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ABSTRACT 

To facilitate the study of engagement scenarios with high energy lasers, the 

Directed Energy Physics Group at the Naval Postgraduate School developed a laser 

performance code called Atmospheric NPS Code for HEL Optical pRopagation 

(ANCHOR). This code uses well-known analytical scaling laws and a scriptable user 

interface to allow the quick exploration of multi-dimensional parameter studies. Recently, 

a new capability was added that incorporates relative platform / target motion. This study 

demonstrates this new capability, and compares ANCHOR results with those obtained 

with the full diffraction code built into WaveTrain. 
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I. INTRODUCTION 

High Energy Laser (HEL) technology has evolved to the point that laser weapons 

now have the capacity to be used in naval platforms. Their advantages over conventional 

weapons in military applications include unlimited magazines (as long as they are fed 

with power), low cost per shot, and very precise delivery of the payload at the speed of 

light. 

However, unlike conventional weapons, laser weapon performance is greatly 

affected by weather conditions and atmospheric properties. Thus, the atmospheric 

propagation of HELs needs to be studied in order to characterize their effectiveness and 

performance as laser weapons. 

In this thesis, the effects of relative target and platform motion on the atmospheric 

propagation of HELs is studied, in particular how this relative motion affects an 

atmospheric phenomenon called thermal blooming. This study is conducted by modifying 

a scaling code called ANCHOR that was developed by the Directed Energy Physics 

Group at the Naval Postgraduate School to include motions of the platform and the target. 

We begin this study with an overview of directed energy weapons in Chapter II. Next, we 

discuss the atmospheric propagation of high energy lasers in Chapter III. In Chapter IV, 

we discuss how the performance of the laser weapons is characterized and how the 

relative motion affects the atmospheric propagation. Then, we study different cases in 

order to investigate how the propagation is affected by the relative motion in Chapter V. 

Finally, we conclude our study Chapter VI. 
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II. OVERVIEW OF DIRECTED ENERGY WEAPONS 

A. HISTORY 

Directed energy (DE) weapons are used in order to damage a target by depositing 

energy onto it for a specific dwell time. The most studied and promising version of 

directed energy weapons is lasers (light amplification by stimulated emission of 

radiation). 

The idea of a laser started with Albert Einstein in 1916 as he predicted how 

stimulated emission at particular wavelengths can be achieved . The first laser, the ruby 

laser, was demonstrated by Ted H. Maiman in May 1960, which had around 1 watt of 

output power [1]. After this accomplishment, the importance of this new technology was 

realized and further research led to the first gas laser (He-Ne laser) demonstration in 

December 1960, the demonstration of the first solid-state laser (Nd:YAG) in 1964, the 

demonstration of the first carbon dioxide laser in 1964, and the demonstration of the first 

free electron laser in 1977 [1]. 

The technology in this area evolved to the point that laser weapons now have the 

capacity to be used in naval platforms. A solid state laser (SSL) weapon was tested in 

April 2011 on the USS Paul Foster (DD 964) in the Pacific Ocean, tracking and setting 

fire to multiple, small unmanned boat targets. The laser system was used at high power 

mode more than 35 times and withstood actual maritime conditions including eight-foot 

waves, winds of 25 knots, and fog [2]. 

B. ADVANTAGES 

In order to understand the advantages of directed energy weapons, we need to 

look for the reason why they are wanted to be used in military applications and what are 

their capabilities that conventional weapons do not have.  

The DE weapons apply damage at light speed with very good precision. The 

speed can overcome the target’s ability to maneuver kinetic weapons, and the precision 

enables damage to a specific part of the target that can enhance the lethality while also 
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reducing the chance of collateral damage. The precision is at the level that the main beam 

of the Boeing Airborne Laser, a megawatt-class chemical laser, was able to hit targets 

that were 500 kilometers away with pinpoint accuracy [3]. 

Another important advantage of electric DE weapons is an essentially unlimited 

magazine if the platform can support the weapon with power, unlike a conventional 

weapon that has a specific amount of munition. This is especially important in swarm 

attacks where conventional weapons may be exhausted before all the targets are 

eliminated. Furthermore, the cost per shot for a DE weapon is cheaper than a 

conventional weapon. “The shipboard fuel needed to generate the electricity for firing an 

electrically powered laser would cost about a dollar per shot” [4]. Finally, the effects of 

the engagement on a target can be varied by changing the power of the DE weapon. As a 

result of this, nonlethal and lethal applications may be supported by a single weapon [1].  

C. TECHNOLOGIES 

1. Solid State Lasers 

An SSL uses a solid substrate that contains dopants as a gain medium. These 

dopants are excited by a pumping source in order to achieve a lasing transition. A cavity 

that consists of two mirrors, one reflective and one partially transmittive, is used to 

increase the intensity of the light produced by the lasing transition via the process of 

stimulated emission. 

Two kinds of SSLs that will potentially be used in military applications in the 

near term are fiber lasers and slab lasers. Slab lasers have a gain medium formed as a 

rectangular slab, while a fiber laser uses a long cylindrical medium consisting of an inner 

and an outer cladding. Fiber lasers have the advantage of easier cooling than slab lasers 

due to their geometry, while more light coupling can be achieved with slab lasers due to 

their large aspect ratio. 

Since they are a more mature technology, and relatively compact compared with 

Free Electron Lases (FELs), SSLs are planned to be used in DE weapon applications in 

the near term. However, unlike FELs, they are restricted to operation at a specific 

wavelength, which changes with the material used as the gain medium. Also, due to the 
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heat produced inside the solid gain medium operation, the possibility of damaging the 

medium exists and limits the output power levels of SSLs. FELs do not have this 

problem. Also, in order to reach the desired DE application levels for SSLs, multiple 

lasers need to be combined, which results in a decreased beam quality and/or increased 

system complexity. 

2. Free Electron Lasers 

Free Electron Lasers (FELs) are used to harvest the energy of unbounded 

relativistic electrons as coherent light. There are two main types of FELs used: oscillator 

FELs and amplifier FELs. Either type has several core components. An injector and 

accelerator are the first parts, where the electron beam is created and accelerated to 

relativistic speed. Then these electrons pass through the undulator, where a periodically 

changing magnetic field forces the electrons to wiggle and emit light. In an oscillator 

FEL, the light is stored in a resonator and builds up over many passes. In an amplifier 

FEL, the light from a seed laser source is amplified over a single pass. While FELs are 

inefficient at extracting energy from the relativistic electrons on a single pass, the leftover 

energy retained in the electron beam can be very efficiently recovered to enhance the 

overall wall plug efficiency [1].  

Since an FEL does not have a solid or gaseous gain medium, thermal effects are 

not as limiting a factor like other types of lasers for both beam quality and output power 

levels. The “basic architecture of an FEL offers a clear potential for scaling up to power 

levels of one or more megawatts” [4]. Oscillator FELs are not restricted to be operated at 

certain wavelengths, so the wavelength can be tuned to match different atmospheric 

transmission sweet spots. The wavelength of an amplifier FEL is fixed by the seed laser 

used.  

FELs are typically large, expensive, and the technology used is not as mature as 

SSLs [1]. Another drawback of FELs is that they create harmful radiation during 

operation that needs to be shielded for both personnel and material safety. This may limit 

the use of FELs in military applications in near term, but their capability of reaching MW 
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power levels makes them a viable choice for the applications requiring these power 

levels. 
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III. ATMOSPHERIC PROPAGATION OF 
HIGH ENERGY LASERS 

A. ATMOSPHERIC EXTINCTION 

Light loses some of its energy along the path it transverses due to atmospheric 

extinction, which includes scattering and absorption.  

Scattering occurs when photons interact elastically with particles in the 

atmosphere that results in deflection of some of the photons in arbitrary directions. “The 

particles responsible for scattering cover the sizes from gas molecules (~ 810 cm) to large 

raindrops and hail particles (~1 cm)” [5]. Absorption is an inelastic process in which 

some of the photons’ energy is transferred to particles, and ultimately results in heating 

the atmosphere. This heating, in turn, can distort the laser beam due to thermal blooming. 

Thermal blooming will be discussed further in Chapter III, Section C.  

The effects of scattering and absorption are quantified by Beer’s Law, 

 0(z) .zP P e    (1) 

In Equation (1), ( )P z  is the laser power after traveling a distance z , 0P  represents the 

initial power at 0z   (i.e., living the beam director) and   represents the total extinction 

coefficient (in units of inverse length), which consists of absorption and scattering 

coefficients due to molecular and aerosol effects,  

 .a m a m          (2) 

In Equation (2),   and   represent absorption and scattering coefficients, while the a  

and m subscripts stand for aerosol and molecular contributions, respectively. Each 

coefficient in Equation (2) “depends on the wavelength of the laser radiation” [6]. In 

order to understand absorption and scattering thoroughly, aerosol and molecular effects 

need to be discussed separately. 

1. Molecular Effects 

Since the wavelengths used in HELs are in the infrared region, so all of the effects 

need to be studied in this region specifically. 
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The atmosphere is composed of a group of gases with nearly fixed concentration 

and a group of gases with variable concentration [5]. Nitrogen ( 2N ) and oxygen ( 2O ) 

compose  99 % of the atmosphere. However, they are not responsible for the absorption 

in near-infrared region where SSLs operate, since they are homonuclear molecules and 

lack dipole moments. As seen in Figure 1, water vapor ( 2H O ) and carbon dioxide ( 2CO ) 

are predominantly responsible for the atmospheric absorption in the infrared region. This 

dominance is the result of having many vibrational modes. Molecular absorption is 

therefore a strong function of the wavelength. 

 

Figure 1.  Atmospheric transmittance measured over 1820-m horizontal path at 
sea level. Source: [6].  

 

When the wavelength of the laser is considerably larger than the particle’s sizes, 

the scattering process is described by Rayleigh scattering. The Rayleigh scattering cross 

section, which is proportional to the likelihood of a scattering event occurring, can be 

approximated as [5] 
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where a  is the diameter of the molecules and assumed to be much smaller than the 

wavelength of the laser beam  a  , and n  is the refractive index of the molecules. As 

wavelength increases, the effect of Rayleigh scattering on atmospheric propagation 

decreases rapidly  4
s  . The sky’s blue color during daytime can be explained by 

Rayleigh scattering; since blue light’s wavelength is shorter than red light’s, blue light is 

scattered more than red light. 

Using the Rayleigh scattering cross section, the molecular scattering coefficient 

can be calculated as [5] 

 
2

1

( ) ( ) ( ) ,
r

m s

r

N r dr       (4) 

where  N r  is the number density of molecules with radius r .  

2. Aerosol Effects 

Aerosol extinction coefficients are less dependent on the light wavelength than 

molecular extinction coefficients. These coefficients are determined by the combined 

effects of the aerosol’s index of refraction and the size distribution of aerosol particles, 

according to the theory of Mie scattering [7]. In general, the aerosol effects are more 

prominent at shorter wavelengths, at least in the IR spectral region [7].  

The effect of aerosol scattering on atmospheric propagation is generally far 

greater than molecular (Rayleigh) scattering except at very short wavelength values due 

to molecular scattering’s dependence on wavelength as 1 4 . Figure 2 shows that for 

wavelengths up to 0.3 m , molecular (Rayleigh) scattering dominates the total 

scattering extinction, but aerosol scattering starts to become dominant at near-IR and 

longer wavelengths. 
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Figure 2.  Calculated aerosol absorption and extinction coefficients for 23-km 
visibility conditions and a continental aerosol model. Source: [8]. 

 

B. ATMOSPHERIC TURBULENCE 

Atmospheric turbulence is the result of temperature differences, convection, wind 

shear, and inertial cascades of larger scale turbulences to smaller scales [1]. 

Inhomogeneities in the atmosphere (eddies) result in density variations and, in turn, index 

of refraction differences along the laser beam path. “The shimmering of distant objects on 

a hot day or the twinkling of the stars at night” are examples caused by index of 

refraction variances due to atmospheric turbulence [9]. These index differences also 

distort the wave fronts of an HEL, potentially causing the laser beam to break up into 

beamlets that travel in slightly different directions.  

An important parameter that is used to characterize the severity of atmospheric 

turbulence is the refractive index structure coefficient 2
nC  with units of 2 3m . This 

parameter increases as the temperature differences of the eddies increases, so an increase 

in 2
nC  means an increase in atmospheric turbulence. 2

nC  tends to decrease with altitude. 

Typical 2
nC  values near the surface vary from about 1710 2 3m  for relatively weak 

turbulence to 1310 2 3m  for relatively strong turbulence. Furthermore, turbulence varies 
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throughout the day and tends to be smallest “about one or two hours before sunrise and 

after sunset,” while the peak values tend to be measured around noon on sunny days [9]. 

The irradiance patterns for a laser propagating for 5 km through a region of constant 2
nC  

are shown in Figures 3 through 5. In Figure 3, the turbulence is extremely weak at

2 1810nC   2 3m , which has almost no effect on the irradiance.  

 

Figure 3.  Irradiance with weak turbulence ( 2 1810nC   2 3m ). Source: [10]. 

 

The irradiance pattern with stronger turbulence ( 2 1410nC   2 3m ) is shown in 

Figure 4. The figure shows that the laser beam gets distorted as the atmospheric 

turbulence increases. 
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Figure 4.  Irradiance with moderate turbulence ( 2 1410nC   2 3m ).  

Source: [10]. 

 

The irradiance pattern with even stronger turbulence ( 2 145 10nC    2 3m ) is 

shown in Figure 5. The figure shows that the distortion level reaches to the point where 

the peak irradiance is down by over an order of magnitude relative to Figure 3. 

 

Figure 5.  Irradiance with strong turbulence ( 2 145 10nC    2 3m ).  

Source: [10]. 
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 The Fried parameter 0r  is the diameter over which transverse beam coherence is 

maintained. It incorporates information about 2
nC  along the path, the wavelength of the 

laser and the propagation distance. Larger values of 0r  correspond to weaker turbulence 

and more complete constructive interference at the target. For a focused beam 

propagating along a path of constant 2
nC , the Fried parameter is given by [1]  

 
 

6 5

0 3 53 5 2
0.33 ,

n

r
R C


   (5) 

where   is the wavelength of the laser light and R  is the range of the target. Larger 2
nC  

values and longer ranges result in smaller 0r values, while longer wavelengths result in 

longer 0r values. Generally, turbulence becomes significant when 0r  is smaller than the 

beam director size. As an example, the Fried parameter is 0 12.5r  cm  for 1  μm,  
2 1510nC  2 3m  and 5R  km .  

C. THERMAL BLOOMING 

Absorption of laser light by the molecules and aerosols in the atmosphere results 

in heating the air, which then changes the density of air along the laser path. These 

density gradients create refractive index changes in this path. These alterations in the 

optical properties of the path cause the air to act like a concave lens, which in turn results 

in defocusing and spreading of the laser beam. This nonlinear atmospheric phenomena is 

called thermal blooming. The effect of thermal blooming is especially crucial in low 

altitude engagements (due to higher water vapor and aerosol content) such as ground/sea 

surface-based scenarios, as well as slow moving targets in light winds due to reduced 

beam slewing. Wind across the beam path tends to reduce the severity of thermal 

blooming since it replaces the air warmed by the laser with cooler air. 

There are two limiting cases of thermal blooming: conduction dominated thermal 

blooming and convection dominated thermal blooming [11]. Conduction-dominated 

thermal blooming exists for the cases where there is basically no wind ( v =0). This case 

is rarely met for the HEL applications along the entire beam path, though there can be 
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places along the path that are stagnant. Convection-dominated thermal blooming exists 

when there is the wind or beam motion. This case is met for most HEL applications and 

has been studied most extensively [11].  

When wind/beam motion exists, cooler air enters from one side of the beam and 

warms as it transverses the beam. This causes the air to heat up in the downwind 

direction, and thus the refractive index drops in the downwind direction. Since light 

bends toward higher refractive indices, the irradiance bends into the wind, often forming 

a distinct crescent shape as illustrated in Figure 6. 

  

Figure 6.  Typical thermal blooming effected irradiance pattern with wind 
coming from left side ( 100P  kW , 5R  km , 10windV  m / s ) . 

Source: [10]. 

 

 

 

 

 

wind 
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IV. METHODOLOGY 

ANCHOR (Atmospheric NPS Code for HEL Optical pRopagation), a scaling 

code developed by the NPS DE group, is used to characterize laser performance. The 

code incorporates parameters like turbulence, wind, jitter, and extinction. For this thesis, 

the effect of relative target and platform motion on atmospheric propagation was also 

added to the code. For different laser power and laser wavelength inputs, time averaged 

irradiance and power in the bucket plots can be acquired using this code. The code takes 

atmospheric parameters from other models like LEEDR, NAVSLAM, MODTRAN, and 

COAMPS. 

In order to estimate the irradiance at the target, a couple of parameters need to be 

taken into account. Atmospheric extinction, beam quality, platform jitter, atmospheric 

turbulence, and thermal blooming are all effects that cause the irradiance to decrease 

along the propagation path. Assuming a Gaussian beam at the source, the time-averaged 

irradiance profile, with platform jitter and turbulence-induced wander and spreading 

effects included, is estimated as [7]  

 
2

,tot
TB

tot

P
I e S

w



  

 
   (6) 

where totP  is the total power leaves the beam director,   is the total atmospheric 

extinction coefficient,   is the range to the target, totw  is the time-averaged 1 e  radius of 

the mean irradiance profile in the absence of thermal blooming, TBS  represents the Strehl 

ratio that accounts for the effect of the thermal blooming on the time averaged irradiance. 

The time-averaged beam radius totw  on the target is given by 

 
2 2 2 .tot j d tw w w w    

  (7) 

In Equation (7), the j , d  and t  subscripts represent contributions from beam jitter, 

diffraction and atmospheric turbulence, respectively.  
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A. LINEAR EFFECTS ON SPOT SIZE 

1. Beam Jitter 

 Beam jitter effect is caused by vibrations and/or tracking errors on the beam 

director platform. The time averaged mean square radial displacement of the focal spot 

due to beam jitter in Equation (7) is given approximately as [7]  

 ,j rmsw     (8) 

where rms  represents the angular variance due to jitter and   is the range to the target. 

Typical values of angular jitter are on the order of a few rad .  

2. Diffraction 

 The effect of diffraction on the laser beam spot size for an infinite Gaussian 

source can be estimated as [7] 
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where   represents the range to the target, 2k    is the wave number, 0w  is the 1/ e  

beam radius at the beam director, F  is the focal range of the laser beam, and 2M  

represents the beam quality factor. The 2M  value is the measurement of how many times 

an ideal beam can fit across the real beam in each transverse direction at the focus. For an 

ideal Gaussian beam, 2M =1 whereas 2 1M   for non-ideal laser beams [12]. For this 

thesis, the focal range F  is equal to the target range  . For this condition, the second 

term in the square root drops out and Equation (9) simplifies to 

 
0

.d

M
w

kw



  (10)   

3. Turbulence 

 The effect of the atmospheric turbulence (see Chapter III, Section B) on the laser 

beam spot size can be estimated as [13] 

 
0

2
,tw

kr



for 0 ,r D   (11) 
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where 0r  is the Fried parameter (see Equation (5)) and D represents the diameter of the 

beam director. The effect of atmospheric turbulence increases with the range of the target 

and decreases with the Fried parameter 0r  since it represents the diameter that the 

transverse coherence of the laser beam is maintained.  

B. THE EFFECT OF THERMAL BLOOMING ON SPOT SIZE 

The effect of the thermal blooming on the laser beam propagation through the 

atmosphere is discussed in Chapter III, Section 3. The effect on the laser beam spot size 

can be estimated mathematically using the thermal blooming distortion number, which is 

calculated as [1] 

 
     

0

T4 2
,

( ) ( )
T

D
p windpath

z z n zkP
N dz

C V z D z




     (12) 

where z  is the distance along the beam path, P is the initial power of the laser, 0  is the 

ambient air density, pC  is the specific heat at constant pressure,   is the absorption 

coefficient, T  is the transmission of the laser energy,  0 1Tn dn dT n T     is the 

change in the refractive index of air with respect to temperature where italic T  represents 

the temperature, windV  represents the effective wind speed perpendicular to the laser beam 

and D  is the beam diameter. Absorption near the beam director causes more significant 

thermal blooming distortion than the absorption near the target [1]. This effect is called 

lever arm effect. In order to compensate this effect, the following weighting function can 

be included in the integral in Equation (12) [1], 
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  (13) 

where D represents the primary aperture diameter in this case. 

 If there is no change in the atmospheric conditions along the path, Equation (12) 

can be simplified as [1] 
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 18

Thermal blooming effects become significant when 25DN   [1]; the laser beam gets 

more distorted as DN  increases. In Equation (14), it is seen that the transverse effective 

wind decreases the distortion level due to thermal blooming, and in turn can increase the 

irradiance at the target. The irradiance patterns for a laser ( 100P   kW ) propagated 5 

km through a region with different effective wind speeds are shown in Figures 7 and 8. In 

Figure 7, the effect of the thermal blooming on irradiance is shown for 3windV  m / s .  

 
 

Figure 7.  Thermal blooming effected irradiance patterns with 3windV  m / s  

( 465DN  , 100P   kW,  5R  km ). Source: [10]. 

 

In Figure 8, the effect of the thermal blooming on irradiance is shown for 

5windV  m / s . It is seen that as the transverse wind speed increases, the irradiance also 

increases (note the different irradiance scales on the graphs), although the crescent-

shaped distortion of the beam is enhanced. 

 

 

wind 
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Figure 8.  Thermal blooming effected irradiance patterns with 5windV  m / s  

( 279DN  , 100P   kW,  5R  km ). Source: [10]. 

 

The Strehl ratio TBS , the ratio of the peak irradiance of the thermal blooming 

distorted beam to the peak irradiance of a reference beam with no thermal blooming can 

be calculated as [1] 
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where 0.0625a   and 2m   for a Gaussian distributed beam, whereas 0.01a   and 

1.2m   for a uniform distributed laser beam. 

 Thermal blooming also affects HEL laser systems such that after a certain laser 

output power, critP , the irradiance on the target starts to decrease. This critical power 

level can vary with the laser wavelength and the atmospheric and weather conditions, and 

can be estimated by [1] 
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In ANCHOR, the distortion number from Equation (14) is calculated as well as a 

weighted distortion number which uses the same equation but includes a weighting 

function granting more effect of thermal blooming to the midpoint along the beam path. 

Using these two numbers, an analytic expression for the Strehl ratio is used that is 

calibrated against full diffraction codes.  

1. Effective Transverse Wind Speed 

In order to calculate the effective transverse wind speed across the beam, both 

target and platform motions and the natural wind need to be taken into consideration. As 

a result of the relative target and platform motion, the beam director must slew to keep 

the laser on the target. This slew motion also introduces an effective wind across the 

beam. 

In Figure 9, the parameters needed to calculate the transverse wind speed is given. 

The calculations are made relative to the ship using spherical coordinates. 

 

Figure 9.  Parameters used for transverse wind speed calculation. 

 

The target velocity relative to the ship is calculated as 

 ' ,target target shipV V V 
  

  (17) 

where targetV


 represents the target velocity and shipV


 is the velocity of the ship. Likewise, 

the wind velocity relative to the ship is calculated as 
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 ' ,wind wind shipV V V 
  

  (18) 

where windV


 represents the natural wind velocity. Angular velocity of the target about the 

ship is calculated using the relative target velocity as 

 2

'
' ,target target

target

r V

r








   (19) 

where targetr


 represents the displacement vector of the target relative to the ship. Slew 

velocity along path r


 is calculated using the angular velocity of the target as 

 ' ' .slewV r 
  

  (20) 

The effective wind velocity is calculated using the slew velocity and relative wind 

velocity as 

 ' ' .eff wind slewV V V 
  

  (21) 

Finally, the effective transverse wind (i.e., the cross wind), is calculated using the 

effective velocity as 

    ˆ ˆ ˆ ˆ,cross eff effV V V      
  

  (22) 

where ̂  and ̂  are the spherical unit vectors, so 

 ˆ ˆsin cos ,ˆ x y     (23) 

and 

 ˆ ˆ ˆ ˆcos cos x cos sin sin .y z          (24) 

We created a MATLAB script using these equations that plots the effective 

transverse wind speed for a constant target range and varying orientation about a circle 

centered on the ship with the same targetV


, shipV


 and windV


 parameters. In Figure 10, the 

effective transverse wind speed is plotted for ˆ10( ) yship targetV V 
 

m/ s  and 

ˆ10( ) ywindV  


m/ s . In these figures, arrow length represents the magnitude of the cross 

wind along the beam. Also, the color of the arrows evolves from blue to yellow to red as 

the magnitude increases. In this example, there is no cross wind along the vertical axis, 

because in that case the wind is in the same direction as the ship and target motion, so a 
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stagnation zone exists in this direction. This region is where thermal blooming will be the 

most problematic. Along the horizontal axis, the effect of the thermal blooming on 

propagation is the least because the strongest cross wind exists along this path. 

 

Figure 10.  Effective transverse wind speed for ˆ10( ) yship targetV V 
 

m / s  and 

ˆ10( ) ywindV  


m/ s . 

 

In Figure 11, the effective transverse wind speed is plotted for ˆ10( ) yshipV 


m/ s , 

ˆ10( ) xtargetV 


m/ s  and ˆ ˆ10( ) 10( )windV x y 


m/ s m / s . Here, we also see that a stagnation 

zone exists for certain target/ship orientations. Furthermore, the position along the path 

where this stagnation zone occurs changes with the orientation. 
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Figure 11.  Effective transverse wind speed for ˆ10( ) yshipV 


m/ s , 

ˆ10( ) xtargetV 


m/ s  and ˆ ˆ10( ) 10( )windV x y 


m/ s m / s . 

 

C. OTHER PARAMETERS NEEDED TO CHARACTERIZE LASER 
PERFORMANCE 

Other than the irradiance, laser performance can be characterized by power in the 

bucket and dwell time.  

1. Power-in-the-Bucket 

The power delivered to a circle, or “bucket,” of specified radius on the target is 

called power-in-the-bucket. The calculation of the power in the bucket changes with the 

chosen bucket radius br in comparison with the thermal blooming affected beam radius. 

The thermal blooming affected beam radius can be calculated using the Strehl ratio as 

[14] 
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Since ,tot effw  accounts for the thermal blooming effect, the irradiance on the target can be 

rewritten as [14] 
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If ,b tot effr w , power in the bucket can be calculated approximately as [14] 

  2
, ,B tot eff totP I w P e        (27) 

as all of the delivered power falls within the defined bucket. If ,b tot effr w , then the power 

in the bucket can be calculated approximately as [14] 

  2 .B bP I r     (28) 

In this case, we are not interested in all the power delivered to the target. The total 

power delivered to the target is more than the power in the bucket. 

2. Dwell Time 

A laser weapon is used to transfer energy to the target, and in turn damage it by 

melting the material used on the target. The time needed for melting through the target is 

called dwell time.  

a. Power Loss Mechanisms 

In order to calculate the dwell time, power loss on the target needs to be known. 

There are two power loss mechanisms: conductive and radiative losses. These losses 

decrease the power level transferred to the target. 

Conduction loss exists as a result of the heat increase at a specific area on the 

target and the conduction of the heat through the other parts of the target. Conduction loss 

can be quantified using Fourier’s heat conduction law as 

 
 0 ,cond m
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A T T
P

x

 



  (29) 

where   is the thermal conductivity of the material, mT  is the melting temperature of the 

material, 0T  is the ambient temperature of the material, condA  is the cross-sectional 

surface area of the surrounding material and x  is the distance of the temperature 

gradient in material. This distance depends on the material properties and the dwell time; 
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for typical metals and dwell times of 10dwell  s , 2x  cm  [15]. Typically, the 

conductive power loss is much greater than the radiative power loss.  

Radiative power loss is due to blackbody radiation as the material heats up and 

glows. Using Stefan-Boltzmann law, the power radiated away is proportional to the 

fourth power of the blackbody’s temperature 4( )radP T , the radiated power due to 

temperature change after laser dwell can be calculated as 

 4 4
0( ),rad mP A T T    (30) 

where A  is the area over which the radiation occurs,  is the material emissivity and   

is the Stefan-Boltzmann constant ( 85.670 10  W -2m -4K ).  

 Total power loss due to conduction and radiation is calculated as 

 .loss cond radP P P    (31) 

The power available to melt the target can be quantified using the power loss as  

 ,melt trans target lossP P f P     (32) 

where transP  represents the power transferred to the target and targetf  is the fractional 

target absorption. For aluminum, targetf  is  0.2. In order to melt the target, the power 

transferred to the target must exceed the power loss on the target, otherwise the target can 

not be melted. 

b. Energy Needed to Melt the Target 

The energy needed to melt a target varies with the melting temperature of the 

target material, heat of fusion of the target material, and the mass of the material. The 

energy needed to reach the melting point of the material is calculated as 

 1 ,PQ c m T    (33) 

where Pc  represents the specific heat capacity of the material, m  is the mass of the 

material needed to melt and 0mT T T    is the change in the temperature. The energy 

needed to melt the material at the melting point is calculated as 

 2 ,Q m H    (34) 
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where H  represents the heat of fusion of the target material. The total energy to melt 

the target material is calculated as  

 1 2.meltQ Q Q    (35) 

c. Dwell Time Calculation 

Dwell time can be calculated using these calculations as 

 .melt
dwell

melt

Q

P
    (36) 

Dwell time can vary with the power level transferred to the target, the power loss on the 

target, material of the target, and the volume needed to melt. 

d. Laser Performance Calculation Example 

As an example, required on-target irradiances for melting a 100 2cm  circular area 

on an aluminum target are calculated for dwell times of 3 and 6 seconds and material 

thicknesses of 1 and 3 mm. Table 1 shows the physical properties of aluminum used in 

these calculations. 

Table 1.   Physical Properties of Aluminum 

Parameter Value 

Density 2.70 3
g

cm
  

Thermal conductivity,   237 
W

mK
  

Distance of the temperature gradient, x   2 cm 

Melting temperature, mT  933.47 K 

Material emissivity,   0.05 

Specific heat capacity of the material, Pc  897 
J

kgK
  

Heat of fusion of the material, H  400 
kJ

kg
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Calculated total energies to melt the target and total power losses for 1 mm and 3 

mm thicknesses are shown in Table 2. 

 

Table 2.   Total Power Loss and Total Energy to Melt Calculation Results 

Parameter 
For 1 mm 
thickness 

For 3 mm 
thickness 

Total energy to melt the target, meltQ  26.14 kJ 78.42 kJ 

Total power loss, lossP  2.68 kW 8.04 kJ 

 

Using the parameters in Table 2, the required on-target irradiances are shown in 

Table 3. 

 

Table 3.   Required On-Target Irradiances to Melt the  
Target Calculation Results 

Parameter 
For 1 mm 
thickness 

For 3 mm 
thickness 

Required on-target irradiance to melt 
target for 3DT   seconds 1.13 2

MW
m

  3.4 2
MW
m

 

Required on-target irradiance to melt 
target for 6DT   seconds 0.7 2

MW
m

 2.1 2
MW
m
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V. RESULTS 

A. NOTIONAL LASER/ATMOSPHERIC PARAMETERS 

In order to evaluate the effects of relative target and platform motion on the 

atmospheric propagation of HELs, the parameters used as inputs to ANCHOR are given 

in Table 4.  

 

Table 4.   The Input Parameters Used in ANCHOR. 

Laser Output Power P  200 – 1000 kW 

Laser Wavelength   1.064 μm  

Beam Quality ܯଶ 3 

Platform Height PH  10 m Above Sea Level 

Target Height TH  0.4 – 1300 m Above Sea Level 

Diameter of Beam at Source D 0.3 m 

Beam Shape at Source Uniform 

Beam Jitter rms  65 10  rad 

Speed of Target targetV   0   198 m/s 

Speed of Platform shipV   0   10 m/s 

Speed of Wind windV   0   3 m/s 

Bucket Radius br   0.05 m 

Fractional Target Absorption 0.15 
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In order to evaluate the extinction coefficients for 1.064  μm  along the laser 

beam path, MODTRAN is used. MODTRAN is a commonly used radiative transfer 

model developed by Spectral Sciences Inc. and the U.S. Air Force Research Laboratory 

[16]. The parameters used as input for MODTRAN are given in Table 5.  

 

Table 5.   Tropical Maritime Input Parameters Used for MODTRAN. 

Parameter MODTRAN Model 

Geographical-seasonal 
Model Atmosphere 

Tropical atmosphere (15 o  
Latitude) 

Aerosol Model Maritime extinction 

Cloud and Rain Model No rain 

Meteorological Range 23 km 

Temperature, 0T  300 K at sea level (varies with 
altitude) 

Absolute Humidity 
19.7 g/mଷ (80% relative humidity)  
at sea level (varies with sea level) 

 

The refractive index structure coefficient 2
nC  along the laser beam path is 

calculated using the Hufnagel-Valley model. This model characterizes the variations of  

2
nC  with the altitude for a given surface value of 2

nC  and is specified by the following: [1]  

  
2

2 53 10 1000 16 1500 1005.94 10 2.7 10 ,
27

h h h
n

W
C h h e e Ae          

 
  (37) 

where h  is the height in meters, W is the high altitude wind speed in m/s and A  is the 

2
nC  surface value. In this thesis, A  is set to the moderate value of 1410 2 3m . 
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B. COMPARISON WITH WAVETRAIN 

1. Wavetrain 

In order to validate the ANCHOR code results, Strehl ratio outputs are compared 

with the output of WaveTrain for the same conditions. WaveTrain is a software tool 

developed by MZA Associates Corporation “for high fidelity modeling of advanced 

optical systems such as laser weapons systems” [17]. It is a full diffraction code, which 

potentially makes it more accurate than ANCHOR, but ANCHOR is much faster than 

WaveTrain. All of the WaveTrain outputs for this thesis were provided by Dr. Conor 

Pogue.  

In WaveTrain, the Strehl ratios are calculated using the same absorption 

coefficients, target, platform and wind velocities, target and platform heights, and target 

distances with ANCHOR. Strehl ratio values are the division of the peak irradiance with 

thermal blooming and the peak irradiance without thermal blooming for WaveTrain.  

2. Results and Discussion 

In Figures 12 and 13, the comparison of Strehl ratios of ANCHOR and Wavetrain 

is plotted in polar coordinates for a constant target range and varying orientation with the 

same targetV


, shipV


 and windV


 parameters. Atmospheric turbulence effects are ignored for 

both codes. In Figure 12, the parameters used are ˆ10( ) yshipV 


m/ s , ˆ10( ) ytargetV 


m/ s , 

ˆ10( )windV y 


m/ s , 100P  kW, 1.064  μm  (typical wavelength used in SSLs), 

5R  km  and height of the target 10Th  m. The effective transverse wind speed plot for 

the same platform, target and wind velocities was shown in Figure 10. It is seen that, 

ANCHOR tends to underestimate the Strehl ratio more as the cross wind along the laser 

beam increases. 



 32

 

Figure 12.  Strehl ratio output comparison of Wavetrain and ANCHOR for 
ˆ10( ) yshipV 


m/ s , ˆ10( ) ytargetV 


m/ s , ˆ10( )windV y 


m/ s , 100P 

kW,  1.064  μm , 5R  km  and 10Th  m. Source: [10]. 

 

In Figure 13, the parameters used are ˆ10( ) yshipV 


m/ s , ˆ10( ) xtargetV 


m/ s , 

ˆ ˆ10( ) 10( )windV x y 


m/ s m / s , 100P  kW, 1.064  μm , 5R  km  and height of the 

target 10Th  m. The effective transverse wind speed plot for the same platform, target 

and wind velocities was shown in Figure 11. It is seen that the Strehl ratios of the two 

methods agree generally except the regions where ANCHOR slightly underestimates the 

Strehl ratio in the case where the cross wind speed is larger at the zone closer to the 

platform and slightly overestimates the Strehl ratio where the cross wind is larger at the 

zone closer to the target. 
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Figure 13.  Strehl ratio output comparison of Wavetrain and ANCHOR for 
ˆ10( ) yshipV 


m/ s , ˆ10( ) xtargetV 


m/ s , ˆ ˆ10( ) 10( )windV x y 


m/ s m / s , 

100P  kW,  1.064  μm , 5R  km  and 10Th  m. Source: [10]. 

C. ANCHOR EXAMPLES 

The irradiance of the laser will be plotted for a constant target altitude, Th , for 

varying target ranges from the platform at the origin. Every point except the origin 

corresponds to a target with the same velocity. The velocity of the wind also 

does not change for any target orientation. In Figure 14, these target orientations 

are displayed for several points on the polar plot with the velocities of   ˆ10 ,shipV y


m/ s

  ˆ10 xtargetV 


m/ s and    ˆ ˆ10 10windV x y 


m/ s m / s .   
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Figure 14.  Visualization of target orientation for   ˆ10 ,shipV y


m/ s

  ˆ10 xtargetV 


m/ s and    ˆ ˆ10 10windV x y 


m/ s m / s .   

1. Simple Cases

In all of the irradiance plots, latitudinal range is along the y-axis, whereas 

longitudinal range is along the x-axis. The contour lines on the plot connect points of 

constant irradiance (outer contour line is for 1 2MW m , middle contour line is for 

5 2MW m and inner contour line is for 10 2MW m ) . The magnitude of the on-target 

irradiance is defined with the color bar scale. In Figure 15, the on-target irradiance is 

plotted for   ˆ3 ,windV y 


m / s 10Th  m and 200P  kW. There is no relative platform 

and target motion for this plot. Since we have a stagnation zone on the vertical axis, and 

the cross wind gets stronger along the horizontal axis, we have an on-target irradiance 

pattern that is compressed along the vertical axis and elongated along the horizontal axis.  
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Figure 15.  Simple case scenario for   ˆ3 ,windV y 


m / s  10Th  m, 200P  kW 

and 1.064  μm .  

 

In Figure 16, the on-target irradiance is plotted for   ˆ10 ,shipV y


m / s  

  ˆ3 ,windV y 


m / s 10Th  m and 200P  kW. With the introduction of platform motion, 

the magnitude of the cross wind increases at every point except the stagnation zone for 

this case. The on-target irradiance also increases at every point except the stagnation zone 

(along the vertical axis in this case). 

 

 

Figure 16.  Simple case scenario for   ˆ10 ,shipV y


m / s    ˆ3 ,windV y 


m / s  

10Th  m, 200P  kW and 1.064  μm . 
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In Figure 17, the on-target irradiance is plotted for   ˆ10 ,shipV y


m / s  

  ˆ10 ,targetV y


m/ s    ˆ3 ,windV y 


m / s 10Th  m and 200P  kW. With the 

introduction of target motion in Figure 17, the cross wind gets stronger at every point 

except the stagnation zone, and in turn the irradiance increases everywhere except along 

this zone. 

 

 

Figure 17.  Simple case scenario for   ˆ10 ,shipV y


m / s    ˆ10 ,targetV y


m/ s  

  ˆ3 ,windV y 


m / s   10Th  m, 200P  kW and 1.064  μm . 

 

In Figure 18, the on-target irradiance is plotted for   ˆ10 ,shipV y


m / s  

  ˆ55 ,targetV y


m/ s    ˆ3 ,windV y 


m / s 10Th  m and 200P  kW. Since we have more 

target speed in this case, we also have a stronger cross wind than other simple case 

scenarios. As a result of this, we have the largest irradiance at every point except the 

stagnation zone. Since there is no change in cross wind along the stagnation zone, the 

irradiance at this zone stays the same for every simple case scenario. 
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Figure 18.  Simple case scenario for   ˆ10 ,shipV y


m / s    ˆ55 ,targetV y


m/ s  

  ˆ3 ,windV y 


m / s  10Th  m, 200P  kW and 1.064  μm . 

 

2. Complex Cases 

The on-target irradiances are plotted for more complex cases in this section. In 

Figure 19, the on-target irradiance is plotted for    ˆ ˆ2 2 ,windV x y 


m/ s m / s 10Th  m 

and 200P  kW. There is no relative platform and target motion for this plot. Since the 

wind blows from 315  azimuth, we have a stagnation zone on the line that connects 

315  and 135  azimuth, whereas the cross wind gets stronger through the line that 

connects 45  and 225 . As a result of these zones, we have a on-target irradiance pattern 

that is compressed along the 135 -315  line and elongated along the 45 - 225  line. 
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Figure 19.  Complex case scenario for    ˆ ˆ2 2 ,windV x y 


m/ s m / s  10Th  m,

200P  kW and 1.064  μm . 

 

In Figure 20, the on-target irradiance is plotted for   ˆ10 ,shipV y


m / s  

   ˆ ˆ2 2 ,windV x y 


m/ s m / s  10Th  m and 200P  kW. With the introduction of 

relative platform and target motion, the magnitude of the effective cross wind changes at 

every point for this case. This results in a new orientation of the on-target irradiance 

pattern. 

 

Figure 20.  Complex case scenario for   ˆ10 ,shipV y


m / s  

   ˆ ˆ2 2 ,windV x y 


m/ s m / s  10Th  m and 200P  kW. 
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In Figure 21, the on-target irradiance is plotted for   ˆ10 ,shipV y


m / s  

  ˆ10 x,targetV 


m/ s     ˆ ˆ2 2 ,windV x y 


m/ s m / s 10Th  m and 200P  kW. With the 

introduction of target motion in Figure 21, the effective cross wind changes at every point 

again, and in turn this results in a new on-target irradiance orientation. 

 

 

Figure 21.  Complex case scenario for   ˆ10 ,shipV y


m / s    ˆ10 x,targetV 


m/ s  

   ˆ ˆ2 2 ,windV x y 


m/ s m / s  10Th  m, 200P  kW and 1.064 
μm . 

In Figure 22, the on-target irradiance is plotted for   ˆ10 ,shipV y


m / s  

  ˆ55 x,targetV 


m/ s     ˆ ˆ2 2 ,windV x y 


m/ s m / s 10Th  m and 200P  kW. With the 

increase in target speed, both on-target irradiance magnitude and pattern orientation 

changes for every target position on the plot. 
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Figure 22.  Complex case scenario for   ˆ10 ,shipV y


m / s    ˆ55 x,targetV 


m/ s  

   ˆ ˆ2 2 ,windV x y 


m/ s m / s   10Th  m, 200P  kW and 1.064 
μm . 

 

D. PRACTICAL EXAMPLES 

In order to characterize the effect of relative target and platform motion on the 

atmospheric propagation of HELs, practical examples will be evaluated via the changes 

in on-target irradiance for different cases in this section. 

1. UAV Target 

In this sub-section, the on-target irradiances will be evaluated with varying UAV 

velocities, varying platform (ship) velocities, varying wind velocities, different UAV 

altitudes and initial laser powers.  

a. The Effect of Target Altitude and Target Speed 

In Figures 23 through 25, the on-target irradiances are plotted for constant laser 

output power, wind velocity and platform velocity which are 200P  kW, 

ˆ3( )windV x 


m / s  and ˆ ˆ2( ) 2( )shipV x y 


m/ s m / s , respectively. Target velocities 

change from 20(m/s) ŷ  to 198(m/s) ŷ . In Figure 23, the on-target irradiances are plotted 

for target height 300TH   m. The amount that the atmospheric propagation is effected 

by the relative target and platform motion decreases with increasing speed of the target. 
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As the target speed increases, the effective cross wind starts to be dominated by the target 

speed, and cooling of the laser beam path leads to much less thermal blooming.   

 

Figure 23.  On-target irradiances for varying target velocities, 
ˆ3( )windV x 


m / s , ˆ ˆ2( ) 2( )shipV x y 


m/ s m / s , 200P  kW and 

300TH  m. 

 

In Figure 24, the on-target irradiances are plotted for 800TH   m. The same 

trends are seen as in Figure 23. Also, as the target altitude increases, the slew rate of the 

beam director following the target decreases and in turn the effect of relative target 

motion decreases. 
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Figure 24.  On- target irradiances for varying target velocities, 
ˆ3( )windV x 


m / s , ˆ ˆ2( ) 2( )shipV x y 


m/ s m / s , 200P  kW and 

800TH  m. 

 

In Figure 25, the on-target irradiances are plotted for 1300TH   m. Again, the 

same trends are observed as in the previous figures.    
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Figure 25.  On-target irradiances for varying target velocities, 
ˆ3( )windV x 


m / s , ˆ ˆ2( ) 2( )shipV x y 


m/ s m / s , 200P  kW and 

1300TH  m. 

 

b. The Effect of Laser Output Power 

In Figure 24, the on-target irradiances are plotted for constant target heights, wind 

velocities, and platform velocities, which are 800TH  m, ˆ3( )windV x 


m / s  and  

ˆ ˆ2( ) 2( )shipV x y 


m/ s m / s , respectively. Target velocities and laser output powers 

change from 20(m/s) x̂  to 60(m/s) x̂  and 200 kW to 1 MW, respectively. It is seen that 

the effect of the relative target and platform motion on the atmospheric propagation 

depends on the output laser power, since target/platform motion mainly affects thermal 

blooming which is more prevalent at higher laser powers.  
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Figure 26.  On-target irradiances for varying target velocities and laser  

output powers, ˆ3( )windV x 


m / s , ˆ ˆ2( ) 2( )shipV x y 


m/ s m / s  and 

800TH  m. 

 

c. The Effect of Target Direction 

In Figure 27, the on-target irradiances are plotted for constant laser output power, 

wind velocity, platform velocity, and target speed, which are 200P  kW, 

ˆ3( )windV x 


m / s , ˆ ˆ2( ) 2( )shipV x y 


m/ s m / s  and 122targetV   m/s, respectively. Target 

direction and target altitudes change from 0  to 90  azimuth and 300 meters to  

1300 meters, respectively. Figure 27 shows that the direction of the target affects the 

atmospheric propagation such that the orientation of the on-target irradiance contours 

changes in a similar manner with target heading regardless of the target height. 
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Figure 27.  On-target irradiances for varying target directions and heights, 
ˆ3( )windV x 


m / s , ˆ ˆ2( ) 2( )shipV x y 


m/ s m / s , 200P  kW and 

122targetV   m/s.  

 

d. The Effect of Platform Velocity 

The effect of the platform velocity on the effect of relative target and platform 

motion on the atmospheric propagation will be studied with different platform speeds and 

platform headings. 
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(1) The Effect of Platform Direction 

In Figure 28, the on-target irradiances are plotted for constant laser output  

power, wind velocity and target height, which are 200P  kW, ˆ3( )windV x 


m / s , and 

500TH   m, respectively. Target speed changes from 20 m/s to 180 m/s in the y-

direction and platform direction changes but with a constant speed of 9 m/s. As the target 

speed increases, it starts to dominate the irradiance pattern and the platform direction has 

less of an impact. 

 

 

Figure 28.  On-target irradiances for varying target speeds and platform 

headıngs, ˆ3( )windV x 


m/ s , 200P  kW and 500TH   m. 
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(2) The Effect of Platform Speed 

In Figure 29, the on-target irradiances are plotted for constant laser output power, 

wind velocity and target height, which are 200P  kW, ˆ3( )windV x 


m/ s , and 

500TH   m, respectively. Target speed changes from 20 m/s to 180 m/s in the y-

direction and platform speed changes from 5 m/s to 15 m/s in the x-direction. As the 

target speed increases, it starts to dominate the irradiance pattern and the platform speed 

has less of an impact. 

 

 

Figure 29.  On-target irradiances for varying target and platform speeds, 
ˆ3( )windV x 


m / s , 200P  kW and 500TH   m. 
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e. The Effect of the Wind Velocity 

The effect of the wind velocity on the effect of relative target and platform motion 

on the atmospheric propagation will be studied with different wind speeds and wind 

headings. 

(1) The Effect of Wind Direction 

In Figure 30, the on-target irradiances are plotted for constant laser output power, 

platform velocity and target height, which are 200P  kW, ˆ9( )shipV x 


m/ s , and 

800TH   m, respectively. Target speed changes from 20 m/s to 180 m/s in the y-

direction and wind direction changes but with a constant speed of 4 m/s. As the target 

speed increases, it starts to dominate the irradiance pattern and the wind direction has less 

of an impact on the irradiance like the effect of platform direction. 
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Figure 30.  On-target irradiances for varying wind directions and target speeds, 
ˆ9( )shipV x 


m/ s , 200P  kW and 800TH   m. 

 

(2) The Effect of Wind Speed  

In Figure 31, the on-target irradiances are plotted for constant laser output power, 

platform velocity and target height, which are 200P  kW, ˆ9( )shipV x 


m/ s , and 

800TH   m, respectively. Target speed changes from 20 m/s to 180 m/s in the y-

direction and wind direction changes from 2 m/s to 8 m/s. As the target speed increases, it 

starts to dominate the irradiance pattern and the wind speed has less of an impact on the 

irradiance like the effect of platform speed. 
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Figure 31.  On-target irradiances for varying wind and target speeds, 
ˆ9( )shipV x 


m/ s , 200P  kW and 800TH   m. 

 

2. Small Boat Target 

In this sub-section, the on-target irradiances will be evaluated with varying target 

(small boat) velocities, varying platform (ship) velocities, varying wind velocities, 

varying laser output powers and constant boat height ( 0.4TH  m).  

a. The Effect of Target Velocity 

The effect of relative target and platform motion on the atmospheric propagation 

will be studied with different target speeds and target headings. 
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(1) The Effect of Target Direction 

In Figure 32, the on-target irradiances are plotted for constant wind velocity, 

platform velocity and target height, laser output power, and target speed, which are 

ˆ3( ) ,windV x 


m / s  ˆ5( )shipV y


m/ s , 0.4TH  m, 200P   kW, and 9targetV   m/s, 

respectively. The direction of the target changes for each plot. It is seen that the 

atmospheric propagation is affected in each plot with the change in target direction. 

 

 

Figure 32.  On-target irradiances for varying target directions, 
ˆ3( )windV x 


m / s , ˆ5( )shipV y


m/ s , 200P  kW, 9targetV   m/s and 

0.4TH   m. 

 

(2) The Effect of Target Speed 

In Figure 33, the on-target irradiances are plotted for constant laser output power, 

wind velocity, platform velocity and target height, which are 200P  kW, 

ˆ3( ) ,windV x 


m / s  ˆ5( )shipV y


m/ s  and 0.4TH  m, respectively. Target speed changes 

from 0 m/s to 18 m/s in the x-direction. The on-target irradiance plot changes noticeably 
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until the target speed dominates the relative motion. After this speed, the change is very 

small.   

 

Figure 33.  On-target irradiances for varying target velocities, 
ˆ3( )windV x 


m / s , ˆ5( )shipV y


m/ s , 200P  kW and 0.4TH   m. 

 

b. The Effect of Laser Output Power 

In Figure 34, the on-target irradiances are plotted for constant wind velocity, platform 

velocity and target height, which are ˆ3( ) ,windV x 


m / s  ˆ ˆ2( / ) 2( )shipV m s x y 


m/ s  and 

0.4TH  m, respectively. Target speed changes from 0 m/s to 18 m/s in the x-direction 

and laser output power changes from 200 kW to 1 MW. It is seen that the effect of the 

relative target and platform motion on the atmospheric propagation increases with the 

increase in the output laser power. 
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Figure 34.  On-target irradiances for varying target velocities and laser output 

powers, ˆ3( )windV x 


m / s , ˆ ˆ2( / ) ( )shipV m s x y 


m/ s  and 0.4TH   m. 

 

c. The Effect of Platform Velocity 

The effect of the platform velocity on the effect of relative target and platform 

motion on the atmospheric propagation will be studied with different platform speeds and 

platform headings. 

(1) The Effect of Platform Direction 

In Figure 35, the on-target irradiances are plotted for constant laser output power, 

wind velocity and target height, which are 200P  kW, ˆ3( )windV x 


m / s , and 0.4TH   

m, respectively. Target speed changes from 7 m/s to 18 m/s in the y-direction and 



 54

platform direction changes but with a constant speed of 9 m/s. Unlike the UAV case, the 

target speed does not dominate the irradiance pattern since the difference between target 

and platform speed is not so large. As a result of this, the on-target irradiance pattern gets 

effected with any change in the platform heading, although this effect decreases as the 

target speed increases. 

 

 

Figure 35.  On-target irradiances for varying target speeds and platform 

headings, ˆ3( )windV x 


m / s , 200P  kW and 0.4TH   m. 

 

(2) The Effect of Platform Speed 

In Figure 36, the on-target irradiances are plotted for constant laser output power, 

wind velocity and target height, which are 200P  kW, ˆ3( )windV x 


m/ s , and 0.4TH   
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m, respectively. Target speed changes from 7 m/s to 18 m/s in the y-direction and 

platform speed changes from 5 m/s to 15 m/s. Unlike the UAV case, the target speed does 

not dominate the irradiance pattern since the difference between target and platform 

speed is not so large. As a result of this, the on-target irradiance pattern gets affected with 

any change in the platform speed, although this effect decreases as the target speed 

increases. 

 

 

Figure 36.  On-target irradiances for varying target and platform speeds, 
ˆ3( )windV x 


m / s , 200P  kW and 0.4TH   m. 
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d. The Effect of the Wind Velocity 

The effect of the wind velocity on the atmospheric propagation will be studied 

with different wind speeds and headings. 

(1) The Effect of Wind Direction 

In Figure 37, the on-target irradiances are plotted for constant laser output power, 

platform velocity and target height, which are 200P  kW, ˆ3( )shipV x 


m/ s , and 

0.4TH   m, respectively. Target speed changes from 7 m/s to 18 m/s in the y-direction 

and wind direction changes but with a constant speed of 7 m/s. Unlike the UAV case, the 

target speed does not dominate the irradiance pattern since the difference between target 

and wind speed is not so large. As a result of this, the on-target irradiance pattern gets 

affected with any change in the wind heading, although this effect decreases as the target 

speed increases. 
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Figure 37.  On-target irradiances for varying target speeds and wind headings, 
ˆ3( )shipV x 


m/ s , 200P  kW and 0.4TH   m. 

 

(2) The Effect of Wind Speed  

In Figure 38, the on-target irradiances are plotted for constant laser output power, 

platform velocity and target height, which are 200P  kW, ˆ3( )shipV x 


m/ s , and 

0.4TH   m, respectively. Target speed changes from 7 m/s to 18 m/s in the y-direction 

and wind speed changes from 0 m/s to 10 m/s. Unlike the UAV case, the target speed 

does not dominate the irradiance pattern since the difference between target and wind 

speed is not so large. As a result of this, the on-target irradiance pattern gets affected with 

any change in the wind speed, although this effect decreases as the target speed increases. 
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Figure 38.  On-target irradiances for varying target and wind speeds, 
ˆ3( )shipV x 


m/ s , 200P  kW and 0.4TH   m. 
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VI. CONCLUSIONS 

According to the results, the effects of relative target and platform motion on the 

atmospheric propagation of HELs depend on parameters like target altitude, target 

velocity, platform velocity, laser output power, and wind velocity. As the target altitude 

increases, the effect of the relative motion on the propagation decreases, because the slew 

rate of the beam director decreases with the increase in target altitude. The wind velocity 

can either decrease or increase the relative motion effect on propagation for a specific 

target acquisition, depending on the specific velocities of the platform and target as well 

as their relative positions. As an example, as the target speed becomes faster than the 

platform speed, the relative motion becomes dominated by the target speed. Changes in 

both target and platform direction affect the propagation of the laser regardless of the 

target altitude, target and platform speeds, and the wind velocity, because the effective 

cross wind changes with the change in directions for each case. The effect of the relative 

target and platform motion on the atmospheric propagation also depends on the output 

laser power, since target/platform motion mainly affects thermal blooming, which is 

more prevalent at higher output laser powers. 

As a result, the relative target and platform motion significantly affects the 

atmospheric propagation of HELs, and the level that the propagation is affected depends 

on the parameters discussed above. HELs can be used more effectively by the users 

considering these effects. 
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