

NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

MICROGRID CONTROL STRATEGY UTLIZING

THERMAL ENERGY STORAGE WITH RENEWABLE

SOLAR AND WIND POWER GENERATION

by

Kevin L.J. Hawxhurst

June 2016

Thesis Advisor: Anthony Gannon

Co-Advisor: Andrea Holmes

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB

No. 0704–0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing

instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection

of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215

Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork

Reduction Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY

(Leave blank)

2. REPORT DATE
June 2016

3. REPORT TYPE AND DATES COVERED
Master’s thesis

4. TITLE AND SUBTITLE

MICROGRID CONTROL STRATEGY UTLIZING THERMAL ENERGY

STORAGE WITH RENEWABLE SOLAR AND WIND POWER

GENERATION

5. FUNDING NUMBERS

6. AUTHOR(S) Kevin L.J. Hawxhurst

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School

Monterey, CA 93943-5000

8. PERFORMING

ORGANIZATION REPORT

NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND

ADDRESS(ES)

Project supported by the Office of Naval Research’s (ONR) Energy Systems

Technical Evaluation Program (ESTEP) supported by Dr. Richard Carlin

and under the technical monitoring of Stacey Curtis.

10. SPONSORING /

MONITORING AGENCY

REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the

official policy or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

As part of the Department of Defense’s exploration into alternative energy solutions, this research

focused on developing and implementing a control strategy for a microgrid system that was developed

using a multi-physics energy approach. The objective was to demonstrate a microgrid system that more

effectively uses renewable energy based on the end-use application of energy. The NPS Integrated Multi-

Physics Renewable Energy Laboratory microgrid system was designed primarily for heating and cooling

applications and utilizes thermal storage capabilities.

A novel control strategy was also implemented to decrease the need for backup electrical power. The

control strategy matches load demand from a chiller and heater to power generation from renewable solar

and wind resources. Energy is stored as ice for cooling applications and in high temperature ceramic bricks

for heating applications.

A controller was designed using MATLAB and successfully implemented the desired control strategy.

This was challenging as communication between the controller, the microgrid, the loads, and the thermal

storage devices had to be established across multiple architectures. Using MATLAB, the controller

operated nearly continuously for six months, collecting data for analysis. This research proves that the end-

use energy design concept works by putting in place a working demonstration plant.

14. SUBJECT TERMS
microgrid, control strategy, renewable energy, thermal storage, multi-physics, end-use energy

15. NUMBER OF

PAGES
125

16. PRICE CODE

17. SECURITY

CLASSIFICATION OF

REPORT
Unclassified

18. SECURITY

CLASSIFICATION OF THIS

PAGE

Unclassified

19. SECURITY

CLASSIFICATION

OF ABSTRACT

Unclassified

20. LIMITATION

OF ABSTRACT

UU

NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89)

 Prescribed by ANSI Std. 239–18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

iii

Approved for public release; distribution is unlimited

MICROGRID CONTROL STRATEGY UTLIZING THERMAL ENERGY

STORAGE WITH RENEWABLE SOLAR AND WIND POWER GENERATION

Kevin L.J. Hawxhurst

Ensign, United States Navy

B.S., United States Naval Academy, 2015

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

June 2016

Approved by: Anthony Gannon

Thesis Advisor

Andrea Holmes

Co-Advisor

Garth Hobson

Chair, Department of Mechanical and Aerospace Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

As part of the Department of Defense’s exploration into alternative energy

solutions, this research focused on developing and implementing a control strategy for a

microgrid system that was developed using a multi-physics energy approach. The

objective was to demonstrate a microgrid system that more effectively uses renewable

energy based on the end-use application of energy. The NPS Integrated Multi-Physics

Renewable Energy Laboratory microgrid system was designed primarily for heating and

cooling applications and utilizes thermal storage capabilities.

A novel control strategy was also implemented to decrease the need for backup

electrical power. The control strategy matches load demand from a chiller and heater to

power generation from renewable solar and wind resources. Energy is stored as ice for

cooling applications and in high temperature ceramic bricks for heating applications.

A controller was designed using MATLAB and successfully implemented the

desired control strategy. This was challenging as communication between the controller,

the microgrid, the loads, and the thermal storage devices had to be established across

multiple architectures. Using MATLAB, the controller operated nearly continuously for

six months, collecting data for analysis. This research proves that the end-use energy

design concept works by putting in place a working demonstration plant.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1

A. MOTIVATION ..1

B. TRADITIONAL ENERGY APROACH ...1

C. MULTI-PHYSICS ENERGY APPROACH ...2

D. OBJECTIVE ..2

E. CHALLENGES ..3

II. BACKGROUND ..5

A. DEPARTMENT OF DEFENSE ENERGY OBJECTIVES5

B. MICROGRIDS ...6

C. RENEWABLE ENERGY ...8

D. THERMAL ENERGY STORAGE ..8

E. INTEGRATED MULTI-PHYSICS RENEWABLE ENERGY

LABORATORY ...10

III. EXPERIMENTAL METHODS AND EQUIPMENT15

A. EQUIPMENT ...15

1. Power Generation ..15

2. Energy Transport...18

3. Energy Storage ...19

B. COMMUNICATIONS ..25

1. SMA Sunny WebBox Webpage ..26

2. Modbus Protocol ..27

3. Serial Port ...28

4. BACnet Protocol ..29

5. NATIONAL INSTRUMENTS COMPACT DATA

ACQUISITION ..30

C. CONTROL STRATEGY ..31

1. Microgrid Controller Shutdown ...32

2. Communications Functions...32

3. Microgrid Load Controller ...32

IV. RESULTS AND ANALYSIS ..45

A. LOAD POWER PROFILES ...52

B. CONTROL DATA FOR COLD THERMAL STORAGE53

C. CONTROL DATA FOR HOT THERMAL STORAGE55

D. CONTROL DATA FOR COMBINED THERMAL STORAGE56

 viii

E. LONG-TERM STORAGE LEVELS ...60

V. FUTURE STUDY...63
A. WEATHER FORECASTING ..63
B. EXERGY ANALYSIS ...66

VI. RECOMMENDATIONS ...67

VII. CONCLUSIONS ..69

APPENDIX A. MATLAB CODE ...71
A. MICROGRID LOAD CONTROLLER ...71
B. MICROGRID SAFETY SHUTDOWN ...86
C. MODBUS FUNCTION ..89
D. BACNET FUNCTION...91
E. HEATER COMMUNICATIONS FUNCTION93
F. CHILLER COMMUNICATIONS FUNCTION94

APPENDIX B. SMA MICROGRID COMMUNICATIONS SETUP95
A. SUNNY WEBBOX WEBPAGE ...95
B. MODBUS ..95

APPENDIX C. TRANE CHILLER COMMUNICATIONS SETUP..........................97
A. TRANE WEBPAGE ..97
B. NI CDAQ ..97
C. BACNET ...99

APPENDIX D. STEFFES HEATER COMMUNIATION SETUP101

LIST OF REFERENCES ..103

INITIAL DISTRIBUTION LIST ...107

 ix

LIST OF FIGURES

Figure 1. Microgrid Illustration. Source: [14] ...7

Figure 2. Energy Densities of Different Materials. Source: [18].9

Figure 3. Energy Consumption by End Use. Source: [20].10

Figure 4. Multi-Physics Theory. Source: [7]. ..11

Figure 5. IMPREL Concept. Source: [7]. ..13

Figure 6. Vertical Axis Wind Turbines and Photovoltaic Solar Panels15

Figure 7. Solar Sunny Boy Inverter...16

Figure 8. Wind Turbine Inverters ..17

Figure 9. SMA Three-Phase Microgrid ...18

Figure 10. SMA Sunny WebBox ..19

Figure 11. VRLA Battery Bank ..20

Figure 12. Trane Chiller and Cold Thermal Storage System21

Figure 13. CALMAC IceBank ..22

Figure 14. Steffes Heater ...23

Figure 15. Ceramic Bricks used for Hot Thermal Storage ..24

Figure 16. Communications Network ...25

Figure 17. Example Sunny Island Data on Webpage ..26

Figure 18. NI cDAQ Analog Output Device ...31

Figure 19. Microgrid Controller Hierarchy ...31

Figure 20. Microgrid Load Controller—Control Loop ...33

Figure 21. Typical Control Data Displayed to Desktop ..45

Figure 22. Control Data Plotted to Chart ..46

Figure 23. Control Data Section of Excel Template ...47

 x

Figure 24. Control Data Plots in Excel Template ...48

Figure 25. Inverter Data Plots in Excel Template ...49

Figure 26. Solar Inverter Data Plots in Excel Template ..50

Figure 27. Wind Inverters Data in Excel Template ...51

Figure 28. Power Profiles of the Loads ...53

Figure 29. Control Data Running Chiller ..54

Figure 30. Control Data Running Heater ..55

Figure 31. Control Data Running Both Loads ..57

Figure 32. Control Data with Battery Boost Charge ...59

Figure 33. Storage Levels over Three Days ..60

Figure 34. COAMPS Skew-T Log-P for IMPREL Location65

Figure 35. COAMPS Weather Forecast—Cloud Coverage (left) Wind Speeds

(right) ...65

Figure 36. Energy Paths for Electrical and Thermal Storage Devices66

 xi

LIST OF TABLES

Table 1. Comparison of Energy Storage. Adapted from [16], [18], [19].10

Table 2. DC Operating Voltage of Wind Turbine Inverters52

Table 3. Overnight Losses in Storage Levels ..61

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

ASHRAE American Society of Heating, Refrigerating and Air-Conditioning

 Engineers

COM Communications

COTS Commercial off the Shelf

DOD Department of Defense

ESTEP Energy Systems Technology Evaluation Program

FOB Forward Operation Base

FY Fiscal Year

ID Identifier

IMPREL Integrated Multi-Physics Renewable Energy Laboratory

NI cDAQ National Instruments Compact Data Acquisition

NPS Naval Postgraduate School

ONR Office of Naval Research

SOC State of Charge

POC Percent of Completion

PV Photovoltaic

TCP/IP Transmission Control Protocol/Internet Protocol

UINT32 Unsigned 32 Bit Integer

USB Universal Serial Bus

VAWT Vertical Axis Wind Turbine

VFD Variable Frequency Drive

VRLA Value Regulated Lead Acid

VSC Variable Speed Compressor

WBI Wind Box Inverter

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

I would like to acknowledge my advisor, Anthony Gannon, and my co-advisor,

Andrea Holmes, for all of their help throughout my research. Ms. Holmes spent countless

hours helping me better understand the equipment that was used for this project. I was

fortunate to have such supportive advisors that made for a very rewarding research

experience. I would also like to thank my brother, Christopher Hawxhurst, for all of his

technical revisions of my thesis, my girlfriend, Ashley Eves, for editing my thesis, and

Tim Bihl for lending his expertise in communication protocols.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

This project falls under the Energy Systems Technology Evaluation Program

(ESTEP). The program provides funding by the Office of Naval Research (ONR) for

energy-related projects at the Naval Postgraduate School (NPS). It was created in FY

2013 in response to the Secretary of the Navy Ray Mabus’s call for greater use of

renewable energies [1]. The U.S. Department of Defense (DOD), the nation’s largest

consumer of energy, “has launched several initiatives to reduce fossil fuel use by

improving energy efficiency and shifting to renewable energies since 2010” [2]. This

research is part of a larger effort by the DOD to meet increasing energy demands with

secure and sustainable energy technologies.

A. MOTIVATION

The energy industry has largely remained the same since Thomas Edison

commissioned the first commercial power grid in lower Manhattan in 1882 [3]. Although

the electrical grid effectively provides energy for a large portion of the population, there

are many risks and disadvantages associated with the current grid. According to the

Department of Energy (DOE), demand for electricity has outpaced transmission rates by

25% every year since 1982 [4]. As demand for energy increases, new energy solutions

are going to have to be found outside of the traditional electric grid. Buildings that need

greater energy security, developing counties, and facilities in remote locations are

examples of markets that require unique energy solutions. As new technologies increases,

more energy solutions become available. The next step is to design and implement more

effective energy systems using available technology.

B. TRADITIONAL ENERGY APROACH

The electric grid is a network of generating stations that produce electric energy,

high-voltage transmission lines that transport energy, and distribution lines that provide

energy to customers [5]. The traditional electric grid provides energy to customers by

matching power generation to demand. Power generation and transmission capabilities

must be much greater than the average demand in order to provide sufficient power

 2

during periods of peak demand. Most existing generating stations deliver electricity to

customers at an overall fuel-to-electricity efficiently in the range of 28–32%; this

represents a loss of about 70% of the primary energy provided to the generator [6].

Renewable energy resources struggle to fit the current model due to intermittency,

despite their potential to generate large amounts of power [7]. The lack of any large-scale

energy storage capabilities means that there is no buffer between power generation and

demand. The traditional electric grid is becoming an inefficient and inflexible method of

providing energy.

C. MULTI-PHYSICS ENERGY APPROACH

The multi-physics energy approach was developed at NPS by Gannon and

Pollman in 2015 [7]. The approach is a methodology of designing the generation,

transport, and storage of energy systems using all available technology based on the end-

use application of energy [7]. It also suggests a novel concept of using demand side

management to match load demand to power generation, rather than the opposite, more

traditional supply side approach. The multi-physics approach was used to design the

Integrated Multi-Physics Renewable Energy Laboratory (IMPREL). IMPREL is an

experiment energy system that was designed to demonstrate different methods of

generating, storing, and transporting energy from renewable resources [7]. It was

commissioned in 2015 at NPS in Monterey, CA.

D. OBJECTIVE

The objective of this research was to demonstrate an energy system designed

using the multi-physics approach that could more effectively use renewable energy

resources based on the end-use application of energy. This required developing and

implementing a control strategy for the IMPREL microgrid that could match load

demand to power generation from renewable energy resources. The goal of this project

was to provide a unique energy system that can be used by the DOD and other

communities, while validating the multi-physics and end-use energy approach.

 3

E. CHALLENGES

The practical implementation of a microgrid controller required coordination

across multiple communications protocols and the practical constraints of many systems.

In particular, the batteries were very vulnerable to damage from cycling. If load demand

drastically exceeded power generation for any significant period, the batteries would

completely discharge and be permanently damaged. When developing a controller that

adjusts power to loads and relies on multiple communications all working together, there

were many possibilities for scenarios to go dangerously wrong. Therefore, protecting the

equipment from potential damage was always the top priority. Developing the controller

itself was also a challenge. The controller was required to implement an untraditional

control strategy that not been attempted or demonstrated anywhere within the DOD or by

current microgrid research efforts.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. BACKGROUND

The IMPREL energy system is an experimental microgrid that aims to use

renewable energy resources more effectively by utilizing targeted energy storage. This

project is part of a larger effort by the DOD to research and implement new energy

technologies.

A. DEPARTMENT OF DEFENSE ENERGY OBJECTIVES

By some accounts, the U.S. Department of Defense (DOD) is the largest

consumer of petroleum in the world, consuming 117 million barrels of oil in FY 2011,

and accounting for 71% of the DOD energy use in FY2010 [8]. Despite decreasing

petroleum use 4% from FY2005 to FY2011, spending on petroleum increased from $4.5

billion to $17.3 billion during the same period due to rising costs [8]. Concerns over

rising costs, the risks associated with the military’s dependence on petroleum, and the

need for more secure and sustainable energy has led to both federal legislation and

executive orders directing the DOD to reduce its use of petroleum. This has directed an

extensive alternative energy effort by the DOD to improve energy efficiency, enhance

energy security, and cut installation and operational energy costs. DOD renewable energy

projects have already increased 43% from 2010 to 2012 and are anticipated to increase

exponentially over the next 20 years [9].

According to the DOD, about 75% of DOD’s energy is used for operational

purposes and about 25% is used in installations [10]. There are several federal initiatives

that have contributed to the decline in the DOD’s installation energy usage. The National

Defense Authorization Act of 2010 requires that DOD facilities use 25% renewable

energy by 2025 [2]. In its FY 2013 Operational Energy Annual Report, the DOD also

outlined several initiatives to reduce operational energy use. The DOD has already

invested in deploying and generating energy at the location of military operations to

reduce the need to transport fuel long distances [11].

 6

Forward operation bases (FOB) are one example of where the U.S. military is

trying to deploy and generate energy on-site. These bases often rely on flexible microgrid

solutions to provide energy. However, generators are often used at sub-optimal loads due

to the variability of military operations. The goal of the United States Marine Corps’

(USMC) Expeditionary Energy Concepts (E2C) program, created by the USMC

Commandant in 2009, is to quickly evaluate and deploy technologies that reduce the need

for fuel supply-train. One of the technology areas that E2C is focusing on for 2016 is

“energy storage technology for mobile electric microgrid application” [12]. Sandia

National Labs (SNL) is also working with the United States Marines Corps by

developing the microgrid design tool (MDT). The MDT will help determine the optimal

mix of energy technologies to deploy to FOBs to meet the specific requirements of that

operation [13].

B. MICROGRIDS

A microgrid is a localized electric grid that can operate autonomously. Microgrid

systems usually include a combinations of power generations sources, loads, and storage

devices that can all be centrally controlled. Figure 1 illustrates an example of a microgrid

system. The microgrid manager is the centralized controller that integrates and optimizes

power generation with the controllable loads and allows the system to operate

autonomously [14]. Therefore, these systems can be disconnect from the centralized

electric grid (macrogrid) and can operate in an isolated mode, usually referred to as

islanding.

 7

Figure 1. Microgrid Illustration. Source: [14]

As described by Lasseter [6], microgrids operate using a peer-to-peer and plug-

and-play model for each component of the microgrid. In the peer-to-peer model, no

microgrid components are critical for operation. This allows generators or loads to

separate from the system while maintaining service. The plug-and-play model implies

that a generator or load can be added to the system without changes to the controls. This

flexibility is provided by the inverters, which automatically convert between DC and AC

power. The microgrid manager uses information from all the components to provide

system optimization.

The flexibility of microgrids means that they are often used with renewable

energy resources. In addition to their independence and reliability, this allows microgrids

to provide unique energy solutions. However, microgrid systems still use the traditional

energy approach, matching power generation to load demand. The need to provide power

during peak demand, coupled with the intermittent nature of renewable energy resources,

means that current microgrid system are still dependent on electrical storage and backup

generation.

 8

C. RENEWABLE ENERGY

Renewable energy resources, according to the Department of Energy (DOE),

include solar, biomass, wind, geothermal, and water [15]. These resources are naturally

regenerative. Photovoltaic (PV) solar cells and wind turbines are two examples of the

many technologies that generate power using renewable energy. The DOD is interested in

utilizing renewable energy for military operations due to its potential for energy security

and independence, both strategic and operational. Renewable energy has the ability to

produce on site power, which would improve the energy security and sustainability of

operations. However, renewable energy resources tend to be intermittent and

unpredictable by nature. Therefore, power generation from these resources is not always

available. The power density of renewable energy is also significantly lower than

petroleum, which means that more equipment is need to provide the same amount of

power.

D. THERMAL ENERGY STORAGE

Energy storage devices provide a buffer to an electric grid. The storage devices

can absorb energy from the generators when power generation exceeds load demand and

feed that energy back onto the grid when load demand exceeds power generation. Energy

storage devices are often used with renewable energy resources to compensate for the

intermittent power generation. The most common energy storage devices are batteries,

which store electrical energy. Thermal storage devices, which stores thermal energy as

heat, are less common.

Water is commonly used for thermal storage due to its high heat capacity, which

allows it to store large amounts of heat. Water can be used for both hot and cold thermal

storage. In cold storage, water is frozen to form ice. Ice storage takes advantage of

water’s latent heat of fusion (334 kJ/kg), which is the amount of heat required to change

phases from a liquid to a solid [16]. However, water cannot be heated past 100°C (212°F)

at atmospheric pressure without creating steam, making it difficult to use for high

temperature heat storage. Ceramic bricks are another material used for thermal storage.

They are used for hot thermal storage due to their ability to store heat at very high

 9

temperatures, in excess of 1400°F [17]. Figure 2 shows the energy densities of ice and

ceramic bricks compared to common battery technologies.

Figure 2. Energy Densities of Different Materials. Source: [18].

In addition to having equivalent energy densities, thermal storage has several

advantages over batteries. Thermal storage can directly provide heating and cooling,

without converting thermal energy back to electrical energy. The devices have much

greater lifetimes since they can be cycled several thousand times with minimal

degradation. Batteries have limited lifetimes, and their energy storage capacity decreases

over time. Thermal storage devices are also simpler than batteries, and therefore tend to

be much cheaper. Comparing the installation cost per kWh of thermal storage to batteries,

ceramic bricks storage is 21% cheaper than the least expensive battery technology [16].

Ice storage is 73% cheaper than the least expensive battery technology [18]. Table 1

summarizes the cost and cycle life comparisons between thermal storage and batteries.

 10

Table 1. Comparison of Energy Storage. Adapted from [16], [18], [19].

Storage

Method

Thermal Storage Battery Storage

Ice
Ceramic

Bricks
Alkaline-cell Lead-acid Lithium-ion

Cost per

kWh
$37 $110 $140 $150 $400

Cycle Life 10+ yrs 10+ yrs 20 300 1000

According the DOE, the majority of energy consumed in commercial and

residential buildings goes towards heating or cooling. Figure 3 shows the consumption of

energy in commercial and residential buildings. The figure breaks down the total energy

consumption into its end-uses, such as space heating, water heating, space cooling, and

refrigeration, which are all forms of thermal energy.

Figure 3. Energy Consumption by End Use. Source: [20].

E. INTEGRATED MULTI-PHYSICS RENEWABLE ENERGY

LABORATORY

The Integrated Multi-Physics Renewable Energy Laboratory (IMPREL) is an

experimental microgrid system that was developed at NPS using the multi-physics

 11

approach. The multi-physics concept, which proposes different methods of generating,

transporting, and storing energy based on the end-use application of energy, is illustrated

in Figure 4. The figure illustrates the traditional approach alongside the multi-physics

approach of providing energy to electrical, heating, and cooling loads. The end-use

energy would therefore be electrical loads as well as heating and cooling.

Figure 4. Multi-Physics Theory. Source: [7].

The solid lines represent the traditional approach to energy, whereas the dotted

lines represent alternative methods. The traditional approach uses the electric grid and

hydrocarbons as energy sources. Energy is transported using electricity to electrical,

heating, and cooling loads. The multi-physics approach proposes using renewable solar

and wind resources for power generation. Energy is transported using both electricity and

direct thermal heating. Electrical energy covers electrical and cooling loads while direct

thermal heating covers heating loads. Excess energy generated by the renewable

 12

resources is stored as electricity in supercapacitors or batteries or as hot or cold thermal

energy in thermal storage devices. The thermal storage devices can be used directly to

augment heating and cooling demands, without converting energy back to electricity.

 The IMPREL microgrid system was designed primarily for heating and cooling

applications based on the end-use energy approach. The system requires energy storage

capabilities since it relies solely on renewable energy generation. Therefore, a

combination of thermal storage devices and battery storage was used. Ice was used for

cold thermal storage and ceramic bricks were used for hot thermal storage. Since the

majority of end-use energy is thermal energy, the thermal storage capacity was designed

to make up the majority of the systems energy storage capabilities.

The IMPREL microgrid was attempts to increase overall efficiency of an energy

systems by utilizing power generation from renewable solar and wind resources more

effectively. The proposed control strategy matches load demand to power generation,

storing excess energy in electrical and thermal storage devices. The IMPREL concept is

shown in Figure 5. Renewable wind and solar energy provides power generation, and the

microgrid transports electrical energy. Batteries store the excess electrical energy from

the microgrid, and a heater system and chiller system store hot and cold thermal energy,

respectively [7].

 13

Figure 5. IMPREL Concept. Source: [7].

To implement the proposed control strategy that integrated different components

of the IMPREL microgrid system, a custom controller is designed and developed. The

controller is required to operate autonomously, prioritize loads, match load demand to

power generation, and provide heating and cooling to building spaces. The controller will

allow the microgrid system to respond to heating and cooling demands, as well as store

excess energy in storage devices.

 14

THIS PAGE INTENTIONALLY LEFT BLANK

 15

III. EXPERIMENTAL METHODS AND EQUIPMENT

This section describes the components and equipment of the IMPREL microgrid

system, the communications network for the controller, and the desired control strategy.

A. EQUIPMENT

All of the components used for the microgrid system are commercial off the shelf

(COTS) equipment. The following three sections cover the equipment used for power

generation, transport, and energy storage. Use of COTS equipment simplifies design of

the system and ensures easy reproduction. Overriding the default controls of the heating

and cooling units was the only customization of the equipment. This was necessary to

fully implement the control strategy. Otherwise, default controls would interfere with

adjustments made by custom controller since equipment operates differently than

intended.

1. Power Generation

The microgrid uses purely renewable resources for power generation. Power is

generated from two VisionAIR 3.2kW vertical axis wind turbines (VAWT) and 6.4kW of

photovoltaic (PV) solar panels, shown in Figure 6. The microgrid also has the option to

draw power from the main grid. However, this capability was not used for this research,

completely isolating the microgrid from the main grid.

Figure 6. Vertical Axis Wind Turbines and Photovoltaic Solar Panels

 16

a. Solar Energy

The 6.4kW of solar power is produced by twenty-four PV solar panels, each of

which provide 265W of power. The panels are dived between two groups of twelve

panels each, designated group A and group B. This allows at least one group to provide

power if some of the panels become shaded. Each group provides DC power to a single

SMA Sunny Boy DC to AC inverter, shown in Figure 7. The inverter connects to the

three-phase microgrid.

Figure 7. Solar Sunny Boy Inverter

 17

b. Wind Energy

Two wind turbines output wild AC power, which varies in frequency and voltage,

to individual inverters, shown in Figure 8. Aurora Wind Box Inverters (WBI) convert the

wild AC power to variable DC power. Two SMA Sunny Boy inverters convert the

variable DC power from the Aurora boxes back to AC power. If there is gusting or high

wind speeds, excess power is diverted to a resistor bank. The resistor banks dissipate

excess energy as heat and act as a large load on the generators, reducing the speed of the

wind turbines.

Figure 8. Wind Turbine Inverters

Variable DC to

AC Inverter

Wild AC to Variable

DC Inverter

Resistor Banks

Wild AC to Variable

DC Inverter

Variable DC to

AC Inverter

 18

2. Energy Transport

An electric microgrid consisting of three SMA Sunny Island inverters creates a

three-phase system at 208V, shown in Figure 9. They are connected as one master

inverters and two slave inverters. The three-phase microgrid synchronizes each power

generation source to the microgrid, and then transports the energy to the leads.

Figure 9. SMA Three-Phase Microgrid

The microgrid consists of six inverters: one solar Sunny Boy inverter, two wind

turbine Sunny Boy inverters, and three Sunny Island inverters. The inverters

communicate with a central SMA Sunny WebBox, shown in Figure 10, which generates

a webpage with all the data and status information from the microgrid. The WebBox is

connected to a computer with a TCP/IP interface. This allows the user to remotely

monitor the system. However, remote connection to the microgird from outside IMPREL

has been disabled.

Master Sunny

Island Inverter

Slave 1

Inverter

Slave 2

Inverter

Solar

Inverter

Wind Turbine Inverters

Sunny

WebBox

 19

Figure 10. SMA Sunny WebBox

3. Energy Storage

Energy storage for the microgrid system is divided between electrical storage and

thermal storage. Electrical energy storage provides backup power to the microgrid system

when the renewable resources are not generating power. The electrical energy stored in a

battery bank also feeds power onto the grid when electric load demand exceeds the power

generation. Thermal storage from a heater and chiller system is used directly for heating

and cooling applications respectively. The thermal storage systems convert electrical

energy into thermal energy and store energy until it is needed.

 20

a. Battery Bank

The battery bank, shown in Figure 11, stores electrical energy for the microgrid.

The battery bank is composed of twenty-four valve-regulated lead-acid (VRLA) gel cells

with a total storage capacity of 800–1000Ah, equivalent to approximately 50kWh. The

batteries are used to stabilize the grid but are not intended to run the loads directly for

extended periods. The electrical capacity of the batteries is relatively small, and running

the loads from batteries would drain them within a few hours.

Figure 11. VRLA Battery Bank

 21

b. Cold Thermal Storage

The cold thermal storage system, show in Figure 12, uses a 7½-ton Trane chiller

with a variable speed compressor (VSC) and variable frequency drive (VFD) pump. The

chiller cools water containing 25% propylene glycol to -4°C (25°F) and circulates it

through heat exchangers in a CALMAC IceBank storage tank, shown in Figure 13. The

water-glycol solution freezes the water surrounding the heat exchanger inside the tank.

This process extracts the heat from the water in the IceBank until approximately 95% of

the water inside the tank has been converted to ice [21]. The IceBank can provide

170kWh of energy storage (48.5ton-hours of cooling). When there is a demand for

cooling, air would be vented through the IceBank, melting the ice and cooling the air.

This requires the installation of a liquid air heat exchanger between the glycol mixture

and air, which has not been installed on this system.

Figure 12. Trane Chiller and Cold Thermal Storage System

 22

Figure 13. CALMAC IceBank

According to CALMAC, ice-making de-rates the nominal chiller capacity by

approximately 30–35% [21]. The system was designed to run at night, when electricity

costs are lower and the lower temperatures would keep the unit operating efficiently. The

control strategy for this project prioritizes the chiller for direct cooling to the building

spaces, which is done at the normal thermodynamic efficiency. Once the cooling load has

been answered, the chiller is used to generate ice for thermal storage, which does cause

the chiller to operate in a less efficient mode. However, the chiller uses excess power

generation from the renewable resources to generate ice, so there is no cost associated

with the decreased efficiency.

 23

c. Hot Thermal Storage

The hot thermal storage system used a Steffes Comfort Plus forced air heating

system, shown in Figure 14. The 4200 series heater was designed to store off-peak

electricity in the form of heat, the same design concept of the cold thermal storage

system. The heater converts electricity into heat within an insulated ceramic brick core,

Figure 15. Since electricity is converted to heat within the insulated core, the energy

conversion is theoretically 100% efficient. The heater can reach a maximum temperature

of 650°C (1200°F), providing 120kWh of energy storage (409,440BTU of heating).

When there is a demand for heat, a fan blows air through the ceramic bricks, which heats

the air. Locating this system inside or under the space that is to be heated ensures residual

heat loss is not wasted.

Figure 14. Steffes Heater

 24

Figure 15. Ceramic Bricks used for Hot Thermal Storage

 25

B. COMMUNICATIONS

The installation of the equipment for the microgrid system was completed during

previous NPS thesis research projects [16], [18], [22]. The components, however, had not

been integrated into a working system. In order to implement the desired control strategy,

communications had to be established between a centralized controller and the

equipment. The initial focus of this research was therefore setting up a communications

network to be used by the centralized controller. Figure 16 illustrates this

communications network.

Figure 16. Communications Network

The central microgrid controller uses a USB serial port adapter to communicate

with the heater system, Modbus communications protocol over Ethernet to communicate

with the microgrid inverters, and BACnet communications protocol over Ethernet to

communicate with the chiller system. However, since BACnet commands are disabled,

an analog output device is used to vary the chiller power. MATLAB was used to develop

functions that could execute each of these communications protocols. A separate function

was developed for each protocol.

 26

1. SMA Sunny WebBox Webpage

The SMA Sunny WebBox collects information from the inverters and uses that

data to generate a webpage. Information on the webpage updates every 30 seconds. The

WebBox connects to the computer via Ethernet. Figure 17 shows an example of data

collected from the master Sunny Island inverter that is displayed by the webpage.

Figure 17. Example Sunny Island Data on Webpage

Data is read from the web page using a URL filter MATLAB script that scans the

page for given variables. The URL filter function has numerous drawbacks. It takes over two

minutes to scan the necessary data, sometimes the filter scans the wrong values, and if the

user navigates the webpage while the function is scanning it will cause an error. The webpage

also has to be logged in for the function to work. The function was required to scan the page

a minimum of every five minutes to remain logged in to the website. The URL Filer function

was eventually replaced with the Modbus function as it avoids many of these issues.

 27

2. Modbus Protocol

The SMA microgrid uses Modbus communications protocols. The following

information from the SMA Sunny WebBox Modbus Interface describes the variation of

the Modbus communications protocol for SMA products.

Modbus Protocol

The Modbus Application Protocol is an industrial communication protocol

that is currently mainly used in the solar sector for plant communication in

PV power stations.

The Modbus protocol has been developed for reading data from or writing

data to clearly defined data areas. The Modbus specification does not

specify what data is within which data area. This information must be

defined specifically for a device in a so-called Modbus profile. With

knowledge of the specific Modbus profile, a Modbus master (e.g., a

SCADA system) can access the data of a Modbus slave (e.g. Sunny

WebBox).

The SMA Modbus profile is the special Modbus profile for SMA devices.

SMA Modbus Profile

The SMA Modbus profile contains definitions for selected SMA devices.

For the definition there was a reduction of the available data and an

assignment to the respective Modbus registers. The SMA Modbus profile

contains for example overall and daily energy, current output, voltages and

currents. The assignment between SMA device data and Modbus

addresses is divided into sections in the SMA Modbus profile that can be

addressed by Unit IDs.

In order to enable access to data of an SMA device, a special gateway is

required that is provided by Sunny WebBox.

Plant Topology

The SMA Modbus profile has been designed for a hierarchical plant

structure. This structure contains the WebBox as communication device

that is equipped with a Modbus TCP/IP interface. All other SMA devices

that are connected to the WebBox via the SMA fieldbus are subordinate to

it.

From the perspective of the Modbus protocol, the WebBox is a Modbus

slave that provides a gateway to SMA devices. The SMA devices can only

be addressed using this gateway per Unit ID. [23]

 28

Modbus communications was incorporated into the control scrip in order to

improve the communications between the controller and the microgrid. It allows the

controller to bypass the webpage generated by the Sunny WebBox and request data

directly from the Sunny Boy and Sunny Island inverters. This dramatically speeds up

communications, allowing access to data as it becomes available. For example, the

webpage displays data for all of the inverters, updating approximately every 30 seconds.

When polling the inverters directly, however, some values update as frequently as every

5 seconds.

Using Modbus communications, the controller polls data from the three Sunny

Boy inverters and the master Sunny Island inverter. Each inverter has a specified Unit

Identifier (ID). Within each inverter, data is stored in specified register addresses. Most

values are stored in two adjacent registers as unsigned 32-bit integers (UNIT32). The

controller converts these values to decimal values. The query and response of all the data

takes less than two seconds. The controller only polls the inverters every 20 seconds,

allowing time for all the values to update. Incorporating Modbus communications has

drastically improved the performance of the controller.

3. Serial Port

The Steffes heater uses a universal serial bus (USB) serial port adapter for

communications. The MATLAB control scrip communicated with the heater using a

USB connection. Using a communications (COM) port, requests could be sent to the

heater to adjust the element on percent, fan setting, and read the temperature as well as

the element on percent and fan setting.

A serial port is a general-purpose serial communications interface. Serial ports use

the RS-232 telecommunications standard for data transmission. Most modern computers

no longer have serial ports and require a serial-to-USB converter to interface with RS-

232 serial devices [24]. A virtual COM port (VCP) driver from FTDI Chip was used to

convert the USB device to an additional COM port. The USB device could then be

accessed as a standard COM port using application software such as MATLAB [25].

 29

4. BACnet Protocol

The Trane chiller system uses BACnet communications protocol. The Building

Automation and Control Networks (BACnet) is an American national standard data

communications protocol developed by the American Society of Heating, Refrigerating

and Air-Conditioning Engineers (ASHRAE) [26]. The following information on BACnet

protocol is from the Trane Integration Guide for BACnet Communication Interfaces.

The Building Automation and Control Network (BACnet and

ANSI/ASHRAE Standard 135–2004) protocol is a standard that allows

building automation systems or components from different manufacturers

to share information and control functions. BACnet provides building

owners the capability to connect various types of building control systems

or subsystems together for a variety of reasons. In addition, multiple

vendors can use this protocol to share information for monitoring and

supervisory control between systems and devices in a multi-vendor

interconnected system.

The BACnet protocol identifies standard objects (data points) called

BACnet objects. Each object has a defined list of properties that provide

information about that object. BACnet also defines a number of standard

application services that are used to access data and manipulate these

objects and provides a client/server communication between devices. [27]

The Trane chiller system uses a Tracer UC600 Programmable controller along

with two unit controllers, a UC600 and a UC400. The following information on these

controllers is from the Trane website.

The Tracer® SC is an intelligent field panel that communicates with unit

controllers (BACnet) that provide standalone control of HVAC

equipment. The Tracer® SC scans all unit controllers to update

information and coordinate building control, including building

subsystems such as VAV and chilled water systems. The LAN allows

building operators to manage these varied components as one system

using web access. [28]

Trane offers programmable BACnet controllers that can be customized to

specific needs. The Tracer UC400 and Tracer UC600, which are also used

as airside controllers, are compatible with a wide variety of application

scenarios, and support graphical programming and the BACnet protocol.

These two programmable BACnet controllers are designed to work with

Tracer SC and third-party BACnet MS/TP systems. [29]

 30

The Tracer SC controller is similar to the SMA Sunny Webbox in that it receives

and stores data from the unit controllers. The Tracer SC controller uses this data to

generate a webpage and to update the Trane control panel. It monitors data from the

entire system, including compressor and pump speeds, glycol-water temperatures, and ice

storage levels The Tracer SC controller is also intended to implement controls, but that

feature was not used for this project.

BACnet communications was integrated into the controller to allow the controller

to poll data from the Tracer SC controller. The controller can also communicate directly

with the two unit controllers. The UC400 controller controls the compressor and pump

speeds. The controller can send BACnet commands to the UC400 controller to control

these speeds. However, turning off the control feature of the Tracer SC override this

feature as well. Therefore, speeds commands are sent to the UC400 controller using an

analog signal.

5. NATIONAL INSTRUMENTS COMPACT DATA ACQUISITION

A National Instruments (NI) compact data acquisition (cDAQ) device is a

modular platform that can be used to interface with different sensors and signals. The NI

cDAQ is used with the NI 9263 analog output module to send analog signals to the

chiller. These signal are received by the UC400 controller and modulate compressor

speed. This adjusts the power to the chiller. The NI cDAQ chassis and analog output

module are shown in Figure 18. The module is used to output 0–10V, which corresponds

to 0–100% compressor speed.

 31

Figure 18. NI cDAQ Analog Output Device

C. CONTROL STRATEGY

The controller was designed and implemented using MATLAB, a matrix-based

numerical computing program that offers extensive capabilities. The microgrid controller

is composed of multiple elements, shown in Figure 19. Each element was designed and

run using MATLAB. The microgrid controller shutdown and microgrid load controller

are control loops that run simultaneously and continuously. The communications

functions allow the load controller to communicate with the microgrid system.

Figure 19. Microgrid Controller Hierarchy

Communication
Functions

Control Loops

Microgrid
Controller

Microgrid
Load

Controller

Modbus Heater Comm BACnet Chiller Comm

Microgrid
Controller
Shutdown

 32

1. Microgrid Controller Shutdown

The microgrid controller shutdown provides a safety backup to prevent damage to

the batteries and equipment. Ending the load controller loop abruptly would leave the

loads running at the power levels last received by the controller. This is obviously an

issue, as the loads will eventually drain the batteries, causing damage to the system. The

controller shutdown monitors the load controller. If the load controller encounters an

issue, such as lost communications, the control loop will terminate and the controller will

stop operating. If the microgrid controller shutdown detects that the load controller has

stopped operating, it will turn of all of the loads. Although the controller is not infallible,

it provides an extra layer or redundancy and safety to the system.

2. Communications Functions

The microgrid load controller utilizes four separate functions to communicate

with the microgrid system. Each function executes a different communications protocol,

as described in the previous sections, in order to communicate with different equipment.

The Modbus function uses Modbus protocols to communicate with the microgrid

inverters. The Heater Comm function uses a serial port to communicate and send

commands to the heater. The BACnet function uses BACnet protocols to communicate

with the chiller system. The Chiller Comm function uses the NI cDAQ to send analog

speed commands to the chiller.

3. Microgrid Load Controller

The microgrid load controller implements the desired control strategy using the

control loop shown in Figure 20. The objective of the control strategy is to match the load

demand from the chiller and heater systems to power generation from the renewable

resources, without requiring additional power from the batteries. Control provided by the

default SMA software handles power distribution of the microgrid devices. The microgrid

load controller varies demand by adjusting load power. By matching load demand to power

generation, the system uses all available power from the renewable energy resources. Excess

thermal energy, not immediately needed for heating or cooling applications, is stored in the

thermal storage devices. Excess electrical energy is stored in the batteries.

 33

Figure 20. Microgrid Load Controller—Control Loop

For each iteration of the control loop, the Microgrid Load Controller polls data

from the microgrid and thermal storage devices, determines available power and thermal

storage levels, prioritizes the loads, and adjusts the power to the loads accordingly. Data

for each iteration is logged in a text file. There are multiple controls and overrides within

the control loop that regulate operations. These controls take of the form of “if/then”

MATLAB statement.

The controller constantly adjusts load demand in response to changes in power

generation. Since the renewable resources used for power generation are intermittent by

nature, the controller cannot predict how much power will be available. The performance

of the controller is limited to how quickly it can respond and make adjustments. The

control loop is currently limited to 20 seconds, the time it takes the inverters to update

their values.

The aforementioned explanation for the control loop of the Microgrid Load

Controller (Figure 19) is highly simplified. The following three sections describe the

Poll for Data

Determine
Available Power

Determine
Storage Levels

Prioritize Loads

Controls /
Overrides

Adjust Load
Power

Log Data

Restart Loop after
20 seconds

Communications

Internal Code

 34

control loop in detail. The MATLAB code for the both control loops and four functions is

located in Appendix A.

a. Pre Control Loop

Before the microgrid load controller enters the control loop, it executes

preliminary code. This code defines certain variables and sets up the control loop to run

more smoothly. This only occurs when the microgrid load controller is first started. The

first section of preliminary code allows the user to adjust the controller. The user can

choose the start and stop time that the controller will run loads and the minimum power

requirements for certain operations. The user also sets the desired thermal storage levels,

which the controller uses to determine which load to prioritize. These inputs are further

explained in the following section.

The next section of code establishes communications with the equipment. A

TCP/IP connection required for Modbus communications is established with the SMA

Sunny WebBox. This prevents the Modbus function from establishing a new connection

each time it polls a register, which would eventually crash the Sunny WebBox due to the

large amount of network traffic. All BACnet devices on the network are also discovered

and stored in an address cache. This improves the communications speed of the BACnet

function.

In the last section, a text file is created and memory is pre-allocated. All data from

the control loop for that day is recorded in the text file. Memory is pre-allocated to

improve speed of the control loop. Since the data files within the controller increase in

size after every iteration, this prevents MATLAB from allocating larger blocks of

memory after each iteration.

b. Control Loop

(1) Time

There are multiple timed elements of the control loop, so the first step is to

establish the time. To ensure that each loop takes exactly 20 seconds, a timer is started to

time the duration of each loop iteration. The time of day is also established. All variables

 35

for that iteration are associated with that time. The hour and minute are also specified for

controls that operate depending on the time of day. The date is also established and used

to create a new text data file each day.

(2) Modbus Communications

The SMA microgrid communicates using Modbus protocols. MATLAB

establishes communications with the microgrid using the Modbus function, which polls

data from the inverters via the WebBox using the pre-established TCP/IP connection. The

controller specifies the unit ID of the inverter and the register address of the value it

wants to poll. UINT32 values are converted to decimal values and the data is extracted to

MATLAB.

(3) Calculated Variables

The controller calculates battery power, which is the product of the battery current

and battery voltage, and the total power generation, which is defined as the sum of the

power generation from the solar panels and the wind turbines. Following references to

power generation refer to total power generation. Many of the following controls use

these variables.

(4) URL Filter Communications

The URL-filter function can mine data variables from the Sunny WebBox

webpage. This process is very slow, requiring a few seconds per variable, and can be

inaccurate, mining the wrong value. More importantly, the function will output an error if

the webpage logs out due to inactivity or a user navigates the webpage, causing the

controller to terminate. After the ability to read values using Modbus communications

was incorporated, the URL-filter was no longer required to run the controller.

(5) BACnet Communications

The Trane chiller systems communicates using BACnet protocols. MATLAB

communicates with the chiller system using the BACnet function, which can poll data

from the Tracer SC, UC600, or UC400 controller. The controller specifies the device ID

 36

of the controller and the object, instance, and property of the value it wants to poll. The

BACnet function can execute different BACnet commands, such as writing values to the

compressor and pump speeds. However, the controllers were setup not to accept BACnet

write commands in order to override the default Trane controls. If the controllers were

updated to accept BACnet write commands, it would eliminate the need for the NI

cDAQ. The NI cDAQ currently regulates compressor speed using an analog signal.

(6) Thermal Storage Levels

Ice storage levels are recorded by the Tracer SC controller, which can be read

directly using the BACnet function. Heater storage levels are calculated using Equation 1,

with ambient room temperature 20°C (70°F) correlating to 0% and the maximum heater

temperature of 650°C (1200°F) as 100%. All values in Equation 1 are in Fahrenheit.

Heater Temperature -70

Heater Storage = 100
1200 70




 (1)

(7) Power Moving Averages

Moving averages compensate for the intermittence of the renewable resources,

which can cause the power generation to change rapidly. Moving averages of the power

generation, as well as the battery power, are calculated from the last six iterations. This

corresponds to a two minute moving average. These averages are used in multiple

controls, and can easily be updated to increase or decrease the duration of the moving

average.

(8) Max Power Point Tracking (Override 1)

The maximum power point tracking (MPPT) control is the first of three override

controls. If any of the overrides are enabled, the loads are shut off. The specified

conditions of each override are outline in this section and the following two sections. The

loads will not turn back on until the overrides are disabled.

The MPPT control tracks increasing power generation in the morning. The

batteries require a large amount of electrical power to charge every morning, as charge is

 37

lost throughout the night. This causes the solar panels to output their maximum power

generation. The MPPT control records when power generation has peaked and begins to

fall off, indicating that the power delivered to the batteries has leveled off and excess

power is available. Once this occurs, the override is disabled for the rest of the day and

the loads are allowed to run. This override is turned on by default when the control loop

restarts at midnight.

(9) Low Power Shutdown and Standby (Override 2)

The low power control is the second override. It includes two controls, the lower

power shutdown and low power standby controls. The low power shutdown control will

shut down all of the loads if the average power generation falls below a specified limit.

This prevents the controller from running loads at very low renewable power. The loads

will not turn back on until the average power generation increases above this limit. The

low power standby control will shut down all of the loads for a certain period of time, if

the average power generation falls below a certain limit but is still greater that the

shutdown limit.

The low power standby control is mainly needed if the only load is the chiller, due

to its large startup power. Since the microgrid inverters will not output their max power if

there is not enough load on the system, the controller cannot determine the maximum

available power without running loads. However, the large startup power of the chiller

means that it cannot be run at low power. The low power standby control allows the loads

to run for five minutes in order to determine the available power generation. If there is

insufficient power, the control will shut the loads down for a set amount of time, before

allowing them to run again for five minutes. Ideally, this would only occur a few times

before power generation increased enough to run the loads without drawing power from

the batteries, or power generation decreased below the shutdown limit and the loads

remained shut down.

(10) Battery SOC Warning and Boost Charge (Override 3)

The third override is a combination of two battery controls. The first battery

control is a low battery state-of-charge (SOC) warning. If the battery SOC drops below

 38

85%, the control will shut off all of the loads and display a warning. The loads will not

turn back on until the battery SOC increases to 86%. This allows a buffer if the SOC

drops when the loads are reintroduced.

The second battery control is for boost charge mode. The batteries go into a boost

charge mode every few days or if the SOC is low. In this mode, the batteries require more

power than in float mode, which is the normal operating mode. This allows them to

charge quickly. If heater or the chiller are loaded to the mircogrid during this time the

boost charge will not complete. Therefore, the control prevents any loads from running

while the battery is in boost charge. Both battery controls help to prevent damage to the

batteries and improve their lifetime.

(11) Percent of Completion (POC) and Prioritize Loads

The controller determines which load to prioritize based on the percent of

completion (POC) of thermal storage. The POC is determined by the current storage

levels and the desired levels set by the user, as shown in Equation 2.

Current Storage Level
Thermal Storage POC = 100

Desired Storage Level


 (2)

The controller prioritizes the load with the lower POC. However, if the average

power generation is below 3kW, the minimum power to run the chiller, the controller will

default to the heater regardless of POC. If the desired storage level is zero, the POC is set

to 100%. In this case the corresponding load will not run.

(12) Max Load Power Control

The controller limits the maximum power of the loads based on the respective

thermal storage POC. The default max power is 100% for the chiller and 50% for the

heater, since there is not enough power generation to run the heater above 50% during

normal operations. Once the thermal storage POC increases above 80%, the controller

decreases the maximum power for that load to prevent overshoot and allow power to be

 39

used for other loads. Once the thermal storage POC has reached 100%, the maximum

power is set to zero, preventing the load from running.

(13) Battery Power Control

The battery power control determines whether power is available to run the loads.

Negative battery power (batteries are charging) indicates there could be available power

to run the loads. Positive battery power (batteries are feeding power onto the microgrid)

indicates load demand has exceeded power generation. The controller will increase or

decrease the loads proportionally in an attempt to stabilize the power to the loads at a

point where the renewable resources are providing maximum power to the microgrid but

also maintaining a trickle charge on the batteries.

Since there is no way to directly determine how much power is currently available

from the sources, the control uses a perturbation analysis to determine the maximum

power point. If there is available power, the control incrementally increases the power to

the loads. The renewables sources respond by increasing power output until they reach

their maximum power output. If load demands exceeds power generation, the control

responds by decreasing power to the loads. Load power stabilizes when the batteries are

being trickle charged at 200–400W. This control relies on the fact that the batteries will

always want to accept more than 400W. If power generation increases while the loads are

stable, charge to the batteries will exceed 400W as they attempt to draw more power.

This signals that there is renewable power available, and that power is then diverted to

the loads.

(14) Low Power Startup

The low power startup control assists turning on the loads if no loads are currently

running. Since the inverters do not output power when there are no loads, the control

mistakenly thinks there is low power. Therefore, it will not run any loads. This control is

similar in behavior to the low-power standby control, except it utilizes the heater, which

can run at very low power, and there is no time limit. The control sets heater power to

one percent if there is at least 150W going to the battery. Normally, the controller would

not increase load power unless there was an excess of 400W to the battery. If there is

 40

available power, the controller will continue increasing load power. Otherwise, the

controller will shut off load power.

(15) High Battery SOC Control

The high battery SOC control decreases the amount of power to the batteries as

the SOC increases, since the batteries draw less power. Below 94% SOC, the battery

power is set to 200–400W. Once SOC equals 94%, the controller only allows 100–200W

of power to the batteries. At 98% SOC, the controller only allows 0–100W.

(16) Low Battery Power Control

The low battery power control decreases the load power if the average battery

power is too low. This occurs if the load power is continually too high, which may be

caused by multiple reasons. For example, as power generation decreases in the evening, if

the control does not decrease load demand quick enough, the average power to the

batteries will drop. If the batteries are at a high SOC, this control does not go into effect.

(17) Decrease Power to Non-Prioritized Load

This control only takes affect if the chiller and heater are running simultaneously.

If both loads are running, and the controller needs to decrease load power, it will decrease

power to the non-prioritized load. This control causes the non-prioritized load to become

the prioritized load, since the controller only adjust power to the prioritized load.

(18) Increase Power to Non-Prioritized Load

This control takes affect when the prioritized load is running at maximum power.

If this occurs, and there is still available power, the controller will increase power to the

non-prioritized load. This control causes the non-prioritized load to become the

prioritized load, since the controller only adjust power to the prioritized load.

 41

(19) Adjust Prioritized Load

This control adjust the power of the prioritized load based on the previous

controls. The non-prioritized load is not adjusted, and will continue running at the same

power.

(20) Overshoot Control

The overshoot control prevents the controller from increasing or decreasing load

power two iteration in a row. The inverter values update every 20 seconds, which is the

duration of one loop. However, those values do not reflect changes in load power until 40

to 60 seconds, which corresponds to two or three iterations of the control loop. Increasing

load power each iteration or decreasing load power each iteration causes load demand to

drastically over or under shoot power generation. This created an undesirable affect

where the load power would oscillate around the available power. To prevent this, the

overshoot control would only allow the controller to make changes to load power every

other iteration, or every 40 seconds instead of every 20 seconds. This allows enough time

for the data to reflect changes in load power.

(21) Max and Min Power Control

The maximum and minimum power control prevents load power from exceeding

its set limits. For the heater, the minimum power is zero and the default maximum power

is 50% for the large heater and 100% for the small heater. Since the chiller cannot run at

low power, its minimum power is either zero or 22%, depending on the adjustments made

to load power. The default maximum power is 100%. If the thermal storage POC

increases, or the desired storage is set to zero, the maximum power is lowered or set to

zero, respectively.

(22) Overnight Standby

The overnight standby turns of the loads for the night, based on the start and stop

times specified by the user. The low power control would eventually turn off the loads for

the night. With this control, the loads are usually turned off a few hours before sunset to

 42

allow the batteries to finish charging. It also prevents the loads from turning on at night if

the wind turbines generate power.

(23) Load Communications

In this section, the controller uses the communications functions to send the

determined power commands to the loads. Due to the large startup power of the chiller, if

the chiller is being turned on the heater power is set to zero. The chiller is run at lower

power and the heater is left off for the first nine iterations, or three minutes. This allows

the chiller to turn on and the power to stabilize.

(24) Print and Log Data

This section displays certain data for the screen for reference. All of the data for

that iteration is also recorded in the text file for that day.

(25) Restart Control Loop

If the date is the same as the last iteration, the control loop continues to the next

iteration. However, if the date has changed, this section restarts the control loop. The text

file for the previous day is closed and a new text file is created. The pre-allocated

memory for all the variables is then reset. The overrides and loop counter are also reset.

The control loops then continues to run.

(26) Pause Loop

This section ends the timer started at the beginning of the loop. This time

corresponds to the duration of the loop. The controller is paused for the difference of 20

seconds and the duration of the loop. This ensures that the loops run exactly every 20

seconds.

(27) End Control Loop

The final section offers an optional condition to end the control loop and

terminate the controller. The only condition set to end the control loop is if the control

loop duration exceeds 40 seconds. This occurs if communications with equipment are not

 43

operating properly or equipment is unresponsive. If this occurs, the controller terminates

until the issue can be resolved.

c. Post Control Loop

If the control loop terminates, this section will turn off the loads, close the data

file, and close the Modbus port to the WebBox. This occurs if a condition was set to end

the control loop, or if MATLAB encountered and error while running the control loop.

 44

THIS PAGE INTENTIONALLY LEFT BLANK

 45

IV. RESULTS AND ANALYSIS

The microgrid controller was developed and implemented in January 2016 using

MATLAB software. It ran continuously, collecting data, through June 2016 when

research concluded. Throughout this period, the controller was updated with improved

controls and communications. The basic control strategy remained the same.

The controller was monitored from the desktop computer. Data was displayed to

the screen after every iteration of the control loop. This allows the user to actively

monitor values such as power generation, load demand, and energy storage levels. It also

informed the user of controller performance adjusting load power to power generation.

Every fifteen iterations (five minutes) of data was plotted to a chart. This figure allows

the user to visually observe the performance of the controller from the previous six hours.

Figures 21 and 22 are examples of the data displayed to the desktop and data plotted to

the chart. Note that “Pac” is AC power generation.

Figure 21. Typical Control Data Displayed to Desktop

 46

Figure 22. Control Data Plotted to Chart

The data was also recorded to a text file, which can be used for later analysis. This

text file includes specific data from the system such as power levels of the loads, thermal

storage levels and temperatures, metrics on the batteries, inverter inputs and outputs from

the solar panels and wind turbines, as well as many other values. A custom Excel

document was created as a template to easily plot the data. Once the data was imported,

the template would plot the same data as the controller, as well as power data from the

inverters, solar panels, and wind turbines. Figure 23 shows an example of data collected

by the controller, and Figures 24–27 show examples of plots made by the Excel template.

All plots display the data as a function of time throughout a single day.

 47

Figure 23. Control Data Section of Excel Template

Power Max Temp Storage Power Max T_In T_Out Storage Power Power Total Solar Wind Vtg Cur Pwr SOC Mode

HH:MM % % F % % % F F % W W W W W V A W % - 1 2 3

9:00 2 50 450 27.9 0 100 58.3 57.0 88.3 459 474 874 874 0 53.2 -7.8 -415 89.1 1767 0 0 0

9:00 2 50 450 27.9 0 100 58.3 57.1 88.3 425 372 872 872 0 53.2 -8.4 -447 89.1 1767 0 0 0

9:01 3 50 450 27.9 0 100 58.3 57.1 88.5 415 362 862 862 0 53.2 -8.4 -447 89.1 1767 0 0 0

9:01 3 50 450 27.9 0 100 58.3 57.1 88.7 539 562 862 862 0 52.9 -6.1 -323 89.1 1767 0 0 0

9:01 3 50 450 27.9 0 100 58.3 57.1 88.5 544 567 867 867 0 52.9 -6.1 -323 89.1 1767 0 0 0

9:02 3 50 450 27.9 0 100 58.3 57.1 88.5 532 567 867 867 0 53.1 -6.3 -335 89.1 1767 0 0 0

9:02 3 50 450 27.9 0 100 58.3 57.1 88.5 593 628 928 928 0 53.1 -6.3 -335 89.1 1767 0 0 0

9:02 3 50 450 27.9 0 100 58.3 57.1 88.2 448 404 1004 1004 0 53.0 -10.5 -557 89.1 1767 0 0 0

9:03 5 50 450 27.9 0 100 58.3 57.1 88.4 559 615 1115 1115 0 53.0 -10.5 -557 89.1 1767 0 0 0

9:03 5 50 450 27.9 0 100 58.3 57.1 88.4 769 684 1184 1184 0 53.2 -7.8 -415 89.2 1767 0 0 0

9:04 5 50 450 27.9 0 100 58.3 57.1 88.2 784 699 1199 1199 0 53.2 -7.8 -415 89.2 1767 0 0 0

9:04 5 50 450 27.9 0 100 58.3 57.1 88.1 791 706 1206 1206 0 53.2 -7.8 -415 89.2 1767 0 0 0

9:04 5 50 450 27.9 0 100 58.3 57.1 87.9 745 635 1235 1235 0 53.3 -9.2 -490 89.2 1767 0 0 0

9:05 6 50 450 27.9 0 100 58.3 57.1 87.9 765 655 1255 1255 0 53.3 -9.2 -490 89.2 1767 0 0 0

9:05 6 50 450 27.9 0 100 58.3 57.1 87.7 922 855 1255 1255 0 52.9 -6.3 -333 89.2 1767 0 0 0

9:05 6 50 450 27.9 0 100 58.3 57.1 87.8 863 796 1196 1196 0 52.9 -6.3 -333 89.2 1767 0 0 0

9:06 6 50 450 27.9 0 100 58.3 57.1 87.4 862 859 1159 1159 0 53.0 -5.6 -297 89.2 1767 0 0 0

9:06 6 50 450 27.9 0 100 58.3 57.1 87.4 900 834 1134 1134 0 53.1 -4.4 -234 89.2 1767 0 0 0

9:06 6 50 450 27.9 0 100 58.3 57.1 87.7 877 811 1111 1111 0 53.1 -4.4 -234 89.2 1767 0 0 0

9:07 6 50 450 27.9 0 100 58.4 57.1 87.5 815 749 1049 1049 0 53.1 -4.4 -234 89.2 1767 0 0 0

9:07 6 50 450 27.9 0 100 58.4 57.1 87.2 891 749 1049 1049 0 52.7 -3.0 -158 89.2 1767 0 0 0

9:08 5 50 450 27.9 0 100 58.4 57.1 87.2 871 729 1029 1029 0 52.7 -3.0 -158 89.2 1767 0 0 0

9:08 5 50 450 27.9 0 100 58.4 57.1 87.2 765 729 1029 1029 0 52.8 -5.0 -264 89.2 1767 0 0 0

9:08 5 50 450 27.9 0 100 58.4 57.1 87.2 773 737 1037 1037 0 52.8 -5.0 -264 89.2 1767 0 0 0

9:09 5 50 450 27.9 0 100 58.4 57.1 87.2 778 742 1042 1042 0 52.8 -5.0 -264 89.2 1767 0 0 0

9:09 5 50 450 27.9 0 100 58.4 57.1 87.2 834 709 1009 1009 0 52.9 -3.3 -175 89.2 1767 0 0 0

9:09 4 50 450 27.9 0 100 58.4 57.1 87.2 814 689 989 989 0 52.9 -3.3 -175 89.2 1767 0 0 0

9:10 4 50 450 27.9 0 100 58.4 57.1 87.1 814 689 989 989 0 52.9 -3.3 -175 89.2 1767 0 0 0

Chiller

CONTROL DATA

Battery
Overrides

Heater Power GenerationLoad
Time

 48

Figure 23 shows the data collected by the controller that is used by the control

loop. This includes power levels of the heater and chiller, thermal storage levels and

temperatures, load demand, power generation, battery metrics, and the status of the three

override controls. This data is used to generate the plots in Figure 24. The remaining data

collected by the controller that is used to generate plots in Figure 25–27 is not shown.

Figure 24. Control Data Plots in Excel Template

Figure 24 shows the plots generated using the control data. The top plot shows

generation, load, and battery powers in Watts. This plot shows the performance of the

controller and how closely it is matching load demand to power generation. Negative

 49

battery power indicates power supplied to the batteries for charging, and positive battery

power indicates power supplied from the batteries to the loads. The middle plot shows

load powers in percentage. These powers are determined by the controller. The bottom

plot shows thermal and electrical storage levels in percentage. These are used by the

controller to determine how to prioritize loads.

Figure 25. Inverter Data Plots in Excel Template

Figure 25 shows the plots generated using the inverter data from the Sunny

Islands. The three Sunny Island inverters each regulate one of the three phases of AC

power. The top plot shows inverter currents in amperage. The bottom plot shows inverter

power in watts. Both plots include a total value, which is the sum of the three inverters.

 50

Figure 26. Solar Inverter Data Plots in Excel Template

Figure 26 shows the plots generated using the solar inverter data. The Sunny Boy

solar inverter receives separate DC inputs from the two groups of solar panels, group A

and B. The top plot shows DC voltage in volts, the middle plot shows DC current in

amps, and the bottom plot shows DC power in Watts. On this particular day, the two

groups of solar panels produced nearly identical power profiles.

 51

Figure 27. Wind Inverters Data in Excel Template

Figure 27 shows the plots generated using the wind inverters data. The two Sunny

Boy wind inverters convert variable DC power from the Aurora WBIs to AC power. The

top plot shows the DC voltage inputs to the inverters in volts, the middle plot shows AC

current output from the inverters in amps, and the bottom plot shows AC power output in

Watts. On this particular day only one wind turbine was generating power.

It should be noted that the Sunny Boy inverters do not accept all of the DC power

inputs from the Aurora inverters. This can been seen in the difference between the DC

inputs in the top plot of Figure 26 and the AC outputs in the middle and bottom plots.

 52

This is caused by a mismatch in operational voltage range between the two inverters. The

Aurora Wind Box Inverter (WBI) outputs DC power from 50–530V to the SMA Sunny

Boy inverter [30]. The voltage increases with increasing wind speeds and power

generation by the wind turbines. However, the SMA Sunny Island inverter only accepts

DC inputs from 250–480V [31]. The minimum DC start voltage is 250V. This is

summarized in Table 2. DC voltage inputs below 250V and above 480V cannot be

synchronized to the grid. This causes the usable power generation from the wind turbines

to decrease drastically. The solution would be to replace the SMA Sunny Boy inverters

with inverters that can operate from 50–530V DC.

Table 2. DC Operating Voltage of Wind Turbine Inverters

Inverter Aurora WBI SMA Sunny Boy

DC Voltage

Range
50 - 530 250 - 480

A. LOAD POWER PROFILES

The first step in developing the microgrid controller was to determine the power

profiles of all of the loads. This was needed to correlate load power percentage with

actual load power in watts. The controller used this correlation to adjust load demand by

adjusting the load power percentage. Figure 28 shows the power profiles of the loads.

 53

Figure 28. Power Profiles of the Loads

The large startup power required of the chiller can be seen in Figure 28. It takes

approximately 3kW to run the chiller at its lowest power setting, which is 20%. The

chiller power percentage correlates to the compressor speed. The initial startup power of

the chiller is even greater than 3kW, due to the spike in power when turning on the

compressor. Running the chiller at 100% power requires slightly more than 5kW. The

heater power percentage correlates to the amount of power sent to the electrical heater

elements inside the heater. Since there is no minimum power associated with heater

elements, the heater can run at very low power. The maximum power percentage of the

heater is limited by the power generation resources. The power generation of the solar

panels peaks around 6kW on an average sunny day. Since it takes nearly 6kW to run the

large heater at 50% power, the maximum power of the heater is set to 50%.

B. CONTROL DATA FOR COLD THERMAL STORAGE

The controller was first tested with only the cold thermal storage system. Figure 29

shows data collected by the controller on January 26, 2016. At this point, the controller could

only poll data about the microgrid inverters from the WebBox webpage and send voltage

commands to the chiller. Polling data from the webpage meant that each iteration of the control

loop took a minimum of two minutes. This particularly day was also mostly cloudy, which

caused solar power generation to be low. The wind turbines produced little or no power.

 54

Figure 29. Control Data Running Chiller

The top plot of Figure 28 shows power generation, chiller power, and battery

power in watts from approximately 0950 to 1500. The bottom plot shows the chiller

power percentage over the same period. The objective of the control strategy is to match

the chiller power to the power generation, without drawing power from the batteries. The

large startup power of the chiller, the low power generation, and the long control loop

iterations all caused the performance of the controller to be relatively poor on this

particular day. The lower power standby control caused the chiller to cycle on and off

seven times from approximately 1000 to 1100. The control cycled the chiller on to

determine available power generation. Once it was determined there was insufficient

power, the control cycled the chiller off. Each time the control cycled the chiller, large

amounts of power were pulled from the batteries.

The chiller eventually turned on and remained running at 1120. However, the

chiller continued drawing power from the batteries for another 20 minutes, until power

generation increased. As power generation continued to increase, the controller attempted

to increase power to the chiller, and match the chiller load to power generation. Around

 55

1230, the chiller reached a maximum power for the day of 60%. At 1500, the chiller

turned off for the day. The relative performance of the controller was considered poor

since power was often drawn from the batteries to provide power to the load.

C. CONTROL DATA FOR HOT THERMAL STORAGE

Once communications with the heater was established using the serial-USB COM

port adapter, the heater was incorporated into the controller. The control strategy was

tested again running the heater as the only load. Figure 30 shows data collected by the

controller on April 30, 2016 from 0600 until 1424. This particular day was mostly sunny

with minimal power generation by the wind turbines.

Figure 30. Control Data Running Heater

Figure 30 shows nearly ideal performance by the controller. In the morning, the

max power point tracking control allowed the batteries to charge. This control prevented

any loads from running until the power to the batteries had peaked at 0821. At 0823 there

was a dip in power generation, which indicated that power to the batteries had peaked and

 56

the heater load was introduced. From 0823 until 1012 the controller operated under

normal conditions. The controller increased power to the heater as power generation

increased, while allowing 200–400W of power to the batteries.

At 1012 the batteries were charged to a point that the high battery SOC control

took effect. This control decreased the amount of power to the batteries to 100–200W.

This is can be observed in the figures as the load power approaches power generation and

the power to the batteries approaches zero. Performance of the controller was considered

nearly ideal. Taking into consideration the power to the batteries, the controller was able

to match load demand to within 5% below and 1% above power generation. The

controller was manually terminated at 1412 to implement updates.

D. CONTROL DATA FOR COMBINED THERMAL STORAGE

Previous testing demonstrated the control strategy and developed controller

worked successfully with individual loads. The next step was to update the controller to

run both the heater and the chiller simultaneously. This presented a unique challenge in

that the controller needed to prioritize loads. Thermal storage percent of completion

(POC) was ultimately used to prioritize the loads. POC was determined by the controller

based on current storage levels as well as the desired storage levels set by the user. Figure

31 shows control data collected while running the updated controller on May 14, 2016.

The bottom plot of this figure includes the storage levels for the batteries, ice storage

tank, and heater. It should be noted that the desired storage level of ice was set higher

than the heater by the user. The performance of the controller on this day is representative

of an average day. The weather was partly cloudy with no power generation from the

wind turbines.

 57

Figure 31. Control Data Running Both Loads

The following analysis of Figure 31 is done chronologically to explain the

controller operation. In the morning, the max power point control allowed the batteries to

charge until 0809, when the loads were introduced. The heater storage levels were much

lower than the ice storage levels in the morning, so the controller prioritized the heater.

Additionally, as average power generation was below 3kW, the controller would default

to the heater regardless. The heater was run until 0958. At this point, the ice storage

levels began to drop, causing the controller to prioritize the chiller. The controller ran the

chiller from 0959 until 1015 with the heater turned off. While ice levels did increase, the

chiller was shut off because it was drawing power from the batteries.

From 1016 until 1201, the controller defaulted to running the heater because

average power generation remained below 3kW. At 1203, dropping ice levels and

 58

increased power generation caused the controller to once again prioritize the chiller.

Chiller power increased to a max of 92% at 1329 and continued to run until 1619. During

this time, ice levels increased from 41.2 to 68.4%. At 1620, insufficient power generation

caused the controller to default to the heater for the remainder of the day. Overall the

performance of the controller on this day was relatively good, considering it was partly

cloudy. Power was drawn from the batteries to cover periods when load demand briefly

exceeded power generation, but the controller was able to quickly compensate the load

power. Battery levels peaked at 95%, which indicates a decent charge level for the day. It

was also shown that the heater worked well in combination with the chiller. If power

generation is too low to run the chiller, the controller defaults to the heater. Running the

heater allows the controller to determine the available power generation. This eliminates

the need for the low power standby control.

Figure 32 shows another example of control data collected on May 22, 2016. This

particular day was mostly sunny. The controller never prioritized the chiller as ice storage

levels never dipped below heater storage levels, and user preference for storage levels

was set to the same value. The batteries entered a boost charge cycle at 0048. This

enabled override three, preventing any loads from running until the boost charge

completed at 1108. The controller normally would have turned on the loads at 0845,

when power the batteries peaked. The interpolated maximum potential power generation

is shown by the dashed lined. The area between the dashed line and the solid line for

power generation represents energy that could have potentially been available to run the

loads, if there had been demand. The objective of the control strategy is to prevent

unused energy such as this. Theoretically, loads could have been introduced to utilize the

excess power. However, that would have diverted power from the batteries so it is

considered acceptable in this case in order to improve the lifetime of the batteries.

 59

Figure 32. Control Data with Battery Boost Charge

Based on the results collected over this six-month period, the desired control

strategy was successfully implemented. The microgrid controller was able to match load

demand to power generation, without requiring the batteries to run the loads. The

batteries were only used to cover brief periods when load demand exceeds power

generation and to stabilize the grid at night when there was no power generation.

MATLAB allowed for easily implementation and modification of the microgrid

controller. Modification made to the controller throughout this period improved the

performance of the controller. However, the basic control strategy remained the same.

Interpolated

Power Generation

Unused Energy

 60

E. LONG-TERM STORAGE LEVELS

The ultimate purpose of this microgrid system is to provide heating and cooling

applications, while also covering minor electrical loads. The storage devices were used as

a buffer to store excess energy when it was not needed, and to provide energy when it

was needed. Therefore, the ability of the thermal storage devices as well as the batteries

to retain energy is very important. Energy lost by the storage devices increases the

inefficiency of the system. Figure 33 shows the energy storage profiles of the batteries

and the thermal storage devices over a three-day period.

Figure 33. Storage Levels over Three Days

The top plot of Figure 33 shows the battery SOC. The battery SOC peaks in the

afternoon, right before sunset, and decreases overnight. The batteries lose charge

overnight mainly from stabilizing the microgrid. Minor electric loads cause the microgrid

to have a minimum of 200W of load. Overnight, the batteries typically lose 6% of charge,

Presumed Ice Storage

 61

which is approximately equivalent to 5kWh. The first two days show a typical charge

profile and the third day shows a boost charge profile.

The thermal storage levels decreased only due to heat loses. The heater had much

greater heat loses than the ice storage, due to the larger temperature gradients. The heat

loss by the heater was also dependent on storage level, having greater heat losses at

higher storage levels due to higher temperatures. This made it difficult to maintain the

heater at high storage levels. Since the ice tank used the phase change of water to stores

energy, which occurs at a constant temperate, its heat loses were independent of storage

levels as the temperature gradient is constant. The heater typically lost 2–8% of its

storage levels overnight, depending on temperature. This is equivalent to 2.4-9.6kWh of

energy.

The ice storage levels were difficult to measure accurately. The ice storage level

sensor tends to indicate lower storage levels during the day, and higher storage levels at

night. This is likely because the ice storage tank is located outside, in direct sunlight.

Since the sensor is on the top of the tank, as the sun warms the top of the tank, the sensor

falsely indicates lower storage levels. The chiller was never run during the three day

period shown in Figure 32. The dashed line illustrates what is believed to be the actual

trend in storage level. If the dip in storage levels during the day is ignored, the ice storage

tank lost approximately 2–4% storage each day. This is equivalent to 3.4-6.8kWh of

energy. Based on these results, summarized in Table 3, the thermal storage devices are

not recommend for long-term storage.

Table 3. Overnight Losses in Storage Levels

Storage Device Batteries IceBank Heater

Overnight

Losses (kWh)
5 3.4 - 6.8 2.4 - 9.6

 62

THIS PAGE INTENTIONALLY LEFT BLANK

 63

V. FUTURE STUDY

This section discusses potential follow on research for this project.

Recommendations on minor improvements to the current systems are covered in the

following section. These areas of research are intended to improve the overall

performance of the microgrid system. Two possible areas of research are discussed for

future study, integrating weather forecasting into the controller and performing an exergy

analysis on the overall system.

A. WEATHER FORECASTING

Integrating weather forecasting and climatology would introduce an element of

predictability into the controller. Weather forecasts predict the short-term weather

conditions. Climatology predicts the long-term weather conditions using the average of

numerous factors over the past thirty years. Since the weather conditions affect the

performance of this system, the controller would be able to anticipate these changes and

make adjustments to the controls.

Weather conditions would affect two different areas of the systems performance,

power generation and thermal storage levels. Weather conditions have the greatest impact

on power generation. Power is generated using solely wind and solar energy. Power

generation by the wind turbines is directly related to wind speeds. Power generation by

the solar panels is directly related to cloud coverage and time of year. Based on

forecasted wind speeds and cloud coverage, the controller can predict future levels of

power generation. This could greatly improve the performance of the controller since it

currently only responds to changes in power generation. It may also alter the strategy of

the controller. For instance, if weather forecasts indicated high potential power

generation, the controller could draw power from electrical storage. Excess power

generation later on would be used to recharge the electrical storage. Conversely, if

conditions indicated low potential power generation, the controller would store more

energy in electrical storage. This would ensure sufficient electrical power to support the

system in the long run.

 64

Thermal storage levels are affected by weather conditions since it impacts the

demands for heating and cooling. Based on certain forecast conditions, such as

temperature, humidity, and precipitation, the controller can predict if there will be a

greater demand for hot or cold thermal storage. The controller can then prioritize that

load in advance, ensuring that there is sufficient thermal energy to meet demand.

Successful implementation of predictability based on weather requires the ability

for accurate weather forecasting. The Fleet Numerical Meteorology and Oceanography

Center (FNMOC) uses high-performance supercomputers to run meteorological models

from their operations center in Monterey, CA. Operated by the U.S. Navy, FNMOC

provides worldwide meteorology and oceanography support to U.S. and coalition forces

[32]. For this research, FNMOC provided unclassified weather forecasting using the

Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS) run on their beta

servers. The COAMPS forecast uses synoptic models to predict 72 hour weather

conditions and probabilistic models to predict conditions from 72 hours to two weeks.

Forecasts are generated for the exact location of the IMPREL building. Figure 33 shows a

Skew-T Log-P thermodynamic diagram generated by the COAMPS model. This diagram

illustrates weather conditions at the lab location. Figure 34 illustrates cloud coverage and

wind speed generated by the COAMPS model for the general region. The model uses a

555-meter resolution.

 65

Figure 34. COAMPS Skew-T Log-P for IMPREL Location

Figure 35. COAMPS Weather Forecast—Cloud Coverage (left)

Wind Speeds (right)

In most situations, predictability can be integrated into the microgrid controller using

local weather forecasts. However, certain DOD assets such as forward operating bases would

not otherwise have access to weather forecasts. FNMOC is uniquely suited to provide

weather models to worldwide DOD assets that may potentially use this microgrid system.

 66

B. EXERGY ANALYSIS

Exergy is a thermodynamic property used to measure the maximum useful work

done by process. An exergy analysis is often performed in engineering in order to use

energy more efficiently. It can be used to optimize the processes and equipment of a

system. Since this system has already been designed and tested, an exergy analysis can be

performed to show how effectively it is using the available energy. This analysis would

provide a starting comparison point for traditional systems.

One particular area an exergy analysis would be useful is in the comparison of

thermal storage conversions to electrical storage conversions, shown in Figure 35. Since

electrical storage devices use DC power, energy has to pass through the inverters twice,

once when it is being sent to the device and again when the device feeds power back to the

microgrid. Energy is lost each time it passes through the inverter. Since the thermal storage

is not converted back to electricity, theoretically it does not experience as much loses.

Figure 36. Energy Paths for Electrical and Thermal Storage Devices

 67

VI. RECOMMENDATIONS

There are multiple improvements that can be made to both the controller and to

the microgrid system that would improve the overall performance. The follow list

describes recommendations for the microgrid controller. They are listed with what is

believed to be the easiest implemented recommendations first.

 Contact SMA to resolve issues with Modbus communications. Modbus

returns an “illegal data address” when polling the register addresses of the

second DC inputs to the solar Sunny Boy. The battery SOC register in the

Sunny Island only includes two significant digits, versus three displayed

by the webpage. The inverters will also stop communicating over Modbus

for a period of a few minutes to a few hours. This has only happened a few

times, mostly with the solar Sunny Boy, and is seemingly random.

 Contract Trane to allow the UC400 controller to accept BACnet write

commands. Trane originally disabled this function when installing the

chiller. Since the controller can now execute BACnet communications, it

has the ability to send BACnet commands to the controller. If the

compressor speed could be regulated using BACnet command it would

eliminate the need for the NI cDAQ device.

 Create a Simulink model of the controller using blow flow diagram.

Simulink provides a graphical editor that could be used to model the

controller and implement more advanced controls. This would also allow

for better visualization of how the control works.

 Replace the MATLAB controller with an industrial controller. Although

MATLAB allows for easy design and implementation, it does not have the

redundancies or backups to run a system like this continuously. An

industrial controller would allow the system to operate autonomously for

long periods of time.

The following list describes recommendations for the microgrid system. This

mainly includes improvements to equipment. They are listed with what is believed to be

the easiest implemented recommendations first.

 Install the air ventilation system with the IceBank so it can be used to

provide air conditioning to the lab spaces. The main obstacle to installing

the ventilation is the fact that the IceBank is located outside. Therefore,

ventilation would likely have to be run through the outer wall of the

building.

 68

 Install different DC to AC inverters that can accept the entire range of DC

voltage outputs from the Aurora WBI’s. Installing new inverters is

required in order to utilize any meaningful power generation from the

wind turbines.

 Install a supercapacitor bank for electrical storage. Supercapacitors are

advantageous over batteries since they can be repeated cycled without

deterioration or completely drained without damage. Since electrical

storage is only used to stabilize the grid, and not run loads directly, large

amounts of energy storage is not required. Supercapacitors can be used

alongside the current battery bank or can replace the battery bank

altogether.

 69

VII. CONCLUSIONS

This research was the final step completing the IMPREL microgrid system. The

components were integrated into system and a controller was designed and implemented.

The most challenging part of this research was designed the communications network.

This was required in order to implement a centralized controller that could communicate

with all components of the system, across multiple architectures. Data collected over a

six month period demonstrated that the microgrid system could successfully match load

demand to within 5% below and 1% above power generation by utilizing thermal storage

under normal conditions. Improvements were continuously made to the controller, but the

control strategy remained the same.

All of the equipment worked as intended, however, a mismatch between the

aurora inverter and the SMA inverters caused dramatically poor performance by the wind

turbines. The solar panels provided nearly all of the power generation used during this

research. The ability to finely adjust load power was a vital part of implementing the

control strategy. The controller required this ability to match the demand from the heater

and chiller to renewable power generation. The chiller was more difficult to operate due

to its large startup power. The controller was able to mitigate this issue when operating

both loads by running only the heater at low power. The controller would only switch to

running the chiller when there was sufficient power generation. The storage devices lost

an expected amount of energy during long term operations. The amount of energy lost by

the thermal storage devices was slightly greater than the electrical storage, with the

greatest losses by the heater due to the high internal temperatures.

The demonstrated microgrid system has many potential applications. Using

commercially available equipment makes this system easy to modify and install. The

system can be redesigned using the multi-physics methodology, based on variations in

end-use energy. Using the control strategy of matching load demand to power generation

also allows for more effective use of renewable energy. As shown in the results, the

control strategy used all available power from the renewable resources. Compared to the

traditional approach of sizing the renewable resources to match peak load demand, this

 70

strategy requires fewer renewable resources to meet the same demand, reducing size,

cost, and the amount of unused resources. Further analysis can be done to accurately

determine the overall performance of this system. The IMPREL microgrid system

utilizing the developed microgrid controller was a successful demonstration. This

research proves the end-use energy design concept proposed by the multi-physics

methodology.

 71

APPENDIX A. MATLAB CODE

A. MICROGRID LOAD CONTROLLER

%--

%----------------------- MICROGRID CONTROLLER -------------------------

%--

close all; clear; clc;
%--

%--------------------------- USER INPUTS ------------------------------

%--

% Specify Heater - Large Heater = COM4(4), Small Heater = COM3(3)
COM = 4;
FanSetting = ‘OFF’;
% Set Thermal Storage Percentage (0-100)
Heater_Storage_Setpoint = 90;
Ice_Storage_Setpoint = 90;
% Set Start and Stop Hour (0-24)
Start_Time = 7;
Stop_Time = 18;
% Set Minimum Power Requirements (Watts)
MPP_Startup = 600;
Low_Power_Standby = 200;
Low_Power_Shutdown = 200;
% Set Standby Time (min)
Standby_Time = 15;
% Set Battery SOC Limits
BatSoc_Lower_Limit = 85;
%--

%--

% Establish Modbus Connection with SMA Sunny Webbox
IPaddress = ‘192.168.0.168’;
Port = 502;
WebboxTCP = tcpip(IPaddress, Port);
set(WebboxTCP,’InputBufferSize’, 512);
WebboxTCP.ByteOrder = ‘bigEndian’;
fopen(WebboxTCP);

% Establish Address Registry for Trane BACnet Devices
BACnet(‘AddressCache’);

% Define URLs

 72

% url1 =

‘http://192.168.0.168/plant_current.htm?DevKey=SI6048UH:1260019920&DevC

lass=Sunny%20Island’;
% url4 =

‘http://192.168.0.168/plant_current.htm?DevKey=WRTU1O73:1913091742&DevC

lass=Sunny%20Island’;

% Create Data File
Control_Data = fopen([‘Control_Data_’, date, ‘.txt’],’w’);
fprintf(Control_Data,’Time \t Heater \t Max \t Temp \t Storage \t

Chiller \t Max \t T_In \t T_Out \t Storage \t Load \t Load \t Pac \t

Solar \t Wind \t BatVtg \t BatCur \t BatPower \t SOC \t Mode \tO1 \t O2

\t O3 \t\t Time \t Fac \t Vac \t Iac \t Pwr \t Vac \t Iac \t Pwr \t Vac

\t Iac \t Pwr \t TotInvCur \t TotInvPwrAt \t TotInvPwrRT \t\t Time \t

Panels_A \t\t\t Panels_B \t\t\t Grid_A \t\t\t Grid_B \t\t\t Total \t\t

Time \t WT1_DC \t\t WT1_AC \t\t\t\t\t Mode \t WT2_DC \t\t WT2_AC

\t\t\t\t\t Mode \t Total \r\n’);
fprintf(Control_Data,’HHMMSS \t P \t P \t F \t %% \t %% \t %% \t F \t F

\t %% \t W \t W \t W \t W \t W \t V \t A \t W \t %% \t - \t - \t - \t -

\t\t HHMMSS \t Hz \t V \t A \t W \t V \t A \t W \t v \t A \t W \t A \t

W \t W \t\t HHMMSS \t V \t A \t W \t V \t A \t W \t V \t A \t W \t V \t

A \t W \t W \t\t HHMMSS \t V \t A \t Hz \t V \t V \t A \t W \t - \t V

\t A \t Hz \t V \t V \t A \t W \t - \t W \r\n’);

% Preallocate Memory
Heater_Pwr = zeros(1,10000);
Heater_Pwr_Max = zeros(1,10000);
Heater_Temp = zeros(1,10000);
Heater_Storage = zeros(1,10000);

Chiller_Pwr = zeros(1,10000);
Chiller_Pwr_Max = zeros(1,10000);
Chiller_T_In = zeros(1,10000);
Chiller_T_Out = zeros(1,10000);
Ice_Storage = zeros(1,10000);

Pac_Load = zeros(1,10000);
TotInvPwrAt = zeros(1,10000);
InvPwrAt = zeros(1,10000);
InvPwrAtSlv1 = zeros(1,10000);
InvPwrAtSlv2 = zeros(1,10000);
InvVtg = zeros(1,10000);
InvVtgSlv1 = zeros(1,10000);
InvVtgSlv2 = zeros(1,10000);
TotInvCur = zeros(1,10000);
InvCur = zeros(1,10000);
InvCurSlv1 = zeros(1,10000);
InvCurSlv2 = zeros(1,10000);
InvFrq = zeros(1,10000);
TotInvPwrRt = zeros(1,10000);
TotBatCur = zeros(1,10000);
BatSoc = zeros(1,10000);
BatVtg = zeros(1,10000);
BatChrgOp = zeros(1,10000);
Mode_WT1 = zeros(1,10000);

 73

Ipv_WT1 = zeros(1,10000);
Vpv_WT1 = zeros(1,10000);
Pac_WT1 = zeros(1,10000);
Vac_L1_WT1 = zeros(1,10000);
Vac_L2_WT1 = zeros(1,10000);
Iac_WT1 = zeros(1,10000);
Fac_WT1 = zeros(1,10000);
Mode_WT2 = zeros(1,10000);
Ipv_WT2 = zeros(1,10000);
Vpv_WT2 = zeros(1,10000);
Pac_WT2 = zeros(1,10000);
Vac_L1_WT2 = zeros(1,10000);
Vac_L2_WT2 = zeros(1,10000);
Iac_WT2 = zeros(1,10000);
Fac_WT2 = zeros(1,10000);
AMsAmp = zeros(1,10000);
AMsVol = zeros(1,10000);
AMsWatt = zeros(1,10000);
Pac_PV = zeros(1,10000);
BMsAmp = zeros(1,10000);
BMsVol = zeros(1,10000);
BMsWatt = zeros(1,10000);
GridMsWphsA = zeros(1,10000);
GridMsWphsB = zeros(1,10000);
GridMsVphsA = zeros(1,10000);
GridMsVphsB = zeros(1,10000);
GridMsAphsA = zeros(1,10000);
GridMsAphsB = zeros(1,10000);
Pac_WT = zeros(1,10000);
Pac = zeros(1,10000);
BatPower = zeros(1,10000);
Load = zeros(1,10000);
Pac_ave = zeros(1,10000);
BatPower_ave = zeros(1,10000);
t = zeros(1,10000);
tplot = zeros(1,10000);

% Turn OFF Overrides
Override_1 = zeros(1,10000);
Override_2 = zeros(1,10000);
Override_3 = zeros(1,10000);
% NOTE - Override 1 is ON by default once control loop resets

% Print Header to Screen
fprintf(‘Run \tTime \tHeater\tStorage\tChiller\tStorage\tLoad\tPac

\tSolar\tWind\tBattery\tSOC \tO1\tO2\tO3 \n’);
fprintf(‘# \tHH:MM:SS \t%% \t%% \t%% \t%% \tW \tW \tW \tW \tW

\t%% \n’);

%--

%----------------------------- CONTROL LOOP ---------------------------

%--

 74

Run = 1;
i = 1;
while Run == 1
 try

 % Time
 tic
 t(i) = now;
 tplot(i) = str2double(datestr(now,’HHMMSS’));
 time = fix(clock);
 hour = time(1,4);
 minute = time(1,5);

 % Plant Parameters (UnitID = 2)
 Pac_Load(i) = Modbus(2,30775,WebboxTCP);
 % Sunny Island (UnitID = 3)
 TotInvPwrAt(i) = Modbus(3,30775,WebboxTCP);
 InvPwrAt(i) = Modbus(3,30777,WebboxTCP);
 InvPwrAtSlv1(i) = Modbus(3,30779,WebboxTCP);
 InvPwrAtSlv2(i) = Modbus(3,30781,WebboxTCP);
 InvVtg(i) = Modbus(3,30783,WebboxTCP)/100;
 InvVtgSlv1(i) = Modbus(3,30785,WebboxTCP)/100;
 InvVtgSlv2(i) = Modbus(3,30787,WebboxTCP)/100;
 TotInvCur(i) = Modbus(3,30795,WebboxTCP)/1000;
 InvCur(i) = Modbus(3,30797,WebboxTCP)/1000;
 InvCurSlv1(i) = Modbus(3,30799,WebboxTCP)/1000;
 InvCurSlv2(i) = Modbus(3,30801,WebboxTCP)/1000;
 InvFrq(i) = Modbus(3,30803,WebboxTCP)/100;
 TotInvPwrRt(i) = Modbus(3,30807,WebboxTCP);
 TotBatCur(i) = Modbus(3,30843,WebboxTCP)/1000;
 BatSoc(i) = Modbus(3,30845,WebboxTCP);
 BatVtg(i) = Modbus(3,30851,WebboxTCP)/100;
 BatChrgOp(i) = Modbus(3,30853,WebboxTCP);
% AptTmBoost = Modbus(3,40039,WebboxTCP);
 % Wind Turbine 1 Inverter (UnitID = 5)
 Mode_WT1(i) = Modbus(5,30241,WebboxTCP);
 Ipv_WT1(i) = Modbus(5,30769,WebboxTCP)/1000;
 Vpv_WT1(i) = Modbus(5,30771,WebboxTCP)/100;
 Pac_WT1(i) = Modbus(5,30775,WebboxTCP);
 Vac_L1_WT1(i) = Modbus(5,30783,WebboxTCP)/100;
 Vac_L2_WT1(i) = Modbus(5,30785,WebboxTCP)/100;
 Iac_WT1(i) = Modbus(5,30797,WebboxTCP)/1000;
 Fac_WT1(i) = Modbus(5,30803,WebboxTCP)/100;
 % Wind Turbine 2 Inverter (UnitID = 4)
 Mode_WT2(i) = Modbus(4,30241,WebboxTCP);
 Ipv_WT2(i) = Modbus(4,30769,WebboxTCP)/1000;
 Vpv_WT2(i) = Modbus(4,30771,WebboxTCP)/100;
 Pac_WT2(i) = Modbus(4,30775,WebboxTCP);
 Vac_L1_WT2(i) = Modbus(4,30783,WebboxTCP)/100;
 Vac_L2_WT2(i) = Modbus(4,30785,WebboxTCP)/100;
 Iac_WT2(i) = Modbus(4,30797,WebboxTCP)/1000;
 Fac_WT2(i) = Modbus(4,30803,WebboxTCP)/100;
 % Solar Inverter (UnitID = 6)
 AMsAmp(i) = Modbus(6,30769,WebboxTCP)/1000;
 AMsVol(i) = Modbus(6,30771,WebboxTCP)/100;

 75

 AMsWatt(i) = Modbus(6,30773,WebboxTCP);
 Pac_PV(i) = Modbus(6,30775,WebboxTCP);
% BMsAmp(i) = Modbus(6,30957,WebboxTCP)/1000;
% BMsVol(i) = Modbus(6,30959,WebboxTCP)/100;
% BMsWatt(i) = Modbus(6,30961,WebboxTCP);
 GridMsWphsA(i) = Modbus(6,30777,WebboxTCP);
 GridMsWphsB(i) = Modbus(6,30779,WebboxTCP);
 GridMsVphsA(i) = Modbus(6,30783,WebboxTCP)/100;
 GridMsVphsB(i) = Modbus(6,30785,WebboxTCP)/100;
 GridMsAphsA(i) = Modbus(6,30797,WebboxTCP)/1000;
 GridMsAphsB(i) = Modbus(6,30799,WebboxTCP)/1000;

 % Calculated Variables
 BatPower(i) = TotBatCur(i)*BatVtg(i);
 Pac_WT(i) = Pac_WT1(i) + Pac_WT2(i);
 Pac(i) = Pac_PV(i) + Pac_WT(i);
 Load(i) = Pac(i) + BatPower(i);

 % These values cannot be accessed using Modbus - use urlfilter
% BatSoc(i) = urlfilter(url1,’BatSoc’);
% BMsAmp(i) = urlfilter(url4,’B.Ms.Amp’);
% if BMsAmp(i) == 5
% BMsAmp(i) = 0;
% end
% BMsVol(i) = urlfilter(url4,’B.Ms.Vol’);
% if BMsVol(i) == 6
% BMsVol(i) = 0;
% end
% BMsWatt(i) = urlfilter(url4,’B.Ms.Watt’);
% if BMsWatt(i) == 7
% BMsWatt(i) = 0;
% end

 % Chiller Storage Level and Temperatures
 [~,Ice_Storage(i)] = BACnet(‘Read’,10000,0,9,85);
 [~,Chiller_T_In(i)] = BACnet(‘Read’,10000,0,5,85);
 [~,Chiller_T_Out(i)] = BACnet(‘Read’,10000,0,4,85);

 % Heater Storage Level
 if COM == 3
 Heater_Temp_Max = 1100;
 elseif COM == 4
 Heater_Temp_Max = 1200;
 end
 if i == 1
 [AvgTemp,~] = Heater_Comm(COM,0,’OFF’);
 Heater_Storage(1) = ((AvgTemp - 70)/(Heater_Temp_Max - 70))*100;
 else
 Heater_Storage(i) = ((Heater_Temp(i-1) - 70)/(Heater_Temp_Max -

70))*100;
 end

 % Power Moving Averages
 if i >= 6

 76

 Pac_ave(i) = mean(Pac((i-5):i));
 BatPower_ave(i) = mean(BatPower((i-5):i));
 end

 % Max Power Point Tracking (Override 1)
 MPP = max(Pac_PV);
 if hour >= Start_Time
 if i > 1 && Override_1(i-1) == 1
 if MPP < MPP_Startup || Pac_PV(i) > 0.75*MPP
 Override_1(i) = 1;
 end
 end
 else
 Override_1(i) = 1;
 end

 % Low Power Shutdown (1/2) (Override 2)
 if hour >= Start_Time && hour < Stop_Time
 if i > 6 && mod(i,5) == 0
 if Override_1(i) == 0
 if Pac_ave(i) < Low_Power_Shutdown
 Override_2(i:i+4) = 1;
 end
 end
 end
 end

 % Low Power Standby (1/2) (Override 2)
 if hour >= Start_Time && hour < Stop_Time;
 if mod(i,Standby_Time*3 + 15) == 0
 if Override_1(i) == 0
 if Heater_Pwr(i) > 0 || Chiller_Pwr(i) > 0
 if Pac_ave(i) < Low_Power_Standby && Pac_ave(i) >

Low_Power_Shutdown
 Override_2(i:(i+(Standby_Time*3-1))) = 1;
 end
 end
 end
 end
 end

 % Battery SOC Warning (Override 3)
 if BatSoc(i) < BatSoc_Lower_Limit
 Heater_Comm(COM,0,’OFF’);
 Chiller_Comm(0);
 if i > 1
 if Override_3(i-1) == 0 || mod(i,5) == 0
 fprintf(‘\n’)
 warning(‘Battery SOC %2.1f%% \n’, BatSoc(i))
 end
 end
 Override_3(i:10000) = 1;
 elseif BatSoc(i) >= (BatSoc_Lower_Limit + 1)
 Override_3(i) = 0;
 end

 77

 % Battery Boost Charge (Override 3)
 if BatChrgOp(i) == 1767
 if i > 1
 if Override_3(i-1) == 0 || mod(i,5) == 0
 fprintf(‘\n OVERRIDE: Battery in Boost \n\n’)
 %6.0f [HHMMSS] Remaining \n\n’, AptTmBoost)
 end
 end
 Override_3(i) = 1;
 end

 % Determine Percent of Completion (POC)
 Heater_POC = Heater_Storage(i)/Heater_Storage_Setpoint*100;
 if Heater_Storage_Setpoint == 0
 Heater_POC = 100;
 end
 Ice_POC = Ice_Storage(i)/Ice_Storage_Setpoint*100;
 if Ice_Storage_Setpoint == 0
 Ice_POC = 100;
 end

 % Prioritize Load
 if Heater_POC < Ice_POC
 Load_Priority = ‘Heater’;
 else
 Load_Priority = ‘Chiller’;
 end
 if Pac_ave(i) < 3000
 if i > 9 && max(Chiller_Pwr(i-8:i)) > 0
 else
 Load_Priority = ‘Heater’;
 end
 end

 % Max Power Control
 if COM == 4
 if Heater_POC > 80
 Heater_Pwr_Max(i+1) = 40;
 elseif Heater_POC > 90
 Heater_Pwr_Max(i+1) = 30;
 elseif Heater_POC >= 100
 Heater_Pwr_Max(i+1) = 0;
 else
 Heater_Pwr_Max(i+1) = 50;
 end
 elseif COM == 3
 if Heater_POC > 80
 Heater_Pwr_Max(i+1) = 90;
 elseif Heater_POC > 90
 Heater_Pwr_Max(i+1) = 80;
 elseif Heater_POC >= 100
 Heater_Pwr_Max(i+1) = 0;
 else
 Heater_Pwr_Max(i+1) = 100;

 78

 end
 end
 if Ice_POC > 80
 Chiller_Pwr_Max(i+1) = 75;
 elseif Ice_POC > 90
 Chiller_Pwr_Max(i+1) = 50;
 elseif Ice_POC >= 100
 Chiller_Pwr_Max(i+1) = 0;
 else
 Chiller_Pwr_Max(i+1) = 100;
 end

 % Battery Power Control
 if BatPower(i) < -800
 Load_Power = 5;
 elseif BatPower(i) < -600
 Load_Power = 3;
 elseif BatPower(i) < -500
 Load_Power = 2;
 elseif BatPower(i) < -400
 Load_Power = 1;
 elseif BatPower(i) < -200
 Load_Power = 0;
 elseif BatPower(i) < -100
 Load_Power = - 1;
 elseif BatPower(i) < 0
 Load_Power = - 2;
 elseif BatPower(i) < 100
 Load_Power = - 3;
 elseif BatPower(i) < 300
 Load_Power = - 4;
 elseif BatPower(i) < 500
 Load_Power = - 5;
 elseif BatPower(i) < 1000
 Load_Power = - 10;
 elseif BatPower(i) < 1500
 Load_Power = - 15;
 elseif BatPower(i) < 2000
 Load_Power = - 25;
 else
 Load_Power = - 50;
 end

 % Low Power Startup
 if Load_Power <= 0 && Heater_Pwr(i) == 0 && Chiller_Pwr(i) == 0
 if BatPower(i) < -150
 Load_Power = 1;
 end
 end

 % High Battery SOC Control
 if BatSoc(i) >= 98 && Load_Power >= -10
 Load_Power = Load_Power + 2;
 elseif BatSoc(i) >= 94 && Load_Power >= -5
 Load_Power = Load_Power + 1;

 79

 end

 % Low Battery Power Control
 if BatPower_ave(i) > -150 && BatSoc(i) < 94
 Load_Power = Load_Power - 1;
 end

 % Decrease Power to Non-Prioritized Load
 if Load_Power <= 0
 if strcmp(Load_Priority,’Heater’) == 1 && Chiller_Pwr(i) > 0
 Load_Priority = ‘Chiller’;
 if Heater_Pwr(i) < Heater_Pwr_Max(i)
 Load_Power = Load_Power - 10;
 end
 elseif strcmp(Load_Priority,’Chiller’) == 1 && Heater_Pwr(i) > 0
 Load_Priority = ‘Heater’;
 if Chiller_Pwr(i) < Chiller_Pwr_Max(i)
 Load_Power = Load_Power - 10;
 end
 end
 end

 % Increase Power to Non-Prioritized Load
 if i > 1 && Load_Power > 0
 if strcmp(Load_Priority,’Heater’) == 1 && Heater_Pwr(i) ==

Heater_Pwr_Max(i)
 Load_Priority = ‘Chiller’;
 elseif strcmp(Load_Priority,’Chiller’) == 1 && Chiller_Pwr(i) ==

Chiller_Pwr_Max(i)
 Load_Priority = ‘Heater’;
 end
 end

 % Adjust Prioritized Load
 if strcmp(Load_Priority,’Heater’) == 1
 Heater_Pwr(i+1) = Heater_Pwr(i) + Load_Power;
 elseif strcmp(Load_Priority,’Heater’) == 1 && COM == 3
 Heater_Pwr(i+1) = Heater_Pwr(i) + 5*Load_Power;
 elseif strcmp(Load_Priority,’Chiller’) == 1
 Chiller_Pwr(i+1) = Chiller_Pwr(i) + 2*Load_Power;
 end

 % Overshoot Control
 if i > 1
 if Heater_Pwr(i+1) > Heater_Pwr(i) && Heater_Pwr(i) > Heater_Pwr(i-

1)
 Heater_Pwr(i+1) = Heater_Pwr(i);
 elseif Heater_Pwr(i+1) < Heater_Pwr(i) && Heater_Pwr(i) <

Heater_Pwr(i-1)
 Heater_Pwr(i+1) = Heater_Pwr(i);
 elseif Chiller_Pwr(i+1) > Chiller_Pwr(i) && Chiller_Pwr(i) >

Chiller_Pwr(i-1)
 Chiller_Pwr(i+1) = Chiller_Pwr(i);

 80

 elseif Chiller_Pwr(i+1) < Chiller_Pwr(i) && Chiller_Pwr(i) <

Chiller_Pwr(i-1)
 Chiller_Pwr(i+1) = Chiller_Pwr(i);
 end
 end

 % Heater Max and Min Power Control
 if Heater_Pwr(i+1) >= Heater_Pwr_Max(i+1);
 Heater_Pwr(i+1) = Heater_Pwr_Max(i+1);
 elseif Heater_Pwr(i+1) <= 0;
 Heater_Pwr(i+1) = 0;
 end

 % Chiller Max and Min Power Control
 if Chiller_Pwr(i+1) >= Chiller_Pwr_Max(i+1);
 Chiller_Pwr(i+1) = Chiller_Pwr_Max(i+1);
 elseif Chiller_Pwr(i+1) <= 22 && Chiller_Pwr(i) == 0
 Chiller_Pwr(i+1) = 22;
 elseif Chiller_Pwr(i+1) <= 22 && Chiller_Pwr(i+1) > 10
 Chiller_Pwr(i+1) = 22;
 elseif Chiller_Pwr(i+1) <= 10
 Chiller_Pwr(i+1) = 0;
 end

 % Overrides - Set Load Power to Zero
 if Override_1(i) == 1 || Override_2(i) == 1 || Override_3(i) == 1
 Heater_Comm(COM,0,’OFF’);
 Chiller_Comm(0);
 Heater_Pwr(i:i+1) = 0;
 Chiller_Pwr(i:i+1) = 0;
 end

 % Overnight Standby (1/2) - Set Load Power to Zero
 if hour < Start_Time || hour >= Stop_Time
 Heater_Comm(COM,0,’OFF’);
 Chiller_Comm(0);
 Heater_Pwr(i:i+1) = 0;
 Chiller_Pwr(i:i+1) = 0;
 end

 % Heater Communication
 if strcmp(Load_Priority,’Heater’) == 0
 Heater_Pwr(i+1) = Heater_Pwr(i);
 end
 [Heater_Temp(i),Heater_Pwr(i+1)] =

Heater_Comm(COM,Heater_Pwr(i+1),FanSetting);

 % Chiller Communication
 if strcmp(Load_Priority,’Chiller’) == 0
 Chiller_Pwr(i+1) = Chiller_Pwr(i);
 end
 if i > 9 && strcmp(Load_Priority,’Chiller’) == 1
 if max(Chiller_Pwr(i-8:i+1)) > 0 && min(Chiller_Pwr(i-9:i)) == 0
 Heater_Comm(COM,0,’OFF’);

 81

 Heater_Pwr(i+1) = 0;
 Chiller_Pwr(i+1) = 22;
 end
 end
 Chiller_Comm(Chiller_Pwr(i+1));

 % Re-Print Header to Screen
 if mod(i,20) == 0;
 fprintf(‘Run \tTime \tHeater\tStorage\tChiller\tStorage\tLoad\tPac

\tSolar\tWind\tBattery\tSOC \tO1\tO2\tO3 \n’);
 fprintf(‘# \tHH:MM:SS \t%% \t%% \t%% \t%% \tW \tW \tW \tW

\tW \t%% \n’);
 end

 % Print Data to Screen
 fprintf(‘%1.0f \t’,i)
 fprintf(datestr(now,’HH:MM:SS\t’))
 fprintf(‘%3.0f \t%3.1f \t%3.0f \t%3.1f \t%4.0f \t%4.0f \t%4.0f

\t%4.0f \t%4.0f \t%2.1f \t%1.0f \t%1.0f \t%1.0f\n’,...

Heater_Pwr(i),Heater_Storage(i),Chiller_Pwr(i),Ice_Storage(i),Pac_Load(

i),Pac(i),Pac_PV(i),Pac_WT(i),BatPower(i),BatSoc(i),Override_1(i),Overr

ide_2(i),Override_3(i));

 % Log Data
 fprintf(Control_Data,’%6.8f \t %3.0f \t %3.0f \t %4.0f \t %3.1f \t

%4.0f \t %4.0f \t %3.1f \t %3.1f \t %3.1f \t %4.0f \t %4.0f \t %4.0f \t

%4.0f \t %4.0f \t %4.1f \t %4.1f \t %4.0f \t %3.1f \t %4.0f \t %1.0f

\t%1.0f \t %1.0f \t\t %6.8f \t %2.1f \t %3.1f \t %3.1f \t %4.0f \t

%3.1f \t %3.1f \t %4.0f \t%3.1f \t %3.1f \t %4.0f \t %3.1f \t %4.0f \t

%4.0f \t\t %6.8f \t %3.1f \t %3.1f \t %4.0f \t %3.1f \t %3.1f \t %4.0f

\t %3.1f \t %3.1f \t %4.0f \t %3.1f \t %3.1f \t %4.0f \t %4.0f \t\t

%6.8f \t %3.1f \t %3.3f \t %2.2f \t %3.1f \t %3.1f \t %3.3f \t %4.0f \t

%4.0f \t %3.1f \t %3.3f \t %2.2f \t %3.1f \t %3.1f \t %3.3f \t %4.0f \t

%4.0f \t %4.0f \r\n’,...

t(i),Heater_Pwr(i),Heater_Pwr_Max(i),Heater_Temp(i),Heater_Storage(i),C

hiller_Pwr(i),Chiller_Pwr_Max(i),Chiller_T_In(i),Chiller_T_Out(i),Ice_S

torage(i),Load(i),Pac_Load(i),Pac(i),Pac_PV(i),Pac_WT(i),BatVtg(i),TotB

atCur(i),BatPower(i),BatSoc(i),BatChrgOp(i),Override_1(i),Override_2(i)

,Override_3(i),t(i),InvFrq(i),InvVtg(i),InvCur(i),InvPwrAt(i),InvVtgSlv

1(i),InvCurSlv1(i),InvPwrAtSlv1(i),InvVtgSlv2(i),InvCurSlv2(i),InvPwrAt

Slv2(i),TotInvCur(i),TotInvPwrAt(i),TotInvPwrRt(i),t(i),AMsVol(i),AMsAm

p(i),AMsWatt(i),BMsVol(i),BMsAmp(i),BMsWatt(i),GridMsVphsA(i),GridMsAph

sA(i),GridMsWphsA(i),GridMsVphsB(i),GridMsAphsB(i),GridMsWphsB(i),Pac_P

V(i),t(i),Vpv_WT1(i),Ipv_WT1(i),Fac_WT1(i),Vac_L1_WT1(i),Vac_L2_WT1(i),

Iac_WT1(i),Pac_WT1(i),Mode_WT1(i),Vpv_WT2(i),Ipv_WT2(i),Fac_WT2(i),Vac_

L1_WT2(i),Vac_L2_WT2(i),Iac_WT2(i),Pac_WT2(i),Mode_WT2(i),Pac_WT(i));

 % Low Power Shutdown/Standby (2/2)
 if hour >= Start_Time && hour < Stop_Time;
 if Override_2(i) == 1
 if Override_2(i-1) == 0 || mod(i,5) == 0
 if Pac_ave(i) < Low_Power_Shutdown

 82

 fprintf(‘\n SHUTDOWN: Average Power Generation %3.0f \n\n’,

Pac_ave(i))
 elseif Pac_ave(i) < Low_Power_Standby && Pac_ave(i) >

Low_Power_Shutdown
 fprintf(‘\n STANDBY: Average Power Generation %3.0f \n\n’,

Pac_ave(i))
 end
 end
 end
 end

 % Print “Control Startup/Shutdown” at Start and Stop Time
 if hour == Start_Time && minute == 0
 fprintf(‘\n CONTROL STARTUP \n\n’)
 elseif hour == Stop_Time && minute == 0
 fprintf(‘\n CONTROL SHUTDOWN \n\n’)
 end

 % Overnight Shutdown (2/2) - Pause Script
 if hour < Start_Time || hour >= Stop_Time
 Heater_Comm(COM,0,’OFF’);
 Chiller_Comm(0);
% pause(60*5); % If pause > 5 min, the webbox page will logout
 end

 % Restart Control Loop when Date Changes
 if i > 1
 if floor(t(i)) ~= floor(t(i-1))
 % Create New Data File
 fclose(Control_Data);
 Control_Data = fopen([‘Control_Data_’,date,’.txt’],’w’);
 fprintf(Control_Data,’Time \t Heater \t Max \t Temp \t Storage \t

Chiller \t Max \t T_In \t T_Out \t Storage \t Load \t Load \t Pac \t

Solar \t Wind \t BatVtg \t BatCur \t BatPower \t SOC \t Mode \tO1 \t O2

\t O3 \t\t Time \t Fac \t Vac \t Iac \t Pwr \t Vac \t Iac \t Pwr \t Vac

\t Iac \t Pwr \t TotInvCur \t TotInvPwrAt \t TotInvPwrRT \t\t Time \t

Panels_A \t\t\t Panels_B \t\t\t Grid_A \t\t\t Grid_B \t\t\t Total \t\t

Time \t WT1_DC \t\t WT1_AC \t\t\t\t\t Mode \t WT2_DC \t\t WT2_AC

\t\t\t\t\t Mode \t Total \r\n’);
 fprintf(Control_Data,’HHMMSS \t %% \t %% \t F \t %% \t %% \t %%

\t F \t F \t %% \t W \t W \t W \t W \t W \t V \t A \t W \t %% \t - \t -

\t - \t - \t\t HHMMSS \t Hz \t V \t A \t W \t V \t A \t W \t v \t A \t

W \t A \t W \t W \t\t HHMMSS \t V \t A \t W \t V \t A \t W \t V \t A \t

W \t V \t A \t W \t W \t\t HHMMSS \t V \t A \t Hz \t V \t V \t A \t W

\t - \t V \t A \t Hz \t V \t V \t A \t W \t - \t W \r\n’);
 % Reset Variables
 Heater_Pwr = zeros(1,10000);
 Heater_Pwr_Max = zeros(1,10000);
 Heater_Temp = zeros(1,10000);
 Heater_Storage = zeros(1,10000);

 Chiller_Pwr = zeros(1,10000);
 Chiller_Pwr_Max = zeros(1,10000);
 Chiller_T_In = zeros(1,10000);
 Chiller_T_Out = zeros(1,10000);

 83

 Ice_Storage = zeros(1,10000);

 Pac_Load = zeros(1,10000);
 TotInvPwrAt = zeros(1,10000);
 InvPwrAt = zeros(1,10000);
 InvPwrAtSlv1 = zeros(1,10000);
 InvPwrAtSlv2 = zeros(1,10000);
 InvVtg = zeros(1,10000);
 InvVtgSlv1 = zeros(1,10000);
 InvVtgSlv2 = zeros(1,10000);
 TotInvCur = zeros(1,10000);
 InvCur = zeros(1,10000);
 InvCurSlv1 = zeros(1,10000);
 InvCurSlv2 = zeros(1,10000);
 InvFrq = zeros(1,10000);
 TotInvPwrRt = zeros(1,10000);
 TotBatCur = zeros(1,10000);
 BatSoc = zeros(1,10000);
 BatVtg = zeros(1,10000);
 BatChrgOp = zeros(1,10000);
 Mode_WT1 = zeros(1,10000);
 Ipv_WT1 = zeros(1,10000);
 Vpv_WT1 = zeros(1,10000);
 Pac_WT1 = zeros(1,10000);
 Vac_L1_WT1 = zeros(1,10000);
 Vac_L2_WT1 = zeros(1,10000);
 Iac_WT1 = zeros(1,10000);
 Fac_WT1 = zeros(1,10000);
 Mode_WT2 = zeros(1,10000);
 Ipv_WT2 = zeros(1,10000);
 Vpv_WT2 = zeros(1,10000);
 Pac_WT2 = zeros(1,10000);
 Vac_L1_WT2 = zeros(1,10000);
 Vac_L2_WT2 = zeros(1,10000);
 Iac_WT2 = zeros(1,10000);
 Fac_WT2 = zeros(1,10000);
 AMsAmp = zeros(1,10000);
 AMsVol = zeros(1,10000);
 AMsWatt = zeros(1,10000);
 Pac_PV = zeros(1,10000);
 BMsAmp = zeros(1,10000);
 BMsVol = zeros(1,10000);
 BMsWatt = zeros(1,10000);
 GridMsWphsA = zeros(1,10000);
 GridMsWphsB = zeros(1,10000);
 GridMsVphsA = zeros(1,10000);
 GridMsVphsB = zeros(1,10000);
 GridMsAphsA = zeros(1,10000);
 GridMsAphsB = zeros(1,10000);
 Pac_WT = zeros(1,10000);
 Pac = zeros(1,10000);
 BatPower = zeros(1,10000);
 Load = zeros(1,10000);
 Pac_ave = zeros(1,10000);
 BatPower_ave = zeros(1,10000);

 84

 t = zeros(1,10000);
 tplot = zeros(1,10000);
 % Reset Overrides
 Override_1 = zeros(1,10000);
 Override_2 = zeros(1,10000);
 Override_3 = zeros(1,10000);
 % Turn ON MPP Override
 Override_1(1) = 1;
 % Reset counter
 i = 1;
 else
 i = i + 1;
 end
 else
 i = i + 1;
 end

 % Plot Control Data
 if mod(i,15) == 0
 window = 180*6;
 if i > window
 x = t(i-window:i-1);
 y1 = Pac(i-window:i-1);
 y2 = Pac_Load(i-window:i-1);
 y3 = BatPower(i-window:i-1);
 y4 = Heater_Pwr(i-window:i-1);
 y5 = Chiller_Pwr(i-window:i-1);
 y6 = Heater_Storage(i-window:i-1);
 y7 = Ice_Storage(i-window:i-1);
 y8 = BatSoc(i-window:i-1);
 else
 x = t(1:i-1);
 y1 = Pac(1:i-1);
 y2 = Pac_Load(1:i-1);
 y3 = BatPower(1:i-1);
 y4 = Heater_Pwr(1:i-1);
 y5 = Chiller_Pwr(1:i-1);
 y6 = Heater_Storage(1:i-1);
 y7 = Ice_Storage(1:i-1);
 y8 = BatSoc(1:i-1);
 end
 figure(1)
 clf
 subplot(3,1,1)
 hold on
 plot(x,y1,’b’)
 plot(x,y2,’r’)
 plot(x,y3,’g’)
 datetick(‘x’,’HH:MM’)
 grid on
 grid minor
 xlabel(‘Time [HH:MM]’)
 ylabel(‘Power [W]’)
 legend(‘Pac’,’Load’,’Battery’)
 subplot(3,1,2)

 85

 hold on
 plot(x,y4,’r’)
 plot(x,y5,’b’)
 datetick(‘x’,’HH:MM’)
 grid on
 grid minor
 xlabel(‘Time [HH:MM]’)
 ylabel(‘Power [%]’)
 legend(‘Heater’,’Chiller’)
 subplot(3,1,3)
 hold on
 plot(x,y6,’r’)
 plot(x,y7,’b’)
 plot(x,y8,’g’)
 datetick(‘x’,’HH:MM’)
 grid on
 grid minor
 xlabel(‘Time [HH:MM]’)
 ylabel(‘Storage [%]’)
 ylim([0 100])
 legend(‘Heater’,’Chiller’,’Battery’)
 pause(5)
 end

 % Pause Loop
 loop_time = toc;
 if loop_time < 20
 pause(20 - loop_time)
 end

 % End Control Loop
 if loop_time > 40
 fprintf(‘\n Loop Timeout Error - Terminating Control Loop \n\n’)
 try
 Heater_Comm(COM,0,’OFF’);
 fprintf(‘\n Heater shut off \n\n’)
 catch ME
 fprintf(‘\n’)
 warning(‘Heater cannot be shut off’)
 fprintf(‘\n’)
 warning(ME.identifier,ME.message)
 fprintf(‘\n’)
 end
 try
 Chiller_Comm(0);
 fprintf(‘\n Chiller shut off \n\n’)
 catch ME
 fprintf(‘\n’)
 warning(‘Chiller cannot be shut off’)
 fprintf(‘\n’)
 warning(ME.identifier,ME.message)
 fprintf(‘\n’)
 end
 Run = 0;
 end

 86

 % Catch Matlab Errors - Shut Off Loads
 catch ME_loop
 fprintf(‘\n MATLAB Error - Terminating Control Loop \n\n ‘)
 try
 Heater_Comm(COM,0,’OFF’);
 fprintf(‘\n Heater shut off \n\n’)
 catch ME
 fprintf(‘\n’)
 warning(‘Heater cannot be shut off’)
 fprintf(‘\n’)
 warning(ME.identifier,ME.message)
 fprintf(‘\n’)
 end
 try
 Chiller_Comm(0);
 fprintf(‘\n Chiller shut off \n\n’)
 catch ME
 fprintf(‘\n’)
 warning(‘Chiller cannot be shut off’)
 fprintf(‘\n’)
 warning(ME.identifier,ME.message)
 fprintf(‘\n’)
 end
 Run = 0;
 end

end

% Shut Off Loads
Heater_Comm(COM,0,’OFF’);
Chiller_Comm(0);
% Close Data File
fclose(Control_Data);
% Close Modbus Port
fclose(WebboxTCP);
% Print to Screen
fprintf(‘\n CONTROL LOOP TERMINATED \n\n’)
% Display Error
rethrow(ME_loop)

B. MICROGRID SAFETY SHUTDOWN

% Microgrid Controller Shutoff
clear;clc;

% Preallocate Memory
t = zeros(1,10000);
file_size = zeros(1,10000);

Run = 1;
i = 1;
while Run == 1

 87

 % Time
 t(i) = now;
 time = fix(clock);
 hour = time(1,4);
 minute = time(1,5);
 fprintf(datestr(now,’HH:MM:SS\t’))

 if hour ~= 0 || minute ~= 0
 % Try to open control data file
 try
 fid = fopen([‘Control_Data_’, date, ‘.txt’]);
 Control_Data = fscanf(fid,’%c’);
 fclose(fid);
 file_size(i) = length(Control_Data);
 catch ME
 warning(‘Data file does not exists’)
 fprintf(‘\n’)
 warning(ME.identifier,ME.message)
 fprintf(‘\n’)
 try
 Heater_Comm(4,0,’OFF’);
 fprintf(‘\n Large heater shut off \n\n’)
 catch ME
 fprintf(‘\n’)
 warning(‘Large heater cannot be shut off’)
 fprintf(‘\n’)
 warning(ME.identifier,ME.message)
 fprintf(‘\n’)
 end
 try
 Heater_Comm(3,0,’OFF’);
 fprintf(‘\n Small heater shut off \n\n’)
 catch ME
 fprintf(‘\n’)
 warning(‘Small heater cannot be shut off’)
 fprintf(‘\n’)
 warning(ME.identifier,ME.message)
 fprintf(‘\n’)
 end
 try
 Chiller_Comm(0);
 fprintf(‘\n Chiller shut off \n\n’)
 catch ME
 fprintf(‘\n’)
 warning(‘Chiller cannot be shut off’)
 fprintf(‘\n’)
 warning(ME.identifier,ME.message)
 fprintf(‘\n’)
 end
 Run = 0;
 end
 % Check if control data file is updating
 if i > 1 && Run == 1
 if floor(t(i)) == floor(t(i-1)) && file_size(i) == file_size(i-1)
 fprintf(‘Data file stopped updating \n’)

 88

 try
 Heater_Comm(4,0,’OFF’);
 fprintf(‘\n Large heater shut off \n\n’)
 catch ME
 fprintf(‘\n’)
 warning(‘Large heater cannot be shut off’)
 fprintf(‘\n’)
 warning(ME.identifier,ME.message)
 fprintf(‘\n’)
 end
 try
 Heater_Comm(3,0,’OFF’);
 fprintf(‘\n Small heater shut off \n\n’)
 catch ME
 fprintf(‘\n’)
 warning(‘Small heater cannot be shut off’)
 fprintf(‘\n’)
 warning(ME.identifier,ME.message)
 fprintf(‘\n’)
 end
 try
 Chiller_Comm(0);
 fprintf(‘\n Chiller shut off \n\n’)
 catch ME
 fprintf(‘\n’)
 warning(‘Chiller cannot be shut off’)
 fprintf(‘\n’)
 warning(ME.identifier,ME.message)
 fprintf(‘\n’)
 end
 Run = 0;
 else
 fprintf(‘No Error \n’)
 end
 else
 fprintf(‘ \n’)
 end
 end

 % Restart Loop when Date Changes
 if i > 1
 if floor(t(i)) ~= floor(t(i-1))
 i = 1;
 t = zeros(1,10000);
 file_size = zeros(1,10000);
 else
 i = i + 1;
 end
 else
 i = i + 1;
 end

 % Allow Control Data file to update (~20 sec)
 pause(60)

 89

 if Run == 0
 fprintf(‘\n Microgrid Safety Shutoff Terminated \n\n’)
 end

 if mod(i,20) == 0
 clc
 end

end

C. MODBUS FUNCTION

function [Register_2] = Modbus(UnitID,Address,ModbusTCP)

% Function generates modbus message to poll given register

% Address - Address of the register you are trying to poll

% UnitID - UnitID of the inverter

% Quantity - Number of registers you want data from (2-125), values for
% specific variables are stored in 2 registers, the first register
% specifies whether the value is positive or negative, the second

register
% has the actual value

% ModbusTCP - TCP/IP object, establishing the connection
% Input prevents the function from re-establishing the connecting
% each time, which may causes Webbox to crash

 % SMA Sunny Webbox TCP/IP Object
 % ipaddress = ‘192.168.0.168’;
 % port = 502;
 % ModbusTCP = tcpip(ipaddress, port);
 % set(ModbusTCP,’InputBufferSize’,512);
 % ModbusTCP.ByteOrder = ‘bigEndian’;
 % fopen(ModbusTCP);

%% Default Inputs

Quantity = 2;

if nargin < 3
 ipaddress = ‘192.168.0.168’; % IP Address of the SUNNY WebBox
 port = 502; % The port should be 502 for Modbus (cannot

be changed in the controller)
 ModbusTCP = tcpip(ipaddress, port); % Create the tcpip object
 set(ModbusTCP,’InputBufferSize’,512); % assign the buffer
 ModbusTCP.ByteOrder = ‘bigEndian’; % specify the order in which

bytes are transmitted
end

%% Try Opening Channel

 90

 try
 if ~strcmp(ModbusTCP.Status,’open’)
 fopen(ModbusTCP);
 end
 catch fault
 if ~strcmp(ModbusTCP.Status,’open’)
 disp(fault);
 disp([‘Error: Can’’t establish TCP/IP connection with:

‘,ipaddress,’:’,num2str(port)]);
 end
 end

%% Create Data Request Message

 transID= int16(0); % 16b transaction identifier
 ProtID = int16(0); % 16b Protocol ID (0 for Modbus)
 Lenghf = int16(6); % 16b Remaining bytes (24)
 UnitID = int16(256*UnitID); % Unit ID (1)
 FunCod = int16(03); % Function code: read multiple input registers

(04)
 UnitIDFunCod = int16(UnitID + FunCod); % Concatenation of UnitID &

FunctionCode in one int16 word
 Add = int16(Address); % 16b Address of the register
 Val = int16(Quantity); % 16b Data (read # registers)

 message = [transID; ProtID; Lenghf; UnitIDFunCod; Add; Val];

 %% Send Message and Process Response

 % Write message
 fwrite(ModbusTCP, message,’int16’);

 % Check if message is received correctly
 while ~ModbusTCP.BytesAvailable
 % Wait for the response to be in the buffer
 end
 % Read received bytes
 result = fread(ModbusTCP,ModbusTCP.BytesAvailable);

 if result(8) < 128
 position1 = uint32(result(10)*256+result(11));
 position2 = uint32(result(12)*256+result(13));
% position3 = uint32(result(14)*256+result(15));
% position4 = uint32(result(16)*256+result(17));
% position5 = uint32(result(18)*256+result(19));
 else
 position1 = 0;
 position2 = 0;
 end

 % Convert UINT32 to Double
 if double(position1) == 0
 Register_1 = double(position1);

 91

 Register_2 = double(position2);
 else
 Register_1 = -1;
 Register_2 = -((double(position1) - double(position2)) + 1);
 end

end

D. BACNET FUNCTION

function [BACnetStatus,BACnetResults] =

BACnet(functionName,DeviceID,Object,Instance,Property,Value)

% Function executes BACnet communications

% functionName - BACnet function you wish to perform

% DeviceID - ID of the device

% Object - Analog Input = 0
% - Analog Output = 1
% - Analog Value = 2
% - Binary Input = 3
% - Binary Output = 4

% Instance - Instance of object type on device

% Property - Present Value = 85
% - Object Name = 77
% - Max Present Value = 65
% - Min Present Value = 69
% - Setpoint = 108

% Value - Value you want to write

%% Default Inputs

 if nargin < 2
 DeviceID = 0;
 end
 if nargin < 3
 Object = 0;
 end
 if nargin < 4
 Instance = 0;
 end
 if nargin < 5
 Property = 0;
 end
 if nargin < 6
 Value = 0;
 end

 92

%% Change Inputs to Strings

 DeviceID = num2str(DeviceID);
 Object = num2str(Object);
 Instance = num2str(Instance);
 Property = num2str(Property);
 Value = num2str(Value);

%% Establish Directory

 BACnetDir = [‘C:\Users\Garth\Desktop\Hawxhurst\BACnet\bacnet-tools-

0.7.1’ filesep];

%% Generate Address Cache

 if strcmp(functionName,’AddressCache’)
 [BACnetStatus,BACnetResults] = dos([BACnetDir ‘bacwi -1 >

address_cache’]);
 end

%% List Devices

 if strcmp(functionName,’ListDevices’)
 [BACnetStatus,BACnetResults] = dos([BACnetDir ‘bacwi -1’]);
 end

%% Read All Properties and Values

 if strcmp(functionName,’ListProperties’)
 [BACnetStatus,BACnetResults] = dos([BACnetDir ‘bacepics -v ‘

(DeviceID)]);
 end

%% Read

 if strcmp(functionName,’Read’)
 [BACnetStatus,BACnetResults] = dos([BACnetDir ‘bacrp ‘ (DeviceID) ‘

‘ (Object) ‘ ‘ (Instance) ‘ ‘ (Property)]);
 BACnetResults = str2double(BACnetResults);
 end

%% Write

 if strcmp(functionName,’Write’)
 [BACnetStatus,BACnetResults] = dos([BACnetDir ‘bacwp ‘ (DeviceID) ‘

‘ (Object) ‘ ‘ (Instance) ‘ ‘ (Property) ‘ 16 -1 4 ‘ (Value)]);
 end

end

 93

E. HEATER COMMUNICATIONS FUNCTION

function [AvgTemp,ElementOnPercent] =

Heater_Comm(Port,ElementOnPercent,FanSetting)

% Function controls element on percentage and fan setting of heaters
% Outputs heater core temp and received element on percentage (should

be
% identical to input)

% ElementOnPercentage - 0–100 in increments of 1

% FanSetting - ‘OFF’,’MEDIUM’,’HIGH’,’ON’

% Port - USB Serial Port
% - Small Heater = COM3(3)
% - Large Heater = COM4(4)

%% Default Inputs

 if nargin < 2
 ElementOnPercent = 0;
 end
 if nargin < 3
 FanSetting = ‘OFF’;
 end

%% Change Inputs to Strings

 Port = num2str(Port);
 ElementOnPercent = num2str(ElementOnPercent);

%% Establish Port

 s = serial([‘COM’ (Port)]);
 fopen(s);
 set(s,’BaudRate’,115200);
 set(s,’Terminator’,’CR/LF’);

%% Read Temperature

 fprintf(s,’LO AvgTemp’);
 AvgTemp = fscanf(s);
 AvgTemp = str2double(AvgTemp(7:10));

%% Set Element On Percent

 fprintf(s,[‘LO ElementOnPercent ‘,ElementOnPercent]);
 ElementOnPercent = fscanf(s);
 ElementOnPercent = str2double(ElementOnPercent(7:9));

%% Set Fan Setting

 94

 if strcmp(‘OFF’,FanSetting) == 1
 fprintf(s,’CB LV 0’);
 elseif strcmp(‘MEDIUM’,FanSetting) == 1
 fprintf(s,’CB LV 16’);
 elseif strcmp(‘HIGH’,FanSetting) == 1 || strcmp(‘ON’,FanSetting) == 1
 fprintf(s,’CB LV 32’);
 else
 fprintf(s,’CB LV 0’);
 end

%% Close Port

 fclose(s);

end

F. CHILLER COMMUNICATIONS FUNCTION

function [] = Chiller_Comm(CompressorSpeedPercent)

% Function generates an analog output signal using NI cDAQ

% CompressorSpeedPercent - 0–100 in increments of 1
% - turns off below ~20

%% Change Input to Voltage Signal

 volts_out = CompressorSpeedPercent/10;

%% Detect the data acquisition instrument

 devices = daq.getDevices;

%% Create Session

 s = daq.createSession(‘ni’);

%% Add Analog Output Channel

 s.addAnalogOutputChannel(‘cDAQ9184-19114D1Mod2’,0,’Voltage’);
 s.addAnalogOutputChannel(‘cDAQ9184-19114D1Mod2’,1,’Voltage’);

%% Change Scan Rate (scans/second)

 s.Rate = 8000;

%% Generate Single Scan

 outputSingleValue = volts_out;
 s.outputSingleScan([outputSingleValue outputSingleValue]);

end

 95

APPENDIX B. SMA MICROGRID COMMUNICATIONS SETUP

A. SUNNY WEBBOX WEBPAGE

• Connect the computer to the Sunny WebBox using an Ethernet cable

• Change the IP address of the computer to a fixed IP

 IP Address: 192.168.0.100

 Subnet Mask: 255.255.255.0

• Open an Internet browser and search IP address 192.168.0.168, this should
bring you to the Sunny WebBox login page

 Username: *****

 Password: *****

• From here, you can navigate using the plant dropdown menu

B. MODBUS

• Enable Modbus communications on the Sunny WebBox webpage

 WebBox > Network > Use Modbus > ‘yes’

 Modbus Port > ‘502’

• Check that all inverters are listed. If not, enter the number of devices that
should be connected (4) and ‘start detection’

 Plant > Modbus

 Plant > Detection > Devices to be detected > ‘4’ > ‘Start detection’

• Assigned each device a Unit ID from 3–245. Do not use the same number
twice

 Plant > Modbus > Unit ID > ‘3-245’

• Open MATLAB. Use the Modbus function to poll data from the inverters

Modbus TCP – TCP/IP object of Modbus gateway (WebBox
default)

Unit ID – Unit ID of the desired inverter

Register Address – Address of the register you want to poll

 96

THIS PAGE INTENTIONALLY LEFT BLANK

 97

APPENDIX C. TRANE CHILLER COMMUNICATIONS SETUP

A. TRANE WEBPAGE

 Connect the computer to the Tracer SC controller using an Ethernet cable. Use

either Ethernet network connection

 Open an Internet browser and enter 192.168.0.125. This should take you to the

Trane login page

Username: Tracer

Password: TracerSC

 From here, you can navigate the Trane chiller plant

B. NI CDAQ

 Turn the chiller breaker on

 Connect the NI cDAQ-9184 chassis to the computer

o Load the NI 9201 (analog input) and NI 9262 (analog output) cards

into the chassis

o Connect the chassis to power

o Connect the chassis to the computer using an Ethernet cable

 Open NI Max on the computer

 Devices and Interfaces > Network Devices > NI cDAQ-9184

 Check status indicates “Connected – Running” for the chassis and both cards

o To test communications, select ‘Self-Test’

 Connect the wires that run to the chiller control panel. The black wire

(ground) screws into the second port (ground) on the NI 9262 card (analog

out), the white wire connects to the top port (analog output) of the NI 9262

card. There are multiple analog output and ground ports.

 98

 Open MATLAB. Type ‘daq.getDevices’

o MATLAB should list the two cards, NI 9201 and NI 9263

o If there is an asterisk next to the devices saying “Device currently not

support” there is an issuer with the connection, go to NI Max and

attempt to re-establish communications using “Self-Test”

 Troubleshooting

o Run ‘Self-Test’ to re-establish connection. If self-test produces an

error message and the status indicates “Disconnected,” the chassis may

have been “Reserved” by another program.

o Disconnect chassis > Restart computer (to un-reserve) > Reconnect

chassis

 Additional Resources

o MATLAB – Acquire Data Using NI Devices:

http://www.mathworks.com/help/daq/examples/acquire-data-using-ni-

devices.html?refresh=true

o Network cDAQ Troubleshooting Resources (Step 7):

http://digital.ni.com/public.nsf/allkb/E67B4E4749F378FF8625772700

59BD4B

o cDAQ Firmware Update Instructions:

http://www.ni.com/product-documentation/12778/en/#toc3

o cDAQ Firmware 1.7.0 Download:

http://www.ni.com/download/ni-cdaq-9184-firmware-1.7/5687/en/

http://www.mathworks.com/help/daq/examples/acquire-data-using-ni-devices.html?refresh=true
http://www.mathworks.com/help/daq/examples/acquire-data-using-ni-devices.html?refresh=true
https://webmail.nps.edu/owa/redir.aspx?SURL=XD7vRFFjoK4_uMnq8DmeMLT8ADFCWoe2yd23Qv63osOwEvgxIyjTCGgAdAB0AHAAOgAvAC8AZABpAGcAaQB0AGEAbAAuAG4AaQAuAGMAbwBtAC8AcAB1AGIAbABpAGMALgBuAHMAZgAvAGEAbABsAGsAYgAvAEUANgA3AEIANABFADQANwA0ADkARgAzADcAOABGAEYAOAA2ADIANQA3ADcAMgA3ADAAMAA1ADkAQgBEADQAQgA.&URL=http%3a%2f%2fdigital.ni.com%2fpublic.nsf%2fallkb%2fE67B4E4749F378FF862577270059BD4B
https://webmail.nps.edu/owa/redir.aspx?SURL=XD7vRFFjoK4_uMnq8DmeMLT8ADFCWoe2yd23Qv63osOwEvgxIyjTCGgAdAB0AHAAOgAvAC8AZABpAGcAaQB0AGEAbAAuAG4AaQAuAGMAbwBtAC8AcAB1AGIAbABpAGMALgBuAHMAZgAvAGEAbABsAGsAYgAvAEUANgA3AEIANABFADQANwA0ADkARgAzADcAOABGAEYAOAA2ADIANQA3ADcAMgA3ADAAMAA1ADkAQgBEADQAQgA.&URL=http%3a%2f%2fdigital.ni.com%2fpublic.nsf%2fallkb%2fE67B4E4749F378FF862577270059BD4B
https://webmail.nps.edu/owa/redir.aspx?SURL=uaDjhlEq4aXB_7sOgolMhijQkamvGaiMq5VNDB39ZmywEvgxIyjTCGgAdAB0AHAAOgAvAC8AdwB3AHcALgBuAGkALgBjAG8AbQAvAHAAcgBvAGQAdQBjAHQALQBkAG8AYwB1AG0AZQBuAHQAYQB0AGkAbwBuAC8AMQAyADcANwA4AC8AZQBuAC8AIwB0AG8AYwAzAA..&URL=http%3a%2f%2fwww.ni.com%2fproduct-documentation%2f12778%2fen%2f%23toc3
https://webmail.nps.edu/owa/redir.aspx?SURL=SzHlMhxV5MQfNvHvI6DzWnn7OS-pTAsWIazCFYfkbIiwEvgxIyjTCGgAdAB0AHAAOgAvAC8AdwB3AHcALgBuAGkALgBjAG8AbQAvAGQAbwB3AG4AbABvAGEAZAAvAG4AaQAtAGMAZABhAHEALQA5ADEAOAA0AC0AZgBpAHIAbQB3AGEAcgBlAC0AMQAuADcALwA1ADYAOAA3AC8AZQBuAC8A&URL=http%3a%2f%2fwww.ni.com%2fdownload%2fni-cdaq-9184-firmware-1.7%2f5687%2fen%2f

 99

C. BACNET

 Connect the computer to the Tracer SC controller using an Ethernet cable. Use

Ethernet network connection 1 (this connection supports BACnet, connection

2 does not)

 Use the BACnet function on MATLAB to execute BACnet executables

o ‘AddressCache’ – Discovers all BACnet devices on the network and

stores addresses in a text file that can be used by the other function

o ‘ListAllDevices’ – Discovers and lists all BACnet devices that are on

the network

o ‘Read’ – Specify the Device ID of the BACnet device and the Object,

Instance, and Property of the variable you wish to read

o ‘Write’ - Specify the Device ID of the BACnet device and the Object,

Instance, Property, as well as the Value you wish to write to that

variable

 Note: BACnet write commands are currently disabled by the Tracer SC

controller

 100

THIS PAGE INTENTIONALLY LEFT BLANK

 101

APPENDIX D. STEFFES HEATER COMMUNIATION SETUP

 Connect the heater to the computer using a USB cable

o Control Panel > Devices Manager > Ports > COM3 (small heater) or

COM4 (large heater)

o If the USB cable does not appear as a COM Port, but an unknown

USB, then the driver is not installed. Follow the FTDI Chip Driver

installation guide to install the USB cable driver

 Power on the heater

o For the small heater, plug the power cable into the power strip

o For the large heater, turn on the breakers for the heater control panel

and for the heater elements (4 breakers in total)

 Both heaters require ~60Hz AC power for the startup sequence to be

completed successfully and will display an error message until this happens.

The easiest way to do this is to turn on the chiller until the frequency drops to

60Hz. Once the heaters have turned on, the frequency doesn’t matter.

 Open MATLAB. Using the correct Heater Comm function, you can control

the Element on Percent and the Fan Setting

o Element on Percent is a value from 0–100

o Fan Setting are the string values ON (highest speed), MEDIUM,

HIGH, or OFF (default)

 Additional Resources:

o Cable Driver: http://www.ftdichip.com/Drivers/VCP.htm

o Setup Executable:

http://www.ftdichip.com/Drivers/CDM/CDM%20v2.12.00%20WHQL

%20Certified.exe

http://www.ftdichip.com/Drivers/VCP.htm
http://www.ftdichip.com/Drivers/CDM/CDM%20v2.12.00%20WHQL%20Certified.exe
http://www.ftdichip.com/Drivers/CDM/CDM%20v2.12.00%20WHQL%20Certified.exe

 102

THIS PAGE INTENTIONALLY LEFT BLANK

 103

LIST OF REFERENCES

[1] D. Smalley. (2012, Oct. 18). Energize: ONR supports new energy partnership

[Online]. Available: http://www.onr.navy.mil/Media-Center/Press-

Releases/2012/Energy-Systems-Technology-ESTEP-ONR.aspx

[2] Environmental and Energy Study Institute. “DOD’s energy efficiency and

renewable energy initiatives,” Environmental and Energy Study Institute,

Washington, DC, 2011.

[3] Energy Department. (2014, Nov. 20). Top 9 things you didn’t know about

America’s power grid [Online]. Available: http://energy.gov/articles/top-9-things-

you-didnt-know-about-americas-power-grid

[4] Litos Strategic Communication, “The smart grid: An introduction,” U.S Dept.

Energy, Washington, DC, (n.d.).

[5] S. Kaplan, “Electrical power transmission: Background and policy issues,”

Congressional Research Service, Washington, DC, Rep. R40511, Apr. 2009.

[6] R. H. Lasseter, “MicroGrids,” in IEEE Power Engineering Winter Meeting, 2002,

vol. 1, pp. 4285–4290.

[7] A. G. Pollman and A. J. Gannon, “Multi-physics energy approach &

demonstration facility,” in Power and Energy Conversion, 2015, pp. 1–10.

[8] M. Schwartz and K. Blakeley, “Department of Defense energy initiatives:

Background and issues for Congress,” Congressional Research Service,

Washington, DC, Rep. R42558, Dec. 2012.

[9] HDIAC Staff. (2015, Aug. 12). Military’s shift toward renewable energy

[Online]. Available: http://science.dodlive.mil/2015/08/12/militarys-shift-toward-

renewable-energy/

[10] Assistant Secretary of Defense for Operational Energy Plans and Programs,

“Operational energy strategy: Implementation plan,” Department of Defense,

Washington, DC, Mar. 2012.

[11] R. George. (2015, Feb. 5). Defense Department energy use falls to lowest level

since at least 1975 [Online]. Available:

http://www.eia.gov/todayinenergy/detail.cfm?id=19871

[12] Marine Corps Expeditionary Energy Office. (n.d.). United States Marine Corps.

[Online]. Available: http://www.hqmc.marines.mil/e2o/E2CExFOB.aspx

 104

[13] J. Stamp, “Smart grid R & D program peer review meeting microgrid design

toolset (MDT),” Sandia National Labs, Livermore, CA, 2014.

[14] Microgrids - smart grid solutions. (n.d.). Siemens. [Online]. Available:

http://w3.usa.siemens.com/smartgrid/us/en/microgrid/pages/microgrids.aspx

[15] Office of Energy Efficiency and Renewable Energy. (n.d.). U.S. Dept. of Energy.

[Online]. Available: http://energy.gov/eere/office-energy-efficiency-renewable-

energy

[16] L. Olsen, “Initial investigation of a novel thermal storage concept as part of a

renewable energy system,” M.S. thesis, Dept. Mech. Eng., Naval Postgraduate

School, Monterey, CA, 2013.

[17] C. Borgnakke and R. Sonntag, Fundamentals of Thermodynamics, 7th ed. John

Wiley & Sons, 2009.

[18] T. Hinke, “Hot thermal storage in a variable power, renewable energy system,”

M.S. thesis, Dept. Mech. Eng., Naval Postgraduate School, Monterey, CA, 2014.

[19] D. Linden, Handbook of Batteries, 3rd ed. McGraw-Hill, 2002.

[20] Building Energy Data Book. (2012). U.S. Dept. of Energy. [Online]. Available:

http://buildingsdatabook.eren.doe.gov/

[21] IceBank energy storage. (n.d.). CALMAC. [Online]. Available:

http://www.calmac.com/icebank-energy-storage-model-c

[22] R. Boonyobhas, “Control strategy: Wind energy powered variable speed chiller

with thermal ice storage,” M.S. thesis, Dept. Mech. Eng., Naval Postgraduate

School, Monterey, CA, 2014.

[23] SUNNY WEBBOX Modbus Interface, SMA, Germany, 2014.

[24] Interface Between Data Terminal Equipment and Data Communication

Equipment Employing Serial Binary Data Interchange, RS/ANSI/TIA/EIA

Standard 232, 1969.

[25] Virtual COM port drivers. (n.d.). FTDI Chip. [Online]. Available:

http://www.ftdichip.com/Drivers/VCP.htm

[26] BACnet. (n.d.). ASHRAE. [Online]. Available: http://www.bacnet.org/

[27] BACnet and Modbus RTU for Trane Chillers with Tracer AdaptiView Control,

Trane, Dublin, Republic of Ireland, 2011, pp. 1–76.

 105

[28] Tracer SC. (n.d.). Trane. [Online]. Available:

http://www.trane.com/commercial/north-america/us/en/controls/building-

Management/tracer-sc.html

[29] General controllers. (n.d.). Trane. [Online]. Available:

http://www.trane.com/commercial/north-america/us/en/controls/HVAC-

equipment-controls/general-controllers.html

[30] AURORA Wind Box Interface Installation and Operator’s Manual, Power-One,

San Jose, CA, 2006.

[31] SUNNY BOY 5000-US / 6000-US / 7000-US / 8000-US, SMA, Germany, (n.d.).

[32] Fleet numerical meteorology and oceanography center. (n.d.). U.S. Navy.

[Online]. Available:

http://www.public.navy.mil/fltfor/cnmoc/Pages/fnmoc_home.aspx

 106

THIS PAGE INTENTIONALLY LEFT BLANK

 107

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

 Ft. Belvoir, Virginia

2. Dudley Knox Library

 Naval Postgraduate School

 Monterey, California

