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ABSTRACT 

Submerged bodies propagating in stratified fluids frequently create disturbances 

in temperature, salinity, and momentum that are detectable at the air-sea interface. This 

project includes the addition of momentum excess in order to model the fundamental 

differences between signatures generated by towed and self-propelled bodies in various 

ocean states. In cases where the body forces, form drag and thrust were balanced, fewer 

and less expansive surface signatures were observed. In cases where the balance was 

disturbed by either lack or excess of self-propulsion, a greater perturbation was achieved, 

particularly in the ocean interior. Discovering the significance of the internal, 

intermediate-range wakes has transformed the focus of the entire study. With the 

increasing employment of unmanned underwater vehicles, it is equally 

imperative to research the internal ocean dynamics as it is to study the physics at the 

surface. This study was focused on direct numerical simulations. However, the data 

collected in this investigation have produced new insights into the dynamics of 

stratified wakes, which can be used on the operational level for developing and 

improving algorithms for non-acoustic signature prediction and detection. 
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I. INTRODUCTION 

Fluid mechanics is the study of fluids and the forces that act upon them. 

Depending on flow characteristics, they can be subdivided into fluid statics for fluids at 

rest or fluid dynamics for those in motion (Landau and Lifshitz 1987). This study solely 

focuses on fluid dynamics; more specifically, the dynamic responses of fluid flows 

interacting with submerged bodies. The Navier-Stokes equations, which uniquely 

describe many fluid flows, comprise the complex foundation on which this study was 

modeled. Fortunately, the computational power necessary to solve this intricate series of 

equations is more readily accessible with the advent of high-performance 

supercomputers. Computational fluid dynamics (CFD) is the method to study fluid flows 

by solving the Navier-Stokes equations using numerical analysis and algorithms 

(Diamessis et al. 2010), as shown in Figure 1. The Massachusetts Institute of Technology 

Global Circulation Model (MITgcm) uses the full Navier-Stokes equations in their setup 

to replicate oceanic and atmospheric motions. This intricate series of codes allows the 

addition of small perturbations, vorticity, viscosity, boundary conditions, and a number of 

other variations which more closely realize environmental flows (Adcroft et al. 2004).   
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Environmental flow variations are caused by pressure and density differences which 
change with fluctuations in temperature and salinity. [u, v, w are the velocities in the  
x, y, z directions. p is pressure, 𝜌𝜌 represents density, T is temperature and S is for 
salinity]. 

Figure 1.  Navier-Stokes Equations of Motion 
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A. FLUID FLOWS 

Internal waves are gravity waves that propagate in the ocean interior and exist 

when the medium is stratified. Stratification occurs when the ocean layer densities vary 

with increasing depth. Temperature, salinity, and pressure changes lead to oceanic 

density changes (Klemas 2012). The restoring force for internal waves is buoyancy and 

the restoring tendency is often quantified using the Brunt-Väisälä Frequency, N, or 

buoyancy frequency. It determines the frequency at which a particle will oscillate if 

perturbed from its equilibrium. The strength of the stratification and the magnitude of the 

perturbation determine the size and dispersion of the internal waves generated (Diamessis 

et al. 2010). Generation of internal waves occurs when the stratified interface is 

interrupted or perturbed (Alpers 2015). The most common perturbations that drive 

internal waves in the ocean are bathymetric changes, atmospheric pressure variations, 

river outflow regions, and flows around a submerged object. The waves oscillate between 

density regimes and their phase speed travels along the stratification zones, but their 

energy or group speed traverses orthogonal to the phase. With spatial scales of several-

kilometer zonal propagation, ten-meter vertical propagation, and temporal scales of 

hours, they are quite readily observable (Garrett and Munk 1979). In our study, we 

capture images of the zonal propagating waves with energy that reaches both to the 

surface of the ocean as well as its depths. The energy detected at the air-sea interface has 

an important connection to the initial disturbance.  

The two dimensionless parameters that typically define fluid flow around a 

geometric body are the Froude number, Fr, and the Reynolds number, Re. In the ocean, 

we consider very large Re, to the point that this ratio is negligible with respect to our 

experiment. When the Re increases above a critical value, wakes generated from the 

interaction cause turbulent fluid mixing (Lin and Pao 1979). We also assume large Fr 

 (Fr > 50) for these experiments. Therefore, unlike ship-wave patterns and dynamics, we 

consider a supercritical flow around the submerged body. Turbulent wakes generated in 

the lee of the SSB propagation transport environmental and source properties from the 

ocean interior to its surface and depths. These advected properties can be calculated and 

observed using the Navier-Stokes equations of motion in the MITgcm. Relatively cooler 
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temperatures and momentum excesses/deficits are transported to the surface by the 

turbulent wake energy. By resolving the temperature and velocity responses generated by 

the SSB, we will better understand the pattern and dynamics of turbulent wakes in 

stratified regimes. 

The ability to measure real-time hydrodynamic anomalies, both at the ocean 

surface and interior, is becoming increasingly imperative to naval operators. 

Technological advances in strategic systems make remote measurements of these 

anomalies a more viable method for submersible detection than the traditional sound 

navigation and ranging (SONAR) acoustic detection. Understanding internal fluid 

turbulent motions and energy propagation will only increase remote detection 

capabilities. It similarly affords naval architects the knowledge for further design-stealth, 

and operators the optimal use of their tactical limitations. 

B. HISTORICAL STUDIES 

Several related papers have linked biological phenomena as inspiration for this 

field of research. The fisherman bat (Noctilio leporinus) uses echolocation as a means to 

hunt its prey. Internal perturbations generated by the motions of fish below are detected 

at the water surface through bio sonar, and enable a precise strike (Schnitzler et al. 1994). 

This provoked a slew of research questions as well as great interest in testing remote 

sensing capabilities to detect submarine vessels.  

Many studies have been conducted to understand fluid flows around submerged 

bodies, to better engineer the body for improved maneuverability, or to study a non-

acoustic method of submerged body (SB) detection (Gallacher and Hebert 2008). 

Airborne sensors, multispectral and synthetic aperture radar (SAR) satellite imagery, and 

even space shuttle photos have visually traced large scale internal waves. There are 

limitations to consider in remote sensing that clutter the received signal. Wind-wave 

interaction at the sea surface, precipitation, atmospheric aerosols, and other elements are 

a few of the limiting factors. But technological advances in data acquisition and 

processing have improved sensing precision. Satellite infrared measurements of sea 

surface temperatures have an accuracy of approximately ±0.1 degrees Celsius (°C) 
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(Emery et al. 2001). With this knowledge, we can roughly state temperature signatures 

with changes greater than 0.1°C, can be measured in real time. As doctors determine 

internal functions by observing symptoms on the surface of the human body, detecting 

ocean surface signatures enables a further understanding of internal wake dynamics. We 

are interested in the surface detection of disturbances simply because they can be 

measured by remote airborne sensors; but of equal importance are the dynamic responses 

in the ocean interior.   

Two similar studies that precede this work using direct numerical simulations 

(DNS) to model surface signatures created by submerged bodies propagating in stratified 

fluids are Haun (2012) and Newman (2014). Haun focused on the late-wake signatures 

created in double diffusive or salt-finger convection regions. Newman concentrated on 

near-wake surface responses generated from broader stratifications observed in the mid-

latitudes. Our study more closely resembles the setup and dynamic research of Newman 

(2014), with the intent to introduce the concept of momentum excess. This addition 

enables us to compare signatures of a self-propelled submerged body (SSB) with those 

generated by a towed body.  

C. MOMENTUM EXCESS 

An additional forcing term is introduced when a submerged body is self-

propelled. In a towed body case, there exists only a momentum wake induced by the drag 

force of the body interacting with the surrounding fluid medium. The net drag force 

consists of the pressure force, also known as the form drag, and frictional component. In 

the self-propelled body case, however, there exists the same drag force wake as well as a 

signature generated by the jet or propeller behind the sub, known as the thrust force. The 

misbalance between the drag and thrust forces ultimately lead to acceleration/deceleration 

of the object and it is often referred to as the momentum excess/deficit. In their paper on 

self-propelled wakes with moderate momentum excess, de Stadler and Sarkar (2011) 

discuss the differences in viewing the velocity profile of the two scenarios. For a towed 

body experiment, there is only a momentum deficit. When modeling a self-propelled 

body, a momentum deficit and excess can be represented (de Stadler and Sarkar, 2011). 
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By adjusting the momentum coefficient, we are able to visualize both surface and internal 

temperature and velocity signatures of SSBs in varying environmental flow fields.  

D. DIRECT NUMERICAL SIMULATION 

The Navier-Stokes equations (Figure 1) describe the physics of fluid motions, and 

are not limited to a specific medium. Their vast range of applications and the utter 

complexity are what make their results so highly coveted. Because of this intricacy, it 

requires high-performance supercomputers to resolve approximate solutions. Nearly 

impossible to replicate in the laboratory or through field experiments, DNS enables 

researchers to numerically model turbulent motions natural in a fluid medium. To 

accurately isolate the results of varying parameters, we conducted 33 control 

experiments. In altering a single variable at a time, we determine not just the response, 

but the extent of the response. Three of the controlling variables were modeled from 

experiments conducted by Newman (2014), two of them were included from the 

algorithm created by Newman, and the last two were used to explore and optimize the 

wake signature.  

E. EXPERIMENTAL DESIGN 

The original intent of this project was to further investigate the surface signatures 

of submerged bodies propagating in stratified fluids, specifically with bodies that are self-

propelled. The addition of self-propulsion introduces momentum to the environment, 

which more closely models the true dynamic responses of a fluid medium perturbed by 

the propagating submerged body. In the initial stages of data analysis, we determined the 

investigation must be broadened to include the patterns and dynamics in the ocean 

interior. A comprehensive understanding of the effects at the air-sea interface is critical 

for fluid dynamic and operational oceanographic research. But with the increasing 

deployments of unmanned underwater vehicles, the ability to understand and detect 

internal disturbances is becoming rapidly imperative.   

Our temporal scale is on the order of the inverse Brunt-Väisälä Frequency, Nt, or 

buoyancy period, which compares to 20 minutes. A number of studies have explored the 

effects in the near-wake (Nt << 20) and late-wake (Nt > 20), but we have chosen to 
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examine the intermediate-range wakes (Nt ~ 20) formed by the disturbance of our self-

propagating submerged body. This range supports more probable detection period than 

that of the near or late wakes.  

In analysis of the control-response relationships, we were able to create a non-

dimensional algorithm that computes similar results to those of DNS with a fraction of 

the time and cost. Applying the algorithmic outcomes to a MATLAB database of world 

ocean sea surface temperatures, we were able to generate seasonal maps of expected sea 

surface temperatures (SSTs) seen when a SSB is propagating in the ocean interior. 
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II. MODEL DESCRIPTION 

MITgcm was the model used to conduct the entire breadth of experiments for this 

study. It provides users a vast scope of numerical proficiencies to model and manipulate 

atmospheric and oceanic processes. Using the finite volume method, this numerical code 

solves the equations of motion that govern the environment. Its unique non-hydrostatic 

capability can compute both small and large scale phenomena (Adcroft et al. 2004). 

Given our study requires a comprehensive understanding of the ocean’s governing 

equations, harnessing the ability to perturb fine-scale parameters, and view their 

responses on a much larger dimension, MITgcm proved ideal.  

To run this complex series of experiments, equations with our inputs required 

nearly 500,000 central processing unit hours (33 experiments [with multiple runs] 

multiplied by 512 processors running for 24 hours each). Two supercomputers were 

utilized to run the model, analyze outputs, and store data. The primary computer is based 

in Mississippi at the Department of Defense High Performance Computing 

Modernization Program (HPCMP). The second computer is at the University of Texas at 

Austin’s Advanced Computing Center (TACC).  

MITgcm computes the Navier-Stokes equations for each grid space and time step 

that we determine and set in the model inputs. Though its primary mission lies with 

resolving large scale oceanic and atmospheric flows, flexibility exists in its domain to 

perturb the environment in a way that suits our research. In order to model a submerged 

body propagating in a fluid, we set inflow boundary conditions around an ellipsoidal 

volume of zero flow velocity. It mimics the identical responses as a moving body, but 

allows us to remain visually focused on the body and its intermediate-range disturbances.   

The model grid used to conduct our experiments remains spatially constant in 

depth, z, but expands exponentially in longitude, x and latitude, y (Newman 2014). The 

idea is to fully resolve the wakes generated in the vicinity of the source and their vertical 

propagation yet conserve computational power and time with decreased resolution at the 

edges of the grid. The inputs set were Nx = 2048 steps in x with an initial delta dx0 of 1.5 
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meter (m) increasing to dx1 of 7.5 m. Similarly, in y, we used Ny = 64 steps with a dy0 of 

3.0 m increasing to dy1 of 30 m. The grid remained undeviating in z, with a number of 

steps 200 and a dz of 0.5 m. Therefore, the dimensions of the experimental box are z 

depth of 100 meters, an x-zonal distance of nearly 7500 m and a y-zonal distance of 

approximately 730 m. 

MITgcm enables the operator to prescribe boundary conditions that best suit the 

experiment. Since the grid exists to model conditions at the ocean surface and reach a 

depth of 100 meters, we selected a rigid lid to model the air-sea interface, and the no-slip 

conditions at depth z = 100 m to model a bottom that is continuous with its surroundings. 

In contrast, the eastern and western boundary conditions differ and fluctuate. We 

prescribe the inflow conditions on the western boundary for every run, specifically to 

input the uniform U = 10 m/s flow around the stationary submerged body. Orlanski open 

boundary conditions are used for the eastern boundary outflow to eliminate the possibility 

of disturbance interaction with the grid that could interfere with anticipated signatures 

(Orlanski 1976). Figure 2 depicts the setup of experiment.  

 

 
This box represents the model grid spacing, resolution, source parameters, and boundary 
conditions. Source: Newman (2014). 

Figure 2.  Experimental Setup 
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The variables measured were surface and internal perturbations in temperature, T 

and internal velocity perturbations, U. Analysis of these parameters signify the 

relationship between the control parameter and the detection response. In MATLAB we 

were able to make millions of numerical outputs into visual and meaningful results. The 

common data analysis techniques were applied to the output, showing us direct 

correlations between the control and the response.  
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III. DIRECT NUMERICAL SIMULATIONS 

The control experiments conducted to model the effects of propagating bodies 

include varying the same parameters as Newman (2014), with the inclusion of his 

algorithm parameters, as well as varying the size of the submerged body, and the 

introduction of excess momentum. The control parameters in this study are divided into 

environmental and source parameters, and are varied to demonstrate their respective 

effects on wake characteristics. Measurements of temperature perturbation signatures at 

the ocean surface and interior, as well as internal velocity variations, were made to 

determine parametric influences on wake dynamics. Modeling the SSB wake motions 

provides additional value to the detection problem. The control variables chosen for this 

research are buoyancy frequency, mixed layer depth, temperature gradient, source depth, 

source velocity, source size, and momentum excess.  

Oceanic stratification is composed of the three environmental parameters, 

buoyancy frequency, N, mixed layer depth (MLD), and temperature gradient, 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕. The 

buoyancy frequency, formally known as the Brunt-Väisälä Frequency, is defined as a 

stability parameter, where 𝑁𝑁 = �−( 𝑔𝑔
𝜌𝜌0

)(𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

)2 . When a parcel in the ocean is displaced 

vertically, the buoyancy frequency determines the rate at which said parcel will oscillate 

in an internal wave, and eventually return to its equilibrium. A square frequency of  

1e-5 s-2 was determined as base value from which to vary. Much of the global ocean is 

represented by these stable values of N2. The buoyancy frequency is largely dependent on 

density stratification which incorporates both temperature and salinity gradients. Average 

salinity values range from 34 to 36 practical salinity units (PSU) which is equivalent to 1 

gram of sea salt per 1 kilogram of seawater. Mid-latitude temperature gradients in the 

upper ocean range from several degrees per hundred meters. Mixed layers are 

representative of regions where there is no temperature-salinity (T-S) gradient; where, 

rather, the layer is density-homogenous. The T-S profiles used in our study were derived 

from the World Ocean Atlas 2013 (WOA13) statistical and analyzed data fields for the 

mid-latitude Atlantic Ocean (Locarnini et al. 2013; Zweng et al. 2013). WOA13 is 
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generated from the National Oceanographic Data Center’s World Ocean Database 2013 

(WOD13), the largest database of oceanic observations (Boyer et al. 2013). Past studies 

have proved that the use of the World Ocean Atlas data fields are extremely valuable in 

understanding oceanic states and changes. For modeling purposes, however, they present 

some challenges. In order for the models to overcome the disparities in the fields, we 

created similar T-S profiles using smoothing techniques in MATLAB. These “synthetic” 

profiles represent the real world ocean and enable the supercomputers to calculate the 

complex momentum equations of motion, while including our desired stratification and a 

well-mixed layer. Examples of the profiles in the ocean are shown in Figure 3.  

 

 
The profiles represent general temperatures, salinities and densities in the open ocean. 

Figure 3.  Temperature, Salinity, and Density Profiles 

 

Source velocity, U; sub depth, H; SB size, L; and momentum excess coefficient, 

a; all compose the source parameters. For naval relevance, we chose source velocities 

similar to those seen by submarines in the fleet, from 5 m/s to 15 m/s. These speeds also 

enabled us to use consistent code resolution throughout all the experiments. Depths from 

10 m to 70 m were selected to portray a range of reasonable sub propagation depths, as 

well as to determine wake characteristics when SSBs transit in various environmental 
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regimes. We did have issues resolving the depths closes to the MLD, but our results still 

proved useful. Three submerged body sizes were chosen to demonstrate wake dynamics 

generated by various fluid displacements. The baseline SSB is proportional to many 

operational submarines in the oceans today.  

The most important variable in this research is momentum excess coefficient. 

Momentum, put simply, is mass in motion. All fluids have mass, and their flow velocity 

is their motion. When forces are exerted on a fluid medium, the flow characteristics 

change, resulting in momentum differences. Even the momentum behind a towed body 

propagating at a constant velocity undergoes changes, as the fluid vorticity creates wakes 

that interact. The introduction of self-propulsion, however, further complicates the 

momentum wakes induced behind the submersible. To simulate propulsion, a volume of 

excess momentum was inserted in the grid space behind the submerged body. At each 

time step, the model measured the drag force on the front of the SSB, calculated the 

Navier-Stokes equations with the adjusted momentum, and inserted this momentum 

change into the volume as a thrust force. By counterbalancing the thrust and drag forces, 

we created a zero net momentum, self-propelled SSB (Voropayev and Smirnov 2003). 

The variation of our momentum excess parameter, a, ranges from -1.0 to 2.0, to model 

towed and self-propelled submarine propagation. 

In order to determine the environmental responses induced from variations in 

control parameters, and the subsequent control-response relationship, we conducted an 

extensive data analysis. Our focus rested at the surface of the ocean for a majority of the 

study. It was not until we questioned particular results that we broadened our 

concentration and became curious about the interior.  

A. VARYING BUOYANCY FREQUENCY 

The Brunt-Väisälä Frequency was varied in the DNS production runs in a series 

of five values that range from N2 = 5e-6 to 4e-5 s-2. The median value of 1e-5 s-2 represents 

the buoyancy frequency found in a majority of the world’s oceans. Variations around this 

base value provide insight into how temperature and velocity perturbations propagate in 

more and less stably stratified regimes. The buoyancy frequency is subject to changes in 



 16 

potential density with depth as well as the acceleration of gravity. Since our study focuses 

on the upper 100 m of the ocean, we recognize only the gradients in density, neglecting 

changes in gravity. Higher frequencies are representative of more stably stratified 

regimes, where lower frequency domains represent those with less stratification and 

therefore, less stability. A larger N2 will dampen the wake oscillations much faster than a 

small value. Similarly, less stable regions will display more turbulent motions. Knowing 

this, we proceed to our dynamic responses with respect to changes in the buoyancy 

frequency, N2. 

1. Impact on Thermal Surface Signatures and Extent 

The baseline buoyancy frequency, which closely matches the frequency 

representative of the mid-latitude ocean, generates the largest maximum change in 

surface temperature. As the Brunt- Väisälä frequency increases greater than the baseline 

value, the surface signature greatly decreases, as seen in Figure 4. A stable water column 

is necessary for oscillatory motion to propagate a wake. If the medium is unstable or less 

stable, the turbulent motions dissipate the energy, and the signature is less significant. 

More stability presents opportunity for wakes to transfer water properties away from the 

focal point. After a particular stability, however, the restoring force is strong enough that 

it dampens the energy propagation. The buoyancy frequency for the greatest signature in 

this study is the baseline value of 1e-5s-2.   
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Time series of ΔTmax while varying N2 (left). Relationship of mean ΔTmax and N2 (right). 

Figure 4.  Thermal Surface Signature 

 

Temperature perturbations that reach the air-sea interface can be detected by 

remote sensing capabilities. For the baseline conditions, a temperature perturbation of 

nearly 1.4°C reached the surface and persisted for almost 7 kilometers. Figure 5 portrays 

this revolutionary finding for wake detection. 



 18 

 
Surface cross-section of thermal signature generated from submerged body propagating 
with baseline conditions, N2 = 1e-5s-2 at t = 880s. The blue values yield temperature 
changes below -1.0 °C. 

Figure 5.  Surface Temperature Perturbations 

 

It is equally as important to investigate the surface area of the thermal signature as 

the signature itself. The maximum surface area of the thermal response is approximately 

63,000 square meters (m2), and the maximum mean signature is just under 50,000 m2, 

shown in Figure 6. The extent of the signature decreases linearly with increasing 

buoyancy frequency. An increased stratification dampens the spatial extent of the 

response, similar to the effect it has on the magnitude of the thermal signature.  
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Time series of ΔST while varying N2 (left). Relationship of mean ΔST and N2 (right). 

Figure 6.  Areal Extent of Thermal Surface Signature 

 

Internal wake signatures show an increased temperature perturbation near the 

mixed layer depth. The region where the mixed layer and the thermocline interact, 

severely impacts the temperature signatures at the surface as the energy is advected both 

to the surface and the depths. Figure 7 demonstrates the internal variations of temperature 

when the submerged body propagates through the stratified medium. 

 

 
Internal cross-section of temperature perturbations generated from submerged body 
propagating with baseline conditions, N2 = 1e-5s-2, at t = 880s. 

Figure 7.  Internal Temperature Perturbations 
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2. Impact on Temperature Perturbations in the Interior 

The snapshots of the perturbations in depth for each buoyancy frequency are 

taken at the end of the model run to allow for wakes to propagate fully. As depicted in 

Figure 8, each of the root mean square (RMS) temperature perturbations follow a similar 

pattern with increasing depth. There exists a prominent, initial slope from the surface to 

the mixed layer depth, a jagged interruption where wakes perturb the upper thermocline, 

followed by a decreasing temperature difference with depth. Though mean RMS 

temperature values are close respectively, there is a slight decreasing trend in the interior 

temperature perturbations with respect to frequency increases. Essentially, the more 

stable the medium, the more damped the perturbation will be. 

 

 
RMS temperature perturbations in depth, z, while varying N2 (left). Relationship of mean 
RMS temperature perturbation and N2 (right). 

Figure 8.  Internal RMS Temperature Perturbations 

 

The RMS plots help to reveal the signature against the background values. In the 

interior, positive and negative temperatures are advected, both to the surface and to the 

depths of the experimental grid space. By removing the temperature signs, we visualize 

the magnitude of the perturbation. Whether positive or negative, the RMS values yield a 

more representative image of the mean interior signatures over time. In Figure 9, all 

buoyancy frequencies maintain an increasing temperature change in signal time until they 
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plateau around t = 900s. And as the N2 values increase, there exists a declining trend in 

mean RMS temperature perturbations.  

 

 
RMS temperature perturbations while varying N2 (left). Relationship of mean RMS 
temperature perturbation and N2 (right). 

Figure 9.  Overall Internal RMS Temperature Perturbations  

 

3. Impact on Velocity Perturbations in the Interior 

Similar to the internal temperature perturbation plots, the RMS velocity 

perturbations represent a snapshot in time of the N2 related interior changes in velocity. 

As expected, a wake signature in the positive x direction (behind the submerged body) 

exists with two smaller wake peaks toward the surface and depths, respectively. This 

velocity signature is comparable to de Stadler and Sarkar (2011), a study noting the 

internal velocity flow responses behind an ellipsoid propagating in a stratified medium. It 

is similar throughout our study, with slight changes specific to varying parameters. With 

buoyancy frequency as the parameter varied in this experiment set, we notice a slightly 

intensified peak velocity perturbation with the greatest N2 value at 50 m depth following 

the body. The average RMS values plotted with respect to N2 however are less clear. The 

velocity perturbation differences are so small that the plot in Figure 10 is almost 

inconclusive.  
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RMS velocity perturbations in depth, z, while varying N2 (left). Relationship of mean 
RMS velocity perturbation and N2 (right). 

Figure 10.  Internal RMS Velocity Perturbations 

 

An overall RMS velocity image is plotted in Figure 11 to display the increasing 

changes in the interior over time. Again, we notice a trend of increasing velocity 

perturbations in time with a plateau toward the end of the run, and less conclusive 

signature differences due to varying N2 values. 

 

 
RMS velocity perturbations while varying N2 (left). Relationship of mean RMS velocity 
perturbation and N2 (right). 

Figure 11.  Overall Internal RMS Velocity Perturbations 
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B. VARYING MIXED LAYER DEPTH 

A mixed layer is the layer in depth from the ocean’s surface that is composed of 

uniform properties of temperature, salinity, and velocity flows. Layer homogenization 

can stem from temperature fluctuations by day, season, and location, salinity changes, 

and turbulent oceanic mixing in the form of currents and waves. The mixed layer depth 

marks the bottom of that layer, and it varies based on the properties above. The reference 

temperature-salinity profiles in Figure 12 denote the baseline MLD of 30 m. Variations in 

both properties cause abrupt changes in density and generate a pycnocline. As noted in 

the buoyancy frequency analysis, the pycnocline plays a large role in wake signatures at 

the surface and interior. Similarly, the mixed layer depth will result in considerable 

impacts on wake dynamics.  

The MLDs in the experiments were varied, a span of five depths, from 1 m to 40 

m. A 1 m MLD essentially marks a region where a temperature and salinity gradient exist 

throughout the column of water. Broadly speaking, the shallowest mixed layers reside in 

the equatorial region, with an increasing depth by latitude, and a profound MLD at the 

poles. Correspondingly, the deepest MLDs exist in the winter and the shallowest in the 

summer. We hypothesized that as the mixed layer deepens, because of its homogeneity, 

the response to the surface will decrease. As the initial disturbances around the SSB 

propagate, there will be less thermal gradient to advect to the air-ocean interface. The 

signatures in the interior, we suspected, would be much different. 
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Baseline T-S profiles generated using WOA13 data and MATLAB code. 

Figure 12.  Reference Temperature and Salinity Profiles with Mixed Layer 

 

1. Impact on Thermal Surface Signature and Extent 

It is apparent in Figure 13 that the temperature perturbations vary with changes in 

mixed layer depths, and a declining trend is observed where the MLD is increased. The 

first mixed layer depth of 1 m is indicative of a well-stratified column with the exception 

of the top three feet of the ocean. With this stratification in both temperature and salinity, 

we expect a distinct surface temperature perturbation for the submerged body operating at 

baseline depth, as there are 50 m of varying properties to advect to the surface. As the 

MLD increases, less of the stratified medium is perturbed. There is visual proof of this 

decrease in temperature change as the depth of the MLD increases. 
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Time series of ΔTmax while varying MLD (left). Relationship of ΔTmax and MLD (right). 

Figure 13.  Thermal Surface Signature 

 

The slope of the areal extent of the surface area temperature change is even more 

noticeable as MLD is increased in Figure 14. The loss of density gradient significantly 

dampens the extent of the change reaching the air-sea interface. 

 

 
Time series of ΔST while varying MLD (left). Relationship of ΔST and MLD (right). 

Figure 14.  Areal Extent of Thermal Surface Signature 
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2. Impact on Temperature Perturbations in the Interior 

The internal signatures yielded quite fascinating results. The closer in proximity 

the MLD and submerged body were, the more distinct the internal disturbance is, in 

Figure 15. While the surface signature decreased with increasing MLD, the opposite 

occurs internally. The MLD-submersible depth relationship is important, and was 

overlooked until graphing these quantities. This finding sparked profound interest in the 

internal signatures and patterns of the study. 

 

 
RMS temperature perturbations in depth, z, while varying MLD (left). Relationship of 
RMS temperature perturbation and MLD (right). 

Figure 15.  Internal RMS Temperature Perturbations 

 

Again, the RMS snapshot at the end of the model run above differs from the 

overall RMS plot in Figure 16. The overall figure more fully depicts the true trend that 

may not be gathered by one image in time. It is even more clearly observed that the 

internal temperature signature increases with reduced proximity of the MLD and 

propagating body. 

 

 



 27 

 
RMS temperature perturbations while varying MLD (left). Relationship of RMS 
temperature perturbation and MLD (right). 

Figure 16.  Overall Internal RMS Temperature Perturbations 

 

3. Impact on Velocity Perturbations in the Interior 

Less certain are the internal velocity perturbation signatures. The difference in 

RMS values of velocity changes versus depth are so small that no pattern is discerned in 

Figure 17.  

 

 
RMS velocity perturbations in depth, z, while varying MLD (left). Relationship of RMS 
velocity perturbation and MLD (right). 

Figure 17.  Internal RMS Velocity Perturbations 
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The changes in the RMS velocity deltas are so insignificant that again, no trend is 

recognized. The left plot in Figure 18, indicates, however, a noticeable increase in RMS 

velocity change over time followed by an immediate plateau.  

 

 
RMS velocity perturbations while varying MLD (left). Relationship of RMS velocity 
perturbation and MLD (right). 

Figure 18.  Overall Internal RMS Velocity Perturbations 

 

C. VARYING TEMPERATURE GRADIENT 

Temperature gradients generally exist below the MLD, but in the case of a well-

mixed ocean, they can occur immediately under the surface. In this study, the temperature 

gradients, 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕, occur below the baseline MLD value of 30 m, and range from  

-0.01°C/m to -0.05°C/m. Keeping all other parameters constant, it becomes apparent how 

dynamic the surface and internal temperature perturbations from the varying 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 are. 

Near linear responses are observed when the temperature gradient is increased. As with 

the parameters above, the impacts of the interior velocity signatures with varying 

temperature gradient are less conclusive.   
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The baseline experiment is centered above with the other four gradients on each corner. 

Figure 19.  T-S Profiles Generated from Variations in 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 

 

1. Impact on Thermal Surface Signature and Extent 

With a baseline value of 30 m MLD, we expect the temperature perturbations near 

the submerged body to penetrate and propagate through the top 30 m of mixed ocean. A 

well-stratified column below the mixed layer will induce increased temperature 

perturbations to be transported to the surface. Both images, Figure 20 and Figure 21, 

illustrate this concept well. 
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Time series of ΔTmax while varying 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 (left). Relationship of ΔTmax and 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 
(right). 

Figure 20.  Thermal Surface Signature 

 

Similar to the image above, we notice Figure 21 depicts the correlation of the 

areal extent of the signature to the trend of the signature itself. An increase in the change 

in temperature at the surface will correspondingly increase the extent of said signature. 

 

 
Time series of ΔST while varying 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 (left). Relationship of ΔST and 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 (right). 

Figure 21.  Areal Extent of Thermal Surface Signature 
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2. Impact on Temperature Perturbations in the Interior 

The distinction between each of the internal signatures in Figure 22 is noteworthy. 

Significant temperature differences in the interior are evident as the stratification is 

increased. The mixed layer depth marks the location of the most drastic signature 

perturbation as well as the two wave peaks, which advect temperatures both to the 

surface and to the depths. 

 

 
RMS temperature perturbations in depth, z, while varying 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 (left). Relationship of 
RMS temperature perturbation and 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 (right). 

Figure 22.  Internal RMS Temperature Perturbations 

 

Just as obvious are the overall internal RMS temperature values in Figure 23. Less 

variation in perturbation exists over time as it did in previous experiments. 
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RMS temperature perturbations while varying 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 (left). Relationship of RMS 
temperature perturbation and 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 (right). 

Figure 23.  Overall Internal RMS Temperature Perturbations 

 

3. Impact on Velocity Perturbations in the Interior 

Velocity differences, we find, are not as variant as temperature when modifying 

the thermal properties of the model runs. The velocity wave signature occurs, but no 

pattern is realized, particularly in the right-hand plot of Figure 24. 

 

 
RMS velocity perturbations in depth, z, while varying 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 (left). Relationship of RMS 
velocity perturbation and 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 (right). 

Figure 24.  Internal RMS Velocity Perturbations 
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The overall RMS velocity perturbation represented in Figure 25 does not portray 

any more of a trend than the values at the end of the run. We hypothesize that in the 

following experiment, however, a velocity pattern will transpire. 

 

 
RMS velocity perturbations while varying 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 (left). Relationship of RMS velocity 
perturbation and 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 (right). 

Figure 25.  Overall Internal RMS Velocity Perturbations 

 

D. VARYING SOURCE VELOCITY 

Variations in the submerged body velocity are an important addition to other 

studies. Realistically, submerged bodies, like their environment, are dynamic. 

Understanding how changes in their motion modify the surrounding medium is pivotal in 

fluid mechanics as well as to the operator. A series of source velocities from 5 to 15 

meters per second (m/s) was tested to determine the resultant surface and internal 

signatures. Again, the baseline run of 10 m/s was executed to provide a reference, as 

shown in Figure 26. The first thing to note is the timing of the temperature response. The 

slower flow velocities presented much smoother plots as well as higher resolution, two-

dimensional images. The higher velocity runs peaked at the surface earlier but their 

responses subsequently decayed much faster.  
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Like the temperature responses in the temperature gradient runs, the velocity 

responses in this series of experiments were most profound. A significant demarcation in 

the internal signals denotes a linear increase in velocity perturbation versus flow.  

 

 
The experimental values of zonal velocity were varied around the baseline value. 

Figure 26.  DNS Variations in Zonal Velocity, U 

 

1. Impact on Thermal Surface Signature and Extent 

Analogous to the inconclusive results obtained when determining velocity 

signatures from temperature changes, Figure 27, which depicts the temperature 

perturbations in the velocity varying experiments, yields uncertain trends. Of note, the 

timing of the initial surface signature differs with increasing SB velocities, as expected. 
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Time series of ΔTmax while varying U (left). Relationship of ΔTmax and U (right). 

Figure 27.  Thermal Surface Signature 

 

The extent of the signatures was interesting. The slowest and fastest experimental 

speeds resulted in the smallest surface area extent, where the velocities around baseline 

value of U = 10 m/s delivered greater area, as seen in Figure 28. 

 

 
Time series of ΔST while varying U (left). Relationship of ΔST and U (right). 

Figure 28.  Areal Extent of Thermal Surface Signature 
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2. Impact on Temperature Perturbations in the Interior 

Figure 29 illustrates how the fastest sub velocity caused the greatest temperature 

perturbation internally, though the differences were minor. The largest temperature jump 

was again at the MLD, and the 15 m/s velocity quite noticeably distinguishes itself by 

nearly 0.2°C ΔTRMS greater than the other speeds. 

 

 
RMS temperature perturbations in depth, z, while varying U (left). Relationship of RMS 
temperature perturbation and U (right). 

Figure 29.  Internal RMS Temperature Perturbations 

 

The overall internal RMS temperature signatures are more convincing that the 

changes in U velocity do in fact play a role in the interior. Not only do the signatures 

propagate from the sub more quickly with increasing U values, but for this study’s model 

run time, the faster speeds transported a relatively greater temperature variation 

internally. Figure 30 depicts the overall mean variations well. 
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RMS temperature perturbations while varying U (left). Relationship of RMS temperature 
perturbation and U (right). 

Figure 30.  Overall Internal RMS Temperature Perturbations 

 

3. Impact on Velocity Perturbations in the Interior 

The representation in Figure 31 of the experimental velocity variation to the 

perturbation velocity results in a definitive relationship. While the internal pattern of ΔU 

remain, the 0.6 m/s RMS change from U = 5 m/s to U = 15 m/s is rather remarkable. The 

largest changes in velocity perturbation exist directly following the submerged body at 

the baseline depth of 50 m.  

 

 
RMS velocity perturbations in depth, z, while varying U (left). Relationship of RMS 
velocity perturbation and U (right). 

Figure 31.  Internal RMS Velocity Perturbations 
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The overall signatures in Figure 32 are just as definitive, noting that the trend 

exists for all time, not merely at the end of the experimental run. 

 

 
RMS velocity perturbations while varying U (left). Relationship of RMS velocity 
perturbation and U (right). 

Figure 32.  Overall Internal RMS Velocity Perturbations 

 

E. VARYING SOURCE DEPTH 

The concept of source depth variance is extremely operational. In fact, it is highly 

unlikely a submersible would maneuver at the same depth for an extensive period of 

time. Bathymetry, environmental conditions, and of course operational demands cause 

the body to alter course and change depth. The proximity of the SB to the unique oceanic 

properties of temperature and salinity will have the most notable findings in this research. 

Due to the nature of the model computations and resolution, when running the depths of 

30 m and 40 m, where the MLD existed, the model runs blew up. It was not until after the 

experimentation was complete that changes in viscosity were made to better resolve the 

quantities around the mixed layer depth. In the findings, we discovered that even in the 

shallowest depths, a better model resolution for those runs would have more clearly 

determined the internal patterns of the wake and signatures. Figure 33 represents the 

experiments varying source depth. 
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Depths of 10, 20, 50, 60, 70 meters were used for these experimental runs. 

Figure 33.  DNS Variations in Source Depth, H 

 

1. Impact on Thermal Surface Signature and Extent 

When the submerged body propagates within the mixed layer, there is little 

chance for temperature perturbations to penetrate the layer below. As soon as the source 

depth is in the stratified or gradient layer, the opportunity exists for the gradient 

properties to be transported to the surface. The further the distance from the surface, 

however, the smaller the signatures will be, as seen in Figure 34. We suspected a bell-

shaped curve for the second plot, should the 30 m and 40 m runs have been completed for 

this study. 
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Time series of ΔTmax while varying H (left). Relationship of ΔTmax and H (right). 

Figure 34.  Thermal Surface Signature 

 

The extent of the signature was similar to the signature itself. The peak thermal 

extent was at 50 m, which is the depth closest to the MLD that exists in the stratified 

water. The 70 m source depth was just out of reach. This finding in Figure 35 is 

comparable with that of Newman (2014), which discovered a source greater than 75 m 

depth would not yield a surface temperature signature with the baseline conditions set for 

these studies. 

 

 
Time series of ΔST while varying H (left). Relationship of ΔST and H (right). 

Figure 35.  Areal Extent of Thermal Surface Signature 
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2. Impact on Temperature Perturbations in the Interior 

The sub propagating in the upper mixed layer has unique results as the wake 

interacts with the MLD at 30 m depth. When operating in the gradient waters, the 

interaction is more characteristic of the previous runs. While the signatures of the  

H = 10 m and H = 20 m experiments did not impact the surface, we see in Figure 36 that 

the internal signatures are more substantial. Clearly, the closer the source is to the MLD, 

the more significant the internal effects are. The deeper runs have less of an interior 

presence, but a decreasing trend is present with increasing depth. 

 

 
RMS temperature perturbations in depth, z, while varying H (left). Relationship of RMS 
temperature perturbation and H (right). 

Figure 36.  Internal RMS Temperature Perturbations 

 

With the exception of the H = 30 m and H = 40 m model runs, it is difficult to 

state deterministically that the proximity of the source and the MLD is the greatest effect 

on the internal signature. But with the data presented in Figure 37, we can say confidently 

that is does have the greatest impact.  
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RMS temperature perturbations while varying H (left). Relationship of RMS temperature 
perturbation and H (right). 

Figure 37.  Overall Internal RMS Temperature Perturbations 

 

3. Impact on Velocity Perturbation in the Interior 

The signatures produced by the depths within the upper layer are much smoother 

than the convoluted perturbations below the MLD. And again they do not follow the 

characteristic patterns of the signatures seen in past experiments. The interaction of the 

wakes on either side of the MLD are unique. The shallower runs have greater velocity 

flux at particular depths but their signature is dampened. The deeper ones portray a more 

oscillatory, wavelike pattern throughout the column. The left plot in Figure 38 portrays 

these explanations well. 
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RMS velocity perturbations in depth, z, while varying H (left). Relationship of RMS 
velocity perturbation and H (right). 

Figure 38.  Internal RMS Velocity Perturbations 

 

Toward the beginning of the model runs, the shallowest depths of 10 m and 20 m 

show a peak in the interior velocity signature around 200–300 seconds. The greatest U 

velocity fluctuations occur as the perturbed medium reaches the vicinity of the MLD as 

depicted in Figure 39. 

 

 
RMS velocity perturbations while varying H (left). Relationship of RMS velocity 
perturbation and H (right). 

Figure 39.  Overall Internal RMS Velocity Perturbations 
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F. VARYING SOURCE SIZE 

The source size variation experiments expectedly produced the most distinct 

results; a probable effect of the choice in variation. The mid-size submerged body, on 

which the study was based, was chosen as an optimization for naval hydrodynamics. This 

size brought to light the effect of small submarines propagating through a stratified 

medium. The idea from there was to extrapolate the signatures to other size submerged 

bodies. If small sources result in temperature signatures at the surface, then large 

submerged bodies will surely generate the same, if not higher signatures. This series of 

model runs gives validity to that argument. A smaller body of half the diameter and 

length as well as a larger body of twice the ellipsoidal volume were used to model the 

wake patterns. The findings were fascinating. There was no surprise that the larger body 

would considerably perturb the medium, and the thermal and flow signals were large and 

vast. And although the small source did not result in thermal signatures detectable at the 

surface of the ocean, the interior patterns were significant, and sufficient for internal 

unmanned underwater vehicle (UUV) detection.   

1. Impact on Thermal Surface Signature and Extent 

Figure 40 yields our hypothesized results with respect to surface thermal 

signature. The initial, most striking feature of the results is the absence of the surface 

response for the smallest ellipsoid. Next is the increase in temperature change of the 

largest sub both in the early stages of the run as well as sustained throughout the duration 

of the experiment. The flat-line signal from the small submerged body is precisely the 

reason why a larger sized sub was chosen as the baseline size. It is not only important to 

acquire a signature for scientific study, but it is also more representative of operational 

submarines. 
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Time series of ΔTmax while varying L (left). Relationship of ΔTmax and L (right). 

Figure 40.  Thermal Surface Signature 

 

What appeared a significant increase in temperature in the plot above is dulled by 

the vastness of the signature in Figure 41. The temperature perturbation from the baseline 

to large submerged body was a difference of approximately 0.25°C, but the areal extent is 

nearly nine times that of the baseline source signature. The oceanic surface area impacted 

by the large sub propagating through the medium is impressive. 

 

 
Time series of ΔST while varying L (left). Relationship ΔST of and L (right). 

Figure 41.  Areal Extent of Thermal Surface Signature 
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2. Impact on Temperature Perturbations in the Interior 

While no surface response was generated with the smallest sub, there were 

definitely internal wakes both produced and measured. In fact, at the mixed layer depth, 

with all other variables constant, the smallest ellipsoid generated the same temperature 

difference as the sub twice its size. Otherwise, throughout the 100 m depth, the changes 

in temperature were notably different. The largest sub would reasonably generate wakes 

that perturb the water considerably more than the smaller vessels. The differences are 

near linear in proportion. The right plot in Figure 42 expresses these relations. The sub 

sizes have a 1:4 ratio; 40 m:160 m and the measured temperature changes are 

0.1°C:0.4°C.  

 

 
RMS temperature perturbations in depth, z, while varying L (left). Relationship of RMS 
temperature perturbation and L (right). 

Figure 42.  Internal RMS Temperature Perturbations 

 

The overall internal temperature perturbations, as presented in Figure 43, are 

slightly less than what is captured in the snapshot of the signatures at time, t = 1200s, but 

that image does convey the significant differences that the sub size brings to the interior. 

Disrupting the column of stratified fluid at these various surface areas has distinct 

impacts both at the surface and internally. 
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RMS temperature perturbations while varying L (left). Relationship of RMS temperature 
perturbation and L (right). 

Figure 43.  Overall Internal RMS Temperature Perturbations 

 

3. Impact on Velocity Perturbations in the Interior 

Comparable to the temperature perturbations, the changes in velocity signatures 

between the three submarines are sizeable. Interestingly, the internal velocity changes 

match the size of the submerged bodies. The smallest sub yields one large hump with one 

subtle peak and two even more subtle troughs. The baseline sub has a noticeable peak 

immediately following the sub flow at 50 m depth and two larger troughs on either side. 

The largest sub has a trough behind the flow with to peaks on either side and two more 

troughs adjacent to the peaks. The velocity flows are wavelike and move faster with the 

larger sized undersea vessels. The issue with the left plot in Figure 44 is that it does not 

reveal the direction of the flow, only the changes in velocity. The flow on either side of 

each sub as it transits through the medium is the main perturbation from surface friction. 

The flow following this sub is the propulsion.  
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RMS velocity perturbations in depth, z, while varying L (left). Relationship of RMS 
velocity perturbation and L (right). 

Figure 44.  Internal RMS Velocity Perturbations 

 

Figure 45 pictorially denotes the vertical cross-section of the self-propelled 

submerged body flow propagation. The submerged volume is transiting at U = -10 m/s 

with a background velocity (flow depicted in green) of U = 0 m/s. The blue wakes are in 

the negative U zonal direction indicating that the perturbations are due to form drag or 

surface friction. The medium is being pulled in the direction of propagation. The yellow 

wakes represent the propulsion of U = 5 m/s in the positive zonal direction.   

 

 
Internal cross-section of velocity perturbations generated from a self-propelled 
submerged body propagating with varied source size, L = 20×20×160 m. 

Figure 45.  Internal Velocity Perturbations 
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A clearer depiction of the velocity changes over time is displayed in Figure 46. 

The largest sub disturbs the column more quickly and at nearly double the rate of the 

baseline sub.  

 

 
RMS velocity perturbations while varying L (left). Relationship of RMS velocity 
perturbation and L (right). 

Figure 46.  Overall Internal RMS Velocity Perturbations 

 

G. VARYING MOMENTUM EXCESS 

The crux of this study lies in the variations of the parameter, momentum excess. 

Momentum, 𝑝𝑝 = 𝑚𝑚 × 𝑈𝑈, is the product of a mass and a velocity of a given object. In this 

study, we will use momentum per unit volume, 𝑝𝑝 = 𝜌𝜌 × 𝑈𝑈, where density, 𝜌𝜌 = 𝑚𝑚
𝑉𝑉 � , is 

the ratio of a mass and its volume. With a changing velocity, also known as acceleration, 

momentum can be derived to yield a difference of forces, 𝑚𝑚𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐹𝐹𝑑𝑑ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑 − 𝐹𝐹𝑑𝑑𝑟𝑟𝑑𝑑𝑔𝑔 

(Meunier and Spedding 2004). 

Thrust, formally propulsion, is generated by the propeller at the rear of the 

submarine, which drives fluid mass away from the submerged body at a given rate of 

motion. The thrust force is the reaction force in the opposite direction of mass flow. The 

drag force is created by the parasitic drag of the submarine against the fluid medium. 

Form drag and skin drag compose the drag force. Figure 47 depicts the force body 
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diagram of all the forces that act on the propagating SSB. In a three-dimensional, axis-

symmetric experiment, where the fluid flow and submarine propagation are in U-zonal 

direction, the difference of forces is equivalent to the change in net momentum from one 

time step to the next (Higuchi and Kubota 1990).  

 

 
An axisymmetric self-propelled submerged body propagating in the U zonal direction 
with a strong thrust to drag ratio. 

Figure 47.  Submerged Body Force Diagram 

 

In our case, the thrust force-generated momentum excess is the calculated value 

of the drag form against the source. We then inject that value into a region or volume 

behind the SSB, as to induce propulsion. Without this inserted momentum, the 

experiment would model a towed body (Newman 2014). The towed body experiment 

would be considered a non-zero momentum case, as there is an uninterrupted transfer of 

momentum from the body to the medium (Afanasyev 2004). No active interaction, like 

blades of the propeller pushing against the water, is being produced between the fluid and 

the body (Afanasyev and Korabel 2006). There is passive interaction between the body 

and the medium due to pressure and viscosity. With the addition of the momentum in the 

region behind the submerged body, we model a self-propelled source. Variations in this 

momentum represent scenarios where a submerged body would need an excess of 

momentum in order to maintain a given velocity. The towed body run is a full momentum 

case. The excess momentum coefficient, a, at a value of 1.0 signifies a zero momentum-
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excess case. A zero-momentum flow is one where the self-propelled submerged body is 

transiting at a constant velocity. The constant speed means no acceleration, therefore the 

difference in 𝐹𝐹𝑑𝑑ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑 and 𝐹𝐹𝑑𝑑𝑟𝑟𝑑𝑑𝑔𝑔 is zero. The force generated by the rear propeller is 

perfectly offset by the drag applied to the front of the body (Afanasyev and Korabel 

2006); the momentum of the source is counterbalanced by the propulsion.  

Many experiments compare wakes of various submerged body forms, such as 

cubes, spheres, and cylinders, as the size and amplitude of the wakes both depend on the 

shape of the bluff body (Meunier and Spedding 2004). We chose the streamlined prolate 

spheroid or ellipsoid not only because it most closely resembles a submarine, for naval 

relevance, but because if we acquired significant results with an elliptical bluff body, the 

rigid edges of other bluff bodies would produce even more notable results. The most 

important part of the submerged body is its size. Meunier and Spedding (2004) found that 

wakes do not recall the shape of the bluff body, only the amount of water transported by 

said body. With a value of 2.0 we model the addition of double the momentum, or the 

momentum required to maintain a velocity of 10 m/s against a current. A value of -1.0 

simulates the decay of momentum, or the loss of momentum necessary to maintain a 10 

m/s velocity, perhaps riding a current. Each time step, the code forces the sub velocity to 

0 m/s, obtains the change in momentum calculated through the Navier-Stokes equations, 

and inserts that change in the artifact called the “jet.” The jet is the volume in the region 

behind the SSB. In doing this for each delta t, we maintain a U = 10 m/s self-propelled 

body in the -x direction. These results are congruent with Meunier and Spedding (2006), 

which found that for lower speeds, the momentum flux expelled by the propeller is higher 

than that produced by the drag force and the opposite for higher speeds. 

We were ecstatic to discover that our velocity profiles in Figure 48 were 

consistent with those of de Stadler and Sarkar (2011). The zero added momentum a = 0.0 

resembles the Gaussian profile of (a) towed body with no propulsion, where the drag 

force is entirely transferred from the propagating submerged body to the medium. This 

profile yields a velocity deficit only, meaning the dragged prolate ellipsoid produces a 

full momentum wake. The momentum excess coefficient a = 1.0 depicts the profile (b) 

constant velocity, self-propelled body with zero net momentum. The drag and thrust 
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forces are perfectly balanced, hence no net momentum is transferred from the submarine 

to the ocean. The double inflected profile portrays the two drag (velocity deficit) lobes 

adjacent to the central thrust (velocity excess) lobe directly in line with the propagating 

body at a constant velocity (de Stadler and Sarkar 2011). Profile a = 2.0 again illustrates a 

self-propelled submerged body propagating at constant velocity, yet this body has excess 

momentum added to the jet behind it. The addition of the momentum excess signifies 

acceleration, and similar deficit lobes with a stronger thrust lobe occur. Not depicted in 

the figure above, but added to our study for interest, is the a = -1.0 negative momentum 

excess or momentum deficit. This represents submersible deceleration, and yields 

similarities to the a = 1.0 case with an inverse velocity profile. Both the thrust and drag 

forces are in the same direction, thus signatures should be more evident.  

 

 
Velocity profiles were averaged in half grid space in order to capture the internal 
signatures behind the propagating bodies, neglecting the regions of non-flow. 

Figure 48.  Velocity Profiles Varying Momentum Excess 
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Another important finding in our research that is also consistent with de Stadler 

and Sarkar (2011), shown in Figure 49, is that though seemingly momentumless by force 

balances, even the a = 1.0 case has momentum exchange from the wake to the fluid via 

internal waves, specifically later in time. Research from Novikov et al. (2009) delivered 

the near impossibility of experimentally modeling momentumless wakes, with the 

imbalance at approximately one percent. In our study, there exists momentum signatures 

even in our zero net momentum wakes. 

 

 
Velocity profiles in a stratified fluid of: (a) dragged body with no propulsion, (b) self-
propelled body with zero net momentum, and (c) propelled body with excess momentum. 
The dashed line represents zero velocity. Source: de Stadler and Sarkar (2011). 

Figure 49.  Published Theoretical Velocity Profiles 

 

1. Impact on Thermal Surface Signature and Extent 

Initially in Figure 50, notice the downward trend expected from the transitions of 

the negative momentum to the towed body to the zero net momentum cases. Where the 

other cases flatten out in the later times, the negative momentum case continues to 

increase. The drag force and thrust force interfere constructively where the zero net 

momentum and momentum excess cases have destructive interference of the wake 

energy. We would, however, expect the a = 2.0 case to have a larger impact than the zero 

net momentum run. 
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Time series of ΔTmax while varying a (left). Relationship of ΔTmax and a (right). 

Figure 50.  Thermal Surface Signature 

 

A similar trend is depicted from the areal extent of the thermal surface signature 

in Figure 51. The continued increase of surface area covered by the signature of the 

negative momentum model run is immense.  

 

 
Time series of ΔST while varying a (left). Relationship of ΔST and a (right). 

Figure 51.  Areal Extent of Thermal Surface Signature 
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2. Impact on Temperature Perturbations in the Interior 

The internal signatures are more representative of the results expected when the 

experiments were run. Though not phenomenally different in order of magnitudes, the 

signatures in Figure 52 do portray the trend hypothesized. The destructive interference of 

the a = 1.0 case is likely to reduce signature, but as previously mentioned, the zero-

momentum case still produces a detectable response.  

 

 
RMS temperature perturbations in depth, z, while varying a (left). Relationship of RMS 
temperature perturbation and a (right). 

Figure 52.  Internal RMS Temperature Perturbations 

 

Figure 53 displays the vertical cross-section of the internal temperature 

perturbations for each momentum experiment run time in its entirety. The first two 

images, depicting the net negative momentum and towed body runs, show the most 

impressive internal temperature perturbations. With the wider contour intervals in the top 

two vertical cross-sections, we see they are still the most vivid in color. The bottom 

intervals are narrower, and still the wake signatures are faded. The baseline experiment, a 

= 1.0, in particular, signifies that though an internal wake is generated, it is much less 

noticeable than those with net momentum fluxes. Notice also, how the wakes towards the 

end of the run become horizontally wider and their vertical signatures are weaker, 

through wake dispersion. This finding is consistent with late-wake studies that the 



 56 

initially turbulent vortex streets will become stable in time as the stratification hinders 

vertical development, but the horizontal pancake eddies grow (Voropayev and Smirnov 

2003). Wake formation and development are influenced by the density gradient or 

stratification, which stabilize the late flow. 

 

 
The varied momentum excess follows each image respectively, a = -1, 0, 1, 2. 

Figure 53.  Internal Temperature Perturbations Varying Momentum Excess 

 

The full run time averaged plots in Figure 54 represent, even better, the initial 

downward trend followed by an increase in temperature perturbation from the excess 

momentum body run. 
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RMS temperature perturbations while varying a (left). Relationship of RMS temperature 
perturbations and a (right). 

Figure 54.  Overall Internal RMS Temperature Perturbations 

 

3. Impact on Velocity Perturbations in the Interior 

The most noticeable of trends is in the velocity signatures. Like the temperature 

signatures in the early experiments where temperature gradients were varied, we expected 

the greatest velocity signatures to be with experimental changes in velocity or 

momentum. While in appearance there are similarities between Figure 55 and Figure 48 

velocity profiles, the RMS velocity perturbations represent the changes occurring 

internally. The momentum deficit case has the most change in momentum, and it is fairly 

uniform throughout the interior grid space. The momentum excess case of a = 2.0, 

remains truest to the velocity profile in Figure 48, with the greatest velocity in the wake 

of the sub. The towed body experiment yields visible internal changes in velocity. 

Finally, the zero net momentum case, which though true to the velocity profile form, is 

the least changing internally. This finding is important as it conveys that the experiments 

were run correctly, and have major impacts for momentum signatures as well as internal 

submerged body detection. 
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RMS velocity perturbations in depth, z, while varying a (left). Relationship of RMS 
velocity perturbation and a (right). 

Figure 55.  Internal RMS Velocity Perturbations 

 

While the images above portray the internal signature at the end of the respective 

run, Figure 56 depicts the true averaged trend. As anticipated, the greatest perturbations 

result from the momentum deficit case, followed by the positive momentum excess case. 

The zero net momentum case yields the least velocity change internally. This finding will 

be important for naval architects and operators alike.  

 

 
RMS velocity perturbations while varying a (left). Relationship of RMS velocity 
perturbation and a (right). 

Figure 56.  Overall Internal RMS Velocity Perturbations 
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IV. ANALYSIS OF RESULTS 

A. EXPERIMENTAL RESPONSES 

1. Environmental Parameters 

The environmental parameters were buoyancy frequency, N2, mixed layer depth, 

MLD, and temperature gradient, 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕. The Brunt-Väisälä Frequency runs were 

conducted to determine the effect of oceanic stability on the propagation of an SSB 

generated wake. An increased stability in the ocean strongly dampens the temperature 

perturbation signatures in the interior and to the surface. There is an inconclusive result in 

the internal velocity perturbation signatures measured with increased stability. As the 

wake signature propagated, the eddy vortices spread out and the signature is advected in 

an oscillatory motion. The mixed layer experiments indicated significant correlations 

between surface temperature signatures and the proximity of the SSB to the MLD. When 

the submarine transited near the mixed layer depth, and within the stratified medium, 

stronger responses were measured. The internal thermal signatures portrayed an even 

more apparent change. When the MLD increased to 40 m and the sub travelled along the 

50 m depth line, the thermal changes were impressive. Again, a less conclusive response 

was viewed for the velocity perturbations. In our temperature gradient simulations, we 

observed linear increases in surface and internal thermal signatures with increasing 

𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕. The greater the stratification internally, the more significant the perturbation 

response will be. Specifically, in the vicinity of the MLD, there were profound signature 

jumps.  

The strongest thermal gradient yielded the greatest RMS surface (1.175°C) and 

internal (0.423°C) temperature perturbations measured. The MLD proved a close second. 

For the internal velocity perturbation responses, however, N2, MLD and 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 values 

were all approximately 0.06 m/s.  

2. Source Parameters 

The source parameters used in our experimental data sets were velocity, U, depth, 

H, size, L, and momentum excess, a. The source velocities were varied from 5 m/s to 15 
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m/s with 2.5 m/s intervals. These speeds are analogous to propagation speeds in the 

submarine fleets, and still enable us to use baseline modeling codes for comparative 

calculations. The depths of the submerged body were 10 m, 20 m, 50 m, 60 m, and 70 m. 

30 m and 40 m depths were excluded from this report due to error in model outputs, we 

believe because of the proximity of the sub to the MLD. Viscosity inputs were later 

changed to generate productions for the omitted runs, but they were not comparable for 

this study. There were three experiments run with size variations to include a small SSB 

of 5x5x40 m, our baseline sub of 10x10x80 m, and a large submerged prolate ellipsoid of 

20x20x160 m. The smallest SSB represents large UUVs or very small operational 

manned vehicles. Our baseline and large submarine specifications can be seen in fleet 

submarines internationally. Finally, the momentum excess parameter was varied to 

demonstrate subs propagating via self-propulsion, acceleration, deceleration, as well as 

by way of towing for continuity from Newman (2014). 

While there were unconvincing results yielded from the thermal surface 

signatures within the velocity runs, the internal responses provided insight. The fastest 

SSB at U = 15 m/s not only propagated the greatest internal temperature changes, but the 

greatest velocity perturbations. The peak temperature perturbation exists around the MLD 

both for the final time as well as throughout the duration of the run. Each internal 

velocity signature varied in pattern with varying SSB propagation speed.  

The sub depth varying experiments were unique in that their subsequent responses 

did not alone depend on the changing source parameter, but on the proximity of the SSB 

to the environmental parameters. When the body propagated within the mixed layer, we 

found minimal thermal advection to the surface, however they were the most thermally 

responsive in the interior. The runs where the SSB transited in the stratified medium, yet 

still in the vicinity of the MLD, yielded the greatest impact on thermal surface and 

internal velocity signatures. Unfortunately, when the closing distance between the sub 

and MLD was approximately 10 m or less, the model was unable to resolve the calculated 

perturbations, resulting in a blown up simulation. Viscosity adjustments to the model 

code were made to better resolve the runs within the mixed layer. The improved 

resolution shows how the responses in differing environmental regimes will vary.  
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Changes in the self-propelled submerged body size were made to reiterate the 

point that the volume has substantial impacts to both the internal and surface signatures in 

temperature and velocity. The pattern and dynamics of the wakes change with the 

variations in ellipsoid volume changes. Though the trend of increasing perturbation 

signature with increasing SSB size remains throughout the model runs, the medium is 

perturbed uniquely. The largest sub has a greater drag friction that pulls the medium 

along with it in the -x propagation direction. The internal velocity profiles of the smallest 

sub depict the self-propulsion as the chief contributing factor of turbulent wake 

generation. Consistent with Meunier and Spedding (2004), we found that wake dynamics 

depend on the bluff body size.  

The introduction of momentum excess has shed light on the wake differences 

between submerged bodies propagating through a stratified ocean interior by way of 

towing or self-propulsion. Conducting simulations while varying the a parameter enabled 

us to mimic and visualize realistic submarine motions in the ocean. de Stadler and Sarkar 

(2011) produced velocity profiles for propagating submerged bodies generating 

momentum. Our results were parallel to their findings for cases modeling cases for bodies 

that are propagating at a constant velocity, being towed, and accelerating. The full-

momentum, towed body case proved to cause the most influential for the thermal surface 

signatures compared to the zero-net momentum and momentum excess cases. But when 

compared to the decelerating case, which includes momentum from drag and thrust, the 

towed body signatures were considerably less. The accelerating and decelerating runs had 

the greatest effect on the internal thermal and velocity responses. The thrust force was 

captured well by the model, specifically for the velocity perturbations in the interior.  

The largest sub initiated the most significant surface temperature perturbation 

(1.355°C), with the towed body the next closest (0.947°C). The sub depth of 20 m, only 

one within 10 m of the MLD, yielded the greatest internal temperature perturbation 

(0.431°C). The largest SSB also resulted in the greatest internal velocity perturbation 

overall (0.134 m/s), but the decelerating and accelerating subs created only slightly 

smaller values. Of note, the source parameters almost exclusively generated ΔURMS 

values greater than the environmental parameter outputs.  
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V. PROGNOSTIC FORMULA 

A. ALGORITHM 

Computational fluid dynamics is another aspect of DNS that uses algorithms and 

numerical analysis to solve fluid flows. Empirical formulae can be derived in numerous 

methods. Dimensional analysis and Buckingham Pi Theorem were used to generate the 

predictive algorithm for this thesis. The concept was to create a mathematical formula to 

determine, globally, the maximum temperature perturbation and extent at the ocean 

surface for a given submerged body propagating through a stratified fluid. In order to 

fashion such an equation, we used Buckingham Pi Theorem to non-dimensionalize the 

parameters. This enables the user to insert any set of parameters and yield a resultant 

maximum surface thermal signature and its areal magnitude. When the output values 

were verified, we were then able to create a similar algorithm for internal velocity 

perturbation signatures. By creating an algorithm to model dynamic signatures, we 

reduce computational resources (time and cost), increase data production, and maintain 

comparable precision to DNS. 

1. Momentum Excess and Additional Parameter 

The formula generated for towed bodies was the inspiration for this algorithm 

(Newman 2014). Using the data obtained from the momentum excess, a = 1 runs, this 

algorithm applies to all zero net momentum propagating bodies. We also included an 

additional parameter, source size, L. In doing this, we added a new dimensionless 

parameter, 𝜋𝜋5. This algorithm is more realistic, in that it incorporates the excess 

momentum in the form of self-propulsion as well as the variation of SSB size. Holding 

the source velocity, U = 10 m/s, and the source depth, H = 50 m, constant, we were able 

to deduce the relational dependence of the other quantities to the signature of choice. 

2. Buckingham Pi Theorem  

A formal means of dimensional analysis, Buckingham Pi Theorem is a method to 

make quantifiable relationships of dimensionless variables through matrix mathematics. 
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Determining the number of variables that exist in the problem, and the number of 

physical dimensions or units involved, we can establish the number of pi variables 

needed to solve the relational equation, regardless if the form is known (Buckingham 

1914).  

The equations below signify the dependent, signature variables, 𝜋𝜋1, as well as the 

dimensionless, independent variables, 𝜋𝜋2, 𝜋𝜋3, 𝜋𝜋4, 𝜋𝜋5. 𝜋𝜋1(∆𝜕𝜕𝑚𝑚𝑑𝑑𝑚𝑚) represents the mean-

maximum temperature perturbation measured at the surface of the ocean. 𝜋𝜋1(∆𝑆𝑆) 

signifies the mean surface area extent of the temperature perturbation. 𝜋𝜋1(∆𝑈𝑈𝑅𝑅𝑅𝑅𝑅𝑅) 

denotes the mean RMS velocity or momentum perturbation measured internally. 𝜋𝜋2 is 

representative of the proximity of the SSB to the mixed layer depth; the closer in 

proximity, the larger the signature. 𝜋𝜋3 shows the relationship of the buoyancy frequency 

to the signature, with constant U and H. 𝜋𝜋4 is the ratio of temperature gradient, gravity 

force, depth, and thermal expansion coefficient to source speed. 𝜋𝜋5 represents the source 

size, more specifically, its volume. The analysis for 𝜋𝜋5 was more convoluted than the 

other parameters, hence the extra equations to clarify below. 

𝜋𝜋1(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = 𝐶𝐶 𝜋𝜋2𝛼𝛼2 𝜋𝜋3𝛼𝛼3 𝜋𝜋4𝛼𝛼4 𝜋𝜋5𝛼𝛼5 

𝜋𝜋1(∆𝜕𝜕𝑚𝑚𝑑𝑑𝑚𝑚) =  
𝑠𝑠 𝛼𝛼 ∆𝜕𝜕𝑚𝑚𝑑𝑑𝑚𝑚 𝐻𝐻

𝑈𝑈2  

𝜋𝜋1(∆𝑆𝑆) =  
∆𝑆𝑆
𝐻𝐻2 

𝜋𝜋1(∆𝑈𝑈𝑅𝑅𝑅𝑅𝑅𝑅) =  
∆𝑈𝑈𝑅𝑅𝑅𝑅𝑅𝑅
𝑈𝑈  

𝜋𝜋2 =  
𝐻𝐻 − 𝐷𝐷
𝐻𝐻  

𝜋𝜋3 =  
𝑁𝑁 𝐻𝐻
𝑈𝑈

 

𝜋𝜋4 =  
𝑠𝑠 𝛼𝛼 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕  𝐻𝐻2

𝑈𝑈2  

𝜋𝜋5 =  𝑅𝑅 𝐻𝐻 
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𝑅𝑅 =  𝐿𝐿
3 𝑑𝑑2

 (1 +  𝑚𝑚
�(1−𝑚𝑚)

tanh (�(1 −𝑚𝑚))   and   𝑚𝑚 =  𝑑𝑑
2

𝐿𝐿2
 

3. Curve Fitting for α, Control Values 

By curve fitting the 𝜋𝜋1 signature value to the pi properties that define it, we can 

obtain the relative dependence of each signature to the specific properties. These control 

values, α, signify the dependence each signature has on the pi property. Multiplying the 

properties raised to their control will determine the value on the right hand side of the pi 

theorem equation. We are then left with simple division to determine the pi coefficient 

for that signature. With the coefficient, C, any user can plug 𝜋𝜋 properties into the 

dimensionless algorithm to obtain their surface or internal signature.  

4. Thermal Surface Signature 

The thermal surface signature 𝜋𝜋1, when plotted against the mixed layer depth 𝜋𝜋2, 

yielded an α2 value of 0.5836. There is a strong positive relationship between the surface 

signature and the proximity of the SSB to the MLD as depicted in Figure 57. The closer 

the submerged volume is to the mixed layer depth, especially while still propagating in 

the stratified regime, the stronger the π1 signature, as temperatures from the depths are 

advected to the surface.  

 

 
π2 represents the variations in mixed layer depth, MLD. 

Figure 57.  Fitted Curve of π1(∆Tmax) vs. π2 
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There is an extremely slight negative correlation between the increasing buoyancy 

frequency of π3 and the thermal perturbation signatures of π1. The relational dependence 

of α3 is -0.02847, as shown in green on Figure 58. 

 

 
π3 represents the variations in buoyancy frequency, N2. 

Figure 58.  Fitted Curve of π1(∆Tmax) vs. π3 

 

A nearly linear dependence exists between π1 and π4. Figure 59 portrays the 

relationship with an α4 value, linking the thermal signature to the temperature gradient, 

of 0.9055. We expect a strong positive correlation between the gradient and the 

perturbation because there is more opportunity for temperature advection to the surface, 

with an increased thermocline. 
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π4 represents the variations in temperature gradient, 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕. 

Figure 59.  Fitted Curve of π1(∆Tmax) vs. π4 

 

While there is an obvious increase in perturbation with increasing submerged 

body size, the relationship of π1 and π5 is the opposite. π5 represents the inverse of 

increasing size, just in a more convoluted fashion. The α5 value as visualized in Figure 

60 is -0.6008. 

 

 
π5 represents the variations in source size, L. 

Figure 60.  Fitted Curve of π1(∆Tmax) vs. π5 
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Through the equations presented earlier in the Chapter and the α, curve fitting 

values, we were able to deduce a mean coefficient for the thermal surface signature,  

Cmean = 2.595140894403584. Rearranging the equations, we are left with the final 

equation for the surface thermal perturbation algorithm. 

 

𝜋𝜋1(∆𝜕𝜕𝑚𝑚𝑑𝑑𝑚𝑚) = 2.595 𝜋𝜋20.584 𝜋𝜋3−0.0285 𝜋𝜋40.906 𝜋𝜋5−0.601 

𝑠𝑠 𝛼𝛼 ∆𝜕𝜕𝑚𝑚𝑑𝑑𝑚𝑚 𝐻𝐻
𝑈𝑈2 = 2.595 �

𝐻𝐻 − 𝐷𝐷
𝐻𝐻

0.584

��
𝑁𝑁 𝐻𝐻
𝑈𝑈

−0.0285

��
𝑠𝑠 𝛼𝛼 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕  𝐻𝐻2

𝑈𝑈2

0.906

� (𝑅𝑅 𝐻𝐻−0.601) 

∆𝜕𝜕𝑚𝑚𝑑𝑑𝑚𝑚 = 2.595 �
𝑈𝑈2

𝑠𝑠 𝛼𝛼 𝐻𝐻��
𝐻𝐻 − 𝐷𝐷
𝐻𝐻

0.584

��
𝑁𝑁 𝐻𝐻
𝑈𝑈

−0.0285

��
𝑠𝑠 𝛼𝛼 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕  𝐻𝐻2

𝑈𝑈2

0.906

� (𝑅𝑅 𝐻𝐻−0.601) 

 

5. Surface Area of Thermal Surface Signature 

The proximity of the SSB to the MLD has a linear relationship to the areal extent 

of the thermal signature at the air-sea interface. With an α2 value of 0.984, Figure 61 

illustrates that correlation.  

 

 
π2 represents the variations in mixed layer depth, MLD. 

Figure 61.  Fitted Curve of π1(∆ST) vs. π2 
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Similar to the response between π1 and π2 for the thermal signature, π1 responds 

with a slightly negative slope to the π2 for the areal extent. An increasing stability, the 

more dampened the surface response will be. Figure 62 shows the plot of the α3 value,  

-0.1425. 

 

 
π3 represents the variations in buoyancy frequency, N2. 

Figure 62.  Fitted Curve of π1(∆ST) vs. π3 

 

Again, a very strong positive relationship exists between 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 and π1 for 

surface area of signature. The α4 value of 0.7902 denoted in Figure 63 shows how 

increasing temperature gradients with depth have resultant effects at the surface.  
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π4 represents the variations in temperature gradient, 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕. 

Figure 63.  Fitted Curve of π1(∆ST) vs. π4 

 

Figure 64 displays a plot similar to negative log. The α5 value of -3.365 means a 

very strong negative relationship between size and extent of the signature. π5 again 

represents inverse SSB size and each sub is double the size of the one before it. 

 

 

 
π5 represents the variations in source size, L. 

Figure 64.  Fitted Curve of π1(∆ST) vs. π5 
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The mean coefficient for the thermal surface area signature is Cmean = 

178597996.2637273. The following equations are reordered to give the resultant π1 

signature.  

 

𝜋𝜋1(∆𝑆𝑆) = 1.786𝑥𝑥108 𝜋𝜋20.984 𝜋𝜋3−0.143 𝜋𝜋40.790 𝜋𝜋5−3.365 

∆𝑆𝑆
𝐻𝐻2 = 1.786𝑥𝑥108 �

𝐻𝐻 − 𝐷𝐷
𝐻𝐻

0.984

��
𝑁𝑁 𝐻𝐻
𝑈𝑈

−0.143

��
𝑠𝑠 𝛼𝛼 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕  𝐻𝐻2

𝑈𝑈2

0.790

� (𝑅𝑅 𝐻𝐻−3.365) 

∆𝑆𝑆 = 1.786𝑥𝑥108(𝐻𝐻2)�
𝐻𝐻 − 𝐷𝐷
𝐻𝐻

0.984

��
𝑁𝑁 𝐻𝐻
𝑈𝑈

−0.143

��
𝑠𝑠 𝛼𝛼 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕  𝐻𝐻2

𝑈𝑈2

0.790

� (𝑅𝑅 𝐻𝐻−3.365) 

6. RMS Internal U Zonal Velocity  

As we concluded in the DNS Chapter, there is a minimal, if not inconclusive, 

relationship between the thermal environmental properties and the velocity signatures. A 

very small α2 value of -0.002414 shown in pink in Figure 65, it is apparent the SSB and 

MLD proximity are less important to the internal features of the velocity propagation. 

 

 
π2 represents the variations in mixed layer depth, MLD. 

Figure 65.  Fitted Curve of π1(∆URMS) vs. π2 
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Figure 66 is analogously inconclusive. The effect the buoyancy frequency has on 

the momentum perturbations with an α3 value of 0.004806 does not yield much insight. 

 

 
π3 represents the variations in buoyancy frequency, N2. 

Figure 66.  Fitted Curve of π1(∆URMS) vs. π3 

 

A faintly larger α4 value of 0.0143 is obtained from Figure 67, but the thermal 

gradient still does not strongly sway the internal RMS velocity perturbations either way.  

 

 
π4 represents the variations in temperature gradient, 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕. 

Figure 67.  Fitted Curve of π1(∆URMS) vs. π4 
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The most influential relationship of this series is from π5. With an inverse 

relationship, the larger the submerged prolate ellipsoid, the larger the internal velocity 

signature. The α5 for Figure 68 is -1.044. 

 

 
π5 represents the variations in source size, L. 

Figure 68.  Fitted Curve of π1(∆URMS) vs. π5 

 

The internal RMS velocity perturbation signature is shown in the formula below, 

with a mean coefficient, Cmean = 0.331778190353263.  

 

𝜋𝜋1(∆𝑈𝑈𝑅𝑅𝑅𝑅𝑅𝑅) = 0.332 𝜋𝜋2−0.002 𝜋𝜋30.005 𝜋𝜋40.014 𝜋𝜋5−1.044 

∆𝑈𝑈𝑅𝑅𝑅𝑅𝑅𝑅
𝑈𝑈 = 0.332 �

𝐻𝐻 − 𝐷𝐷
𝐻𝐻

−0.002

��
𝑁𝑁 𝐻𝐻
𝑈𝑈

0.005

��
𝑠𝑠 𝛼𝛼 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕  𝐻𝐻2

𝑈𝑈2

0.014

� (𝑅𝑅 𝐻𝐻−1.044) 

∆𝑈𝑈𝑅𝑅𝑅𝑅𝑅𝑅 = 0.332(𝑈𝑈)�
𝐻𝐻 − 𝐷𝐷
𝐻𝐻

−0.002

��
𝑁𝑁 𝐻𝐻
𝑈𝑈

0.005

��
𝑠𝑠 𝛼𝛼 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕  𝐻𝐻2

𝑈𝑈2

0.014

� (𝑅𝑅 𝐻𝐻−1.044) 
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B. VISUAL APPLICATION OF THE ALGORITHM 

The images below denote the algorithm in a visual application. Using the WOA13 

climatological data in MATLAB, we were able to insert signature values obtained from 

our algorithm to yield geographic images of thermal surface signatures and their areal 

extent. Seasonal climatological norms are used as the baseline profiles in the code. This 

same code enables the user to plug in their respective values, specifying the sub size, 

depth, and speed in a region of the world for a specific season. Similar output images 

were portrayed in Newman (2014), but his work was representative of the towed body 

SB, where we will demonstrate the case of the zero net-momentum, self-propelled, 

submerged body case propagating at zonal velocity, U = 10 m/s, and depth, H = 50 m.  

Figures 69, 70, 71, and 72 depict the seasonal outputs for the thermal surface 

signature and extent. The strongest signatures exist where the ocean surface has warmed 

atop much cooler waters below. The equatorial regions are a prime example, specifically 

alone the eastern boundary currents to include the California and Humboldt Currents, 

which flow along the Americas. These currents generate strong upwelling regions where 

cool water from below is brought to the upper ocean layer. These strong temperature 

gradients, like in our research, will yield the strongest thermal responses. Similarly, the 

northern and southern hemisphere mid-latitude signatures in the northern hemisphere 

summer and winter occur because the surface layers are much warmer due to seasonal 

heating, but the deeper layers remain relatively temperate. These values are more 

symbolic of those generated by our study. This is consistent with the synthetic profiles 

we created to emulate the mid-latitude regions. 

1. Spring Signatures 

In the Spring, we observe temperature differences of up to 2.5°C in the equatorial 

regions and along equatorward eastern boundary currents.  
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Signatures are surface temperature perturbations calculated using algorithm with baseline 
conditions and typical seasonal profiles. 

Figure 69.  Global Thermal Surface Signatures, Spring 

 

2. Summer Signatures 

In the Summer, signatures of up to 2.5°C are seen in the equatorial Eastern Pacific 

Ocean, but also nearly 1.5°C along northern hemisphere mid-latitudes. 
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Signatures are surface temperature perturbations calculated using algorithm with baseline 
conditions and typical seasonal profiles. 

Figure 70.  Global Thermal Surface Signatures, Summer 

 

3. Autumn Signatures 

In the Autumn, temperature responses of up to 2.3°C exist in the equatorial 

regions, and sparse pockets of up to 1°C in the northern hemisphere tropics. 
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Signatures are surface temperature perturbations calculated using algorithm with baseline 
conditions and typical seasonal profiles. 

Figure 71.  Global Thermal Surface Signatures, Autumn 

 

4. Winter Signatures 

In the Spring, thermal signatures of up to 2.2°C are observed in the equatorial 

regions, and along southern hemisphere tropical and mid-latitude regions. 
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Signatures are surface temperature perturbations calculated using algorithm with baseline 
conditions and typical seasonal profiles. 

Figure 72.  Global Thermal Surface Signatures, Winter 
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VI. DISCUSSION 

A. CONCLUSIONS 

Submerged bodies propagating in stratified fluid generate turbulent wakes that 

influence the ocean surface and interior. The pattern and dynamics of these wakes in the 

intermediate range, t ~ 20 minutes, vary for towed and self-propelled submerged bodies. 

Zero net momentum cases, where the thrust and drag forces are balanced, yield the 

minimum perturbations modeled. While the towed body experiments presented a 

significant array of temperature and velocity responses, the accelerating and decelerating 

runs resulted in the strongest surface and internal signatures overall. By polishing the 

algorithm generated by Newman (2014) using the data gathered in this study, we were 

able to create an alternate method for non-acoustic signature prediction.  

B. OPERATIONAL RELEVANCE 

Internal turbulent wakes not only disrupt fluid flow, they affect naval operations. 

Determining the fundamental differences between towed body and self-propelled body 

interactions with various environmental profiles presents naval officials tactical insight. 

As non-acoustic methods of submarine detection become more viable, the findings from 

this and similar studies offer a significant contribution. Satellite sensors can be used to 

measure thermal wake signatures that reach the ocean surface with accuracy to the 

±0.1°C. Confirmation of the initial SAR detection can be made via UUV sensing of 

internal momentum perturbations. The U.S. Navy is interested in optimizing its 

operational success, exploiting limitations of other navies, and minimizing its 

environmental footprint. Unmanned system remote sensing minimizes submarine 

surfacing and the use of active SONAR. This optimizes mission stealth and operational 

safety, while preserving marine life from mass stranding.  

C. FUTURE RESEARCH 

The findings of this study were limited to DNS and CFD. We recommend 

research comparing numerical and field study results to provide an even more 
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comprehensive analysis of propagating submerged body interaction with a stratified 

ocean. 
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APPENDIX  A. DNS EXPERIMENTS 

Table 1.  Experiments Listed with Varying Control Parameters 

Exp.# Parameter Value N² MLD 𝛛𝛛𝛛𝛛/𝛛𝛛𝛛𝛛 L a H U 

1 2.5e-06 sˉ² 2.5e-06 sˉ² 30 m 0.03 °C/m 10 m x 80 m x 10 m 1 50 m 10 m/s 

2 5e-06 sˉ² 5e-06 sˉ² 30 m 0.03 °C/m 10 m x 80 m x 10 m 1 50 m 10 m/s 

3 1e-05 sˉ² 1e-05 sˉ² 30 m 0.03 °C/m 10 m x 80 m x 10 m 1 50 m 10 m/s 

4 2e-05 sˉ² 2e-05 sˉ² 30 m 0.03 °C/m 10 m x 80 m x 10 m 1 50 m 10 m/s 

5 4e-05 sˉ² 4e-05 sˉ² 30 m 0.03 °C/m 10 m x 80 m x 10 m 1 50 m 10 m/s 

6 1 m 1e-05 sˉ² 1 m 0.03 °C/m 10 m x 80 m x 10 m 1 50 m 10 m/s 

7 10 m 1e-05 sˉ² 10 m 0.03 °C/m 10 m x 80 m x 10 m 1 50 m 10 m/s 

8 20 m 1e-05 sˉ² 20 m 0.03 °C/m 10 m x 80 m x 10 m 1 50 m 10 m/s 

9 30 m 1e-05 sˉ² 30 m 0.03 °C/m 10 m x 80 m x 10 m 1 50 m 10 m/s 

10 40 m 1e-05 sˉ² 40 m 0.03 °C/m 10 m x 80 m x 10 m 1 50 m 10 m/s 

11 0.01 °C/m 1e-05 sˉ² 30 m 0.01 °C/m 10 m x 80 m x 10 m 1 50 m 10 m/s 

12 0.02 °C/m 1e-05 sˉ² 30 m 0.02 °C/m 10 m x 80 m x 10 m 1 50 m 10 m/s 

13 0.03 °C/m 1e-05 sˉ² 30 m 0.03 °C/m 10 m x 80 m x 10 m 1 50 m 10 m/s 

14 0.04 °C/m 1e-05 sˉ² 30 m 0.04 °C/m 10 m x 80 m x 10 m 1 50 m 10 m/s 

15 0.05 °C/m 1e-05 sˉ² 30 m 0.05 °C/m 10 m x 80 m x 10 m 1 50 m 10 m/s 

16 5 m x 40 m x 5 m 1e-05 sˉ² 30 m 0.03 °C/m 5 m x 40 m x 5 m 1 50 m 10 m/s 

17 10 m x 80 m x 10 m 1e-05 sˉ² 30 m 0.03 °C/m 10 m x 80 m x 10 m 1 50 m 10 m/s 

18 20 m x 160 m x 20 m 1e-05 sˉ² 30 m 0.03 °C/m 20 m x 160 m x 20 m 1 50 m 10 m/s 

20 -1 1e-05 sˉ² 30 m 0.03 °C/m 10 m x 80 m x 10 m -1 50 m 10 m/s 

21 0 1e-05 sˉ² 30 m 0.03 °C/m 10 m x 80 m x 10 m 0 50 m 10 m/s 

22 1 1e-05 sˉ² 30 m 0.03 °C/m 10 m x 80 m x 10 m 1 50 m 10 m/s 

23 2 1e-05 sˉ² 30 m 0.03 °C/m 10 m x 80 m x 10 m 2 50 m 10 m/s 

24 10 m 1e-05 sˉ² 30 m 0.03 °C/m 10 m x 80 m x 10 m 1 10 m 10 m/s 

25 20 m 1e-05 sˉ² 30 m 0.03 °C/m 10 m x 80 m x 10 m 1 20 m 10 m/s 

26 50 m 1e-05 sˉ² 30 m 0.03 °C/m 10 m x 80 m x 10 m 1 50 m 10 m/s 

27 60 m 1e-05 sˉ² 30 m 0.03 °C/m 10 m x 80 m x 10 m 1 60 m 10 m/s 

28 70 m 1e-05 sˉ² 30 m 0.03 °C/m 10 m x 80 m x 10 m 1 70 m 10 m/s 

29 5 m/s 1e-05 sˉ² 30 m 0.03 °C/m 10 m x 80 m x 10 m 1 50 m 5 m/s 

30 7.5 m/s 1e-05 sˉ² 30 m 0.03 °C/m 10 m x 80 m x 10 m 1 50 m 7.5 m/s 

31 10 m/s 1e-05 sˉ² 30 m 0.03 °C/m 10 m x 80 m x 10 m 1 50 m 10 m/s 

32 12.5 m/s 1e-05 sˉ² 30 m 0.03 °C/m 10 m x 80 m x 10 m 1 50 m 12.5 m/s 

33 15 m/s 1e-05 sˉ² 30 m 0.03 °C/m 10 m x 80 m x 10 m 1 50 m 15 m/s 

Note: Experiments 3, 9, 13, 17, 22, 26, and 31 are all the same baseline simulation, and 
are included to demonstrate experimental variations within their respective sets. 
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APPENDIX  B. RESPONSE VALUES 

Table 2.  Maximum Response Values by Experiment 

Parameter, Value ∆TMAX, t ∆ST, t TRMS URMS TZ UZ 

N2=2.5e-06 sˉ² 1.2692 °C, 480 s 63210 m², 640 s 0.3424 °C 0.0764 m/s 0.6481 °C 0.1006 m/s 

N2=5e-06 sˉ² 1.2138 °C, 551.1 s 63320 m², 630 s 0.3165°C 0.0744 m/s 0.6483 °C 0.1104 m/s 

N2=1e-05 sˉ² 1.3653 °C, 551.1 s 54000 m², 630 s 0.3105 °C 0.0795 m/s 0.6635 °C 0.1046 m/s 

N2=2e-05 sˉ² 1.0360 °C, 472.4 s 49470 m², 551 s 0.2951 °C 0.0791 m/s 0.5919 °C 0.1043 m/s 

N2=4e-05 sˉ² 0.8879 °C, 472.4 s 36440 m², 784 s 0.2593 °C 0.0771 m/s 0.5629 °C 0.1105 m/s 

MLD=1 m 1.3786°C, 1120 s 132140 m², 640 s 0.2582 °C 0.0766 m/s 0.3393 °C 0.0996 m/s 

MLD=10 m 1.4324 °C, 880 s 101410 m², 960 s 0.2569 °C 0.0763 m/s 0.4447 °C 0.0973 m/s 

MLD=20 m 1.2541 °C, 880 s 67534 m², 640 s 0.2865 °C 0.0788 m/s 0.5852°C 0.0979 m/s 

MLD=30 m 1.3653 °C, 560 s 53996 m², 640 s 0.3164 °C 0.0795 m/s 0.6008 °C 0.1122 m/s 

MLD=40 m 0.8318 °C, 800 s 40866 m², 880 s 0.3443 °C 0.0772 m/s 0.6842 °C 0.1046 m/s 

0.01 °C/m  0.4118 °C, 400 s 23481 m², 640 s 0.1032 °C 0.0773 m/s 0.2191 °C 0.1100 m/s 

𝜕𝜕T/𝜕𝜕z =0.02 °C/m 0.7695 °C, 320 s 45669 m², 560 s 0.2122 °C 0.0775 m/s 0.3916 °C 0.1033 m/s 

𝜕𝜕T/𝜕𝜕z =0.03 °C/m 1.3653 °C, 560 s 53996 m², 640 s 0.3164 °C 0.0795 m/s 0.6152 °C 0.1021 m/s 

𝜕𝜕T/𝜕𝜕z =0.04 °C/m  1.7914 °C, 800 s 74706 m², 640 s 0.4166 °C 0.0811 m/s 0.8246 °C 0.1089 m/s 

𝜕𝜕T/𝜕𝜕z =0.05 °C/m 1.9430 °C, 880 s 76102 m², 960 s 0.5374 °C 0.0794 m/s 1.0931 °C 0.1052 m/s 

L=5 m x 40 m x 5 m 0.0000 °C, 0 s 0 m², 0 s 0.1761 °C 0.0349 m/s 0.5799 °C 0.0587 m/s 

L=10 m x 80 m x 10 m 1.3653 °C, 560 s 53996 m², 640 s 0.3164 °C 0.0795 m/s 0.6008 °C 0.1122 m/s 

L=20 m x 160 m x 20 m  1.6418 °C, 640 s 468440 m², 640 s 0.4694 °C 0.1491 m/s 0.7946 °C 0.2398 m/s 

a=-1 1.474 °C, 1120 s 194060 m², 1120 s 0.3949 °C 0.1935 m/s 0.6884 °C 0.2397 m/s 

a=0 1.5086 °C, 1040 s 78399 m², 1200 s 0.3215 °C 0.1068 m/s 0.668 °C 0.1441 m/s 

a=1 1.3653 °C, 560 s 53996 m², 640 s 0.3164 °C 0.0795 m/s 0.6008 °C 0.1122 m/s 

a=2 0.9547 °C, 1120 s 33910 m², 1120 s 0.3498 °C 0.1303 m/s 0.6961 °C 0.2483 m/s 

H=10 m 0.0000 °C, 0 s 0 m², 0 s 0.2276 °C 0.0398 m/s 0.9246 °C 0.0475 m/s 

H=20 m 0.2975 °C, 80 s 2462 m², 160 s 0.5429 °C 0.0851 m/s 0.8004 °C 0.0906 m/s 

50 m 1.3653 °C, 560 s 53996 m², 640 s 0.3164 °C 0.0795 m/s 0.6152 °C 0.1021 m/s 

H=60 m 1.3386 °C, 960 s 27020 m², 800 s 0.3205 °C 0.0769 m/s 0.7233 °C 0.1144 m/s 

H=70 m 0.3687 °C, 640 s 920 m², 640 s 0.2943 °C 0.0738 m/s 0.7789 °C 0.1613 m/s 

U=5 m/s 1.1402 °C, 1120 s 27179 m², 1280 s 0.2992 °C 0.0402 m/s 0.6054 °C 0.0511 m/s 

U=7.5 m/s 1.0063 °C, 1200 s 61713 m², 1200 s 0.3317 °C 0.06 m/s 0.6415 °C 0.0808 m/s 

U=10 m/s 1.3653 °C, 560 s 53996 m², 640 s 0.3164 °C 0.0795 m/s 0.6008 °C 0.1122 m/s 

U=12.5 m/s 1.1496 °C, 1280 s 52096 m², 1040 s 0.3355 °C 0.0968 m/s 0.6407 °C 0.1299 m/s 

U=15 m/s 1.2232 °C, 400 s 41402 m², 400 s 0.3899 °C 0.1114 m/s 0.7871 °C 0.1151 m/s 

Note: The responses were averaged in half grid space in order to properly capture the 
extent of the maximum values and neglect the undisturbed grid space. They were also 
averaged in half time in order to measure the signature once it reached the surface. 
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Table 3.  Mean Response Values by Experiment 

Parameter, Value ∆TMAX ∆ST TRMS URMS TZ UZ 

N²=2.5e-06 sˉ² 0.7988 °C 29556 m² 0.2423 °C 0.0630 m/s 0.3119 °C 0.0738 m/s 

N²=5e-06 sˉ² 0.7743 °C 30175 m² 0.2266 °C 0.0624 m/s 0.2984 °C 0.0735 m/s 

N²=1e-05 sˉ² 0.8380 °C 27242 m² 0.2169 °C 0.0646 m/s 0.2854 °C 0.0766 m/s 

N²=2e-05 sˉ² 0.7753 °C 25098 m² 0.2108 °C 0.0640 m/s 0.2817 °C 0.0752 m/s 

N²=4e-05 sˉ² 0.6239 °C 18484 m² 0.1901 °C 0.0643 m/s 0.2328 °C 0.0751 m/s 

MLD =1 m 1.0738 °C 77517 m² 0.1983 °C 0.0655 m/s 0.2473 °C 0.0735 m/s 

MLD =10 m 1.1106 °C 55348 m² 0.1976 °C 0.0655 m/s 0.2459 °C 0.0704 m/s 

MLD =20 m 0.9753 °C 42586 m² 0.2237 °C 0.0665 m/s 0.2633 °C 0.0740 m/s 

MLD =30 m 0.8936 °C 30504 m² 0.2432 °C 0.0670 m/s 0.2921 °C 0.0721 m/s 

MLD =40 m 0.5232 °C 19722 m² 0.2724 °C 0.0665 m/s 0.3083 °C 0.0720 m/s 

𝜕𝜕T/𝜕𝜕z =0.01 °C/m 0.2954 °C 12759 m² 0.0818 °C 0.0665 m/s 0.0972 °C 0.0717 m/s 

𝜕𝜕T/𝜕𝜕z =0.02 °C/m 0.5078 °C 23035 m² 0.1664 °C 0.0672 m/s 0.1963 °C 0.0753 m/s 

𝜕𝜕T/𝜕𝜕z =0.03 °C/m 0.8737 °C 29706 m² 0.2392 °C 0.0666 m/s 0.3008 °C 0.0735 m/s 

𝜕𝜕T/𝜕𝜕z =0.04 °C/m 1.1746 °C 44383 m² 0.3296 °C 0.0692 m/s 0.386 °C 0.0781 m/s 

𝜕𝜕T/𝜕𝜕z =0.05 °C/m 1.1745 °C 44893 m² 0.4227 °C 0.0678 m/s 0.4953 °C 0.0748 m/s 

L=5 m x 40 m x 5 m 0.0000 °C 0 m² 0.1391 °C 0.0295 m/s 0.1283 °C 0.0285 m/s 

L=10 m x 80 m x 10 m 0.8936 °C 30504 m² 0.2432 °C 0.0670 m/s 0.2921 °C 0.0721 m/s 

L=20 m x 160 m x 20 m 1.3551 °C 308290 m² 0.3771 °C 0.1338 m/s 0.4556 °C 0.1366 m/s 

a=-1 0.918  °C 61427 m² 0.2188 °C 0.1239 m/s 0.3816 °C 0.1923 m/s 

a=0 0.9473 °C 46915 m² 0.2535 °C 0.0863 m/s 0.2904 °C 0.1036 m/s 

a=1 0.8936 °C 30504 m² 0.2432 °C 0.0670 m/s 0.2921 °C 0.0721 m/s 

a=2 0.6341 °C 14159 m² 0.2277 °C 0.1024 m/s 0.3292 °C 0.1141 m/s 

H=10 m 0.0000 °C 0 m² 0.1663 °C 0.0186 m/s 0.0836 °C 0.0140 m/s 

H=20 m 0.1364 °C 778 m² 0.4307 °C 0.0533 m/s 0.4960 °C 0.0502 m/s 

H=50 m 0.8737 °C 29706 m² 0.2392 °C 0.0666 m/s 0.3008 °C 0.0735 m/s 

H=60 m 0.7949 °C 12333 m² 0.2450 °C 0.0657 m/s 0.2747 °C 0.0705 m/s 

H70 m 0.1284 °C 215 m² 0.2312 °C 0.0633 m/s 0.2618 °C 0.0666 m/s 

U=5 m/s 0.6240 °C 7583.3 m² 0.1983 °C 0.0304 m/s 0.2801 °C 0.0397 m/s 

U=7.5 m/s 0.7020 °C 30159 m² 0.2479 °C 0.0477 m/s 0.3038 °C 0.0586 m/s 

U=10 m/s 0.8936 °C 30504 m² 0.2432 °C 0.0670 m/s 0.2921 °C 0.0721 m/s 

U=12.5 m/s 0.8310 °C 29630 m² 0.2682 °C 0.0854 m/s 0.3161 °C 0.0878 m/s 

U=15 m/s 0.8070 °C 11800 m² 0.3293 °C 0.0967 m/s 0.3495 °C 0.0961 m/s 

Note: The responses were averaged in half grid space in order to properly capture the 
extent of the maximum values and neglect the undisturbed grid space. 
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APPENDIX  C. PI THEOREM VALUES 

Table 4.  ∆TMAX Values 

π1 π2 π3 π4 π5 α2 α3 α4 α5 C 

0.0007828  0.0000125    -0.02847   2.433455079 

0.0007588  0.000025    -0.02847   2.405858955 

0.0008212  0.00005    -0.02847   2.655596609 

0.0007598  0.0001    -0.02847   2.506009874 

0.0006114  0.0002    -0.02847   2.056739302 

0.0011 0.98    0.5836    2.67150125 

0.0011 0.8    0.5836    3.007402824 

0.001 0.6    0.5836    3.233800059 

0.0009 0.4    0.5836    3.687419372 

0.0005 0.2    0.5836    3.069948806 

0.0003   0.0005    0.9055  2.623419338 

0.0005   0.001    0.9055  2.3341771 

0.0009   0.0015    0.9055  2.910420053 

0.0012   0.002    0.9055  2.990627928 

0.0012   0.0025    0.9055  2.443488886 

0    74.995    -0.6008 0 

0.0009    37.495    -0.6008 2.910420053 

0.0013    18.75    -0.6008 2.772250611 

 
π1 values depend on the π2, π3, π4, and π5 values, and change for each varying 
experimental parameter. α values are calculated based on the plotting of the π dependent 
variables. C coefficients are obtained from the equations and averaged to yield a Cmean. 
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Table 5.  ∆ST Values 

π1 π2 π3 π4 π5 α2 α3 α4 α5 C 

31.0068  0.0000125    -0.1425   345890656.8 

22.1392  0.000025    -0.1425   272609245.6 

17.0344  0.00005    -0.1425   231527335 

12.2016  0.0001    -0.1425   183058116.6 

7.8888  0.0002    -0.1425   130641129.4 

11.8224 0.98    0.984    99155190.42 

11.8224 0.8    0.984    121071344.2 

10.8968 0.6    0.984    148106599.8 

10.0392 0.4    0.984    203351948 

7.3936 0.2    0.984    296222946.6 

5.1036   0.0005    0.7902  165262103.4 

9.214   0.001    0.7902  172532514.8 

11.8824   0.0015    0.7902  161502630.3 

17.7532   0.002    0.7902  192231913 

17.9572   0.0025    0.7902  163008094 

0    74.995    -3.365 0 

12.2016    37.495    -3.365 165841117.4 

123.316    18.75    -3.365 162751047.3 

π1 values depend on the π2, π3, π4, and π5 values, and change for each varying 
experimental parameter. α values are calculated based on the plotting of the π dependent 
variables. C coefficients are obtained from the equations and averaged to yield a Cmean. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 



 87 

Table 6.  ∆URMS Values 

π1 π2 π3 π4 π5 α2 α3 α4 α5 C 

0.0063  0.0000125    0.004806   0.320611678 

0.0062  0.000025    0.004806   0.314473263 

0.0065  0.00005    0.004806   0.328593255 

0.0064  0.0001    0.004806   0.322461977 

0.0064  0.0002    0.004806   0.321389557 

0.0066 0.98    -0.002414    0.334043931 

0.0066 0.8    -0.002414    0.333880323 

0.0067 0.6    -0.002414    0.338703817 

0.0067 0.4    -0.002414    0.338372458 

0.0067 0.2    -0.002414    0.337806747 

0.0067   0.0005    0.0143  0.344066924 

0.0067   0.001    0.0143  0.340673377 

0.0067   0.0015    0.0143  0.338703817 

0.0069   0.002    0.0143  0.347382355 

0.0068   0.0025    0.0143  0.341257153 

0.0029    74.995    -1.044 0.302307437 

0.0067    37.495    -1.044 0.338703817 

0.0134    18.75    -1.044 0.328575539 

π1 values depend on the π2, π3, π4, and π5 values, and change for each varying 
experimental parameter. α values are calculated based on the plotting of the π dependent 
variables. C coefficients are obtained from the equations and averaged to yield a Cmean. 

 



 88 

THIS PAGE INTENTIONALLY LEFT BLANK  



 89 

LIST OF REFERENCES 

Adcroft, A., C. Hill, J. M. Campin, J. Marshall, and P. Heimbach, 2004: Overview of the 
formulation and numerics of the MITgcm. Proceedings of the ECMWF seminar 
series on Numerical Methods, Recent developments in numerical methods for 
atmosphere and ocean modelling, 139. 

Afanasyev, Y. D., 2004: Wakes behind towed and self-propelled bodies: Asymptotic 
theory. Phys. Fluids 16, 3235–3238. 

Afanasyev, Y. D. and V. N. Korabel, 2006: Wakes and vortex streets generated by 
translating force and force doublet: laboratory experiments. J. Fluid Mech. 553, 
119–141. 

Alpers, W., 2015: Ocean internal waves. Encyc. Rem. Sens. 433–437. 

Boyer, T. P., Antonov, J.I., Baranova, O.K., Coleman, C., Garcia, H.E., Grodsky, A., 
Johnson, D.R., Locarnini, R.A., Mishonov, A.V., O’Brien, T.D., Paver, C.R., 
Reagan, J.R., Seidov, D., Smolyar, I.V., and Zweng, M.M., 2013. World Ocean 
Database 2013. S. Levitus, Editor, A. Mishonov, Technical Editor, NOAA Atlas 
NESDIS 72, 209. 

Buckingham, E., 1914: On physically similar systems; illustrations of the use of 
dimensional equations. Phys. Rev. 4, 345–376. 

de Stadler, M. B. and S. Sarkar, 2011: Simulation of a propelled wake with moderate 
excess momentum in a stratified fluid. J. Fluid Mech. 692, 28–52.  

Diamessis, P. J., G. R. Spedding, and J. A. Domaradzki, 2010: Similarity scaling and 
vorticity structure in high-Reynolds-number stably stratified turbulent wakes. J. 
Fluid Mech. 671, 60. 

Emery, W. J., S. Castro, G. A. Wick, P. Schluessel, and C. Donlon, 2001: Estimating sea 
surface temperature from infrared satellite and in situ temperature data. Bull. 
Amer. Meteor. Soc. 82, 2773–2785. 

Gallacher, P. C. and D. A. Hebert, 2009: Simulating a self-propelled submerged body in a 
coastal ocean hindcast using the NRL-MIT nonhydrostatic model. Naval 
Research Laboratory, Ocean Sciences Branch, Stennis Space Center, 2–9. 

Garrett, C. and W. Munk, 1979: Internal waves in the ocean. Annu. Rev. Fluid Mech. 11, 
339–369. 

Haun, E. A., 2012: Dynamic and kinematic signatures of propagating bodies in 
thermohaline staircases. Master’s Thesis, Department of Oceanography, Naval 
Postgraduate School, 99. 



 90 

Higuchi, H. and T. Kubota, 1990: Axisymmetric wakes behind a slender body including 
zeromomentum configurations. Phys. Fluids 2, 1615–1623. 

Klemas, V., 2012: Remote sensing of ocean internal waves: An overview. J. Coast. Res. 
2012 28, 540–546. 

Landau, L. D. and E. M. Lifshitz, 1987: Course of theoretical physics: Fluid mechanics. 
Pergamon Press, 6, 1–5. 

Lin, J. T. and Y. H. Pao, 1979: Wakes in stratified fluids. Annu. Rev. Fluid Mech. 11, 
317–338.  

Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, H. E. Garcia, O. K. 
Baranova, M. M. Zweng, C. R. Paver, J. R. Reagan, D. R. Johnson, M. Hamilton, 
and D. Seidov, 2013. World Ocean Atlas 2013, Volume 1: Temperature. S. 
Levitus, Editor; A. Mishonov, Technical Editor, NOAA Atlas NESDIS 73, 40. 

Meunier, P. and G. R. Spedding, 2004: A loss of memory in stratified momentum wakes. 
Phys. Fluids 12, 298–305. 

Meunier, P. and G. R. Spedding, 2006: Stratified propelled wakes. J. Fluid Mech. 552, 
229–256.  

Newman, T. P., 2014: Surface signatures of submerged bodies propagating in stratified 
fluids. Master’s Thesis, Department of Oceanography, Naval Postgraduate 
School, 59. 

Novikov, B. G., 2009: Numerical simulation of dynamics of turbulent wakes behind 
towed bodies in linearly stratified media. J. Eng. Thermo. 18, 279.  

Orlanski, I., 1976: A simple boundary condition for unbounded hyperbolic flows. J. 
Comput. Phys. 21, 251–269.  

Schnitzler, H. U., E. K. V. Kalko, I. Kaipf, and A. D. Grinnell, 1994: Fishing and 
echolocation behavior of the greater bulldog bat, Noctilio leporinus, in the field. J. 
Behav. Eco. Sociobio. 35, 327–345. 

Voropayev, S. I. and S. A. Smirnov, 2003: Vortex streets generated by a moving 
momentum source in a stratified fluid. Phys. Fluids 15, 618–624. 

Zweng, M. M, J. R. Reagan, J. I. Antonov, R. A. Locarnini, A. V. Mishonov, T. P. Boyer, 
H. E. Garcia, O. K. Baranova, D. R. Johnson, D. Seidov, and M. M. Biddle, 
2013. World Ocean Atlas 2013, Volume 2: Salinity. S. Levitus, Editor, A. 
Mishonov Technical Editor; NOAA Atlas NESDIS 74, 39. 

 



 91 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
 Ft. Belvoir, Virginia 
 
2. Dudley Knox Library 
 Naval Postgraduate School 
 Monterey, California 


	NAVAL
	POSTGRADUATE
	SCHOOL
	I. Introduction
	A. FLUID FLOWs
	B. historical studies
	C. Momentum excess
	D. Direct Numerical Simulation
	E. Experimental Design

	II. Model Description
	III. Direct Numerical Simulations
	A. Varying Buoyancy Frequency
	1. Impact on Thermal Surface Signatures and Extent
	2. Impact on Temperature Perturbations in the Interior
	3. Impact on Velocity Perturbations in the Interior

	B. Varying Mixed Layer Depth
	1. Impact on Thermal Surface Signature and Extent
	2. Impact on Temperature Perturbations in the Interior
	3. Impact on Velocity Perturbations in the Interior

	C. Varying Temperature Gradient
	1. Impact on Thermal Surface Signature and Extent
	2. Impact on Temperature Perturbations in the Interior
	3. Impact on Velocity Perturbations in the Interior

	D. Varying Source Velocity
	1. Impact on Thermal Surface Signature and Extent
	2. Impact on Temperature Perturbations in the Interior
	3. Impact on Velocity Perturbations in the Interior

	E. Varying SourCe Depth
	1. Impact on Thermal Surface Signature and Extent
	2. Impact on Temperature Perturbations in the Interior
	3. Impact on Velocity Perturbation in the Interior

	F. Varying Source Size
	1. Impact on Thermal Surface Signature and Extent
	2. Impact on Temperature Perturbations in the Interior
	3. Impact on Velocity Perturbations in the Interior

	G. Varying Momentum Excess
	1. Impact on Thermal Surface Signature and Extent
	2. Impact on Temperature Perturbations in the Interior
	3. Impact on Velocity Perturbations in the Interior


	IV. Analysis of Results
	A. Experimental responses
	1. Environmental Parameters
	2. Source Parameters


	V. Prognostic Formula
	A. Algorithm
	1. Momentum Excess and Additional Parameter
	2. Buckingham Pi Theorem
	3. Curve Fitting for α, Control Values
	4. Thermal Surface Signature
	5. Surface Area of Thermal Surface Signature
	6. RMS Internal U Zonal Velocity

	B. visual application of the algorithm
	1. Spring Signatures
	2. Summer Signatures
	3. Autumn Signatures
	4. Winter Signatures


	VI. Discussion
	A. Conclusions
	B. Operational Relevance
	C. Future Research

	appendix  a. DNS Experiments
	appendix  b. Response Values
	appendix  C. pi theorem values
	List of References
	initial distribution list



