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ABSTRACT 

This thesis provides an analysis of spatial and temporal thermohaline variations of 

the Canada Basin in the Western Arctic and examines how these variations affect sound 

speed fields and acoustic propagation. In recent decades, changes in the Arctic water 

column have been underway as a result of climate change including reduced sea ice and 

changes in transports between the Pacific and Atlantic oceans. These changes were 

studied and analyzed using observational data collected from the Canada Basin Acoustic 

Propagation Experiment (CANAPE) conducted in the summer of 2015.  

The thermohaline sound speed structure was examined by computing isopycnal 

displacements, which allowed separation of internal waves and eddies from intrusive 

thermohaline structure or spice. Temporal structure of these processes was estimated 

using spectral analysis, and vertical structure was examined by computing the rms 

variation of the various processes as a function of depth. Observations were compared to 

climatology. Acoustic propagation simulations using a ray-based model termed Bellhop 

were used to estimate the acoustic sensitivity to the observed ocean structure. It was 

found that internal waves were weak compared to the Garret Munk spectrum and that 

spice is surprisingly strong in the ocean structure with dominance in the upper 100m.  

The acoustic analysis revealed that a greater variability in transmission loss in the 

CTD CANAPE data was evident compared to climatology and previous observations, 

particularly at greater frequencies and range. The presence of a sub-surface sound speed 

duct existed with an axis at ~120m and accommodated an environment with increased 

travel distance for acoustic energy and lower transmission loss for depths between 100–

200m.  
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I. INTRODUCTION 

A. THE CHANGING ARCTIC AND THE RAMIFICATIONS FOR OCEAN 
ACOUSTICS 

Polar regions are home to large areas of ocean covered by ice, making them 

significantly different from the rest of the world. Ice cover has an acoustic importance; it 

acts as a boundary and can change the properties of the water column. Of most 

importance are the effects of ice on the exposure to the atmosphere and the change in 

underlying water masses from the Pacific and Atlantic oceans. This surface boundary 

shields the ocean from the effects of wind, reducing sea state, turbulence, and mixing. 

Calmer waters can result in less scattering, causing sound transmissions to be more stable 

and possibly travel further distances due to the nature of the water column. The Arctic 

water column near the first few layers is predominately fresh cold over warm salty water, 

resulting in an upward refracting environment.   

Additionally, the canopy of the sea ice is not strictly flat and its variability in 

roughness and thickness can affect the absorption values of sound energy that interact 

with the surface. Therefore, depending on the surface properties, sound energy will 

experience variable attenuation, and scattering. This boundary further acts to insulate the 

ocean from solar radiation forcing due to the albedo contrast from ice to snow. This is of 

concern due to the fact that if solar radiation absorption increases in the surface layer 

with decreasing albedo, it results in changes in the fresher colder water due to more ice 

melting. Hence, this affects the thermohaline structure, which in turn impacts acoustic 

propagation because of the inherent nature of sound in the ocean.  

B. OCEANOGRAPHY: CANADA BASIN AND THE ARCTIC OCEAN 

This report investigates the recent changes due to warming in the acoustic 

properties of the Canada Basin. This sub-section will address the oceanography of the 

area as well as water column properties.  

The Canada Basin is of significant importance to the Arctic and global climate 

change. It is the largest of four sub-basins in the Arctic with the greatest loss of first-year 
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and multi-year ice than the other three sub-basins (McLaughlin et al. 2011). A possible 

explanation is the reducing of sea ice thickness in north Alaska by the heat entering from 

the Pacific. This thinner ice is driven by the Beaufort Gyre, facilitating the transport of 

warmer Pacific water to deeper waters off of the Alaskan shelf. This transport contributes 

to the positive ice-albedo feedback loop by reducing the ice cover offshore and exposing 

the darker ocean, which has a higher capacity for solar radiating absorption (Walsh et al. 

2013). In relation to the comparable sea ice loss in the Canada Basin to the other three 

sub-basins, the environmental changes are significant, which provides a suitable basis for 

a study into the variability of the Arctic Ocean water column.  

The Canada Basin (Figure 1) is a sub-basin of the Amerasian basin and lies north 

of Northern America and extends 700 miles from the Beaufort Shelf to the Alpha 

Cordillera. The Alpha Cordillera (Ridge) separates the Canada basin and the Makarov 

basin. The other two sub-basins, Nansen Basin and the Amundsen Basin form The 

Eurasian Basin, and are separated by Gakkel Ridge. The Eurasian Basin and the 

Amerasian basin are divided by the Lomonosov Ridge. (Encyclopedia Britannica 2016, 

McLaughlin et al. 2013, Geoglogy.com 2016)  
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International Bathymetric Chart of the Arctic Ocean annotated with the names of seafloor 
features 

Figure 1.  Arctic Ocean Seafloor Features Map. Adapted from IBCAO (2012). 

Other characteristics that establish the Canada Basin as a unique basin are the 

circulation and halocline. The Beaufort High drives the circulation clockwise, and the 

halocline is strongly stratified with higher nutrient levels than the other three sub-basins 

(McLaughlin 2013). 

In high latitudes, the halocline is defined as a vertical salinity gradient where fresh 

water from either river runoff or melting sea ice lies over more saline waters. The recent 
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water mass structure of the Canada Basin (Figure 2) is composed of the Surface Mixed 

Layer (SML), the remnant of Winter Mixed Layer (rWML), the Pacific Summer Water 

(PSW), the Pacific Winter Water (PWW), the Atlantic water layer, the Summer 

Halocline, the Winter Halocline, and Lower Halocline (Jackson et al. 2010). During the 

summer in recent observations, the SML lies from ~10-20m and is highly stratified 

(S~26.5) from freshwater input due to sea ice melt, precipitation and evaporation, and 

river run off chiefly from the largest northward flowing river in the region, the 

Mackenzie River (McLaughlin 2013). A near surface temperature maximum (NSTM) is 

present at ~25-35m, due to solar radiation penetrating through thin sea ice (Jackson et al. 

2010). The NSTM lies within the summer halocline, a halocline feature formed in 

summer, which separates the SML to the NSTM once enough sea ice melt has 

accumulated (Jackson et al., 2013). Below the NSTM there are remnants of the previous 

winter mixed layer. Here the base is where the winter halocline is found. The next layers 

originate from the Pacific Ocean through the shallow Bering Strait (~50m), transporting 

summer Bering Sea Water and Alaskan Coastal Water. In summer the Pacific water is 

warmed and homogenized over the Chukchi Shelf, resulting in the PSW, and creates a 

temperature maximum at 50–100m (Talley et al. 2011) with a salinity of 28<S<32 psu 

(McLaughlin 2013). The PWW, originated similar to the PSW, but formed by ice 

formation over the Chukchi Shelf during the winter (Pisareva et al. 2015), and creates a 

temperature minimum further below at a depth near 150m (Talley et al. 2011) with a 

salinity of 32<S<33.5 (McLaughlin 2013). Below this, temperature increases with depth 

reaching a maximum around 400m defining the lower limit of the Atlantic water, with the 

top delineating the lower halocline. This warm saline Atlantic water enters the Canada 

Basin through the Fram Strait and sinks due to it being denser in nature. Below this layer, 

bottom water exits, this being Canadian Basin Deep Water.  
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Note the depth axis is log scale. Profiles are from a station located at 75°N, 150°W, 
occupied on 29 August 2006 

Figure 2.  Water Mass Structure of the Canada Basin as Characterized by (a) 
Temperature, (b) Salinity, and (c) Brunt-Vaisala Frequency Profiles. 

Source: Jackson et al. (2010). 

The temperature minimum associated with the PWW is a very interesting feature 

in terms of acoustic propagation. In the Marginal Ice Zone (MIZ) study conducted by 

ONR in 2014, navigational signals with a center frequency of 900Hz were transmitted 

with ranges greatly exceeding expectations, often in excess of 300km (Worcester et al. 

2015). A conceivable explanation is that the signals were trapped in the duct and did not 

suffer losses associated with scattering form the ice.  

SML 
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Another significant feature present in the Artic due to its unique environment is a 

double-diffusion staircase near the thermohaline due to the presence of cold, fresh water 

over the warm, salty water in the Atlantic Layer. In the central Canada Basin at about 

200–300m the double-diffusive staircase can be found, however it is absent at the basin 

periphery (Timmermans et al. 2008). It is suggested by Worcester et al. (2015) that due to 

higher internal wave energy these double-diffusive structures could advect up and down, 

affecting acoustic propagation.  

It is important to understand the water masses in the Arctic with respect to 

acoustic propagation; however, a further contributor to the unique acoustic behavior in 

polar regions is sea ice. “The propagation of underwater acoustic signals in polar regions 

is dominated by an upward refracting sound speed environment” (Alexander et al. 2013) 

and the highly variable ice canopy. The age of sea ice impacts greatly on the 

characteristics of the ice canopy, specifically ice thickness and roughness. First year ice 

has a smoother thinner under-ice profile, whereas multi-year ice is thicker and more 

rugged (Wadhams et al. 2012). Ridging also affects the thickness of ice. This is a 

mechanical method formed by the shearing and compression of ice floes (Alexander et al. 

2013). Ridging occurs more often in multi-year ice due to its age than first year ice, with 

the keel being split into a number of independent solid, smooth blocks of large size, 

subjecting multi-year ice to an irregular ridge profile (Alexander et al. 2013). Multi-year 

ice now comprises only 30% of the ice in the Arctic Ocean (NSDIC 2015) (Figure 3), 

resulting in dominance of first-year ice, hence reducing pressure ridging. As a result, the 

ice keels are decreasing in size, concluding in a reduction in transmission loss. Moreover, 

Worcester et al., 2014 suggests that due to the reducing ice thickness in the Arctic, 

signals with frequencies above the range of very low frequency (<20Hz) can now be 

employed for long-range propagation, including in the deployment of ocean tomography. 
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The map at top shows the ages of ice in the Arctic at the end of March 2013; the bottom 
graph shows how the percentage of ice in each age group has changed from 1983 to 
2013.  

Figure 3.  Arctic Sea Ice Age at the End of March 2013. 
Source: NSIDC (2015). 

Previous experiments in acoustic propagation in the Arctic including the 

Transarctic Acoustic Propagation (TAP) experiment (Mikhalevsky et al., 1999), and the 

Arctic climate observation using underwater sound (ACOUS) experiment (Gavrilov et al. 

2006) demonstrated, using low-frequency acoustic transmission, that basin-scale 

warming is present in the Atlantic layer of the Arctic Ocean (Mikhalevsky et al., 1999) 

and (Gavrilov et al. 2006).  

Another noteworthy feature of the Arctic is the Arctic acoustic channel, which is a 

half sound channel located at the surface due to the upper refracting characteristics of the 

Arctic Ocean. As the ice cover is thinning, but still reducing wind turbulence and 

disturbance, the Arctic acoustic channel should be preserved (Worcester et al. 2014).  
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C. CURRENT STATE OF SEA ICE IN THE ARCTIC 

As previously mentioned, ice is an important component affecting acoustic 

propagation both from its rough surface and from its shielding effect in air/sea 

interaction. We therefore review some relevant studies. Recent studies, such as that 

conducted by National Snow and Ice Data Center (NSIDC) (Figure 4), have shown the 

sea ice in the Arctic Ocean is declining by 13.4% per decade (NSIDC 2015), with NSIDC 

claiming that the nine lowest September ice extents have occurred in the last nine years 

of satellite records.  

 

Figure 4.  Monthly September Ice Extent for 1979 to 2015 Shows a Decline of 
13.4% per Decade Relative to the 1981 to 2010 Average. 

Source: NSIDC (2015). 

It has been predicted through many sources, that the sea ice will continue to 

decline and may see a nearly sea ice-free summer in this century. There is debate through 

several models and techniques on the exact year this will occur; nonetheless it is clear 

that it is a growing concern. The possible existence of an ice-free summer suggests a 

more seasonal sea ice region, which is very similar to the Antarctic sea ice season. 

Stroeve et al. (2012) demonstrates the observed decline of the September sea ice 

extent over the past seven decades in Figure 5 (red solid line), with predicted continual 

decline up to the 21st century modeled by 20 World Climate Research Programme 
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Coupled Model Intercomparison Project Phase 5 (CMIP5) models. Furthermore, it is 

found that sea ice is thinning, since “at the end of summer 2011, only 25% of the ice was 

more than two years old, compared to 50–60% during the 1980s” (Stroeve et al. 

2012). The sea ice retreat to date is ahead of the projected climate model trends.  

 
All 56 individual ensemble members from 20 CMIP5 models are included as dotted colored lines, with 
their individual model ensemble means in solid color lines. Observed data is represented by a solid red 
line. The multi-model ensemble mean is based on 38 ensemble members from 17 CMIP5 models 
(shown in black), with +/ 1 standard deviation shown as dotted black lines. Inset is based on the multi-
model ensemble mean from CMIP5 and CMIP3, +/ 1 standard deviation.  

Figure 5.  Time-series of Modeled and Observed September Sea Ice Extent 
from 1900 to 2100. Source: Stroeve et al. (2012). 

The predictions of a nearly ice-free summer in the Arctic range from the next few 

decades to late this century. The variability in the predictions depends on a number of 

different scenarios, techniques, resolution and parameters. The best estimate by 

Massonnet et al. (2012) for an ice-free summer is the interval of 2041–2060 for a high 

climate forcing scenario, including a number of sea ice metrics. Whereas, Overland et al. 
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(2013) suggests that there are three approaches to assessing an ice free summer. These 

include: “(1) extrapolation of sea ice volume data, (2) assuming several more rapid loss 

events such as 2007 and 2012, and (3) climate model projections.” The estimates are 

respectively 2020 or earlier, 2030 ±10years, and 2040 or later. Maslowski et al. (2012) 

adds to this debate and stipulates that there is still further advancement required for 

climate modeling to provide accurate estimates as “a system-level understanding of the 

critical Arctic processes and feedbacks is still lacking.” Nonetheless these predictions 

indicate that over the next few decades there will be a reduced sea ice extent in the 

Arctic, and to understand the impacts on global climate we must understand the current 

extent.  

The maximum sea ice extent for 2016 was reached on March 24 (Figure 6a) at 

14.52 million square kilometers, second to the lowest seasonal maximum in satellite 

record in March 2015 (NSICD 2016). The minimum sea ice extent for 2015 was set on 

September 11 (Figure 6b) at 4.41 million square kilometers, the fourth lowest in satellite 

record. This extent was 1.01 million square kilometers above the record low monthly 

average for September, which occurred in 2012 (NSICD 2015). Those events that have 

the lowest sea ice extent are generally associated with extreme weather events such as El 

Nino for example 2007 and 2012. A strong El Nino was present in 2015/2016 (NOAA 

2016), which could contribute to the second lowest maximum sea ice extent in satellite 

record. Future extreme weather events could bring rise to further falls in sea ice decline 

ensuing an earlier onset of sea-ice free summers.  
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Left image a) March 2016 and right image b) September 2015. The magenta line shows the 1981 to 
2010 median extent for that month. The black cross indicates the geographic North Pole.  

Figure 6.  Arctic Sea Ice Extent for March 2016 and September 2015. 
Source: NSIDC (2016). 

Sea ice extent is a good indicator of the loss of sea ice, however volume is a more 

accurate indicator. Sea ice extent and thickness are the two parameters that determine 

volume. Thickness also provides an indication of the age of sea ice, such that the thinner 

the ice, the younger the ice. Observational data collected from the Special Sensor 

Microwave Imager and Sounder (SSMIS) on the Defense Meteorological Satellite 

Program (DMSP) F-17 satellite (UIUC 2016), is analyzed using the passive microwave 

brightness temperatures and then interpreted into graphics (Figure 7 a-d). The sea ice 

concentration for the month of August 1979 – 2015 (Figure 7 a-d) illustrates the decline 

in sea ice concentration, magenta representing 100%, red 60%, yellow 40% and blue 0%. 

It is of note that sea ice concentration below 30% is not shown. 
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Top left a) is the sea ice concentration for the month of August for the beginning of the Cryosphere 
database. Top right b) is the sea ice concentration for the month of August for the year of the beginning 
of ITP data analyzed in this report. Bottom left c) is the sea ice concentration for the month of August for 
the end range of ITP data. Bottom right d) is the sea ice concentration for the month of August for the 
CTD analyzed in this report. 

Figure 7.  Northern Hemisphere Sea Ice concentration. Source: UIUC 2016. 

NSIDC map of ice age for the summer of 2015 (Figure 8), revealed from the 

September minimum sea ice extent, that there was a 31% depletion of the multiyear ice 

cover, compared to only 12% in 2013 and 38% in 2012 (NSIDC 2015). From these 
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statistics, it can be construed that there is an increasing amount of first year sea ice, which 

is in agreement and similar to that observed in 2013: “last autumn’s record low and this 

winter’s record ice growth indicate a more pronounced seasonal cycle in Arctic sea ice 

and the increasing dominance of first-year ice in the Arctic” (NSIDC 2013). Moreover, 

Antarctica’s sea ice cover is seasonal and predominately first year ice (Turner and 

Pendlebury 2004). With further ice reduction and thinning ice expected in the Arctic from 

modeled predictions, conducting comparisons with the Antarctic Ocean, can provide 

some indication on how the Arctic Ocean properties may present in the future. 

 
The map shows Arctic sea ice age, in years. 

Figure 8.   Arctic Sea Ice Age, September 7 to 13, 2015. 
Source: NSIDC (2016). 

The extent to which sea ice is thinning in the Arctic, and the exact timing of a 

near-free sea ice summer, is significant in respect to the degree they affect acoustic 

propagation. Thinning ice impacts the behavioral properties of sound energy in the ocean 

by increasing the sea state, which in turn increases mixing, and turbulence. This increased 
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mixing can deepen the mixed layer possibly lowering the cutoff frequency in the surface 

duct. Furthermore, nearly-free sea ice summers provide the opportunity for greater sea 

states that may affect scattering. Free sea ice oceans in the Artic provide for greater solar 

absorption, due to the ice-albedo feedback (Figure 9). A darker ocean absorbs more solar 

radiation than sea ice warming the ocean further and melting additional sea ice. This 

process has a positive feedback. Again, this warming of the ocean has a direct impact on 

the acoustic behavior of the water column by changing the thermohaline structure.  

 
Short Wave (SW) radiation from the solar emissions. 

Figure 9.  The Sea Ice/Albedo Feedback Mechanism. Source: Holland (2016). 
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D. NAVY RELEVANCE: THE IMPORTANCE OF UNDERSTANDING 
ACOUSTIC PROPAGATION AND HOW IT CAN AFFECT NAVAL 
OPERATIONS 

Observations of large changes in the Arctic Ocean water column have been 

reported during the last 15 years (Rudels et al. 2004). These changes including the 

absence of mixing in both vertical and horizontal layers in the water column; warming or 

cooling of mixed layers; and the absence of low salinity surface water impacting heat 

transport (Rudels et al. 2004) which can alter the sound-speed profile. Variations in heat 

transport however, cannot just alter the sound-speed profile but physically reduce the ice 

formation. Variability in sea ice coverage including seasonality and type of sea ice not 

only affect the temperature of the water columns, particularly at the surface but also 

change the roughness, thickness and absorption of sound energy that interact with the 

surface. Depending on the surface properties, sound energy will experience variable 

attenuation and scattering. The variability in the Arctic Ocean water column will be the 

main focus of this study including the investigation into the impacts on acoustic 

propagation.  

Due to reduction in sea ice in recent decades, the Arctic Ocean has become more 

accessible leaving large sections of the Arctic Ocean ice-free opening up shipping routes. 

These more accessible shipping routes have increased the volume of shipping 

(commercial or otherwise) in the Arctic Ocean, with further predicted increases (Eger 

2011), being of interest to many nations. These changes will impact national security and 

naval operations in the area. Of note will be the contribution of increased shipping to the 

background ambient noise level.  

The Arctic is not only more accessible to intercontinental transport, but also has 

led to the exposure of vast quantities of natural resources such as oil, gas and minerals to 

be extractable (Hansen et al. 2016). This accessibility creates expansion for the maritime 

industry in transport offshoring, servicing, emergency response, surveillance, maritime 

equipment, new build and retrofitting vessels (Hansen et al., 2016). The required 

infrastructure in the Arctic and surrounding Northern Hemisphere countries have not yet 

been fully established to support increased shipping in the area, and therefore, the 
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necessary actions need to be taken before such activities can occur. A number of these 

required action and activities such as research and safety, security, and the protection of 

national interests and sovereignty will attract the military to the Arctic. 

In 2007, the U.S. government began implementing Arctic focused policies. In the 

policy, A Cooperative Strategy for 21st Century Seapower, the U.S. government 

acknowledged that “climate change is gradually opening up the waters of the Arctic, not 

only to new resource development, but also to new shipping routes” (Department of the 

Navy and U.S. Coast Guard 2007). Policy development over the years established further 

guidance through the U.S. Navy Strategic Objectives for the Arctic (May 2010), National 

Strategy for the Arctic Region (Apr 2013), U.S. Coast Guard Arctic Strategy (May 2013), 

Department of Defense Arctic Strategy (Nov 2013), Implementation Plan for the National 

Strategy for the Arctic Region (Jan 21014) and U.S. Navy Arctic Roadmap 2014–2030 

(Feb 2014) revised from 2009. The two recent documents proclaim the Arctic as a new 

maritime frontier.  

The Implementation Plan for the National Strategy for the Arctic Region was 

published in January 2014, and its purpose was to follow the three-line effort: 

• advance United States security interests   

• pursue responsible Arctic Region stewardship 

• strengthen international cooperation  

In addition, all lines of effort must employ a multi-disciplinary approach to 

research, and address emerging challenges and opportunities in the Arctic environment, 

both on a national and international level as well as in a military, social and scientific 

domain. 

Southern hemisphere nations should take interest in the developments occurring 

in the Arctic especially those nations that are involved in the Antarctic Treaty. The 

policies adapted for the Arctic especially those concerning resources and international 

cooperation could apply to Antarctica, as there becomes more of a drive to exploit natural 

resources. The Antarctic Treaty could possibly be revised to include natural resource 

extraction. Furthermore, allied nations such as Australia and New Zealand to the United 



 17 

States of America should be involved in Arctic operations and policies to provide support 

when needed. Activities in the Northern Hemisphere influence those that occur in the 

Southern Hemisphere. Polar research is a revived science that would benefit greatly from 

a collective approach.  

More activity in the Arctic will require adaptation of vessels to endure the 

extreme weather and conditions. The atmosphere is more extreme, more harsh, and rapid 

in its changes. The ocean compared to the atmosphere is less volatile with changes being 

more consistent and gradual. In addition, vessels above the surface deal with extreme 

temperatures below -2C° incurring constant freezing conditions with sea spray, ice and 

snow. These vessels require equipment and procedures to mitigate below freezing 

temperatures. Vessels underwater such as submarines can adhere to better conditions 

under the ice encountering less hazardous currents and temperatures no less than -2C°. It 

could be beneficial to the military to have submarines operating in the Arctic in support 

of military operations and governance over surface vessels. The expected acoustic profile 

of the Arctic Ocean is very important entity if this concept is adopted.  

Submarines have operated in the Arctic Ocean since the 1930s. In 1931 a 

decommissioned submarine, O-12 and renamed the Nautilus, made several short runs 

under the Arctic sea ice, demonstrating that submarines could feasibly operate in and 

under sea ice (WHOI 2007). In 1947 USS Boarfish conducted the first official under-ice 

dives in the Arctic near the Chukchi Sea (SUBFOR 2016). Most under ice-dives up until 

1958 were mainly conducted in ice-floes, when USS Nautilus, the first nuclear submarine 

reached the North Pole as well as conducted the first transpolar crossing (WHOI 2007). 

The same year USS Skate pushed through the ice at the North Pole. Other notable events 

for other nations were in 1962 the Soviets arrived on the Leninski Komsomolets, and in 

1971 the British made the crossing on the Dreadnought (WHOI 2007). 

In more recent history, a program called SCICEX (Science Ice Exercise) began in 

1993. The program in collaboration between the U.S. Navy and the marine research 

community was “designed to use nuclear-powered submarines to map and sample the ice 

canopy; the physical, chemical, and biological water properties; the seafloor topography; 

and the shallow subsurface of the Arctic Ocean” (Edwards 2004).  
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The data collected from the submarines to support scientific research included: 

• Conductivity, temperature, depth (CTD) profiles taken by expendable 
probes; 

• CTD and other sensor data taken from hull- mounted systems;  

• Bathymetry recorded by installed fathometers; 

• Ice profile data from upward-looking sonar; 

• Water samples for salinity calibration from water samples; and 

• Navigation from the submarine’s inertial navigation system (SCICEX 
Science Advisory Committee, 2010).  

The U.S. Navy’s submarine force is dedicated to contribute to the scientific 

research as well as maintain global presence. As stated in the SCICEX Science Advisory 

Committee, 2010 in the SCICEX Phase II Science Plan “the Navy believes its submarines 

must retain a global ocean operational capability and the Submarine Force is committed 

to sustaining Arctic training and readiness through recurring Arctic deployment.” The 

plan is built around five sampling corridors within an agreed upon SCICEX Data Release 

Area (DRA) (SCICEX Science Advisory Committee, 2010). See yellow outline in the 

Figure 10. The article goes on further to claim that the essential data that helped scientist 

recognize global climate was changing were gathered during the SCICEX Phase I 

between 1993 and 1999 (SCICEX Science Advisory Committee 2010).  
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The science plan is built around five recommended sampling corridors within the SCICEX Data 
Release Area. The areas provide reference for planning tracks and for priorities of scientific data 
collection. The SCICEX Phase II Science Plan (SCICEX Science Advisory Committee, 2010) 
explains in further detail of each corridor.  

Figure 10.  SCICEX Data Release Area. Source: SCICEX Science Advisory 
Committee (2010). 

The SCICEX program in conjunction with Ice Exercise (ICEX) is held biennial 

involving other agencies and surface components. SCICEX is still continuing to this day 

and will be expected to continue into the future. It is necessary to understand the 

changing Arctic Ocean properties not only for scientific research but also for safe and 

productive submarine operations.  

Understanding the spatial and temporal variations in the Arctic on sound speed 

will improve the knowledge of the current and predicted acoustic propagation properties 

of the Arctic Ocean. This will better equip the military and other government 

organizations with the knowledge on the difference between expected background noise, 

and the generated signal therefore providing greater assistance in maritime operations, 

particularly underwater operations and anti/submarine warfare. 
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II. OCEAN ACOUSTIC VARIABILITY 

A. ACOUSTIC BASICS 

Sound in the ocean compared to other waves such as electromagnetic (EM) 

radiation, is a useful tool for remote sensing, communications, and navigation. This is 

owing to the fact that the ocean is transparent to low frequency sound and opaque to EM 

radiation. 

Sound speed (c(z)) in the ocean is a function of temperature, salinity and pressure 

(function of depth), and can be defined by the simple equation:  

𝑐𝑐(𝑧𝑧)  =  1449.2 +  4.6𝑇𝑇 –  0.055𝑇𝑇2 +  0.00029𝑇𝑇3 +  (1.34 –  0.001𝑇𝑇)(𝑆𝑆 − 35) + 0.016𝑧𝑧), (1) 

where temperature (T) is in degrees centigrade, salinity (S) is in parts per thousand and 

depth (z) is in meters (Medwin 1975). More accurate sound speed equations are given by 

Del Grosso (1974), but this example suffices to show the basic dependencies. Sound 

speed is seen to increase with increases in all dependent variables, but temperature is the 

strongest.  

B. ACOUSTIC VARIABILITY  

Ocean acoustic fields are determined by the ocean sound speed structure, which 

invariably includes small-scale random fluctuations in sound speed (δc). Some ocean 

processes that are known to affect acoustic propagation are mixing, internal waves, 

eddies and fronts, spicy thermohaline structure, and the effects of interactions with the 

rough seabed and sea surface. In addition, the specific environments of the ocean will 

affect sound propagation, and some examples include mid-latitude deep ocean, mixed 

layer, shallow water and continental shelf, and polar regions. A typical Canada Basin 

profile is discussed in the Chapter I.  

1. Ray Theory 

A simple starting place to understand sound propagation in the ocean is ray 

theory. Ray theory is a useful technique to understand the physics of scattering sound in 

relation to ocean acoustic propagation due to its strong geometric basis (Colosi 2016). In 
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this theory, the wave field of acoustic energy, p(r,t) behaves locally like a plane wave and 

propagates perpendicular to the wave front. We write the acoustic pressure in the form 

 𝑝𝑝(𝒓𝒓, 𝑡𝑡) = 𝐴𝐴(𝒓𝒓, 𝑡𝑡)𝑒𝑒𝑖𝑖𝑖𝑖(𝒓𝒓,𝑡𝑡), (2) 
where 𝐴𝐴(𝒓𝒓, 𝑡𝑡)is the amplitude and Θ(𝒓𝒓, 𝑡𝑡) is the phase. The phase is assumed to vary 

much more rapidly than the amplitude.  

For ray theory, it is of particular interest, that only refraction is accounted for and 

not diffraction. Here the ray path can be written in the form of either, θg, which is the 

grazing angle or the ray angle at the sound channel axis for upper and lower turning depth 

z+ and z-. Assuming the phase function Θ(r,t) is locally in the form of a plane wave we 

can write 

 𝒌𝒌 = 𝛻𝛻𝛻𝛻, (3) 
 𝜔𝜔 = −𝜕𝜕𝑖𝑖

𝜕𝜕𝑡𝑡
. (4) 

where 𝜔𝜔 and k are related by the plane wave dispersion relation,  ω=(k, r). Manipulating 

Equation (3) and (4) gives the following equation 

 𝜕𝜕𝒌𝒌
𝜕𝜕𝑡𝑡

= −�𝜕𝜕𝜕𝜕
𝜕𝜕𝒌𝒌
∙ 𝛻𝛻� 𝒌𝒌 − 𝜕𝜕𝜕𝜕

𝜕𝜕𝒓𝒓
, (5) 

where the group velocity is identified as 𝑐𝑐𝑔𝑔 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝒌𝒌

 and the total derivative is given by 

𝑑𝑑
𝑑𝑑𝑡𝑡

= 𝜕𝜕
𝜕𝜕𝑡𝑡

+ 𝑐𝑐𝑔𝑔 ∙ ∇ in the direction of the wave. For wave energy following along ray paths 

the Hamiltonian-like equations (Lighthill, 1978) are applicable  

 𝑑𝑑𝒓𝒓
𝑑𝑑𝑡𝑡

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝒌𝒌

= 𝑐𝑐𝑔𝑔, (6) 
 𝑑𝑑𝒌𝒌

𝑑𝑑𝑡𝑡
= −𝜕𝜕𝜕𝜕

𝜕𝜕𝒓𝒓
. (7) 

where the Hamiltonian function is given by the wave dispersion relation. 

Equation (6) says that the acoustic energy travel along the ray at the group 

velocity, and Equation (7) says that the direction of the ray changes due to spatial 

variations in the dispersion relation often termed refraction (Colosi 2016). As a result 

from Hamiltonian method, the dispersion relation, ω is constant and therefore, 𝑑𝑑𝜕𝜕
𝑑𝑑𝒕𝒕

= 0. 

Hamiltonian mechanics can be used to explain acoustic propagation with c(x,y,z) in terms 

of ray chaos and the exponential sensitivity to initial conditions (Colosi 2016).  
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In ray amplitude and stability, the exponential sensitivities to initial conditions 

and perturbations in sound speed waves caused from such phenomena as internal waves 

is called ray chaos (Colosi 2016). It will not be discussed in depth in this thesis, but it is 

important to understand initial conditions can significantly impact acoustic propagation. 

The divergence or convergence of nearby waves can possibly increase eigenrays allowing 

chaotic rays to be detected at range.  

In this thesis, we will examine acoustics in a simpler 2-D plane where x is the 

independent variable, and we want to predict the acoustic field at a point (𝑥𝑥, 𝑧𝑧). This then 

gives 3 equations (independent of acoustic frequency (since 𝑘𝑘𝑧𝑧 ∝ 𝜔𝜔)) for ray direction, 

𝑘𝑘𝑧𝑧(𝑧𝑧(𝑥𝑥)), ray path, 𝑧𝑧(𝑥𝑥), and travel time, 𝑇𝑇(𝑥𝑥), becoming, 

 1
𝜕𝜕
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= − 1

(𝑐𝑐−2−𝑘𝑘𝑧𝑧2/𝜕𝜕2)
1
2

1
𝑐𝑐3
𝑐𝑐, (8) 

 𝑑𝑑𝑧𝑧
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑧𝑧
𝜕𝜕

1

(𝑐𝑐−2−𝑘𝑘𝑧𝑧2/𝜕𝜕2)
1
2

= 𝑡𝑡𝑡𝑡𝑡𝑡 𝜃𝜃, (9) 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 1

𝑐𝑐2(𝑐𝑐−2−𝑘𝑘𝑧𝑧2/𝜕𝜕2)
1
2
. (10) 

Here a frequency independent quantity called the vertical ray slowness is defined as 

𝑝𝑝𝑧𝑧 = 𝑘𝑘𝑧𝑧
𝜕𝜕

= sin𝜃𝜃
𝑐𝑐

  where 𝑝𝑝𝑧𝑧 does not depend on 𝜔𝜔. A new Hamiltonian function, H, is also 

defined with conjugate or phase space variables (𝑝𝑝𝑧𝑧, 𝑧𝑧) and is given as  

 𝑑𝑑𝑧𝑧
𝑑𝑑𝑑𝑑

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝑝𝑝𝑧𝑧

, 𝑑𝑑𝑝𝑝𝑧𝑧
𝑑𝑑𝑑𝑑

= −𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧

, (11) 

where 𝐻𝐻 =  −𝑘𝑘𝑥𝑥
𝜕𝜕

= −(𝑐𝑐−2 − 𝑝𝑝𝑧𝑧2)
1
2 = −cos𝜃𝜃

𝑐𝑐
.   

The third equation is then 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐿𝐿 = 𝑝𝑝𝑧𝑧
𝑑𝑑𝑧𝑧
𝑑𝑑𝑑𝑑
− 𝐻𝐻 = 1

𝑐𝑐2(𝑐𝑐−2−𝑝𝑝𝑧𝑧2)
1
2

= 𝑠𝑠𝑠𝑠𝑐𝑐 𝜃𝜃
𝑐𝑐

, (12) 

where L is the Lagrangian function. Equation (12) states that the ray path moves at the 

local sound speed where 𝑑𝑑𝑑𝑑
𝑑𝑑𝑠𝑠

= 1
𝑐𝑐
 and the infinitesimal arc length is 𝑠𝑠 = (𝑑𝑑𝑥𝑥2 + 𝑑𝑑𝑧𝑧2)

1
2 . 

In short, the Hamiltonian equations are a pair of coupled, non-linear equations 

because 𝑐𝑐(𝑥𝑥, 𝑧𝑧)is a non-linear function. Also, the travel time equation is simply an 

auxiliary equation, Θ ∝ 𝜔𝜔𝑇𝑇 (Colosi 2016). 
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The above theory gives the wave phase as a function of position and time and a 

separate equation is used to compute the ray amplitude giving the acoustic pressure as  

 𝑝𝑝(𝒓𝒓, 𝑡𝑡) = ∑ 𝑡𝑡𝑗𝑗(𝒓𝒓, 𝑡𝑡)𝑒𝑒−𝑖𝑖𝜕𝜕�𝑑𝑑𝑗𝑗(𝒓𝒓)−𝑡𝑡�
𝑗𝑗 . (13) 

Here, the sum is over all rays (eigenrays) that pass through the position r.  

There are a number of methods to analyze acoustic propagation as well as 

represent them in graphical plots. For this thesis the pressure field will be inferred by 

transmission loss (TL). TL for a single frequency at a point source with pressure 

referenced at r=1m for a spherical wave, p0(r) = eiksr/(4πr) where ks = ω/cs. TL can 

written as  

 𝑇𝑇𝐿𝐿 = −20𝑙𝑙𝑙𝑙𝑙𝑙10 �
|𝑝𝑝(𝑟𝑟,𝑧𝑧;𝜕𝜕)|

|𝑝𝑝0(𝑟𝑟=1; 𝜕𝜕)|
�. (14) 

2. Ocean Sound Speed Variability  

An important source of sound speed variability in the oceans is internal waves. 

Internal waves are gravity waves that ride upon the density stratification of the ocean and 

are much like surface gravity waves that ride on the density contrast of the air/sea 

interface. Internal waves induce sound speed changes by vertically advecting density 

surfaces. In a vertically stratified ocean, the sound speed is therefore 𝑐𝑐(𝑧𝑧 +  𝜁𝜁(𝑟𝑟, 𝑡𝑡)) 

where 𝜁𝜁(𝑟𝑟, 𝑡𝑡) is the internal wave vertical displacement. Taylor expanding the sound 

speed perturbation is given by  

 𝛿𝛿𝑐𝑐(𝑟𝑟, 𝑡𝑡) = �𝑑𝑑𝑐𝑐(𝑧𝑧)
𝑑𝑑𝑧𝑧

�
𝑝𝑝
𝜁𝜁(𝑟𝑟, 𝑡𝑡), (15) 

where the vertical gradient is the total gradient minus the adiabatic gradient, due to the 

adiabatic nature of displacements (Colosi 2016).  

Three main factors concerning internal wave-induced sound-speed fluctuations 

are that they are (1) inhomogeneous in depth with larger fluctuations in the main 

thermocline and small ones at depth, (2) anisotropic in the vertical/horizontal plane with 

horizontal and vertical correlation length of roughly 10km and 0.1km, respectively and 

(3) intrinsically waves having their own space/time dependence imposed through the 

dispersion relation (Colosi 2016).  
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Internal waves (super-inertial variability) fit into four broad categories: Inertial 

waves, internal tides, internal solitary waves and broadband stochastic random waves. 

Inertial waves are evident near the local inertial frequency f in horizontal current spectra 

and are mainly wind driven. Internal tides are observed near continental shelves and 

rough topography. For latitudes above 30 degrees, only semi-diurnal tides exist and at 

even higher latitudes greater than 75degress they are largely absent. This is due to the 

cut-off in the M2 tidal component. Furthermore, in deep water internal tides can be more 

deterministic due to their relation to astronomical tides. Internal solitary waves are 

nonlinear internal waves that are largely generated on continental shells and sills from 

bottom interacting tidal flows.  

Kinematically, internal wave frequencies are found to be between the Coriolis 

frequency f and the Brunt-Vaisala frequency N. The Brunt-Vaisala (or buoyancy) 

frequency N(z) is the frequency with which a vertically displaced fluid element would be 

expected to oscillate (Garrett and Munk 1979). It is an indicator for the local gravitational 

stability of the stratification (Colosi 2016).  

Eddies (or sub-inertial variability) exist on time scales larger than internal waves. 

Eddy time scales are weeks to months and therefore due to the short duration of the 

CANAPE pilot study, detailed statistical properties of eddies cannot be addressed. Figure 

21 (Chapter III) shows indications of two significant eddies, one at the beginning and one 

at the end of the experiment. 

Another process that generates small-scale random sound-speed fluctuations is 

spice. Spice is associated with intrusive thermohaline fine structure, which exists due to 

mixing of water masses with differing temperature and salinity. Along surfaces of 

constant density, temperature and salinity can vary in a compensating way. This 

compensated variability is termed spice: High spice is classified as hot and salty water, 

and low spice, is classified as cold and fresh water. Ocean fronts, shallow water, and the 

surface mixed layer are consider regions of strong spice. Sound-speed anomalies are 

produced by density compensating temperature, and salinity anomalies because sound 

speed increase with both temperature and salinity (Colosi 2016).  
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Because spice has no density signature it is dynamically insignificant, that is to 

say there is no intrinsic dynamical time dependence to the spice. We see time changes in 

spice because the spatial structure of the spice is advected by ocean currents including 

internal waves and eddies. 

In this thesis, spice and internal wave analysis will be done hand in hand. To note, 

one difference spice has compared to internal waves is that it has no essential intrinsic 

time evolution, (i.e., zero frequency) and thus temporal behavior is dictated by advection 

(Colosi 2016).  

3. Effects of Sound Speed Fluctuations on Acoustic Fields 

Now we address how the sound speed fluctuations, like those caused by internal 

waves or spice, lead to acoustic variability. Initially sound-speed fluctuations or 

heterogeneities in the water column will cause a planar wavefront to become weakly 

distorted. Because rays propagate perpendicular to the wavefront, focusing and 

defocusing regions form (Figure 11). This causes amplitude and phase variability along 

the wave front.  
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Using the Born and Rytov theory, phase fluctuations appear to first order and 
give rise to focusing and de-focusing; e.g., intensity variability. Focusing can be 
understood in terms of the bending of the phase front. The physical picture is of 
multiple weak forward scattering.  

Figure 11.  Plane Wave Passing through a Region of Weakly Variable Sound 
Speed Showing Areas of Focusing and Defocusing. 

Source: Colosi (2016). 

As the sound travels further and further into the fluctuating ocean, the front 

experiences stronger distortions. In particular, focusing regions will lead to a folding or 

triplication of the wave front (Figure 12) (Colosi 2016). A triplication occurs when 

opposite sides of a focusing region cross one another or fold over, forming three 

segments of the wave front instead of only one (Colosi 2016). Locally increased intensity 

can form at the two permanent focusing regions (caustics), demonstrated in the right 

panel in Figure 12 at the edges of the triplication. Interference can play a role in this 

regime causing fluctuations to be large. Triplication then leads to many microrays as 
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triplications occur over and over again. As range increases the microrays become more 

randomized and their strong interference leads to saturation, which is a manifestation of 

the central limit theorem.  

 
From left to right are shown three stages of wave front folding caused by the low sound speed zone 
depicted at far left. Lines mark distinct ray paths, and circles at the ends of the rays show the location 
of the wave front. In the first frame, the initial circular arc of the wave front is straightened out nearly 
into a plane wave by the refraction effects of the low speed zone. By the second frame the low speed 
zone produces a significant distortion of the front with a focusing zone near the low speed axis. By 
frame three, rays on either side of the focusing zone have crossed over one another and created a 
triplication.  

Figure 12.  Folding and Triplication of the Wave Front Due to Strong 
Fluctuations. Source: Colosi (2016) 

Micro-ray interference leads to scintillation described by the unsaturated, partially 

saturated, and fully saturated wave propagation regimes (Figure 13). To quantify the 

variability in these regimes the scintillation index (SI) and the log-intensity are used. SI is 

the normalized intensity variance given by 

 𝑆𝑆𝑆𝑆 =  <𝐼𝐼
2> − <𝐼𝐼>2

<𝐼𝐼>2
 , (16) 

and the log-intensity (𝜄𝜄 = ln 𝑆𝑆) variance is 

 𝜎𝜎𝑙𝑙2 = < 𝜄𝜄2 > −< 𝜄𝜄 >2 . (17) 
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The scintillation index is sensitive to high intensity fluctuations, while the log-intensity 

variance is sensitive to fading due to the logarithmic distortion of low intensities (Colosi 

2016).   

Two parameters important in acoustic regimes are the strength parameter Φ, and 

the diffraction parameter Λ (Flatte et al. 1979; Esswein and Flatte 198; Flatte 1983). 

These parameters are functions of ray geometry, acoustic frequency and medium 

parameters. Medium parameters such as the internal wave spectra will be examined in the 

internal wave and spice section in Chapter IV. We will not address computing Lambda 

Phi parameters for our arctic acoustic conditions. 

The strength parameter Φ is specifically related to root mean square (RMS) travel 

time fluctuation, since 𝜏𝜏 = Φ
𝜕𝜕

 s and is the RMS phase in the geometric acoustic limit 

(Colosi 2016). It “is expressed as an integral along the unperturbed ray of the depth 

dependent fractional sound speed variance times the correlation length of sound-speed 

fluctuations along the direction of the ray” (Colosi 2016). To note, the curvature of the 

ray must be taken into account to correct for large grazing angle rays when using the 

assumption in the correlation length, Lp,, that the ray is locally a straight line (Colosi 

2016). Definition of Λ is the average acoustical length divided by the ocean correlation 

length of the internal waves.  

Two limiting cases concerning these two parameters in the three propagation 

regimes become, 

Geometric Acoustics �(𝛬𝛬 ≪ 1)     〈𝜙𝜙2〉 = 𝛷𝛷2, 〈𝜒𝜒2〉 = 𝐶𝐶𝛬𝛬𝛷𝛷2�, (18) 

Large Diffraction �(𝛬𝛬 ≫ 1)     〈𝜙𝜙2〉 = 𝛷𝛷2

2
, 〈𝜒𝜒2〉 = 𝛷𝛷2

2
�  (19) 

For geometrical acoustics, the log-amplitude variance is much less than the phase 

variance whereas, in diffraction acoustics, diffraction reduces the phase variance, 

working against strong focusing.  

The behavior of these parameters, diffraction parameter, Λ, and the strength 

parameter, Φ, can delineate the different propagation regimes (Figure 13). There is no 

scale on the x-axis as background profiles of the ocean, ray paths, source/receiver 
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locations, and frequency can change the ranges at when the regimes happen (Colosi 

2016). At high frequency, SI saturates to 1, which is expected from strong microray 

interference (Colosi 2016). The approaches to saturation can be from above or below 

SI=1, subject to the phase and amplitude statistics of the interferers and the signal 

bandwidth.   

The approach from above comes from the partially saturated regime. Here this 

regime, due to strong focusing in the partially saturated zone is considered a small 

wavelength or high frequency regime, where diffraction is small, thus Λ ≪ 1. In the 

approach to saturation from below 1, this regime is considered to have high diffraction 

due to the lack of strong focusing, thus Λ ≫ 1. For the unsaturated regime, for small SI 

both the geometric (small wavelength) and diffraction (large wavelength) regimes are 

found (Colosi 2016). The characteristics are set out in Table 1. Additionally, diffraction 

depends on acoustic frequency and the spectrum of internal waves.  
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Figure 13.  Statistical Characteristics of the Signal Intensity. 
Source: Colosi (2016).  

The characteristics of each regime are set out in Table 1. 

Table 1.   Characteristic of Fluctuation Regimes  

 Unsaturated Partially Saturated 
(Strong Focusing) 

Fully Saturated 

Microrays No microrays Many correlated 
microrays 

Large number of 
uncorrelated 
microrays 

SI 0<SI<0.3 0.3 < SI < 2 SI ~ 1 
RMS Intensity 1-3 dB 3-10 dB ~ 5.6 dB 
PDF of Intensity PDF of log I is 

normal distribution 
PDF of I unknown PDF of I is 

exponential (similar 
to noise) 

Coherence Coherence is high 
(maximum possible 
gain) 

Moderate 
Coherence 
 

Low Coherence 
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III. DATA DESCRIPTION 

A. DESCRIPTION OF THE OBSERVATIONAL DATA SETS, SPATIAL 
AND TEMPORAL 

1. Canada Basin Acoustic Propagation Experiment 

A recent short pilot study in the Canada Basin was conducted from 23 July to 21 

August of 2015 as part of the Canada Basin Acoustic Propagation Experiment 

(CANAPE). CANAPE is an experiment in collaboration with Scripps Institution of 

Oceanography, the Naval Postgraduate School (NPS), and the Office of Naval Research 

(ONR). The aim of the experiment was to study the “effects of changing Arctic 

conditions on low-frequency, deep-water propagation and on the low-frequency ambient 

noise field” (Worcester et al. 2014).  

The pilot experiment consisted of observations in both the temporal and spatial 

domain. This data was recorded by a single Distributed Vertical Line Array (DVLA) 

mooring, and the icebreaker research vessel R/V Sikuliaq.  

In addition to the DVLA data, 11 shipboard Conductivity, Temperature and Depth 

(CTD) profiles were cast from 26 July to 18 Aug 2015. The CTDs were taken between 

latitude 71 21.44 N and 73 38.91N and longitude 147 17.77W and 157 26.67W, with 

depths ranging from 99 to 3835m. More detailed CTD information is in Table 2. The 

DVLA was located at 73 10.67N, 154 06.06W (Figure 14) in a water depth of 3853m.  
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Icebreaking research vessel R/V Sikuliaq was used for the pilot CANAPE voyage to deploy DVLA and 
CTD equipment as well as record data. 

Figure 14.  Map Showing DVLA Position. Source: Worcester (2015b). 

Table 2.   CTD and DVLA Information  

CTD  
Number 

Date - 2015 Latitude Longitude Distance from 
DVLA (km) 

Depth 

DVLA 30 Jul -16 
Aug  

73 10.67N 154 06.06W  3853 

1 Jul 26 72 20.18 N 157 26.67 W 144.78 162 
2 Jul 27  73 27.01 N 156 06.18 W 71.00 3721 
3 Aug 03  73 38.65 N 155 13.10 W 62.96 3850 
4 Aug 06  72 38.91 N 153 48.56 W 59.56 3325 
5 Aug 06  72 28.71 N 152 14.16 W 98.69 3485 
6 Aug 10  72 03.51 N 149 49.35 W 188.51 3270 
7 Aug 12  71 21.44 N 147 17.77 W 306.23 530 
8 Aug 12  71 21.40 N 147 18.73 W 305.88 2355 
9 Aug 17 73 11.41 N 154 05.77 W 1.35 3835 
10 Aug 18  72 21.53 N 157 22.86 W 141.51 190 
11 Aug 18  72 36.48 N 158 40.85 W 162.89 99 

 

 

 

 

Ship Track 
Sea Ice concentration from AMSR2 12 Aug 2015 
Moorings 
Acoustic transmissions 
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Three CTDs (1, 10, and 11, shown in black on Figure 15) were excluded from the 

analysis, as they were located on the Canadian shelf. The DVLA comprised of 60 

hydrophones modules, 24 temperature and conductivity sensors (Sea-Bird SBE 37-

SMP/SM MicroCATs), and 2 Acoustic Doppler Current Profiles (Teledyne RDI 75-kHz 

and 150-kHz ADCPs). The temperature, salinity and pressure sensors on the DVLA 

spanned a depth between 85–650 m and the ADCPs were placed at 600m, one orientated to 

look upwards and the other orientated to look downwards. The ADCPs were deployed to 

measure horizontal currents. Table 3 shows the placement of the instruments on the DVLA. 

 
Markers in black represent CTDs excluded from analysis 

Figure 15.  DVLA and CTD Positions 
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Table 3.   DLVA Instrument Placement with Approximate Depth. Source: 
DiMaggio et al. (2016). 

Depth (m) Instrument 
82 SBE37-SMP  
102 SBE37-SMP 
111 SBE37-SMP 
120 SBE37-SMP 
129 SBE37-SMP 
138 SBE37-SMP 
147 SBE37-SMP 
156 SBE37-SMP 
165 SBE37-SMP 
175 SBE37-SMP 
183 SBE37-SMP 
192 SBE37-SMP 
210 SBE37-SMP 
228 SBE37-SMP 
247 SBE37-SMP 
265 SBE37-SMP 
292 SBE37-SMP 
320 SBE37-SMP 
347 SBE37-SMP 
381 SBE37-SM 
418 SBE37-SM 
452 SBE37-SM 
489 SBE37-SM 
525 SBE37-SM 
628 ADCP (75 kHz) 

upward looking 
641 ADCP (150 kHz) 

downward looking 
The primary instruments are Seabird Electronics models SBE37-SM and SBE37-SMP 
(pumped) MicroCATs. The SBE instruments sampled the ocean at 30 sec intervals. 
The 75 kHz ADCP was deployed in the up looking direction and the 150 kHz ADCP 
was deployed in the down looking direction. 

 

The CANAPE Pilot Study data set was selected for this thesis due to its high 

quality and its temporal and vertical resolution. The shipboard CTD data will be used in 

this study to quantify full water column and horizontal variability (Figure 16 and 17). The 

DVLA data will be used to investigate the temporal and vertical structure of internal 

waves, eddies, internal tides, random internal waves and spicy thermohaline structure 
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(Figure 20). To understand the variability from both data sets the mean of temperature, 

salinity, sound speed, potential density, potential sound speed gradient and buoyancy 

frequency was computed and displayed Figure 16. The three profiles near the DVLA 

were superimposed on in the first 85m of the profiles as the DVLA data commenced at 

the lower depth. Further discussion on this variability is mentioned in the next subsection. 

Buoyancy Frequency (N(z)) was introduced in Chapter I. 

 
Mean profiles of temperature, salinity, sound speed, potential density, potential sound 
speed gradient and buoyancy frequency. Values derived from the DVLA are show with 
circles. Average profiles derived from 3 CTD casts made in the vicinity of the DVLA are 
shown with dashed lines.   

Figure 16.  Mean Profiles of Buoyancy Frequency and Potential Sound Speed 
Gradient for CANAPE data. Source: DiMaggio et al. (2016). 
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a. CANAPE CTD Observations  

The CANAPE CTD data was used for the vertical spatial analysis, particularly in 

the upper 100m as the DVLA mooring data started at 85m. The vertical measurements of 

temperature, salinity, pressure, conductivity and sound speed were measured every 1m 

from the surface to the sea floor and recorded every meter.  

 

Figure 17.  CANAPE CTD Potential Temperature, Salinity and Sound Speed 
Profiles with Over Laying Water Masses. 

Source: DiMaggio et al. (2016). 

The upper 600m will be the main focus for the remainder of this thesis, shown in 

Figure 16–-20, displaying the four upper distinct water masses and the variability in these 

depths. The surface layer in the upper 40m is defined by a temperature of approximately -

1°C, and a salinity less than 30 psu. The NSTM exists below this layer representing the 

upper limit of the PSW characterized by the mean CTD temperatures between 0 to 1°C, 

and salinities between 30 and 32 psu. In this study the NSTM is lower than the typical 

depth of the NSTM mentioned in Chapter I. CTD002 and CTD003 show temperatures 
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above this range. They are further north, however they are closer to the Bering Strait 

where the warm Pacific Water enters the Arctic Ocean. Below the PSW layer between 

100 and 200m, lies the cooler PWW layer with temperatures less than -1°C and salinities 

between 32 and 33 psu. The Atlantic Water layer is separated from the Pacific origin 

waters by a lower halocline. Predominately the Atlantic Water layer is warmer than the 

Pacific waters with temperatures greater than 0°C, however due to its salty origins this 

layer is denser with a high salinity value of 34.8psu.  

This upper 600m water structure is highly stratified and corresponds with changes 

in the sound speed structure, which is significant to acoustic propagation, as discussed in 

Chapter II. At the NSTM a reciprocal maximum of sound speed at 50m was observed, 

corresponding to the upper boundary of the PSW. The upper boundary of the PWW 

(100m-120m) delineated a minimum temperature, which was associated with a minimum 

in sound speed. Sound speed then gradually increases below the PWW. In the CANAPE 

study the acoustic source was placed at a depth of 100m. The placement was a 

requirement for the equipment to be readily accessible so as to switch off for approaching 

marine mammals. This will be of considerable acoustic interest as the sound speed 

minimum was directly below this depth, and in association with the upper refracting 

acoustic conditions, due to increasing sound speed below the PWW; signals could travel 

greater distances with lower transmission loss.  
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The color of each data point corresponds to a depth observation. The dashed lines are 
contours of constant potential density measured in kg/m3 with freezing temperature as a 
function of salinity represented by a solid line. The highlighted points in magenta 
represent the observations by CTD9 near the DVLA mooring. Names of water masses are 
determined by known salinity and potential temperature characteristics.  

Figure 18.  Potential Temperature and Salinity Plotted on an Isopycnal Field for 
CANAPE CTD Data. Source: DiMaggio et al. (2016). 

Figures 18 and 19 show the variability in temperature, salinity and sound speed. 

The largest variance seen in temperature is in the upper 100m at 4°C2 near the NSTM, 

which correspond to the maximum variance of sound speed. For salinity, the largest 

variance at 2 psu2 is closer to the surface and is possibly due to the by-product of the 

changing is sea ice (melting/freezing). For all three parameters, there is another zone of 

relatively high variance at depths between 200–300m corresponding to the lower regions 

of the PSW and the upper region of the PWW. This region also accommodates the 

minimum temperature and the lower halocline.  
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Figure 19.  Variance of Temperature (blue) and Variance of Salinity (red) versus 
Depth for CANAPE CTD Data Set. 
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Figure 20.  Variance of Sound Speed versus Depth for CANAPE CTD data set. 

b. CANAPE Moored Observations 

The DVLA mooring data set was utilized for the temporal analysis due to the 

continual deployment of the mooring with a sampling of temperature, salinity and 

pressure were measured every 30 seconds. 

The depth-time series and temporal structure of temperature and potential density 

are shown in Figure 21 from the DVLA data set. Overlaid in black are lines of constant 

potential density demonstrating the dormant environment of the Beaufort Sea. An 

unexplained pull down event occurred between yeardays 212 and 215, and therefore the 

data after the yearday 216 (04 August) is only analyzed in this thesis. Depth-time series 

of computed potential density provided indication of turbulent properties, for example 

any variability due to internal waves or eddies. A noteworthy feature is present at the end 

of the series in the upper 250m, which could be accounted for by the presence of a highly 

stratified event such as an eddy with both temperature and potential density raised in this 

range. Displaying observations along isopycnals can provide clear analysis for variations 
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in sound speed structure due to the density compensating nature of temperature and 

salinity in relation to sound speed (Dzieciuch et al. 2004). Further discussions on the 

analysis of sound speed variations are in Chapter VI.     

 
Top graph represents depth-time series of potential density in kg/m3 and bottom 
represents depth-time series of temperature in degrees Celsius measured at the DVLA 
mooring. Lines of constant potential density (isopycnals) are overlaid in black.  

Figure 21.  Depth-Time Series of Potential Density in kg/m3 and Temperature in 
Degrees Celsius. Source: DiMaggio et al. (2016). 

2. Ice Tethered Profile (ITP) 

To analyze the current Arctic water column characteristics and the recent changes, 

a data set was created from Ice Tethered Profiles from the past decade. The ITP data was 

collected and made available by the Ice-Tethered Profiler Program (Toole et al. 2011; 

Krishfield et al., 2008) based at the Woods Hole Oceanographic Institution 

(http://www.whoi.edu/itp). 
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The ITP system consists of three components: a surface instrument 
package that sits atop an ice floe, a weighted, wire-rope tether of arbitrary 
length (up to 800 m) suspended from the surface package, and an 
instrumented underwater unit that travels up and down the wire tether  

Each ITP is expected to return 1600 or more high-vertical-resolution 
profiles of upper Arctic Ocean temperature and salinity in near real time 
spanning all seasons over a three-year lifetime. The raw CTD and 
associated engineering data files are relayed from the underwater vehicle 
to the surface buoy at the completion of each one-way profile, which then 
transmits them to a logger computer at WHOI via satellite.  Full-resolution 
CTD and engineering data are transmitted to shore. (WHOI 2016). 

A schematic drawing of the instrument is given in Figure 22. 

°  

Figure 22.  Ice-Tethered Profiler Schematic. Source: WHOI (2016). 
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The downloaded files were selected on a number of criteria. This criteria 

included: timeframe from July to August; location within the bounds of east to west, 

135°W to 160°W, and south to north, 72°N and 77°N; and quality controlled to level 3 

Archive Data. Level 3 Archive Data are the best estimates from WHOI derived from the 

ITP sensor observations, quality controlled and corrected. A full description of the ITP 

data processing procedure can be found at WHOI (http://www.whoi. 

edu/fileserver.do?id=35803&pt=2&p=41486). The file-formatted data used had been 

pressure-bin-averaged at 1-db vertical resolution (WHOI 2016). 

Further scrutiny was involved in the selection of ITP data, and only a few were 

eventually used for the comparison with the CANAPE data sets. Two ITP data sets were 

chosen out of the downloaded files for ease of analysis and to determine eliminate 

conclusions. Criteria for the selection was that the ITPs were to be deployed in minimal 

ice thickness. The CTDs were deployed in the MIZ and open water and therefore, for 

realistic results minimal ice thickness was preferable for the ITPs as they were tethered to 

ice. The thickness ranged from 2–7m, with those chosen to be about 2.4m.  

A few of the ITPs were deployed in thin sea ice thickness, however to provide 

variance in conditions, specifically sea ice extent, the final ITP data sets were chosen 

from years with ice extent being above or below that for 2015, the year of the CANAPE 

pilot study. The sea ice extent was determined using NSIDC Charctic Sea Ice Graph tool 

(Figure 23). The ideal years selected from the available years for the ITP dataset were 

2009 and 2012. ITP30 and ITP64 were deployed in the year 2009 and 2012 respectively. 

Figure 15 displays their positions.  

 

http://www.whoi.edu/fileserver.do?id=35803&pt=2&p=41486
http://www.whoi.edu/fileserver.do?id=35803&pt=2&p=41486
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Sea ice extent for years 2009, 2012, 2015 and the beginning of 2016 were lower than the 1981–2010 
average. 2015 sea ice extent lies in between years 2009 and 2012.  

Figure 23.  Charctic Interactive Sea Ice Graph displaying Arctic Sea Ice Extent 
for 2009, 2012, 2015 and 2016. Source: NSIDC (2016b). 

Variables calculated from ITP data and analyzed were temperature, potential 

temperature, salinity, pressure, sound speed and depth. Four to six profiles were collected 

for ITP30 and ITP64. Their potential temperature, salinity and sound speed versus depth 

are shown in Figure 24 and Figure 25, which show small amounts of variability.  

In Figure 24 the ITP30 data set shows a small amount of variability in the upper 

200m of the potential temperature and sound speed profile with little to none below 

200m. For the ITP64 set (Figure 25), an even less variability for the profiles selected 

were present in the upper 200m.   
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Figure 24.  Potential Temperature, Salinity and Sound Speed Profiles of the 
ITP30 Data Set 
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Figure 25.  Potential Temperature, Salinity and Sound Speed Profiles of the 
ITP64 Data Set 

B. DESCRIPTION OF THE CLIMATOLOGY  

Climatology is often used in models to set a base standard. In ocean modeling the 

climatology database that is generally used is the World Ocean Atlas (WOA) from the 

National Oceanographic Data Center (NODC) (amalgamated into National Centers for 

Environmental Information (NCEI)), and operated by the National Oceanic and 

Atmospheric Administration (NOAA).  

For the analysis in this thesis the Arctic Regional Climatology 

(https://www.nodc.noaa.gov/OC5/regional_climate/arctic/section) from WOA was 

selected. The area found in the Arctic Regional Climatology encompasses all longitudes 

from 60°N to 90°N latitudes (NCEI, Arctic Regional Climatology, 2015). Climatological 

profiles along the CTD track as well as in position near the ITPs were collected and 
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compared (Figure 26). ITP64 was close to the CTD climatology, and so it was stipulated 

to only have a separate climatology data set for the ITP30 data set.  

The climatological mean format chosen was presented in a comma separated 

value (csv) format, which gives latitude/longitude of the center of a grid box and the 

value at each depth in that grid box (NCEI, Arctic Regional Climatology, 2015). 

The horizontal resolution of temperature and salinity were on a 1°x1° 

latitude/longitude grid. The vertical resolution is available at 87 standard levels, with the 

depths extending from surface to 4000m (NCEI, Arctic Regional Climatology 2015). The 

times chosen for this analysis were for the months of July and August. 

Also available from WOA were the climatological fields of statistical means 

(before objective analysis), standard deviation, standard error, data distribution, observed 

minus analyzed, and difference of time period from annual climatological. Further, 

descriptions of the data can be found at (NCEI, Arctic Regional Climatology 2015) 

(https://www.nodc.noaa.gov/OC5/regional_climate/arctic/about_arctic.html). The WOA 

profiles only reached 1500m depth, and were adapted with profiles collected from the 

U.S. Navy’s Generalized Digital Environmental Model (GDEM) climatology database 

for the depths below 1500m to the sea bed. Sounds speed is predominately affected by 

only pressure changes below depth, and therefore, considered reasonable to use the 

GDEM to complete the profiles.  

GDEM “is a four-dimensional (4-D) steady-state digital model of ocean 

temperature and salinity” (Allen and NAVOCEANO 2012). The model has a spatial 

resolution of 30 arc minutes and temporal resolution of 3, 6, or 12 months intervals. 

Vertical profiles of historical temperature and salinity from the surface to the sea floor are 

available for all locations where the water depth is at least 100 m. 

The data base is continually being updated by the Naval Oceanography Office and 

dates back to 1920. There are over 4.5-million profiles of temperature/salinity. 

Climatology profiles were selected for positions near the CTD profiles at 72.5N 

154.5W and the ITP30 at 75.5 N 141.00W. Potential temperature, salinity and sound 

https://www.nodc.noaa.gov/OC5/regional_climate/arctic/about_arctic.html
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speed profiles are shown in Figures 26 and 27 for climatology for CTDs and ITP 

respectively.  

CTD climatology shows little change; in fact, less than 1°C of variability between 

the four profiles selected. Increased temperature corresponds to an increase in sound 

speed. For the ITP30 climatology, again little variability was present, and mainly 

occurred in the upper 200m.  

 

Figure 26.  Climatology near CTD Track 
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Figure 27.  Climatology at ITP30 

Figure 28 shows that there is a greater NSTM in the CTD002 than in the other 

profiles, which correspond to a greater sound speed. This difference could be due to the 

fact that the CTD profiles are collected in open water than in ice as opposed to the ITPs.  
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Figure 28.  Potential Temperature, Salinity and Sound Speed versus Depth for 
Climatology for CTD and ITP30, and for CTD002, ITP30 and ITP64 
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IV. OCEANOGRAPHIC ANALYSIS AND RESULTS 

This section of the thesis will detail the oceanographic analysis of the CANAPE 

data, and will be separated into the topics of internal waves and spice. 

The data sets were processed in MATLAB using the Commonwealth Scientific 

and Industrial Research Organization (CSRIO) Sea Water Library package to obtain 

variables of interest that include potential temperature, salinity, sound speed, buoyancy 

frequency and potential sound speed gradient as a function of depth. These variables were 

then used for further analysis.  

The displacement and spice analysis was conducted in collaboration with LCDR 

Dominic DiMaggio, USN. The techniques used to analyze isopycnal displacement and 

spicy sound-speed variability are similar to those used in Colosi et al. (2012) and Colosi 

et al. (2013). There is a further description in DiMaggio et al. (2016), which reports on 

the results of the CANAPE pilot study.  

The DVLA dataset will be examined in relation to internal waves and spice, to 

determine the space/time scales of the sound speed structure. Spectral analysis will be 

utilized as a tool. The shipboard CTD data cannot be used for this task because of the 

limited temporal resolution.  

A. INTERNAL WAVES 

The internal wave analysis will be divided into two parts: depth statistics and 

spectral analysis.   

1. Depth Statistics 

Here we present the depth statistics of the observed vertical displacements, ζ, 

from the DVLA. The DVLA observations of T, S, and p were used to compute potential 

density as a function of time and depth. Contours of constant potential density 

(isopycnals) were then tracked giving depth as a function of potential density and time. 

The motion of the vertical displacement of isopycnal surfaces is caused by internal waves 

and eddies as discussed in Chapter II  
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Potential density (Talley et al. 2011) was computed for the depth range of the 

SBE instruments, 85–550m, referenced to the 300 decibar (db) level σ300(z(t),t). This 

reference is roughly halfway between the shallowest and deepest recordings on the 

DVLA. Depth linear-interpolation was then conducted to track 45 isopycnals, z(t, σ300), 

between 1026.90 and 1029.36 kg/m2 (Figure 29). Potential temperature, θ300(t,σ300) and 

salinity S300(t,σ300) were calculated for each isopycnal. These parameters are used in these 

calculations, as it accounts for adiabatic temperature changes due to vertical 

displacements. A feature is evident at the end of the vertical displacement time series 

where the isopycnals are lifted, occurring for ~2 days imply the presence of an eddy. Data 

below 350m has slightly increased fluctuations and it is feasible that this data is distorted 

from use of the SBE non-pumped instruments. Smaller fluctuations are displayed in the 

time series above 350m, which appear to be in the inertial variability range. Spectral 

analysis discussed in the next subsection will determine the specific range. An 

unexplained pull-down event happened in the time series before year day 216. To 

eliminate contamination into our results analysis, data was taken from year day 216 

onward. 



 55 

 

Figure 29.  Depth of Tracked Isopycnals in the Upper 550 m at the DVLA 
Mooring. Source: DiMaggio et al. (2016). 

To validate the linear interpolation, errors in isopycnal tracking were generated by 

recalculating the potential density from the computed θ300(t,σ300) and S300(t,σ300). The RMS 

errors, which were the difference determined from both computed potential density were 

quiet small especially compared to other experiments conducted in more temperate 

regions such as the Philippine Sea (Colosi et al. 2013) and the New Jersey Continental 

Shelf (Colosi et al. 2012). This was expected due to the quiescent conditions in the 

Beaufort Sea. These RMS errors, plotted in Figure 30, are predominately small with the 

greatest variability in the depth between 200 and 300m. At this depth, thermohaline 

staircases on the order of 1m due to double diffusion are often found (Padman and 

Dillion 1987; Timmermans et al. 2008) which could account for this variability.  
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Figure 30.  Root Mean Square Error in Tracking Isopycnal Density (Left) and 
Depth (Right). Source: DiMaggio et al. (2016). 

Internal waves are an inhomogeneous phenomenon; therefore, the Wentzel-

Kramers-Brillouin (WKB) depth scaling relation (Munk 1981) can be used as an 

approximate solution in the comparison of the RMS internal wave fluctuations. The 

WKB approximation is an approximate solution to cases where the waves propagating 

are gradually varying in the horizontal and time domain. The WKB depth scaling relation 

is represented by the equation 

 〈𝜁𝜁2〉
1
2 = 𝜁𝜁0�

𝑁𝑁0
𝑁𝑁(𝑧𝑧)

 (20) 

where ζ0 = 1.5 m (internal waves reference), N0 = 3 cph, and where N(z) was calculated 

from the DVLA mooring data (see Figure 31). N(z) is the buoyancy frequency, it is 

discussed in Chapter II and plotted in Figure 16.  

The WKB relation says that the rms displacement will be a function of depth. 

Moreover, this stipulates that N(z) is an important parameter in this study where (N2 is 

shown in the next equation) 
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 𝑁𝑁2(𝑧𝑧)  =  𝑙𝑙𝜌𝜌−1  𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧

. (21). 

 

In Figure 31, the rms displacement is shown for the total isopycnal rms 

displacement (including internal waves and eddies) in green, isopycnal displacement for 

internal waves in the frequency band (f to N) in blue and the WKB approximation theory 

for internal waves in black. Here it can be seen that the observed internal waves RMS 

displacement fits well with the WKB approximation, however noting that the internal 

wave reference ζ0 = 1.5 m is 20% of the standard Garret Munk (GM) value of ζ0 = 7.3 m. 

This suggests that the internal wave energy observed is very low.  

.  
RMS displacement for all observed time scales including eddies is represented in green. 
Internal wave RMS displacements in the frequency band f to N are represented in blue, 
and the WBK approximation using a reference internal wave displacement ζ0=1.5m 
represent in black.  

Figure 31.  Root Mean Square Displacement versus Depth.  
Source: DiMaggio et al. (2016). 
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2. Spectral Analysis 

Spectral analysis was performed to quantify the timescales of displacement 

variability, and to examine how this changes with depth. Examining the displacement 

frequency spectra is an effective way to study the space-time scales of sound speed 

variations (e.g., Equation (15)), and assists in determining dominant ocean processes 

affecting sound speed. Internal waves fall in the frequency band between N and f. Eddies 

are in the band greater than f. To remove high frequency noise which can be aliased into 

the spectra a low-pass 4-pole Butterworth digital filter was performed on the DVLA time 

series to eliminate signals with frequencies greater than 20cph (greater than N). 

Spectrograms for filtered isopycnals were then computed to provide power spectral 

density (PSD) estimates for each isopycnal as a function of depth (Figure 32).Three depth 

bands were considered for the depth-averaged PSD estimates. They were the shallow 

region (100-200m), mid region (200-400m) and deep region (400-500m). For all three 

bands, energy dissipates quickly for frequencies above the Brunt-Vaisala frequency. A 

significant spectral peak occurs at the inertial frequency where it overlaps with M2 tide. 

In the data between 3 to 40cpd (f and N), the power laws fit spectral slopes of p=-

1.4±0.46 for 100–200m, p=-1.3±0.49 for 200–400m, and p= -1±0.59 for 400–500m. 

These slopes are flatter than the GM value of -2.0, inferring that the frequency spectra of  

displacement in the internal waves (super-inertial variability) frequency range is not 

consistent with GM. In the frequency range for eddies (sub-inertial variability), there is 

greater variability, however with lower energy than the peak at the inertial frequency. 

Furthermore, the deep region power law exhibits greater variability than the other two 

regions likely to be caused by instrument noise associated with the non-pumped sensors 

(DiMaggio et al. 2016).  

 



 59 

 
Frequency spectra of displacement. averaged in three depth bands: 100–200 m (red), 
200–400 m (blue), and 400–500 m (green.) The Coriolis frequency, f, and typical 
buoyancy frequency, N, are indicated with solid vertical lines. A power-law fit to the 
random internal wave band of frequencies gives the exponents p=-1.4±0.46 for the depth 
band of 100–200m, p=-1.3±0.49 for 200–400m, and p=-1±0.59 for 400–500m 

Figure 32.  Frequency Spectra of Displacement. Source: DiMaggio et al. (2016). 

B. SPICE 

Fluctuations in sound-speed structure along isopycnals; specifically caused by 

density compensated temperature and salinity anomalies is called spice (Dzieciuch et al., 

2004).  

1. Depth Statistics.  

Spicy sound speed structure was computed by tracking T and S variability along 

the isopycnals discussed in the previous section. This analysis then gives sound speed 

fluctuation as a function time and of the mean depth of the isopycnals (Figure 33). 
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Sections in the upper 250m, on the sound speed fluctuations time series observed 

to have sound speed variations of over 1 m/s. The strongest sound speed fluctuations 

existed in the middle of time series in the upper 150m which appeared to last for two to 

three days, slumping and weakening in depth. For oceans in lower latitudes, especially 

those that do not have ice cover, are expected in the upper ocean to have larger spice 

variations generated by precipitation, evaporation, and wind-forced mixing (Colosi et al. 

2013). In the higher latitudes, we expect the spice to not be as large due to the dampening 

on the previously mentioned processes due to ice cover, it was surprising from this time 

series that there was considerable spice.  

 

Figure 33.  Depth-time Series of Isopycnal Sound Speed Anomalies Measured 
in m/s Measured at the DVLA Mooring. 

Source: DiMaggio et al. (2016). 
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Sections in the upper 250m observed to have sound speed variations of over 1 m/s. The 

strongest sound speed fluctuation exist in the middle of the time series in the upper 150m 

and appears to last for three to four days with it weakening in depth.  

From the spice observations sound speed variance was computed as a function of 

mean isopycnal depth. We have no model of spice so there is no WKB-like theory to 

compare to. 

As was potential density calculated to track vertical displacement of isopycnals 

for internal waves, potential temperature, θ300(t, σ300), and salinity, S(t, σ300) were then 

calculated for each isopycnal, using linear interpolation, to track for variations along 

isopycnals for spice (DiMaggio et al. 2016).  

Contributions to sound speed fluctuations due to spicy θ300(t, σ300), S(t, σ300) 

variations are computed by multiplying the RMS values of θ300(t, σ300), S(t, σ300) by the 

mean potential sound-speed gradient (Figure 34). 

The total sound-speed fluctuations (green) in all frequencies have the greatest 

variation in the upper 150m with a second maximum between 200–250m. The spice in 

the internal wave band (f to N) (red) is dominant in the upper 200m and then has a similar 

shape and size to the spice contribution from the internal wave RMS displacement 

imposed by the potential sound speed gradient (blue) (Figure 34) in the 200 to 250m 

ranges. The larger values from the internal wave contribution (blue) between 250–450m 

may again be associated with the thermohaline staircases as mentioned in the internal 

wave displacement discussion.  
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Total spice sound speed fluctuations from all frequencies are represented in green. 
Fluctuations due to spice in the internal wave band are represented in red, and 
fluctuations due to internal waves are in blue. The internal wave result is obtained by 
multiplying the RMS displacements in Figure 30 by the mean potential sound speed 
gradient in Figure .. 

Figure 34.  Root Mean Squared Sound Speed Fluctuations versus Depth. 
Source: DiMaggio et al. (2016). 

2. Spectral Analysis 

Spectrum analysis was performed to quantify the timescales of potential 

temperature and salinity variability and to examine how this changes with depth. 

Examining the frequency spectra of sound speed fluctuations with relation to density 

compensated temperature and salinity is another effective way to study the space-time 

scales of sound speed variations.  

To quantify spicy θ300(t, σ300), S(t, σ300)  and sound-speed variations along the 

isopycnals (spicy sound speed cs(t, z, σ300), spectra of θ300(t, σ300), S(t, σ300) and sound 
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speed were integrated from f to N, to produce variances. Figure 35 shows sound speed 

spectrum over frequencies f and N.  

As with isopycnal displacement, spectrograms for filtered spicy isopycnals were 

then computed to provide the average frequency spectrum of sound-speed fluctuation 

estimates for each spicy isopycnal as a function of depth, z(σ300). 

Again, the spectrum was computed using depth average spectra with the same 

three bands where the power fit law was calculated for each region between the inertial 

and Brunt-Vaisala frequency (f and N). The power-law exponents were -1.4±0.46, -

1.5±0.46 and -1.1±0.52 for 100–20m, 200–400m, and 400–550m respectively. The upper 

and mid region have slopes comparable to the GM slope of -2 for internal waves, 

ascertaining that spice time evolution is due to the passive advection of the structures by 

internal wave currents (Colosi 2013). The lower region is flatter and does not resemble 

the GM -2 slope, suggesting the lower frequencies are comparable to the higher 

frequencies. In the frequencies lower than f, there are traces that indicate phenomena 

such as eddies may contribute to spice as well.  
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Averaged depth bands 100–200 m are represented in red, 200–400 m represented in blue, 
and 400–500 m represented in green. Power law fits to the spectra in the frequency range 
of 3 to 40 cpd are represented by dashed line. The Coriolis frequency, f, and a typical 
buoyancy frequency, N, are indicated for reference. 

Figure 35.  Frequency Spectra of Sound Speed Fluctuations Along Isopycnals 
(Spice) Averaged Over Depth Bands. Source: DiMaggio et al. (2016). 

From this analysis for the period of July to August 2015, in the Beaufort Sea it 

can be determined that spice and the parameters associated with spice are large 

contributors to sound-speed. To identify the effects of the spicy sound speed fluctuations 

on acoustic propagation, acoustic modeling was performed and is discussed in the next 

chapter.  
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V. MODELING ANALYSIS AND RESULTS 

This section of the thesis will detail the modeling analysis of the CANAPE CTD, 

ITP and climatology data sets. 

A. ACOUSTIC PROPAGATION MODELING 

The acoustic model used in this thesis is Bellhop. It is a Gaussian beam ray 

tracing program, and is part of the Acoustic Toolbox available on the Ocean Acoustic 

Library. The Gaussian beam method is an attempt to account for some diffraction. 

Bellhop is designed in order to perform two-dimensional acoustic ray tracing for a given 

sound-speed profile c(z) or a given sound-speed field c(r,z), in ocean waveguides with 

flat or variable absorbing boundaries (Rodríguez 2008). The output options include ray 

coordinates, travel time, amplitude, eigenrays, acoustic pressure and transmission loss. 

Transmission loss can be modeled using coherent, incoherent or semi-coherent 

parameters. The incoherent option was selected as it removes interference pattern evident 

due to phase and provides large-scale intensity structure. In Bellhop, the default 

approximation to calculate acoustic pressure is the geometric beams method; however, 

other approximations are available, namely beams with ray-centered coordinates, beams 

with Cartesian coordinates, and Gaussian beam bundles. 

CANAPE CTD, ITP, and climatological sound-speed profiles will be used with 

Bellhop, for different acoustic frequencies and propagation ranges. Variability in 

transmission loss for the different profiles will be estimated from the Bellhop outputs.  

This thesis will use the low to mid sonar frequency range (50Hz and 1kHz). 

Previous scientific experiments investigating under-ice acoustics used frequencies in this 

range; including CANAPE Pilot study, which used 250Hz; and the Marginal Ice Zone 

(MIZ) program conducted by Operational Naval Research (ONR) in 2014, which 

transmitted navigation signals with a center frequency of 900 Hz (Worcester, et al. 2014). 

In addition, the U.S. Navy operates sonar for their ship and submarines at low and mid-

frequency. The “mid-frequency active sonar (1kHz-10kHz) is the Navy’s primary tactical 

sonar” (U.S. Department of Justice, 2015) carried aboard its cruisers, destroyers, frigates, 
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submarines, helicopters, and aircraft. The low-frequency sonar is utilized to “improve its 

ability to detect ultra-quiet, potentially hostile submarines at longer ranges” (U.S. 

Department of Justice, 2015). For ease of analysis, three frequencies were selected: 50Hz, 

250Hz, and 1kHz.  

Etter (2001) states that there are five main technique to model underwater 

acoustic propagation including: Ray theory, Normal Mode, Multipath Expansion, 

Wavenumber Integration (WI) or fast field, and Parabolic Equation (PE). For low 

frequency, deep-water, range dependent acoustic modeling. Etter 2001 (Figure 36) 

suggests that Parabolic Equations are a better fit, as their modeling approach is more 

applicable (physically) than Ray Theory, which has limitations in its accuracy.  

  

Figure 36.  Domains of Applicability of Underwater Acoustic Propagation 
Models. Source: Etter (2001). 

In this study, Ray Theory was considered adequate due to beam and ray methods 

being computationally fast propagation codes (Alexander et al., 2013) as well as the 

accessibility to a ray theory model such as Bellhop as it is open sourced. In this study, a 

large number of runs were expected with a transmission loss calculation executed for 

each CTD, ITP and climatology profile in the frequencies 50Hz, 250Hz, and 1kHz.  
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The major factor that influences attenuation of acoustic signals propagated in the 

Arctic Ocean is ice scattering, the interaction of sound waves with the rough sea ice 

cover. “The signal transmission loss increases rapidly with frequency” (Gavrilov et al. 

2006). 

For modeling acoustic propagation in a sea ice environment, two critical steps 

must be considered. These are modeling the ice as an elastic acoustic medium, and 

modeling the roughness of the ridging characteristics of the ice (Alexander et al., 2013). 

When using Bellhop the option of representing elastic properties is limited and only 

includes reduction in the coherent field on reflection (Alexander et al., 2013). The options 

for representing ridging include a statistically based method and a method using direct 

input of measured ice canopy data. Ice canopy measurements were not collected due to 

available resources for this study and therefore it was determined that the ice canopy was 

flat, and had a thickness of 2m as the measured temperature in the CTD dataset 

commenced at 2m. 

In the Acoustic Toolbox used in this study, there is a statistically based method 

that uses Twersky’s boss scattering theory primarily for modeling under-ice scatter 

effects (Porter, 1997). For a detailed description on Twersky boss scattering, see Diachok 

(1976) and Porter (1997). Twersky boss scattering is used in the Bounce program of the 

Kraken part of the Acoustic Toolbox, which uses normal modes, and calculates a 

scattering coefficient. The Gaussian beam tracing method then uses this scattering 

coefficient to estimate ray trace and coherent transmission loss estimates of this 

environment (Alexander et al. 2013). In the data set, there were no altimetry data 

collected to determine scattering effects and therefore the ice canopy will be considered 

uniform. The ice acoustic properties used for Bellhop will include those approximated by 

Jensen et al., 2011 and described by Alexander et al. 2013. These parameters are: 

compressional speed 3500 m/s; shear speed 1800 m/s; density 890 kg/m3; compressional 

attenuation 0.4 dB/λp; and sheer attenuation 1.0 dB/λs and a thickness of 2.0 m. 

Alexander et al., 2013 and Jensen et al. 2011 used a thickness of 2.7m.  
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1. Modeling Results CANAPE CTDs 

To conduct a statistical analysis on the data set, the transmission loss pressure 

field was extracted from Bellhop for each CTD, ITP and climatology profile. The mean, 

standard deviation and anomaly were then computed for comparison so as not to lose the 

variability from each sound speed profile. Mean and standard deviation plots for each 

observational data set are shown in Figures 37–45.  

The sound-speed variability spans up to 65m/s (Figure 20, 37a, 38a, and 39a, in 

the upper 100m for all frequencies investigated. A corresponding feature of increased 

transmission loss appears in the mean TL and standard deviation of TL of these plots for 

the higher frequencies 250Hz and 1kHz. This does not appear in the lower frequency due 

to the fact that higher frequencies have greater transmission loss due to propagation. 

Between depths 100m to 200m in the mid frequency (250Hz), there is a decrease in the 

mean TL and standard deviation compared to the other depth ranges There is little to no 

variation in this depth range, possibly contribution to the presence of the minimum sub-

surface temperature (and sound speed) and the sub-surface duct associated with this 

minimum temperature. As mentioned in Chapter III, the sound-speed minimum is 

associated with the upper boundary of the PWW, and here it delineates the axis of the 

sound speed channel at ~120m where sound energy travels at greater distances.  

For the 50Hz frequency in the mean TL plot and at the previously mentioned 

depth range, the influence of the sub-surface sound speed duct is also visible with 

lowered mean TL levels. Little variability in TL in the upper 300m is displayed again, 

indicating that at this low frequency, TL is less of a concern, especially in the sub-surface 

duct. As depth and range increase, TL also increases, suggesting rays may begin to 

scatter.  

Below depths of 200m and for the higher frequencies (250H and 1kHz), TL 

increases in mean and variation. For deviation, the TL then decreases below depths of 

500m. This mainly occurs in the lower PWW layer and upper Atlantic layer, below the 

sub-surface duct. At 250Hz, the greatest variability appears at the depths between 300m 

and 500m. The 300m depth defines the lower limit of the sub-surface duct, and at 500m, 



 69 

sound speed becomes almost constant with depth. Moreover, there is an area of increased 

variability of 10m/s between the depths of 200m and 300m. Here at the lower region of 

the sub-surface duct in the 250Hz standard deviation TL plot there is slight variability in 

TL. Subsequently, the region close to the sub-surface duct is where the signal is focused, 

increasing signal strength.  

In the highest frequency (1kHz), two distinct lines of increased deviation (up to 

6dB) occur, one at 100m at the source depth, and one at 200m where the sound speed 

begins increasing with depth. A fainter line also exists where the maximum sound-speed 

occurs associated with the upper boundary of the PSW. At all depths and ranges greater 

than 200km, the mean TL increases considerably, possibly attributing to the effects of 

scattering.  

 

Figure 37.  CTD Sound Speed Profile, Mean TL and Standard Deviation of TL 
for 50Hz 
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Figure 38.  CTD Sound Speed Profile, Mean TL and Standard Deviation of TL 
for 250Hz 

 

Figure 39.  CTD Sound Speed Profile, Mean TL and Standard Deviation of TL 
for 1kHz 
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2. Modeling Results ITP30 and IPT64 

For the ITP series, both ITP30 (Figures 40–42) and ITP64 (Figures 43–45) have 

smaller values of deviation, with ITP30 having the smallest. ITP64 has a similar shape to 

CTD data for all frequencies, which would be expected since they are in nearby locations. 

ITP64 again has the least amount of transmission loss near the source and in the range of 

the sub-surface duct, especially at the 50Hz frequency. Furthermore, the highest 

frequency has the greatest TL attributing to the TL and frequency relationship. For 50Hz 

in the standard deviation plot there is no more than a 1.5dB difference whereas for the 

difference increases to 2.5dB in the higher frequencies. A line of deviation appears in all 

frequencies measured with 1kHz sharper. Sound speed shows greater variability as well 

as an increase in amplitude at this depth. Furthermore, the sound source lies at this depth. 

In addition, a few faint lines are visible in the 1kHz frequency plot between 100m and 

200m. A region of increased variability is also present between 200m and 400m at range 

greater than 400km as a result of TL in higher frequencies. The influence of the sub-

surface duct decreases TL deviation in the 250Hz. The results show that mean TL 

increases as frequency increase. Moreover, in the two lower frequencies the influence of 

the sub-surface duct is evident due to the decrease in mean TL between depths 100m 

and 250m. 
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Figure 40.  ITP30 Sound Speed Profile, Mean TL and Standard Deviation of TL 
for 50Hz 

 

Figure 41.  ITP30 Sound Speed Profile, Mean TL and Standard Deviation of TL 
for 250Hz 
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Figure 42.  ITP30 Sound Speed Profile, Mean TL and Standard Deviation of TL 
for 1kHz 

For the ITP30 plots (Figures 39–41) there is little to no variability at most ~2dB. 

A faint line of deviation appears at 100m at frequencies 250Hz and 1kHz. This faint line 

corresponds with the sound source depth and a local maximum in sound speed.  
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Figure 43.  ITP64 Sound Speed Profile, Mean TL and Standard Deviation of TL 
for 50Hz 

 

Figure 44.  ITP64 Sound Speed Profile, Mean TL and Standard Deviation of TL 
for 250Hz 
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Figure 45.  ITP64 Sound Speed Profile, Mean TL and Standard Deviation of TL 
for 1kHz 

3. Comparisons to Climatology 

In this section ‘anomaly’ is classified as the difference between the observational 

data sets (CTD, ITP30 and ITP64) and climatology, or the difference between 

observational data sets. To understand the extent to which the observational data sets 

have changed or varied from climatology an anomaly analysis was conducted. For this 

anomaly analysis climatology points near the CTDs and the ITPs were selected (as 

mentioned previously in Chapter III). The anomaly was calculated by subtracting the 

climatology data set from the climatology data set.  

The anomalies at the higher frequencies (250Hz, 1kHz) for the CTD data set 

versus climatology (Figure 46) display a slight difference of 2dB with climatology having 

the greater transmission loss. As the frequency increases, the anomaly increases, 

particularly in the upper 100m, this possibility attributing to the TL and frequency 

relationship. Furthermore, a line of no change from climatology was present at the 100m 

depth (sound source depth) The anomalies for ITP64 data set and climatology above 

depths of 300m followed a similar shape to that of the anomalies between CTD data set 
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and climatology, but only smaller (~1dB less). Depths below 300m however, showed a 

slight increase in transmission loss for the CTD data set and a decrease in transmission 

loss for the ITP64 data set, when compared to climatology  

In the 50Hz plot, very little difference from the climatology was apparent for the 

CTD with only small amounts of variability in the lower 300m (~2.5dB). For the ITP64 

data set versus climatology, there was no variability in the lower 300m, where instead it 

appeared in the upper 300m (~2dB). All in all, the CTD data set had a greater 

transmission loss compared to climatology than the IPT64 data set.  

The ITP30 data set anomalies when compared to climatology (Figure 48), had 

some interesting results. A large positive difference of up to ~8dB was present in ranges 

greater than 400km, likely attributing to higher TL in higher frequencies. The surprising 

result was that this feature was also prominent in the 50Hz plot. It is apparent that the 

ITP30 data had greater transmission loss than climatology. This data set could have had a 

very dynamical atmospheric or oceanographic system pass through the area during the 

recording of observations. Moreover, the climatology for this area could be different 

contributing to this significant variation. 
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Figure 46.  Anomaly of TL between Mean CTD and Climatology near CTD 
Points 

 

Figure 47.  Anomaly of TL between Mean ITP30 and Climatology near ITP30 
Points 
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Figure 48.  Anomaly of TL Between Mean ITP64 and Climatology Data near 
CTD and ITP64 

To investigate any changes over the last few years, from 2012 when the ITP64 

data set was recorded, and CTD data set in 2015, an anomaly plot was computed for the 

difference between the mean of the CTD and mean of the ITP64 observations 

(Figure 49).  

The variability between the two data sets is mainly in the lower 300m. This 

variability ranges between 2-4dB, with the CTD data set being the greater of two. As 

frequency increases, a slight increase in the CTD TL is seen likely due to the TL and 

frequency relationship. No significant difference in the upper 300m is exhibited. This 

may be contributed to the fact that both sound speed profiles have a similar shape. The 

only obvious difference is that the CTD data set has a greater variation in the NSTM of 

up to 4°C and is located 10–20m closer to the surface.  
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Figure 49.  Anomaly of TL between Mean CTD and Mean ITP64.  

To determine if it is the location of the ITP30 data that could the cause of the 

large differences, a comparison was made with the CTD data set (Figure 50) as well as 

between the two climatology data sets (Figure 51). It is apparent that the two 

observational data sets are quite different. Here it is shown that shape is similar to that in 

the comparison between ITP30 data set and climatology. The difference though is that 

ITP30 data set has a greater TL. This stipulates that it is in fact the ITP30 data set that is 

considerably different, not the climatology taken near ITP30. The assumption that can be 

made is that it was likely that the water column has changed compared to climatology or 

that a significant dynamic system was in the area during the time. Another possibility, is 

that climatology has been updated since this data set was taken in 2009.  
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Figure 50.  Anomaly of TL between Mean CTD and Mean ITP30 Data Sets 

A comparison between the observational data sets and the climatology showed 

how present conditions have changed. To show the horizontal spatial change for the 

Beaufort Sea a standard deviation plot was performed for the two climatology data sets 

(Figure 50). Here it shows that most of the variability in the TL was in the lower 400m in 

the 50Hz plot. Also present are lines of variability in the 250Hz and 1kHz plot around 

50m, 150m and 300m.The line in the 1kHz is sharper. At most the deviation was around 

2dB, demonstrating small amplitudes of variation between the two climatological data 

sets. Form this plot and plots in Figures 47 and 49 it is deemed that the ITP30 data set is 

considerably different to the climatology and the other data sets. Due to this large 

difference, the analysis will continue with CTD, ITP64 and climatology only. 
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Figure 51.  Standard Deviation of TL between Climatology Data near CTD and 
Climatology Data Near ITP30 

The mean TL plots for each data set and each range, 50km, 100km, 200km and 

600km (Figure 52–55) showed that for increasing frequency, variability increased. 

Furthermore, with increasing range TL increased. A feature present in all plots was that 

there was a decrease in TL in the depths that corresponded to the source depth and the 

sound channel. In addition, TL increases with increasing depth below the minimum 

sound-speed associated with the lower boundary of the PWW. In all plots, 1kHz 

frequency had the greater variability in the mean curve than all the other frequencies. 

ITP64 appeared to follow the same shape and amplitude to the climatology. CTD data in 

the 200km and 600km range had greater TL, while in the 50km and 100km range it was 

comparable climatology.   
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Mean TL of CTD profiles are represented in blue; mean TL of ITP30 profiles are 
represented in red; mean TL of ITP64 profiles are represented in green; TL of 
climatology near CTD points is represented in black; and TL of ITP30 climatology is 
represented in magenta.  

Figure 52.  Transmission Loss Mean of Data Sets at Range 50km from Source 
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Mean TL of CTD profiles are represented in blue; mean TL of ITP30 profiles are 
represented in red; mean TL of ITP64 profiles are represented in green; TL of 
climatology near CTD points is represented in black; and TL of ITP30 climatology is 
represented in magenta.  

Figure 53.  Transmission Loss Mean of Data Sets at Range 100km from Source 
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Mean TL of CTD profiles is represented in blue; mean TL of ITP30 profiles is 
represented in red; mean TL of ITP64 profiles is represented in green. TL of climatology 
near CTD points is represented in black, and TL of ITP30 climatology is represented in 
magenta.  

Figure 54.  Transmission Loss Mean of Data Sets at Range 200km from Source 
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Mean TL of CTD profiles is represented in blue; mean TL of ITP30 profiles is represented 
in red; mean TL of ITP64 profiles is represented in green; TL of climatology near CTD 
points is represented in black; and TL of ITP30 climatology is represented in magenta.  

Figure 55.  Transmission Loss Mean of Data Sets at Range 600km from Source 
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VI. DISCUSSION AND CONCLUSION 

This thesis provided an analysis of the spatial and temporal variations of the 

thermohaline structure of the Canada Basin in the Western Arctic, and described how 

some of these features can affect acoustic propagation. It is clear that in recent decades, 

changes in the Arctic have reduced sea ice in the water column and transports between 

the Arctic, Pacific and Atlantic oceans. Using observational data collected from the 

CANAPE pilot study conducted in summer of 2015, the thermohaline sound speed 

structure was examined and an acoustic analysis was conducted.  

The temporal variations of the thermohaline sound speed structure, observed by a 

mooring were examined by computing isopycnal displacements. Temporal structure of 

these processes was estimated using spectral analysis, separating internal waves and 

eddies from intrusive thermohaline structure, or spice. Vertical structure of these 

processes was examined by computing the rms variation of the various processes as a 

function of depth. Observations were compared to climatology. Acoustic propagation 

simulations used the ray-based model Bellhop to estimate the acoustic sensitivity to the 

observed the ocean structure, focusing on transmission loss as the parameter of interest.  

It was found that in the temporal and vertical domain sound speed variations were 

influenced by the ocean processes of internal waves, eddies, and spicy thermohaline 

structure. The oceanography analysis showed that there was high variability in the upper 

100m between the eight CTD sites and the 16-day time series of the DVLA. It was seen 

that variations of potential temperature and salinity influenced changes in the sound 

speed.  

The vertical structure from the CTD data set showed that four distinct water 

masses were present, the surface layer, Pacific Summer Water, Pacific Winter Water and 

the Atlantic layer, with other distinct features being the NSTM, the summer halocline, 

winter halocline and the lower halocline. 

In the DVLA analysis, internal waves were observed at a very low energy. This is 

seen in the displacement depth statistics indicating that the internal waves followed the 



 88 

WKB approximation theory for internal waves, but with a lower energy. Internal wave 

energy was observed to be 20% of that typical for lower latitudes. Furthermore, in the 

displacement spectrum density analysis it was discovered that the observed spectral shape 

was not the same as the Garret Munk shape for internal waves. The displacement 

spectrum in the internal wave band from the inertial frequency (f) to buoyancy frequency 

(N), showed a more even distribution of energy between lower frequencies and higher 

frequencies.  

It was discovered that spice dominated sound speed variability in the upper 150m 

and was surprisingly large in the experiment region. The spicy sound speed fluctuations 

also accounted for considerable sound speed variations in the upper 250m with sound 

speed anomalies over 1m/s. Below 300m the dominant contribution shifts to the internal 

wave RMS displacement imposed by the potential sound speed gradient. It is suggested 

that this may be an artifact of thermohaline staircases, which are a familiar feature in this 

depth region.  

In the upper 400m, the spice spectrum was comparable to GM theory, supporting 

the idea that spice time evolution is due to the advection of passive spice structure by 

internal wave currents (Colosi 2013). It is also apparent in the spectrum analysis for both 

displacement and sound speed that internal waves were influencing phenomena. In 

addition, there were traces of energy in the eddy frequency range (less than f) suggesting 

their presence can impact both vertical displacement and sound speed. Of note, with 

predicted levels of sea ice expected to continue to reduce, and with the possible event of 

sea ice-free summers, the variability and the effects of spice and internal waves may 

increase, as the lack of ice cover will permit increased turbulence and mixing. 

It was discovered that the CTD CANAPE data was more variable in temperature, 

salinity and sound speed when compared with climatology and recent ITP observations at 

locations near the CANAPE experiment. Climatology is a mean average and therefore 

variability is lost during the production of this data set. Furthermore, mesoscale features, 

such as those shown in the DVLA time series, are missing from climatology. Moreover, 

atmospheric data was not considered in this thesis, and therefore, dominant synoptic 

features were not taken into account. This may have provided for unexpected or more 
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than usual turbulence and mixing associated with wind forcing events, adding to the 

variability.  

The acoustic analysis revealed that a greater variability in transmission loss in the 

CTD CANAPE data was evident compared to climatology and previous observations, 

particularly at greater frequencies and range. The presence of a sub-surface sound speed 

duct accommodated an environment with increased travel distance for acoustic energy 

and lower transmission loss for depths between 100–200m. The minimum temperature 

and associated minimum sound speed delineated the position of the sound duct axis 

(~120m), whereas the lower region of the PWW delineated the lower bound of the sound 

speed duct (250m). It was discovered that conditions within the sub-surface sound speed 

duct were stable, thus decreasing TL and increasing travel distance in sound signals in 

this region. Furthermore, investigations determined that the sub-surface sound speed duct 

decreased in effectiveness as the frequency increased. This demonstrated that high 

frequency is affected by propagation and therefore, low frequency is still the best option 

for acoustic applications.  

The sound source at 100m could have also attributed to the results in the acoustic 

propagation being trapped in the sub-surface sound speed duct. There was little evidence 

to show that the upper refracting surface duct interacted with this sound energy 

originating from 100m. In the upper 100m as frequency increased, variability in 

transmission loss increased. In addition, transmission loss increased with increasing 

frequency below the sub-surface duct.  

In the acoustic analysis, this greater variability was present when compared with 

the ITP64 data set recorded in 2012. In this comparison, the ITP64 data was 1–2db less in 

TL from the CTD. This difference in variability could be likely on the account that the 

ITPs are deployed in sea ice and not MIZ or open water, therefore reducing mixing and 

turbulence. This acoustical analysis suggests that the water column in the Beaufort Sea is 

changing and becoming more variable which is impacting on the sound speed and thus 

affecting the acoustic propagation.   
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These acoustic results are not exhaustive, and many assumptions need further 

analysis. There are limitations in using ray theory for acoustic modeling. It is 

computationally fast and simple; however, more complex theory such as normal mode 

theory and Parabolic Equation theory can provide a more accurate prediction. 

Transmission loss was the parameter being analyzed, and such ray theory was acceptable 

for this thesis. If more acoustic observables were to be explored, such as coherence, 

scintillation index, and phase/intensity spectra, then models that are more complex need 

to be utilized.  

In conclusion, the comparison between observational data and climatology 

provided evidence that variability in the upper water column layers have increased. 

Monitoring and collection of observational data are crucial to understanding the changing 

effects of the variable thermohaline in the Canada Basin and how it affects acoustics. The 

current thin layer of sea ice in the Canada Basin will provide the preferable environment 

for increased signal travel. However, when will this limit be reached? Is it when the ice 

will be too thin to dampen the effects of wind on the ocean and render the Arctic Sound 

Channel ineffective?  
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VII. RECOMMENDATIONS FOR ONGOING RESEARCH  

(1) Longer Data Series 

The analysis in this thesis of the CANAPE pilot study was conducted over a short 

period, in July and August of 2015. A longer study, for example, that will be undertaken 

in summer 2016–2017 will provide further spatial and temporal results. It will enable for 

precise conclusions on phenomena investigated in this thesis as well as eddies, which are 

a longer-term feature. In addition, findings will be seasonal, and therefore, not be limited 

to a summer only analysis.   

(2) Other Source Depths 

The source depth of 100m was the only depth explored in this thesis. Other 

depths, especially those closer to the surface, will allow for further investigation into the 

environment resulting from the reduction in ice and changing transport of the Pacific and 

Atlantic waters. Placing a source in the upper 50m will provide the opportunity to 

understand the impacts of the changing water column on the Arctic surface half sound 

channel. With a source in the sub-surface sound duct, large amounts of acoustic energy 

are trapped and therefore do not reach the surface. Locating sound energy in the duct will 

support studies into sound energy interactions with the surface boundary. Furthermore, 

placing a sound source below the sub-surface sound duct will assist in investigating the 

behavior of sound energy at greater depths. 

(3) More Sophisticated Modeling  

This thesis used a ray theory acoustic model for transmission loss focusing only 

on incoherent profiles. For further analysis and realistic results, models that are more 

sophisticated should be considered. These models should attempt to include parameters 

such as ice roughness, ridging and scattering to provide an authentic solution for acoustic 

energy interacting with the surface boundary, it either being open water or sea ice. This 

can be accomplished by taking altimetry data for the sea-ice canopy and calculating a 

scattering coefficient to include in the programs code. Other parameters such as 
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attenuation, shear speeds, density of the medium could also be considered. Different 

scenarios such as range dependent examples can also be included.   

(4) Compare with Observational Acoustic Data 

Compare the observational acoustic data collected during the pilot study with 

modeled acoustic data. This would be of great interest to determine if the theory is 

representational of current acoustic conditions. Furthermore, it will provide data on 

process that the modeled data may have included and displayed.  

(5) Compare with Regions in the Antarctic  

The Arctic sea ice is still expected to reduce and is presently looking at becoming 

seasonal. Moreover, Antarctic sea ice is currently seasonal and a comparison of 

observational data to Antarctic and the Arctic may provide an indication how the Arctic 

may behave acoustically in the future. Similar procedures could be adopted as those used 

for comparing climatology in this thesis. Atmospheric and oceanography dynamics are 

different in these two polar regions, however, there are areas such as the Ross Sea that 

have similar circulation (Beaufort Gyre and Ross Gyre) as well as fresh water input from 

river runoff and glaciers that may provide similar water column samples, particularly if 

the study is only in the first 1000m.  

(6) Temporal Acoustic Modeling 

Investigate the ocean process that affects sound speed variations in an acoustic 

model. In this thesis, the acoustic analysis was conducted on all processes (and frequency 

bands) that affected sound speed. It would be of interest to conduct an analysis that 

separated components, particularly internal wave and spice. This can be done by 

inputting these processes into a scattering model and then inputting the results back into 

an acoustic model to study the transmission loss as well as any other parameters of 

interest.  
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