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ABSTRACT 

Naval Supply Systems Command (NAVSUP) supports Navy, Marine Corps, Joint 

and Allied Forces with their inventory of more than 430,000 items worth $21 billion 

using several distribution sites. Choosing the optimum order-point and order-quantity 

for each item is important to meet the stochastic demand while satisfying multiple 

restrictions such as budget and maximum number of orders. The Site Demand-Based 

Level Inventory Optimization Model (SIOM) is a mixed-integer, linear program 

developed at the Naval Postgraduate School to provide NAVSUP planners with guidance 

on this complex problem. Ongoing tests have been successful, but SIOM’s computational 

run times are long. This thesis introduces a new, faster reformulation (SIOMsQ) that 

approximates the solution of the same problem by reducing the possible candidate sets of 

order-points and order-quantities for each item. We find that the solutions suggested by 

SIOMsQ are better than or very close to those of SIOM in test cases provided by 

NAVSUP, with substantially shorter computational times. Therefore, we recommend 

using SIOMsQ versus SIOM. 
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EXECUTIVE SUMMARY 

The mission of the Naval Supply Systems Command (NAVSUP) is to provide the 

Navy and Joint Warfighter with global logistics and quality-of-life support (U.S. Naval 

Academy 2016). NAVSUP Weapon Systems Support (NAVSUP WSS) is responsible  

for a large fraction of NAVSUP’s National Item Identification Numbers (NIINs) with 

more than 430,000 items (NAVSUP 2016). As its primary mission, NAVSUP WSS has 

to provide all the Navy and Marine Corps units with the items they need with minimal  

or no delay. 

In order to maximize the operational readiness of hundreds of units, NAVSUP 

WSS needs to keep adequate wholesale and retail inventory levels for all items subject to 

multiple constraints. As a measure of effectiveness, “fill rate” is used to specify the 

expected fraction of orders for which a replacement is available (i.e., on hand when 

demand occurs). Achieving a good fill rate requires choosing an order-point, s, and an 

order-quantity, Q, for each item. 

In order to find optimum order-points and order-quantities, Salmeron and Craparo 

(2016) have developed Site Demand-Based Level Inventory Optimization Model (SIOM) 

to guide stock level decisions for NAVSUP. Because of the large scale and non-linear 

aspect of the problem, SIOM pre-generates candidate order-quantities for every NIIN, 

and then optimizes order-points and order-quantities (restricted to pre-generated ones). At 

the time of this research, SIOM is undergoing testing for ten test cases at NAVSUP WSS. 

Preliminary results are promising, albeit computational times are long. This thesis 

develops SIOMsQ, an efficient reformulation of SIOM which improves both solution 

quality and computational time. 

SIOMsQ approximates the solution of SIOM by reducing the possible candidate 

sets of order-points and order-quantities for each item. That is, we proceed as in SIOM 

but limit the values of, not only Q, but also s, to a list of pre-generated candidate (s, Q) 

pairs. For example, SIOMsQ can generate up to 10 candidate order-quantities for every 

NIIN, and then 20 candidate order-points for each order-quantity and NIIN. First, we set 



 

 xvi

upper and lower limits of both s and Q using the data provided by NAVSUP (shelf life, 

maximum stock level, average monthly demand, etc.). Then we develop a strategy to 

select the candidate order-points and order-quantities between their respective limits, 

such that the differences between consecutive candidates are approximately the same. 

SIOMsQ is formulated as a pure integer, linear program that chooses exactly one 

candidate for each item, so that the overall choice is feasible for all items.  The objective 

of SIOMsQ is to minimize the total expected penalty by choosing the optimum (already 

generated) (s, Q) pair for each NIIN while satisfying the constraints such as budget, 

maximum number of orders per month and shelf life among others. Since, for each 

generated (s, Q) pair, we can pre-calculate the associated fill rate, cost, penalties, and 

other data that would apply should such pair become the decision adopted for the item, 

the resulting model does not need the complex constructs of SIOM. The possibly large 

number of binary decision variables due to candidate pairs is compensated by a reduction 

in model complexity, as proven by our computational results.   

SIOMsQ is run in General Algebraic Modeling System (GAMS) using CPLEX 

solver (GAMS 2016). We run SIOMsQ with various candidate (s, Q) pair sizes which 

range from 7 to 20 candidate Q-values, and similarly for candidate s-values for each Q.  

For all of the ten test cases (from real-world problems provided by NAVSUP), the 

solutions SIOMsQ achieves are better than or very close to those of SIOM, but the 

running times of SIOMsQ are substantially shorter. The improvements are most 

compelling in large-scale problems, where SIOM has notable solving difficulties. 

As a conclusion of this research, we recommend that running SIOMsQ using 

either 7 Q-values and 7 s-values for each item (if very fast runs with acceptable solution 

quality are required), or 10 Q-values and 20 s-values for each item (if solution quality is 

very important, still with acceptable running times). 
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I. INTRODUCTION 

A. BACKGROUND 

The mission of the Naval Supply Systems Command (NAVSUP) is to provide the 

Navy and Joint Warfighter with global logistics and quality-of-life support (U.S. Naval 

Academy 2016). Involving about 345 military personnel and more than 24,000 civilian 

employees, NAVSUP holds inventory for approximately $21 billion and spends a yearly 

budget of $3.5 billion (NAVSUP 2016a, b). 

The mission of NAVSUP Weapon Systems Support (NAVSUP WSS) is to 

deliver weapon systems supply support to the Navy, Marine Corps, Joint and Allied 

Forces (NAVSUP 2016c). NAVSUP WSS is responsible for a large fraction of 

NAVSUP’s National Item Identification Numbers (NIINs) with more than 430,000 items 

(NAVSUP 2016a). 

As its primary mission, NAVSUP WSS has to provide all the Navy and Marine 

Corps units with the items they need with minimal or no delay. 

In order to maximize the operational readiness of hundreds of units, NAVSUP 

WSS needs to keep adequate wholesale and retail inventory levels for all items subject to 

multiple constraints. A key complication in the analysis is the fact that demands for the 

NIINs are stochastic. 

As measure of effectiveness, “fill rate” is defined as the expected fraction of 

orders for which a replacement is available (i.e., on hand when demand occurs). A 

detailed formulation is included in Section II.C. 

Due to limitations such as inventory budget, number of orders per month, storage 

space and shelf life, it is not possible to achieve a perfect fill rate of 100% for all NIINs. 

Instead, NAVSUP WSS specifies minimum required fill rate levels for all items, based 

for example on the importance of the item to readiness. 

This thesis develops a mathematical optimization model to guide inventory 

decisions for NAVSUP. 
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B. REVIEW OF INVENTORY MODELS 

Silver et al. (1998) point out the importance of inventory management and 

production planning and scheduling of several industries and organizations in economic, 

medical and military aspects. When modeling the inventory management system of 

individual items with probabilistic demand, Silver et al. introduce two techniques: 

continuous review and periodic review. 

In continuous review, the state of the inventory is assumed to be known at all 

times; for example, an order can be placed at any point in time. In periodic review, the 

inventory is verified (and related decisions are made) at discrete points in time (e.g., on a 

given weekday). For this study, we are solely concerned with continuous review models. 

Silver et al. (1998) describes two types of continuous review inventory 

management systems: order-point, order-quantity (s, Q) system and order-point, order-

up-to-level (s, S) system. (Note: order-point and order-quantity are sometimes referred to 

as reorder point and order size, respectively. We use the same terminology as in Silver et 

al. (1998) in the rest of this thesis.)  

A backorder is a demand that cannot be filled at the time it occurs (i.e., an 

outstanding order for which the customer will need to wait). Net stock is defined as the 

number of items on hand, whereas inventory position includes the number of items 

ordered and backordered in addition to net stock. Inventory position at any given point in 

time can be formulated as follows: 

  Net StockInvent Ordory Positi ers Backorderson     

In an (s, S) system, when the inventory position drops below s, an order is placed 

such that the inventory position reaches the order-up-to level, S. Different amounts of 

items can be ordered at different times depending on how far the inventory position is 

away from the order-up-to-level. On the other hand, in an (s, Q) system, when the 

inventory position drops below s, a pre-determined order amount Q is placed. 

It should be kept in mind that an order is placed when the inventory position 

drops below order-point, s. If orders were placed according to the net stock, there could 
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be unnecessary orders that stem from not waiting the lead time of the previous order 

(Silver et al. 1998).  

In Figure 1, inventory position is represented by dashed line and net stock or both 

the inventory position and net stock are shown by the solid line. There are demands of 

different amounts at several points in time. When the inventory drops below s at time A, 

an order is placed and the inventory position increases by Q. L represents the order lead 

time, which is assumed to be deterministic. 

 

Figure 1.  (s,Q) Inventory System. Source: Silver et al. (1998). 

For a certain item, choosing a large order-point provides a good fill rate, but this 

increases the amount of money tied up in inventory. Also, some items might exhaust their 

shelf life before they are demanded. On the other hand, if a small order-point is selected, 

it could cause backorders, thus reducing the fill rate. 

Similar to the order-points, order-quantities have an important effect on fill rates. 

If a small order-quantity is selected for an item, backorders could arise depending upon 

the lead time (the time elapsed between an order placement and its arrival) of the item. 

Also, a small order-quantity requires orders to be placed more frequently, incurring 
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additional costs and preventing potential savings such as discounts from seller. On the 

other hand, a large order-quantity could cause some items to perish before demanded. 

Determining the order-points and order-quantities for thousands of items in order 

to achieve target fill rates is a complicated task because all the NIINs share a budget limit 

and an order limit (the number of order documents that can be placed in a given time 

period). 

For the problem at hand, an (s, S) model is computationally intractable; therefore 

we develop an (s, Q) model and approximate the optimal (s, S) solution by setting 

.S s Q   

Salmeron and Craparo (2015) introduce the Wholesale Inventory Optimization 

Model (WIOM). Given the order-quantities, WIOM optimizes the order-points of all 

items simultaneously by minimizing the expected weighted deviation from the target fill 

rates of each item. 

Roth (2016) compares the performances of three different inventory management 

models using a simulation: simple calculation of fill rates, SPO and WIOM. His results 

show that the order-points suggested by WIOM provide higher fill rates than the two 

other models. 

The key idea this thesis exploits is the enumeration of possible values of decision 

variables to enable pre-processing of information with which to build an approximate 

optimization model. Enumeration is a common technique in optimization. For example, 

Kolodziej et al. (2013) use this method in optimization of the multi-period blend 

scheduling problem. In order to overcome the difficulties of the non-convex MINLP 

problem, they enumerate to approximate the optimum blending fractions of various 

products.  

C. PROBLEM STATEMENT 

OPNAVINST 4441.12D defines demand-based items as "items that have a 

relatively high issue rate" (Office of the Chief of Naval Operations 2012). 
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NAVSUP WSS is now using Morris Cohen Associates' ‘Service Planning and 

Optimization (SPO)’ tool for planning order-points and order-quantities for 

demand-based items. However, they do not document the mathematical model or 

algorithms used to determine such values (Roth 2016). 

In order to find optimum order-points and order-quantities, Salmeron and Craparo 

(2016) have developed Site Demand-Based Level Inventory Optimization Model 

(SIOM). Because of the large scale and non-linear aspect of the problem, SIOM 

pre-generates candidate order-quantities for every NIIN, and then optimizes order-points, 

s, and order-quantities, Q (restricted to pre-generated ones). SIOM is implemented using 

the General Algebraic Modeling System (GAMS 2016a) with the GAMS CPLEX 

(GAMS 2016b) as solving engine. For completeness, the formulation of SIOM is given in 

the Appendix. 

At the time of this research, SIOM is undergoing testing at NAVSUP WSS. 

Preliminary results are promising, albeit computational times are long due to the 

complexity of the resulting optimization model. 

In this study, we introduce a new technique based on pre-generation of both s and 

Q candidates. That is, we proceed as in SIOM but limit the values of, not only Q, but also 

s, to a list of pre-generated candidate (s, Q) pairs. The new optimization model is referred 

to as SIOM with pre-generated s-Q (SIOMsQ). 

The motivation for enumerating (s, Q) pairs by pre-generation is two-fold: First, 

computational time of SIOMsQ is expected to be shorter due to using a restricted set of 

candidate (s, Q) pairs. Second, and possibly the most important, once (s, Q) pairs are 

generated, fill rates can be calculated (for each item and (s, Q) pair) using whichever 

method is deemed appropriate, such as closed-form equations, simulation, etc. For 

example, Roth (2016) has devised an accurate simulation of fill rates, which could 

potentially be used in SIOMsQ as input data. In SIOM, since the order-points are 

decision variables themselves, the possibilities to calculate fill rates are reduced to an 

approximation via a series of equations and constraints embedded in the model, making it 

substantially more complex.  For comparison purposes, we only calculate the fill rates for 



 

 6

the pre-generated (s, Q) pairs, mimicking the values that would have been calculated if 

SIOM had been used.  

D. RESEARCH OBJECTIVES AND SCOPE 

The objective of this research is to develop an algorithm to generate reasonable 

(s, Q) pairs for every NIIN, and to create the SIOMsQ formulation to approximate the 

solution of the original SIOM faster. SIOMsQ seeks to strike a proper balance between 

solution quality and solvability of the problem. That is, SIOMsQ may relinquish solution 

quality for a faster solution. 

This research assumes the existing SIOM release 1.2.2 is a valid approach to the 

site demand-based inventory problem. 

Some distribution sites have two types of NIINs and they are treated as different 

sites. NMC stands for “Navy-Managed Consumables” and BP28 refers to “Navy 

Working Capital Fund Budget Program 28” (Salmeron and Craparo 2015). The SIOMsQ 

approach will be compared to SIOM in the following test cases already provided by 

NAVSUP: 

1. Norfolk (NMC) 

2. Norfolk (BP28) 

3. Yokosuka (NMC) 

4. Yokosuka (BP28) 

5. Kings Bay (NMC)  

6. Kings Bay (BP28) 

7. San Diego (NMC) 

8. Bangor (BP28) 

9. Jacksonville (BP28) 

10. Key West (BP28) 
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II. METHODOLOGY 

A. SIOM CHARACTERISTICS 

SIOM (Salmeron and Craparo 2015) minimizes the aggregate nonlinear penalty 

for not satisfying the required fill rates of each item. The model is non-separable by item 

due to constraints on total budget and maximum number of orders per month, each of 

which involves all NIINs in the problem. 

Due to non-linear relationships between order quantities, fill rates and number of 

orders placed, SIOM pre-generates a list of candidate Q-values for every NIIN, which 

allows us to formulate SIOM as a mixed-integer linear optimization problem. 

The order quantities (currently up to ten candidate Q-values for every NIIN) are 

generated using the following ideas: 

 Set a reasonable lower and upper limit for Q, based on the data (average 
demand, lead time, shelf life, etc.) already provided by NAVSUP WSS, 
and 

 Select 1Q   as a candidate value and then remaining order-quantities 
between the upper and lower bounds (inclusive) such that step sizes 
between two consecutive candidates are approximately the same. 

After generation of order-quantity candidates, SIOM optimizes s and Q (as 

restricted) for all NIINs. 

However, in some of the sites that have thousands of items, SIOM’s difference 

between the upper and lower bounds of the solution are large even after 5 hours of 

computation. 

To be able to obtain a faster solution, SIOM incorporates a grouping heuristic 

algorithm (GHA). In GHA, items in a certain distribution site are separated into smaller 

groups, constraints are adjusted proportionally and sub-problems are solved individually. 

At the end, objective values of sub-problems are summed and the approximate solution is 

achieved. For intermediate size sites (3,000–5,000 items), the grouping algorithm gives 

good results in a reasonable amount of time. In larger cases (5,000+ items), in order to 
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obtain an acceptable solution, the number of groups should be increased which 

potentially reduces the quality of the solution. 

B. SIOMSQ DEVELOPMENT 

1. Definitions 

The development of SIOMsQ needs the following terms to be defined: 

Shelf life ( L
iS ): Shelf life for a given item (in months). 

Maximum Stock Level (MSL): Inventory up-to-level for a given item (i.e., same 

as i i iS s Q  ). 

Expected monthly demand ( ˆM
ix ): Expected monthly demand for a given item. 

Allowance ( iS ): Minimum MSL level required for a given item. If not specified, 

the default value is 0 for each item. 

Maximum Months of Supply ( S ): A parameter that restricts the MSL of each 

item. For instance, if S  is 12, MSL of an item cannot exceed 12 times the expected 

monthly demand of the item. 

Minimum Months of Supply ( S ): The parameter that sets a lower bound on MSL 

of each item. If S  is (for example 0.5), maximum stock level cannot be less than 0.5 

times the expected monthly demand of the item. 

Minimum order-point ( is ): Lower bound on s for a given item. Default is -1, 

which means that we would wait until there are no items on-hand and a new demand 

arrives to place an order of the item. 

2. Generation of Parameters s and Q 

Order-points and order-quantities are integer decision variables which can take 

potentially many values. To simplify the problem, SIOMsQ uses a reduced set of 

candidates for both order-points and order-quantities. For example, in order to generate 
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candidate (s, Q) pairs we can generate up to 10 candidate order-quantities for every NIIN, 

and then 10 candidate order-points for each order-quantity and NIIN. 

a. Generation of Order-Quantities 

To generate order-quantities, we preserve the same scheme as in SIOM (Salmeron 

Craparo 2016): 

 “1” is always the first candidate Q for each item. 

 Set lower bound on the remaining Q values ( iQ ) as ˆmax{ , 2}M
iS x . 

 If shelf life of the item is less than S , set upper bound on Q ( iQ ) as 

ˆL M
i iS x . Otherwise, set iQ  as max{ }ˆ, M

i iS S x . 

 Set iQ  and iQ  as the second and the last candidates, respectively. 

 Select the remaining candidates between iQ  and iQ , such that the 

differences between consecutive candidates are approximately the same 
(i.e., round to the nearest integer for fractional numbers).  

b. Generation of Order-Points 

In SIOMsQ, generation of each candidate s depends on already generated 

candidate order-quantities. Therefore, every candidate Q has its own set of order-points: 

 “-1” and “0” are always the first two candidate order-points for each item. 
Candidate “-1” stands for backorders. 

 Set lower bound on the remaining s values ( is ) as max{ ,1}i iQS  . 

 Set upper bound on s ( is


) as ˆ ˆmin{ , }L M M
i ii ii QS x x QS    . 

 Set is  and is


 as the third and the last candidates, respectively. 

 Select the remaining candidates between is  and is


, such that the 

differences between consecutive candidates are approximately the same 
(i.e., round to the nearest integer for fractional numbers). 

C. MATHEMATICAL MODEL 

1. Indices and Index Sets 

i  Item (i.e., NIIN), for i I . 
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h   Index of candidate (s, Q) pairs for a given item i , {1,2,...}h∈ . 

m  Index for the penalty segments of fill rates (e.g., {1,2,...,5}m M∈ = ). 

l   Group of items, for l L∈ . 

2. Input Data and Parameters [Units] 

it   Lead time for item i . [quarters] 

ˆix   Expected demand for item i  during the lead time. [units of issue/lead 

  time] 

ih   Number of candidate pairs  (order-point and order-quantity) for item i . 

ihs   s-value (order-point) of the h-th candidate for item i . [units of issue] 

ihQ   Q-value (order-quantity) of the h-th candidate for item i . [units of issue] 

is   Lower bound on order-point of item i  (default is -1). [units of issue] 

is   Upper bound on order-point of item i . [units of issue] 

iS   Allowance for item i . [units of issue] 

S∆   1 if allowances are activated, and 0 otherwise. 

ic   Cost per unit of item i . [$/unit] 

r   Maximum number of total expected orders per month for all items. 

  [orders/month] 

L
iS   Shelf life for item i . [quarters] 

S   Maximum months of supply for any item. [months] 

0
îs   Initial order-point used to enforce persistence for item i . [units of issue] 

p
iδ   Penalty for deviation from initial order-point for item i . [unitless] 

pγ   Overall persistence weight. [unitless] 
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S
i  Penalty for deviation of item i  above maximum months of supply. 

  [unitless] 

S   Overall weight for MSL deviations above maximum months of supply. 

  [unitless] 

il   Group of item i . [unitless] 

lf  Required fill rate for any item in group l . [fraction, unitless] 

lw   Weight for achieving the required fill rate of any item in group l . 

  [weight units] 

3. Decision Variables 

ih   1 if candidate pair h  is selected for item i , and 0 otherwise. 

iQ   Order-quantity for item i . [units of issue] 

is   Order-point for item i . [units of issue] 

4. Derived Data 

ihf   Fill rate of item i  for candidate pair h . [fraction, unitless] 

ihf   Penalty for selecting candidate pair h  for item i . [unitless] 

ihs   Deviation down with respect to initial order-point for item i  and candidate 

  pair h . [units of issue] 

ihs   Deviation up with respect to initial order-point for item i  and candidate 

  pair h . [units of issue] 

ihS    Deviation for MSL of item i  and candidate h  above the average demand 

  during the maximum months of supply for the item. [months] 
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cih  Expected number of cycles per lead time period for item i  if candidate 

  pair h  is selected. [unitless] Note: A cycle is defined as the time period 

  between consecutive orders, or the lead time; whichever is shorter. 

ihB   Expected fraction of backorders during a cycle for item i  if candidate 

pair h  is selected. [fraction, unitless] Note: The calculation method 

appears in Equation (1). 

ihX    Random variable for the demand of item i  in a cycle if candidate 

  pair h  is selected. [units of issue]. 

dev
ihf   Deviation from the required fill rate for item i  if candidate 

  pair h  is selected. [fraction, unitless] 

dev
ihmf  Deviation penalty for item i , in fill rate penalty segment m  if candidate 

  pair h  is selected. [unitless] 

imf    Maximum deviation allowed for fill rate of item i , in penalty segment m . 

  (Calculated as
2

2iim l

j M

m
f f

j







)  [fraction, unitless] 

il mw   Penalty for deviation from the required fill rate for items of group l  in 

  penalty segment m . (calculated as
il m lw mw ) [unitless] 

After generating all the candidate (s, Q) pairs for all items, we can pre-calculate 

the fill rate of each item for each candidate pair, h = (s, Q). 

The only reason that could cause fill rate to be less than 100% is backorders. 

Therefore, in order to calculate the fill rate of every item for every corresponding h, first 

we need to compute the expected fraction of backorders, ihB , during a cycle (see 

definition of cih ) for each item and for every h. The expected fraction of backorders can 

be calculated using the following formula: 
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1

(x ) f (x)dx
ih

ih

ih ih X
ih s

B s
Q






 
   (1) 

In Equation (1), ihX   stands for the random variable for the demand in a cycle with 

probability distribution given by density function (or mass function) f (x)
ihX   and 

(c 1)Qih ih ih ihs s    , where 
x̂

c max 1, i
ih

ihQ

 
  

 
 . 

After calculation of expected fraction of backorders, fill rate of each NIIN can be 

computed (for every h) as follows: 1ih ihf B    . This formula can return 0ihf   in which 

case we use 0ihf   . 

Penalties are applied for the items that cannot achieve the required fill rate. For 

every site, there are certain groups of items that all have the same required fill rates. 

Deviation from the required fill rate is formulated as max{0   , }
il ih

dev
ih f ff  , where 

il
f  is 

the required fill rate for item i  of group l . 

Before calculating the total penalties for fill rate deviations, we need to compute 

the deviation penalties in every penalty segment for each item, dev
ihmf , which is calculated 

as follows: 

1 1

1

                           if  

 ,  if  

0 ,                                  if 

,

 

i

iim l m

dev
ihm

dev
ih im

m m

dev dev
ih im l m im ih im

m m m m m m

dev
ih im

m m

f f

f f w f f f

f f

f w

f






  
  

      












 
   

 



 







  











 
 

 

Finally, the deviation penalty for selecting candidate pair h  of item i  can be 

calculated as 
i

dev
ih l ihm

m

f w f   . 

Another derivation that has to be computed as an input to SIOMsQ is ihs  and ihs . 

They are calculated as 0ˆmax{s s ,0}ih i ihs     and 0ˆmax{s s ,0}ih ih is   . 
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Lastly, in order to calculate MSL deviation penalty, ihS   has to be derived as

3t
max{ (s Q ) S,0}

ˆ
i

ih ih ih
i

S
x

    . 

5. SIOMsQ Formulation 

SIOMsQ can be stated as the following mixed-integer, linear problem: 

 SIOMsQ:  
0s,Q,

| | |

min ( )
ˆ 11.5

i i i

p S
p h S hi i

ih ih ih ih i ih i
i i ih h h h h h h h hi

f s s S
Ss

 
   


  

     
        (2) 

 

Subject to: 

 
| i

i ih ih
h h h

Q Q


           i   (3) 

 
| i

i ih ih
h h h

s s


           i   (4) 

 
|

1
i

ih
h h h

          i   (5) 

 (s ) bS
i i i i

i

c Q S       (6) 

 
|

ˆ / Q

3
i

i ih
ih

i h h h i

x
r

t

  


  (7) 

 
ˆ

s Q
3

S L i
i i i i

i

x
S S

t
              i   (8) 

 i i is s s          i   (9) 

 0iQ   and integer        i   (10) 
 1is    and integer        i   (11) 
 {0,1}ih          , | ii h h h    (12) 

The goals of the objective function (2) are to minimize (a) deviations from target 

fill rates for all items (larger penalty rates for being far away from target fill rate); (b) the 

penalties for deviating from current order-points; and (c) the penalties for exceeding 

maximum months of supply. Persistence penalties and MSL deviation penalties are 

optional and can be removed from the objective function by setting 0p   and 0S  , 

respectively. 

Equations (3) – (5) restrict the model in choosing only one (s, Q) pair for an item 

and set the values of selected s and Q. 
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Equation (6) establishes a budget restriction on the MSL cost of all items. 

Equation (7) restricts the expected number of orders placed in a month from exceeding a 

given limit. 

Equation (8) limits the lower and upper bounds of MSL. Stock levels should be 

greater than the allowance and less than the minimum amount that would cause items to 

perish (under expected demand assumptions). 

Equations (9) – (12) set the domains of the decision variables and parameters. 

6. Two-Step Approach 

While running SIOMsQ (regular method), we empirically found that it takes 

substantial time for GAMS/CPLEX to identify an initial solution before starting 

branch-and-bound. In fact, in rare occasions, a feasible solution (i.e., integer) cannot be 

found in the allotted time of two hours. In order to speed up SIOMsQ solution, we have 

developed the following two-step approach: 

 In the first step, we solve a further restricted SIOMsQ, called SIOMsQ . 
This uses only a random subset from the original candidate (s, Q) pairs, 
for each NIIN. SIOMsQ shortens the time for an initial solution 
calculation. We do not fully solve SIOMsQ : we stop after the first 

feasible solution has been identified. We denote by i ih h  , the number of 

candidate (s, Q) pairs for item i  used in SIOMsQ . 

 In the second step, we run the full SIOMsQ (with all candidate pairs) 
using the initial solution found by SIOMsQ . 

D. COMPUTATIONAL EXPERIENCE 

Both SIOM and SIOMsQ are executed on a Lenovo W520 laptop computer with 

16 GB of RAM and two 2.5 GHz Intel Core i7 processors. We direct GAMS/CPLEX to 

use up to four parallel threads, which speeds up calculations by a factor of 2.0 in some 

cases. All SIOMsQ cases are solved to within 1% of optimality or using two hours of 

computational time, whichever comes first. SIOMsQ  is solved until the first feasible 

solution is identified. 
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III. COMPUTATIONAL ANALYSIS 

We run SIOMsQ for ten cases provided by NAVSUP. We present the results of 

these runs with various options and compare them to SIOM. 

A. RUNNING OPTIONS FOR SIOM AND SIOMSQ 

SIOM is executed with time limit of 2 hours or 5 hours (if 2 hours is not enough 

to decrease the optimality relative tolerance to 1%) for each site. SIOMsQ always has up 

to 2 hours of running time. For the two-step approach, the time spent in SIOMsQ  is not 

counted in the two-hour limit allowed for the full SIOMsQ. Additional time is allowed 

for pre-processing of the data. 

Apart from full group size, SIOM may incorporate a grouping heuristic in which 

items are grouped into either 500 or 1,000 NIINs in order to solve the problem faster. The 

grouping algorithm is used only for the cases where an acceptable solution is not 

achieved within given time limit. SIOMsQ is always run with all NIINs. 

Both SIOM and SIOMsQ use 1% optimality relative tolerance. That is, while 

branch-and-bound is being executed, when the relative difference between the incumbent 

objective function value and the best possible value of the solution (lower bound) drops 

below 1%, the solver stops and the incumbent solution is reported. 

For a given set of pre-generated Q-values, lower bound on the objective function 

value is only guaranteed to be valid for SIOM if run with no grouping of NIINs. Lower 

bounds provided by SIOM with a grouping heuristic and by SIOMsQ are only estimates. 

SIOM pre-generates # 10Q  candidate order-quantities and fully optimizes 

order-points for each item. In SIOMsQ, however, both s and Q candidates are 

pre-generated. In order to see the effects of number of pre-generated order-points and 

order-quantities on the solution quality and running time, we use various sets of (s, Q) 

pairs. We denote by (#s, #Q) a specific run where we pre-generate #Q candidates for Q 

for each NIIN, and then #s candidates for s for each of the Q candidates. We test the 



 

 18

following combinations of (#s, #Q): (7, 7), (7, 10), (10, 10), (15, 10), (15, 15) and (20, 

10). 

SIOMsQ is run with the regular method (in one step without pre-generating a 

feasible initial solution), and with two-step approach (described in Section II.C). In the 

latter case, we use SIOMsQ  with a reduced number of candidate pairs 50  ih   i in 

order to generate an initial solution faster. 

B. RESULTS 

1. Yokosuka (NMC) 

Yokosuka (NMC) is the smallest case with 35 NIINs. SIOM solves the problem in 

less than a minute with no penalty applied to the objective function value. That is, the 

required fill rates are satisfied optimally with the solution suggested by SIOM for each 

item. (See Table 1.) 

Table 1.   Yokosuka (NMC) SIOM Results 

Time Limit Group Size Objective Lower Bound Run Time (mins) 
2 hours full 0 0 <1 

 

SIOMsQ also solves the problem in less than a minute for all possible solving 

options. However, when the number of s and Q candidates are (7, 7) and (7, 10) the 

objective function value is slightly sub-optimal. The regular method and the two-step 

approach do not make any difference in the solution for this case. (See Table 2.) 

For this case, the SIOMsQ optimization problem size ranges from 5,217 integer 

variables and 248 single equations in the (7, 7) case to 5,708 integer variables and 248 

single equations in the (15, 15) case. 

 

 



 

 19

Table 2.   Yokosuka (NMC) SIOMsQ Results 

# s # Q Method Objective
Estimated 
Lower Bound 

Run Time (mins) 

7 7 
Regular 0.008 0.008 <1 
Two-step 0.008 0.008 <1 

7 10 
Regular 0.008 0.008 <1 
Two-step 0.008 0.008 <1 

10 10 
Regular 0 0 <1 
Two-step 0 0 <1 

15 10 
Regular 0 0 <1 
Two-step 0 0 <1 

15 15 
Regular 0 0 <1 
Two-step 0 0 <1 

20 10 
Regular 0 0 <1 
Two-step 0 0 <1 

 

2. Key West (BP28) 

Key West (BP28) is one of the smallest test cases with 53 items. SIOM gives a 

solution of 1.40 in less than a minute. (See Table 3.) 

Table 3.   Key West (BP28) SIOM Results 

Time Limit Group Size Objective Lower Bound Run Time (mins) 
2 hours full 1.40 1.39 <1 

 

The running time of SIOMsQ for Key West (BP28) site is also less than a minute. 

When it is run with 7 candidates of s and Q each, the solution is worse than all the other 

cases. This is an expected outcome, since coverage in s and Q is low. 

In the case of 15 candidates for both s and Q, the solution is even better than the 

lower bound suggested by SIOM. The reason is that SIOM uses 10 pre-generated 

order-quantities. Due to a better coverage in Q, the solution quality can potentially be 

better in the (15, 15) case. (See Table 4.) 
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Table 4.   Key West (BP28) SIOMsQ Results 

# s # Q Method Objective 
Estimated 
Lower Bound 

Run Time (mins) 

7 7 
Regular 1.47 1.47 <1 
Two-step 1.47 1.47 <1 

7 10 
Regular 1.40 1.40 <1 
Two-step 1.41 1.40 <1 

10 10 
Regular 1.40 1.40 <1 
Two-step 1.40 1.40 <1 

15 10 
Regular 1.40 1.40 <1 
Two-step 1.40 1.40 <1 

15 15 
Regular 1.38 1.37 <1 
Two-step 1.38 1.37 <1 

20 10 
Regular 1.40 1.40 <1 
Two-step 1.40 1.40 <1 

 

3. Kings Bay (NMC) 

There are 251 items in Kings Bay (NMC). SIOM achieves 30.7 as the objective 

function value in less than a minute with the full group size. (See Table 5.) 

Table 5.   Kings Bay (NMC) SIOM Results 

Time Limit Group Size Objective Lower Bound Run Time (mins) 
2 hours full 30.7 30.7 <1 

 

When we run SIOMsQ with various sets of (s, Q) pairs, we always get the same 

objective function value of 30.7. Using regular method or two-step approach does not 

change the solution. (See Table 6.) 
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Table 6.   Kings Bay (NMC) SIOMsQ Results 

# s # Q Method Objective 
Estimated 
Lower Bound 

Run Time (mins) 

7 7 
Regular 30.7 30.7 <1 
Two-step 30.7 30.7 <1 

7 10 
Regular 30.7 30.7 <1 
Two-step 30.7 30.7 <1 

10 10 
Regular 30.7 30.7 <1 
Two-step 30.7 30.7 <1 

15 10 
Regular 30.7 30.7 <1 
Two-step 30.7 30.7 <1 

15 15 
Regular 30.7 30.7 <1 
Two-step 30.7 30.7 <1 

20 10 
Regular 30.7 30.7 <1 
Two-step 30.7 30.7 <1 

 

4. San Diego (NMC) 

San Diego (NMC) has 468 NIINs in its inventory. SIOM solves the problem in 19 

minutes and the objective function value is 103. (See Table 7.) 

Table 7.   San Diego (NMC) SIOM Results 

Time Limit Group Size Objective Lower Bound Run Time (mins) 
2 hours full 103 102 19 

 

We obtain approximately the same objective function value as the solution in 

SIOM when we run SIOMsQ for any number of candidate s and Q or solution method, 

but it takes less than a minute in all cases. (See Table 8.) 
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Table 8.   San Diego (NMC) SIOMsQ Results 

# s # Q Method Objective Estimated 
Lower Bound Run Time (mins) 

7 7 Regular 104 103 <1 
Two-step 104 103 <1 

7 10 Regular 104 103 <1 
Two-step 103 103 <1 

10 10 Regular 102 102 <1 
Two-step 102 102 <1 

15 10 Regular 103 102 <1 
Two-step 103 102 <1 

15 15 Regular 103 102 <1 
Two-step 103 102 <1 

20 10 Regular 103 102 <1 
Two-step 103 102 <1 

 

5. Norfolk (NMC) 

Norfolk (NMC) is a mid-size case with 1,189 items. We run SIOM using three 

methods: full, grouping by 500 and grouping by 1,000. (Note: grouping is done in the 

sequential order that the NIINs appear in the input file.) All the methods give the same 

objective function value of 212. The full model takes 92 minutes to run whereas the 

grouping methods requires much less time (25 and 26 minutes respectively). (See Table 

9.) 

Table 9.   Norfolk (NMC) SIOM Results 

Time Limit Group Size Objective Lower Bound Run Time (mins) 

2 hours 
500 212 211* 25 

1,000 212 211* 26 
full 212 209 92 

* Estimated, not necessarily valid. 

 

The objective function values suggested by SIOMsQ are slightly above that of 

SIOM for all (s, Q) sets, but the run times of SIOMsQ are much smaller. (See Table 10.) 
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Table 10.   Norfolk (NMC) SIOMsQ Results 

# s # Q Method Objective Estimated 
Lower Bound Run Time (mins) 

7 7 Regular 216 215 <1 
Two-step 216 215 <1 

7 10 Regular 216 215 1 
Two-step 217 215 1 

10 10 Regular 215 215 <1 
Two-step 215 215 1 

15 10 Regular 215 215 2 
Two-step 215 215 <1 

15 15 Regular 216 215 1 
Two-step 215 215 3 

20 10 Regular 215 215 2 
Two-step 215 215 1 

 

6. Jacksonville (BP28) 

There are 3,256 NIINs in the inventory of Jacksonville (BP28). SIOM is run as 

full and with grouping method restricted to 2 hours and 5 hours for each method. In none 

of these cases is the optimality gap reduced below 1%. The model with time limit of 5 

hours gives the best objective solution (37). (See Table 11.) 

Table 11.   Jacksonville (BP28) SIOM Results  

Time Limit Group Size Objective Lower Bound Run Time (mins) 

2 hours 
500 39 30* 122 

1,000 46 26* 122 
full 121 25 122 

5 hours 
500 37 32* 302 

1,000 37 27* 302 
full 38 25 302 

* Estimated, not necessarily valid. 

 

When we run SIOMsQ, we achieve very reasonable objective function values in 

much shorter time comparing to SIOM. The run time of the (20, 10) case is only 3 

minutes and the achieved objective function value is better than SIOM.  
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As expected, as we increase the number of candidate (s, Q) pairs, we observe 

lower objective function values. Both the regular and two-step methods do not make any 

difference in this case. (See Table 12.) 

Table 12.   Jacksonville (BP28) SIOMsQ Results 

# s # Q Method Objective Estimated 
Lower Bound Run Time (mins) 

7 7 Regular 41 41 1 
Two-step 41 41 1 

7 10 Regular 40 40 1 
Two-step 40 40 1 

10 10 Regular 36 36 2 
Two-step 36 36 2 

15 10 Regular 34 34 2 
Two-step 34 34 2 

15 15 Regular 34 34 3 
Two-step 34 34 3 

20 10 Regular 33 33 3 
Two-step 33 33 3 

 

7. Kings Bay (BP28) 

Kings Bay (BP28) has 4,513 NIINs in its inventory. A full and grouped SIOM 

give almost the same objective function value but the running time of grouping heuristics 

are much shorter than the full SIOM. (See Table 13.) 

Table 13.   Kings Bay (BP28) SIOM Results 

Time Limit Group Size Objective Lower Bound Run Time (mins) 

2 hours 
500 132 132* 34 

1,000 133 132* 34 
full 132 131 121 

* Estimated, not necessarily valid. 

 

While running SIOMsQ, and for any (s, Q) pairs generated, the objective function 

value does not change. It is barely greater than the result of SIOM, but run times are 

shorter. 
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For (15, 15) and (20, 10) cases, executing regular SIOMsQ takes more time than 

the two-step SIOMsQ. The main reason for this is that the calculation of an initial 

solution takes very long without using the restricted SIOMsQ′ . (See Table 14.) 

Table 14.   Kings Bay (BP28) SIOMsQ Results 

# s # Q Method Objective Estimated 
Lower Bound Run Time (mins) 

7 7 Regular 134 134 3 
Two-step 134 134 3 

7 10 Regular 134 134 4 
Two-step 134 134 5 

10 10 Regular 134 134 7 
Two-step 134 134 4 

15 10 Regular 134 134 4 
Two-step 134 134 4 

15 15 Regular 134 134 29 
Two-step 134 134 6 

20 10 Regular 134 134 10 
Two-step 134 134 6 

 

8. Norfolk (BP28) 

Norfolk (BP28) is a large test case with 7,556 items. When full SIOM is run with 

2 and 5 hours limit, the suggested solutions are not acceptable since the differences 

between achieved objective function value and the lower bound are too big. When a 

grouping heuristic is used, the results are much better for both 2-hour and 5-hour cases, 

but still not good enough to determine the answer to the problem. (See Table 15.) 

Table 15.   Norfolk (BP28) SIOM Results 

Time Limit Group Size Objective Lower Bound Run Time (mins) 

2 hours 
500 354 64* 127 

1,000 348 60* 127 
full 17,533 59 128 

5 hours 
500 170 70* 307 

1,000 194 61* 307 
full 13,423 59 308 

* Estimated, not necessarily valid. 
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The solutions given by SIOMsQ are better than those by SIOM, since the 

objective function values are close to the provable lower bound of SIOM, and run times 

are acceptable even for larger number of candidates (10 – 20 minutes). The results 

suggested by the (15, 10), (15, 15) and (20, 10) cases are better than those suggested by 

other cases. (See Table 16.) 

Table 16.   Norfolk (BP28) SIOMsQ Results 

# s # Q Method Objective Estimated 
Lower Bound Run Time (mins) 

7 7 Regular 138 138 6 
Two-step 138 138 6 

7 10 Regular 130 130 8 
Two-step 130 130 9 

10 10 Regular 99 99 12 
Two-step 99 99 10 

15 10 Regular 84 84 12 
Two-step 84 84 12 

15 15 Regular 84 83 20 
Two-step 84 83 15 

20 10 Regular 80 80 14 
Two-step 80 80 13 

 

9. Bangor (BP28) 

Bangor (BP28) is the second largest test case with an inventory that consists of 

8,141 NIINs. When full SIOM is run, it cannot reduce the optimality relative tolerance to 

1% in the given time limits (2 or 5 hours). The result of full SIOM is not even close to the 

optimal solution, but using the grouping heuristic gives reasonable approximations (an 

objective function value of 287 in the best case, for a lower bound of 251) especially 

when we allow it to run for 5 hours. (See Table 17.) 
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Table 17.   Bangor (BP28) SIOM Results 

Time Limit Group Size Objective Lower Bound Run Time (mins) 

2 hours 
500 361 272* 129 

1,000 390 258* 129 
full 10,219 251 129 

5 hours 
500 292 276* 309 

1,000 287 263* 309 
full 6,104 251 309 

* Estimated, not necessarily valid. 

 

The objective function values suggested by SIOMsQ are acceptable (between 269 

and 271), improving SIOM, and running times are shorter. The number of (s, Q) pairs or 

the two-step method does not make a significant difference in solution quality for this 

case. (See Table 18.) 

Table 18.   Bangor (BP28) SIOMsQ Results 

# s # Q Method Objective Estimated 
Lower Bound Run Time (mins) 

7 7 Regular 270 270 8 
Two-step 270 270 8 

7 10 Regular 271 270 12 
Two-step 271 270 14 

10 10 Regular 269 269 36 
Two-step 269 269 28 

15 10 Regular 270 269 15 
Two-step 270 269 14 

15 15 Regular 271 269 32 
Two-step 271 269 32 

20 10 Regular 271 269 17 
Two-step 271 269 17 

 

10. Yokosuka (BP28) 

There are 11,798 items in the Yokosuka (BP28) test case. Due to its large scale, 

the SIOM solution quality is not good enough since the optimality relative tolerance 

cannot be reduced below 1% even if grouping heuristic is used. The best solution is 

achieved for the 5 hour - 500 group size run with an objective function value of 4,211 and 
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a (provable) lower bound of 3,321 (i.e., a potential solution gap of at most 26.8%). (See 

Table 19.) 

Table 19.   Yokosuka (BP28) SIOM Results 

Time Limit Group Size Objective Lower Bound Run Time (mins) 

2 hours 
500 5,093 3,393* 138 

1,000 15,335 3,391* 137 
full 45,820 3,310 137 

5 hours 
500 4,211 3,433* 318 

1,000 8,191 3,399* 318 
full 32,401 3,321 322 

* Estimated, not necessarily valid. 

When we run SIOMsQ, we obtain acceptable solutions in a reasonable amount of 

time. Specifically, we obtain an objective function value under 3,700 in all runs, which 

means much smaller solution gaps (always under 11.4%). This calculation uses the 

provable lower bound of SIOM, given SIOMsQ’s bound is only an estimate. (See Table 

20.) 

There are 2,041,029 integer variables and 82,589 single equations in SIOMsQ run 

for the (15, 15) case in Yokosuka (BP28). 

Table 20.   Yokosuka (BP28) SIOMsQ Results 

# s # Q Method Objective Lower Bound Run Time (mins) 

7 7 Regular 3,686 3,661 30 
Two-step 3,686 3,661 30 

7 10 Regular 3,661 3,661 118 
Two-step 3,691 3,661 58 

10 10 Regular 3,664 3,660 81 
Two-step 3,665* 3,660* 97* 

15 10 Regular 3,659 3,659 93 
Two-step 3,659 3,659 91 

15 15 Regular 3,661 3,659 171 
Two-step 3,660 3,659 173 

20 10 Regular 3,684 3,658 135 
Two-step 3,663 3,658 140 

* For 30ih′ =  (instead of 50ih′ =  used in all other cases) 
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C. SUMMARY OF RESULTS 

The results of the all test cases are summarized in Table 21. We present the best 

solutions achieved by SIOM along with its lower bounds and running times for each test 

case. We also show the solutions, candidate pair sizes, execution times and the solution 

methods of best SIOMsQ for every case.  

For all of the test cases, the solutions that SIOMsQ achieves are better than or 

very close to that of SIOM, but the running times of SIOMsQ are substantially shorter. 

As the size of the test cases increases, the best SIOMsQ solutions are achieved with the 

large candidate sizes such as (10, 10), (15, 15) or (20, 10). The two-step approach 

(including the time spent in solving the first step model, SIOMsQ ) is faster especially in 

the larger test cases. 
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Table 21.   Results Summary of Test Cases 

Test Case 
Best SIOM 

Solution 
Provable SIOM 
Lower Bound 

SIOM Time 
(mins) 

Best SIOMsQ 
(#s, #Q) 

Best SIOMsQ 
Solution 

Best SIOMsQ 
Time (mins) 

Best SIOMsQ 
Method 

Yokosuka 
(NMC) 

0 0 <1 Multiple 0 <1 Both 

Key West 
(BP28) 

1.40 1.39 <1 (15, 15) 1.38* <1 Both 

Kings Bay 
(NMC) 

30.7 30.7 <1 Multiple 30.7 <1 Both 

San Diego 
(NMC) 

103 102 19 (10, 10) 102 <1 Both 

Norfolk 
(NMC) 

212 209 92 Multiple 215 <1 Both 

Jacksonville 
(BP28) 

37 25 302 (20, 10) 33 3 Both 

Kings Bay 
(BP28) 

132 131 121 Multiple 134 3 Both 

Norfolk 
(BP28) 

170 59 307 (20, 10) 80 13 Two-step 

Bangor 
(BP28) 

287 251 309 (10, 10) 269 28 Two-step 

Yokosuka 
(BP28) 

4,211 3,321 318 (15, 10) 3,659 91 Two-step 

* Due to a better coverage in Q, the optimal solution by SIOMsQ in the (15, 15) case can potentially be better than that of SIOM. 
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IV. CONCLUSIONS AND FUTURE RESEARCH 

A. CONCLUSIONS 

In this thesis, we have developed SIOMsQ, a new approach to solving SIOM (a 

mathematical program developed at the Naval Postgraduate School to guide NAVSUP’s 

inventory levels of site demand-based items). 

We have successfully implemented SIOMsQ, which restricts SIOM by reducing 

the number of candidate order-points in exchange for more efficient solutions. The 

approach creates an educated specification of a list of candidate (s, Q) pairs and solves 

the optimization problem using only those candidates as decision variables. SIOMsQ may 

still be difficult to solve in some cases, so we further restrict it using a two-step approach 

in order to find an initial solution with which to speed SIOMsQ up. 

We run 10 test cases provided by NAVSUP with various combinations of 

candidate pair sizes. In eight of ten cases, we obtain at least as good solutions as SIOM in 

the same or substantially less time. In the two other cases, the differences are minimal, 

and computational times are still favorable. 

As a conclusion of this research, we recommend that running SIOMsQ using 

(#s, #Q) values of (20, 10) or (7, 7), and a two-step approach are the preferred options. 

(7, 7) cases give good-enough results faster than (20, 10) cases, but the solutions 

suggested by (20, 10) cases are more precise. Therefore, there is a tradeoff between 

solution quality and solving time, although in most cases, differences are also small. We 

recommend using SIOMsQ versus the current SIOM. 

B. FUTURE RESEARCH 

As we have successfully implemented SIOMsQ, further studies can focus on: 

 Having SIOMsQ fully tested by NAVSUP, 

 Integrating SIOMsQ as an option for NAVSUP to use from the graphical 
interface of SIOM, 
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 Analyzing the optimal configuration of (#s, #Q) pairs for each individual 
test case, or even developing a methodology that allows SIOMsQ to 
dynamically accommodate different candidate pair sizes. 

 Speeding up pre-processing of generating (s, Q) candidate pairs, the 
probability distributions of demand based on Q, and derived data based on 
s and Q (all of which takes up to 50 minutes in some cases). 
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APPENDIX.  SIOM FORMULATION 

This appendix describes the formulation of SIOM as given in Salmeron and 

Craparo (2016). 

A. INDICES AND INDEX SETS 

i , item (i.e., NIIN), for i I . 

l ,  Group. (Note: l here could also represent a combination of group and other 

  criteria, such as group A, B, C, D, for the purpose of establishing different 

  target fill rates.) 

q , index for candidate order quantities, for {1,..., }iq q  (see iq  below).  

n , demand-level index, for n N  (e.g., {1,2,...,10}N   represents ten levels 

  of demand). This is actually item-dependent, and order size dependent, see 

  q
in  parameter below.  

m , penalty segment, for m M  (e.g., {1,2,...,5}M   represents five levels 

  of penalties for deviations, with respect to desired fill rate levels). 

B. INPUT DATA AND PARAMETERS 

it , lead time length for item i [quarters/lead time]. 

ˆix , ˆi , expected demand and estimated deviation, respectively, for item i  during 

  the lead time [items/lead time], [items/lead time]. 

iq , number of candidate order quantities for item i . This number depends on 

  ˆix , 
L

iS , S , and iS .  

q
iQ , q-th candidate order quantity for item i [units/order]. 
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q
ic , cycles during a lead time for item i  and q-th candidate order quantity. 

  Calculated as 
ˆ

max{1, }q i
i q

i

x
c

Q
   [orders per lead time]. 

cq
i
 , calculated as: one if ˆ 1 q

i ix Q   , and zero otherwise. 

c
i
 , calculated as: 

|
max{ }

i

c cq
i i

q q q
    . 

ˆˆ ,q q
i ix   , expected demand and estimated deviation adjusted for cycle time, for 

  q-th candidate order quantity for item i. Calculated as: ˆ ˆ /q q
i i ix x c    and 

  ˆ ˆ /q q
i i ic    . 

lf , desired (target) fill rate for each item in group l [fraction].  

lw , weight for meeting required fill rate each item in group l [weight units]. 

lmw , penalty for deviating from required fill rate for items in group l  within 

  penalty segment m .  Calculated as e
lm lw m w , where e  is a user input 

  (penalty exponent, default 1e  ). 

imf 
, maximum deviation allowed for fill rate for item i  within penalty segment 

  m . 

  Calculated as 
2

2iim l

j M

m
f f

j







  where li I .  

iOL , operating level for NIIN i  [months]. 

iSL , safety level for NIIN i  [months]. 

iS , allowance for item i  [demand units]. 

S , one if allowances are activated, and zero otherwise. 

ic , cost per unit at MSL [$ / unit]. 
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b , overall budget [$]. Calculated as: 

QTˆ( )
ˆmax 0,

3
i i i

i i i
i

OL SL x
b c S x

  
    

  
 ,  if allowances are activated ( 1S  ), or 

QTˆ( )
ˆmax 0,

3
i i i

i i
i

OL SL x
b c x

  
   

  
 , otherwise ( 0S  ),  

 where QTˆix =average quarterly demand for NIIN i [units/quarter], derived as 

  QTˆ ˆ /i i ix x t . 

,q q
in inp d  , n-th level of probability and demand, respectively, adjusted for the cycle 

  time for the q-th candidate order quantity for item i [unitless], [demand 

  units]. Note:  If probability distributions are estimated based on mean and 

  variance, use ˆ q
ix   and 

2ˆ( )q
i  to generate these. 

q
in , number of demand levels, adjusted for the cycle time for the q-th 

  candidate order quantity for item i. 

q
id  derived data: max { }q

i

q q
i inn n

d d


 ;  [demand units]. 

r , maximum number of total expected orders per month [orders]. Note: Can 

  be fractional. 

,i is s ,  lower and upper bounds on reorder point for item i  [items], [items]. 

  1is   . 

L
iS , shelf life for item i  (to establish its MSL upper bound) [months]. 

S , maximum months of supply for any item (to establish its MSL upper 

  bound) [months]. 

0ˆis ,  initial reorder point used to enforce persistence for item i  [items]. 

P
i ,  penalty for deviation from initial reorder point for item i  [weight units]. 
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pγ ,  overall persistence level [weight units]. 

S
i ,  penalty for item’s i  deviation above maximum months of supply [weight 

  units]. 

Sγ ,  overall weight for MSL deviations above maximum months of supply 

  [weight units]. 

q
iM , large number greater (in magnitude) than any possible ‘negative fill rate’ 

  value given by the original fill rate formula for the q-th candidate order 

  quantity for item i, if 1cq
i  . For example, we may use 1,000q

iM  . 

  However, we can estimate a better value for numerics: 

  ˆ2 / 1 /q q q q q
i i i i iM x Q c Q       

iM , calculated as 
| , 1
max { }

cq
i i

q
i i

q q q
M M

  



  . 

C. DECISION VARIABLES 

is , reorder point for item i [items]. 

iQ , order quantity for item i [items]. 

q
i , one if the q-th candidate order quantity for item i is selected, and zero 

  otherwise. 

,i is s  , deviation (down and up, respectively) with respect to initial reorder point 

  for item i [items]. 

iS  , deviation of item’s i  MSL above the average demand during the 

  maximum months of supply for the item [months]. 

,i if f 
, fill rate and negative component of fill rate (if any), respectively, for item 

  i  [fraction]. (The negative component is only applicable if 1q
ic  .) 
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imf 
, deficit in fill rate (with respect to target) for item i in penalty segment m 

  [fraction]. 

,SOq
inz , ancillary variable for stockouts for item i , given its q-th candidate order 

  quantity is chosen and the demand level 

 q
in n :   ,SO max ( 1) , 0q q q q

in in i i iz d s c Q     . 

,i if f   ancillary binary variables to signal the fill rate sign, if 1q
ic  . 

D. FORMULATION 

-

p S
p S

0
min γ ( ) γ

ˆ 1.5 1i

i i
l m im i i i

i m i ii

w f s s S
s S

 
 

   


  

   
s,Q, ,s ,s ,f,f ,z

 (13) 

 

subject to: 

| i

q q
i i i

q q q

Q Q i


            (14) 

|

1
i

q
i

q q q

i


           (15) 

  ,SO

|

1 ( ) (1 ) , |
q
i

q cq q q q q
i i i i in in i i i

n n n

Q f f z p Q i q q q



            (16) 

  ,SO

|

1 ( ) (1 ) , |
q
i

q cq q q q q
i i i i in in i i i

n n n

Q f f z p d i q q q



           (17) 

| 1c
i i if f i           (18) 

/ | 1c
i i i if f M i             (19) 

1 | 1c
i i if f i             (20) 

 ,SO ( 1) , , | ,q q q q q
in in i i i i iz d s c Q i n q n n q q           (21) 
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ii l im

m

f f f i          (22) 

( )S
i i i i

i

c s Q S b             (23) 

|

ˆ /

3
i

q
qi i
i

i q q q i

x Q
r

t

  


        (24) 

L ˆ

3
S i

i i i i
i

x
S s Q S i

t

 
        

 
      (25) 

 3
ˆ

i
i i i

i

t
s Q S S i

x
           (26) 

0ˆi i i is s s s i            (27) 

i i is s s i    (optional)      (28) 

0 and integeriQ i         (29) 

1 and integeris i          (30) 

{0,1} , |q
i ii q q q           (31) 

,s , 0i i is S i             (32) 

,SO 0 , , | ,q q
in i iz i q n n n q q          (33) 

0 ,im imf f i m            (34) 

, {0,1} | 1c
i i if f i             (35) 

, 0i if f i           (36)
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