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ABSTRACT 

The Army relies on Zone Improvement Plan (ZIP) codes to assign recruiters and 

to track recruit production. ZIP codes have different densities of potential recruits; the 

Army uses commercial market segmentation data to analyze markets and past accessions 

to assign recruiters and quotas to maximize production. We use 347 variables from 

publicly available United States government agencies for each of 34,007 ZIP codes to 

cluster ZIP codes into similar groups. 

We use between 2 and 18 clusters for each of five categories of data, using three 

dissimilarity calculation methods, and three clustering algorithms. Using national 

recruiting leads as a proxy for market potential, we find the best cluster assignment by 

fitting Poisson regressions predicting leads from ZIP code cluster membership. 

Economic cluster assignments predict leads with a pseudo R-squared value of 

0.69, reducing the need for United States Army Recruiting Command to rely on 

proprietary data with 66 market segments per ZIP code for market analysis and predicting 

recruiting potential. These 18 clusters provide an easier tool for recruiting commanders. 

Additionally, these clusters offer a new method of identifying potentially high-production 

ZIP codes without using previous accessions and the highly correlated number of 

recruiters assigned as predictor variables. 
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EXECUTIVE SUMMARY 

From 2007 to 2016, the United States Army Recruiting Command (USAREC) has 

been responsible for recruiting an average of 66,900 Active Duty enlisted soldiers per 

year (United States Army Recruiting Command 2016). To assist its recruiters in finding, 

attracting and signing enough youth to fill this positions, USAREC uses the Potential 

Rating Index for ZIP Markets New Evolution (PRIZM NE) market segmentation 

produced by the Nielsen Company (Joint Advertising, Market Research & Studies Group 

2005). This market segmentation is used for market analysis and for tracking market 

penetration but it is not currently used in recruiter assignment and goal allocation models 

(Fleischmann and Nelson 2014). USAREC requires a market segmentation tool that will 

allow commanders to easily understand the different types of markets within their areas 

of responsibility. 

The PRIZM NE estimates categorize each market into 66 different segments. 

These segments are based on different socio-economic and age categories (Nielsen 

Company 2016). Sixty-six segments for each Zone Improvement Plan (ZIP) code are too 

many for a company or battalion commander trying to understand their operational 

environment. With an average of 174 ZIP codes per company, commanders need a 

method to segment the ZIP codes themselves so they can more easily compare their 

potential for producing recruits (United States Army Recruiting Command 2015b). 

USAREC assigns recruiters and goals to its recruiting stations based on a four 

year weighted average of past accessions and the number of qualified military available 

estimated to be in each ZIP code (Fleischmann and Nelson 2014). These goals are 

adjusted using a Recruiting Market Index that takes into account factors such as 

unemployment, the propensity for military service of an area, and economic factors 

(Fleischmann and Nelson 2014). USAREC does not currently use market segmentation to 

inform its recruiter assignment and goal allocation models.  

In this study, we use 347 publicly available variables to cluster ZIP codes into 

groups along with those that have similar potential to produce recruits. We do this by 
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categorizing the data into demographics, economic activities, education opportunity, 

military influence, and health status. We then cluster the ZIP codes separately by 

category using the Tree Clustering algorithm developed by Buttrey and Whitaker (2015). 

We create 153 different cluster models for each category using different combinations of 

tuning parameters and numbers of final clusters between 2 and 18. We find that the 

economic data outperforms the other data categories and provides the highest predictive 

power with 18 clusters.  

To test the predictive ability of our ZIP code clusters, we use the cluster 

assignments they provide to fit Poisson regression models using the number of national 

leads from 2011–2013 as a response variable. National leads are generated by potential 

recruits who seek out more information about joining the Army through various means, 

such as the Army’s recruiting website (United States Army Recruiting Command 2015a). 

We use this metric because it is less influenced by the efforts of recruiters than other 

metrics, such as the number of past accessions or local leads (Gibson, Hermida, 

Luchman, Griepentrog, and Marsh 2011). 

We then fit a Poisson model using percentages of PRIZM NE segments in each 

ZIP code as predictors. We find that the cluster assignments from the economic data 

explain 69% of the deviance in national leads, while the PRIZM NE segments only 

explain 60% of the deviance. We then attempt to predict the number of 2014 national 

leads using these two models. We find that the economic cluster assignments result in a 

median difference between the actual and predicted leads of 1.9. This outperforms the 

PRIZM NE models which have a median difference of 3.4. 

The cluster assignments using the economic activity data allow us to replace the 

66 PRIZM NE market segments per ZIP code with a single cluster assignment. This 

allows commanders to better understand the differences in the ZIP codes within their 

operating environment. With a higher predictive power of national leads compared to the 

PRIZM NE data, the cluster assignments could also be used to inform recruiter 

assignment and goal allocation models.  
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I. INTRODUCTION 

A. PROBLEM DESCRIPTION 

The United States Army Recruiting Command (USAREC) is responsible for all 

Regular Army (RA) and Army Reserve (AR) recruiting. Each year, the leadership of 

USAREC must determine where to assign its recruiters and how to allocate the total annual 

mission—the Army’s term for a quota—to each target area (United States Army Recruiting 

Command 2013 p. 5–4). As military budgets decrease, it is becoming more important for 

military leaders to efficiently use the nation’s resources. At the same time, the recovering 

economy is making it more difficult to gain new, highly qualified recruits (Vergun 2015). 

This means USAREC must effectively assign and task the Army’s recruiters. In fiscal year 

2012, USAREC spent an average of $22,300 on each recruit before they arrived at their 

initial training, not including the amount of money spent to lease recruiting offices 

throughout the country (United States Army Recruiting Command 2016).  

USAREC is primarily made up of 5 brigades, responsible for 44 battalions, 262 

recruiting companies and 948 recruiting stations spread across the world (United States 

Army Recruiting Command 2016). Each recruiting station is assigned several recruiters 

and a set of Zone Improvement Plan (ZIP) codes from which to recruit. Currently, 

USAREC uses a number of resources to inform its recruiting strategy, including Nielsen 

Company market segmentation, studies of population, and records of past accessions—

the Army’s term for enlistees who arrive at training. One resource USAREC lacks is a 

means of performing analysis at the ZIP code level to determine which ZIP codes are 

similar and therefore may have similar production rates and respond to similar recruiting 

strategies. This is important because USAREC uses ZIP codes, not counties, states or 

cities, to assign territories to the recruiters.  

B. PURPOSE 

The purpose of this study is to use publicly available data about United States ZIP 

codes to determine which geographically dispersed ZIP codes are similar to others. By 

determining which ZIP codes within a recruiting station’s territory have a higher potential 



 2 

for producing recruits, recruiting commanders will be able to better target their operations 

and better assign their recruiters. The recruiting headquarters will also be able to better 

allocate ZIP codes between their recruiting companies and better assign missions to each 

recruiting company.  

Without this type of analysis, recruiters can only focus their efforts based on 

historic relationships with high schools, predictions of the number of qualified military 

available (QMA) in a ZIP code, and records of past recruits assessed from a ZIP code. This 

means that a ZIP code that does not produce recruits for a few years will not get any new 

attention in subsequent years, potentially leaving a large source untapped. Hojnowski 

(2005) shows that production per recruiter can be determined as a function of the number 

of recruiters assigned to a station and the goal assigned to that station. This indicates that 

using past production to predict potential for future production is an effective metric 

because recruiters will generally contract the number of recruits they are assigned. 

The Army is currently in the midst of downsizing and has begun reducing the 

number of required recruits to shape the smaller Army. In fiscal year 2014, the Army 

only needed to recruit 57,000 Active Duty (AD) soldiers, compared to 69,000 in 2013 

(United States Army Recruiting Command 2016). At the same time, the Army is trying to 

recruit higher-quality recruits and is maintaining its force of recruiters at its current size 

(Lopez 2014). With a better understanding of the recruiting terrain at the ZIP code level, 

the Army will be able to more efficiently assign its recruiters and could possibly reduce 

the recruiter force to better meet budgetary requirements.  

C. RESEARCH QUESTIONS 

Can a classification or categorization of United States ZIP codes determine which 

geographically dispersed ZIP codes have similar characteristics with similar recruiting 

potential? We answer this problem statement by answering two contributing questions: 

1. Which factors are important for classifying similar United States ZIP codes? 

2. Are the classifications useful for predicting the recruiting output of a 

specific ZIP code? 
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D. SCOPE OF STUDY 

This study uses clustering techniques to classify United States ZIP codes for the 

purpose of United States Army recruiting. We use economic, demographic, and county 

health data, and the presence of higher education institutions and military bases to 

determine which geographically dispersed ZIP codes share similar characteristics. All 

datasets are from the past ten years and are publicly available. We focus only on United 

States ZIP codes that occur within the contiguous United States (CONUS). To assess the 

applicability of the cluster assignments, we use the numbers of United States Army 

national leads as a proxy for a ZIP code’s potential to produce recruits. 

1. Constraints 

The largest constraint on this project is the use of only publicly available and 

already collected data. The sponsor for this study, USAREC, has several data sources 

they use to guide recruiting operations. They use population estimates from companies 

such as Woods and Poole and the Lewin Group to determine the likely number of QMA 

in any ZIP code (United States Army Recruiting Command 2016). Both the Lewin Group 

and Woods and Poole also provide demographic data along with forecasts for several 

years in the future. USAREC also has data at the ZIP code level for past Army and 

Department of Defense contracts signed. 

Additionally, USAREC receives market data from the Joint Advertising, Market 

Research & Studies Group (JAMRS) (United States Department of Defense 2016). Since 

the Department of Defense already pays for proprietary data, this study is constrained to 

using data that has already been procured or is publicly available.  

2. Limitations 

We limit the scope of this study to ZIP codes inside CONUS, omitting data from 

Alaska, Hawaii, or any of the outlying territories. This limitation is necessary because the 

availability of data for some of those territories is far less than for CONUS. Also, since 

these territories are so far from the American mainland and have their own unique 
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populations and characteristics, they are likely to be outliers from the rest of our ZIP code 

observations.  

A second limitation on this study is to only study the regular Army. Parker (2015) 

already concludes the ability of AR units to meet their manning requirements has a strong 

correlation to the location of Reserve unit basing. Since this study will not address changes 

in the location of basing, we leave out AR units and focus only on AD recruits.  

Furthermore, we limit the study to enlisted recruiting. While officer recruiting is a 

large portion of annual recruiting, the requirements for officers are significantly different: 

they are targeted at the college or college graduate level instead of at the junior and senior 

years of high school. It is more effective to cluster ZIP codes to see which ones contribute 

enlisted recruiting alone compared to those that could contribute to enlisted or officer 

recruiting. 

The final limitation is the timing of the data used in the study. Since all of the data 

is collected by different agencies, it was all collected with different methods at different 

times. The United States Census Bureau (2007) conducts the Census and the Economic 

Census every ten years and much of the data is collected at the county level instead of at 

the ZIP code level. Some of the data must be manipulated to be useful to our study. For 

example, the number of annual deaths in a ZIP code may not be as telling a statistic as the 

death rate. See Chapter III for a more detailed discussion of the data used.  

3. Assumptions 

Due to the limitations of our data, we make several assumptions. First, for the 

Community Health data and any other county level data, we assume the distribution of 

population throughout the county is homogenous. While this is most likely not true, we 

have no other methods available to distribute our data to the various ZIP codes 

throughout the county. As described in further detail in Chapter III, we assume the 

percentage of residential addresses in each ZIP code is a valid means of apportioning 

county level data.  

Our second assumption is that the variables that we create throughout—such as 

distance to the nearest military base—are valid and contribute to classification of ZIP 
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codes. Since several of these variables do not exist intrinsically in ZIP codes, we must 

find various ways to attribute environmental characteristics in a unique way to each ZIP 

code to include these variables at all.  

During the assessment phase of our analysis, we assume the number of national 

leads is a valid measure of a ZIP code’s potential to produce recruits. Since the activity of 

recruiters highly influences local leads, national leads are more indicative of potential 

recruits who seek out the Army and request more information about joining. While the 

population count will be a strong influencer of the number of leads a ZIP code can 

generate, some ZIP codes have a much higher rate of leads per person than others.  

The final assumption that we must make is that while the boundaries of a ZIP 

code do change periodically, data collected over a span of eight years is all generally 

representative of the same geographic area. Since we are dealing with data from over 

3,000 counties and over 34,000 ZIP codes (Housing and Urban Development 2016), we 

can assume that while there will be some outlier ZIP codes where the population has 

changed significantly, these will not affect the overall classification process. 

E. STUDY OUTLINE 

In Chapter II, we discuss background information that pertains to recruiting and the 

ZIP code categorization problem. We first explore current efforts by USAREC to 

determine which markets have higher potential to produce recruits. We also discuss 

existing means of categorizing geographic areas. We then discuss past analyses of the 

factors that contribute to a market’s potential to produce recruits. In Chapter III, we discuss 

the data we use in this study, where we obtain it, and how it relates to recruiting.  

In Chapter IV, we discuss methods we use to assign our ZIP codes to clusters and 

how we determine which method is better. We also discuss the means we use to assess the 

applicability of the clusters that we create. Once we determine a good method for assigning 

ZIP codes to clusters, we use these cluster assignments to predict a ZIP code’s potential to 

produce recruits. Finally, in Chapter V, we discuss our results, the implications and uses of 

these results and potential avenues for future research.  
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II. BACKGROUND  

A. RECRUITING CONSIDERATIONS 

USAREC is headquartered at Fort Knox, Kentucky. Its commander and staff are 

responsible for overseeing five recruiting brigades responsible for different regions of the 

United States. An additional brigade is responsible for recruiting outside the contiguous 

United States (OCONUS) and other units responsible for special operations recruiting 

and recruits with medical or legal degrees (United States Army Recruiting Command 

2016). 

Per USAREC, each recruiting brigade is made up of several battalions, with each 

of those made up of several recruiting companies. Each recruiting company oversees 

multiple recruiting centers. Each brigade is led by a colonel, and each battalion is led by a 

lieutenant colonel. They oversee over 250 recruiting companies and 948 recruiting 

centers (United States Army Recruiting Command 2016). Each recruiting station is 

staffed by the enlisted soldiers in the rank of sergeant and staff sergeant, and is 

responsible for visiting high schools, hosting community events and calling potential 

recruits to meet their assigned mission. 

1. Recruiting Boundaries 

The recruiting unit boundaries, from brigade down to company, cross state, 

county, and even city lines. USAREC assigns its brigades regionally, as depicted in 

Figure 1. The only United States government boundary that USAREC uses is the ZIP 

code boundary. Each Army recruiting station is responsible for anywhere between 4 and 

over 250 ZIP codes, with the average number being 11.2 ZIP codes (United States Army 

Recruiting Command 2015b). Because ZIP codes are assigned at the recruiting station 

level, the USAREC staff uses them to track the number of recruits in an area and to 

develop strategies for future recruiting. 
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The number and letter combinations refer to the brigades and battalions, respectively. 

Figure 1.  United States Army Recruiting Command Boundaries. Source: 

United States Army Recruiting Command (n.d.). 

2. Recruiting Personnel 

Recruiter assignments, like unit boundaries, are made one level up (United States 

Army Recruiting Command 2013 p. 9–2). A recruiting battalion is therefore responsible 

for assigning recruiters to the individual stations and the recruiting brigade is responsible 

for assigning boundaries for recruiting companies. Each recruiting station has between 2 

and 19 recruiters (United States Army Recruiting Command 2015b). These recruiters are 

responsible for office administration, finding and contracting recruits, transporting 

recruits to pre-enlistment medical appointments, and ensuring they report to the Military 

Entrance Processing Station on time to ship to their initial training.  

3. Recruiting Mission 

The recruiting mission is a target number of contracts to sign. The mission is 

assigned by commanders down to the company level. The Commanding General of 

USAREC is responsible for assigning the overall annual mission for AD and AR 
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recruiting based on the total requirements that the Deputy Chief of Staff of the Army for 

Personnel assigns. The USAREC Commanding General then apportions the total mission 

down to the brigades.  

To set a mission baseline, USAREC currently uses a four-year rolling model to 

calculate the future missions for each battalion. To determine the required future 

production, they weight the past four years of production, weighting the prior year at 

40%, the year before at 30%, two years prior at 20% and three years prior at 10%. They 

multiply these weights by the past Department of Defense production (50%), past Army 

production (20%), and number of QMA (30%) (Fleischmann and Nelson 2014). 

USAREC makes these calculations at the ZIP code level then aggregates the results to 

assign the brigade level missions.  

Once a battalion assigns a mission to a company, the company commander is 

responsible for dividing that mission among his recruiting stations, taking market factors 

and capabilities of personnel into account. The recruiters at a recruiting station share a 

mission among themselves, so there is an incentive for all of the recruiters in each office 

to work together (United States Army Recruiting Command 2013 p. 9–2) 

B. EXISTING GEOGRAPHIC CLASSIFICATIONS 

Geographic boundaries have a significant effect on this study and on past studies 

for two reasons. First, geographic boundaries affect how USAREC assigns its units and 

allocates its recruiters and their goals. Second, geographic boundaries affect how data is 

collected and how we can use that data to better understand the recruiting environment. 

In this section, we discuss the different levels are classification that are relevant to this 

study.  

1. ZIP Codes 

The United States Postal Service (USPS) defines ZIP code boundaries and 

changes them frequently based on supply and demand of postal services (United States 

Postal Service 2016). ZIP codes are especially useful because there are no intellectual 

property right claims on them; they are a public good (U.S. Postal Service Office of the 
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Inspector General 2013). This allows businesses and federal agencies alike to use them to 

develop products and to use them to track information.  

There are currently over 42,000 ZIP codes. Some are solely for post office boxes 

and large commercial entities. These special ZIP codes do not have a permanent 

population and are not helpful to recruiters, although they are still assigned to a recruiting 

station. The Department of Housing and Urban Development (HUD) publishes quarterly 

a list of all ZIP codes with addresses that allows data translation from county, Core Based 

Statistical Area (CBSA) or census tract level to ZIP code level (Housing and Urban 

Development 2016) based on the percentage of each county’s addresses in a ZIP code. 

There are ZIP codes dedicated to single businesses, which hold less than 1% of a 

county’s addresses. We ignore these and include only those ZIP codes that have greater 

than .01% of a county’s ZIP codes. This leaves us with 34,685 ZIP codes.  

The challenge with using ZIP codes to define local regions is that they are not 

static and are not tied to any physical boundaries. All ZIP codes are assigned based on the 

generally central location of a physical Post Office and the proximity of the area to that 

office. This allows USPS employees to efficiently deliver mail each day from a central 

location (U.S. Postal Service Office of the Inspector General 2013). This means that 

when data is collected at the ZIP code level it quickly becomes out of date. Data collected 

at a different level, such as county, can always be translated to the ZIP code level using 

an updated HUD list, but this comes at the expense of accuracy (McDonald 2016 p. 116).  

2. Recruiting Regions and Boundaries 

As shown in Figure 1, the recruiting regions do not follow state or federal 

government boundaries. USAREC assigns these boundaries based on regions of the 

United States for command and control of subordinate units and to provide those units 

with strategic guidance. Because these regions are so large, knowing that a ZIP code is in 

a particular region does little to contribute to the ability to predict how well USAREC 

will recruit in that ZIP code precisely. Instead, the regions could be used to partition ZIP 

codes into regional groups. This gives each region its own unique model to predict 

recruiting potential. For example, Intrater (2015) modeled Navy recruiting regionally. 
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3. Counties 

County boundaries are more specific than recruiting region boundaries, but are 

too broad for the level of analysis USAREC needs. With over 3,000 counties with an 

average population of over 25,000 people (Centers for Disease Control and Prevention 

2010), individual recruiters are not able to target specifically based on a county. With the 

smallest recruiting stations being made up of only two recruiters, the commanders and 

staff at USAREC need to be able to provide information detailed enough for these 

individuals to act on. Because counties are a level of government, many federal and state 

agencies collect data at the county level. These include population data, health data, and 

home value data. This requires us to translate the data to the ZIP code level using a 

crosswalk between counties and ZIP codes. 

4. U.S. Census Bureau 

A geographic boundary more specific than counties is the CBSA. Although they 

are more specific, they do cross county and even state boundaries. This geographic 

demarcation is designed by the Office of Management and Budget and is based on U.S. 

Census Bureau data (United States Census Bureau 2013a). It consists of 31 metropolitan 

areas that each have a population of over 50,000 and 556 micropolitan areas that have 

populations between 10,000 and 50,000 (United States Office of Management and 

Budget 2015). CBSAs are defined for all U.S. states and their territories, as shown in 

Figure 2. 

Because the Census Bureau is the agency whose sole mission is to collect data on 

the United States population, many reports have data available at the CBSA level. 

However, since these areas are focused on large concentrations of population, over 1/3 of 

ZIP codes are aggregated into CBSA 99999, which includes all rural areas. These are the 

unshaded areas in Figure 2. With no specificity for a large portion of the United States, 

this geographic level is not useful to USAREC for targeting recruits at the company or 

station level.  
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This map shows a breakdown of the Core Based Statistical Areas in the United States, 

provided by the United States Census Bureau. Unshaded areas are defined as CBSA 

99999 or “rural.”  

Figure 2.  Metropolitan and Micropolitan Statistical Areas of the United States 

and Puerto Rico. Source: United States Census Bureau (2013b).  

C. PAST ANALYSIS OF FACTORS INFLUENCING RECRUITING 

USAREC uses the numbers of QMA and the numbers of past production to assign 

brigade-recruiting missions, as described in Section A. Analysis shows that each 

geographic area does not produce recruits equally. USAREC uses market penetration to 

compare the production of different areas. Market penetration is defined as the number of 

recruits assessed as a percentage of the QMA population of an area (United States Army 

Recruiting Command 2013). Figure 3 shows the different levels of market penetration 

aggregated at the CBSA level. Since each area—or market—does not produce at an equal 

rate, USAREC strives to adjust those missions based on the potential of each individual 

market.  
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Regular Army (RA) and Army Reserve (AR) Penetration rates as defined by number of 

enlistments per 1,000 QMA in each CBSA. White areas are rural and are not assigned to 

any CBSA.  

Figure 3.  Recruiting Year 2013 Penetration Rates. Source: United States Army 

Recruiting Command (2013). 

The USAREC recruiting manual calls for commanders at all levels to use 

mathematical modeling and analysis to better inform their decisions for recruiting 

operations (United States Army Recruiting Command 2013). The same manual assigns 

the intelligence section of the USAREC staff (USAREC G2) to lead the data gathering 

and analysis effort. In addition to annual and quarterly assessments of the market and 

geographic and personnel factors, several analysts have conducted lengthy studies to 

evaluate the impact of various factors on recruiting operations. For each study, the goal is 

the same: maximize the number of quality recruits assessed into service while minimizing 

the amount of resources expended.  
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For clarity of discussion, we divide this problem and past research into two 

aspects that can be studied individually. The first aspect to study is the supply of recruits 

itself. These studies focus on determining the number of potential recruits in a population 

and what types of populations can be expected to provide the most recruits. These studies 

can also analyze what motivations actually cause a person to enlist in the military. 

Factors involved in this first aspect generally change slowly because they are intrinsic to 

each area or population studied.  

The second aspect focuses on the efforts of the recruiters themselves, and on 

outside influences that can change frequently. Analysts study the effects of different 

incentives or motivations on recruiting outcomes. These include positive incentives such 

as recruiting bonuses and disincentives such as a high amount of non-military job 

opportunity nearby. These dynamic factors also include the number of recruiters assigned 

to an area or the amount of money spent or methods used in advertising. While this study 

focuses on the more stable aspects of population to generate the ZIP code categorizations, 

it also draws insights from incentives and recruiter assignments to test the value of these 

categorizations.  

1. Studies of Market Characteristics  

Previous work by Oh (1998) shows that recruits from different ethnic and 

socioeconomic backgrounds enlist based on different motivations. USAREC uses the 

term “environmental factors” to describe factors affecting a population or geographic 

area (Fleischmann and Nelson 2014). These factors include economic conditions and an 

individual’s propensity to join the service. We will use the term market characteristics to 

describe the environmental factors that USAREC already studies and to also include 

other intrinsic characteristics of a population such as its demographics, health, education, 

and proximity to military bases.  

USAREC uses the Recruiting Market Index to adjust the baseline missions 

assigned to its recruiting battalions. This is based on a regression model that takes 

quarterly inputs such as number of recruiters, propensity, and unemployment to 

determine the following quarter’s adjusted mission (Fleischmann and Nelson 2014). They 
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then use these predicted changes in production and the unit commander’s predictions to 

increase or decrease the unit’s mission by 0 to 19%. While these adjustments are helpful, 

they are based mostly upon past production and do not take into account significant 

characteristics of the populations. 

USAREC’s primary tool to understand the populations themselves is the Potential 

Rating Index for Zip Markets, New Evolution (PRIZM NE) market segmentation that 

Nielsen Company (formerly Claritas) created and owns. (Nielsen Company 2016). This 

analysis tool assigns each household in the United States into one of 66 proprietary 

segments based on over 150 variables that Nielsen Company extracts from census data, 

demographic factors, and surveys. Nielsen Company further categorizes these 66 

segments into one of 14 social groups and 11 age categories. Figure 4 shows the 66 

segments sorted by social groups. This data is used for marketing by hundreds of 

companies across the United States.  

In 2007, USAREC created the 39 Army Custom Segments (ACS) (Dorminey 

2007). These segments rely on the PRIZM data with the addition of attitudes, motivators, 

and barriers to service so that each potential recruit falls into one of the 39 ACS (Clingan 

2007). USAREC then categorizes these 39 tactical segments into 10 strategic segments 

and determines which segments have a population with a higher propensity for joining 

the military. Recruiters can use this information to better inform decisions on who they 

should attempt to recruit, and how.  
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Nielsen Company’s PRIZM NE market categorization shows how Nielsen divides the 

U.S. population into 66 market segments that can be grouped into 14 social groups based 

on wealth and urbanization.  

Figure 4.  Nielsen Company’s Potential Rating Index for ZIP Markets, New 

Evolution (PRIZM NE) Market Segmentation. Source: Nielsen 

Company (2013). 

Army recruiters have access to market segmentation and analysis through the 

Segmentation Analysis and Market Assessment (SAMA) tool, which is available to the 

entire USAREC organization. The Army currently uses the 39 custom segments to 
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analyze the recruiting market. SAMA allows recruiters to see the population of each of 

the 39 custom segments that make up the total population of each ZIP code in their area 

of responsibility. While there are certain segments that are known to outperform others, 

dividing a recruiter’s 11.2 average ZIP codes into 39 ACS does not simplify the problem. 

Additionally, the current SAMA tool does overestimate the production for over 

96% of recruiting centers (Marmion 2015). Marmion (2015) finds that the reason for this 

over-estimation is that the model uses the higher of the past market penetration for the 

recruiting center and the company responsible for it. That is, if a company is able to 

achieve a penetration rate of 20 enlistments per 10,000 QMA within one of the market 

segments, all centers within that company are expected to achieve that same rate. Since 

the company penetration rate is a weighted average of the center rates, a single high-

performing center raises the standard for all of the rest of the centers within that company 

(Market Analysis Division 2015). He further determined that it would be possible to more 

accurately estimate production if the SAMA tool relied on PRIZM NE segmentation 

instead of Army Custom Segments. For more information on the SAMA tool, how it is 

used, and recommendations for improving it, see Marmion (2015). 

By using the SAMA tool and market segmentation, it is possible to predict the 

number of recruits from different segments. By aggregating the segment populations, it is 

also possible to predict the expected production from a geographic area. Further analysis 

indicates which environmental factors most contribute to the increased production of 

these populations and geographic areas (Marmion 2015). 

2. Studies of Recruiting Incentives and Efforts 

The second major area analysts study to build recruiting models is the effects of 

incentives and efforts that USAREC can control, such as bonuses and recruiter 

assignments (Fleischmann and Nelson 2014). ZIP code valuation studies by the Marsh 

Group for JAMRS has shown that locations of recruiting stations and the number of 

recruiters are consistently among the strongest predictors of accessions (Gibson, 

Hermida, Luchman, Griepentrog and Marsh 2011). These periodic Marsh Group studies 

include economic, demographic, crime, and military factors to fit zero-inflated Poisson 
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regression models to predict future recruiting. They also aggregate their models to the 

CBSA level and find that the models predict as well as models aggregated to the ZIP 

code level. This study also finds that proximity to a recruiting station or an increase in 

number of recruiters of any branch generally has a positive effect on Army accessions.  

Williams (2014) creates a single index variable to determine the relative value of 

different recruiting markets for Navy recruiting. He tests 18 different factors to determine 

which 5 are the most significant to create a valuation index for monthly and 3-year 

models. Williams finds that 3 of the 5 most significant factors in the 3-year model are 

directly tied to recruiting efforts. The most significant factors are the number of Navy 

recruiters assigned to the area, the average number of national leads per population, the 

competition index—a measure of recruiting efforts of other services, the proximity of the 

ZIP code to the nearest Navy recruiting station, and the percentage of individuals in the 

ZIP code with a high school education. These five factors contribute to a model that is 

able to explain 55% of the variation in the number of Navy accessions in ZIP codes 

(Williams 2014). 

Research shows that assigning a larger number of recruiters to an area generally 

results in a larger number of accessions. The Army then uses the number of accessions in 

its SAMA models to predict future expected accessions and potentially assigns more 

recruiters to the areas that are expected to have higher production. This circular logic 

presents the risk that there are ZIP codes in the United States that have high potential for 

producing accessions based on their intrinsic qualities, but that do not actually result in 

high production because they do not have a sufficient number of recruiters assigned. This 

study will determine the potential of an area to produce accessions independent from the 

number of recruiters assigned or the proximity to recruiting offices. 
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III. DATA SOURCES 

All of the datasets used to build the ZIP code classifications are publicly available 

on government agency websites. The collecting agencies include the Internal Revenue 

Service (IRS), the Census Bureau, the Centers for Disease Control and Prevention 

(CDC), and HUD. Wherever possible, we use data originally collected at the ZIP code 

level; however, some of the data is at the county level and we convert it to ZIP code level 

using a crosswalk between counties and ZIP codes. More information on this conversion 

is available in Appendix A. 

To include a ZIP code, it has to contain at least one residential address. Of the 

41,306 CONUS ZIP codes assigned to recruiting stations, 34,007 contain residential 

addresses. The remaining 7,299 are ZIP codes that belong entirely to Post Office boxes, 

universities, or businesses. The list of United States ZIP codes with residential addresses 

is obtained from the HUD county to ZIP code crosswalk (Housing and Urban 

Development 2016). 

Several of the economic datasets containing number of businesses or total salaries 

paid are collected for commercial ZIP codes with no residential population. Since the 

purpose of using this data is to take into account economic opportunity available to the 

population, we attribute this data to nearby residential ZIP codes, as explained in Section 

C of this chapter. 

A. COMMUNITY HEALTH STATUS INDICATORS 

The Community Health Status Indicators (CHSI) data was collected by the CDC 

in 2010. This dataset contains demographic information such as total population, 

population density, and race and age ratios. It also contains health data including leading 

causes of death, numbers of suicides, number of births, birth rates, and reports of certain 

diseases (Centers for Disease Control and Prevention 2010). A full listing of the 152 

variables we use can be found in Appendix B. The dataset also contains many national 

average and confidence interval factors we do not use. 
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The CHSI data was collected at the county level so we convert it to the ZIP code 

level using the HUD county to ZIP code crosswalk. This crosswalk uses the portion of 

residential addresses in each ZIP code within the county to apportion the data. Although 

the data was collected in 2010, we use the 2015 crosswalk because we are analyzing ZIP 

codes as they are today and not as they were. County lines do not change as often as ZIP 

codes so we do not expect to lose much information by using the 2015 crosswalk. Only 

three counties from 2010 with a combined population of less than 2,500 no longer exist. 

More information on this crosswalk can be found in Appendix B. 

Although the original CHSI data contains numbers of deaths and numbers of 

incidents of disease, we convert totals to the rates of these events based on the total ZIP 

code population sizes. Converting raw totals to rates comes at a price. Because the CHSI 

data is recorded at the county level all ZIP codes completely within a county have 

constant rates for 150 of its 152 CHSI variables. This causes the clustering based on 

CHSI variables to be at the county instead of the ZIP code level. For the 5,000 ZIP codes 

that span multiple counties, the rates and numbers are averaged based on population 

sizes. 

B. INDIVIDUAL INCOME TAX RETURNS 

The individual income tax return data was collected by the IRS in 2013 at the ZIP 

code level. It contains information such as the number of returns filed, average number of 

dependents per return, the total Adjusted Gross Income, and total Capital Gains for each 

ZIP code (Internal Revenue Service 2016). As with the CHSI dataset, we transform the 

total numbers per zip code to averages. Also, the numbers of returns by filing status are 

turned into percentages. More information on the 65 variables included in this data frame 

can be found in Appendix A.  

To protect the privacy of individual taxpayers, only ZIP codes with more than 100 

income tax returns are included in this dataset (Internal Revenue Service 2016). The IRS 

also excludes data for any ZIP codes where a high percentage of the data came from a 

small number of taxpayers. That leaves us with IRS data for 27,578 of our 34,685 ZIP 

codes. We code the observations without data as having no data available.  
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C. ECONOMIC CENSUS 

The Economic Census is one of the few datasets collected by the United States 

Census Bureau at the ZIP code level (United States Census Bureau 2007). The most 

recent economic census with data available at the ZIP code level is from 2007. 

The Economic Census contains the total number of business establishments in 

each ZIP code of 8 different establishment types such as retail, health, or education. An 

establishment is considered to be a single building or location, so a chain restaurant may 

have multiple establishments in one ZIP code. In addition to the total number of 

establishments, we construct a second variable that shows the percentage of 

establishments of the different types in each ZIP code.  

With this dataset, we attempt to represent the availability of economic opportunity 

in the particular ZIP code. Since this dataset includes businesses, several thousand 

observations are for ZIP codes without residential addresses (United States Census 

Bureau 2007). To make use of this data, we use the R package zipcode to measure the 

distance between the commercial ZIP code and all residential ZIP codes that are already 

in our dataset (Breen 2015). We then assign the data for each commercial ZIP code to the 

nearest residential ZIP code. While it is true that other ZIP codes also benefit from the 

presence of these businesses, the same is true for every ZIP code with businesses nearby 

but not in their ZIP code. See Appendix B for more information on the methods used to 

generate this dataset’s 33,430 observations. 

D. COUNTY BUSINESS PATTERNS 

The Census Bureau also collects the annual County Business Patterns survey. It 

contains the total number of establishments, employees, and quarterly and annual 

payrolls for each ZIP code (United States Census Bureau 2011). The most recent year for 

which data is available at the ZIP code level is 2011. This dataset also contains a large 

number of commercial ZIP codes that are attributed to residential ZIP codes in the same 

manner as the economic census data. For more information on the modifying of this 

dataset, see Appendix B.  
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E. MILITARY BASES 

Brown and Rana (2005) show that prior exposure to military increase the 

propensity for military service for American youth. To capture the increased percentage 

of military children near bases along with the other impact of nearby basing we use two 

datasets to determine the distances to the nearest military base and the size and type of 

the largest bases within 10 and 50 miles.  

We collect this data from two different datasets and manually combine the base 

population data with the base location data. The first dataset from the Census Bureau 

contains the locations of over 700 different U.S. bases (United States Census Bureau 

2012). Because the dataset includes multiple entries for several bases, we manually 

remove duplicates, ranges, bases that are now closed, and bases outside CONUS. 

The second data file contains a list of U.S. military and Coast Guard Installations 

and the number of each branch of service and number of civilians employed by those 

bases (Defense Manpower Data Center 2009). The same base can be listed in several 

ways, such as Fort Meade, Fort George Meade, or Ft. Meade. To ensure we capture the 

correct information, we manually combine the datasets. We also add a column denoting 

the type of base, which includes categories such as Army, Air Force Reserve, or Depot. 

The latter category includes plants and maintenance facilities that are primarily staffed by 

civilians. The Coast Guard stations and many smaller bases do not have a recorded 

population size (Defense Manpower Data Center 2009). These we assign a zero 

population size in the combined dataset we attempt to minimize the effect of the zeros by 

using a type variable for each base.  

We then calculate distances and create nine variables. These are the distance, 

type, and population of the nearest base to each ZIP code and the distance, type, and 

population of the largest base within 10 and 50 miles of the ZIP code. If there are no 

bases within 10 miles, the type is listed as “none” and the population and distances are 

coded as blanks.  
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F. VETERAN POPULATIONS 

As another measure of previous exposure to military, we use several indicators of 

veteran population in a ZIP code. Intrater (2015) shows in his analysis that the total 

number of veterans in a population is a significant indicator of a ZIP code’s recruit 

production. To account for the veteran population in a ZIP code we use data from the 

United States Census Bureau’s American Community Survey from 2014 that (United 

States Census Bureau 2014).  

This dataset contains the numbers of veterans living in each county by age, 

gender, and which conflict period they served in. Because this data was originally 

collected at the county level we transform it using the same county to ZIP code crosswalk 

that we used for the CHSI dataset in Section A (Housing and Urban Development 2016). 

We further transform this dataset to include the estimated percentages of total population 

in a ZIP code that are veterans. For example, the original dataset includes the estimated 

number of female veterans over 18 and total females over 18 in an area. We include the 

estimate total number of female veterans over 18 and the percentage of females over 18 

that are veterans. For more information on the variables in this dataset, see Annex A.  

G. SECONDARY EDUCATION INSTITUTIONS 

Intrater (2015 p. 50) shows that the presence of large universities increases the 

likelihood that a ZIP code will yield zero recruits. Since the presence of a major 

university indicates the presence of an opportunity or alternative to military service, we 

will include these, along with all 7,300 institutions in the Integrated Postsecondary 

Education Data System (National Center for Education Statistics 2016). This dataset 

contains latitude and longitude for each registered institution, along with a size category 

between 1 and 5. A size-category 5 institution is a major university with thousands of 

students, while a size category 1 institution could be a small university, an auto mechanic 

school, or a beauty school.  

To include all levels of education opportunities in our dataset, we calculate the 

distance from the centroid of each ZIP code to each education institution. This is similar 

to the method that Pinelis (2011) uses to show that ZIP codes with a larger distance to the 
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nearest school have a higher likelihood of producing recruits. We then total, for each ZIP 

code, the number of institutions of each size within 10 miles and the number within 50 

miles. This allows us to capture the immediacy of institutions just down the street along 

with the reduced influence of a college several miles away. For more information on 

these calculations see Appendix B.  

H. NATIONAL LEADS 

To check the applicability of our clusters, we use the national leads data provided 

by USAREC (2015a). This dataset contains 2,026,747 recruiting leads from January 2011 

to September 2015. These leads are generated by potential recruits who are interested in 

joining the Army who call 1–800-USA-ARMY, who request more information from 

www.goarmy.com, or who sign up for information about joining the Army at a career fair 

or sporting event. We use national leads instead of local leads because the national leads 

are less influenced by the efforts of local recruiters and are more representative of the ZIP 

codes themselves.  

Of these leads, 1,984,430 (97.9%) are attributed to one of our 34,007 ZIP codes. 

We total the number of leads for each ZIP code across that entire time span. There is a 

possibility that the same person generated more than one national lead, such as someone 

who signed up on a website and at a sporting event. Since we have no means of 

accurately evaluating and correcting for this effect we assume this effect is minimal or is 

indicative of an increased quality of lead. Even by keeping all data for the 57 month 

period there are no recorded national leads for 3,317 (9.8%) of our ZIP codes. The ZIP 

codes with no recorded national leads are mostly smaller markets with a median 

population of 273 people. This is small compared to the median population of all ZIP 

codes we study, which is 2,806. 
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IV. CLUSTERING AND ANALYSIS 

In this chapter, we discuss how we cluster ZIP codes, how we analyze the cluster 

assignments, and the how we check for the applicability of those results. We first 

determine how to categorize the 347 variables into five types or categories to ensure no 

set of variables has more influence on the clustering assignments. We then cluster each of 

the five sets of variables separately to construct five sets of ZIP code assignments, one 

per variable category. Finally, we assess the cluster assignments for applicability. 

A. CLUSTER BUILDING 

We are comparing and clustering ZIP codes based on characteristics that are not 

affected by recruiting. That is, we are not comparing them based on the number of 

recruits they produce or the propensities of people in ZIP codes to join the military. Since 

this means we do not have any response variables we need to use a method that allows 

for unsupervised clustering. The treeClust package for R of Buttrey (2015) accomplishes 

this task. For a description of the algorithms used in treeClust see Buttrey and Whitaker 

(2015). 

This algorithm, which we call Tree Clustering, allows the clustering of 

observations based on both numeric and categorical variables, variables with missing 

values, and is invariant to how numeric variables are scaled. Clustering based on Gower 

dissimilarities (Gower 1971) is a well-known approach that also has these properties. 

However, Tree Clustering is less influenced by extreme values in numeric variables and 

is particularly good at clustering in the presence of noise variables (Buttrey and Whitaker 

2015).  

The Tree Clustering algorithm takes as inputs a set of variables, a method of 

calculating distances or dissimilarities, an algorithm to compute final clusters, and a 

value, k, for the number of clusters to create. We determine how to categorize our 

variables then we create a design of experiments to create clusters with different methods 

for computing dissimilarities, different clustering algorithms, and different values of k. 
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1. Variables 

The first decision we make for the clustering is to determine which combinations 

of variables to use to cluster ZIP codes. With the seven data sources described in Chapter 

III, we have a total of 347 variables for our 34,007 ZIP codes. Since the CHSI dataset and 

the individual income tax return datasets together contain 269—over 77%—of those 

variables we need to find a method that will prevent any one dataset from wielding an 

overwhelming influence on our analysis. This is especially important since the CHSI and 

veteran data was collected at the county level. If we attempt to cluster ZIP codes based on 

all 347 variables, ZIP codes in the same county would tend to end up in the same cluster, 

yielding essentially county-level clusters.  

To prevent datasets with large numbers of variables from masking the impact of 

the other datasets, we divide our variables into categories, cluster based on those 

categories then attempt to create final clusters based on cluster assignments from the 

within-category clustering. This allows us, for example, to transform 138 health-related 

variables into a single categorical variable indicating cluster assignment of each ZIP code 

based on the health data alone.  

The variable categorization developed by Intrater (2015) informs our own 

variable categorization. Intrater uses military influence and recruiter workload, crime, 

population characteristics, economic stability, education opportunities, and veteran 

population (Intrater 2015). Because we are conducting unsupervised clustering and are 

not including recruiter data, we group veteran data with the size and type of the nearest 

military bases. This serves as a proxy for military influence on a ZIP code. We exclude 

the crime data because this data is not collected uniformly and is only collected when 

local governments elect to report it (Intrater 2015). See Intrater (2015) for further 

discussion on the collection of crime data. 

We use the categories of demographics, health, education, economic, and military 

to group our 347 variables into five sets. Some variables from the CHSI dataset are 

assigned to four of the five categories. Appendix A shows which variables we assign to 

each of the five categories.  
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2. Dissimilarity Calculation 

The first step of the Tree Clustering algorithm is to create trees to determine the 

distance between each observation and each of the other observations, which results in an 

n by n dissimilarity matrix, where n is the number of observations (Buttrey and Whitaker 

2015). To determine the distances, the algorithm fits a series of trees that use each 

variable as the response variable in turn. These trees are then pruned to an optimal size 

and the distances of the observations are calculated based on which leaves they fall in in 

each of the trees. The Tree Clustering algorithm offers four methods of calculating these 

distances (Buttrey and Whitaker 2015). 

The first method, d1, returns the proportion of trees in which the observations 

land in different leaves. That is, the “distance” between two ZIP codes will be the 

proportion of the final set of trees in which they are not in the same end leaf. The second 

method, d2, includes a measure of quality for each tree, which then affects the final 

distances. The quality of each tree is related to how well the response variable is 

predicted by the other variables. Distances between observations in higher quality trees 

count for more. The third method, d3, measures the distances depending on how far apart 

the observations fall on the tree. Instead of just counting whether or not the observations 

fall in different leaves, this method calculates a distance as farther if observations are 

several nodes apart (Buttrey and Whitaker 2015). 

Method d4 combines methods d2 and d3, creating distances based on the different 

node separations of observations and on the qualities of the trees (Buttrey and Whitaker 

2015). See Buttrey and Whitaker (2015) for a more detailed description of the methods to 

calculate the dissimilarity matrices. In this study we use methods d1, d3, and d4, to 

determine the optimal method to cluster ZIP codes for recruiting. We do not use d2 

because due to the high degree of dependence among variables of each category, d2 

results in clusters that are very similar to those constructed using d1. 

3. Clustering Algorithm  

Once we calculate the dissimilarity matrices we select which clustering algorithm 

to use. The treeClust package supports “pam,” “agnes,” “clara,” or “k-means” (Buttrey 
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2015). The algorithms “pam” and “agnes” require a lot of computation time, especially 

for large datasets. “Agnes” is an agglomerative approach that starts with each observation 

in its own cluster and combines nearest pairs of clusters (Kaufman and Rousseeuw 1990). 

“Agnes” calculates at a much slower rate because it uses a bottom-up approach with each 

observation starting as a separate cluster. 

“K-means,” “pam,” and “clara” are partitioning methods. “Pam” uses medoids as 

cluster centers with a user specified dissimilarity matrix to measure distances between 

observations. “Clara” is a version of “pam” that uses a randomly sampled subset of the 

observations to speed up computations. “K-means” uses centroids as cluster centers and 

calculates the Euclidian distances between each observation, clustering nearest 

observations together (MacQueen 1967). This method normally does not work with 

categorical data but treeClust provides a version of the data whose Euclidian distances 

are approximately the same as those created by treeClust. This method computes quickly 

compared to “pam” and “agnes” and at a similar rate as “clara.” For further explanation 

of “k-means,” see MacQueen (1967).  

“Agnes” is too computationally intensive to use on a dataset as large as ours, but 

“pam” is tenable with the use of a high performance computing node. “Clara” uses the 

same approach as “pam” but works a much faster and with a constant rate because it uses 

only a sample of the data to create the clusters. See Kaufman and Rousseeuw (1990) for a 

more detailed explanation of these clustering algorithms. We use “pam,” “clara,” and “k-

means” to create final cluster assignments. 

4. Number of Clusters 

After choosing a method of calculating dissimilarities and a clustering algorithm, 

we need to determine the number of clusters to assign the observations to. Since we do 

not know how many groups of ZIP codes exist in the United States, we cluster our ZIP 

codes with different values of k and choose the best one based on predictive ability.  

As described in Chapter II, the Nielsen Company uses 66 different segments to 

cluster markets. We treat this as an extreme case where each ZIP code belongs to one of 

66 different segments of ZIP codes. However, JAMRS then converts these 66 segments 
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into 39 Army custom segments (Clingan 2007). This reduction shows the need to 

simplify the number of segments so commanders can better understand and group the 

different markets they are responsible for. Further research by JAMRS shows that of the 

66 PRIZM NE segments, only 8 are considered “high-performing” segments (Joint 

Advertising, Market Research and Studies Group 2005). At the other extreme this could 

mean that the only information needed is whether a ZIP code is high performing or not. 

This could lead us to use k = 2.  

We use 18 as a maximum number of clusters because it is between the mean and 

median number of ZIP codes per recruiting station—11 and 22, respectively (USAREC 

2015a). If USAREC is attempting to assign twenty different ZIP codes per single 

recruiting station, having twenty different categorizations of ZIP code makes it difficult 

to distribute all of the ZIP codes evenly based on segmentation.  

We use a minimum k of 2 because it is the minimum number of clusters possible. 

This shows us results using the low value, which is more useful for understanding or 

visually representing the differences between ZIP codes and a high that allows for more 

nuance and possibly more predictive power. 

With our five variable categories, three dissimilarity calculation methods, three 

clustering algorithms and seventeen variables sizes we create our models. With a full 

factorial design of experiments method, we fit 765 different initial models. This is 153 

different models for each of the five variable categories. Once we fit our models using 

these methods, we assess their quality. 

B. ASSESSING CLUSTERS 

To identify a good model and a good cluster building method for our data, we 

assess the predictive power of each of our 765 models by fitting a generalized linear 

model (GLM). We fit a Poisson model for count data as described by Faraway (2006). 

We use the number of national leads, as discussed in Chapter III as our response variable. 

Since we have four complete years of national leads data, we use the number of 2011–

2013 leads to fit GLM models. We then assess those models by attempting to predict the 
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number of 2014 national leads. For the training models and test models, we use the 

different categories of final cluster assignments as factors for independent variables.  

We have 1,677,508 national leads for our 34,007 ZIP codes between 2011 and 

2014 (USAREC 2015a). Each of these years had a significantly different number of leads 

as shown in Table 1. While the numbers change from year to year, the average number of 

leads from 2011 to 2013 is 422,906. This is only 5.1% less than the leads for 2014, which 

we use to test our models’ predictive capabilities. 

Table 1.   National Leads by Year from 2011—2014 (USAREC 2015a). 

Year 2011 2012 2013 2014 

Leads 171,819 621,263 475,637 444,667 

 

We use the pseudo R-squared value described by Faraway (2006) to assess the 

quality of our models. This value is calculated by dividing the model’s residual deviance 

by its null deviance and subtracting this number from 1. We do not cross-validate the 

pseudo R-squared values because with so few independent factors and so many ZIP 

codes, overfitting is unlikely to be a problem. Once we determine which Tree Clustering 

methods give the better models, we use those models to predict 2014 national leads and 

compare the results to those predicted by models fit using the PRIZM NE data. We find a 

median difference of 1.9 between the actual 2014 leads and predictions from Poisson 

regression models fit with economic cluster assignments. Models fit with economic data 

outperform those fit with PRIZM NE data, which have a median difference of 3.4 

between actual and predicted 2014 national leads.  

C. COMPARING TREECLUST PARAMETERS 

The next step is to determine which dissimilarity calculation method to use, which 

clustering algorithm and which k-value—number of clusters—for each of the five 

variable type and nine dissimilarity calculation-final algorithm combinations. We do this 

in part by fitting generalized linear models and comparing the pseudo R-squared values 

but we also examine the differences in the cluster models themselves.  
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1. Comparing Clustering Algorithms 

We first determine which clustering algorithm to use. As a first step, we 

determine the difference between “pam” and “clara.” Both methods use the same 

algorithm but “clara” uses only a sample of the data to create the final cluster 

assignments. This is helpful with large datasets since the computation time for “clara” 

does not increase with more observations, but the computation time for “pam” does. 

Figure 5 shows the difference in computation time for clustering methods “pam” and 

“clara” for each data category and k-value using dissimilarity matrix calculation method 

d1 (d3 and d4 yield similar results). With a high performance computing cluster we are 

able to perform these operations in parallel so the total computation time is equal to the 

longest time required by the slowest of the 170 models. 

 

TreeClust models are fit using dissimilarity calculation method d1, and clustering 

algorithms “pam” and “clara.” 

Figure 5.  Computation Time by Number of Clusters for 

All Data Categories.  
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Since we see the increased cost in computation time, we need to determine if we 

lose anything by using “clara” instead of “pam.” One metric is the average distances 

between the observations and the medoid of the cluster they are assigned to. This metric 

is returned as a part of the treeClust object. Figure 6 shows that the average distances 

between observations and medoids are similar but not equal when final clusters are 

assigned by “pam” or “clara.” Smaller average distances would indicate more similar 

clustering of ZIP codes in multi-dimensional space. 

 

All treeClust models are fit using dissimilarity calculation method d1. 

Figure 6.   Average Distances from Medoids to Observations Assigned 

to Clusters for All Data Categories.  

Because average distances between observations and cluster medoids differ when 

using different clustering algorithms, we favor “pam,” which uses all of the data, over 

“clara” at the expense of the extra computational burden. 
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All treeClust cluster assignments are fit using dissimilarity calculation method d1. 

Figure 7.  Pseudo R-squared Values by Number of Clusters from Poisson 

Generalized Linear Models.  

Since high performance computing is not universally available, it is important to 

note that there could be some loss in predictive ability by using “clara” as a clustering 

algorithm. Figure 7 shows the pseudo R-squared models fit to predict the number of 

leads. From Figure 7, we see that “pam” generally has a higher pseudo R-squared value. 

We compare the “pam” models in a similar way with models fit with “k-means” and find 

that “k-means” outperforms “pam,” although the difference is not great. 

2. Comparing Dissimilarity Calculation Methods 

Now that we have determined that clusters created by “k-means” outperform 

those created by “pam” and “clara,” we need to explore the differences between the 

dissimilarity calculation methods. Comparing pseudo R-squared values from all models 

shows that d3 consistently outperforms d1 and d4. The d3 method is the method that does 
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not weight the quality of each variable tree but does not treat the distances between 

leaves the same. Instead it rates the distances between leaves differently depending on 

how far apart they are on the tree.  

In addition to using the pseudo R-squared values, we can visualize the multi-

dimensional distances between observations in two or three dimensions using the t-

Distributed Stochastic Neighbor Embedding (t-SNE) algorithm as described by Van der 

Maaten and Hinton (2008). We compare the distances between observations using 

education data by mapping the multi-dimensional space to two dimensions. We use the 

education category for our comparison because it has the fewest variables and is the 

easiest to compare when viewed in two dimensions. 

Figure 8 shows ZIP code distances in two dimensions where the multi-

dimensional distances are computed using methods d1, d3, and d4. Colors represent 

clusters of ZIP codes found using the algorithm “pam” to cluster ZIP codes into four 

clusters. They are plotted using the Rtsne package for R (Krijthe 2015). They show that 

when using d3, the distances are close enough that ZIP codes are classified into the same 

category. With d1, the visually close observations in the center are categorized into two 

different clusters and in d4, they are all categorized the same, but there are several 

observations interspersed that are categorized separately.  
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These plots are created using visualization methods described by Maaten and Hinton 

(2008). We map the d1, d3, and d4 multi-dimensional distances to two dimensions using 

R Package Rtsne in the first, second, and third plots respectively (Krijthe 2015). Colors 

indicate treeClust cluster assignments created from these distances using “pam” and four 

clusters. 

Figure 8.  Two-Dimensional Plots of ZIP Codes Using Education Data. 

Now that we have selected the highest performing distance calculation method 

and clustering algorithm, we explore the performance of the different number of clusters. 

3. Comparing K-Values 

For a market analysis tool, a number of clusters between 4 and 8 may be ideal. 

With only three clusters, a commander will see the difference between cities, suburbs and 

rural areas, which is information that they already know and is therefore not helpful. A 

large number of clusters is also not useful for comparing ZIP codes, due to the 

complexity. We explore the use of internal treeClust metrics and of using the pseudo R-
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squared values calculated from Poisson regressions fit using the cluster assignments to 

determine a reasonable number of clusters. 

Using the internal treeClust metrics for clustering algorithms “pam” and “clara,” 

the optimal number of clusters is the one with the smallest average distance between the 

cluster medoid—the multi-dimensional center of the cluster—and the observations 

assigned to that cluster. These distances are normalized on a scale of 0 to 1. Figure 9 

shows the average distances from the medoid of each cluster to the observations assigned 

to that cluster for each k-value for the demographic data. This figure shows that six 

clusters give the smallest average distances for the demographic data when using 

dissimilarity calculation method d1 and clustering algorithm “pam.” 

   

TreeClust models are fit using dissimilarity calculation method d1 and clustering 

algorithm “pam.” 

Figure 9.  Average Distance by Number of Clusters for Demographic Data.  

“K-means” calls for a similar method to determine the optimal cluster size. The 

only difference is that instead of using smallest average distance, we find the “knee in the 
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curve,” the value of k when the residual sum of squares tends to level off. The effect is 

the same, although the scale is different. Figure 10 shows the total residual sum of 

squares for each k-value using the same dissimilarity calculation method and data type as 

Figure 5, but after using “k-means” for the clustering algorithm. This graph is 

representative of all of the graphs that use “k-means” for the clustering algorithm in that 

they universally favor larger k-values. That is, the larger the k-value, the smaller the 

residual sum of squares.  

 

TreeClust models are fit using dissimilarity calculation method d1 and clustering 

algorithm “k-means.” 

Figure 10.  Total Residual Sum of Squares by Number of Clusters for 

Demographic Data.  

Since this first metric does not allow for direct comparisons between “k-means” 

and “pam” we also use the pseudo R-squared value of Poisson regression models fit with 

the cluster assignments created by the various combinations of distance calculation 

methods and clustering algorithms. Since a smaller number of clusters is more useful for 

market analysis, we compare the different k-values using the best performing 

combination of distance calculation methods and clustering algorithms, d3 and “k-
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means.” We find that we can achieve a pseudo R-squared value of .6884. In the next 

section, we compare the pseudo R-squared models for Poisson regressions fit with these 

models and with models fit using the PRIZM NE data. We compare the regression 

models fit with the PRIZM NE data to models fit with different data categories and 

numbers of final clusters.  

D. COMPARING CLUSTERS TO PRIZM NE 

We use two different methods to fit models using the Nielsen PRIZM NE data. 

For the first method, we fit a Poisson generalized linear model using the estimated 

PRIZM NE population size of each segment in each ZIP code as predictors and again use 

the number of national leads from 2011–2013 as the response variable (USAREC 2015c). 

For the second model we replace the segment population sizes for each ZIP code with 

percentages of that ZIP code’s population in each PRIZM NE segment. 

Using the PRIZM NE population estimates as predictors yields a pseudo R-

squared value of .5569, while the percentages yield a pseudo R-squared value of .5976. 

Since the percentages yield a higher R-squared value, we use this model to predict the 

2014 test set’s national leads. Figure 11 shows the different pseudo R-squared values for 

models fit with dissimilarity calculation method d3 and clustering algorithm “k-means.” 

With 11 clusters, the GLM using the economic data results in a pseudo R-squared value 

slightly better than GLMs using the PRIZM NE segment data. 
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TreeClust cluster assignments are fit with dissimilarity calculation method d3 and 

clustering algorithm “k-means.” 

Figure 11.  Pseudo R-squared Values for Generalized Linear Models with 

PRIZM NE Segments and treeClust Cluster Assignments.  

We find that we can increase the pseudo R-squared value from .6884 to .7217 by 

including the cluster assignments created by both the economic and health data or 

to .7570 by including cluster assignments for all five data types as predictors. However, 

by increasing the number of cluster categories, we are also increasing the number of 

levels which makes the ZIP code clusters less interpretable. For example, if we attempt to 

use the 11 different clusters of economic data and 11 different clusters of health data, we 

now have 121 different market segments for our ZIP codes. This would have a similar 

result for recruiting decision makers as increasing the total number of clusters from our 

maximum of 18. To test predictive ability of the GLMs we use the cluster assignments 

created from economic data with k-values of 11 and 18 to see if the increased pseudo R-

squared value results in increased predictive ability.  
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When predicting with the Poisson regression models fit from cluster assignments 

created using dissimilarity calculation method d3, final algorithm “k-means,” and 18 

clusters there is a median difference of 1.9 between the predictions and the actual 2014 

leads. This outperforms the PRIZM NE model predictions which have a median 

difference of 3.4 from the actual 2014 national leads. 

E. COMBINING MODELS 

The ideal Tree Clustering model would return a single set of cluster assignments 

that are informed by all datasets. Ideally this model would have between 4 and 6 different 

clusters to maximize interpretability while still having high predictive power. We use 

four different methods to attempt to create a single set of cluster assignments that 

incorporate all data. For the first method, we fit Tree Clustering models with all 347 

variables at the same time. We next attempt to use the five category cluster assignments 

with 18 clusters each and cluster again using intermediate cluster assignments as factors. 

We use the cluster assignments from each category with whichever k-value has the 

smallest average distance from medoids as factors to create a final cluster.  

Finally, we attempt to total the distance matrices for all five categories, then use 

“pam” to cluster the total distances. We use these cluster assignments created by these 

four methods in separate GLMs using the number of 2011–2013 national leads as 

response variables. The highest pseudo R-squared value achieved by these methods is 

found by totaling the distance matrices and clustering with “pam.” This results in a 

pseudo R-squared value of .341, which is far below .6884, the value achieved by only 

using the cluster assignments generated with economic data. 
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V. CONCLUSION AND RECOMMENDATIONS 

A. SUMMARY OF RESULTS 

This study concludes that models built with cluster assignments created by using 

the R package treeClust from publicly available economic data out-predict those created 

with PRIZM NE data. Tree Clustering models based on economic data have more 

predictive power than models based on the other data categories or from using a 

combination of all categories in a single model. This allows USAREC to replace the 66 

variables of the PRIZM NE data with a single cluster assignment for each ZIP code for 

use in market analysis. Using a single cluster assignment allows recruiters to gain a better 

understanding of their operational environment. 

Figure 12 shows ZIP code cluster assignments from economic data, using 

dissimilarity calculation method d3, clustering algorithm “k-means,” and six clusters. 

Each dot represents one of 34,007 ZIP codes. The colors represent cluster assignments. 

We do not attempt to characterize the clusters at this point. We use dots to represent ZIP 

codes instead of shading so the geographically larger ZIP codes in the western United 

States do not appear to represent a larger proportion of the nation. This figure shows that 

cities, suburbs, and rural areas tend to be similar. It also shows significant regional effects 

with ZIP codes tending to be similar across the South, the West, or the Midwest. In larger 

cities—such as San Francisco—there are many clusters represented in a small area. This 

is where the clusters can be more useful for market analysis since they allow recruiting 

commanders to see the different types of ZIP codes within their area of operations. 
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TreeClust cluster assignments are fit with dissimilarity calculation method d3 and 

clustering algorithm “k-means.” Map created using R Packages ggplot2 (Wickham and 

Chang 2016) and ggmap (Kahle and Wickham 2016). 

Figure 12.  Map Showing Cluster Assignments with Six Clusters.  

To use these cluster assignments for prediction, a larger number of clusters and a 

combination of clusters for multiple data categories increases predictive power, although 

it also increases the number of variables per ZIP code. We find that combining the data 

categories into a single set of cluster assignments did not result in clusters that are as 

predictive as using the economic data by itself. Additionally, we only test the predictive 

power of the clusters against a single response variable, the number of national leads. 

Testing these cluster assignments against different recruiting metrics could provide more 

insight into their suitability for use in recruiter assignment and goal allocation models.  

B. RECOMMENDATIONS FOR FUTURE WORK 

The first priority for future work is testing the predictive ability of the economic 

and other clusters against other response variables. The second priority is finding a 

method to combine all data types to create clusters that still outperform the commercially 
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sourced data. Other avenues of exploration are clustering the rest of the recruiting ZIP 

codes and incorporating additional or updated data sources into the cluster models. 

As discussed in Chapter II, there are several other metrics used by USAREC to 

judge a market’s ability to produce recruits. These include the number of recruits 

produced in previous years, the propensity of the population to military recruiting, and 

the number of local leads (Fleischmann and Nelson 2014). However, all of these metrics 

are influenced by the past efforts and numbers of recruiters (Pinelas 2011). This means 

that models attempting to determine the impact of the clusters are more complex because 

they have to adjust for the influence of past recruiting efforts. Any model that can predict 

the future number of accessions produced by a ZIP code independent of the effort of 

recruiters is especially valuable. 

We use 347 different variables but find that we can only achieve a pseudo R-

squared value of .3411 by any of the four methods we use to combine all of our data into 

a single set of cluster assignments to predict national leads. By using cluster assignments 

for the economic data alone, we achieve a pseudo R-squared value of .7176 when using 

cluster assignments from the 137 variables of economic data. There may be other 

methods or combinations of variables that allow for better prediction when incorporating 

more variables into our final models. 

We only cluster 34,007 ZIP codes because these are the ZIP codes that are 

CONUS and have sufficient population data available. USAREC assigns 41,699 ZIP 

codes to its recruiting stations (United States Army Recruiting Command 2015b). Many 

of these additional ZIP codes belong to businesses and national parks, or post office 

boxes with no recruiting populations. However, some of them belong to universities and 

to communities in Alaska, Hawaii, and United States Territories that do have recruiting 

populations. A future researcher can collect more data to include these additional ZIP 

codes to also determine which ZIP codes have no recruiting populations. This allows 

USAREC to only attempt to recruit from ZIP codes that do have recruiting populations.  

A future researcher can also fit models with additional data such as the FBI crime 

data that Intrater (2015) uses in his study. By using the county to ZIP translation method 
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that we use here, a future researcher incorporates additional county-level data into the 

model, such as more detailed unemployment rates, literacy rates, and votes by political 

party in national elections. These additional datasets allow a researcher to further refine 

these models to result in better prediction.  

C. CONCLUSION 

This study shows that it is possible to use publicly available economic data to 

create clusters of ZIP codes that are able to predict much of the deviance in national leads 

between ZIP codes. Using cluster assignments created from this data using treeClust, we 

fit predictive models that outperform models that use proprietary data. When we fit a 

Poisson regression model using the economic cluster assignments created with distance 

calculation method d3, clustering algorithm “k-means,” and 18 final clusters, we can 

account for 69% of the deviance in national leads. This Poisson regression model can 

predict leads with more accuracy than regression models created using proprietary data.  

USAREC currently uses market segmentation with 66 different clusters per ZIP 

code. The single cluster assignments we create provide a more understandable—and 

more useful—tool for recruiting commanders to use for market analysis. By replacing 66 

variables per ZIP code with a single cluster assignment, recruiting commanders can better 

understand the different types of markets that they are responsible for recruiting from. 

USAREC can use these cluster assignments to predict the each ZIP code’s potential to 

produce recruits, allowing them to better assign and task recruiters. 
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APPENDIX A. VARIABLES USED 

We translate all of the datasets described in Chapter III, using methods described 

in Appendix B. The results are the 347 variables listed in Tables 2 through 6.  

Table 2.   Demographic Data Variable Names, Sources, and Descriptions. 

Variable Name Source Description 

Population_Size 

Community 

Health Status 

Indicators 

(CHSI) Estimated population 

Population_Density CHSI Population density 

Age_19_Under CHSI Percentage of population under 19 

Age_19_64 CHSI Percentage of population between 19 and 64 

Age_65_84 CHSI Percentage of population between 65 and 84 

Age_85_and_Over CHSI Percentage of population 85 and older 

White CHSI Percentage of population classified as White 

Black CHSI Percentage of population classified as Black 

Native_American CHSI 

Percentage of population classified as Native 

American 

Asian CHSI Percentage of population classified as Asian 

Hispanic CHSI Percentage of population classified as Hispanic 

MARS1 Income Tax Percentage of returns filed single 

MARS2 Income Tax Percentage of returns filed joint 

MARS4 Income Tax Percentage of returns filed head of household 

Table 3.   Economic Data Variable Names, Sources, and Descriptions. 

Variable Name Source Description 

N1 Income Tax Number of returns 

PREP Income Tax Percentage of returns with paid preparer’s 

signature 

N2 Income Tax Average number of exemptions 

NUMDEP Income Tax Average number of dependents 

A00100 Income Tax Average adjusted gross income (AGI) 

N02650 Income Tax Percentage of returns with total income 

A02650 Income Tax Average Total income amount 

N00200 Income Tax Percentage of returns with salaries and wages 

A00200 Income Tax Average salaries and wages amount 

N00300 Income Tax Percentage of returns with taxable interest 
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Variable Name Source Description 

A00300 Income Tax Average Taxable interest amount 

N00600 Income Tax Percentage of returns with ordinary dividends  

A00600 Income Tax Average Ordinary dividends amount 

N00650 Income Tax Percentage of returns with qualified dividends 

A00650 Income Tax Average Qualified dividends amount [3] 

N00700 Income Tax Percentage of returns with state and local 

income tax refunds 

A00700 Income Tax Average State and local income tax refunds 

amount 

N00900 Income Tax Percentage of returns with business or 

professional net income (less loss) 

A00900 Income Tax Average Business or professional net income 

(less loss) amount 

N01000 Income Tax Percentage of returns with net capital gain 

(less loss) 

A01000 Income Tax Average Net capital gain (less loss) amount 

N01400 Income Tax Percentage of returns with taxable individual 

retirement arrangements distributions 

A01400 Income Tax Average Taxable individual retirement 

arrangements distributions amount 

N01700 Income Tax Percentage of returns with taxable pensions 

and annuities 

A01700 Income Tax Average Taxable pensions and annuities 

amount 

SCHF Income Tax Number of farm returns 

N02300 Income Tax Percentage of returns with unemployment 

compensation 

A02300 Income Tax Average Unemployment compensation 

amount [4] 

N02500 Income Tax Percentage of returns with taxable Social 

Security benefits 

A02500 Income Tax Average Taxable Social Security benefits 

amount 

N26270 Income Tax Percentage of returns with partnership/S-corp 

net income (less loss) 

A26270 Income Tax Average Partnership/S-corp net income (less 

loss) amount 

N02900 Income Tax Percentage of returns with total statutory 

adjustments 

A02900 Income Tax Average Total statutory adjustments amount 

N03220 Income Tax Percentage of returns with educator expenses 

A03220 Income Tax Average Educator expenses amount 
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Variable Name Source Description 

N03300 Income Tax Percentage of returns with self-employment 

retirement plans 

A03300 Income Tax Average Self-employment retirement plans 

amount 

N03270 Income Tax Percentage of returns with self-employment 

health insurance deduction 

A03270 Income Tax Average Self-employment health insurance 

deduction amount 

N03150 Income Tax Percentage of returns with IRA payments 

A03150 Income Tax Average IRA payments amount 

N03210 Income Tax Percentage of returns with student loan 

interest deduction 

A03210 Income Tax Average Student loan interest deduction 

amount 

N03230 Income Tax Percentage of returns with tuition and fees 

deduction 

A03230 Income Tax Average Tuition and fees deduction amount 

N03240 Income Tax Returns with domestic production activities 

deduction 

A03240 Income Tax Average Domestic production activities 

deduction amount 

N04470 Income Tax Percentage of returns with itemized 

deductions 

A04470 Income Tax Average Total itemized deductions amount 

N00101 Income Tax Percentage of returns itemized 

A00101 Income Tax Average amount of AGI for itemized returns 

N18425 Income Tax Percentage of returns with State and local 

income taxes 

A18425 Income Tax Average state and local income taxes amount 

N18450 Income Tax Percentage of returns with State and local 

general sales tax 

A18450 Income Tax Average state and local general sales tax 

amount 

N18500 Income Tax Percentage of returns with real estate taxes 

A18500 Income Tax Average real estate taxes amount 

N18300 Income Tax Percentage of returns with taxes paid 

A18300 Income Tax Average taxes paid amount 

N19300 Income Tax Percentage of returns with mortgage interest 

paid 

A19300 Income Tax Average mortgage interest paid amount 

N19700 Income Tax Percentage of returns with contributions 

A19700 Income Tax Average contributions amount 
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Variable Name Source Description 

N04800 Income Tax Percentage of returns with taxable income 

A04800 Income Tax Average taxable income amount 

N05800 Income Tax Percentage of returns with income tax before 

credits 

A05800 Income Tax Average income tax before credits amount 

N09600 Income Tax Percentage of returns with alternative 

minimum tax  

A09600 Income Tax Average alternative minimum tax amount 

N07100 Income Tax Percentage of returns with total tax credits 

A07100 Income Tax Average tax credits amount 

N07300 Income Tax Percentage of returns with foreign tax credit 

A07300 Income Tax Average foreign tax credit amount 

N07180 Income Tax Percentage of returns with child and 

dependent care credit 

A07180 Income Tax Average child and dependent care credit 

amount 

N07230 Income Tax Percentage of returns with nonrefundable 

education credit 

A07230 Income Tax Average nonrefundable education credit 

amount 

N07240 Income Tax Percentage of returns with retirement savings 

contribution credit 

A07240 Income Tax Average retirement savings contribution 

credit amount 

N07220 Income Tax Percentage of returns with child tax credit 

A07220 Income Tax Average child tax credit amount 

N07260 Income Tax Percentage of returns with residential energy 

tax credit 

A07260 Income Tax Average residential energy tax credit amount 

N09400 Income Tax Percentage of returns with self-employment 

tax 

A09400 Income Tax Average self-employment tax amount 

N10600 Income Tax Percentage of returns with total tax payments 

A10600 Income Tax Average total tax payments amount 

N59660 Income Tax Percentage of returns with earned income 

credit 

A59660 Income Tax Average earned income credit amount 

N59720 Income Tax Percentage of returns with excess earned 

income credit 

A59720 Income Tax Average excess earned income credit 

(refundable) amount 

N11070 Income Tax Percentage of returns with additional child tax 
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Variable Name Source Description 

credit 

A11070 Income Tax Average additional child tax credit amount 

N10960 Income Tax Percentage of returns with refundable 

education credit 

A10960 Income Tax Average refundable education credit amount 

N06500 Income Tax Percentage of returns with income tax 

A06500 Income Tax Average income tax amount 

N10300 Income Tax Percentage of returns with tax liability 

A10300 Income Tax Average total tax liability amount 

N85530 Income Tax Percentage of returns with Additional 

Medicare tax 

A85530 Income Tax Average additional Medicare tax 

N85300 Income Tax Percentage of returns with net investment 

income tax 

A85300 Income Tax Average net investment income tax 

N11901 Income Tax Percentage of returns with tax due at time of 

filing 

A11901 Income Tax Average tax due at time of filing amount 

N11902 Income Tax Percentage of returns with overpayments 

refunded 

A11902 Income Tax Average overpayments refunded amount 

under25K Income Tax Percent of returns under $25,000 AGI 

twentyfiveto50 Income Tax Percent of returns between $25K and 50K 

AGI 

fiftyto75k Income Tax Percent of returns between $50K and 75K 

AGI 

seventyfiveto100k Income Tax Percent of returns between $75K and 100K 

AGI 

hundredto200k Income Tax Percent of returns between $100K and 200K 

AGI 

over200k Income Tax Percent of returns over $200,000 AGI 

ESTAB County 

Business 

Patterns 

Number of establishments 

EMP County 

Business 

Patterns 

Paid employees for pay period including 

March 12 

PAYQTR1 County 

Business 

Patterns 

Total first-quarter payroll ($1,000) 

PAYANN County 

Business 

Total annual payroll ($1,000) 
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Variable Name Source Description 

Patterns 

Retail Economic 

Census 

Number of retail establishments in ZIP code 

ProfSciTech Economic 

Census 

Number of science and technology 

establishments in ZIP code 

AdminWasteMgmt Economic 

Census 

Number of administration and waste 

management establishments in ZIP code 

Education Economic 

Census 

Number of education establishments in ZIP 

code 

HealthCare Economic 

Census 

Number of health care establishments in ZIP 

code 

ArtsRec Economic 

Census 

Number of arts and recreation establishments 

in ZIP code 

Hospitality Economic 

Census 

Number of hospitality establishments in ZIP 

code 

Other Economic 

Census 

Number of other establishments in ZIP code 

Total Economic 

Census 

Total number of establishments in ZIP code 

RetailPerc Economic 

Census 

Percentage of retail establishments in ZIP 

code 

ProfSciTechPerc Economic 

Census 

Percentage of science and technology 

establishments in ZIP code 

AdminWasteMgmtPerc Economic 

Census 

Percentage of administration and waste 

management establishments in ZIP code 

EducationPerc Economic 

Census 

Percentage of education establishments in ZIP 

code 

HealthCarePerc Economic 

Census 

Percentage of health care establishments in 

ZIP code 

ArtsRecPerc Economic 

Census 

Percentage of arts and recreation 

establishments in ZIP code 

HospitalityPerc Economic 

Census 

Percentage of hospitality establishments in 

ZIP code 

OtherPerc Economic 

Census 

Percentage of other establishments in ZIP 

code 

Table 4.   Education Data Variable Names, Sources, and Descriptions. 

 Variable Name Source Description 

No_HS_Diploma CHSI 

Rate, no high school diploma (among 

adults age 25 and older) 

Size1Dist1 

Secondary 

Education 

Number of education institutions of size 

1 within 10 miles of ZIP code 
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Size2Dist1 

Secondary 

Education 

Number of education institutions of size 

2 within 10 miles of ZIP code 

Size3Dist1 

Secondary 

Education 

Number of education institutions of size 

3 within 10 miles of ZIP code 

Size4Dist1 

Secondary 

Education 

Number of education institutions of size 

4 within 10 miles of ZIP code 

Size5Dist1 

Secondary 

Education 

Number of education institutions of size 

5 within 10 miles of ZIP code 

Size1Dist2 

Secondary 

Education 

Number of education institutions of size 

1 within 50 miles of ZIP code 

Size2Dist2 

Secondary 

Education 

Number of education institutions of size 

2 within 50 miles of ZIP code 

Size3Dist2 

Secondary 

Education 

Number of education institutions of size 

3 within 50 miles of ZIP code 

Size4Dist2 

Secondary 

Education 

Number of education institutions of size 

4 within 50 miles of ZIP code 

Size5Dist2 

Secondary 

Education 

Number of education institutions of size 

5 within 50 miles of ZIP code 

Table 5.   Health Data Variable Names, Sources, and Descriptions.  

 Variable Name Source Description 

A_Wh_Comp Community Health 

Status Indicators 

(CHSI) 

Rate, under age 1, complications of 

pregnancy/birth, White 

A_Bl_Comp CHSI Rate, under age 1, complications of 

pregnancy/birth, Black 

A_Ot_Comp CHSI Rate, under age 1, complications of 

pregnancy/birth, other 

A_Hi_Comp CHSI Rate, under age 1, complications of 

pregnancy/birth, Hispanic 

A_Wh_BirthDef CHSI Rate, under age 1, birth defects, White 

A_Bl_BirthDef CHSI Rate, under age 1, birth defects, Black 

A_Ot_BirthDef CHSI Rate, under age 1, birth defects, other 

A_Hi_BirthDef CHSI Rate, under age 1, birth defects, 

Hispanic 

B_Wh_Injury CHSI Rate, ages 1–14, injuries, White 

B_Bl_Injury CHSI Rate, ages 1–14, injuries, Black 

B_Ot_Injury CHSI Rate, ages 1–14, injuries, other 

B_Hi_Injury CHSI Rate, ages 1–14, injuries, Hispanic 

B_Wh_Cancer CHSI Rate, ages 1–14, cancer, White 

B_Bl_Cancer CHSI Rate, ages 1–14, cancer, Black 

B_Ot_Cancer CHSI Rate, ages 1–14, cancer, other 
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 Variable Name Source Description 

B_Hi_Cancer CHSI Rate, ages 1–14, cancer, Hispanic 

B_Wh_Homicide CHSI Rate, ages 1–14, homicide, White 

B_Bl_Homicide CHSI Rate, ages 1–14, homicide, Black 

B_Ot_Homicide CHSI Rate, ages 1–14, homicide, other 

B_Hi_Homicide CHSI Rate, ages 1–14, homicide, Hispanic 

C_Wh_Injury CHSI Rate, ages 15–24, injuries, White 

C_Bl_Injury CHSI Rate, ages 15–24, injuries, Black 

C_Ot_Injury CHSI Rate, ages 15–24, injuries, other 

C_Hi_Injury CHSI Rate, ages 15–24, injuries, Hispanic 

C_Wh_Homicide CHSI Rate, ages 15–24, homicide, White 

C_Bl_Homicide CHSI Rate, ages 15–24, homicide, Black 

C_Ot_homicide CHSI Rate, ages 15–24, homicide, other 

C_Hi_Homicide CHSI Rate, ages 15–24, homicide, Hispanic 

C_Wh_Suicide CHSI Rate, ages 15–24, suicide, White 

C_Bl_Suicide CHSI Rate, ages 15–24, suicide, Black 

C_Ot_Suicide CHSI Rate, ages 15–24, suicide, other 

C_Hi_Suicide CHSI Rate, ages 15–24, suicide, Hispanic 

C_Wh_Cancer CHSI Rate, ages 15–24, cancer, White 

C_Bl_Cancer CHSI Rate, ages 15–24, cancer, Black 

C_Ot_Cancer CHSI Rate, ages 15–24, cancer, other 

C_Hi_Cancer CHSI Rate, ages 15–24, cancer, Hispanic 

D_Wh_Injury CHSI Rate, ages 25–44, injuries, White 

D_Bl_Injury CHSI Rate, ages 25–44, injuries, Black 

D_Ot_Injury CHSI Rate, ages 25–44, injuries, other 

D_Hi_Injury CHSI Rate, ages 25–44, injuries, Hispanic 

D_Wh_Cancer CHSI Rate, ages 25–44, cancer, White 

D_Bl_Cancer CHSI Rate, ages 25–44, cancer, Black 

D_Ot_Cancer CHSI Rate, ages 25–44, cancer, other 

D_Hi_Cancer CHSI Rate, ages 25–44, cancer, Hispanic 

D_Wh_HeartDis CHSI Rate, ages 25–44, heart disease, White 

D_Bl_HeartDis CHSI Rate, ages 25–44, heart disease, Black 

D_Ot_HeartDis CHSI Rate, ages 25–44, heart disease, other 

D_Hi_HeartDis CHSI Rate, ages 25–44, heart disease, 

Hispanic 

D_Wh_Suicide CHSI Rate, ages 25–44, suicide, White 

D_Bl_Suicide CHSI Rate, ages 25–44, suicide, Black 

D_Ot_Suicide CHSI Rate, ages 25–44, suicide, other 

D_Hi_Suicide CHSI Rate, ages 25–44, suicide, Hispanic 

D_Wh_HIV CHSI Rate, ages 25–44, hiv/aids, White 

D_Bl_HIV CHSI Rate, ages 25–44, hiv/aids, Black 
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 Variable Name Source Description 

D_Hi_HIV CHSI Rate, ages 25–44, hiv/aids, Hispanic 

D_Wh_Homicide CHSI Rate, ages 25–44, homicide, White 

D_Bl_Homicide CHSI Rate, ages 25–44, homicide, Black 

D_Ot_Homicide CHSI Rate, ages 25–44, homicide, other 

D_Hi_Homicide CHSI Rate, ages 25–44, homicide, Hispanic 

E_Wh_Cancer CHSI Rate, ages 45–64, cancer, White 

E_Bl_Cancer CHSI Rate, ages 45–64, cancer, Black 

E_Ot_Cancer CHSI Rate, ages 45–64, cancer, other 

E_Hi_Cancer CHSI Rate, ages 45–64, cancer, Hispanic 

E_Wh_HeartDis CHSI Rate, ages 45–64, heart disease, White 

E_Bl_HeartDis CHSI Rate, ages 45–64, heart disease, Black 

E_Ot_HeartDis CHSI Rate, ages 45–64, heart disease, other 

E_Hi_HeartDis CHSI Rate, ages 45–64, heart disease, 

Hispanic 

F_Wh_HeartDis CHSI Rate, ages 65+, heart disease, White 

F_Bl_HeartDis CHSI Rate, ages 65+, heart disease, Black 

F_Ot_HeartDis CHSI Rate, ages 65+, heart disease, other 

F_Hi_HeartDis CHSI Rate, ages 65+, heart disease, Hispanic 

F_Wh_Cancer CHSI Rate, ages 65+, cancer, White 

F_Bl_Cancer CHSI Rate, ages 65+, cancer, Black 

F_Ot_Cancer CHSI Rate, ages 65+, cancer, other 

F_Hi_Cancer CHSI Rate, ages 65+, cancer, Hispanic 

LBW CHSI Rate, birth measures, low birth wt. 

(<2500 g) 

VLBW CHSI Rate, birth measures, very low birth wt. 

(<1500 g) 

Premature CHSI Rate, birth measures, premature births 

(<37 weeks) 

Under_18 CHSI Rate, birth measures, births to women 

under 18 

Over_40 CHSI Rate, birth measures, births to women 

over 40 

Unmarried CHSI Rate, birth measures, births to 

unmarried women 

Late_Care CHSI Rate, birth measures, no care in first 

trimester 

Infant_Mortality CHSI Rate, infant mortality 

IM_Wh_Non_Hisp CHSI Rate, infant mortality, White non 

Hispanic 

IM_Bl_Non_Hisp CHSI Rate, infant mortality, Black non 

Hispanic 
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 Variable Name Source Description 

IM_Hisp CHSI Rate, infant mortality, Hispanic 

IM_Neonatal CHSI Rate, infant mortality, neonatal 

IM_Postneonatal CHSI Rate, infant mortality, post-neonatal 

Brst_Cancer CHSI Rate, death measures, breast cancer 

(female) 

Col_Cancer CHSI Rate, death measures, colon cancer 

CHD CHSI Rate, death measures, coronary heart 

disease 

Homicide CHSI Rate, death measures, homicide 

Lung_Cancer CHSI Rate, death measures, lung cancer 

MVA CHSI Rate, death measures, motor vehicle 

injuries 

Stroke CHSI Rate, death measures, stroke 

Suicide CHSI Rate, death measures, suicide 

Injury CHSI Rate, death measures, unintentional 

injury 

Total_Births CHSI Rate, total number of births 

Total_Deaths CHSI Rate, total number of deaths 

FluB_Rpt CHSI Rate, Haemophilus Influenzae B 

reported cases 

HepA_Rpt CHSI Rate, Hepatitis A reported cases 

HepB_Rpt CHSI Rate, Hepatitis B reported cases 

Meas_Rpt CHSI Rate, Measles reported cases 

Pert_Rpt CHSI Rate, Pertussis reported cases 

CRS_Rpt CHSI Rate, Congenital Rubella Syndrome 

reported cases 

Syphilis_Rpt CHSI Rate, Syphilis reported cases 

Pap_Smear CHSI Rate, pap smears (18+) 

Mammogram CHSI Rate, mammography (50+) 

Proctoscopy CHSI Rate, sigmoidoscopy (50+) 

Pneumo_Vax CHSI Rate, pneumonia vaccine (65+) 

Flu_Vac CHSI Rate, flu vaccine (65+) 

No_Exercise CHSI Rate, no exercise 

Few_Fruit_Veg CHSI Rate, few fruits/vegetables 

Obesity CHSI Rate, obesity 

High_Blood_Pres CHSI Rate, high blood pressure 

Smoker CHSI Rate, smoker 

Diabetes CHSI Rate, diabetes 

Uninsured CHSI Rate, uninsured individuals 

Elderly_Medicare CHSI Rate, medicare beneficiaries, elderly 

(age 65+) 
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 Variable Name Source Description 

Disabled_Medicare CHSI Rate, medicare beneficiaries, disabled 

Prim_Care_Phys_Rate CHSI Rate, primary care physicians per 

100,000 pop. 

Dentist_Rate CHSI Rate, dentists per 100,000 pop. 

ALE CHSI Rate, average life expectancy 

All_Death CHSI Rate, all causes of death 

Health_Status CHSI Rate, self-rated health status 

Unhealthy_Days CHSI Rate, average number of unhealthy days 

in past month 

Sev_Work_Disabled CHSI Rate, severely work disabled 

Major_Depression CHSI Rate, major depression 

Recent_Drug_Use CHSI Rate, recent drug users (within past 

month) 

Ecol_Rpt CHSI Rate, E.coli reported cases 

Salm_Rpt CHSI Rate, Salmonella reported cases 

Shig_Rpt CHSI Rate, Shigella reported cases 

Toxic_Chem CHSI Rate, toxic chemicals released annually 

Carbon_Monoxide_Ind CHSI Air quality standard indicator, carbon 

monoxide 

Ozone_Ind CHSI Air quality standard indicator, ozone 

Particulate_Matter_Ind CHSI Air quality standard indicator, 

particulate matter 

Lead_Ind CHSI Air quality standard indicator, lead 

Table 6.   Military Data Variable Names, Sources, and Descriptions.  

Variable Name Description Type 

NearestType Military Bases Type of nearest military base 

DistToNearest Military Bases Distance to nearest military base 

PopNearest Military Bases Population of nearest military base 

Within10 Military Bases Type of largest military base within 10 

miles 

Pop10 Military Bases Population of largest military base 

within 10 miles 

Within50 Military Bases Type of largest military base within 50 

miles 

Pop50 Military Bases Population of largest military base 

within 50 miles 

HC01_EST_VC01 American 

Community Survey 

(ACS) 

Total; Estimate; Civilian population 18 

years and over 

HC02_EST_VC01 ACS Veterans; Estimate; Civilian population 
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Variable Name Description Type 

18 years and over 

HC02_EST_VC03 ACS Veterans; Estimate; PERIOD OF 

SERVICE—Gulf War (9/2001 or later) 

veterans 

HC02_EST_VC04 ACS Veterans; Estimate; PERIOD OF 

SERVICE—Gulf War (8/1990 to 

8/2001) veterans 

HC02_EST_VC05 ACS Veterans; Estimate; PERIOD OF 

SERVICE—Vietnam era veterans 

HC02_EST_VC06 ACS Veterans; Estimate; PERIOD OF 

SERVICE—Korean War veterans 

HC02_EST_VC07 ACS Veterans; Estimate; PERIOD OF 

SERVICE—World War II veterans 

HC01_EST_VC10 ACS Estimated percentage of total that are 

veterans; SEX—Male 

HC02_EST_VC10 ACS Veterans; Estimate; SEX—Male 

HC01_EST_VC11 ACS Estimated percentage of total that are 

veterans; SEX—Female 

HC02_EST_VC11 ACS Veterans; Estimate; SEX—Female 

HC01_EST_VC14 ACS Estimated percentage of total that are 

veterans; AGE—18 to 34 years 

HC02_EST_VC14 ACS Veterans; Estimate; AGE—18 to 34 

years 

HC01_EST_VC15 ACS Estimated percentage of total that are 

veterans; AGE—35 to 54 years 

HC02_EST_VC15 ACS Veterans; Estimate; AGE—35 to 54 

years 

HC01_EST_VC16 ACS Estimated percentage of total that are 

veterans; AGE—55 to 64 years 

HC02_EST_VC16 ACS Veterans; Estimate; AGE—55 to 64 

years 

HC01_EST_VC17 ACS Estimated percentage of total that are 

veterans; AGE—65 to 74 years 

HC02_EST_VC17 ACS Veterans; Estimate; AGE—65 to 74 

years 

HC01_EST_VC18 ACS Estimated percentage of total that are 

veterans; AGE—75 years and over 

HC02_EST_VC18 ACS Veterans; Estimate; AGE—75 years and 

over 

HC01_EST_VC21 ACS Estimated percentage of total that are 

veterans; RACE AND HISPANIC OR 

LATINO ORIGIN—One race 

HC02_EST_VC21 ACS Veterans; Estimate; RACE AND 
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Variable Name Description Type 

HISPANIC OR LATINO ORIGIN—

One race 

HC01_EST_VC22 ACS Estimated percentage of total that are 

veterans; RACE AND HISPANIC OR 

LATINO ORIGIN—One race—White 

HC02_EST_VC22 ACS Veterans; Estimate; RACE AND 

HISPANIC OR LATINO ORIGIN—

One race—White 

HC01_EST_VC23 ACS Estimated percentage of total that are 

veterans; RACE AND HISPANIC OR 

LATINO ORIGIN—One race—Black 

or African American 

HC02_EST_VC23 ACS Veterans; Estimate; RACE AND 

HISPANIC OR LATINO ORIGIN—

One race—Black or African American 

HC01_EST_VC24 ACS Estimated percentage of total that are 

veterans; RACE AND HISPANIC OR 

LATINO ORIGIN—One race—

American Indian and Alaska Native 

HC02_EST_VC24 ACS Veterans; Estimate; RACE AND 

HISPANIC OR LATINO ORIGIN—

One race—American Indian and Alaska 

Native 

HC01_EST_VC25 ACS Estimated percentage of total that are 

veterans; RACE AND HISPANIC OR 

LATINO ORIGIN—One race—Asian 

HC02_EST_VC25 ACS Veterans; Estimate; RACE AND 

HISPANIC OR LATINO ORIGIN—

One race—Asian 

HC01_EST_VC26 ACS Estimated percentage of total that are 

veterans; RACE AND HISPANIC OR 

LATINO ORIGIN—One race—Native 

Hawaiian and Other Pacific Islander 

HC02_EST_VC26 ACS Veterans; Estimate; RACE AND 

HISPANIC OR LATINO ORIGIN—

One race—Native Hawaiian and Other 

Pacific Islander 

HC01_EST_VC27 ACS Estimated percentage of total that are 

veterans; RACE AND HISPANIC OR 

LATINO ORIGIN—One race—Some 

other race 

HC02_EST_VC27 ACS Veterans; Estimate; RACE AND 

HISPANIC OR LATINO ORIGIN—

One race—Some other race 
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Variable Name Description Type 

HC01_EST_VC28 ACS Estimated percentage of total that are 

veterans; RACE AND HISPANIC OR 

LATINO ORIGIN—Two or more races 

HC02_EST_VC28 ACS Veterans; Estimate; RACE AND 

HISPANIC OR LATINO ORIGIN—

Two or more races 

HC01_EST_VC30 ACS Estimated percentage of total that are 

veterans; Hispanic or Latino (of any 

race) 

HC02_EST_VC30 ACS Veterans; Estimate; Hispanic or Latino 

(of any race) 

HC01_EST_VC31 ACS Estimated percentage of total that are 

veterans; White alone 

HC02_EST_VC31 ACS Veterans; Estimate; White alone 
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APPENDIX B. DATASET TRANSFORMATIONS 

We transform each publicly available dataset into a set of unique variables that 

allow us to determine which ZIP codes are similar to other ZIP codes. In some cases, we 

only change the datasets by removing ZIP codes that we do not include in our study. In 

other cases, we alter variables to better represent the characteristics of a ZIP code that 

relate to recruiting potential. In extreme cases, we create variables that we expect to 

represent a ZIP code’s potential to produce recruits. 

In these datasets we address several issues that occur frequently. There are ZIP 

codes that do not have data available, data that we do not have ZIP codes to assign it to, 

and there are variables that do not directly represent factors that indicate a ZIP code’s 

potential to produce recruits. Wherever possible, we use similar methods to address 

issues uniformly.  

A. COMMUNITY HEALTH STATUS INDICATORS 

The Community Health Status Indicators dataset consists of 578 variables that the 

CDC collects at the county level. These variables describe health indicators that include 

demographic data, incidence of diseases, leading causes of death, and some user 

generated ratings of health (Centers for Disease Control and Prevention 2010). This 

dataset also contains health strata assignments determined by the CDC, confidence 

intervals, and comparisons of variables to the other counties assigned to the same strata. 

Since we are using this data to cluster similar ZIP codes, we only use variables 

that represent ZIP codes themselves, not variables comparing ZIP codes to others. We 

remove variables that indicate relations to other ZIP codes, CDC assigned strata, and self-

reported indicators of health. We also remove variables that either have no data or the 

same data for all ZIP codes and variables that indicate expected incidences of diseases. 

This leaves us with 154 variables. 

We then remove OCONUS counties from this dataset by checking the state 

Federal Information Processing Standard code in the HUD county to ZIP code crosswalk 

from 2105 (Housing and Urban Development 2015). We find that the county containing 
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Batesland, South Dakota, did not exist in 2010, when the CDC created the CHSI dataset. 

We do not have a means to recreate this data so we remove the ZIP code corresponding 

to Batesland, South Dakota, from the list of ZIP codes that we study. 

We also find that three counties that exist in the CHSI dataset no longer have ZIP 

codes with residential addresses. These are Kenedy and Loving counties in Texas, and 

Bedford City County in Virginia. Since we do not have a means to assign the CHSI data 

from these counties to current ZIP codes, we are not able to use this data to create 

clusters.  

We now have data for 3,141 counties that correspond to 34,007 ZIP codes with 

residential addresses. We use the proportions of each county’s residential addresses in 

ZIP codes to apportion the count data. The HUD (2015) county to ZIP code crosswalk 

contains these proportions. Count data includes reported cases of diseases, the total 

county populations, the numbers reporting access to care, and the amount of toxins 

released into the air each year. 

Once we expand the county data into ZIP codes we have to combine the instances 

of ZIP codes that cross county lines. There are 9,422 ZIP codes that occur in 2 to 6 

different counties. To combine this data, we total the numeric variables, and use weighted 

averages based on population for all rate variables. Rate variables include rates of death, 

and percentages of population of different races and genders. For binomial variables that 

indicate the presence of lead or other chemicals in the air, we use the maximum value. If 

a toxin occurs in the air in any county that contains a portion of a ZIP code, we treat the 

entire ZIP code as testing positive for that toxin.  

After we combine the data for ZIP codes that occur in two or more counties, we 

transform some of the variables to make them more useful for our study. Since we are 

using total population of ZIP codes as one of our variables, we attempt to remove the 

effect of population from the other variables. We do this by changing other count data to 

rate data. For example, instead of using the number of people in a ZIP code who are 

unemployed, we use the percentage of people who are unemployed. We do this by 

dividing the ZIP code count data by the ZIP code populations. Of the 154 variables, 
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two—population and tons of toxic chemicals released annually—are count data. The four 

variables indicating presence of toxins in the air are binomial and the remaining 148 are 

rate data.  

B. INDIVIDUAL INCOME TAX RETURNS 

In the individual income tax dataset, we find that we have four CONUS ZIP codes 

of individual income tax returns that are not in the list of ZIP codes with residential 

addresses. Three of these ZIP codes—41713, 29905, and 79010—are ZIP codes that are 

only used for post office boxes. ZIP code 78843 is for Laughlin Air Force Base in Texas 

(United States ZIP Codes 2016). There are 6,434 ZIP codes that are in our study but are 

not in the individual income tax dataset. These ZIP codes likely do not have enough 

returns for the IRS to report their data (Internal Revenue Service 2016).  

This dataset contains several variables that represent count data, including the 

number of returns for each household status and the number of returns of each adjusted 

gross income level in a ZIP code (Internal Revenue Service 2016). It also contains the 

number of returns that contain different types of information or forms. We transform 

these 64 count variables into percentages by dividing by the estimated ZIP code 

populations from the CHSI dataset. The only count data that we use in our study is the 

number of individual income tax returns filed in each ZIP code. We transform all 

variables that contain total dollar, dependent, and exemption amounts into averages for 

that ZIP code by dividing by the number of returns that contain that information. After 

these transformations we have 117 different individual income tax observations per ZIP 

code.  

C. ECONOMIC CENSUS AND COUNTY BUSINESS PATTERNS 

The Census Bureau collects the economic census every ten years. This dataset 

includes the number of commercial establishments in eight different business sectors 

such as health care, retail, and education (United States Census Bureau 2011). We create 

additional variables to indicate the percentages of total establishments of each sector in a 

ZIP code.  
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The Census Bureau collects the annual county business patterns survey that 

includes the number of commercial establishments in a ZIP code, the number of 

employees, and the total annual and quarterly payrolls (United States Census Bureau 

2011). This dataset contains 33,485 of the ZIP codes we are working with and an 

additional 4,948 ZIP codes. The majority of these ZIP codes are the same as those in the 

economic census.  

We map all 5,479 commercial ZIP codes to the nearest residential ZIP code using 

the great circle distance between the ZIP code geographic centers. We use the geographic 

centers from Breen’s (2015) zipcode package for R. We find that two of the ZIP codes do 

not have latitudes and longitudes in Breen’s dataset. For these—and for all ZIP codes 

without latitudes and longitudes—we use the information from United States Zipcodes 

(2016). This commercial dataset contains geographic, demographic and other ZIP code 

data (United States Zipcodes 2016). Once we determine the nearest residential ZIP code 

to each commercial ZIP code, we inspect the distances.  

We see 98% of the ZIP codes are within 20 miles of the nearest residential ZIP 

code. We need to accurately represent the presence of economic opportunity but also 

want to maximize the amount of data that we include. We inspect the commercial ZIP 

codes that are more than 20 miles from the nearest residential ZIP codes and see that the 

majority are in Arizona (United States Zipcodes 2016) and are geographically large with 

fewer than 10 business establishments (United States Census Bureau 2007). The only 

commercial ZIP code that is more than 20 miles from a residential ZIP code with more 

than 10 businesses is Avalon, California on Catalina Island (United States Zipcodes 

2016). We decide not to include the commercial ZIP codes that are more than 20 miles 

from the nearest residential ZIP code.  

Once we determine which commercial ZIP codes to include, we combine the data 

with any existing data for the nearest residential ZIP code. We sum the count data, to 

include the number of establishments and payroll data then adjust the percentage data 

based on the new totals. When we combine the economic census and county business 

pattern datasets we have economic data for 34,006 of our 34,007 ZIP codes. 
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D. MILITARY BASES 

The military base data comes from two different sources. The location data comes 

from the United States Census Bureau (2012) and the military population data comes 

from the Defense Manpower Data Center (2009). We use these datasets because these are 

the most recent years with data available. The location data contains the latitude and 

longitude of 782 different military locations. The population data contains the count of 

how many of over 2 million uniformed people live in 772 different bases or cities in the 

United States. The population data does not contain any information for the Coast Guard, 

while the location data includes 89 different Coast Guard stations (United States Census 

Bureau 2012). 

The location dataset includes many unneeded entries, including recreation areas 

ranges, and radar sites. In most cases, these locations are duplicates of the actual bases 

that they support, which are located nearby (United States Census Bureau 2012). We 

manually remove from this list any location that is a duplicate of a main base location. 

We also remove any installations that are no longer open based on entries in the 

Department of Defense’s (2016) list of military installations.  

We manually combine the datasets using the base names where they are the same. 

In some instances, they are listed differently. For example, in the location dataset (United 

States Census Bureau 2012), the Naval Postgraduate School is listed as “Naval 

Postgraduate School (Monterey),” but in the personnel dataset (Defense Manpower Data 

Center 2009) it is listed as “Monterey.”  

In some cases, the population data is divided into two different locations. For 

example, there are Army populations in both “Fort Irwin,” and “Barstow.” We know that 

Barstow is the city directly outside Fort Irwin and that there are no other military bases 

nearby (Department of Defense 2016). In these cases, we sum the numbers of uniformed 

personnel. This results in 450 military installations, of which 191 include the data for 

military population that lives there.  

To transform these datasets into variables that indicate military influence in ZIP 

codes, we first remove all duplicates and assign populations to military bases. We assign 
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each military location a factor indicating which military branch it belongs to. In addition 

to the four basic branches, we create categories for depots, Coast Guard stations, Army 

National Guard, and Air Force Reserve bases. We assign these categories based on the 

locations name or the largest population assigned to the location (United States Census 

Bureau 2012).  

Once we calculate the distance from each ZIP code to each military base, we 

create variables for the type, distance to and military population of the nearest base. We 

also create variables for the types and populations of the largest base within 10 and 50 

miles of each ZIP code. This results in seven variables for each of our 34,007 ZIP codes.  

E. VETERAN POPULATIONS 

We use veteran population data from the United States Census Bureau’s (2014) 

American Community Survey. This dataset contains 246 variables for each ZIP code. 

Many of these variables indicate demographic information or margins of error of the 

estimates. We only use the variables that include counts of veterans of different genders 

and ages. The Census Bureau collected this data at the county level. We transform the 

data to ZIP code level using the same methods we use for the CHSI dataset, as we discuss 

in Section A of Appendix B.  

We transform these data points from count data to percentages of populations 

using the total estimated ZIP code populations from this dataset. By using percent data, 

we better represent the military influence in a ZIP code. After mapping the data, selecting 

the variables, and transforming them, we have 41 variables for our 34,007 ZIP codes.  

F. SECONDARY EDUCATION INSTITUTIONS 

We use the secondary education institution data from the National Center for 

Education Statistics (2016). This dataset contains the locations, enrollment, sizes, school 

types, and other information for and sizes for 7,687 secondary education institutions in 

the United States. This dataset includes major universities and small trade schools. We 

sort the institutions by the five different size categories that indicate the enrolled 
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populations. The small category is under 1,000 students and the largest is 20,000 students 

and above (National Center for Education Statistics 2016). 

To use this dataset, we transform the variables into count data indicating the 

number of each size of institution near each of our ZIP codes. We use two counts: 

institutions within 10 miles, and institutions within 50 miles. We calculate the distances 

between the ZIP codes and the education institutions using the same method we use for 

the commercial ZIP codes in the economic census. This shows that we have between zero 

and 306 of the smallest institutions within 50 miles of our ZIP codes. We have between 

zero and 22 of the largest institutions within 50 miles of each ZIP code. With the two 

distances and five sizes, we have ten variables for each of our 34,007 ZIP codes.  
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