ARL-TR-7923 e JAN 2017

ARL

US Army Research Laboratory

Python Scripts for Automation of Current-
Voltage Testing of Semiconductor Devices
(FY17)

by Bryan H Zhao and Randy P Tompkins

NOTICES
Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

ARL-TR-7923 e JAN 2017

ARL

US Army Research Laboratory

Python Scripts for Automation of Current-
Voltage Testing of Semiconductor Devices
(FY17)

by Bryan H Zhao
Oak Ridge Institute for Science Education Research (ORISE)

Belcamp, MD

Randy P Tompkins
Sensors and Electron Devices Directorate, ARL

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE oA s

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid
OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
January 2017 Technical Report

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
Python Scripts for Automation of Current-Voltage Testing of Semiconductor 1120-1120-99

Devices (FY17) 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Bryan H Zhao and Randy P Tompkins

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER
US Army Research Laboratory
ATTN: RDRL-SED-E ARL-TR-7923

2800 Powder Mill Road
Adelphi, MD 20783-1138

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Automation of device testing and analysis procedures is imperative in both research and industrial environments where
automation improves employee efficiency. The “time sink” of manual device-testing procedures is reduced or eliminated
through automation. This technical report includes scripts written in Python, version 2.7, used to either partially or fully
automate our existing current-voltage (I-V) test setup at the US Army Research Laboratory. The I-V test setup currently
includes a Wentworth PML 8000 manual probe station, an Agilent 4155C semiconductor parameter analyzer, and a
Micromanipulator P200L semiautomatic probe station. In addition to the current version of the scripts, explanations of the
different portions of the code are also provided for the user. Scripts used to set up this automated system are discussed in
enough depth such that another user may operate the integrated system or build upon the existing code to improve its
functionality and/or efficiency. This report assumes that the reader has some basic knowledge on the syntax of Python and
thus is not a tutorial for the language. Additionally, we identify future software development tasks that could further expand
the capabilities of the system.

15. SUBJECT TERMS
gallium nitride, GaN, diode, python, auto-prober, current-voltage testing

17. LIMITATION | 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
16. SECURITY CLASSIFICATION OF: OF OF RandvP T ’
ABSTRACT PAGES andy 7 ' 0mpxins
a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (Include area code)
Unclassified | Unclassified Unclassified uu 48 301-394-0015

Standard Form 298 (Rev. 8/98
Prescribed by ANSI Std. Z39.18

Contents

List of Figures

1. Introduction

2. Micromanipulator P200L Semiautomatic Probing Station

3. 4155C Setups

3.1

3.2

Wentworth Manual Probing Station

3.1.1 Runthel-V Test

3.1.2 Run the lgs—Vgs Test

3.1.3 Run the OFF-State Breakdown Voltage Test

3.1.4 Choose the Device Type (“hemt” or “diode”)

3.1.5 Setthe |-V Test Parameters

3.1.6 Set the lgs—Vgs Test Parameters

3.1.7 Set the OFF-State Breakdown Voltage Test Parameters
3.1.8 Display User Input Test Parameters

3.1.9 Exit Program

Micromanipulator P200L Semiautomatic Probing Station

4. Scripts and Text Files

4.1
4.2
4.3
4.4

Script 1: HEMT_Diode_toComputer_withinterface All3.py
Script 2: Prober_ HEMT_withCheck_IdsVds.py
Script 3: Prober_Diode_withCheck_ldsVds.py

Example Results Text File

5. Conclusion

6. Future Work and Improvements

7. References

List of Symbols, Abbreviations, and Acronyms

Distribution List

Approved for public release; distribution is unlimited.

N N N N o oo o iAW W

11
11
24
30
37

38

38

39

40

41

List of Figures

Fig. 1 Computer-aided design drawing of an example square symmetric
device layout pattern: 28 x 28 devices, alternating in device size from
300, 200, 100, and 50 microns throughout each row............ccccecevvenens

Approved for public release; distribution is unlimited.
iv

1. Introduction

Semiautomatic probe stations are capable of probing hundreds of devices on
semiconductor wafers in a relatively short period of time. Subsequently, integration
of a semiautomatic probe station with semiconductor device testing instruments
(i.e., current-voltage [I-V] or capacitance-voltage measurements), common for
semiconductor devices such as power diodes, light-emitting diodes, solar cells, and
transistors, can be done much faster than using manual probing stations.

Manual measurements can be very time consuming due to required user operation
of probes, slow data transfer for old systems, and lack of optimized data parsing
and analysis. One additional advantage of automation to device testing is the
opportunity to test a large number of devices. Often, due to the significant time
investment required by the user with manual operation, only a fraction of the total
devices fabricated on a sample are actually tested.

In this technical report, we describe our new I-V testing system at the US Army
Research Laboratory (ARL) that includes a micromanipulator P200L
semiautomatic probe station fully integrated with our Agilent 4155C
semiconductor parameter analyzer. Included in this technical report is a description
of this system as well as the Python (version 2.7) scripts that were written to
program the system and specific instructions to the user on how to operate the I-V
testing system. In addition, we describe further ongoing efforts in software
development to improve the existing system.

2. Micromanipulator P200L Semiautomatic Probing Station

The main functionality of the Micromanipulator P200L semiautomatic probe
station comes from the ESP301 motion controller, which can move the stage in 3
dimensions, referred to as Axis 1, Axis 2, and Axis 3. It is important to note that
the motion controller only moves the stage itself in 3 dimensions. It does not control
the probes or stage rotation. It is important to note that the user must first attempt
to manually align the samples, so that the horizontal and vertical lattices are
perfectly aligned with the stage left-right movement. Due to these limitations, the
P200L would be ideally used to probe a large amount of devices that are in a
symmetric arrangement on the wafer. An example of a possible layout is shown in
Fig. 1, where the devices are arranged in a square pattern with equal center to center
distances in the vertical dimension and variable center-to-center distances in the
horizontal direction.

Approved for public release; distribution is unlimited.

1

Fig.1 Computer-aided design drawing of an example square symmetric device layout
pattern: 28 x 28 devices, alternating in device size from 300, 200, 100, and 50 microns
throughout each row

It is important for the reader to understand the orientation of the moving stage and
to what the 3 axes refer to fully understand the axis movement portion of the code
found in this technical report. When the user is facing the P200L, the following are
true:

. Positive (+) Axis 1 is left.

« Negative (=) Axis 1 is right.

« Positive (+) Axis 2 is toward the user.

« Negative (=) Axis 2 is away from the user.
. Positive (+) Axis 3 is up.

« Negative (=) Axis 3 is down.

Approved for public release; distribution is unlimited.

2

3. 4155C Setups

3.1 Wentworth Manual Probing Station

Because of the difficulty in programming the semiautomatic prober, we initially
developed scripts to communicate with the semiconductor parameter analyzer to
take basic I-V measurements of devices using our existing manual probe station.
This code served as a prototype to the code used to integrate the 4155C with the
P200L.

In the original setup (i.e., prior to any programming), the 4155C had to be
controlled by the user at the instrument front panel, where the data collected were
saved to a 3.5-inch floppy disk. This process was time consuming and slow due in
large part to the slow data transfer rate. To decrease the time for each device
measurement while using a manual probing station, an interface was created that
eliminated usage of the front panel on the 4155C and writes the data files to a
specified directory on the computer.

We expect that these scripts will continually be used with the manual probe station
for special cases, for example, when a given mask set does not have a highly
symmetric device arrangement or individual devices have a unique geometry that
does not accommodate the P200L. This script also integrates 4 important
measurements of both diodes and transistors: 1-V, lgs—Vas, las—Vgs, and OFF-state
breakdown voltage into compact functions/cases. This allows the user to efficiently
and quickly perform any of the 3 measurements with only one button.

Script 1 (HEMT _Diode_toComputer_withinterface_All3.py; see Section 4.1), at its
highest level, is operated as a user interface (Ul), which allows the user to more
efficiently and effectively collect data measurements using the 4155C and the
manual probe station. This script bypasses the original front panel operation of the
4155C and allows the user to set up parameters and run measurements with far
fewer inputs.

This script has many failsafe/error-checking logic integrated into it that prevents
the user from performing certain tasks out of sequence. Thus, there is a certain
procedure to performing measurements with this script. A brief description of script
1 as well as guidance for the user is discussed.

The following is an example procedural run:
1) Select option 4 and choose a device (“hemt” or “diode™).

2) Select option 5, 6, or 7 to set the test parameters, depending on which tests
will be performed.

Approved for public release; distribution is unlimited.

3

3) Select option 1, 2, or 3 to actually execute the intended test with the
specified test parameters.

Looking at the code for script 1, in lines 10 and 11, we establish connection with
the 4155C through the PyVISA package in Python. This connection is formed
through a general-purpose interface bus (GPIB) to USB plug between the
instrument and the computer. In line 13, del instr. timeout is critical to the script
running effectively. This line indicates to the 4155C to eliminate its timeout
counter, which will automatically crash the script if a command takes longer than
5 s to execute. By eliminating this timer, the script will take as long as it needs to
execute all of its commands, which will vary depending on the number of devices
tested.

The basis for the Ul is a continuous while loop that continues to repeat as long as
the user wants to keep performing measurements. In lines 24 through 36, the basic
Ul is created by prompting the user for an input between numbers 1 and 9, which
will then perform the intended task. The 9 different tasks this script is intended to
perform are described individually in the following subsections.

Note: All GPIB commands referred to in this text can be found in each instrument’s
accommodating GPIB reference manual. The following text refers to the Agilent
4155C GPIB reference manual.t

3.1.1 Runthel-V Test

In this task, the script performs either an 1-V (forward and reverse) measurement
on a diode or an lgs—Vg¢s measurement on a high electron mobility transistor
(HEMT). In lines 42 through 52, the script is simply checking to see that a specific
device type is selected and if the test parameters have been set. In lines 58 through
95, the script is writing a set of GPIB commands to the 4155C to perform a certain
task depending on which device type is tested. In this case, this section is setting up
the 4155C to perform an I-V curve measurement. These specific commands are
selected based on how a user would manually set up an I-V measurement. For
example, in line 60, instr.write(*:PAGE:CHAN:MODE SWEEP™") is simply
telling the 4155C to set the channel mode to sweep. We do not discuss each
command line by line here; please refer to the GPIB reference guide! for more
information.

In lines 97 through 112, the script is setting test parameter values for each variable
based on the stored values in the script, also depending on whether a diode or a
HEMT is being tested (these said values are stored using command 5). Line 117,
instr.write(“:PAGE:SCON:SING™), executes the sweep or performs the
measurement.

Approved for public release; distribution is unlimited.

4

In the next section, between lines 121 and 157, the script is formatting the output
data so that they can written to a text file in a specific way so that data
analysis/parsing can be easily performed. In this section, the most important lines
are lines 126 and 128, 1_data = instr.query_ascii_values(‘“:DATA?
“ID” “)and 1 _data = instr.query_ascii_values(“:DATA? “ID”),
respectively. These lines are directly telling the 4155C to store the ASCII data for
Io and Vp into lists in the script, which can then be parsed and formatted into any
form the script writer wants. The code in the rest of this section is data formatting.
Lines 121 and 122 store the current time so that it can be used as a unique filename.
Line 134 writes the drain voltage test parameters to the top of the text document.
Line 138 writes the gate voltage test parameters to the text document if the device
is a HEMT. The for-loop in lines 145 through 149 is where the script is actually
writing 3 columns to the text file, one column for a data reference number, one
column for voltage, and one column for current. (See example results text file in
Section 4.4.) Results text files are saved to the same directory the script is located.

Note: The specific way these text files are written was purely based on the way we
wrote our data analysis scripts. These scripts can be changed and modified to
accommodate the format requirements for each individual user.

3.1.2 Run the lgs—Vgs Test

The script performs an lgs—Vgs measurement on a HEMT (cannot be performed on
a diode). The logic and setup for this task is very similar to task 1, the only
difference is the actual 4155C variable setup, which would change the I-V
measurement to an lss—Vgs measurement. Between lines 163 through 173, the script
is checking for the specific device type and if test parameters have been set. In lines
177 through 196, the script is telling the 4155C to set up its variables to perform an
las—Vgs measurement. These specific commands are chosen based on how a user
would manually set up an lgs—Vgs measurement on the front panel.! In lines 198
through 206, the script is setting test parameter values for each variable based on
the stored values in the script (these said values are stored using command 6). Lines
208 through 211 are telling the script to format the data displayed onto the front
panel of the 4155C.

In the next section, line 217 to line 250 the script is formatting the output data so
that they can be written to a text file in a certain way so that data analysis/parsing
can be easily performed. This section is identical to its counterpart in task 1. Lines
222 and 224 are the lines telling the 4155C to store the ASCII data for Ip and Ve
(note the usage of Vg and not Vp). See task 1 for an explanation on the text file
writing and formatting. Results text files will be saved to the same directory the
script is in.

Approved for public release; distribution is unlimited.

5

3.1.3 Run the OFF-State Breakdown Voltage Test

In this task, the script performs an OFF-state breakdown voltage measurement on
a HEMT. (Note: The measurement cannot be performed on a diode.) The logic and
setup for this task is similar to tasks 1 and 2; the main difference is the actual 4155C
variable setup. Between lines 256 and 266, the script is checking for the specific
device type and if test parameters have been set. In lines 270 through 289, the script
is telling the 4155C to set up its variables to perform an OFF-state breakdown
voltage measurement. These specific commands are selected based on how a user
would manually set up the measurement on the front panel.! In lines 291 through
300, the script is setting test parameter values for each variable based on the stored
values in the script (those said values are stored using command 7).

In the next section, between lines 308 and 341, the script is formatting the output
data so that it can be written to a text file in a specific way so that data
analysis/parsing can be performed. This section is identical to its counterpart in
tasks 1 and 2. Lines 313 and 315 tell the 4155C to store the ASCII data for Ip and
Vp. (See task 1 for an explanation on the text file writing and formatting.) Results
text files will be saved to the same directory the script is in.

3.1.4 Choose the Device Type (“hemt” or “diode”)

Line 347, device_type = raw_input(“Enter the device type (“hemt”
or “diode’): *), is assigning a user-input device type to the variable
device_type. This variable is then used through the script to keep track of what
measurements can and cannot be performed for the given device (e.g., las—Vgs
cannot be performed on a diode). Line 349 through 357 is checking to see if the
input is entered correctly as either ““hemt” or “diode™.

3.1.5 Set the |-V Test Parameters

In this section, the script prompts the user to enter a set of test parameters that will
be used to run command 1, the I-V test. These parameters are selected based on
which parameters are needed to execute an I-V test.! Between lines 365 and 389,
2 cases are made, one for HEMT devices and one for diode devices. Based on which
device type is currently selected, the user prompt for test parameter input will
change. For HEMT -V tests, the drain and gate parameters both need to be set,
whereas for diode devices, only one variable needs to be set.

3.1.6 Set the lgs—Vgs Test Parameters

In this task, the script prompts the user to enter a set of test parameters that will be
used to run command 2, the lgs—Vgs test. These parameters are selected based on
which parameters are needed to execute an lgs—Vgs test.! In comparison to the I-V

Approved for public release; distribution is unlimited.

6

test, the los—Vgs is only performed on HEMT devices. Lines 401 through 414 show
where the script prompts the user for inputs.

3.1.7 Set the OFF-State Breakdown Voltage Test Parameters

In this task, the script prompts the user to enter a set of test parameters that will be
used to run command 3, the OFF-state breakdown voltage test. These parameters
are selected based on which parameters are needed to execute the test.! The
OFF-state breakdown voltage test is only performed on HEMT devices. Lines 426
through 435 show where the script prompts the user for inputs. Specifically, line
433, const_gate_voltage = raw_input(“Enter Constant Gate
Voltage (V): *), is prompting the user for a gate voltage that is in the OFF
state of the device, below the threshold voltage.

3.1.8 Display User Input Test Parameters

The script displays all the test parameters for each of the 3 measurement tests. Lines
447 through 484 encompass the HEMT test parameters; each if-else statement is
simply checking to see if any of the said test parameters have been entered, else
display nothing. Lines 490 through 501 encompass the diode test parameters; the
if-else statement is simply checking to see if the test parameters have been entered,
else display nothing.

3.1.9 Exit Program

The script exits the entire program. Line 505, sys.exit(), uses the sys package
that comes with Python to exit system processes.

3.2 Micromanipulator P200L Semiautomatic Probing Station

In this section, we discuss the scripts that integrate the P200L semiautomatic
probing station with the 4155C semiconductor parameter analyzer. In comparison
to the manual setup with a new Ul, this script does not have a Ul and is essentially
an automated testing program.

Script 2 (Prober_ HEMT_withCheck_ldsVds.py) is shown in detail in Section 4.2.
It is important to note that the scripts shown in this technical report are written to
take 1-V measurements for diodes and lss—Vas measurements for HEMTs. These
scripts can easily be changed to take lss—Vgs and OFF-state breakdown voltage
measurements, as well; however, in comparison to script 1, the source code needs
to change rather than simply using a Ul. Future technical reports on this topic will
include these scripts once they have been prepared.

Approved for public release; distribution is unlimited.

7

Scripts 2 and 3 are nearly identical in their logic and organization. The only
difference is that script 2 is for HEMTs lss—V4s measurements and script 3 is for
diode I-V measurements. Information shown in this section refers to script 2; this
information can also be applied to script 3 (see Section 4.3).

Note: The P200L automated Python scripts written for this technical report assumes
from the start that the probe tips are making contact with the upper-leftmost device
in the sample.

Identical to the script 1, lines 13 and 14 establish connection with the 4155C. Line
16 eliminates the default 5-s timeout and allows the program to execute its
commands without time restriction (see Section 2). In lines 18 and 19, we are
importing the NewportESP301/NewportESP301Axis directory from the
InstrumentKits Python package.? This Python package is specifically built to
control the ESP301 motion controller, which moves the P200L stage. In line 21,
controller = NewportESP301.open_serial (““COM4”, 921600), the
script is directly establishing connection with the P200L, COM4 refers to the
communication port, and 921600 represents the baud rate of that connection.®

In lines 24 through 42, the script is setting the axis configuration. Lines 28 through
42 are setting the acceleration, deceleration, velocity, and max velocity of the 3
axes (the axes are represented by the second argument) to a value so that motion
jerking and vibrations are under control on the plate. Acceleration/deceleration are
in terms of millimeters per seconds squared and both velocity and max velocity are
in terms of millimeters per second. These values are subject to adjustment
depending on device type, size, and quantity.

In the next section, the quantity, spacing, and size of devices are used to establish
correct testing patterns. Lines 44 and 45 prompt the user to input the number of
rows and columns of devices for the sample. Line 48, space_between_columns
= numpy.zeros((num_of_rows, devices_LtR-1)), createsa2-D array that
represents the space between each column (device) from left to right. Lines 57
through 59 now fill up this 2-D array with the spacing values. This section of the
source code needs to be coded directly to adjust the spacing or number of
rows/columns. For example if there is another row of devices, simply add
space_between_columns [3] = [..,..5..5..,..]. This logic is oriented very
intuitively so that different users with different requirements can easily modify the
source code. It is recommended that this script be modified for different device
layouts or mask sets. Thus, each mask set will have a different script to
accommodate the geometry of said mask set.

In the next section, lines 69 through 102 perform a row and column alignment
check. This section also shows how to move the ESP301 axes. See lines 70 and 71,

Approved for public release; distribution is unlimited.

8

NewportESP301Axis(controller,2) _move(-0.08, absolute=False)
and NewportESP301Axis(controller,2). Wait_for_stop(),
respectively. Line 70 is essentially telling Axis 3 (2 in the code since it starts
counting from 0) to move the plate down 0.08 mm (see Section 1 for more details
on axis direction). Line 71 tells the program to wait for the plate to finish moving
before going onto the next command.

In terms of the specific alignment checking logic, an example process is as follows:

1) Move from the first device’s position in the row to the “intended” last device
position in the row. Prompt the user to check microscope to see if the device
in the row is indeed making contact with the probe. If the probe is making
contact, proceed, else, move probe back to initial position and prompt the
user to attempt manual alignment with chuck rotation. See lines 69 through
84.

Assuming the row was aligned correctly, the next step would be as follows:

2) Move from the first device’s position in the column to the “intended” last
device position in the column. Prompt the user to check microscope to see
if the last device in the column is indeed making contact with the probe. If
the probe is making contact, proceed, else, move probe back to initial
position and prompt the user to attempt manual alignment with chuck
rotation. See lines 87 through 102.

Once this alignment checking process is complete and the alignment of the sample
has been verified, the script performs an I-V test on the first device in the top-left
corner and then prompts the user to tell the program if the data taken are viable.
This process was implemented to check if the probes are making good contact with
the devices at the given height (e.g., if data are not being taken correctly then the
probe tip may be too high up and not making good contact). See lines 106 through
145.

In the following section, once the script has confirmed that the rows and columns
as well as probe contact are aligned properly, it will begin its automated device
testing and data collection process. In lines 151 and 153, notice that 2 nested for-
loops are used. These for-loops regulate the entire automation process. The outer
for-loop cycles through each row, once all the devices in the row have been
measured it moves on to the next row. The inner for-loop cycles through each
column or, in other words, each device in the current row. Moving into the nested
loops, lines 158 through 230 are the data collection portion of this automated
program. Notice that this entire portion of the code is nearly identical to the 1-V/
las—Vds measurement that was shown in script 1, because we automated that exact

Approved for public release; distribution is unlimited.

9

same I-V/ lgs—Vgs data collection process to run within a loop for HEMTs
specifically (see Section 3, task 1 HEMTSs for details on how this segment of code
works as a whole). By using the exact same process, script 2’s automated lgs—Vas
tests on HEMTs can be adapted to perform both l¢s—Vgs and OFF-state breakdown
voltage tests by simply implementing code into script 2 from script 1, tasks 2 and
3. The only major difference that should be noticed is that script 2 has most of the
variables and write statements hard coded. This is because, as mentioned
previously, there is no Ul for the semiautomatic probing script so these things need
to be changed at the source code level. It is also important to explain that if test
parameters for this test need to be changed, the source code, lines 127 through 135,
lines 181 through 189, and lines 209 through 214 need to be modified accordingly.

In the last portion of this script, lines 235 through 265 control the actual automated
movement of the probing station. Notice that this segment of code is filled with
axes movement commands similar to lines 70 and 71, which were explained
previously. Line 235, controller.wait(2500), is telling the prober to wait
2.5 s just to make sure the data collection process is done before moving to the next
device. The process and pattern of the prober movement is as follows.

Starting in the inner for-loop, this portion controls the prober movement between
each column (device):

1) Move the plate down 0.08 mm so that the probe tips are no longer making
contact with the sample. See lines 237 and 238.

2) If the current device is not the last device in the row, move right however
much depending on device spacing between each column (stored in the
original 2-D array grid in lines 57 through 59). If the current device is the
last device in the row, there will be no movement further right. See lines
240 through 242,

3) Move the plate back up 0.08 mm so that the probe tips are making contact
with the sample. See lines 244 and 245.

Once the last device in the row has been measured, the script will then proceed into
the outer for-loop where it controls movement between each row. Depending on
whether it is the last row in the sample, the script will reenter the inner for-loop and
proceed to take data across the row again. For the outer for-loop, do the following:

1) Move the plate down 0.08 mm so that the probe tips are no longer making
contact with the sample. See lines 247 and 248.

2) Move the plate back to the first device in its current row, hence,
sum(space_between_columns [row]) in line 250, which sums up the

Approved for public release; distribution is unlimited.

10

spacing of all the devices in that row. This means that the prober will start
on the leftmost device in the next row. See lines 250 and 251.

3) If the current row is not the last row, move toward the user (to the next row)
however much depending on device spacing between each row (stored in
the 1-D array in line 62). If the current row is the last row in the sample,
move back to the very first row in the sample since this means that testing
has been completed. See lines 253 through 262.

4) Move the plate back up 0.08 mm so that the probe tips are making contact
with the sample. See lines 264 and 265.

Note: Scripts 2 and 3 save the generated results files to the current directory that
the script is in. The text file saving process and formatting process is identical to
script 1 except that certain parameters are hard coded into scripts 2 and 3 (see script
1, task 1 for explanation on formatting portion of the code).

4. Scripts and Text Files

4.1 Script 1: HEMT_Diode_toComputer_withinterface_AllI3.py

Script 1 is used for manual probing with the 4155C. The program is used to run
I-V, lds—Vgs, and OFF-state breakdown voltage tests with the 4155C and manual
probe station. This program automatically saves each test run data as a file onto the
computer. The file is named after the time the measurement was taken in HHMMSS
format. Results files are saved to the same directory this script is located.

Note: This program is not created to run with the P200L semiautomatic probing
station.

Script Location: L:\WBG Team\python_scripts\...
Language: Python, version 2.7

Script Version: 1.0

Date: 08/08/2016

POC: Randy Tompkins (randy.tompkins.civ@mail.mil)

Approved for public release; distribution is unlimited.

11

1. from datetime import datetime

2. import visa

3. import sys

4.

5. def intorfloat(s):

6. f = float(s)

7. i = int(f)

8. return i if i == f else f

9.

10. rm = visa. ResourceManager ()

11. instr = rm. open_resource(“GPIB0::17::INSTR”)

12.

13. del instr. timeout

14.

15. device type = “None”

16.

17. choiceb picked once hemt = 0

18. choiceb picked once diode = 0

19. choice6 picked once = 0

20. choice7 picked once = 0

21.

22. while True:

23.

24. print (“\nHtHtSHHSHHEREEHEGHHEHHEGHESHESHESH SRS RS HE R R Y
HHutHHtH g g \n”)

25. print (“Current Selected Device Type: %s\n” % device type)

26. print (“Please enter 1, 2, 3, 4, 5, 6, 7, 8, or 9 to choose from an
option below. \n”)

27. print (“1. RUN #kIV#* Test\n”)

28. print (“2. RUN *kIds - Vgs¥k Test\n”)

29. print (“3. RUN OFF-State Breakdown Voltage Test\n”)

30. print (“4. Choose Device Type (‘hemt’ or ‘diode’)\n”)

31. print (“5. SET #*IV#* Test Parameters\n”)

32. print (“6. SET #*xIds - Vgs¥* Test Parameters\n”)

33. print (“7. SET OFF-State Breakdown Voltage Test Parameters\n”)

34. print (“8. Display User Input Test Parameters\n”)

35. print (“9. Exit Program”)

36. print (“\nHHHSHHSHHEHEEHEEHHEHHEHHEHHEH AR SRS HERHEHHS R
HHHHHH TS)

37.

38. choice = raw input(“:”)

39.

40. if choice == “1” :

41.

42. if device type == “None” :

43.

44, print (“\nERROR: You have not chosen a device type yet.”)

45.

Approved for public release; distribution is unlimited.

12

46.

47.
48.

49.
50.

51.
52.

53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
7.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.

elif (device type == “hemt”) and (choiceb picked once hemt ==

0):

print (“\nERROR: You have not initialized IV test parameter

s for a HEMT.”)

elif (device type == “diode”) and (choiceb picked once diode

0):

print (“\nERROR: You have not initialized IV test parameter

s for a DIODE.”)

else:

instr. write (“*RST”)

if device type ==

instr. write(“:
instr. write(“:
instr. write(“:
instr.write(“:
instr.write (“:
instr.write(“:
instr.write (“:
instr.write(“:
instr.write (“:
instr.write(“:
instr.write (“:
instr.write(“:
instr.write (“:
instr.write(“:
instr.write (“:
instr.write(“:
instr.write (“:
instr.write(“:

elif device type ==

instr. write(“:
instr. write(“:
instr. write(“:
instr. write(“:
instr. write(“:
instr. write(“:
instr.write(“:
instr. write(“:
instr.write(“:
instr.write(“:

“hemt” :

PAGE:
PAGE:
PAGE:
PAGE:
PAGE:
PAGE:
PAGE:
PAGE:
PAGE:
PAGE:
PAGE:
PAGE:
PAGE:
PAGE:
PAGE:
PAGE:
PAGE:
PAGE:

CHAN:
CHAN:
CHAN:
CHAN:
CHAN:
CHAN:
CHAN:
CHAN:
CHAN:
CHAN:
CHAN:
CHAN:
CHAN:
CHAN:
CHAN:
CHAN:
CHAN:
CHAN:

MODE
SMU4
VSU1
VSu2
VMU1

SMU1
SMU1
SMU2

SMU3:
SMU3 :

“diode” :

PAGE:
PAGE:
PAGE:
PAGE:
PAGE:
PAGE:
PAGE:
PAGE:
PAGE:
PAGE:

Approved for public release; distribution is unlimited

13

CHAN:
CHAN:
CHAN:
CHAN:
CHAN:
CHAN:
CHAN:
CHAN:
CHAN:
CHAN:

MODE

SMU3:
SMU4

VSU1
Vsu2
VMU1

SMU1

SWEEP”)

:DIS”)
:DIS”)
:DIS”)
:DIS”)
VMU2 :
SMUT :
SMU2 :
SMU3:
SMUT :
SMU2 :
SMU3:
:MODE V”)

:FUNC VAR1”)
:MODE COMM”)
SMU2 :

DIS”)
VNAME
VNAME
VNAME
INAME
INAME
INAME

‘D7 7))
VST)
NGT)
‘ID” 7))
‘1S)
‘167)

FUNC CONS”)
MODE V”)
FUNC VAR2”)

SWEEP”)

DIS”)
DIS”)

:DIS”)
:DIS”)
:DIS”)
VMU2:

DIS”)

: VNAME
SMU2 :
SMU1 :

VNAME
INAME

(VD? ”»)
(VS? ”»)
‘ID’ ”»)

91.
92.
93.
94.
95.
96.
97.
98.
99.

100.
101.
102.
103.
104.

105.
106.
107.
108.

109.

110.

111.

112.

113.
114.
115.
116.
117.
118.
119.
120.
121.
122.

123.
124.
125.
126.
127.
128.
129.
130.

131.

))

))

e[6:8]

e computer.

instr. write(“:PAGE:CHAN:SMU2:INAME ‘IS’ 7)

instr. write(“:PAGE:CHAN:SMU1:MODE V”)

instr. write (“:PAGE:CHAN:SMU1:FUNC VAR1”)

instr. write(“:PAGE:CHAN: SMU2:MODE COMM”)

instr.write (“:PAGE:CHAN:SMU2:FUNC CONS”)
instr. write (“:PAGE:MEAS:VARL:START %f” % float(startl))
instr. write (“:PAGE:MEAS:VARL:STOP %f” % float (stopl))
instr. write (“:PAGE:MEAS:VARL:STEP %f” % float (stepl))
instr. write (“:PAGE:MEAS:VARL:COMP %f” % float (compl))

if device type == “diode” :

instr.write (“:PAGE:MEAS:VAR1:POINTS %f” % float (pointl

if device type == “hemt” :
instr.write (“:PAGE:MEAS:VAR2:START %f” % float(start2)
instr.write (“:PAGE:MEAS:VAR2:STOP %f” % float (stop2))
instr.write (“:PAGE:MEAS:VAR2:STEP %f” % float (step2))
instr. write (“:PAGE:MEAS:VAR2:COMP %f” % float (comp2))

instr. write (“:PAGE:MEAS:VAR2:POINTS %f” % float(point2

instr. write (“:PAGE:MEAS:SSTOP COMP”)

Execute measurement. Single sweep.

instr.write (“:PAGE:SCON:SING”)

instr.write (“*WAL”)

Record time of measurement

cur_time = str(datetime.now(). time())

formatted cur time = cur time[0:2] + cur time[3:5] + cur_ tim

instr.write (“:FORM:DATA ASC”)

instr. query ascii values(“:DATA? ‘ID” %)

I data

instr. query ascii values(“:DATA? ‘VD’ %)

V data
Section details writing the new found data to a file on th

143 »

file = open(“%s. txt” % formatted cur time, “w”)

Approved for public release; distribution is unlimited

14

132.

133. file.write(“\n”)

134. file.write(“VD= %s to %s in %s step\n” % (str(intorfloat(
startl)), str (intorfloat (stopl)), str(intorfloat (stepl))))

135.

136. if device type == “hemt” :

137.

138. file.write(“VG= %s to %s in %s step\n” % (str(intorfl

oat (start2)), str(intorfloat (stop2)), str (intorfloat(step2))))
139.

140. file.write(“NO. VD ID\n”)

141. file.write(“ V A\n”)

142.

143. i=1

144.

145. for x, y in zip(V data, I data):

146.

147. file.write(str(i) + “ “ + str(intorfloat(x)) + “ “ +

str(y) + “\n”)

148.

149. i=1+1

150.

151. file.close()

152.

153. cur_time = None

154. formatted cur time = None

155.

156. instr.write (“:PAGE:GLIS”)

157. instr. write (“:PAGE:GLIS:SCAL:AUTO ONCE”)

158.

159. print (“\nTest Completed. Please check 4155C front panel f
or any errors.”)

160.

161. elif choice == “27 :

162.

163. if device type == “None” :

164.

165. print (“\nERROR: You have not chosen a device type yet.”)

166.

167. elif (device type == “diode”):

168.

169. print (“\nERROR: Your current device type is DIODE. No Ids

- Vgs measurement available.”)

170.

171. elif (device type == “hemt”) and (choice6 picked once == 0):

172.

Approved for public release; distribution is unlimited

15

173. print (“\nERROR: You have not initialized Ids - Vgs test
parameters for a HEMT.”)

174.

175. else:

176.

177. instr.write (“*RST”)

178.

179. instr.write (“:PAGE:CHAN:MODE SWEEP”)

180. instr. write (“:PAGE:CHAN:SMU4:DIS”)

181. instr. write (“:PAGE:CHAN:VSUL:DIS”)

182. instr. write (“:PAGE:CHAN:VSU2:DIS”)

183. instr. write (“:PAGE:CHAN:VMUL:DIS”)

184. instr. write (“:PAGE:CHAN:VMU2:DIS”)

185. instr.write (“:PAGE:CHAN:SMUL:VNAME ‘VD” ”)

186. instr.write (“:PAGE:CHAN:SMU2:VNAME ‘VS™ 7))

187. instr.write (“:PAGE:CHAN:SMU3:VNAME ‘VG™)

188. instr.write (“:PAGE:CHAN:SMUL:INAME ‘ID” ”)

189. instr.write (“:PAGE:CHAN:SMU2:INAME ‘IS” ”)

190. instr.write (“:PAGE:CHAN:SMU3:INAME ‘IG” ”)

191. instr. write (“:PAGE:CHAN:SMUL:MODE V”)

192. instr. write (“:PAGE:CHAN:SMU1:FUNC VAR2”)

193. instr. write (“:PAGE:CHAN:SMU2:MODE COMM”)

194. instr. write (“:PAGE:CHAN:SMU2:FUNC CONS”)

195. instr. write (“:PAGE:CHAN:SMU3:MODE V”)

196. instr. write (“:PAGE:CHAN:SMU3:FUNC VAR1”)

197.

198. instr. write (“:PAGE:MEAS:VARL:START %f” % float(g startl))
199. instr. write (“:PAGE:MEAS:VARL:STOP %f” % float(g stopl))
200. instr.write(“:PAGE:MEAS:VARL:STEP %f” % float(g stepl))
201. instr.write (“:PAGE:MEAS:VARL:COMP %f” % float(g compl))
202. instr. write (“:PAGE:MEAS:VAR2:START %f” % float (g start2))
203. instr.write (“:PAGE:MEAS:VAR2:STOP %f” % float(g stop2))
204. instr.write (“:PAGE:MEAS:VAR2:STEP %f” % float(g step2))
205. instr.write (“:PAGE:MEAS:VAR2:COMP %f” % float (g comp2))
206. instr. write (“:PAGE:MEAS:VAR2:POINTS %f” % float(g point2))
207.

208. instr. write (“:PAGE:DISP:GRAP:Y1:NAME “ID”)

209. instr.write (“:PAGE:DISP:LIST:DEL ‘VG" %)

210. instr. write (“:PAGE:DISP:LIST:DEL ‘IG” %)

211. instr.write (“:PAGE:DISP:LIST ‘VG’ , “ID’ “)

212.

213. instr. write (“:PAGE:SCON:SING”)

214. instr. write (“*WAL”)

215.

216. # Record time of measurement.

217. cur_time = str(datetime.now(). time())

Approved for public release; distribution is unlimited.

16

218.

219.
220.
221.
222.
223.
224,
225.
226.

221.
228.
229.
230.

231.

232.
233.
234.
235.
236.
237.
238.
239.
240.

241.
242.
243.
244.
245.
246.
247.
248.
249.
250.
251.
252.

253.
254.
255.
256.
257.
258.

259.

e[6:8]

e computer.

formatted cur time = cur time[0:2] + cur time[3:5] + cur_ tim

instr. write (“:FORM:DATA ASC”)
I data = instr.query ascii values(“:DATA? ‘ID’ %)

V data = instr.query ascii values(“:DATA? VG’ <)

Section details writing the new found data to a file on th
file = open(“%s. txt” % formatted cur time, “w”)

file.write(“\n”)
file.write(“VD= %s to %s in %s step\n” % (str(intorfloat (

g start2)), str(intorfloat(g stop2)), str (intorfloat(g step2))))

file.write(“VG= %s to %s in %s step\n” % (str(intorfloat(

g startl)), str(intorfloat(g stopl)), str(intorfloat(g stepl))))

str(y) +

file.write(“NO. VG ID\n”)
file.write(“ V A\n”)

for x, v in zip(V data, I data):

file.write(str(i) + “ “ + str(intorfloat(x)) + “ “ +

113 \n”)

i=1+1
file.close()

cur_time = None
formatted cur time = None

instr.write (“:PAGE:GLIS”)
instr. write (“:PAGE:GLIS:SCAL:AUTO ONCE”)

print (“\nTest Completed. Please check 4155C front panel f

or any errors.”)

elif choice == “3”7 :

if device type == “None” :

print (“\nERROR: You have not chosen a device type yet.”)

Approved for public release; distribution is unlimited

17

260. elif (device type == “diode”):

261.

262. print (“\nERROR: Your current device type is DIODE. No OFF
—-State Breakdown Voltage measurement available.”)

263.

264. elif (device type == “hemt”) and (choice7 picked once == 0):

265.

266. print (“\nERROR: You have not initialized OFF-
State Breakdown Voltage Test parameters for a HEMT.”)

267.

268. else:

269.

270. instr. write (“#RST”)

271.

272. instr. write (“:PAGE:CHAN:MODE SWEEP”)

273. instr. write (“:PAGE:CHAN:SMU4:DIS”)

274. instr. write (“:PAGE:CHAN:VSUL:DIS”)

275. instr. write (“:PAGE:CHAN:VSU2:DIS”)

276. instr. write (“:PAGE:CHAN:VMUL:DIS”)

277. instr. write (“:PAGE:CHAN:VMU2:DIS”)

278. instr. write (“:PAGE:CHAN:SMU1:VNAME ‘VD” ”)

279. instr.write (“:PAGE:CHAN:SMU2:VNAME ‘VS™ 7))

280. instr.write (“:PAGE:CHAN:SMU3:VNAME ‘VG” ”)

281. instr.write (“:PAGE:CHAN:SMUL:INAME ‘ID” ”)

282. instr. write (“:PAGE:CHAN:SMU2: INAME ‘IS’ 7))

283. instr.write (“:PAGE:CHAN:SMU3:INAME ‘IG” ”)

284. instr. write (“:PAGE:CHAN:SMUL:MODE V”)

285. instr. write (“:PAGE:CHAN:SMU1:FUNC VAR1”)

286. instr. write (“:PAGE:CHAN:SMU2:MODE COMM”)

287. instr. write (“:PAGE:CHAN:SMU2:FUNC CONS”)

288. instr. write (“:PAGE:CHAN:SMU3:MODE V”)

289. instr. write (“:PAGE:CHAN:SMU3:FUNC VAR2”)

290.

291. instr.write (“:PAGE:MEAS:VARL:START %f” % float(vb startl))

292. instr.write (“:PAGE:MEAS:VARL:STOP %f” % float(vb stopl))

293. instr.write (“:PAGE:MEAS:VARL:STEP %f” % float(vb stepl))

294. instr. write (“:PAGE:MEAS:VARL:COMP %f” % float(vb compl))

295.

296. instr. write (“:PAGE:MEAS:VAR2:START %f” % float(const gate
voltage))

297. instr.write (“:PAGE:MEAS:VAR2:STOP %f” % float(const gate v
oltage))

298. instr. write (“:PAGE:MEAS:VAR2:STEP 1”7)

299. instr. write (“:PAGE:MEAS:VAR2:COMP 0.1”)

300. instr. write (“:PAGE:MEAS:VAR2:POINTS 1”7)

301.

302. instr. write (“:PAGE:MEAS:SSTOP COMP”)

Approved for public release; distribution is unlimited.

18

303.
304.
305.
306.
307.
308.
309.

310.
311.
312.
313.
314.
315.
316.
317.

318.
319.
320.
321.

322.

323.
324.
325.
326.
3217.
328.
329.
330.
331.

332.
333.
334.
335.
336.
337.
338.
339.
340.
341.
342.
343.

344.

el6:8]

e computer.

instr.write (“:PAGE:SCON:SING”)
instr.write (“*WAL”)

Record time of measurement
cur_time = str(datetime.now(). time())
formatted cur time = cur time[0:2] + cur time[3:5] + cur_ tim

instr.write (“:FORM:DATA ASC”)

T data = instr.query ascii values(“:DATA? ‘ID” %)

V data = instr.query ascii values(“:DATA? ‘VD’ <)

Section details writing the new found data to a file on th

[”»

file = open(“%s. txt” % formatted cur time, “w”)

file.write(“\n”)
file.write(“VD= %s to %s in %s step\n” % (str(intorfloat(

vb_startl)), str(intorfloat (vb_stopl)), str(intorfloat(vb _stepl))))

file.write(“VG= %s to %s in 1 step\n” % (str(intorfloat(c

onst_gate voltage)), str (intorfloat(const gate voltage))))

str(y) +

file.write(“NO. VD ID\n”)
file.write(“ V A\n”)

for x, vy in zip(V data, I data):

file.write(str(i) + “ “ + str(intorfloat(x)) + “ “ +

113 \n »)

i=1+1
file.close()

cur_time = None
formatted cur time = None

instr.write (“:PAGE:GLIS”)
instr. write (“:PAGE:GLIS:SCAL:AUTO ONCE”)

print (“\nTest Completed. Please check 4155C front panel f

or any errors.”)

Approved for public release; distribution is unlimited

19

345.
346.
347.

348.
349.
350.
351.
DD
353.
354.
355.
356.
357.
358.
359.
360.
361.
362.
363.

364.
365.
366.
367.
368.
369.
370.
371.

D1
373.
374.
375.

376.
377.
378.
379.
380.
381.
382.
383.
384.
385.
386.

387.
388.

elif choice == “4”7 :

device type = raw_input(“Enter the device type (‘hemt’ or ‘d

if device type == “hemt” or device type == “diode” :

pass

else:

print (“\nERROR: Invalid Device Type.”)

device type = “None”
elif choice == “5” :
if device type == “None” :

print (“\nERROR: You have not chosen a device type yet.”)

elif device type == “hemt” :

print (“\nSet *kIVk* Parameters for HEMT:”)

startl = raw_input(“Enter variable 1 (Drain) START: *)
stopl = raw input(“Enter variable 1 (Drain) STOP: “)

stepl = raw _input(“Enter variable 1 (Drain) STEP: “)

compl = raw_input(“Enter variable 1 (Drain) COMPLIANCE: “)

start2 = raw_input (“Enter variable 2 (Gate) START: “)
stop2 = raw_input(“Enter variable 2 (Gate) STOP:)

step2 = raw_input(“Enter variable 2 (Gate) STEP:)

comp2 = raw_input (“Enter variable 2 (Gate) COMPLIANCE:)

point2 = raw input(“Enter variable 2 (Gate) POINTS:)

choiceb picked once hemt = 1

elif device type == “diode” :

print (“\nSet *kIVk* Parameters for DIODE:”)

startl = raw_input (“Enter variable 1 (Drain) START:)
stopl = raw _input(“Enter variable 1 (Drain) STOP:)

stepl = raw _input(“Enter variable 1 (Drain) STEP:)

compl = raw_input (“Enter variable 1 (Drain) COMPLIANCE:)

pointl = raw input(“Enter variable 1 (Drain) POINTS:)

Approved for public release; distribution is unlimited

20

389.
390.
391.
392.
393.
394.
395.

396.
397.
398.
399.

400.
401.
402.
403.
404.
405.
406.
407.

408.
409.
410.
411.

412.

413.
414.
415.
416.
417.
418.
419.
420.

421.
422.
423.
424.

choiceb picked once diode = 1
elif choice == “6” :
if device type == “None” :

print (“\nERROR: You have not chosen a device type yet.”)

elif device type == “diode” :

print (“\nERROR: Your current device type is DIODE. No Ids

- Vgs measurement available.”)

“)

elif device type == “hemt” :
print (“\nSet *kIds - Vgs#¥* Parameters for HEMT:”)
g startl = raw_input (“Enter variable 1 (Gate) START:)
g stopl = raw _input(“Enter variable 1 (Gate) STOP:)
g stepl = raw input(“Enter variable 1 (Gate) STEP:)
g compl = raw _input(“Enter variable 1 (Gate) COMPLIANCE:
g start2 = raw_input(“Enter variable 2 (Drain) START:)
g stop2 = raw_input(“Enter variable 2 (Drain) STOP: “)
g step2 = raw_input(“Enter variable 2 (Drain) STEP: “)
g comp2 = raw_input(“Enter variable 2 (Drain) COMPLIANCE:

g point2 = raw_input(“Enter variable 2 (Drain) POINTS:)

choice6 picked once = 1
elif choice == “7” :
if device type == “None” :

print (“\nERROR: You have not chosen a device type yet.”)

elif device type == “diode” :

print (“\nERROR: Your current device type is DIODE. No OFF

—-State Breakdown Voltage measurement available.”)
425.
426.
4217.
428.

elif device type == “hemt” :

print (“\nSet OFF-

State Breakdown Voltage Test Parameters for HEMT:”)

Approved for public release; distribution is unlimited

21

429, vb_startl = raw input(“Enter variable 1 (Drain) START:)

430. vb_stopl = raw_input(“Enter variable 1 (Drain) STOP: *)

431. vb_stepl = raw_input(“Enter variable 1 (Drain) STEP:)

432. vb_compl = raw_input (“Enter variable 1 (Drain) COMPLIANCE:
“)

433. const gate voltage = raw input(“Enter Constant Gate Voltage

W: “)

434.

435. choice7 picked once =1

436.

437. elif choice == “8” :

438.

439. if device type == “None” :

440.

441. print (“\nERROR: You have not chosen a device type yet.”)

442.

443. elif device type == “hemt” :

444,

445. print (“\nCurrent Selected Device Type: %s” % device type
)

446.

447. if choiceb picked once hemt == 1:

448.

449. print (“\n#kIV¥* Parameters for HEMT:\n”)

450. print (“Variable 1 (Drain) START: %s” % startl)

451. print (“Variable 1 (Drain) STOP: %s” % stopl)

452, print (“Variable 1 (Drain) STEP: %s” % stepl)

453. print (“Variable 1 (Drain) COMPLIANCE: %s” % compl)

454, print (“Variable 2 (Gate) START: %s” % start2)

455. print (“Variable 2 (Gate) STOP: %s” % stop2)

456. print (“Variable 2 (Gate) STEP: %s” % step2)

457. print (“Variable 2 (Gate) COMPLIANCE: %s” % comp2)

458. print (“Variable 2 (Gate) POINTS: %s” % point2)

459.

460. if choice6 picked once == 1:

461.

462. print (“\n¥kIds - Vgs¥* Parameters for HEMT:\n”)

463. print (“Variable 1 (Gate) START: %s” % g startl)

464. print (“Variable 1 (Gate) STOP: %s” % g stopl)

465. print (“Variable 1 (Gate) STEP: %s” % g stepl)

466. print (“Variable 1 (Gate) COMPLIANCE: %s” % g compl)

467. print (“Variable 2 (Drain) START: %s” % g start2)

468. print (“Variable 2 (Drain) STOP: %s” % g stop2)

469. print (“Variable 2 (Drain) STEP: %s” % g step2)

470. print (“Variable 2 (Drain) COMPLIANCE: %s” % g comp2)

Approved for public release; distribution is unlimited

22

print (“Variable 2 (Drain) POINTS: %s” % g point2)

(Drain) START: %s”
(Drain) STOP: %s”
(Drain) STEP: %s”

% vb startl)
% vb_stopl)
% vb _stepl)

1 (Drain) COMPLIANCE: %s” % vb_compl

print (“Breakdown Voltage (V): %s” %

const gate volta

if (choiceb picked once hemt == 0) and (choice6 picked once

print (“\nNothing to Display. Test parameters have not

print (“\nCurrent Selected Device Type: %s” % device type

Parameters for Diode:\n”)

(Drain) START: %s”

% startl)

(Drain) STOP: %s” % stopl)
(Drain) STEP: %s” % stepl)

(Drain) COMPLIANCE:
(Drain) POINTS: %s”

%s” % compl)
% pointl)

print (“\nNothing to Display. Test parameters have not

print (“\nERROR: You have entered an invalid choice.”)

471.

472.

473. if choice7 picked once ==
474.

475. print (“\nOFF-

State Breakdown Voltage Test Parameters for HEMT:\n”)
476. print (“Variable 1
477, print (“Variable 1
478. print (“Variable 1
479. print (“Variable

)
480.

ge)
481.
482.

== 0) and (choice7 picked once == 0):
483.
484.
been 23sci23rt2323ed yet.”)

485.
486. elif device type == “diode” :
487.
488.

)
489.
490. if choiceb picked once diode ==
491.
492. print (“\nskkVisk
493. print (“Variable 1
494, print (“Variable 1
495, print (“Variable 1
496. print (“Variable 1
497. print (“Variable 1
498.
499. else:
500.
501.

been 23sci23rt2323ed yet.”)

502.
503. elif choice == “9” :
504.
505. sys. exit ()
506.
507. else:
508.
509.
510. print (“Please Try Again.”)
511.

Approved for public release; distribution is unlimited

23

4.2 Script 2: Prober_HEMT_withCheck_ldsVds.py

Script 2 is used for HEMT semiautomatic probing with the P200L. The program
used to run I-V tests with the Agilent 4155C semiconductor parameter analyzer and
Micromanipulator P200L semiautomatic probe station both located at ARL on
HEMT devices. This program automatically saves each device test as a file onto
the computer. Results files are saved to the same directory this script is located.

The file is named after the time the measurement was taken in HHMMSS format.

Script Location: L:\WBG Team\python_scripts\...
Language: Python, version 2.7

Script Version: 1.0

Date: 08/08/2016

POC: Randy Tompkins (randy.tompkins.civ@mail.mil)

1. import numpy

2. 1import visa

3. import sys

4. import time

5

6. from datetime import datetime

7.

8. def intorfloat(s):

9. f = float(s)

10. i = int(f)

11. return i if i == f else

12.

13. rm = visa. ResourceManager ()

14. instr = rm. open_resource(“GPIB0::17::INSTR”) # Connect to the 4155C

15.

16. del instr. timeout

17.

18. from instruments. newport import NewportESP301

19. from instruments. newport import NewportESP301Axis

20.

21. controller = NewportESP301. open serial (“COM4” , 921600) # Connect to th
e P200L

22.

23. #This section sets the axis configurations. Subject to adjustment depend
ing on device size/type.

24. NewportESP301Axis (controller, 0). trajectory=1

25. NewportESP301Axis(controller, 1). trajectory=1

26. NewportESP301Axis (controller, 2). trajectory=1

27.

28. NewportESP301Axis (controller, 0).acceleration = 0.5

29. NewportESP301Axis(controller, 1).acceleration = 0.5

30. NewportESP301Axis(controller, 2).acceleration = 0.5

Approved for public release; distribution is unlimited.

24

31.
e
33.
34.
35.
36.
37.
38.
39.
40.
41.
42,
43.
44,
45.

46.
47.

48.
49.
50.
51.
52.

53.
54.
55.
56.

57.
58.
59.
60.
61.

62.
63.
64.
65.
66.
67.
68.
69.

70.
71.

NewportESP301Axis (controller, 0). deceleration = 0.5
NewportESP301Axis (controller, 1). deceleration = 0.5
NewportESP301Axis (controller, 2). deceleration = 0.5

NewportESP301Axis (controller, 0). velocity = 1
NewportESP301Axis (controller, 1). velocity = 1
NewportESP301Axis (controller, 2). velocity

1
—

NewportESP301Axis (controller, 0). max _velocity = 1.5
NewportESP301Axis (controller, 1). max _velocity = 1.5
NewportESP301Axis (controller, 2). max _velocity = 0.2

num_of rows = int (raw input(“Enter the number of rows: “))
devices LtR = int (raw_input (“Enter the number of devices left to right
(columns): %))

#This initializes the 2D array that represents the space between columns
between each device (left to right).
space between columns = numpy. zeros ((num_of rows, devices LtR-1))

L NUNENI VI VI VIV VI VNN VNN NI I VIV VT VY VN N N NN NI NI VI VIV VN L NN NNV VI VI VI VI VIV VL VNN VNN NI

#Please note that this portion of the code will change based on the mask
design and the spacing between the individual devices that will vary wi
th each design. We may also need to change the number of rows.

#IMPORTANT NOTE: These values are in mm.

#This is simply setting the values in the 2D array to the spacing betwee
n each device in each corresponding row.

space between columns [0] = [0. 150, 0. 150, 0. 175, 0. 200, 0. 225]

space between columns [1] [0. 250, 0. 250, 0. 275, 0. 300, 0. 325]

space between columns [2] [0. 350, 0. 370, 0. 380, 0. 400, 0. 430]

#This array represents the space between columns between each row (top t
o bottom).
gap between rows = [0.350, 0.400]

AU AU AU AU AU I U U U U A A U U U A N A AU AU AU

gap counter = 0

System attempts to check row alignment

print (“\nSystem is attempting to locate the last device in the first R
ow.)

NewportESP301Axis (controller, 2). move (-0. 08, absolute=False)
NewportESP301Axis (controller, 2). wait for stop()

Approved for public release; distribution is unlimited

25

72. NewportESP301Axis (controller, 0). move (sum(space between columns [0]), abs
olute=False)

73. NewportESP301Axis (controller, 0).wait for stop()

74. NewportESP301Axis (controller, 2). move (0. 08, absolute=False)

75. NewportESP301Axis (controller, 2).wait for stop()

76.

77. correctly aligned row = raw input(“Is the prober probing the last devic
e in the first ROW correctly? Type ‘yes’ or ‘no’ : %)

78.

79. NewportESP301Axis (controller, 2).move (0. 08, absolute=False)
80. NewportESP301Axis (controller, 2).wait for stop()
81. NewportESP301Axis (controller, 0). move (-
sum(space_between columns [0]), absolute=False)
82. NewportESP301Axis (controller, 0).wait for stop()
83. NewportESP301Axis (controller, 2). move (0. 08, absolute=False)
84. NewportESP301Axis (controller, 2).wait for stop()
85.
86. # System attempts to check column alignment
87. print (“\nSystem is attempting to locate the last device in the first C
OLUMN. ”)
88. NewportESP301Axis (controller, 2). move (0. 08, absolute=False)
89. NewportESP301Axis(controller, 2).wait for stop()
90. NewportESP301Axis(controller, 1). move (-
sum(gap between rows), absolute=False)
91. NewportESP301Axis(controller, 1).wait for stop()
92. NewportESP301Axis (controller, 2). move (0. 08, absolute=False)
93. NewportESP301Axis (controller, 2).wait for stop()

94.

95. correctly aligned column = raw input(“Is the prober probing the last de
vice in the first COLUMN correctly? Type ‘yes’ or ‘no’ :)

96.

97. NewportESP301Axis (controller, 2). move (0. 08, absolute=False)

98. NewportESP301Axis (controller, 2).wait for stop()

99. NewportESP301Axis(controller, 1). move (sum(gap between rows), absolute=Fal
se)

100. NewportESP301Axis (controller, 1).wait for stop()

101. NewportESP301Axis (controller, 2). move (0. 08, absolute=False)

102. NewportESP301Axis (controller, 2).wait for stop()

103.

104. if correctly aligned row == “yes” and correctly aligned column == “y
es” :

105.

106. instr.write (“*RST”)

107.

108. instr.write (“:PAGE:CHAN:MODE SWEEP”)
109. instr. write (“:PAGE:CHAN:SMU4:DIS”)
110. instr. write (“:PAGE:CHAN:VSUL:DIS”)
111. instr. write (“:PAGE:CHAN:VSU2:DIS”)
112. instr.write (“:PAGE:CHAN:VMU1:DIS”)

Approved for public release; distribution is unlimited

26

113. instr.write (“:PAGE:CHAN:VMU2:DIS”)

114. instr.write (“:PAGE:CHAN:SMU1:VNAME ‘VD” ”)
115. instr.write (“:PAGE:CHAN:SMU2:VNAME ‘VS’ 7)
116. instr.write (“:PAGE:CHAN:SMU3:VNAME ‘VG” ”)
117. instr.write(“:PAGE:CHAN:SMU1:INAME “ID” ”)
118. instr.write (“:PAGE:CHAN:SMU2:INAME ‘IS’ 7)
119. instr.write (“:PAGE:CHAN:SMU3:INAME ‘IG” 7)
120. instr. write (“:PAGE:CHAN:SMUL:MODE V”)

121. instr.write (“:PAGE:CHAN:SMU1:FUNC VAR1”)
122. instr.write (“:PAGE:CHAN:SMU2:MODE COMM”)
123. instr.write (“:PAGE:CHAN:SMU2:FUNC CONS”)
124. instr. write (“:PAGE:CHAN:SMU3:MODE V”)

125. instr.write (“:PAGE:CHAN:SMU3:FUNC VAR2”)
126.

127. instr.write (“:PAGE:MEAS:VAR1:START 07)

128. instr.write(“:PAGE:MEAS:VAR1:STOP 107)

129. instr.write (“:PAGE:MEAS:VAR1:STEP 0.1”)
130. instr.write (“:PAGE:MEAS:VAR1:COMP 0.1”)
131. instr.write (“:PAGE:MEAS:VAR2:START -5”)
132. instr. write (“:PAGE:MEAS:VAR2:STOP 1”7)

133. instr.write (“:PAGE:MEAS:VAR2:STEP 1”7)

134. instr.write (“:PAGE:MEAS:VAR2:COMP 0.01”)
135. instr.write (“:PAGE:MEAS:VAR2:POINTS 77)

136.

137. instr.write (“:PAGE:MEAS:SSTOP COMP”)

138.

139. instr.write (“:PAGE:SCON:SING”)

140. instr.write (“*WAI”)

141.

142. instr.write (“:PAGE:GLIS”)

143. instr.write (“:PAGE:GLIS:SCAL:AUTO ONCE”)

144.

145. correctly probing = raw input(“Is the prober taking correct data? T
ype ‘yes’ or ‘no’ : %)

146.

147. if correctly probing == “yes” :

148.

149. print (“\nSystem will now begin probing the sample.”)

150.

151. for row in range(0, num of rows):

152.

153. for col in range(0, devices LtR):

154.

155. Hokkasoiokisoliokookioksokekkasolkiosklokkookiokfooksiok okt solokkodokok
Hliokiokookiskksokkak sk solokasokiskookskokd okl sk

156. okl okkaiaksolkiookkiookktokkData Collectio
N Sectionkkkksokkkdsokkkdsokskaksiokkskdookskokdsokskkdsolok ko ok

157.

158. time. sleep(2)

Approved for public release; distribution is unlimited

27

159.

160. instr.write (“*RST”)

161.

162. instr. write (“:PAGE:CHAN:MODE SWEEP”)

163. instr.write(“:PAGE:CHAN:SMU4:DIS”)

164. instr.write (“:PAGE:CHAN:VSUL:DIS”)

165. instr.write (“:PAGE:CHAN:VSU2:DIS”)

166. instr. write (“:PAGE:CHAN:VMUL:DIS”)

167. instr. write (“:PAGE:CHAN:VMU2:DIS”)

168. instr.write(“:PAGE:CHAN:SMUL:VNAME “VD’ ”)

169. instr.write (“:PAGE:CHAN:SMU2:VNAME “VS’ 7)

170. instr.write (“:PAGE:CHAN:SMU3:VNAME “VG” ”)

171. instr.write (“:PAGE:CHAN:SMUL:INAME “ID” ”)

172. instr.write (“:PAGE:CHAN:SMUZ2:INAME ‘IS’ ”)

173. instr.write (“:PAGE:CHAN:SMU3:INAME ‘IG” ”)

174. instr. write (“:PAGE:CHAN:SMUL:MODE V”)

175. instr.write (“:PAGE:CHAN:SMU1:FUNC VAR1”)

176. instr. write (“:PAGE:CHAN:SMU2:MODE COMM”)

177. instr.write (“:PAGE:CHAN:SMU2:FUNC CONS”)

178. instr. write (“:PAGE:CHAN:SMU3:MODE V”)

179. instr.write (“:PAGE:CHAN:SMU3:FUNC VAR2”)

180.

181. instr.write(“:PAGE:MEAS:VAR1:START 0”)

182. instr.write (“:PAGE:MEAS:VAR1:STOP 10”)

183. instr.write(“:PAGE:MEAS:VAR1:STEP 0.1”)

184. instr.write (“:PAGE:MEAS:VARL:COMP 0.1”)

185. instr.write (“:PAGE:MEAS:VAR2:START -5”)

186. instr.write (“:PAGE:MEAS:VAR2:STOP 1”)

187. instr.write (“:PAGE:MEAS:VAR2:STEP 1”)

188. instr.write (“:PAGE:MEAS:VAR2:COMP 0.01”)

189. instr.write (“:PAGE:MEAS:VAR2:POINTS 77)

190.

191. instr. write (“:PAGE:MEAS:SSTOP COMP”)

192.

193. instr.write (“:PAGE:SCON:SING”)

194. instr. write (“*WAL”)

195.

196. # Record time of measurement.

197. cur time = str(datetime.now().time())

198. formatted cur time = cur time[0:2] + cur time[3:5] + cur
_time[6:8]

199.

200. instr. write (“:FORM:DATA ASC”)

201.

202. T data = instr.query ascii values(“:DATA? ‘ID’ %)

203.

204. V data = instr.query ascii values(“:DATA? VD’ %)

205.

Approved for public release; distribution is unlimited.

28

206. # Section details writing the new found data to a file o
n the computer.

207. file = open(“%s. txt” % formatted cur time, “w”)

208.

209. file.write(“\n”)

210. file.write(“VD= 0 to 10 in 0.1 step\n”)

211. file.write(“VG= -5 to 1 in 1 step\n”)

212.

213. file.write(“NO. VD ID\n”)

214. file.write(“ V A\n”)

215.

216. i=1

217.

218. for x, y in zip(V data, I data):

219.

220. file.write(str(i) + “ “ + str(intorfloat(x)) + “
“+str(y) + “\n”)

221.

222. i=1+1

223.

224. file. close()

225.

226. cur_time = None

227. formatted cur time = None

228.

229. instr.write (“:PAGE:GLIS”)

230. instr.write (“:PAGE:GLIS:SCAL:AUTO ONCE”)

231.

239. Bkl
skl okkkkakkokkokkok ko

233, Bkl okskkkkksokokkkkkoookkok
Skl ok kR

234.

235. controller. wait (2500) # Wait 2.5 seconds before moving j

ust to make sure the device is finished collecting data
236.

2317. NewportESP301Axis (controller, 2). move (-
0. 08, absolute=False)

238. NewportESP301Axis (controller, 2).wait for stop()

239.

240. if col !'= devices LtR-1:

241. NewportESP301Axis (controller, 0). move (float (space bet
ween_columns [row] [col]), absolute=False)

242. NewportESP301Axis (controller, 0).wait for stop()

243.

244, NewportESP301Axis (controller, 2). move (0. 08, absolute=False
)

245. NewportESP301Axis (controller, 2).wait for stop()

246.

Approved for public release; distribution is unlimited

29

247. NewportESP301Axis (controller, 2). move (-
0. 08, absolute=False)

248. NewportESP301Axis (controller, 2). wait for stop()

249.

250. NewportESP301Axis (controller, 0). move (-
sum(space _between columns [row]), absolute=False)

251. NewportESP301Axis (controller, 0). wait for stop()

252.

253. if row != num of rows—1:

254.

255. NewportESP301Axis (controller, 1). move (-
gap between rows[gap counter], absolute=False)

256. NewportESP301Axis (controller, 1).wait for stop()

257. gap counter = gap counter + 1

258.

259. elif row == num of rows—1:

260.

261. NewportESP301Axis (controller, 1). move (sum(gap between row
s), absolute=False)

262. NewportESP301Axis (controller, 1).wait for stop()

263.

264. NewportESP301Axis (controller, 2). move (0. 08, absolute=False)

265. NewportESP301Axis (controller, 2). wait for stop()

266.

267. else:

268.

269. print (“PROBE CONTACT ERROR: Please attempt to make proper con
tact with the device and try again.”)

270.

271. sys. exit()

272.

273. else:

274.

275. print (“ALIGNMENT ERROR: Please attempt to align the sample proper

ly by hand by adjusting the sample position and run the script again.”)

276.

2717. sys. exit()

278.

279. print (“\nRun Completed.”)

4.3 Script 3: Prober_Diode_withCheck_IldsVds.py

Script 3 is used for diode semiautomatic probing with the P200L. The program used
to run I-V tests with the Agilent 4155C semiconductor parameter analyzer and
Micromanipulator P200L semiautomatic probe station both located at ARL on
diode devices. This program automatically saves each device test as a file onto the
computer. Results files are saved to the same directory this script is located.

Approved for public release; distribution is unlimited

30

The file is named after the time the measurement was taken in HHMMSS format.

Script Location: L:\WBG Team\python_scripts\...
Language: Python, version 2.7

Script Version: 1.0

Date: 08/08/2016

POC: Randy Tompkins (randy.tompkins.civ@mail.mil)

O© 0 3 O O1 & W DN —

— =
— O

DO = = = b e e b

21.

22.
23.

24.
25.
26.
217.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.

import numpy
import visa
import sys
import time

from datetime import datetime

def intorfloat(s):

f = float(s)
i = int (f)
return i if i == f else f

. rm = visa. ResourceManager ()
. instr = rm. open resource(“GPIB0::17::INSTR”) # Connect to the 4155C

. del instr. timeout

. from instruments. newport import NewportESP301
. from instruments. newport import NewportESP301Axis

controller = NewportESP301. open serial (“COM4” , 921600) # Connect to th
e P200L

#This section sets the axis configurations. Subject to adjustment depend
ing on device size/type

NewportESP301Axis (controller, 0). trajectory=1
NewportESP301Axis (controller, 1). trajectory=1
NewportESP301Axis (controller, 2). trajectory=1

NewportESP301Axis (controller, 0). acceleration = 0.5
NewportESP301Axis (controller, 1). acceleration = 0.5
NewportESP301Axis (controller, 2). acceleration = 0.5

NewportESP301Axis (controller, 0). deceleration = 0.5
NewportESP301Axis (controller, 1). deceleration = 0.5
NewportESP301Axis (controller, 2). deceleration = 0.5

NewportESP301Axis (controller, 0). velocity = 1
NewportESP301Axis (controller, 1). velocity = 1
NewportESP301Axis (controller, 2). velocity = 0.1

Approved for public release; distribution is unlimited

31

39.
40.
41.
42.
43.
44,
45.

46.
47.

48.
49.
50.
51.
52.

53.
54.
55.
56.

57.
58.
59.
60.
61.

62.
63.
64.
65.
66.
67.
68.
69.

70.
71.
72.

73.
74.
75.
76.
7.

78.

NewportESP301Axis (controller, 0). max _velocity = 1.5
NewportESP301Axis (controller, 1). max _velocity = 1.5
NewportESP301Axis (controller, 2). max_velocity = 0.2

num_of rows = int(raw input(“Enter the number of rows: “))
devices LtR = int (raw _input(“Enter the number of devices left to right
(columns): %))

#This initializes the 2D array that represents the space between columns
between each device (left to right).

space between columns = numpy. zeros ((num_of rows, devices LtR-1))
A A AN AN AR AN NN AN AN "
#Please note that this portion of the code will change based on the mask

design and the spacing between the individual devices that will vary wi
th each design. We may also need to change the number of rows.

#IMPORTANT NOTE: These values are in mm.

#This is simply setting the values in the 2D array to the spacing betwee
n each device in each corresponding row.

space between columns [0] = [0. 150, 0. 150, 0. 175, 0. 200, 0. 225]

space between columns [1] [0. 250, 0. 250, 0. 275, 0. 300, 0. 325]

space between columns [2] [0. 350, 0. 370, 0. 380, 0. 400, 0. 430]

#This array represents the space between columns between each row (top t
o bottom).
gap between rows = [0.350, 0.400]

gap counter = 0

System attempts to check row alignment

print (“\nSystem is attempting to locate the last device in the first R
ow.)

NewportESP301Axis (controller, 2). move (-0. 08, absolute=False)
NewportESP301Axis (controller, 2). wait for stop()
NewportESP301Axis (controller, 0). move (sum(space between columns [0]), abs
olute=False)

NewportESP301Axis (controller, 0). wait for stop()
NewportESP301Axis (controller, 2). move (0. 08, absolute=False)
NewportESP301Axis (controller, 2). wait for stop()

correctly aligned row = raw input(“Is the prober probing the last devic

’ ¢ ’ . «)

e in the first ROW correctly? Type ‘yes’ or ‘no

Approved for public release; distribution is unlimited

32

79. NewportESP301Axis (controller, 2).move (0. 08, absolute=False)
80. NewportESP301Axis (controller, 2).wait for stop()
81. NewportESP301Axis(controller, 0). move (-
sum(space _between columns [0]), absolute=False)
82. NewportESP301Axis (controller, 0).wait for stop()
83. NewportESP301Axis (controller, 2). move (0. 08, absolute=False)
84. NewportESP301Axis (controller, 2).wait for stop()
85.
86. # System attempts to check column alignment
87. print (“\nSystem is attempting to locate the last device in the first C
OLUMN. ”)
88. NewportESP301Axis (controller, 2). move (0. 08, absolute=False)
89. NewportESP301Axis (controller, 2).wait for stop()
90. NewportESP301Axis (controller, 1). move (-
sum(gap between rows), absolute=False)
91. NewportESP301Axis (controller, 1).wait for stop()
92. NewportESP301Axis (controller, 2). move (0. 08, absolute=False)
93. NewportESP301Axis (controller, 2).wait for stop()

94.

95. correctly aligned column = raw input(“Is the prober probing the last de
vice in the first COLUMN correctly? Type ‘yes’ or ‘no” : %)

96.

97. NewportESP301Axis (controller, 2). move (0. 08, absolute=False)

98. NewportESP301Axis (controller, 2).wait for stop()

99. NewportESP301Axis(controller, 1). move (sum(gap between rows), absolute=Fal
se)

100. NewportESP301Axis (controller, 1).wait for stop()

101. NewportESP301Axis (controller, 2). move (0. 08, absolute=False)

102. NewportESP301Axis (controller, 2).wait for stop()

103.

104. if correctly aligned row == “yes” and correctly aligned column == “y
es” :

105.

106. instr.write (“*RST”)

107.

108. instr.write (“:PAGE:CHAN:MODE SWEEP”)

109. instr. write (“:PAGE:CHAN:SMU3:DIS”)

110. instr. write (“:PAGE:CHAN:SMU4:DIS”)

111. instr. write (“:PAGE:CHAN:VSUL:DIS”)

112. instr. write (“:PAGE:CHAN:VSU2:DIS”)

113. instr. write (“:PAGE:CHAN:VMUL:DIS”)

114. instr. write (“:PAGE:CHAN:VMU2:DIS”)

115. instr.write (“:PAGE:CHAN:SMUL:VNAME “VD” ”)
116. instr.write (“:PAGE:CHAN:SMU2:VNAME “VS’ ”)
117. instr.write(“:PAGE:CHAN:SMUL:INAME “ID” ”)
118. instr.write (“:PAGE:CHAN:SMUZ2:INAME ‘IS’ ”)
119. instr. write (“:PAGE:CHAN:SMUL:MODE V”)

120. instr.write (“:PAGE:CHAN:SMU1:FUNC VAR1”)
121. instr.write (“:PAGE:CHAN:SMU2:MODE COMM”)

Approved for public release; distribution is unlimited

33

122. instr.write (“:PAGE:CHAN:SMU2:FUNC CONS”)

123.

124. instr.write (“:PAGE:MEAS:VAR1:START 0”)

125. instr.write (“:PAGE:MEAS:VARL:STOP 5”7)

126. instr.write (“:PAGE:MEAS:VARIL:STEP 0.01”)

127. instr.write (“:PAGE:MEAS:VAR1:COMP 0.01”)

128. instr.write (“:PAGE:MEAS:VARIL:POINTS 77)

129.

130. instr.write (“:PAGE:MEAS:SSTOP COMP”)

131.

132. instr. write (“:PAGE:SCON:SING”)

133. instr. write (“*WAL”)

134.

135. instr.write (“:PAGE:GLIS”)

136. instr.write (“:PAGE:GLIS:SCAL:AUTO ONCE”)

137.

138. correctly probing = raw input(“Is the prober taking correct data? T
ype ‘yes’ or ‘no’ “)

139.

140. if correctly probing == “yes” :

141.

142. print (“\nSystem will now begin probing the sample.”)

143.

144. for row in range (0, num of rows):

145.

146. for col in range(0, devices LtR):

147.

148. kool ook ook koo kol kol ok ook kol R dokok

sekstskekskskekokokokokeskeskskskekskokokokeskokeskskskskekokokokokskskekskokskokokokokekekeskskokokokok #

: VNAME

HekeiskoksksleiokskskskeksiokskskeksokskskseokokskekekskokskeksksokokekkokkData Collectio

SWEEP”)
DIS”)
DIS”)

:DIS”)

DIS”)

:DIS”)

DIS”)

VD’
s’
‘I’
s’

VNAME
INAME
INAME

:MODE V”)

149.

N Sectionkkkkkkikkkikkikkiokkiokkikkikkikkhkkiokkiokkl
150.
151. time. sleep(2)
152.
153. instr.write (“*RST”)
154.
155. instr. write (“:PAGE:CHAN:MODE
156. instr. write (“:PAGE:CHAN:SMU3:
157. instr. write (“:PAGE:CHAN:SMU4:
158. instr. write (“:PAGE:CHAN:VSUL
159. instr. write (“:PAGE:CHAN:VSU2:
160. instr. write (“:PAGE:CHAN: VMUL
161. instr. write (“:PAGE:CHAN: VMU2:
162. instr. write (“:PAGE:CHAN: SMUL
163. instr. write (“:PAGE:CHAN:SMU2:
164. instr. write (“:PAGE:CHAN:SMUL:
165. instr. write (“:PAGE:CHAN:SMU2:
166. instr. write (“:PAGE:CHAN: SMUL
167. instr.write (“:PAGE:CHAN:SMU1

Approved for public release; distribution is unlimited

34

:FUNC VAR1”)

168. instr. write (“:PAGE:CHAN:SMU2:MODE COMM”)

169. instr.write (“:PAGE:CHAN:SMU2:FUNC CONS”)

170.

171. instr.write (“:PAGE:MEAS:VAR1:START 0”)

172. instr.write (“:PAGE:MEAS:VARL:STOP 5”7)

173. instr.write (“:PAGE:MEAS:VAR1:STEP 0.01”)

174. instr.write (“:PAGE:MEAS:VAR1:COMP 0.01”)

175. instr.write (“:PAGE:MEAS:VAR1:POINTS 77)

176.

177. instr.write (“:PAGE:MEAS:SSTOP COMP”)

178.

179. instr. write (“:PAGE:SCON:SING”)

180. instr. write (“*WAL”)

181.

182. # Record time of measurement.

183. cur time = str(datetime.now().time())

184. formatted cur time = cur time[0:2] + cur time[3:5] + cur
time[6:8]

185.

186. instr. write (“:FORM:DATA ASC”)

187.

188. I data = instr.query ascii values(“:DATA? ‘ID’ “)

189.

190. V _data = instr.query ascii values(“:DATA? ‘VD’ %)

191.

192. # Section details writing the new found data to a file o
n the computer.

193. file = open(“%s. txt” % formatted cur time, “w”)

194.

195. file.write(“\n”)

196. file.write(“VD= 0 to 5 in 0.01 step\n”)

197.

198. file.write(“NO. VD ID\n”)

199. file.write(“ V A\n”)

200.

201. i=1

202.

203. for x, vy in zip(V data, I data):

204.

205. file.write(str(i) + “ “ + str(intorfloat(x)) + “
“+ str(y) + “\n”)

206.

207. i=1+1

208.

209. file. close()

210.

211. cur_time = None

212. formatted cur time = None

213.

Approved for public release; distribution is unlimited

35

214. instr.write(“:PAGE:GLIS”)

215. instr.write (“:PAGE:GLIS:SCAL:AUTO ONCE”)

216.

217. Btk oskkksokiokkskkoookkok
Rkl ok ok ok

218. Bkl ookl
skl ok

219.

220. controller. wait (2500) # Wait 2.5 seconds before moving j

ust to make sure the device is finished collecting data
221.

222. NewportESP301Axis (controller, 2). move (-
0. 08, absolute=False)

223. NewportESP301Axis (controller, 2).wait for stop()

224.

225. if col !'= devices LtR-1:

226. NewportESP301Axis (controller, 0). move (float (space bet
ween_columns [row] [col]), absolute=False)

2217. NewportESP301Axis (controller, 0).wait for stop()

228.

229. NewportESP301Axis (controller, 2). move (0. 08, absolute=False
)

230. NewportESP301Axis (controller, 2).wait for stop()

231.

232. NewportESP301Axis (controller, 2). move (-
0. 08, absolute=False)

233. NewportESP301Axis (controller, 2). wait for stop()

234.

235. NewportESP301Axis (controller, 0). move (-
sum(space between columns [row]), absolute=False)

236. NewportESP301Axis (controller, 0). wait for stop()

237.

238. if row != num of rows—1:

239.

240. NewportESP301Axis (controller, 1). move (-
gap between rows[gap counter], absolute=False)

241. NewportESP301Axis (controller, 1).wait for stop()

242. gap counter = gap counter + 1

243.

244. elif row == num of rows—1:

245.

246. NewportESP301Axis (controller, 1). move (sum(gap between row
s), absolute=False)

247. NewportESP301Axis (controller, 1).wait for stop()

248.

249. NewportESP301Axis (controller, 2). move (0. 08, absolute=False)

250. NewportESP301Axis (controller, 2). wait for stop()

251.

252. else:

Approved for public release; distribution is unlimited

36

254. print (“PROBE CONTACT ERROR: Please attempt to make proper con
tact with the device and try again.”)

255.

256. sys. exit()

257.

258. else:

259.

260 print (“ALIGNMENT ERROR: Please attempt to align the sample proper
1y by hand by adjusting the sample position and run the script again.”)

261.

262. sys. exit ()

263.

264. print (“\nRun Completed.”)

4.4 Example Results Text File

The following is the results text file for an lgs—Vas test on a HEMT:

1.

2. VD=0 to 10 in 0.1 step
3. VG= -5 to 1 in 1 step
4. NO. VD ID

5 VA

6. 1 0 0.00018206

7. 2 0.1 0.00018476
8. 3 0.2 0.00018612
9. 4 0.3 0.00019228
10. 5 0.4 0.00019443
11. 6 0.5 0.0001943
12. 7 0.6 0.00019716
13. 8 0.7 0.00020149
14. 9 0.8 0.00019876
15. 10 0.9 0.00020181
16. 11 1 0.00020634
17. 12 1.1 0.00020678
18. 13 1.2 0.00020586
19. 14 1.3 0.00021149
20. 15 1.4 0.00021184
21. 16 1.5 0. 00020952
22. 17 1.6 0.00021122
23. 18 1.7 0.00021476
24. 19 1.8 0.00021004
25. 20 1.9 0.00021208
26. 21 2 0.00021608
27. 22 2.1 0.00021551
28. 23 2.2 0.00021327
29. 24 2.3 0.00021831

Approved for public release; distribution is unlimited.

37

30. 25 2.4 0.00021816
31. 26 2.5 0.00021462
32. 27 2.6 0.0002158
33. 28 2.7 0.00021889
34.°29 2.8 0.00021358
35. 30 2.9 0.00021504
1.

X.

X. .

705. 700 9.3 0.0040164
706. 701 9.4 0.0040168
707.702 9.5 0.0040184
708. 703 9.6 0.0040128
709. 704 9.7 0.0040118
710.705 9.8 0.0040148
711.706 9.9 0.0040129
712. 707 10 0. 0040082

5. Conclusion

We successfully integrated the Micromanipulator P200L semiautomatic probe
station with our 4155 semiconductor parameter analyzer to add automation to I-V
testing of electronic devices such as diodes and HEMTs. The semiautomatic probe
station will save time as well as allow for testing of a large number of devices on a
given sample in a timely manner. This effort required extensive programming using
the Python programming language, where this technical report will serve as a
reference to both current and future users.

6. Future Work and Improvements

Future work and possible improvements are dependent on the user. The scripts
described in this technical report are written in a way so that they are very adaptable
to many different device types, geometries, and measurements. Different users are
encouraged to generate new ideas that can be implemented into the scripts to
improve upon it. In terms of current foreseeable future improvements, the Tektronix
370A programmable curve tracer can also be implemented into the system to
complement the 4155C. The 370A is used for high-voltage measurements up to
2000 V. The 370A will have the exact same logic and process as the 4155C; the
only difference is that the GPIB commands that are written to the 4155C will be
replaced with a new set of commands with different syntax for the 370A. This new
set of commands can be found in the 370A operator’s manual.*

Approved for public release; distribution is unlimited.

38

7. References
1. Agilent Technologies 4155C/4156C semiconductor parameter analyzer GPI1B
command reference. Santa Clara (CA): Agilent Technologies; 2004.

2. Casagrande S. InstrumentKit. 2016 [accessed 2016 Nov 29].
https://instrumentkit.readthedocs.io/en/latest/intro.html.

3. ESP301 integrated 3-Axis motion controller/driver user’s manual. Irvine (CA):
Newport; 2014.

4. Operator manual, 370A, programmable curve tracer. Beaverton (OR): Sony
Tektronix; 1989.

Approved for public release; distribution is unlimited.

39

https://instrumentkit.readthedocs.io/en/latest/intro.html

List of Symbols, Abbreviations, and Acronyms

1-D 1-dimensional

2-D 2-dimensional

ARL US Army Research Laboratory
GPIB general-purpose interface bus
HEMT high electron mobility transistor
I-V current-voltage

ul user interface

USB universal serial bus

Approved for public release; distribution is unlimited.

40

1 DEFENSE TECHNICAL
(PDF) INFORMATION CTR
DTIC OCA

2 DIRECTOR
(PDF) US ARMY RESEARCH LAB
RDRL CIO L
IMAL HRA MAIL & RECORDS
MGMT

1 GOVT PRINTG OFC
(PDF) A MALHOTRA

1 DIRECTOR
(PDF) US ARMY RESEARCH LAB
RDRL SED E
R TOMPKINS

Approved for public release; distribution is unlimited.

41

INTENTIONALLY LEFT BLANK.

Approved for public release; distribution is unlimited.

42

	List of Figures
	1. Introduction
	2. Micromanipulator P200L Semiautomatic Probing Station
	3. 4155C Setups
	3.1 Wentworth Manual Probing Station
	3.1.1 Run the I-V Test
	3.1.2 Run the Ids–Vgs Test
	3.1.3 Run the OFF-State Breakdown Voltage Test
	3.1.4 Choose the Device Type (“hemt” or “diode”)
	3.1.5 Set the I-V Test Parameters
	3.1.6 Set the Ids–Vgs Test Parameters
	3.1.7 Set the OFF-State Breakdown Voltage Test Parameters
	3.1.8 Display User Input Test Parameters
	3.1.9 Exit Program

	3.2 Micromanipulator P200L Semiautomatic Probing Station

	4. Scripts and Text Files
	4.1 Script 1: HEMT_Diode_toComputer_withInterface_All3.py
	4.2 Script 2: Prober_HEMT_withCheck_IdsVds.py
	4.3 Script 3: Prober_Diode_withCheck_IdsVds.py
	4.4 Example Results Text File

	5. Conclusion
	6. Future Work and Improvements
	7. References
	List of Symbols, Abbreviations, and Acronyms

