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(1) 

(2) 

1.0 MAJOR ACCOMPLISHMENTS 

We have studied the temperature dependence of the frequency shift and the amplitude 
dependence of the vibration frequency for <100> length extension modes in n-doped silicon (Si) 
microelectromechanical (MEMS) resonators and have started a comparison with the 
experimental data from Kenny’s group. The theoretical analysis is based on minimizing the free 
energy 
 

 
 
over the electron densities 𝑛𝑛𝛼𝛼(𝒓𝒓) in different valleys 𝛼𝛼 = 1,2,3 for a given strain 𝜀𝜀𝑖𝑖𝑖𝑖(𝒓𝒓) with the 
constraint that the total density remains constant, 𝛿𝛿𝐹𝐹⁄𝛿𝛿𝑛𝑛𝛼𝛼(𝒓𝒓) = 𝜇𝜇.  Parameters         are the 
parameters of the deformation potential, with typical values ~10eV; Fv is the free energy of 
vibrations in the absence of electron-phonon coupling.  The minimization applies where the rate 
of intervalley electron transitions largely exceeds the typical frequencies of the studied modes, 
which is the case in the experiment.  The physical idea is that strain shifts the electron energy 
minima with respect to each other, making the populations of different minima different, as 
illustrated in Figure 1. In turn, the difference in the populations leads to stress. 
 

 
Figure 1:  Strain Shifts Valleys, Leading to a Population Difference 

 
The minimized electron free energy takes the form of a series expansion in the strain tensor,  
 

 
 
Tensors         are proportional to the electron density and to the parameter                            with  
n = 2,3,4. This parameter is extremely large for room temperature and for the typical doping 
densities of 1019 cm-3 , reaching the value of order of 103 >> 1.  
 
At the beginning of the project, the analysis was applied to <100> extensional modes, where 
tensor 𝜀𝜀𝑖𝑖k has only diagonal components along the axes of the electron valleys and the coupling 
energy               is nonzero.  In the analysis we have also taken into account the internal 
nonlinearity of the crystal lattice, which leads to the temperature dependence of the mode 
frequencies even in the absence of the electron-phonon coupling.  This effect is additive in terms 
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(3) 

(4) 

(5) 

of the frequency shift, as seen from the expression for the free energy.  The quartic in 𝜀𝜀𝜀 term of 
internal nonlinearity (in energy) is small compared to the electron-phonon coupling induced 
nonlinearity, and therefore it may be disregarded in calculating the nonlinear frequency shift. 
 
In the second quarter, we extended the results to <110> modes. In these modes, strain tensor has 
nonzero off-diagonal (shear) components. A major extension of the project is that we have 
started exploring the effective two-phonon coupling that results from the phonon-induced 
anticrossing of the bands. In silicon, in the conventionally used effective mass approximation 
there is no linear coupling between shear strain and conduction electrons. However, shear strain 
has pronounced effects on the electronic structure beyond this approximation. It comes primarily 
from the vicinity of the degeneracy (Dirac-type) point in the band structure, where two electron 
energy bands intersect. This is point X on the boundary of the Brillouin zone shown in Figure 2 
below. 
 

 
Figure 2:  Si Brillouin Zone and Conduction Band Valleys 

 
The Hamiltonian around point 𝑋𝑋 along the 𝑘𝑘𝑧𝑧 axis is written as: 
 

 
 
Here,  

 
 
As a result, the kz- valley’s bottom shifts quadratically with shear strain: 
 

 
 
where 𝛿𝛿𝐸𝐸 is the splitting of the energy bands at the positons of the valleys. A similar expression 
applies to other valleys.  Effectively, this result is equivalent to a two-phonon coupling.  
Incorporating this effect into the model described above makes it possible to calculate the effects 
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of the shear electron-phonon coupling on the linear and nonlinear elasticity for <110> modes. 
This is a major endeavor, and the calculations are at the early stage. 
 
In the third quarter we have performed detailed calculations of the two-phonon coupling due to 
shear strain. We have shown how it affects the temperature dependence of the mode frequencies 
and the mode nonlinearity, including the dependence of the mode frequency on the vibration 
amplitude. We have also started a comparison of the results with the experiments from the 
Kenny group on the frequency dependence on the temperature and the amplitude. 
 
In the fourth quarter we have summarized the results in a paper, which is included as  
Appendix A, and have developed a code that is publicly available at:  
http://www.pa.msu.edu/people/dykman/nonlinear_elasticity 
 
This code allows calculating the temperature dependent corrections to the frequency due to the 
doping and the nonlinear frequency shift due to finite vibration amplitude in Si resonators for 
different types of modes. The code provides both the analytical expressions and evaluates them 
numerically using the parameters. It also allows finding the doping-induced corrections to linear 
and nonlinear elasticity in germanium (Ge). 
  

http://www.pa.msu.edu/people/dykman/nonlinear_elasticity
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2.0 MAJOR FINDINGS 

• Fully analyzed the effect of the degeneracy of the conduction bands at the points 𝑋𝑋 of the 
Brillouin zone on the mode nonlinearity and the temperature dependent frequency shift due 
to the doping. The analysis goes beyond the conventional deformation potential 
approximation and is necessary to describe the coupling to shear strain modes. 

 
• Tested the theory against the existing in the literature experimental data on the effect of 

doping on the speed of transverse sound and the hitherto unexplained effect of uniaxial stress 
on the speed of sound in the geometry where the deformation potential does not lead to such 
an effect. 

 
• In collaboration with Kenny’s group, obtained new experimental data on the doping- induced 

temperature dependence of the frequency and on the nonlinearity of the <110> and <100> 
Lame modes. 

 
• Described the experimental data on the temperature and amplitude dependence of the 

frequency of the Lame modes in Si microresonators. The results describe the experimental 
observations on the anomalous softening nonlinearity in the <110> modes, which behaves 
monotonically with doping density, as opposed to the hardening nonlinearity in the <100> 
modes which behaves in a non-monotonic way with doping density. 

 
• Developed a symbolic and numerical codes to evaluate the effects for different modes in Si 

and Ge microresonators. 
 
The modes used in the simulations of Si resonators are shown in Figure 3. The results of a 
comparison of the theory with the experimental data on the nonlinear frequency shift of the 
Lame modes in Si microresonators are shown in Figure 4. The comparison is performed for two 
donor densities. The data refer to two types of modes. One mode is coupled to the electron 
density via deformation potential (the Lame mode in a plate cut along the <100> axes). The other 
mode refers to the plate cut along <110> axes, where the displacement field in is pure shear and 
the coupling to the electron density is through the band splitting at the X points of the Brillouin 
zone. 
 

 
Figure 3:  Two Types of Vibrational Modes in Microelectromechanical Systems (MEMS) 

used to calculate the Linear and Nonlinear Frequency Shift 
Left panel: Length extension mode in the <110> direction in a thin narrow resonator. Right 

panel: Lame mode in a thin plate resonator with the sides along <110>. 



5 
Approved for public release; distribution unlimited. 

 
 

Figure 4:  Nonlinear Frequency Shift Scaled by the Squared Vibration Amplitude      vs. 
Temperature in n-doped Si Lame Resonators 

Solid lines show the present theory. Dots:  experimental points obtained by the group of  
T. Kenny. The experimental values of the amplitude are obtained assuming the gap between the 
resonator and the electrodes to be 1.1𝜇𝜇m in the absence of vibrations. The donor density in the 
left panel is: 𝑛𝑛 = 2.8 × 1018cm-3; in the right panel 𝑛𝑛 = 5.9 × 1019 cm-3. 
 
The theory has no adjustable parameters and is in an excellent agreement with the experiment. 
 
The obtained results show that the goal of the project has been reached. We have full quantitative 
theory of the temperature- and density-dependent change of the vibration frequency of 
eigenmodes in resonators and of their dependence on the vibration amplitude. 
 
  



6 
Approved for public release; distribution unlimited. 

3.0 THE TEAM 

The work was done at Michigan State University. The principal investigators were Mark 
Dykman and Steven Shaw. The graduate student was Kirill Moskovtsev. The work was done in 
close cooperation with the team of Thomas Kenny at Stanford University. 
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APPENDIX A:  STRONG VIBRATION NONLINEARITY IN 
SEMICONDUCTOR-BASED NANOMECHANICAL SYSTEMS 

Kirill Moskovtsev1 and M. I. Dykman1 
1Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA 

(Dated: November 28, 2016) 
 
We study the effect of the electron-phonon coupling on vibrational eigenmodes of nano- and 
micro-mechanical systems made of semiconductors with equivalent energy valleys. We show 
that the coupling can lead to a strong mode nonlinearity. The mechanism is the lifting of the 
valley degeneracy by the strain. The redistribution of the electrons between the valleys is 
controlled by a large ratio of the electron-phonon coupling constant to the electron chemical 
potential or temperature. We find the quartic in the strain terms in the electron free energy, which 
determine the amplitude dependence of the mode frequencies. This dependence is calculated for 
silicon micro- systems. It is significantly different for different modes and the crystal orientation, 
and can vary nonmonotonously with the electron density and temperature. 
 
I. Introduction 
 
The electron-phonon coupling strongly affects vibrational modes of nano- and micro-electro-
mechanical systems. Much  interest have  attracted the effects  of  this coupling related to the 
reduced dimensionality of the electron system, as they make it possible to reveal interesting 
consequences of the electron correlations at the nanoscale, the Coulomb blockade being a simple 
example, cf. [1–9] and references therein. 
 
Much less attention has been paid to the consequences of the electron-phonon coupling, which 
are related to the discreteness of the vibrational spectrum of a nanosystem, but emerge in the 
absence of size quantization of the electron motion. One of such consequences, which we study 
in this paper, is the coupling-induced change of the vibration nonlinearity. Strong nonlinearity is 
a generic feature of vibrations in small systems [10, 11]. Its easily accessible manifestation is the 
dependence of the mode frequencies on the vibration amplitudes. This dependence corresponds 
to the “self-action” of the mode, and its familiar analog in bulk crystals are acoustic soli- tons 
[12, 13]; however, the nonlinearity required for observing such solitons usually is sufficiently 
strong only for high-frequency phonons.  Also, the change of the eigen frequency with the mode 
amplitude is of interest for modes with a discrete frequency spectrum, such as standing waves in 
mesoscopic systems, but not for propagating waves with a quasi-continuous spectrum. 
 
Much attention have been recently attracting Si-based nano- and micromechanical systems, see 
[14, 15] and references therein. In such systems there was observed an unexpectedly large 
change of the amplitude dependence of the vibration frequency with the varying electron density 
[16, 17]. When the doping level was increased from 2.8 × 1018 cm−3 to 5.9 × 1019 cm−3, the 
nonlinearity parameter increased by more than an order of magnitude. Moreover, the nonlinearity 
change was different for the vibrational modes with different spatial structure. In this paper we 
develop a theory of the nonlinearity of vibrational modes in semiconductor nano- and micro- 
mechanical systems with high electron density. We show that the electron-phonon coupling can 
lead to a strong self-action of the vibrational modes, which in turn significantly modifies the 
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amplitude dependence of the mode frequencies. We find the dependence of the effect on the 
electron density and temperature. 
 
For bulk semiconductors, the effect of the electron- phonon coupling on the elastic properties, 
including the three-phonon coupling, was first analyzed by Keyes [18]. The analysis referred to 
n-Ge and was based on the deformation potential approximation. The idea was that de- formation 
lifts the degeneracy of the equivalent electron valleys, which leads to a redistribution of the 
electrons over the valleys.  In turn, such redistribution changes the speed of sound depending on 
the direction and polarization of the sound waves and also affects the sound speed in the 
presence of uniaxial stress. This theory was ex- tended to silicon and the corresponding 
measurements were done by Hall [19]. However, Hall also observed the change of the speed of 
transverse sound waves and the effect of stress on sound propagation in the geometries, where 
these effects are due to shear deformation and do not arise in the deformation potential model. A 
theory of the change of the linear shear elastic constant in silicon due to the intervalley 
redistribution of the electrons was developed by Cerdeira and Cardona [20]. 
 
As we show, in mesoscopic systems the strain-induced redistribution of the electrons over the 
valleys of the conduction band leads to the previously unexplored strong fourth-order 
nonlinearity of the vibrational modes. This nonlinearity gives a major contribution to the 
amplitude dependence of the vibration frequency. The redistribution also leads to a temperature 
dependence of the frequencies. The magnitudes of the effects sensitively de- pends on the mode 
structure. We describe them for several types of modes, including those studied in the 
experiment [16, 17] and qualitatively compare the results with the observations. The theoretical 
results refer to both degenerate and nondegenerate electron systems. Specific calculations are 
done for silicon resonators. 
 
In Sec. II we give, for completeness, the expressions for the mode normalization and the 
amplitude-dependent frequency shift of coupled nonlinear modes in a nano- or micro-system.  In 
Sec. III and Appendix A we provide expressions for the electron-phonon coupling induced 
change of the elasticity parameters, including the parameters of quartic nonlinearity.  In Sec. IV 
we discuss the asymptotic behavior of the parameters of quartic nonlinearity for low and high 
electron density and give their explicit form for silicon. In Sec. V we calculate the nonlinear 
frequency shift for several frequently used vibrational modes in single-crystal silicon systems 
and show the dependence of this shift on the electron density and temperature. The explicit 
analytical expressions are given in Appendices C and D. Sec. VI contains concluding remarks. 
 
II. Nonlinear Frequency Shift of Low-Frequency Eigenmodes 
 
Of primary interest for nano- and micro-mechanical systems are comparatively low-frequency 
modes with wavelength on the order of the maximal size of the system. Examples are provided 
by long-wavelength flexural modes of nanotubes, nanobeams, and nano/micro-membranes, or 
acoustic-type modes in microplates or beams. These modes are easy to excite and detect. We will 
enumerate them by index ν. Their dynamics is de- scribed by the elasticity theory [21]. The 
spatial structure of the displacement field of a mode u(ν)(r) in the harmonic approximation is 
determined by the boundary conditions. We will choose u(ν)(r) dimensionless, so that in our 
finite-size system 
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Here, V is the volume of the system.  We assumed that the mode eigenfrequencies ων are 
nondegenerate; including degenerate modes is straightforward. For simplicity, we also assumed 
that the system is spatially uniform; an extension to spatially nonuniform systems is 
straightforward as well. 
 
We emphasize the distinction of the normalization (1) from the conventional normalization for 
bulk crystals, where ν corresponds to the wave vector and the branch number, and the 
normalization integral is independent of the volume.  The normalization (1) is convenient for the 
analysis of low-frequency modes with the discrete spectrum characteristic of mesoscopic 
systems. Such modes are standing waves, and therefore vectors u(ν) can be chosen real. 
 
The low-frequency part of the displacement can be written as 
 

 
 
Functions Qν(t) give the mode amplitudes. In the harmonic approximation the dynamics of the 
standing waves is described by the Hamiltonian 
 

 
 
where Pν is the momentum of mode ν and M is the mass of the system. 
 
The anharmonicity of the crystal leads to mode-mode coupling. Within the elasticity theory this 
coupling is de- scribed by the terms in the Hamiltonian, which are cubic and quartic in the strain 
tensor. We will not consider higher-order terms, which are small for the mode amplitudes of 
interest. From the expansion (2), we obtain the nonlinear part of the Hamiltonian in the form 
 

 
 
Equation (4) is essentially an expansion in the ratio of the mode amplitudes to their characteristic 
wavelength, which is of the order of the appropriate linear dimension of the system. This is why 
mesoscopic systems are of particular interest, as here vibrations of low-frequency eigenmodes 
become nonlinear for already small vibration amplitudes. 
 
A familiar consequence of nonlinearity in nano- and micromechanical systems is the dependence 
of the vibration frequency of a mode on its own amplitude and on the amplitudes of other modes, 
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see Ref. 11 for a review. In particular, the change δων of the mode frequency due to the 
vibrations of the mode itself, Qν (t) = Aν cos ωνt, is [22, 23] 
 

 
 
where γν ≡ γνννν and we kept the terms of the first order in γ and the second order in β. 
 
The nonlinear mode coupling (4) leads also to the frequency shift due to thermal vibrations of the 
modes. The dominating contribution to this shift for low-frequency modes comes from their 
coupling to modes with frequencies                    which have a much higher density of states. This 
shift is described by an expression that is similar to Eq. (5) wish         replaced by   
and placed under the sum over v’, in the classical limit. 
 
III. The Nonlinearity Due to the Electron-Phonon Coupling 
 
We will consider the vibration nonlinearity due to the electron-phonon coupling in multi-valley 
semiconductors with cubic symmetry, silicon and germanium being the best known examples. In 
such semiconductors, the energy valleys of the conduction band are located at high- symmetry 
axes of the Brillouin zone. Strain lifts the symmetry and thus the degeneracy of the valleys. 
 
The simplest mechanism of the electron-phonon coupling is the deformation potential.  Here, the 
energy shift δEα of valley α is determined by the deformation potential parameters Ξu and Ξd of 
the coupling to a uniaxial strain along the symmetry axis of the valley and to dilatation, 
respectively.  In terms of the stain tensor εij we have                                      where  
                                                                     being the unit vector along the symmetry axis of the 
valley.  We use the hat symbol to indicate tensors and symbol “⊗” to indicate tensor products. 
The analysis below is not limited to the deformation potential approximation.  An important 
extension will be discussed using silicon as an example. 
 
We assume that the strain varies in time and space slowly compared to the reciprocal rate of 
intervalley electron scattering and the intervalley scattering length, respectively.  Then the 
electron system follows the strain adiabatically.  The electron density n(α)(r) in valley α is 
decreased or increased depending on whether the bottom of the valley goes up or down. In the 
single-electron approximation and for the deformation potential coupling, the electron free 
energy density for a given strain is                                                                       where fe[n(r)] is 
the free energy density for electrons with density n(r) in a valley in the absence of coupling to 
phonons. 
 
The electro-neutrality requires that the total electron density summed over the valleys be 
constant.  The free energy density Fe has to be minimized over n(α)(r) to meet this constraint.  
This gives the change of the electron chemical potential δµ due to strain εˆ.  The resulting 
increment of the electron free energy density has the form of a series expansion in the strain 
tensor,  
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Here                                        are tensors of ranks 2, 4, 6, and 8, respectively.  They are 
contracted with the tensor products of the strain tensor εˆ.  Respectively,       are the electronic 
contributions to the linear (for k = 2) and nonlinear (for k > 2) elasticity parameters of the 
crystal. These contributions are isothermal, but since the change of the mode frequencies from 
the electron-phonon coupling is small and the nonlinearity is also small, the difference with the 
adiabatic expressions can be disregarded. 
 
To the third order in εˆ the expression for δFe in terms of the shift of the valleys was found by 
Keyes [18] in the analysis of sound wave propagation. However, to find the parameters of the 
quartic nonlinearity of resonant modes in small systems, which is of primary interest to us, we 
also need to keep quartic terms in Eq. (6). 
 
As seen from the explicit form of the parameters of the expansion (6) given in Appendix A,  
                                                           k = 1,2,…), where μ0 is the electron chemical potential in 
the absence of strain; it is determined by the total (summed over the valleys) electron density n.  
Of central importance for the analysis is that parameter Ξu/ max(µ0, kBT ) ∼ 103 for electron 
densities n ∼ 1019 cm−3 and room temperatures, i.e. 
 

 
 
As a consequence, the coefficients at the nonlinear in εˆ terms in Eq. (6) quickly increase with 
the increasing order of the nonlinearity [the overall series (6) is converging fast because of the 
smallness of the strain tensor]. 
 
The increase of        with k allows us to keep in εˆ only the terms linear in the lattice 
displacement, i.e., to set εij = (1/2)(∂ui/∂xj + ∂uj/∂xi), where where ui and xi are the components of 
the displacement and the coordinates, respectively. Indeed, in this case a kth term of the series 
(6) is of order k in the displacement. If we included the quadratic in ∂ui/∂xj term into one of the εˆ 
tensors in the kth term, this term would become of order k + 1 in the displacement.  However, for 
linear εˆ the (k + 1)th term in the series (6) is also of the (k + 1)th order in the displacement, but 
is larger by factor Ξu/ max(µ0, kBT). 
 
For linear εˆ, the total strain is a sum of partial contributions of strain from individual modes.  
For mode ν, such partial contribution is expressed in terms of the scaled displacement u(ν)(r) [see 
Eq. (2)] as εˆ = Qν εˆ

(ν), where                                                                       .  We note that, in 
contrast to the dimensionless strain tensor εˆ, tensor εˆ(v) has dimension [length]-1.  
 
From Eq. (6) we find the electronic contributions to the nonlinearity parameters  
in Hamiltonian (4), 
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where εˆ(ν)  ≡ εˆ(ν)(r); tensors        are independent of r. Similarly, the electronic contribution to 
the eigenfrequency is 
 

 
 
Generally the term            leads to mode mixing; however, if the mode frequencies are 
nondegenerate, this mixing is weak and can be disregarded, to the leading order in the electron-
phonon coupling. One can see that the effect of the static stress             can be disregarded as 
well. 
 
The frequency change (9) depends on temperature because of the temperature dependence of  
           .  The nonlinearity (8) also leads to a temperature dependence of the mode 
eigenfrequency. Together they modify the temperature dependence of the mode eigenfrequencies 
compared to that of undoped crystals.  This modification often weakens the temperature 
dependence of the eigenfrequencies, which proves very important for applications of micro-
mechanical systems in devices that work in a broad temperature range [24]. 
 
Equations (6)-(9) are generic and apply beyond the deformation potential approximation. This is 
of particular importance for silicon. Here, the electron band valleys lie on the ⟨100⟩-axes close to 
the X-points on the zone boundaries where two electron energy bands cross.  Lattice strain can 
lead to a band splitting at X-points and a shift of the valleys [25, 26]. Importantly, this shift 
results from a shear strain, which does not lead to a linear in the strain shift in the deformation 
potential approximation. The valley shift is quadratic in εˆ in this case, as explained in Appendix 
A, which corresponds to an effectively two-phonon coupling. The coupling parameter Ξsh is 
quadratic in the strain-induced band splitting, see Eq. (A2). It is large, much larger than the 
constant Ξu. Therefore the arguments given below Eq. (7) apply in this case as well. For purely 
shear strain in silicon, terms of odd order in εˆ in δFe, Eq. (6), vanish. 
 
IV. Explicit Form of the Tensors of Nonlinear Elasticity 
 
Tensors      can be obtained by minimizing the free energy density of the electron system for a 
given strain and expanding the result in a series in εˆ. A general procedure that allows one to find 
the components       for n ≤ 4 is described in Appendix A. Using the symmetry arguments, the 
elasticity tensors are conveniently written in the contracted (Voigt) notation where the symmetric 
strain tensor is associated with a six-component vector.  Then the nonlinear elasticity tensors        
and       become tensors of rank three and four in the corresponding vector space. We use 
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notation δcˆ for tensors     in these notations to emphasize that we are calculating corrections to 
the nonlinear elasticity tensors due to the electron-phonon coupling. 
 
The explicit expressions for the nonlinear elasticity tensors δcˆ are given in Table I. They refer to 
silicon and include the contributions that come from both the deformation potential coupling and 
from the splitting of the electron bands due to shear strain. In the deformation potential 
approximation, the components of the third-rank tensor δcˆ, which determine the cubic in the 
strain terms in the free energy, were found earlier [19]. Therefore we give only the components 
that contain a contribution from shear strain. 
 
The fourth-rank tensor δcˆ determines the quartic in the strain terms in the free energy and has 
not been dis- cussed before, to the best of our knowledge. We give all independent components 
of this tensor. It is expressed in terms of the derivative of the electron density n over the 
chemical potential in the absence of strain µ0, which is a familiar thermodynamic characteristic. 
It is intuitively clear that the considered effect of the change of the electron density in different 
valleys in response to strain should be related to the derivative dn/dµ0. Interestingly because we 
consider nonlinear response to strain, the expressions in Table I contain also higher-order 
derivatives of n over µ0. As we will see, this leads to a nontrivial behavior of the nonlinear 
frequency shift with varying temperature and density. The considered mechanism of the strain-
induced inter-valley electron redistribution does not contribute to the components c1123 and c1456, 
therefore δc1123 = δc1456 = 0. 
 

A.  Nonlinear Elasticity in the Limiting Cases 
 
The expressions for δcˆ simplify in the case of low doping (or high temperature), where the 
electron gas is strongly nondegenerate, and in the opposite case of a strongly degenerate electron 
gas. For a nondegenerate gas, where the chemical potential in the absence of strain is  
µ0 < 0, |µ0| » kBT, we have in Table I F1/2(x) =                  with x = µ0/kBT.  The µ0-dependent 
factors exp(µ0/ kBT) in F1/2 and its derivatives cancel each other in the expressions for δcˆ and 
drop out from these expressions.  The dependence of δcˆ on density is then just linear, δĉ ∝ n.  

Parameters C1,...,4 in Table I depend only on temperature, C1 ∝ T−1, C2 ∝ T−3, C3 ∝ T−2 and  
C4 ∝ T−1. 
 
The decrease of the nonlinear elasticity parameters with increasing temperature in a 
nondegenerate electron gas is easy to understand. The effect we consider is determined by the 
competition between the energetically favorable unequal population of the electron energy 
valleys in a strained crystal and the entropically more favorable equal valley population. With 
increasing temperature the entropic factor becomes stronger, leading to a smaller population 
difference and thus smaller effect of the electron system on the vibrations. 
 
For strong doping, where µ0/kBT  » 1, we have µ0 ∝ n2/3, and then  
                                                          .  Therefore parameters C1,...,4 in Table I become 
temperature independent, with nC1 ∝ n1/3, nC2 ∝ n−1, nC3 ∝ n−1/3, and nC4 ∝ n1/3. 
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The results on the asymptotic behavior of the corrections to nonlinear elasticity are not limited to 
silicon. Since parameters C1,2,3,4 are given by the coefficients in the general expansion of the free 
energy in strain, (A1), these results can be applied to the nonlinear elasticity induced by the 
electron-phonon coupling in other multi- valley semiconductors. To illustrate this point, in 
Appendix B we give δcˆ tensor in germanium. 
 
The difference between the asymptotic behavior of the tensors δcˆ in the limits of nondegenerate 
and strongly degenerate electron gas can lead to a peculiar density and temperature dependence 
of the nonlinear frequency shift of the vibrational modes. It comes from the coefficients C1,...,4 
containing higher-order derivatives of n with respect to µ0. In the transition region µ0  ∼ kBT , 
thinking of the competition between the entropic and energetic factors does not provide a simple 
insight into the behavior of δcˆ, as both the energy and the entropy are complicated functions of 
density and temperature. 
 
TABLE I. The change of the components of the nonlinear elasticity tensors due to the strain-
induced electron redistribution between equivalent energy valleys in doped silicon. The 
coordinate axes are chosen along the ⟨100⟩ axes. Parameter Ξsh characterizes the effectively two-
phonon coupling to shear strain. This parameter as well as function F1/2(x) are defined in 
Appendix A; x = µ0/kBT and n is the electron density. 
 

 
 
V. Doping-Induced Nonlinearity of Simple Vibrational Modes 
 
The nonlinear elasticity tensors in Table I give the doping-induced contributions to the 
nonlinearity parameters of the eigenmodes of micro- and nano-mechanical systems. These 
contributions are described by Eq. (8). As mentioned before, an important characteristic of the 
mode nonlinearity is the dependence of the mode frequency on the vibration amplitude. To the 
leading order, it is given by Eq. (5). This dependence has a contribution from the nonlinearity of 
an undoped crystal, which is quadratic in the parameters of the cubic nonlinearity; for example, 
if the latter is described by the Grüneisen constant, the corresponding contribution is quadratic in 
this constant. It is typically small. There is also a contribution from the quartic nonlinearity; the 
parameters of such nonlinearity are not known in undoped crystals and are not expected to be 
large. Respectively, the amplitude dependence of the vibration frequency for low-frequency 
modes in weakly doped single-crystal micro-mechanical systems is relatively weak [17]. 
 
A feature of the doping-induced nonlinearity described by Table I is that the quartic in the strain 
term in the free energy has a large coefficient compared to the cubic term, cf. Eq. (7) and the 
discussion below this equation. Therefore, in Eq. (5) for the amplitude dependence of vibration 
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frequency one can keep only the Duffing non-linearity constant γν.  The contribution from the 
cubic nonlinearity terms ∝ β2

ννν
1 can be disregarded.  For a mode ν, the doping-induced 

contribution to γν is equal to           in Eq. (8). 
 
To find the dependence of the mode frequency on the vibration amplitude we go through the 
following steps. First, we find the normal modes of interest for the given geometry of the system, 
with account taken of the boundary conditions, and normalize the displacements u(ν)(r) as 
indicated in Eq. (1). We use u(ν)(r) to find the strain tensor εˆ(ν)(r). The result is substituted into 
Eq. (8) and is convoluted with tensor     , giving the value of γν which is then used in Eq. (5) to 
find the frequency dependence on the vibration amplitude δων.  Of particular interest is the 
relative frequency shift δων/ων. To find this shift to the leading order, one can disregard 
nonlinearity when calculating the eigenfrequency ων.  Then, from Eq. (5),  
 

 
 
where         is the full tensor of linear elasticity, which includes the major term of the linear 
elasticity of the undoped crystal and the doping-induced correction      . 
 
An important feature of the relative shift δων/ων is its scaling with the size of the system. The 
vibration amplitude Aν in Eq. (10) can be scaled by the lateral dimension L, for example the 
length of a nanobeam or a nanowire for an extension mode, or the size of the square for a Lamé 
mode, or the diameter of a disk for a breathing mode in a disk. Respectively, we write Aν = ηνL. 
Then, if one takes into account the explicit form (8) of the parameter                       , one finds 
from Eq. (10) that the ratio δων/(ην 2 ων ) is independent of the system size for the 
aforementioned modes.  In this estimate we used that the tensors      are material parameters and 
are independent of the geometry.  We also used that modes of interest have typical wavelength 
~L, therefore ε̂(ν) scales as L-1. 
 
Most of the experiments in nano- and micromechanics are done with nanobeams, nanowires, 
membranes, or thin plates. In such systems the thickness is much smaller than the length or, in 
the case of membranes or plates, the lateral dimensions. Then, from the boundary condition of 
the absence of tangential stress on free surfaces [21], it follows that the strain tensor εˆ weakly 
depends on the coordinate normal to the surface. This simplifies the denominator in Eq. (10), 
making it proportional to the thickness. Similarly, from Eq. (8) γν is also proportional to the 
thickness, and the thickness drops out of Eq. (10). The explicit expressions for           and γν that 
deter- mine the denominator and the numerator in Eq. (10), respectively, are given in Appendices 
C and D for Lamé and extension modes. These expressions are cumbersome, and it is 
convenient to use symbolic programming to obtain them. [27] 
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A. Temperature and Electron Density Dependence of the Scaled Nonlinear Frequency 
Shift 
 
The scaled ratio                        that characterizes the relative nonlinear frequency shift is shown 
in Figure 1 for several modes that are often used in single-crystal silicon MEMS. This ratio 
depends on the type of the mode and the crystal orientation. Figure 1 refers to high-symmetry 
crystal orientations, in which case the modes have a comparatively simple spatial structure and 
the surfaces can be made smooth. We used the values Ξu = 8.8 eV [28], Ξsh = 300 eV, the 
effective mass for density of states meff = 0.32me [29], and the temperature-dependent linear 
elasticity parameters given in Ref. [30]. 
 
Figure 1 shows that the electron-redistribution induced nonlinearity of vibrational modes is very 
strong. For the ratio of the vibration amplitude to the system size η ∼ 10-4 and the mode 
eigenfrequency ων/2π ∼ 10 MHz, the frequency change can be as large as δων/2π ∼ 0.1 kHz. 
This explains, qualitatively, the observations [17].   A quantitative comparison with the 
experiment [17] is complicated, as the observations refer to different samples. Our preliminary 
results show an excellent quantitative agreement with the data obtained for the same sample at 
different temperatures and for different types of modes [31]. 
 

 
FIGURE 1.  Relative change δων /ων of the vibration frequency of a mode with the vibration 
amplitude ην scaled by the relevant size of the system, cf. Eq. (10). The results refer to single 
crystal silicon resonators. Curves 1 and 2 refer to the first Lamé mode in square plates cut in 
⟨100⟩ and ⟨110⟩ directions, respectively. In this case, the size of the resonator is the length of the 
side of the square. Curves 3 and 4 refer to the first extension mode in beams cut in ⟨100⟩ and 
⟨110⟩ directions, respectively. In this case, the size of the resonator is the length of the beam. 
 
The nonlinear frequency shift displays several characteristic features, as seen from Figure 1. One 
of them is the strong dependence of the shift on the type of the mode and the crystal orientation. 
For both the Lamé and the extension mode, the shift is much stronger for crystals cut out in 
⟨100⟩ direction than in ⟨110⟩ direction. This is a consequence of the electron energy valleys lying 
along the ⟨100⟩ axes, making the system more “responsive” to the lattice displacement along 
these axes. Interestingly, in the both configurations the shifts for the Lamé modes are larger than 
for the extension modes. 
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A somewhat unexpected feature is the nonmonotonic dependence of the nonlinear frequency 
shift on the electron density and temperature. The nonmonotoncity occurs in the range where the 
electron system is close to degeneracy, µ0/kBT ∼ 1, and it strongly depends on the crystal 
orientation. It is much stronger for crystals cut in ⟨100⟩ then ⟨110⟩ directions. For a crystal cut in 
⟨110⟩ direction, both the density and temperature dependence of the shift are monotonic in the 
case of the Lamé mode, whereas for the extension mode the nonmonotonicity is weak. 
 
The nonmonotonicity of the frequency shift stems from the behavior of the parameters nC2,3,4 in 
the range µ0 ∼ kBT . As seen from Table I, parameter nC2 exponentially increases with the 
increasing µ0/kBT for negative µ0/kBT, but for large positive µ0/kBT it falls off µ0/kBT-3/2.  It has a 
pronounced maximum for µ0/kBT ≈ 0.6.  Parameter nC3 also displays a maximum, which occurs 
for µ0/kBT ≈ 1.1.  In contrast, parameters nC1,4 depend on µ0/kBT monotonically. 
 
The results of Appendices C and D show that, for the Lam´e and extension modes in crystals cut 
in ⟨100⟩ direction, the relative shift δων/ων is determined by coefficient nC2, which explains the 
nonmonotonicity of the shift.  For crystals cut in ⟨110⟩, the shift of the Lamé mode is fully 
determined by coefficient nC4 and is mono- tonic, whereas for the extension mode the expression 
for the shift has contributions from nC2, nC3, and nC4 that partly compensate each other, leading 
to a comparatively small shift all together and its weak nonmonotonicity. 
 
IV. Conclusions 
 
The results of this paper show that the electron- phonon coupling strongly affects the 
nonlinearity of vibrational modes in semiconductor-based nano- and micromechanical systems. 
The mechanism of the effect is the strain-induced redistribution of the electrons between the 
valleys of the conduction band. The redistribution results from lifting the degeneracy of the 
electron energy spectrum by the strain from a vibrational mode. The analysis refers to the range 
of temperatures where the rate of intervalley scattering strongly exceeds the frequencies of the 
considered modes. In this case the valley populations follow the strain adiabatically. 
 
The change of the valley populations is a strongly non- linear function of the strain tensor. The 
respective expansion of the free energy in the strain is an expansion in the strain multiplied by 
the ratio of the electron-phonon coupling energy (in particular, the deformation potential) to the 
chemical potential of the electron system or the temperature. This ratio is large,     103.  It is this 
parameter that makes the nonlinearity of the vibrational modes in doped semiconductor 
structures strong. 
 
Of special interest in nano- and micromechanical systems is the amplitude dependence of the 
vibration frequency. To the leading order, it is determined by the quartic terms in the expansion 
of the free energy in strain. These terms are comparatively large in doped crystals.  We have 
calculated the nonlinear elasticity tensor that describes the electron contribution to the terms in 
the free energy, which are quartic in the strain. The explicit expressions for the tensor 
components refer to semiconductors with the valleys on ⟨100⟩ axes, in particular, to silicon. We 
have also found this tensor for germanium. In silicon, along with the deformation potential 
coupling, an important role is played by the coupling to shear strain. Such strain lifts the band 
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degeneracy at the zone boundary and is effectively described by a two-phonon coupling. We 
show that this coupling also leads to strong nonlinearity of vibrational modes.   
 
The parameter of the electron coupling to shear strain in silicon is not easy to access in the 
experiment [26, 32]. Measurements of the nonlinear frequency shift provide a direct means for 
determining this parameter. In particular, the nonlinear frequency shift of the fundamental Lamé 
mode in a silicon plate cut along ⟨110⟩ axes is determined by this parameter only, except for 
small corrections from the nonlinearity of the undoped crystal. 
 
We found that the nonlinear frequency shift strongly depends on the type of a vibrational mode 
and the crystal orientation.  We also found that the ratio of the frequency shift to the squared 
vibration amplitude can be profoundly nonmonotonic as a function of electron density and 
temperature.  The results provide an insight into the experimentally observed strong mode 
nonlinearity in doped crystals [17]. In terms of applications, they enable choosing the appropriate 
range of doping and the temperature regime to optimize the operation of nano- and 
micromechanical resonators. 
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Appendix A:  Expansion of the Free Energy in Terms of the Strain-Induced Shift of the 
Energy Valleys 
 
The major effect of a strain on the electron free energy comes from the shift of the energy 
valleys. We will assume that valley α is shifted in energy by δEα and the shift is small,  
|δEα| « max(kBT, µ0), where µ0 is the chemical potential in the absence of strain. We further 
assume that the vibrations are slow compared to the time it takes the electron system to come, 
locally, to thermal equilibrium for given values of δEα, i.e., the temperature and the chemical 
potential are the same in all valleys. Since for high electron densities the thermal conductivity is 
high, the change of the temperature compared to the ambient temperature can be disregarded; 
also, as men- tioned in the main text, the electron density n summed over all valleys is constant. 
 
Expanding the electron free energy density to the 4th order in the strain-induced shifts δEα, we 
find that, in an N-valley semiconductor, the change δFe of the free energy density is 
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Here,                                                    .  We use the standard notation                                               
                                                                         primes dF1/2/dx.  Function F1/2 and its derivatives 
are calculated for x = µ0/kBT. 
 
Equation (A1) immediately gives the tensors       of the expansion of the free energy increment 
(6) if one expresses the shift δEα of the valleys in terms of the strain tensor. In the deformation 
potential approximation the relation between δEα and εˆ is given in the main text, see also  
Eq. (A2) below. 
 
In the case of Si crystals, which are often used in micromechanical resonators, an important 
contribution to δEα comes from the shear-strain induced splitting of the electron energy bands at 
the zone boundary. Shear strain does not lead to the valley shift in the deformation potential 
approximation. The overall shift of valley α, to the lowest order in the coupling that causes it 
(i.e., to the first order in the deformation potential where its contribution is nonzero and to the 
second order in the band splitting for shear strain) is [26]: 
 

 
 
Here we use that silicon has six valleys located at the ⟨100⟩ axes, and we chose the coordinate 
axes x, y, z along ⟨100⟩.   Respectively, the valley index α takes on three values that correspond 
to the x, y, z axes (the valleys lying on the same axis, but in the opposite directions, are 
equivalent). The strain εα, which enters the second term in the right-hand side of Eq. (A2), is a 
component of the strain tensor εij with i, j such that i, j ≠ α and i ≠ j. The parameter 2Ξu’ is the 
interband matrix element of the electron-phonon coupling calculated for the electron conduction 
bands ∆1 and ∆2’ at the X point on the boundary of the Brillouin zone, where the bands cross; ∆E 
is the energy separation between the bands ∆1 and ∆2’ at the value of the wave vector k that 
corresponds to the conduction band minimum. Parameter Ξsh is the effective deformation 
potential of two-phonon coupling to shear strain.  The numerical value of Ξsh is not well known. 
The experimental data give Ξ u’ ≈ 7 − 8 eV [26, 32] and the numerical data on the band splitting 
give ∆E ≈ 0.7 eV [33] so that Ξsh is in the range of 280 − 360 eV; this is essentially an order of 
magnitude estimate. 
 
In calculating δFe in Eq. (A1) we kept terms that are quartic in εˆ. The components of the tensors  
in Eq. (6) are expressed in terms of δFe as 
 

 
 
Tensors      are symmetric with respect to the interchange of indices ik ↔ jk and the pairs  
(ikjk) ↔ (ik’ jk’). For the considered long-wavelength strain, tensors       are independent of 
coordinates.  The corrections       to the linear elasticity tensors were found previously [19, 20] 
and are not discussed in this paper. 
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Appendix B:  Nonlinear Elastic Constants of Germanium 
 
In this section we provide the corrections to the nonlinear elastic constants of germanium, which 
are due to the redistribution of the electrons over the valleys. Germanium has four equivalent 
valleys in the conduction band, which are located on the boundary of the Brillouin zone along 
⟨111⟩ axes. We use the Voigt notation and write the components of the corrections to the 
nonlinear elasticity tensor δcˆ in the frame where the axes (x, y, z) are along the ⟨100⟩ directions 
of the crystal.  Using the results of Appendix A, we obtain 
 

 
 
The notations are the same as in Appendix A and in Table I. The electron-phonon coupling does 
not contribute to the other third- and fourth-order elastic constants. 
 
Corrections δc44 and δc456 for germanium were found by Keyes [18]; however, his final 
expression for δc456 differs from Eq. (B1) by a factor of 4 (our expressions for δc44 coincide with 
Ref. [18]). Parameters δc4444 and δc4455 have not been found before, to the best of our knowledge. 
In the limiting cases, corrections δc4444 and δc4455 have the same dependence on temperature and 
electron density as constant nC2 discussed in Sec. IV A. 
 
Appendix C:  Duffing Nonlinearity Parameter for a Lamé Mode in a Square Single-
Crystal Plate 
 
We consider a square plate with side L and thickness h made out of a single crystal with cubic 
symmetry. If the crystal is cut out along ⟨100⟩ or ⟨110⟩ axes, one of the simplest modes is the 
first Lamé mode [34]. The normalized displacement field is 
 

 
 
Here, x and y axes are in the lateral plane along the sides of the square, axis z is perpendicular to 
the plate and               .  Calculating the strain tensor for the displacement (C1) and substituting 
the expressions into Eqs. (8) and the relation 
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for the plate cut out along ⟨100⟩ axes we obtain, in Voigt notation for the elasticity tensors, 
 

 
 
If we consider silicon and take into account only the contribution δcˆ to the nonlinear elasticity 
tensor cˆ, with the account taken of Table I, the expression for γν simplifies to 
 

 
 
For the Lamé mode cut along the ⟨110⟩ axis, if the tensors are calculated in the axes ⟨100⟩, we 
have 
 

 
 
Note that only coupling to shear strain contributes to the nonlinearity parameter γν in this case. 
 
Appendix D:  Duffing Nonlinearity Parameter for an Extension Mode in a Single-Crystal 
Narrow Beam 
 
We consider the fundamental extension mode in a thin beam of length L with a rectangular cross-
section of area S « L2.  The beam is cut along a symmetry axis, and the sides are also along 
symmetry planes of a cubic crystal. From the free-surface boundary conditions, the normalized 
displacement field is [34]: 
 

 
 
This expression takes into account transverse compression that accompanies beam extension and 
uses the smallness of the beam cross-section; corrections ∼ S/L2 are disregarded.  The transverse 
compression in a cubic crystal cut in a symmetric direction is described by Poisson’s ratios σ2 
and σ3.  Generally, they do not coincide.  In Eq. (D1) the transverse coordinates y and z are 
counted off from the center of the beam 
 
For the longitudinal direction of the beam ⟨100⟩ and the sides parallel to (100) planes, the 
Poisson parameters are equal, σ2 = σ3 and σ ≡ σ2 = σ3 = c12/(c11 + c12). In this case Eqs. (8) and 
(C2) give  
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The expression for γν is simplified if in the nonlinear elasticity tensors we take into account only 
the contribution from the electron-phonon coupling as given in Table I and also allow for the 
interrelation between different components of the tensor δcˆ. Then for a silicon beam 
 

 
 
For extension along ⟨110⟩ axis, with one side parallel to (100) plane and the other side parallel to 
(11̄0) plane, the Poisson’s ratios σ2 = σ(110, 11̄0) and σ2 = σ(110, 001) are given in Ref. [35].  
Then Eqs. (8) and (C2) give 
 

 
 
If in the nonlinear elasticity tensor cˆ we take into account only the contribution δcˆ from the 
electron-phonon coupling, in the case of a silicon beam the expression for γν simplifies to 
 

 
 
Expressions (D2) and (D4) were generated using a computer code to calculate the sums and 
integrals in Eq. (8). 
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LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS 

ACRONYM DESCRIPTION 
AFRL Air Force Research Laboratory 
DARPA Defense Advanced Research Agency 
Ge Germanium 
MEMS Microelectromechanical Systems 
Si Silicon 
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