (provided by the user) are derived, with dependencies

determining event order. Following the small-scope hypothesis, N can be relatively small

(single digits) and produce the majority of possible states. Traces are produced based on

the order of appearance of root events, while considering composition operations, such as

SHARE ALL or COORDINATE. Constraints such as ENSURE allow more efficient

execution by pruning state space search. The set of traces produced within the scope and

constraints provided can be analyzed for examples of unexpected behavior. These

counterexamples can then be removed by modifying the model’s code (e.g., through the

ordering of events or modifying constraints), starting the process of process of validation

early in the life cycle (Auguston 2015). Chapter IV gives an example MP model.

Auguston (2015) describes the MP framework as facilitating an architecture that

serves to facilitate bridging requirements and implementation. Models allow for

simulation of system behavior and demonstration of potential emergent properties.

 28

Models at the system level show the earliest form of design, facilitating analysis of

alternatives. Abstraction is central to MP, in that architecture descriptions should ignore

implementation details. Separation of concerns is achieved by separating the interaction

description from the behavior. Furthermore, MP supports execution of the architecture

specification through stepwise refinement (Auguston 2015).

4. Agent-Based Modeling

Agent-based modeling and simulation (ABM) is a broadly defined and emerging

method of modeling complex systems using “agents” with defined behavior(s) and the

relationship(s) between one another and the environment (Macal 2010). In general,

agents interact (influence one another), are unique (facilitating heterogeneous

populations), autonomous (independent) and have time-varying states. Optional agent

characteristics can include adaptivity (an agent may or may not “learn” from its behavior)

and goal-orientedness (seeking outcomes). An example application of agents in

automotive control was seen earlier in Section C.2.

Agent-based modeling approaches, definitions, and applied disciplines span a

wide array of designs and applications, and there are not yet broadly accepted or

standardized definitions for ABM (Borshchev and Filippov 2004). Further highlighting

the breadth of ABM, agent attributes and the rules applied to them can range from

extremely simple, static to complex and dynamic (Borshchev and Filippov 2004).

Common features of ABM approaches include a decentralized system representation, and

localized agent interaction and information sharing. The sum of this interaction is the

topology (connectedness), changing over time as agents change their behavior or their

neighbors. The topology can be represented in a number of different fashions, such as

linked networks, in two or three-dimensional space or as unrelated to spatial dimensions

(random interaction). The environment can serve as a simple reference, or it can impose

its own information or constraints on the agents.

As an ABM model is decentralized, system behavior emerges from agent

interactions, rather than being explicitly defined by the model. This leads to ABM being

called a “bottom-up” modeling approach (Borshchev and Filippov 2004). Assuming

 29

agent behavior attributes are known, modeling can be done without a solid understanding

of system interdependencies and behavior. “ABM replicates independent agents in order

to study their interdependencies” (Baldwin 2015, 365).

In addition to the example shown in Section C.2, another example application of

ABM can be seen in the study of mathematical biology. There is recognition in the

usefulness in ABM to simulate complex, dynamic and heterogeneous biological systems

(such as tumors). However, Hinkelmann et al. argue that tools for mathematical analysis

of discrete models in biological applications are limited, mostly restricted to qualitative

versus quantitative analysis (2011). The authors argue that the Overview, Design

Concepts and Details (ODD) protocol is a potential solution to this problem.

ABM is a broadly defined and applied methodology for modeling the dynamics of

systems. Some aspects are similar to MP – both are primarily concerned with the

behavior of complex systems. In particular, MP and ABM share separation of concerns of

agent behaviors and agent interactions, in theory capturing latent behavior that may not

easily be found with other methods. However, ABM currently lacks the level of

standardization and representation needed for formal verification. ABM is inherently

“bottom-up” and inherently difficult to verify (Pullum 2012).

As discussed, ABM approaches vary by domain and application, and there are

multiple frameworks and specific approaches. System level behavior is seen as a result of

agent interaction, showing emergent behavior in simulation results. According to

Baldwin, ABM is used at all levels of abstraction, from granular elements, such as

pedestrians, to complex entities, such as companies. From the literature reviewed, the

relationship of ABM to the concepts of separation of concerns, stepwise refinement and

formal methods is unclear at this time, warranting further research. In particular, none of

the literature reviewed explicitly mentions the small scope hypothesis in conjunction with

ABM.

5. Petri Nets

One specific area of research into formal models of self-adaptive systems focuses

on capturing emergent requirements, specifically at runtime using Petri nets. There is a

 30

well-established body of research on Petri net modeling, dating to the 1960s (Krogstie

2012). Petri nets are stepwise, iterative and concurrent state transition systems. The basic

components of a Petri net, a form of a directed bipartite graph, are states (also called

places) and transitions, with flow denoted by arcs. One or more tokens traverse a Petri

net by firing, indicating the occurrence of transitions (Petri and Reisig 2008). Petri nets

are well established as a behavior modeling approach, facilitating graphical

representation based on formal semantics (Jensen 2013). According to Jackson, a static

model only describes a system’s states, while a dynamic model also describes the

system’s transitions (2012). By this definition, Petri nets are dynamic models.

One issue with traditional Petri nets is the problem of modeling systems with a

large number of states, causing the model itself to become complex. A method of dealing

with this comes in the form of colored Petri nets (CPN). A CPN is one type of high-level

Petri net that allows tokens and transitions to be assigned colors (and variable

information), which permits differences in routing behavior, as well as more compact

models (Jensen 2013).

Some characteristics are shared with MP: abstraction (via encapsulation),

mathematical formalism, and graphical notation. They also provide hierarchical

representation with abstraction in many different domains with a variety of tools (Girault

and Valk 2013). Petri nets are also being used in the study of business workflow

modeling, an example of which can be seen in Self-Adaptive Recovery Nets (SARN)

(Rachid and Benatallah 2004). Separation of concerns can be accomplished with Petri

nets (Abdelzad and Aliee 2010). However, whereas MP explicitly separates processes for

each actor (interleaving them later to produce scenarios), a secondary method or process

must be applied using Petri nets to segregate aspects or behaviors from one another. MP

and Petri nets will be further compared by contrasting a simple model in Chapter IV.

E. SUMMARY

This chapter summarized selected behavior modeling approaches, each of which

was then related to the concepts in Chapter II. The surveys presented some general trends

in the application of formal methods broken out by domain and approach. Examples of

 31

domain-specific frameworks were summarized, introducing novel concepts such as

virtual integration and multi-scale modeling.

General behavioral modeling approaches were introduced. Core characteristics of

Monterey Phoenix were summarized. It is shown that MP shares common characteristics

of MBSE. In summary, the aim of MP is in leveraging these traits to deal with the

challenges of unpredictable behavior resulting from complexity, while overcoming some

of the recognized shortfalls of current approaches. Some semantics were introduced to

impart an understanding of MP code and usage. Agent-Based Modeling is introduced.

Finally, Petri nets are introduced, discussing the basic concepts of one of the older and

more popular behavioral modeling approaches.

 32

THIS PAGE INTENTIONALLY LEFT BLANK

 33

IV. PETRI NETS COMPARED AND CONTRASTED WITH MP

A. INTRODUCTION

To support the summary of behavior modeling approaches introduced in Chapter

III, simple experimentation was undertaken. This chapter compares MP with Petri nets by

way of a basic model, to compare and contrast the two approaches. Petri nets were

chosen, in part, because it is shown as an area of current research in the formal methods

survey presented in Chapter III, as well as sharing some characteristics and goals with

MP. The selected MP model is shown first, followed by an approximate Petri model,

methodology, and comparison of results.

B. EXAMPLE MODEL—MP COMPARED WITH PETRI NETS

1. MP Example

To minimize errors in interpretation introduced by model translation and varying

toolsets, a rudimentary behavior model for communication between two nodes is utilized

for a baseline comparison. The scenario is commonplace and well understood. The

schema for the model and a prototype MP simulation environment, MP Analyzer, can be

found and executed online (NPS 2015). An alternative online tool, Eagle6, is also

accessible (Rivera Consulting 2015). However, at the time of this writing, it does not

implement COORDINATE statement. The MP schema for the model is as follows:

 34

SCHEMA Communication

ROOT A_getDataFrom_B: (* A_requestDataFrom_B

 A_waitDataFrom_B

 (A_failReceivingDataFrom_B |

 A_receiveDataFrom_B) *);

ROOT B_answerRequestDataFrom_A: (* (

B_receiveDataFrom_A

((B_processDataFrom_A

 B_sendDataTo_A) |

B_failProcessingDataFrom_A)

|

B_failReceivingDataFrom_A)

 *);

COORDINATE $x: A_requestDataFrom_B FROM A_getDataFrom_B,

$y: (B_receiveDataFrom_A|

B_failReceivingDataFrom_A

FROM B_answerRequestDataFrom_A

DO ADD $x PRECEDES $y; OD;

COORDINATE $x: (B_failReceivingDataFrom_A |

B_failProcessingDataFrom_A)

 FROM B_answerRequestDataFrom_A,

 $y: A_failReceivingDataFrom_B

 FROM A_getDataFrom_B

 DO ADD $x PRECEDES $y; OD;

COORDINATE $x: B_sendDataTo_A

FROM B_answerRequestDataFrom_A,

$y: A_receiveDataFrom_B

FROM A_getDataFrom_B

DO ADD $x PRECEDES $y; OD;

This example model has two root events, node A requesting data from node B

(“A_getDataFrom_B”) and B answering the request for data to A

(“B_answerRequestDataFrom_A”). The “A: (* B *)” notation denotes that A

contains an ordered sequence of zero or more B events. Child Events of each root follow

and end with a semicolon. The “COORDINATE” syntax is a composition operation that

coordinates the behaviors of the root events in terms of message passing (Auguston,

Behavior Models for Software Architecture 2014). Alternatively, a “SHARE ALL”

statement (not used in this example) could be used: if there is event type of one or more

of the events, and there is an event trace that satisfies the schema, both root nodes share

those event types (Auguston 2009). For example, if there is a satisfactory event trace

 35

solution that contains “A_requestDataFrom_B,” it could be shared between both

root events “A_activity” and “B_Activity.”

2. MP Example Results

Every MP model can be run through a number of iterations, or its event scope (set

at two in this case). Following the small scope hypothesis, the event scope is set at two

and the model executed. The results are a set of 13 possible event traces (which satisfy

the schema), listed in Appendix A. An example output is shown in Figure 15. Each box

represents an event (green boxes are root events, blue are the resulting composite events).

The dashed arrows represent inclusion (IN) (e.g., “A_requestDataFrom_B” is a

composite event included in the root event “A_getDataFrom_B”). The solid arrows

represent precedence (PRECEDES) (e.g., “A_requestDataFrom_B” is an event

preceding “A_waitDataFrom_B”). This example shows a failure, followed by a

successful transmission of data. While there 13 event traces, it should be noted that all

but three involved another iteration of the model from the starting event

“A_requestDataFrom_B.” In every instance, the trace will arrive at either

“A_failReceivingDataFrom_B” or “A_receiveDataFrom_B.” This

explanation discounts the event trace that only contains the root events (as explained

earlier, this is due to the * operator), because, for the purpose of this comparison, some

activity is assumed to take place. Alternatively, events with zero instances would be

removed if the (* … *) operator was replaced with the (+ … +) operator, as

described in Chapter III.

 36

 Example Event Trace Output Figure 15.

3. Petri Net Example

Of the numerous Petri net tools available, Platform Independent Petri net Editor 2

(PIPE2) was chosen for being platform independent (using JAVA), currently supported,

open-source, and supporting analysis modules such as reachability, state space and timing

(Bloom et al. 2007). The behavior model for communication between two nodes was

manually translated from MP into a Petri net with equivalent states (Figure 16). The MP

model event names were preserved for clarity. To maintain simplicity and equivalency

with the MP model, arcs (which can be modified to allow more than one token at a time)

are set at the default of one. Likewise, transitions (which can have timing properties) are

 37

set at a delay of zero. The two MP root events are not included, as they are always

assumed to occur.

As MP is only concerned with events, which may be considered abstractions of

states, it should be noted that all states (places – Petri net circles) are actually describing

the transition(s) preceding that state. For example, “A_receive_dataFrom_B”

properly worded in Petri convention would be “A_receivedDataFrom_B.” It should

be noted that the event labels could have been assigned to transitions; however, this

would have necessitated adding additional states, as tokens can only be assigned to states.

Supporting this choice, Raschke (2009) shows some success in formal translation of

UML activity diagrams into token-based state machines.

Figure 17 shows a closed loop variation, which allows continuous running of the

model. The closed loop variation involved the addition of three transitions and nine

 arcs. One of these arcs is an inhibitor arc (going into transition T11), which

enables a transition to fire only when a token is not present at the preceding state

(however, T11 will not fire without the other arc also receiving a token from state

“A_failReceivingDataFrom_B”). This allows the model to synchronize after an

iteration, because in some cases, multiple tokens can be present. After an iteration, only a

single token will be present at the beginning state “A_requestDataFrom_B.” A

single token was placed in the “A_requestDataFrom_B” state, and 500 firings were

performed on each model.

The observed difference between the open and closed loop models is that the

open loop shows tangible states – that is, possible end states. For example, the

open loop model has three states, S5, S6 and S8 (corresponding to

“A_failReceivingDataFrom_B,” “A_waitDataFrom_B,” and

“A_receiveDataFrom_B,” respectively) that a token will terminate (no more

possible firings). However, S5 and S6 are essentially a shared end-state, since they will

always occur together. This is discussed further in the next section.

 38

 Petri Net Data Transfer Example (Open Loop) Figure 16.

 Petri Net Data Transfer Example (Closed Loop) Figure 17.

39

4. Results and Comparison with MP Example

From a behavioral perspective, reachability is defined as the entirety of possible

states (i.e., those states that are fireable, or where a token is able to progress), supported

by mathematical formalism (Lambert 1992). A reachability report was run on both the

open loop and closed loop models, seen in Figure 18 and Figure 19 respectively. In

comparison with the MP model results, all possible states are shared. This was verified by

comparing the MP model outputs to the sequence of firings seen for each run of the Petri

net models. PIPE2 does not support generating a graphical output of individual iterations;

however, the model was observed to transition through each of the MP example event

traces (found in Appendix A). The one exception is the case of only the root events, with

no observed behavior. This is because the (* *) operator applied to the root events

specifies iteration of its contents zero or more times. In contrast, the Petri net will always

fire if the transition is enabled by a token (set by default at the beginning state

“A_requestDataFrom_B.”

 Reachability Output (Open Loop) Figure 18.

 40

 Reachability Output (Closed Loop) Figure 19.

In comparison to the MP results, an observed difference is that

“A_waitDataFrom_B” is shown as preceding “A_failReceivingDataFrom_B.”

The open loop Petri net model, in this case, will terminate with a token in each state,

which means that A will continue waiting for data from B indefinitely. In the MP model,

a transition is shown to “A_failReceivingDataFrom_B” from both

“A_waitDataFrom_B” and “B_failReceivingDataFrom_A.” In other words,

both the MP and the Petri net models share two primary end states, but in the case of the

open loop Petri net model, an additional token is “stuck” at “A_waitDataFrom_B” in

one of the two end states. A more complex model could potentially account for this,

matching the MP results more closely. There are three possible end states for a token

because an end state is possible with tokens in both S5 and S6. Otherwise, the observed

transitions between the two Petri net models matched. In contrast, the closed loop model

accounts for this state and is a better translation of the MP model. This results in a single

 41

token beginning again at “A_requestDataFrom_B,” aligning with the MP results as

a new transition is started.

One difficulty encountered in translation of the MP model into a Petri net was the

relative increase in complexity. Simple MP statements can result in a comparatively

intricate Petri net representation. As an example (unrelated to the experimentation

model), in root event D, starting from State A, if there is the possibility of a transition to

B and then to C (or B again) or to C and then to B (or C again), or to both B and C

simultaneously, all must be accounted for. An illustration of this as a Petri net can be seen

in Figure 20 (tokens fired once or twice). In MP, this would simply be accomplished with

the syntax D: A (+ (B | C) +); where D includes A, which precedes B or C.

The Petri net model is relatively complex without the use of extensions, such as CPN.

This is an example of the “single flowchart” paradigm, which increases the difficulty of

accurately designing and maintaining a model, resulting from combining aspects of all or

most of a system’s behavior into one viewpoint (Auguston, et.al. 2015). The

experimentation discussed in this chapter suggests that Petri nets (without extensions)

suffer from this issue, as far more time was spent designing and debugging the Petri

model relative to the MP model.

 Petri Net Transition Example Figure 20.

 42

Finally, a classification report was run for each variant, seen in Figure 21 and

Figure 22. Of note, the open loop model is a free choice net (which means there is more

than one potential path a token can take), while the closed loop model is not. In other

words, the closed-loop net shows both concurrency and conflict between the transitions

of tokens. A free choice net means that every transition from an arc to a place or a place

to an arc is unique (Sgroi et al. 1999).

Comparing the observed transitions of the Petri net models and the MP event

traces, all end states were shared. This implies that, at least for a simple example, both

approaches can be made to show identical results of the behavior of a system. It should

be noted that this does not necessarily indicate the approaches are equivalent in analysis

capability. On the contrary, there was a qualitative difference in ease of use and time of

experimentation. A more complex scenario may make it unwieldy to replicate in Petri

nets, as inherent guidance to separate the concerns of each root event is not explicitly

provided in Petri nets in comparison to MP. For this author, the MP model setup and run

time was faster than with the Petri nets, even though the Petri net model provided a visual

editor (versus MP source code). These differences could be attributable to the tools and

not the frameworks. As the MP framework is refined and grows to support more features

(e.g., timing constraints and measurements), future research should be undertaken to

compare and contrast MP with other executable discrete modeling approaches.

Specifically, a more complex model (with more possible end states, or more than two

root events) should be compared to a Petri net or similar model. Additionally, the Petri

net model in this research did not attempt to explicitly model A as a separate entity from

B, whereas the MP model parses A and B independently from one another and interlaces

the results at execution. PIPE2 has the capability of abstracting A from B, but it is not

known if they could be executed independently but interlaced into one another, which

future experimentation could show.

 43

 Classification Results Closed Loop Model Figure 21.

 Classification Results Open Loop Model Figure 22.

 44

C. SUMMARY

This chapter introduced a simple MP model describing the communication

between two systems. Utilizing the online MP environment MP Analyzer, a schema for

the model was executed and analyzed for possible events within a given scope. The MP

model was translated into an approximate Petri net model with two variations and

executed in the PIPE2 simulator. The primary difference between the two is that the MP

model treats the two root events as independent of one another, modeling their

interactions at execution. In contrast, the Petri net models treated the root events as a

single dependent model. However, in this simple example, the resulting state spaces in

the MP model and the closed loop Petri net model are shown to be logically equivalent. It

is not implied that the approaches are equal in nature, only that they share characteristics

that can be used to produce the same logical state space.

 45

V. CONCLUSIONS AND FUTURE RESEARCH

A. INTRODUCTION

The intent of this research was to capture key modern MBSE approaches with respect

to behavior modeling and in the context of MP characteristics. Throughout this thesis, many

of the common concepts introduced in Chapter II are significant attributes of the approaches

presented. The research question is revisited, followed by a summary of comparisons

between concepts and reviewed approaches. The conclusions section presents notable

insights from the comparison of approaches and the experimental comparison.

B. RESEARCH QUESTION

The primary research question is as follows: “How does the Monterey Phoenix

behavior modeling approach compare with other approaches that claim to expose

unintended, unneeded or undesired system interactions?” The research was accomplished

through a review of the literature on the current state of behavioral modeling, contrasting

with MP through a comparison of key concepts, and through experimentation with MP

and Petri net models.

C. CONCLUSIONS

The following conclusions arise from review of the researched publications:

1. MP makes use of the concepts covered in Chapter II at least as much as

any other method or framework reviewed.

2. Of the publications reviewed, no other formal, executable approach

claims to exhaustively search for all possible scenarios (within a given

scope) while also supporting event attributes, assertion checking, and

different viewpoints.

3. The Virtual Integration concept described by Yu et al. may benefit from

the use of MP, as the framework makes use of multiple modeling

languages depending on viewpoint and is concerned with precise

behavior modeling.

4. None of the approaches researched fully support all of the concepts

(without the use of extensions or multiple specifications/approaches)

reviewed in this thesis as MP does: frameworks, abstraction, behavior

 46

modeling, abstraction, separation of concerns, stepwise refinement and

formal methods/small scope hypothesis.

Table 2 shows a summary of researched approaches and the relationship of each

to the general concepts described in Chapter II. Relations are drawn where supported by

the research. Some relations are inconclusive based on this research, and as such are

marked as “unclear” or “not explicit” with an explanation. These areas may be

particularly supportive of future research.

Table 2. Select Approaches Related to Concepts

 47

Expanding upon Conclusion 1, MP is the only approach researched that fully

employs all of the concepts summarized in Chapter II. All of the general approaches are

well reflected as being used for behavioral modeling across domains. However, each

approach has notable gaps. One example is the use of formal methods in ABM. While

well suited towards qualitative simulations with many unknowns, the lack of qualitative

ABM methods can present difficulty in verification. In contrast to this, SD and Petri nets

are well suited for quantitative problems, as models are described mathematically.

However, SD does not appear to have practical methods for separation of concerns or

stepwise refinement, and Petri nets are limited (encapsulation for stepwise refinement) or

require extensions (e.g., colored Petri nets) to deal with separation of concerns

effectively.

In further depth, experimentation with Petri nets and MP are shown to produce a

logically equivalent state-space (reachability) for a simple communications model.

However, the Petri model did not treat the root events (system A and B) as separate

entities, as MP does prior to execution. This is notable, as the state transitions internal to

each node are not distinguished from the state transitions between nodes. In this case, the

states of A and B are combined into a single model that does not show a measure of

coupling or cohesion between nodes. In contrast, MP separates component behavior from

the interaction of components (applying separation of concerns). Most significantly, all

possible state transitions and the order in which they can occur must be explicitly

modeled in a Petri net. While MP must account for all possible states, the possible

transitions and the order in which they can occur can be stated more abstractly.

A Virtual Integration approach was discussed in Chapter III (Yu et al. 2015). In

common with MP, the authors are supportive of some of the same goals of abstraction,

formal specification, and separation of concerns, with emphasis on timing. Attributes of

correct by construction and contract extraction are distinctive to their approach. Of note,

the authors recognize that the key characteristic of semantics interoperability may not be

feasible due to the constraint of semantics preservation. The authors call for the use of

behavior models that link supplier specifications to the system specification. These

models are referred to generically, so MP may be of benefit to such a construct. A key

 48

assumption is made in assuming suppliers are able to provide designs that optimally meet

the functional and non-functional requirements in the contracts that they are provided.

While this may be more achievable in the automotive industry, it is a questionable

assumption the defense industry, given the proliferation and mandates applying to the use

of Commercial Off-The-Shelf (COTS) (Oberndorf 1998). This off-the-shelf usage can

impose additional complexity and incompatibilities and may restrict the flexibility such

an approach would require (Alves 2003). However, MP may be suitable for use in the

proposed virtual integration framework, as it is composable, testable and executable, and

may be suited to the task of identifying subsystem-to-subsystem incompatibilities.

The comparison of approaches in Chapter IV shows that both approaches can

produce identical state space possibilities, at least in the case of the simple

communications model in this research. However, it does not conclusively show that MP

and Petri nets are equivalent in studying the behavior of a system. One of the benefits of

Petri-nets is the ability to pass a defined number of tokens at each decision point, but it

requires explicitly defining at each state. Mentioned in Chapter IV, Petri net editors can

support features such as control and measurement of timing, arc capacity. While these are

not utilized in the example models, they are apparent candidate features for future MP

environments. Additionally, Petri net tools allow graphical editing, while existing MP

tools currently rely on building a schema. However, from experimentation, it appears

Petri net models currently suffer from the “single flowchart” paradigm, increasing the

effort relative to MP to design and maintain equivalent models (Auguston et.al. 2015).

D. LIMITATIONS OF RESEARCH

As discussed in Chapter I, this thesis is primarily focused on reviewing state-of-

the-art approaches to exposing latent and undesired behavior. As such, limited

experimentation was performed to supplement multi-disciplinary findings through

literature review and surveys of current methods.

Sources and content are generally limited to recent research. Despite the multi-

disciplinary and multi-domain track of this thesis, few sources dealt with concrete,

comprehensive, real-world experimentation. One particular example modeling approach,

 49

ABM, appears to have near-ubiquitous adoption across science and industry.

Counterintuitively, ABM appears to have very little standardization across domains,

particularly in verification and validation.

Although the results in Chapter IV show that a Petri net model and an equivalent

MP model can produce identical state spaces, the models are simplistic, and further

testing of models that are more complex should be done to verify the breadth of this

conclusion. Additional comparisons between MP and Petri net with increased

complexity, including the use of abstraction in a Petri net model would add more

evidence to the relationship between MP and Petri nets.

ABM was only qualitatively explored in this thesis, explicit experimentation

comparing MP to analogous MP models would further help to relate or distinguish the

two approaches. As there is no currently published research relating MP to ABM, the

relationship is inconclusive, warranting further research.

E. FUTURE RESEARCH

The SAE standard AADL, discussed in Section III, may offer further insight into

formalized semantics (Yu et al. 2015). Additionally, a future synchronous behavior annex

to AADL is mentioned, which may be of interest, though it is domain specific,

conflicting with the desire for MP to be domain-independent.

Chapter III provided a review of two comprehensive surveys of the state of

research on formal methods, with one specifically focused on self-adaptive systems. The

surveys highlight growing interest in formal methods applied to MBSE while presenting

some issues seen in research and adoption. A key question Woodcock et al. ask is

whether tailoring of when and where formal methods are applied in product development

would aid in increased adoption of formal methods based modeling (Woodcock, et al.

2009). It follows that future research into the suitability of MP as applied specific

development areas would help to build a stronger case for adoption. A recent study

investigating the utility of MP for Business Process Modeling (BPM) is a good example

(Auguston et al. 2015).

 50

Of note, none of the sources focused specifically on modeling applications for the

concern of maintainability or life-cycle cost. Further research on how MP could be

applied to maintainability scenarios, perhaps building on existing reliability studies,

would be of benefit to the defense industry. Model-based reasoning (MBR) is a

knowledge-based method that has shown promise in significantly reducing the ambiguity

(increasing the accuracy) of fault diagnosis and reporting (Berenji, Wang and Saxena

2005). Future research investigating the potential utility of MP in the study of fault

propagation or as a complementary toolset for MBR is a good example, given ever-

increasing Reliability and Maintainability (R&M) standards.

Further research into the design of MP tools is warranted. As shown with the

ability to perform timing analysis with Petri nets, and any number of other modeling and

simulation environments, capturing more than just the potential state space is useful.

From a tool perspective, the potential to capture other behavioral traits, such as

temporality should be explored. Additionally, a method of translating graphical objects

into MP schema into would provide an additional method of creating MP models.

Monterey Phoenix has an established baseline of syntax, but it is currently growing to

accommodate additional use cases (for example, assertion checking). Furthermore, efforts

to enhance MP Analyzer with additional views of event traces could aid in the analysis of

results. One such example would be analogous to the reachability output graph of the

Petri net PIPE2 tool as seen in this thesis – showing a summary of all possible states in

one view.

An up-to-date listing of MP information published research and presentations can

be found at the following link: https://wiki.nps.edu/display/MP/Bibliography. An

experimental web-based Graphical User Interface (GUI) for designing and running MP

Analyzer can be found at http://firebird.nps.edu/. A practical venue of future effort would

simply be for interested parties to contribute to the documentation supporting MP

(particularly known use cases, standards, tools), which would aid most future research.

51

APPENDIX. MP MODEL RESULTS

 52

 53

 54

 55

 56

 57

 58

THIS PAGE INTENTIONALLY LEFT BLANK

 59

LIST OF REFERENCES

Abdelzad, Vahdat, and Fereidoon Shams Aliee. 2010. “A Method Based on Petri Nets for

Identification of Aspects.” In Proceedings of Workshop on Early Aspects in

AOSD: 43–49.

Alves, Carina. 2003. “COTS-Based Requirements Engineering.” In Component-Based

Software Quality, edited by Alejandra Cechich, Mario Piattini, and Antonio

Vallecillo, 21–39. Berlin: Springer.

Auguston, M. 2014. Behavior Models for Software Architecture. NPS-CS-14-003.

Monterey, California: Naval Postgraduate School.

Auguston, M. 2009. “Monterey Phoenix, or How to Make Software Architecture

Executable.” In Proceedings of the 24th ACM SIGPLAN Conference Companion

on Object Oriented Programming Systems Languages and Applications:

1031–1040.

Auguston, M. 2015. “Monterey Phoenix: System and Software Architecture Modeling

Language.” Naval Postgraduate School, Department of Systems Engineering,

Monterey, CA.

Auguston, M. 2009. “Software Architecture Built from Behavior Models.” ACM

SIGSOFT Software Engineering Notes 34: 1–15.

Auguston, Mikhail, and Kristin Giammarco. 2015. “Firebird.” Accessed July 15.

http://firebird.nps.edu.

Auguston, M., K. Giammarco, C. Baldwin, J. Crump, and M. Farah-Stapelton. 2015.

“Modeling and Verifying Business Processes with Monterey Phoenix.”

Conference on Systems Engineering Research 44: 345–353.

Balci, Osman. 1988. “The Implementation of Four Conceptual Frameworks for

Simulation Modeling in High-Level Languages.” In WSC ‘88 Proceedings of the

20th Conference on Winter Simulation: 287–295.

Baldwin, W. Clifton, Brian Sauser, and Robert Cloutier. 2015. “Simulation Approaches

for System of Systems: Events-Based Versus Agent-Based Modeling.” In

Conference on Systems Engineering Research 44: 363–372.

Barnes, Rory, and Richard Greenberg. 2007. “Apsidal Behavior Among Planetary Orbits:

Testing the planet-planet scattering model.” The Astrophysical Journal Letters

659: L53–L63.

 60

Berenji, Hamid R., Yan Wang, and Abhi Saxena. 2005. “Dynamic Case-Based

Reasoning in Fault Diagnosis and Prognosis.” FUZZ-IEEE: 845–850.

Bézivin, Jean. 2004. “In Search of a Basic Principle for Model-Driven Engineering.”

Novatica Journal, Special Issue 5: 21–24.

Bloom, J, C Clark, C Clifford, A. Duncan, H. Khan, and M. Papantoniou. 2007. Accessed

July 15, 2015. “Platform Independent Petri net Editor 2.”

http://pipe2.sourceforge.net/.

Borshchev, A., and Filippov, A. 2004. “From System Dynamics and Discrete Event to

Practical Agent-Based Modeling: Reasons, Techniques, Tools.” In 22nd

International Conference of the System Dynamics Society: 959–966.

Buede, Dennis. 2009. “Errors Associated with Simple versus Realistic Models.”

Computational and Mathematical Organization Theory 15: 11–18.

Checkland, P. B. 1993. Systems Thinking, Systems Practice. New York: John Wiley &

Sons.

Chan, Wai Kin Victor, Young-Jun Son, and Charles M. Macal. 2010. “Agent-Based

Simulation Tutorial-Simulation of Emergent Behavior and Differences Between

Agent-Based Simulation and Discrete-Event Simulation.” In Winter Simulation

Conference 10: 135–150.

Clarke, E. M., and Wing, J. M. 1996. “Formal Methods: State of the Art and Future

Directions.” ACM Computing Surveys (CSUR) 28: 626–643.

Dale, Nell, and Henry M. Walker. 1996. Abstract Data Types: Specifications,

Implementations, and Applications. Burlington, MA: Jones & Bartlett Learning.

De Lemos, Rogério et al. 2013. “Software Engineering for Self-Adaptive Systems: A

Second Research Map.” In Software Engineering for Self-Adaptive Systems II,

edited by Rogerio de Lemos, Holger Giese, Hausi A. Muller, and Mary Shaw:

1–32. Berlin: Springer

Dolby, Julian, Mandana Vaziri, and Frank Tip. 2007. “Finding Bugs Efficiently with a

SAT Solver.” In European Software Engineering Conference and the ACM

SIGSOFT Symposium on the Foundations of Software Engineering: 195–204.

Eubanks, Charles F., Steven Kmenta, and Kosuke Ishii. 1997. “Advanced Failure Modes

and Effects Analysis Using Behavior Modeling.” In ASME Design Engineering

Technical Conferences: 14–17.

Graves, Henson, and Yvonne Bijan. 2011. “Using Formal Methods with SysML in

Aerospace Design and Engineering.” Annals of Mathematics and Artificial

Iintelligence 63: 53–102.

 61

Forrester, Jay W. 1993. “System Dynamics and the Lessons of 35 Years.” In A Systems-

Based Approach to Policymaking, edited by Kenyon B. De Greene, 199–240.

New York: Springer.

Fowler, Martin. 2004. UML Distilled: A Brief Guide to the Standard Object Modeling

Language. Boston: Addison-Wesley.

France, Robert, and Bernhard Rumpe. 2007. “Model-Driven Development of Complex

Software: A Research Roadmap.” Future of Software Engineering: 37–54.

Washington, DC: IEEE Computer Society.

French, Matthew. 2015. “Extending Model-Based Systems Engineering (MBSE) for

Complex Systems.” Paper presented at the 53rd AIAA Aerospace Science

Meeting. Kissimmee, Florida, January 5–9.

Giammarco, Kristin. 2007. “Data Centric Integration and Analysis of Information

Technology Architectures.” Masters thesis, Naval Postgraduate School.

Girault, Claude, and Rüdiger Valk. 2013. Petri Nets for Systems Engineering: A Guide to

Modeling, Verification, and Applications. Berlin: Springer.

Gore, Ross, Reynolds Paul F. Jr, Lingjia Tang, and David C. Brogan. 2007. “Explanation

Exploration: Exploring Emergent Behavior.” Proceedings of the 21st

International Workshop on Principles of Advanced and Distributed Simulation:

113–122.

Grogan, P. T., & de Weck, O. L. 2013. “An Integrated Modeling Framework for

Infrastructure System-Of-Systems Simulation.” In IEEE International Systems

Conference (SysCon): 483–490.

Hagen, Christian, and Jeff Sorenson. 2013. “Delivering Military Software Affordability.”

Defense AT&L: 30–34.

Hause, Matthew. 2006. “The SysML Modelling Language.” In Fifteenth European

Systems Engineering Conference: 9.

Heath, B., Hill, R., & Ciarallo, F. 2009. “A Survey Of Agent-Based Modeling Practices

(January 1998 to July 2008).” Journal of Artificial Societies and Social

Simulation, 12(4).

Hinkelmann, Franziska, David Murrugarra, Abdul Salam Jarrah, and Reinhard

Laubenbacher. 2011. “A Mathematical Framework for Agent-Based Models of

Complex Biological Networks.” Bulletin of Mathematical Biology 73: 1583–

1602.

Hürsch, Walter L., and Cristina Videira Lopes. 1995. Separation of Concerns. NU-CCS-

95-03. Boston: Northeastern University.

 62

Hutchinson, John, Mark Rouncefield, and Jon Whittle. 2011. “Model-Driven

Engineering Practices in Industry.” Software Engineering (ICSE) 33: 633–642.

Jackson, Daniel. 2012. Software Abstractions: Logic, Language, and Analysis.

Cambridge, MA: MIT Press.

Jennings, Nicholas R. 2001. “An Agent-Based Approach for Building Complex Software

Systems.” Communications of the ACM 44: 35–41.

Jensen, Kurt. 2013. Coloured Petri Nets: Basic Concepts, Analysis Methods, and

Practical Use. Berlin: Springer Science & Business Media.

Johnson, Christopher W. 2006. “What are Emergent Properties and how do They Affect

the Engineering of Complex Systems?” Reliability Engineering & System Safety

91: 1475–1481.

Kent, Stuart. 2002. “Model Driven Engineering.” In Integrated Formal Methods, 286–

298. Berlin: Springer.

Kobryn, Cris. 1999. “UML 2001: A Standardization Odyssey.” Communications of the

ACM: 29–37.

Krogstie, J. 2003. “Evaluating UML Using a Generic Quality Framework.” In UML and

the Unified Process, 1–22. Hershey, PA: IGI Global.

Krogstie, J. 2012. “Modelling Languages, Perspectives and Abstraction Mechanisms.” In

Model-Based Development and Evolution of Information Systems, 90–204.

London: Springer-Verlag London.

Lambert, Jean-Luc. 1992. “A Structure to Decide the Reachability in Petri Nets.”

Theoretical Computer Science 99: 79–104.

Langford, Gary O. 2012. Engineering Systems Integration: Theory, Metrics, and

Methods. Boca Raton, FL: CRC Press.

Martinez‐Moyano, Ignacio J., and George P. Richardson. 2013. “Best Practices in System

Dynamics Modeling.” System Dynamics Review 29: 102–123.

Macal, C. M., and North, M. J. 2010. “Tutorial on Agent-Based Modeling and

Simulation.” Journal of Simulation 4: 151–162.

Maier, Mark W., and Eberhardt Rechtin. 2009. The Art of Systems Architecting. Boca

Raton, FL: CRC Press.

Mayer, Richard. 1998. “Decidability and Complexity of Model Checking Problems for

Infinite-State Systems.” Ph.D. thesis, Technische Universität München.

 63

Mellor, Stephen J. Kendal Scott, Axel UHL, Dirk Weise. 2004. MDA Distilled:

Principles of Model-Driven Architecture. Boston: Pearson Education.

Mens, Tom, and Pieter Van Gorp. 2005. “A Taxonomy of Model Transformation.”

Electronic Notes in Theoretical Computer Science 152: 125–142.

Miyazawa, Alvaro, and Ana Cavalcanti. 2014. “Formal Refinement in SysML.” In

Integrated Formal Methods, ed. Elvira Albert and Emil Sekerinski. New York:

Springer-Verlag: 155–170.

Moshirpour, Mohammad, Nariman Mani, Armin Eberlein, and Behrouz Far. 2013.

“Model-Based Approach to Detect Emergent Behavior in Multi-Agent Systems.”

In Proceedings of the 2013 International Conference on Autonomous Agents and

Multi-Agent Systems: 1285–1286.

NPS. “Monterey Phoenix—Event Grammar.” 2015. Accessed September 15.

https://wiki.nps.edu/display/MP/Event+Grammar.

Oberndorf, Patricia, and David Carney. 1998. A Summary of DOD COTS-Related

Policies. SEI Monographs on the Use of Commercial Software in Government

Systems. Pittsburgh, PA: Carnegie Mellon Institute.

Oetsch, J, M. Prischink, J. Pührer, M. Schwengerer, and H & Tompits. 2012. “On the

Small-Scope Hypothesis for Testing Answer-Set Programs.” Principles of

Knowledge Representation and Reasoning 13: 43–53.

Ogren, Ingmar. 2000. On Principles for Model-Based Systems Engineering. Systems

Engineering 3: 38–49.

OMG. 2015. “Documents Associated with Systems Modeling Language (SysML).

Version 1.4 - Beta .” Object Management Group.

http://www.omg.org/spec/SysML/1.4/Beta/PDF.

Penaloza, Christian, Yasushi Mae, Kenichi Ohara, and Tatsuo Arai. 2012. “Social Human

Behavior Modeling for Robot Imitation Learning.”In IEEE Mechatronics and

Automation: 457–462.

Petri, A., and W. Reisig. 2008. “Petri net.” Scholarpedia 3: 6477.

Pidd, Michael, and R. Bayer Castro. 1998. “Hierarchical Modular Modelling in Discrete

Simulation.” In IEEE Simulation Conference Proceedings 1, 383–389.

Pressman, Roger S. 2015. Software Engineering: A Practitioner’s Approach 8th Ed. New

York: McGraw-Hill.

Pullum, L. L., and Cui, X. 2012. Techniques and issues in agent-based modeling

validation.Oakridge, TN: Oak Ridge National Laboratory.

 64

Hamadi, Rachid, and Boualem Benatallah. 2004. “Recovery Nets: Towards Self-

Adaptive Workflow Systems.” In Web Information Systems–WISE: 439–453.

Berlin: Springer.

Raschke, Alexander. 2009. “Translation of UML 2 Activity Diagrams into Finite State

Machines for Model Checking.” Software Engineering and Advanced

Applications 35: 149–154.

Rivera Consulting. 2009. System Architectural Modeling Interface. Accessed August ,

2015. http://eagle6modeling.riverainc.com/model.php.

Sengstacken, A.J., D.A. DeLaurentis, and M.-R. Akbarzadeh-T. 2007. “Fuzzy Logic

Control for Shared-Autonomy in Automotive Swarm Environment.” In IEEE

International Conference on Systems, Man and Cybernetics: 196–201.

Sgroi, Marco, Luciano Lavango, Yosinori Watanabe, and Alberto Sagniovanni-

Vincentelli. 1999. “Synthesis of Embedded Software Using Free-choice Petri

Nets.” In ACM/IEEE Design Automation Conference: 805–810.

Stefan, Jeff A. 2007. “Survey of Model-Based Systems Engineering (MBSE)

Methodologies.” INCOSE MBSE Focus Group 25: 8.

Sterman, John D. 2001. “System Dynamics Modeling.” California Management Review

43: 8–25.

Valmari, Antti. 1998. “The State Explosion Problem.” In Lectures on Petri Nets I: Basic

Models, 429–528. Berlin: Springer.

Weyns, D., M. U. Iftikhar, D. G. de la Iglesia, and T. Ahmad. 2012. “A Survey of Formal

Methods in Self-Adaptive Systems.” In Proceedings of the Fifth International

Conference on Computer Science and Software Engineering: 67–79.

Wirth, Niklaus. 1971. “Program Development by Stepwise Refinement.”

Communications of the ACM 14: 221–227.

Woodcock, Jim, Peter Gorm Larsen, Juan Bicarregui, and John Fitzgerald. 2009.

“Formal Methods: Practice and Experience.” ACM Computing Surveys (CSUR)

41: 19.

Wulf, William A. 1980. “Abstract Data Types: A Retrospective and Prospective View.”

In Mathematical Foundations of Computer Science, 94–112. Berlin: Springer.

Yu, Huafeng, Prachi Joshi, Jean-Pierre Talpin, Sandeep Shukla, and Shinichi Shiraishi.

2015. “The Challenge of Interoperability: Model-Based Integration for

Automotive Control Software.” In Proceedings of the 52nd Annual Design

Automation Conference: 58.

 65

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

 Ft. Belvoir, Virginia

2. Dudley Knox Library

 Naval Postgraduate School

 Monterey, California

