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ABSTRACT 

Three popular numerical techniques are employed to examine the acoustic 

pressure and intensity features present in several environments of interest. Free field 

propagation and analytically tractable planar interfacial two-fluid transmission and 

reflection are used to benchmark the commercial software package COMSOL. Canonical 

Pekeris-type waveguides are used as initial points of comparison to illustrate COMSOL’s 

ability to capture all pertinent physics. Additional environments with non-trivial 

bathymetry and varying sound speed profiles are then used to examine the rich feature set 

anticipated in experimental data. Predictions of recently estimated and experimentally 

verified physical phenomena serve as further proof of the accuracy of implementation of 

the Finite Element Method. Guidelines and recommendations are provided for future 

studies using COMSOL along with circumstances under which traditional treatment of 

the air-water interface is appropriate and when an explicit full-physics model is required.  
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I. INTENSITY MODELING 

A. HISTORICAL CONTEXT 

The transmission of acoustic energy in waveguides has been a subject of study for 

many years. While a complete review of all progress to date is beyond the scope of this 

document, an excellent review of the modeling and simulation techniques available to the 

modern analyst is available commercially [1]. While numerous scenarios involve 

radiation of energy into a quiescent free field, there are similar problems in which energy 

generated by an acoustic source or scattered by a target becomes trapped by boundaries 

where the description of acoustic propagation is within the framework of guided waves. 

Examples of this scenario include interior sound transmission within the air ventilation 

ducts of buildings, certain speaker enclosures and most relevant to the work discussed 

herein, cases of underwater transmission. The boundaries acting to trap acoustic energy 

may come from the ocean’s free surface, variations in the sound speed profile, and the 

bathymetry of the environment. For example, sound is trapped in the Sound Fixing And 

Ranging (SOFAR) channel due to fact that the sound speed decreases in the thermocline 

to a minimum at the SOFAR axis and then increases below. In this situation, the sound 

energy is successively “bent” upward and downward while it propagates, not directly 

interacting with a boundary.  

When these are the governing circumstances of transmission, numerical ray 

tracing methods have historically been the analysis tool of choice. However,  

these numerical techniques are sensitive to initial conditions in range dependent 

environments [2], and such situations may necessitate a considerable number of 

deterministic trials to yield a statistically meaningful result. In cases where the sound 

wave interacts with a boundary, there is a predictable, but non-trivial change in both the 

magnitude and phase that needs to be computed accurately. When this interaction 

becomes part of the propagation path, ray methods may still be applicable, but can 

become cumbersome. To address this, there has been a large body of work devoted to 

analytical and numerical methods that correctly account for the transmission of energy 

within the bounded water column, as well as the interaction at the boundaries. For 
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brevity, an incomplete listing of techniques includes methods of Normal Modes (NM), 

Parabolic Equations (PE), the aforementioned ray tracing and the Finite Element Method 

(FEM). A summation of the pros and cons will be detailed in subsequent sections; 

however, it is worth noting that for the environments studied herein, the two most 

appropriate techniques are normal mode theory and the finite element method. It is worth 

noting that in strongly range dependent environments and at higher frequencies, the PE 

method may be more applicable and computationally efficient. While both techniques are 

applicable to a wide range of environments, their underlying assumptions and 

implementation limitations make them attractive for low frequency, range-dependent 

problems.  

To date there have been several investigations into waveguides using normal 

mode theory, some even supplemented by finite element techniques, but there has been 

little direct comparison between the two methods for shallow water, low frequency 

propagation. The results of this study compare the output of a normal mode code, the 

output of a parabolic equation solver and the output from the commercial finite element 

software package COMSOL to examine the merits and detractors of each. It is noted that 

there is generally excellent agreement between the finite element method and normal 

mode theory, while there are discrepancies between their results and those predicted by 

the parabolic equation solver utilized here in some environments. These discrepancies are 

attributed to the assumptions behind each method and the specific implementation of the 

boundary condition necessary to define the problem.  

B. BACKGROUND 

Propagation of sound within a waveguide has received much attention, dating 

back to initial studies performed during the Second World War. The seminal paper in this 

field was arguably authored by Pekeris [3], who explored the acoustic pressure field 

present within a fluid medium above an infinite fluid half space. In the time since there 

have been many additions to his findings. Although a summary of additions to the field 

can be found in the classic text by Urick [4], a brief discussion of select recent 

contributions relevant to this particular study follows.  
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Kirby [5] studied the propagation of sound in a waveguide using a hybrid normal 

mode-finite element technique. His work employed a mode-matching scheme to couple 

the detailed results of a finite element calculation of the near field generated by an 

arbitrarily complicated body to a duct of constant cross section. Buckingham [6] 

examined the acoustic field in a Pekeris-type isospeed waveguide, including the effects of 

attenuation in the sediment layer over which the acoustic region is located. His work used 

numerically generated approximations for the natural mode shapes present within the 

water column. The results indicate that higher order; dissipative modes may still 

contribute to the measurable sound field when the sediment layer is of sufficiently high 

sound speed. Comparisons of normal mode techniques with experimental data taken in a 

laboratory setting were carried out by Schneiderwind [7]. This work showed that when 

the shear and compressional elastic behavior of the sediment layer are significant, a 

normal mode solution might be used as an accurate predictive tool at ranges far from the 

source.  

The use of finite element techniques has gained traction in the past two decades 

due largely to the increase in computational resources available. Murphy [8] details the 

formulation and implementation of the Finite Element Ocean Model (FOAM), which, 

although unable to handle the effects of shear, presented several advantages over the 

normal mode and PE solutions at the time. Vendhan [9] coupled the finite element 

technique with a normal mode based solution at the terminating boundaries and compared 

his results of a range dependent waveguide with those of other numerical techniques.  

Studies of acoustic intensity, a combination of both acoustic pressure and acoustic 

particle velocity, have become more common in recent years with advances in sensor 

technology and a renewed interest in the potential merits of directional sensing. Perhaps 

one of the most cited works in the field of acoustic intensity comes from Mann and Tichy 

[10]. Their work defines and explores the acoustic intensity field as not only a real 

component that describes energy flow, but also an imaginary component that describes 

energy storage within an acoustic medium. Smith [11] subsequently developed the 

general expressions required for computing the acoustic particle velocity field within the 



 4 

framework of normal mode and parabolic equation methods in range-dependent 

environments. 

More recently, Dall’Osto [12] examined the properties of the intensity field for a 

shallow water environment. This work compared measured data to the predictions of a 

numerical PE model for a 62m deep waveguide. They compute both the real (active) and 

imaginary (reactive) components of acoustic intensity. They then attribute the sign of the 

active intensity to the direction of propagating energy and are able to identify the direct 

and reflected contributions to the measured field. They note that the reactive intensity 

does not provide information on the direction of energy flux, but rather indicate where 

there are spatial gradients in the acoustic power field (square magnitude of pressure). 

Duan [13] presents a comparison of experimental data using two different methods of 

computing acoustic intensity for propagation in a waveguide. The authors examine the 

results of a hybrid theoretical-numerical dataset for a non-transient problem of 

propagation in a waveguide. The method used to generate theoretical predictions is 

complex, using a finite element approximation in the near field region immediately 

surrounding the source, to inform a normal mode expansion region in the propagating 

portion of the waveguide with eigen functions chosen to allow both forward and 

backward propagating waves similar to the prior work of Kirby [5]. Of note is that the 

experimental data to which they make comparisons was performed in air using a “p-u” 

type intensity probe (independent, collocated pressure and velocity sensors).  

C. THEORY 

The three major methods used to predict acoustic propagation within a shallow 

water waveguide at low frequencies are NM, PE, and FEM. The mathematical foundation 

of each method will be briefly reviewed, the coordinate systems will be defined and the 

output variable quantities to be compared will be reviewed.  

The solution technique involving normal modes begins with the homogeneous, 

linear, inviscid wave equation neglecting any density contrasts at the water-sediment 

interface, 
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𝛻𝛻2𝑝𝑝 +  𝑘𝑘2𝑝𝑝 = 0, 1 

where p is acoustic pressure and k is the acoustic wavenumber. In cylindrical coordinates, 

a mathematical solution is sought, assuming the pressure field may be represented as a 

separable solution (i.e., an expression comprised of the product of a functional form for 

range dependence and a functional form for depth dependence). For the purposes of 

comparison between methods, it is further assumed that there is no range dependence 

within the waveguide. With this simplification, the equation defining the normal modes 

of pressure oscillations within the waveguide is then given as  

 
𝑑𝑑2Ψ𝑚𝑚(𝑧𝑧)
𝑑𝑑𝑧𝑧2 = −𝛾𝛾𝑚𝑚2 (𝑧𝑧)Ψ𝑚𝑚(𝑧𝑧) , 

2 

where Ψ𝑚𝑚 represents the eigenfunction, or mode shape for a given modal index, m, and 

𝛾𝛾𝑚𝑚 is the quantized vertical component of propagating wavenumber. 

A solution to the depth-separated equation is then sought by use of an eigenvalue 

solver in the presence of certain boundary conditions. For the ocean waveguide, two 

idealized boundary conditions corresponding to a rigid bottom and pressure release free 

surface may be easily realized. In the case of the pressure release surface (“acoustically 

soft” boundary), both the acoustic pressure and the mode shape take on a numerical value 

of zero, i.e., 

 Ψm(z = 0) = 0. 3 

In the case of an acoustically rigid bottom, the normal component of the acoustic 

particle velocity will be zero. This is implemented by enforcing the vertical derivative of 

the mode shape to approach zero at the depth of the waveguide, D, i.e., 

 𝜕𝜕𝛹𝛹𝑚𝑚
𝜕𝜕𝑧𝑧

(𝑧𝑧 = 𝐷𝐷) = 0. 4 

This solution technique ensures that each mode shape is unique, orthogonal and 

has real eigenvalues. As will be shown later, the ocean surface may be accurately 

modeled as a true pressure release boundary at which the pressure goes to zero when the 
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product of the source depth (distance from the free surface) and its excitation 

wavenumber, k are of order 0.1 or greater. The wavenumber, k, is defined as the ratio of 

the circular frequency (ω) of excitation to the sound speed (c) or  

 
𝑘𝑘 =

𝜔𝜔
𝑐𝑐 =

2𝜋𝜋𝜋𝜋
𝑐𝑐 . 

5 

For more general boundaries, such as those separating two media of contrasting 

materials, the boundary condition becomes more complicated. For example, the boundary 

condition that must be satisfied between a water layer, of sound speed cw and density ρw, 

overlying a fluid bottom layer, of sound speed cb and density ρb, takes the form 

 
Ψm(D) +

𝜌𝜌𝑏𝑏
𝜌𝜌𝑤𝑤

1

�𝑘𝑘2 − 𝜔𝜔2

𝑐𝑐𝑤𝑤2
− 𝜔𝜔2

𝑐𝑐𝑏𝑏2

𝑑𝑑Ψm
𝑑𝑑𝑧𝑧 (D) = 0. 

6 

The introduction of this type of boundary condition creates several complex phenomena, 

as will be described in more detail later. 

In contrast to the exact solution of an analytical technique to the differential 

equation describing the normal modes present within a waveguide, the FE Method seeks 

an approximate but convergent solution to partial differential equations subject to 

boundary conditions through the use of linear algebra and polynomial expansion. 

Solution to Equation (1) is sought by discretizing the problem domain into a series of 

smaller domains of finite size. These elements are connected to each other at nodes, and 

the value of the acoustic pressure at these nodes is determined by obtaining the 

coefficient values to a polynomial set of shape functions describing the variation of 

acoustic pressure between nodes. COMSOL allows for flexibility in the order of 

polynomial shape function and permits the user to choose first through fifth order.  

Parabolic Equation methods also begin with the Helmholtz equation (Equation 1), 

but take a different approach towards solution. By introducing a “reduced” pressure field, 

u(r,z,φ), defined by 1( , , ) ( , , )p r z u r z
r

φ φ= , and defining the operator notation opP
r

∂
=

∂
 



 7 

and ( )1 21opQ µ ε ν= + + + , where 2 1nε = − , 2

2

2
0

1
zk ∂

∂
=µ , and 

2

2 2 2
0

1
k r

ν
φ
∂

=
∂

, the 

parabolic equation formulation takes the form  

 �𝑃𝑃𝑜𝑜𝑜𝑜2 + 𝑘𝑘02𝑄𝑄𝑜𝑜𝑜𝑜2 �𝑢𝑢 = 0. 7 

Using an orthogonal cylindrical coordinate system, the radial, azimuthal and axial 

ordinates are represented with variables r, z, and 𝜑𝜑, respectively. A reference acoustic 

wavenumber is defined as k0 and the medium specific index of refraction is represented as 

n.  

Assuming that acoustic energy primarily propagates outward (cylindrically 

divergent from the source point), the Helmholtz equation may be factored, leading to an 

equation of the parabolic form given by 

 
𝑃𝑃𝑜𝑜𝑜𝑜Ψ(𝑟𝑟, 𝑧𝑧,𝜑𝜑) = i𝑘𝑘0𝑄𝑄𝑜𝑜𝑜𝑜Ψ(𝑟𝑟, 𝑧𝑧,𝜑𝜑) or −

𝑖𝑖
𝑘𝑘0
𝜕𝜕Ψ(𝑟𝑟, 𝑧𝑧,𝜑𝜑)

𝜕𝜕𝑟𝑟 = 𝑄𝑄𝑜𝑜𝑜𝑜Ψ(𝑟𝑟, 𝑧𝑧,𝜑𝜑). 
8 

Introducing a slowly modulating PE field function ( ), ,r zψ φ  , such that 0ik reψΨ = , the 

pressure field may now be represented by 

 
𝑝𝑝(𝑟𝑟, 𝑧𝑧,𝜑𝜑) = 𝑃𝑃0�

𝑅𝑅0
𝑟𝑟 ψ(𝑟𝑟, 𝑧𝑧,𝜑𝜑)𝑒𝑒𝑖𝑖𝑘𝑘0𝑟𝑟. 

9 

This form may be further simplified into differential operators acting on the PE 

field function, and the treatment of these operators is a field of active research [14]. 

However, for this course of study, the Monterey Miami Parabolic Equation (MMPE) 

formulation of Smith [15], which utilizes a split-step Fourier algorithm, was chosen as 

the representative implementation. Only the 2-D version is utilized, since 3-D effects are 

beyond the scope of this study. In addition, this form of the MMPE model utilized the 

Thomson-Chapman wide-angle approximation for the operator Qop [16], and employs the 

traditional boundary smoothing functions associated with the split-step Fourier algorithm. 

The executable code used is available from the Ocean Acoustics Library [17].  
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It is worth noting that fundamentally both methods generate approximate 

solutions to the same governing Helmholtz equation (Equation 1). For normal mode 

theory used herein, the assumption of range independence is made explicitly. Although 

there are many other implementations of normal mode theory (manifest in codes, such as 

KRAKEN, COUPLE, MOATL, and others [17] that do allow for range dependence), the 

finite element method places no such restrictions on the computational space. It is also 

worth noting that the boundary conditions to be compared in the initial studies are ideal. 

The choice of pressure release at the free surface is not mandatory within the normal 

mode theory, but the relative impedance mismatch between air and water makes it 

convenient to implement and typically results in acceptable accuracy.  

MMPE implements an image source method to address the free surface, 

consistent with an ideal pressure release boundary condition. While there are potentially 

some tricks that could be played to simulate the air-water interface explicitly, an ideal 

pressure release boundary is used in all MMPE runs. Similarly, within COMSOL the free 

surface may be specified as an ideal pressure release boundary, or coupled to another 

acoustic media in order to capture the effects of reflection from a free surface more 

accurately. Interaction with the bottom bathymetry is an area of active research, with 

many potential theorems available to address the complicated interaction between the 

acoustic fluid and elastic bottoms with varying degrees of stiffness. Application of 

boundary conditions appropriate to reflection from sandy, lossy sediment is possible 

within both methods, but for the purposes of comparison, initial studies employ an ideal 

acoustically rigid bottom. This choice precludes the use of MMPE for initial studies due 

to the implementation of a blending function necessary to model the water-sediment 

interaction. For a perfectly rigid boundary, the resulting impedance contrast approaches 

infinity and the MMPE output is entirely contaminated by this singularity. However, in 

later modeling efforts where the sediment is modeled as an acoustic media, all three 

methods are compared directly. 
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D. MODELING 

The simplified environment initially studied was an ideal two-dimensional 

waveguide of constant bathymetry. The water column was chosen to be 100 m deep, with 

a 50 Hz continuous wave (CW) omnidirectional source placed at a depth of 75 m from 

the free surface. A constant 1500 m/s, sound speed profile in a range independent 1000 

kg/m3 density environment was used. In order to examine the effects of propagation, the 

waveguide was modeled out to a range of 500 times the depth of the water column, or 

5000 m. In both methods, the 5000 m range modeled was assumed to extend outward 

towards infinity, an approximation enforced in different ways between the methods. In 

the first model, the bottom is assumed acoustically rigid, and in the second, it is a planar 

interface with a second acoustic media with sound speed of 1900 m/s and density of 1610 

kg/m3. The effects of shear are not included, and there is no attenuation in either acoustic 

media. A diagram of this setup is shown in Figure 1. Note that p = 0 represents a pressure 

release surface and v = 0 represents an acoustically rigid boundary at the bottom of the 

waveguide  
 

 
Figure 1.  Diagram of Problem Setup (Not to Scale) 

 

The accuracy of any finite element solution should be verified through a mesh 

convergence study, but heuristically it has been demonstrated that 8–10 linear elements 

or 6–8 quadratic elements per wavelength are sufficient to resolve propagating wave 

phenomenon [18]. While these resolution requirements are sufficient to recover the 

pressure field accurately, one aim of this study is also to examine the intensity field, 
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which requires accurate calculation of the particle velocity. Under conditions of CW 

excitation, the particle velocity vector is related to the harmonically varying scalar 

pressure field via spatial derivatives, i.e., 

 
𝑣𝑣𝑖𝑖 =

1
𝑖𝑖𝜔𝜔𝜌𝜌

𝜕𝜕𝑃𝑃
𝜕𝜕𝑥𝑥𝑖𝑖

 . 
10 

In the finite element method, the velocity field is determined by taking spatial 

gradients in the direction of interest. The accurate recovery of gradients is strongly mesh 

dependent, and prior work has indicated that 10–20 quadratic elements per wavelength 

are required to recover smoothly varying spatial gradients [19]. Fortunately, in the 2D 

axisymmetric formulation, for shallow water, low frequency scenarios, this requirement 

still allows for a tractable problem size.  

In the execution of the normal modes code, the potential for examining a non-

rigid boundary was desired. As such, the formulation of Clay and Medwin [20] was 

coded into Matlab [21]. This formulation allows for the interaction of the water column 

with a second acoustic media with disparate density and sound speed. From a theoretical 

viewpoint, the number of modes present in a waveguide is dependent on not only the 

bounding geometry, but the boundary conditions as well. A thorough treatment of the 

mathematical techniques available for rigorous analysis is described by  

Brekhovskikh [22]. Assuming cylindrical spreading, this pressure field is the product of a 

radially propagating component knr, described by a Hankel function, and a vertical 

standing component knz with the total wavenumber given as the geometric mean of the 

two, i.e., 

 𝑘𝑘 = �𝑘𝑘𝑛𝑛𝑟𝑟2 + 𝑘𝑘𝑛𝑛𝑧𝑧2  . 11 

 

A brief review of the decomposition of the acoustic field present in a waveguide 

with ideal boundary conditions (rigid bottom, pressure release top) can be described as a 

summation over all modes that can fit an odd number of quarter wavelengths within the 

 



 11 

 

height, D, of the waveguide. Mathematically this requires that  

 𝑘𝑘𝑛𝑛𝑧𝑧 = (2𝑛𝑛 − 1) 𝜋𝜋
2𝐷𝐷

,  12 

where n is the modal index, and 𝑘𝑘𝑛𝑛𝑧𝑧 is the axial component of the acoustic wavenumber.  

Note that because the total wavenumber is independent of geometry, there are 

modes for which the radial wavenumber component of propagation must become 

imaginary. When this occurs, the modes are said to be “evanescent.” Accordingly, for a 

given geometry and frequency, there are finite number of modes, N, that will propagate 

out radially. This can be defined as  

 N = mod ��2𝑓𝑓𝐷𝐷
𝑐𝑐
�+ 1

2
�. 13 

Such modes are considered to be “trapped” because their energy propagates radially 

outward from the source at a real angle, confined by the boundaries and are subject only 

to geometric spreading and material/medium losses, without penetration into the other 

bounding media.  

When the water column with sound speed c1 sits atop a second sedimentary 

acoustic media with sound speed c2, the lower boundary condition requires that both the 

pressure and particle velocities be continuous across the interface. Recall that the 

development of Transmission and Reflection coefficients for incident plane waves at a 

planar boundary require that the incident and reflected angles as measured from the 

interface must be equal. Although there are a number of interesting possibilities, with 

rigorous development and analysis available, [23] for the sake of brevity the applications 

of interest here are those where the water column has a slower sound speed. Under these 

circumstances the critical angle (𝜃𝜃𝑐𝑐) relative to the “grazing angle” is defined as  

 𝜃𝜃𝑐𝑐 = cos−1
𝑐𝑐1
𝑐𝑐2

. 14 



 12 

For all incident angles of incidence greater than the critical angle there is transmitted 

energy propagating into the sediment and the lower refraction angle is real, representing 

the trapped modes, which decay in range as 1
√𝑟𝑟

. For angles shallower than critical, there is 

no transmitted energy propagating into the bottom and the lower refraction angle 

becomes complex. At the critical angle, there is a singularity in the modal solution, which 

represents a boundary wave in the lower medium that propagates along the interface, 

decaying in range as 1
𝑟𝑟
. This phenomenon will lead to several interesting effects as will be 

shown later.  

Since both media are being excited at a single frequency, two unique total 

wavenumbers must exist, one in each media, e.g., 𝑘𝑘𝑖𝑖 = 2𝜋𝜋𝑓𝑓
𝑐𝑐𝑖𝑖

. The propagation vector 

within a given medium is still dependent on the geometry as indicated by Equations (11 

and 12). Note however, the conditions of continuity also introduce the possibility of 

transmission of energy across the water-sediment interface, the magnitude of which 

decreases exponentially with range. More precisely, if a mode corresponds to conditions 

involving propagation angles steeper than the critical angle, defined by Equation (14), the 

boundary condition itself becomes a complex valued function, and the mode, while still 

propagating radially, decays exponentially in range. Under these circumstances, energy is 

propagating along the axis of the waveguide, but also into the sediment. Accordingly, 

energy in that mode is no longer “trapped” by the boundary of the waveguide, but said to 

be “leaky.”  

The number of trapped modes present for a given environment of depth D excited 

at frequency f with wave speeds in the water column and bottom, 𝑐𝑐1 and 𝑐𝑐2 , respectively, 

may be calculated as  

 
N = mod �� 2𝐷𝐷

𝑐𝑐1
𝑓𝑓�
��1 − 𝑐𝑐12

𝑐𝑐22
+ 1

2
� . 
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Initial modeling attempted to mimic the effects of a rigid bottom by setting the values of 

sound speed and density in the second media to be several orders of magnitude larger 

than in the water column, numerically equal to 1020 for both. In this case, the second term 



 13 

in the radicand approaches zero, Equation (15) approaches Equation (13) and the pressure 

field should be represented by only “trapped” and not “leaky” modes. 

The pressure field excited by a mono frequency source is then the summation of 

the product of each trapped mode at all depths and the value of the mode at the source 

depth, i.e., 

 
p(𝑟𝑟, 𝑧𝑧) = �

Ψ𝑚𝑚(𝑧𝑧𝑠𝑠)Ψ𝑚𝑚𝑒𝑒𝑖𝑖𝐾𝐾𝑚𝑚𝑟𝑟

�𝐾𝐾𝑚𝑚

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑚𝑚=1

 , 
16 

where m is the modal index and zs is the depth of the source.  

Similarly, the velocity field components may be obtained by taking spatial 

derivatives of the pressure field, and scaling by the local impedance (here a constant 

value). The complex intensity field may then be simply computed by taking one-half the 

product of the pressure field and the complex conjugate of the particle velocity at each 

grid point, i.e., 

 J ≡
1
2𝑝𝑝𝑢𝑢

∗ , 17 

where the * denotes complex conjugation. 

In the simulation results presented here, a fixed grid with spacing of 1 m in the 

vertical direction and 1 m in the radial direction was used to generate smooth plots. 

Results are not presented for the sake of brevity, but through parametric variation of grid 

spacing, it was found that the results of the normal mode code were largely insensitive to 

output grid spacing for this environment.  

Execution of the COMSOL model was carried out via the pressure acoustics 

interface within version 4.4. Unlike the other two methods where the source may be 

specified by a delta function, the pressure field in the absence of any boundaries may be 

defined a priori and the scattering interactions will be computed by the software. This 

method has several advantages, though the implementation should be handled carefully. 

Within the COMSOL framework, the formulation of the Helmholtz equation allows the 
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user to solve for either the “scattered” or “total” pressure fields. By definition, the 

scattered field is generated by interaction with boundaries and/or scattering bodies. The 

incident field is defined as the field, which would exist in the total absence of any 

boundaries or scattering bodies. The total field is the field that would be measured by an 

observer, and is defined as the sum of the scattered and incident fields. These definitions 

are mathematically viable since the governing differential equation is linear, and each 

field individually satisfies the governing equation. The sum of the individual solutions 

will itself be an admissible solution. The advantages of these definitions are twofold: 

first, it allows the analyst insight into the relative position of scattered features and the 

source of reflections, and second, it provides a natural separation of scales that allow for 

better conditioned numerics. In general structural acoustics problems for which the finite 

element method is typically employed, the incident acoustic field may be one or more 

orders of magnitude larger than the scattered field. Since the incident field is defined 

before any computations are carried out, only the scattered field need be modeled. In the 

case of propagation modeling, the field scattered from the boundaries is of the same order 

of magnitude as the incident field (except immediately near the source due to the 1
𝑟𝑟2

 

decay), but can be treated within the same mathematical and numerical framework. In 

both cases, the total field may then be determined by summing the scattered field with the 

incident field. Implementation in COMSOL is somewhat cumbersome, requiring that the 

incident field be defined mathematically and added to the solution domain as a 

“background pressure field.”  

Although the nomenclature is somewhat misleading, the intent is to allow the 

software to compute accurately the relatively small-scattered component of the acoustic 

field. For the case of the monopole source, this is defined as  

 P𝑖𝑖𝑛𝑛𝑐𝑐𝑖𝑖𝑖𝑖𝑒𝑒𝑛𝑛𝑒𝑒(𝑟𝑟, 𝑡𝑡) = 1
𝑟𝑟
𝑒𝑒−𝑖𝑖(𝑘𝑘𝑟𝑟−𝜔𝜔𝑒𝑒), 18 

where r is the radial ordinate, k is the free space acoustic wavenumber, and 𝜔𝜔 is the 

angular frequency of excitation. 
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Note that there is a 1/r decay in Equation (18) that results in a singularity at the 

acoustic center of the source. Finite element techniques cannot tolerate such a singularity 

within the computational domain, so a scheme for dealing with this issue is presented as 

follows. The cylindrical waveguide is set-up in the 2D axisymmetric mode of COMSOL. 

In this mode, only a single radial cross section of the waveguide need be modeled. This 

reduces the problem size down to a tractable “slice” of the physical domain, which may 

be recovered by revolving the computational domain about its axis. This, however, places 

a restriction that a point source must be placed at the axis of revolution. In order to 

remove the singularity from the computational domain, a circular portion of the grid, 

centered at the acoustic center of the point source was removed, and an absorbent 

boundary placed on the terminating faces of the resulting mesh. COMSOL has 

implemented several methods for absorbing waves, and the use of a “spherical wave 

radiation” condition has been shown to be excellent in these situations. A closer view of 

the segmented geometry with the boundary condition highlighted is shown in Figure 2.  

 
Figure 2.  Close View of Segmented Geometry with Source Region and 

Absorbing Boundary Highlighted in Blue 
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In the case of the acoustically rigid bottom, only the water column must be 

explicitly modeled and meshed. At the surface interface, a Dirichlet-type boundary 

condition is enforced whereby the pressure is equal to zero. The bottom interface can be 

completely specified by a Neumann-type boundary condition whereby the normal 

derivative (related to the particle velocity) of the pressure field must go to zero. Note that 

because of the relation between pressure gradient and particle velocity, given by equation 

10this is equivalent to enforcing that acoustic particle motion match the stationary 

boundary motion, a concept similar to the “no slip” boundary condition often employed 

in the field of fluid mechanics. The complete geometry is represented by Figure 1. In the 

case where the bottom is modeled as a second acoustic media, no boundary condition 

need be specified between the two domains; COMSOL automatically enforces continuity 

of pressure and velocity along the interface. A schematic of this situation is presented in 

Figure 3. 

 
Figure 3.  Diagram of Two Fluid Approximation (Not to Scale) 

 

However, in order to capture the waves transmitted across and reflected by the 

interface, a background pressure field must be applied to the domain in which the source 

is active. As stated above, the background pressure field in the water column is known a 

priori and may be defined completely by a single frequency and wavenumber. For the 

case of the rigid bottom, where only a single sound speed is defined in the water column, 
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the choice of wavenumber is obvious. In the case where two acoustic media are present, 

there are two sound speeds and thus two potential choices of wavenumber. In the 

COMSOL framework, the interface between the two domains acts as a scattering 

boundary. Because the background field is defined as that which would be present in the 

absence of any scattering bodies, it is the wavenumber in the acoustic media in which the 

source is located that must be used to specify the incident field. 

An alternate approach of modeling the incident field was explored wherein a 

spherical wetted surface is driven with constant radial acceleration. This methodology 

approximates a volumetric monopole source and obviates the need to define a 

background pressure field, and is consistent with historical theoretical treatments of 

monopole sources. A source wavenumber must still be specified and an additional caveat 

that should be noted: in order to enforce a surface acceleration such that a constant source 

level is obtained, the fluid properties and frequency of excitation must be taken into 

account. Because the acceleration required for a constant source level is dependent on 

both frequency and source size, an equation based acceleration, as given in [24], 

 
a(𝜋𝜋, 𝑟𝑟,𝑅𝑅) =

2𝜋𝜋𝜋𝜋𝑝𝑝(𝑅𝑅)
𝜌𝜌0𝑐𝑐0

�
1
𝑘𝑘𝑟𝑟 + 𝑖𝑖� , 
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is enforced at all points along the circular boundary defining the source volume. 

The fluid properties (density, sound speed and wavenumber) are again referenced 

to the acoustic domain containing the source, f is the excitation frequency, r is the source 

radius and 𝑝𝑝(𝑅𝑅) is the pressure specified at some distance R. For the studies presented 

herein, a 0 deciBel (dB) ref 1 µPa @ 1m source level was desired, and the pressure at 1m 

from the acoustic center of the finite size source was held constant at 1 µPa. This 

methodology was implemented as a result of some anomalous findings and apparent 

discrepancies between the methods and is discussed in detail in section II, and 

specifically in Figure 21. The results are important because they allow for direct 

modeling of actual transduction devices. While the field of fully coupled fluid-elastic 

structural codes has been under development for many decades, and the demonstration of 

acceleration boundaries to generate near field results is not new, the promise of a fully, 
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directly coupled problem could yield new insight into the governing mechanisms of long 

range propagation and transducer design without the use of intermediary techniques, such 

as the Kirchoff-Helmholtz surface integration techniques.  

The incident/scattered field separation approach has been verified by modeling a 

unit cell and enforcing Floquet-type [25] boundary conditions between the left and right 

terminating faces to mimic an infinitely wide domain. This problem is created in the 

COMSOL 2D plane strain physics module. In this model, the interface between the two 

media is modeled in the same way, and both the top and bottom boundaries are 

terminated with “planar wave radiation” conditions to prevent spurious reflections. 

Pointwise constraints are enforced between the left and right boundaries, separated by 

distance L, such that the horizontal component of the acoustic wave-vector remains 

continuous across the domain boundaries, e.g.  

 𝑃𝑃𝑟𝑟𝑖𝑖𝑟𝑟ℎ𝑒𝑒 = 𝑃𝑃𝑙𝑙𝑒𝑒𝑓𝑓𝑒𝑒𝑒𝑒𝑖𝑖𝑘𝑘𝑥𝑥𝐿𝐿. 20 

A diagram showing the two fluids, location of boundaries and left and right 

pressures is shown in Figure 4.  
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Figure 4.  Diagram of Floquet Periodic Unit Cell 

This cell is used to verify transmission and reflection between two fluid domains using 
the background pressure field paradigm. 

Here again, the x component of the wavenumber used in the constraining equation 

is that of the water column. A background pressure field is defined in the source acoustic 

medium by incident plane waves propagating in the first fluid at some angle. In this case, 

the angles of incidence (𝜃𝜃𝑖𝑖𝑛𝑛) propagating in medium 1 and refraction (𝜃𝜃𝑟𝑟𝑒𝑒𝑓𝑓𝑟𝑟𝑟𝑟) in medium 

2 are governed by Snell’s law of refraction using a coordinate system relative to normal 

incidence, mathematically stated as 

 sin𝜃𝜃𝑖𝑖𝑖𝑖
𝑐𝑐1

= sin𝜃𝜃𝑡𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡
𝑐𝑐2

. 21 

This provides an analytic expression against which the COMSOL solution may be 

verified. A simple check on the validity of this method is performed using equal sound 

speeds and densities in the two acoustic media and observing that there is no reflection or 

refraction from the interface.  
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In applying boundary conditions to a finite computational domain modeling one 

that approaches an infinitely large space, there are several options available. The first is 

to apply an “impedance” boundary condition. Experimentation with this option has 

shown that it prevents most, but not all of the reflections at the far end of the domain. The 

two more accurate options available are the “radiation” conditions and the Perfectly 

Matched Layer (PML). The use of PML has been shown to be very effective at higher 

frequencies [26] but requires an additional domain to be meshed and several parameters 

to be specified. In contrast, the radiation boundary condition based on the second order 

Bayliss-Gunsberger-Turkel formulation [27], designed to permit only outgoing 

propagating waves has been shown to be more effective at lower frequencies. 

Accordingly, at the far end of the water column, a “cylindrical wave radiation” boundary 

condition is applied.  

In addition to the Pekeris-type waveguide [3] with a planar boundary, several 

additional environments were studied, including deep water bathymetries with linear 

slopes converging to a constant shallow depth. This environment is nominally 600 m 

deep, with a section sloping upward to a depth of 150 m at a distance of 4500 m from the 

source, followed by a second upward slope to a depth of 100 m at a range of 5500 m from 

the source, finally ending in a planar waveguide of constant 100 m depth for an additional 

5000 m as shown in Figure 5. 

 
Figure 5.  Schematic Representation of Up Sloping Bathymetry 

 

An additional point of comparison between COMSOL and MMPE comes from a 

standard Pekeris waveguide [11]. For this study, the environment can be summarized as a 

200 m water column with a constant sound speed of 1500 m/s, and density of 1000 kg/m3 

in contact with a planar sediment layer possessing a constant sound speed of 1700 m/s 
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and density of 1500 kg/m3, excited by a 200 Hz monopole source located at a depth of 

100 m. Both fluid media are considered lossless. Runtime parameters were provided by 

the author and execution of the MMPE code was carried out locally. A comparable 

COMSOL model was created and the transmission loss predicted by the two codes was 

compared.  

During the course of modeling these environments, an additional point of 

comparison and interesting corner case was studied, wherein the air-water interface was 

not assumed a perfect reflector with known phase shift. Unlike the normal mode 

technique that enforces a pressure release boundary, or the parabolic equation technique, 

which implements an image source to model the air-water interface, COMSOL can be 

quickly configured to treat this two fluid boundary explicitly, capturing all of the 

underling physics. In order to explore the FE method’s applicability in such 

circumstances, a model of a finite sized monopole source located in a semi-infinite half 

space of air and water contact was created. The source was allowed to translate vertically 

within the half-space, penetrating the interface such that the acoustic fields produced for a 

continuous wave discrete frequency excitation were available for study. The boundaries 

of the two half spaces were truncated with both absorbing boundaries and perfectly 

matched layers in order to compare the efficacy of modeling propagation from this source 

off to infinity. A schematic of the model half spaces is presented in Figure 6. 
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Figure 6.  Axisymmetric Model of Two Semi-Infinite Half Spaces with Planar 

Air-Water Interface 
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II. RESULTS 

A. IDEAL PEKERIS WAVEGUIDE 

The first set of results comes from models of the ideal rigid bottom waveguide. 

Several relevant metrics may be used to compare the output of the two solution 

methodologies appropriate for this environment (finite element and normal modes). The 

first qualitative method is to examine color contour plots of the complex acoustic fields. 

Presented in Figure 7 are contour plots of the magnitude of the total acoustic field as 

predicted by COMSOL and the normal mode code.  

 

 
Figure 7.  Comparison of COMSOL and Normal Modes: Acoustic Magnitude 

Code predicted magnitude of acoustic pressure over the 0–600 m range from source. 

It can be readily observed that there is excellent qualitative agreement between 

the two methods. There are some slight discrepancies in the location of peaks in the field, 
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but overall the features predicted by the two methods are congruent. Due to the 

formulation of the normal modes theory, and the approximations introduced by the 

spherical absorber placed around the source location, it is anticipated that the near field of 

both methods would show minor differences. A comparison is therefore made to the 

fields predicted by the two codes at longer ranges. In addition to the magnitude of the 

field, which serves to illustrate many features of the pressure field, one method to explore 

the differences in the two techniques is to examine variations in complex phase angle. 

Therefore, presented in Figure 8 are contour plots of the imaginary component of the 

total pressure field over a range of 2000 to 2800 m from the source location. 

 

 
Figure 8.  Comparison of COMSOL and Normal Modes: Imaginary Component 

Code predicted imaginary component of the total acoustic pressure field over the 2000–
2800 m range from source. 

At these longer ranges, the agreement between the two codes is significantly 

better. There are clearly identifiable features present in both solutions. As an example, 

there is a pronounced area of relatively high magnitude at 2150 m in range and 50 m in 

depth, surrounded by a ring like set of intense points. The surrounding structure and 

magnitudes of the features in the pressure field has been predicted by both methods.  
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While potentially interesting to examine in detail, the acoustic particle velocity 

field is computed from spatial gradients in pressure. Because of the agreement in the 

pressure field, it is anticipated that the velocity fields would agree as well. Rather than 

illustrate this field directly and graphically, a comparison is made between the two codes 

of a derivative quantity, the acoustic intensity (J), as defined by Equation 17. For brevity 

and a better quantitative metric, single line plots of the active and reactive components of 

vertical intensity at a range of 4500 m are presented in Figure 9. The dotted red lines are 

produced by COMSOL, while the continuous blue curve is produced by normal mode 

theory. The leftmost images are the active (real) component of vertical intensity and the 

rightmost images are the reactive (imaginary) component. 

 
Figure 9.  Line Plots of the Active Component of the Vertical Acoustic Intensity 

Taken along the depth of the water column at a range of 4500 m from the source. 

Examining the two plots, it is clear that there is excellent qualitative and 

quantitative agreement between the solutions predicted by the two methods. The shapes 

of the vertical intensity values are consistent, and the magnitudes predicted by both codes 

are in agreement. There are minor variations in the magnitude of the intensity peaks 

between the two methods, but the location of features and their values is consistent.  

It was found that due to the assumption of a perfectly reflective bottom and the 

frequencies studied in the initial verification efforts, the MMPE model was inappropriate. 

Therefore, the results for this environment are not presented. However, when 



 26 

environments that are more realistic are modeled, the MMPE technique produces high 

quality, computationally efficient predictions of the acoustic field. Given that the ultimate 

utility of any model is to predict the propagation of energy in realistic environments, and 

all three methods compared in this paper should, in theory, be capable of handling 

interactions with a second acoustic media, the results of the environment described in the 

modeling section are now presented for comparison.  

The verification of the method of background pressure field and acceleration-type 

boundary is noteworthy for the two fluid domains because all pressure fields predicted 

for a waveguide are predicated on the ability of COMSOL to handle the interface and 

correctly predict several important phenomena. Once demonstrated that the method is 

correctly calculating the transmitted and reflected waves at this boundary, the results of a 

two fluid waveguide are presented. 

B. FLOQUET UNIT CELL 

Verification of the two fluid interaction is demonstrated by examining two 

specific results from the Floquet unit cell: harmonic plane waves incident on the fluid-

fluid boundary at both the sub critical angle and super critical angle. In the case of 

subcritical incidence, the transmitted and reflected angles are both real and readily 

predicted by Snell’s law as provided in Equation 21. In the case of the supercritical angle, 

the transmitted angle becomes imaginary and theory predicts transition from a 

transmitted wave to decaying evanescent wave. In this case, the amplitude of the 

transmitted wave decays exponentially away from the interface with the energy 

dissipating primarily along the boundary. For the wave speeds chosen in this illustrative 

example, 1500 and 1700 m/s, the critical angle is calculated as 𝜃𝜃𝑐𝑐 = 62 degrees relative 

to vertical. Presented in Figure 10 are angles of incidence 𝜃𝜃𝑖𝑖𝑛𝑛𝑐𝑐 = 36 degrees and 

𝜃𝜃𝑖𝑖𝑛𝑛𝑐𝑐 = 66 degrees. For the sub critical incidence of 36 degrees, theory predicts an angle 

of transmission of 42 degrees.  
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Figure 10.  Pressure Field Generated by Scattering Off Fluid Interface 

At two angles of incidence, one sub critical and one supercritical. 

In the case of an angle of incidence of 36 degrees shown on the left of Figure 10, 

it can be seen that energy propagates into the second acoustic media, and by taking a 

measurement of the angle of transmission, it can be seen that the energy is indeed 

propagating at 42 degrees relative to normal. In the case of an angle of incidence of 66 

degrees shown on the right of Figure 10, it can be seen that the energy decays 

exponentially away from the boundary, and does not propagate into the second fluid, but 

rather along the boundary. This also serves as verification of the method of implementing 

a background pressure field. This plot is also an excellent graphical means for illustrating 

evanescent wave propagation. 

C. EXAMINATION OF HEAD WAVE 

While the correct prediction of the evanescent field generated by interaction with 

a second acoustic media has been demonstrated, it is necessary to verify the propagation 

of the faster traveling wave in the lower media to all points in the domain. In order to 

show the effects of the fast moving, laterally traveling “head wave,” two visual aids are 

presented below. First, a time transient model was created and driven at a single 

continuous wave frequency. Such a model is not well suited to predicting steady state 
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phenomenon, but does provide clear visual evidence of the head wave. Following a 

similar procedure for MMPE execution, a schematic diagram of the water column, 

sediment layer and deep bottom later is shown in Figure 11. Note that the boundary 

conditions between the COMSOL model shown in Figure 3 and the MMPE model differ 

at the terminating bottom-most face. In the MMPE model, the deeper portion of the 

sediment layer contains a spatial filter that acts to remove the energy as it approaches the 

edge of the computational domain, whereas in the COMSOL model, a plane wave-

absorbing boundary is used to prevent spurious reflections back to the computational 

domain pressure field.  

 
Figure 11.  Diagram of the Sediment Bottom Environment Modeled in MMPE 

(Not to Scale) 

 

The bathymetry shown in Figure 3 was used in the aforementioned time transient 

run. The sound speed in the second media was parametrically varied in order to observe 

the effects on the acoustic field generated in the water column. Presented in Figure 12 are 

color contour plots of the acoustic fields predicted by COMSOL for two disparate 

sediment sound speeds at the same point in simulation time. In the upper panel, the 

sediment sound speed is set equal to that of the water column and the early time, near 

field spherical spreading, prior to any reflections from boundaries, or energy becoming 
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trapped in the cylindrical section of the waveguide is readily apparent. Interference 

structure is observed as reflections from the free surface interact with the monopole 

source field. In the lower panel, the sediment sound speed is set to be four times that of 

the water column. Under such conditions, the same near field spherical spreading is 

observed. However, additional interference structure can be seen in the near field since 

both bottom and free surface reflections interact with the monopole source. More notably, 

at farther range from the source, the laterally traveling head wave can clearly be seen 

moving away from the source and continuously radiating acoustic energy back into the 

water column at an angle consistent with the critical angle defined by Equation 17. 

 

 
Figure 12.  Comparison of the Acoustic Fields Predicted by COMSOL 

For two disparate sediment sound speeds. 

Additional verification of the correct prediction of the propagating head wave comes 

from wavenumber analysis of the acoustic field. The planar interface and material 

properties illustrated in Figure 3 were exercised for slightly different parameters in order 

to provide adequate separation of the water borne and sediment borne acoustic waves. 

Specifically, the densities in both media were set equal to 1000 kg/m3 yielding a mass 

contrast ratio, 𝑚𝑚 ≡ ρ1
ρ2

 of 1.0. The soundspeed in the water column was set equal to 1500 

m/s while the sediment was set equal to 2500 m/s, yielding an index of refraction, 𝑛𝑛 ≡ c2
c1

 

of 1.66. The monopole source was located at a depth of 50 m and excited at a single 
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frequency of 100 Hz. All surfaces were set to be outgoing wave absorbers to mimic free-

space propagation of two semi-infinite half spaces. Under such conditions, it is 

anticipated that there should exist two propagating wave numbers with each 

corresponding to the free-field motion of acoustic waves. In both the near and far fields, 

the water borne wave is expected to propagate radially at 𝑘𝑘1 = 𝜔𝜔
𝑐𝑐1

. Similarly, in the 

absence of reflection from any boundaries, the sediment wave is expected to propagate 

radially at 𝑘𝑘2 = 𝜔𝜔
𝑐𝑐2

. For the parameters listed above, these two wavenumbers are 

numerically equal to 𝑘𝑘1 = 0.41 rad/m and 𝑘𝑘2 = 0.25 rad/m, respectively. By sequentially 

extracting short segments (sliding synthetic aperture of 4096 points spaced at 1 m) of 

acoustic data from the pressure field, and spatially Fourier transforming them into the 

wavenumber domain, via Matlab’s FFTW (Fastest Fourier Transform in the West) [28] 

Discrete Fourier Transform algorithm, it is anticipated that two distinct peaks would be 

observed. Presented in Figure 13 is a single sided spectrum obtained for one such virtual 

aperture.  
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Figure 13.  Single-Sided Pressure Amplitude Spectrum for  

Sliding Synthetic Aperture 

 

The Short Length Fast Fourier Transformed (SLFFT) data is plotted as a 

continuous blue curve, with green and red circles indicating the theoretical locations of 

the two expected propagating wavenumbers. Of note is that the COMSOL model 

correctly predicts the pressure field and the relative wavenumber content. Additionally, it 

can be seen that the head wave propagates at a relative -30 dB with respect to the direct 

path. This sliding window technique allows a sufficiently long data record to 

accommodate fine wavenumber resolution from the windowed SLFFT. By sampling the 

acoustic field at dx=1 m intervals, the folding wavenumber (similar to the Nyquist limit 

of time domain sampling theory) is defined as 𝑘𝑘𝑓𝑓𝑜𝑜𝑙𝑙𝑖𝑖 = 2𝜋𝜋 𝑖𝑖𝑑𝑑
2

, which is numerically equal 

to 𝜋𝜋 m-1. Similarly, the wavenumber resolution, which corresponds to the bin spacing of 

the SLFFT, is given as ∆𝑘𝑘 = 2𝜋𝜋 1
𝑁𝑁𝑖𝑖𝑑𝑑

. By choosing N=4096 (4096 m for the given dx 

sample spacing), this technique is able to resolve wavenumbers to within 0.0015 rad/m, 
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which is two orders of magnitude below the anticipated value of the wavenumber 

content. 

By sequentially sliding this aperture along the length of the water-sediment 

interface, and stacking the resulting Fourier transformed curves (as presented in Figure 

13), a wavenumber contour plot may be constructed as a function of the acoustic center 

of the virtual aperture. Performing this type of processing allows for an examination of 

the propagation length scales and amplitudes of the acoustic features present for a given 

bathymetry. For this simple case of two semi-infinite half spaces, it is anticipated that 

only two dominant wavenumbers will be present in the far field. Figure 14 shows a 

contour plot of the wavenumber content in this environment as a function of the location 

of the acoustic center of the aperture. 

 

 
Figure 14.  Wavenumber Content of the Two Semi-Infinite Half Spaces 

As a function of the location of the acoustic center of the aperture. 
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It can be seen that in the very near field, there is still some spherical wave front 

curvature generated by the monopole source, resulting in curved lines on the k-x contour 

due to the size of the sliding acoustic aperture. At longer ranges, there are only two 

dominant wavenumbers propagating, each corresponding with theoretical predictions. 

This type of processing confirms the ability of COMSOL to predict the existence of the 

evanescent head wave.  

The SLFFT processing technique also allows for a clear verification of the effects 

of sediment damping mechanisms. By varying the value of loss in the sediment from 0.0 

to 1.0 dB/m/kHz, and examining the propagating wavenumber content in this simplified 

geometry, the COMSOL implementation of sediment damping may be illustrated. 

Presented in Figure 15 are three-color contour panels illustrating the range dependence of 

wavenumber for three unique damping values of 0.0, 0.1, and 1.0 stacked from top to 

bottom, respectively.  
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Figure 15.  Range Dependence of Propagating Wavenumber Content within Semi-

Infinite Half Space 
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In the top panel, where the sediment damping is numerically equal to zero, the 

lower valued wavenumber, k2, corresponding to the sediment borne lateral wave, is 

consistently 30 dB less than the direct path water borne wave, and both wave types have 

been confirmed to experience a 1
𝑟𝑟2

 spherical spreading loss. As the sediment damping 

value increases to from 0 to 0.1 dB/m/kHz, it can be seen in the middle panel that the 

head wave starts off approximately 30 dB down relative to the direct wave. After 

approximately 3500 m of propagation, the head wave experiences sufficient losses such 

that it no longer appears in the 120 dB dynamic range of the figure. Finally, in the third 

panel, when the sediment damping is increased to 1.0 dB/m/kHz, the head wave 

contribution is damped out during the initial 1000 m of sliding aperture such that it no 

longer appears in the dynamic range of the plot.  

D. TWO FLUID PEKERIS WAVEGUIDE 

The results of the MMPE, normal modes, and COMSOL models are now 

compared with the inclusion of the lossless sediment bottom. Presented in Figure 16 are 

color contours of the magnitude of the complex valued acoustic field over the range 0–

600 m from the source. It can be seen that near the source, there is reasonable qualitative 

agreement between the COMSOL model and the MMPE model; however, there are 

significant differences from the normal modes model. In the case of the COMSOL and 

MMPE fields, there appear to be four “finger” like structures present in the acoustic field, 

whereas the normal modes model does not show any particular structure. The reason for 

this discrepancy lies in the consideration of modes used in the summation, and will be 

discussed later in the analysis section of this document.  
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Figure 16.  Comparison of Normal Modes, COMSOL and MMPE 

Code predicted complex magnitude of acoustic pressure over the 0–600 m range from 
source with the inclusion of a lossless sediment bottom. 

Presentation of the pressure field may reveal additional detail and discrepancy if 

the complex field is broken into its real and imaginary components and examined 

separately. At farther ranges, the comparison between the codes improves. Shown in 

Figure 17 are contours of the real component of the acoustic pressure field over the 

1000–1600 m range from the source.  
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Figure 17.  Comparison of Normal Modes, COMSOL and MMPE 

Code predicted real component of acoustic pressure over the 0–600 m range from source 
with the inclusion of a lossless sediment bottom. 

At these far field ranges, there is a clear pattern in the real component of pressure 

that is common to all three codes, indicative of the time-averaged interaction between the 

limited number of propagating wave fronts. It is apparent that the levels between the 

three methods differ slightly, with the normal modes solution having generally higher 

predicted values of acoustic pressure than the other two codes. However, there is a 

banded structure dominant in radial variation with local minima that vary in range over 

the 1100–1150 m range. Turning towards the acoustic intensity predicted by the three 

codes, there are similar trends. Presented in Figure 18 are color contour plots of the real 

component of the axial acoustic intensity as predicted by the three methods.  
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Figure 18.  Contours of the Real Component of the Axial Intensity 

Predicted by the three methods over a 1000–1600 m range from the source. 

Here again, the normal modes method predicts slightly higher levels than the 

other two codes. However, the general location of regions of positive and negative 

intensity is in good qualitative agreement; for instance, there is a change of sign in axial 

intensity predicted by all methods in the 1100 to 1300 m distance from the source. Also 

consistent with other metrics of comparison is that COMSOL predicts significantly more 

structure in the intensity field than do the other two methods. The reasons will be 

examined in greater detail later, but this is due to the inclusion of effects of large angles 

of propagation. 
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E. UPSLOPING BATHYMETRY 

Results from the up sloping environment brought out several differences between 

solution techniques. Discussion with NPS faculty led to the selection of an academically 

developed normal modes code, Couple07 [29], surmised to be capable of accurately 

modeling environments of this type as an alternate solver.  

Couple07 is a 2007 update to the FORTRAN research code developed by Dr. 

Richard Evans that performs a normal mode based calculation of the pressure field. This 

code differs from others in that it allows for both forward and backward propagation 

(coupling) of modes induced by interactions with downrange bathymetric changes and 

range dependent sound velocity profiles.  

Therefore, results from Couple 07, MMPE and COMSOL are presented to 

illustrate the differences in these techniques. Figure 19 shows contour plots of the active 

vertical intensity in the up sloping environment for a monopole source pulsating at a 

frequency of 20 Hz and a depth of 5 m. 
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Figure 19.  Comparison of MMPE, Couple 07 and COMSOL 

In up sloping environment with a 20 Hz, 5 m deep monopole source. 

Superimposed on the MMPE results are predicted streamlines indicating the path 

of energy flow in this environment. It can be seen that there is general agreement between 

the methods for this combination of source depth and frequency. There is measurable 

penetration of acoustic intensity into the sediment at a range of approximately 3500 m, 
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borne out by the clustering of streamlines. Increasing the frequency of excitation to 60 

Hz, the field produced by COMSOL when using the background pressure field 

implementation shows a noticeable discrepancy from the other two techniques as shown 

in Figure 20. This is an anomalous prediction insofar as general agreement was found 

when representing the source via the specified background field, volumetric, or 

acceleration boundary condition. 
 

 
Figure 20.  Comparison of MMPE, Couple 07 and COMSOL 

In up sloping environment with a 60 Hz, 5 m deep monopole source. 
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When the source is represented instead with the acceleration-type boundary 

described earlier, the results from COMSOL are in much better agreement with the other 

two models. A contour plot of the active vertical intensity field predicted by COMSOL 

using both types of source models is presented in Figure 21. 

 

 
Figure 21.  Comparison of the Source Model Types in COMSOL 

For a 60 Hz monopole source operating at a depth of 5 m. 

After discovering the sensitivity to the source type for this particular environment, 

it was determined that the acceleration source was the correct implementation of a 

monopole under such conditions due to the agreement with the other two methodologies 

and was thus used for the remaining modeling efforts. With this implementation of the 

source, several other frequency-depth combinations were studied. Presented in Figure 22 
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are the predictions for the up sloping bathymetry for a 60 Hz source operating at a depth 

of 200 m. 

 
Figure 22.  Comparison of MMPE, Couple 07 and COMSOL Active Vertical 

Intensities 
In up sloping environment with a 60Hz, 200 m deep monopole source. 
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Again, there is excellent agreement between the three codes in both the location 

of regions of positive and negative intensity, and overall magnitude of the fields. Due to 

slight discrepancies in the scaling parameters used, it is more instructive to examine line 

plots of the transmission loss (TL) defined as  

 TL = 20𝑙𝑙𝑙𝑙𝑙𝑙10 �
𝑜𝑜

𝑜𝑜𝑡𝑡𝑡𝑡𝑟𝑟
�, 22 

where 𝑝𝑝𝑟𝑟𝑒𝑒𝑓𝑓 = 1 𝜇𝜇𝑃𝑃𝜇𝜇. Presented in Figure 23 are predictions of the transmission loss from 

each of the three codes as a function of range measured at 50 m from the free surface for 

a 60 Hz monopole source located at a depth of 200 m. 

 
Figure 23.  Transmission Loss Plotted as a Function of Range 

In the up sloping environment for a 60 Hz monopole source located at a depth of 200 m. 

As shown, there is excellent agreement between the three codes, with the largest 

discrepancy being a notable deviation in the phase predicted by MMPE, a well-
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documented phenomenon, most recently described by Erdim [30]. The phase error is 

generated during successive forward and inverse Fourier transforms in the presence of a 

discontinuity between the two acoustic media. In order to prevent severe numerical 

difficulties several options are available, with the MMPE code making use of a density 

blending function. A slight (~ 2 dB) difference between the COMSOL solution and the 

other two techniques is attributed to the accumulated phase discrepancies.  

Finally, comparisons to the results from the Smith JCA paper [11] are presented. 

Shown in Figure 24 is a plot of the transmission loss predicted by both COMSOL and 

MMPE.  

 
Figure 24.  Comparison of the Predicted Transmission Loss from COMSOL and 

MMPE for the Environment Specified in JCA 

 

It can be seen that the overall agreement between the two codes is quite good. 

Consistent with prior comparisons in the shallower environment, COMSOL predicts 

significantly more structure in the pressure field, especially at short ranges from the 
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source. However, the location of local minima and maxima are in good agreement, as are 

the overall levels with increasing range.  

F. ANOMALOUS SURFACE TRANSPARENCY 

Another interesting feature that can be used to investigate the accuracy of the 

COMSOL model was proposed by a third party reviewer and relates to the surface 

reflection from a true air-water interface (rather than an ideal pressure release  

boundary) [31]. In order to examine this effect, a model was constructed with explicit 

treatment of the two fluid media with both sound speed and density contrasts, n and m, 

respectively. By varying the vertical location of a finite sized source within the two 

media, several interesting phenomenon are observed.  

First, it is noted that when the source is deep compared to an acoustic wavelength, 

the interface behaves according to classical theory (i.e., a nearly perfect reflector of 

acoustic energy). Specifically, when the non-dimensional source depth within the water 

half space, kz, is of order 1 or greater, most of the acoustic energy remains in the water 

domain. However, when kz drops to order 0.1 or less, most of the acoustic energy crosses 

the air-water boundary and becomes airborne. Presented in several panels of Figure 25 

are color contours of the active vertical acoustic intensity for positive and negative (water 

borne and airborne) non-dimensional source depths of order 0.1 and 1.  
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Figure 25.  Contour Plots of Active Vertical Intensity for Several Source Depths 

 

From the color contours it can be seen that not only does the majority of the 

acoustic energy remain in the water domain for large positive non-dimensional source 

depths, but what little energy is transmitted into the air remains confined to a narrow cone 

directly above the source. At very shallow non-dimensional source depths (order 0.1 or 

less), there is a sudden increase in the energy transmission, and the radiation pattern 

becomes increasingly omnidirectional. The relative fraction of acoustic intensity 

transmitted across the boundary to that reflected back into the water domain is best 

characterized by a quantity defined by Godin as the Transparency, T [31]. Consistent 

with his findings, T exhibits a fundamental asymmetry with respect to the source depth. 

Presented in Figure 26 is this ratio as a function of non-dimensional source depth as 

predicted by the theory of Godin (left) and COMSOL model results (right).  
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Figure 26.  Acoustic Transparency of the Air-Water Interface 

As predicted by Godin (left) and COMSOL (right). 

While the predicted curves of Godin have been generated for several values of n 

and m, corresponding to the curves labeled 1–3 on the left plot, the blue curve 

corresponds to values typical of air and water. For these parameter values, it is noted that 

there is approximately a 20 dB difference between positive and negative source depths of 

order unity, while there is nearly a 50 dB difference for non-dimensional source depths of 

order 0.1 or less.  

These curves serve as a point of verification that the numerical approximations of 

the finite element technique are solving the governing equations correctly. In addition, a 

point of validation, indicating that the correct equations are being solved, is desired. To 

that end, the model was exercised over several specific frequency-depth combinations 

corresponding to recent experimental work performed at the Naval Research  

Laboratory [32]. Figure 27 reproduced from [32], shows a schematic of the experimental 

setup.  
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Figure 27.  Schematic Diagram of the Experimental Setup Used in the NRL 
Experiments 

Source [32]: D. C. Calvo, M. Nicholas and G. J. Orris, “Experimental verification of 
enhanced sound transmission from water to air at low frequencies,” Journal of the 
Acoustical Society of America, vol. 134, no. 5, pp. 3403–3408, Nov. 2013. 

Two airborne microphones were placed at locations on and off axis above a small 

spherical transducer located a small depth below the air-water interface of an acoustic test 

tank. A hydrophone was also located at a fixed depth relative to the source, and the 

relative magnitudes of the measured air and water borne pressures were recorded as 

functions of frequency. The ratios of these experimentally measured pressures and their 

theoretical predictions are compared to the values predicted by the COMSOL model in 

Figures 28 and 29. The figures suggest excellent agreement with the theoretical 

predictions. The NRL experimental data is an important verification of the theory. 
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Figure 28.  Comparison of the Ratios of Acoustic Pressure 
In air to acoustic pressure in water plotted against non-dimensional source depth. 
COMSOL (Left) and NRL data (right dots) along with theoretical predictions (right 
lines). 

Figure 29.  Comparison of the Ratios of Acoustic Pressures 
Measured off-axis to those measured on-axis plotted against non-dimensional source 
depth. COMSOL (Left) and NRL experimental data (right dots) along with theoretical 
predictions (right lines). 

COMSOL Measured
 

COMSOL Measured
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III. ANALYSIS 

Examining the plots comparing the Finite Element, Normal Modes, and Parabolic 

Equation methods reveals several interesting differences. First, the normal modes method 

consistently predicts higher levels in all fields. Second, COMSOL consistently predicts 

more interference patterns and features in the acoustic field than do the other two 

methods. Third, the PE method shows better agreement with the other two modeling 

approaches as both the depth of the water column and frequencies of study are increased. 

Finally, the trade-off between feature prediction and computational problem size is 

discussed.  

In all cases, regardless of the treatment of the bottom interface, the normal modes 

based solution predicts acoustic pressure levels higher than the other two methods. 

Although there are no explicit material loss mechanisms present in any of the models, 

there are several sources of potential attenuation in both the finite element and parabolic 

equation approach that could account for the discrepancy in predicted pressure levels. In 

the finite element approach, it is well known that the density of the mesh will affect the 

solution. While the results presented in this work took great care to ensure adequate mesh 

resolution to predict an accurate field, prior efforts have indicated that levels may slightly 

increase in magnitude even after the heuristically determined ten linear elements per 

wavelength is reached. The meshes used in this study were refined to twenty quadratic 

elements per wavelength, and in the case of the rigid bottom, there is excellent agreement 

in levels between the COMSOL results and the normal mode results. The very small 

disparity in magnitudes between the two methods may be brought into better agreement 

with further mesh refinement. However, it was noted that there were no significant 

differences in the features predicted by COMSOL, and the sub deciBel differences were 

not determined to contribute to the accuracy of the solution. Therefore, this is merely a 

hypothesis, but is consistent with prior results.  

The acoustic fields predicted by the finite element method unfailingly predict 

more structure and “fringing” than the other two methods. In the case of the rigid bottom, 

there are only slight discrepancies between the COMSOL and normal modes output. In 
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this case, the agreement is quite good. It is worth noting that the normal modes method 

does not actually propagate a solution over range, but rather seek solutions to an 

eigenvalue problem with the appropriate boundary conditions already enforced. This is 

closer to the finite element based matrix methods than is the parabolic equation approach. 

The results of the parabolic equation solution show large discrepancies, failing to predict 

nearly all of the features captured by the other two methods at any range. However, this is 

a well-understood limitation of the code, which is not designed for rigid bottom 

environments.  

In the case of the sediment bottom, there is better agreement between the three 

methods, but COMSOL still predicts additional interference patterns. The discrepancy 

between COMSOL and the normal modes approach is potentially due to the presence of 

evanescent waves and so called “leaky” modes. The initial normal modes code has a hard 

limit to examine the contribution of only the trapped modes, whereas COMSOL has no 

such restriction. Upon switching to the coupled modes code Couple07, significantly 

better agreement between all three methods was observed. The discrepancies between 

COMSOL and MMPE are again likely due to the treatment of the bottom interface. There 

is a much smaller mismatch in the impedances of the two domains, however the 

bathymetry is still very shallow and the density mixing functions employed by this 

version of MMPE are likely contaminating the solution. This effect will be present at all 

ranges. At short ranges, it is unlikely that the two methods would exhibit good agreement 

due to the far-field approximations used by the parabolic equation method to generate the 

initial field. It is also worth noting that while both the finite element method and normal 

modes method seek solutions to Equation 1 (albeit through very different approaches), 

the parabolic method seeks solutions to a modified form of the Helmholtz equation 

defined in Equation 7.  

As previously stated, the discrepancies between the methods when the bottom 

sediment is included are most likely due to the treatment of the bottom interface density 

discontinuity within the parabolic equation framework. When the test case documented in 

the JCA paper was examined, there was significantly better agreement between MMPE 

and COMSOL. This environment is twice as deep (200 m) and analyzed at four times the 
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frequency (200 Hz) with the source placed at half the depth (vice three quarters of the 

depth) of the water column. As such, the ratio of excitation wavelength to water column 

depth is much smaller than the bulk of the cases presented in this work.  

The finite element approach predicts a richer feature set in the pressure field than 

do the normal modes and parabolic equation methods. However, the solution time and 

computational problem size are significantly larger when using COMSOL as compared to 

the other codes. Both the normal modes and MMPE executable will run on a large 

desktop PC (2.7 GHz 8 core Pentium with 72 GB of RAM) in well under a minute. 

Comparable environments require several minutes to solve within COMSOL. It is 

therefore important to be cognizant of the accuracy requirements of the desired numerical 

predictions. At higher frequencies and deeper bathymetries, the additional features 

predicted by the finite element method may be unwarranted due to the computing time 

necessary to generate them. Similarly, if the overall aim of study is to predict pressure 

based features, such as transmission loss alone, the accuracy afforded by parabolic 

equations or normal modes is likely sufficient. Here however, because of interest in the 

acoustic intensity field, which depends on both the pressure field and its gradient, 

additional time may be required to predict the necessary features accurately. This is most 

notable in examination of Figure 18 where the general shape and sign of the intensity 

field is consistent between all three methods, but there are striations predicted only by 

COMSOL.  

The SLFT processing technique allows for a detailed examination of the 

propagating wave types for arbitrary bathymetries. In typical experimental data collection 

events, vertical line arrays (VLA) are employed in order to gain as large an aperture as 

possible. VLAs are also attractive due to their relative ease of deployment, naturally 

working in concert with Earth’s gravitational field. Horizontal arrays resting along the 

ocean seabed are less common, but are the closest physical analog to the digital technique 

demonstrated herein. In either case, a long array is desired in order to provide adequate 

wavenumber separation during data processing. For relatively shallow water littoral 

environs, the depth of the water column may preclude sufficiently long aperture sizes to 
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examine low frequency, large wavenumber propagation. Employment of numerical 

models and synthetic aperture processing therefore offers several advantages.  

The results of explicitly modeling the air-water interface have confirmed recently 

published theories regarding the transparency of said interface [32], and conditions under 

which classical theorems hold. In most practical applications, the product of the source 

depth and the wavenumber generated, kz, is of order unity, and classical theories 

describing the reflection and transmission coefficients are adequate to describe both 

propagating and evanescent waves [23]. However, in a limited number of cases, such as 

infrasonic, or very shallow source depths, the product of kz may drop to a value of order 

0.1 or less. Under these circumstances, the mathematical treatment of Godin [33] is 

necessary to capture all the governing physics. COMSOL was used to verify this theory 

and validate against measure data. 
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IV. CONCLUSIONS 

Three techniques have been applied to the problem of acoustic propagation in a 

shallow water waveguide at low frequency. For the canonical case of an ideal waveguide 

(pressure release and rigid boundaries), there is excellent agreement between the theory 

of normal modes and the finite element methods predicted using the commercial software 

package COMSOL. There are significant differences in the predictions of the parabolic 

equation based code MMPE that may be attributed to the implementation of the blending 

functions requisite for bottom treatment. With the inclusion of a non-rigid, sediment 

bottom, idealized as a second acoustic media without shear or attenuation, there is much 

better agreement between all three methods, though there are additional features 

predicted by COMSOL. This is attributed to the method by which COMSOL treats the 

scattering interactions from boundaries and the ability of the finite element method to 

capture evanescent waves. The prediction of these features comes at a significant 

computational cost relative to other methods, but is necessary to predict striations in the 

intensity field at short ranges. Further, the intensity features present in the second 

acoustic media are explicitly modeled. In cases where sensors lie at or below the seabed, 

the accuracy of the finite element method warrants the additional run-time. In many 

instances, these additional near-field, or sub seabed features in the intensity fields 

predicted by the finite element method, may not be of great importance. Under these 

circumstances, the PE method provides adequate resolution and allows for rapid 

parametric model evaluation. In cases where long range intensity features are desired, the 

well-known phasing issue [15] in the current MMPE code may present sufficient issues 

with feature prediction that a normal modes code, such as Couple07 is recommended. 

However, recent developments with the MMPE model have begun to mitigate this issue 

to improve its accuracy [34]. Furthermore, uncertainty in the knowledge of the ocean 

environments at long range may overwhelm such errors in practice. At exceedingly low 

frequencies, a full treatment of the air-water interface is necessary to capture the 

transmission of acoustic energy across this high-contrast boundary.  
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