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1.0  SUMMARY 
 
 This report addresses a series of simulations of turbulent, multi-species flow fields 
surrounding a sphere. The purpose of these simulations is to validate our capability for using the 
Large Eddy Simulation with LInear Eddy Modeling in 3 Dimensions (LESLIE3D) multiphase 
physics computer program. A high Reynolds number flow field is computed at Mach 2.0, and a 
low Reynolds number flow field is calculated at Mach 0.1. The former flow field is strongly 
shocked while the latter flow field is shock wave free. In each test calculation, the physics of the 
flow field is examined, and the drag coefficients are calculated via post-processing for comparison 
with data. At the same time, drag post-processor algorithms are validated. 
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2.0  INTRODUCTION 
 
 During the past three decades, research in the field of computational fluid dynamics (CFD) 
has shown remarkable progress. CFD computer codes are now widely applied in the commercial 
world for aircraft design with little requirement for wind tunnel testing. A wide range of flight 
conditions for subsonic, transonic, supersonic and hypersonic flight can now be addressed by 
continuum based CFD codes at nominal cost. The inclusion of more complex equations of state 
and finite rate chemical reaction algorithms allow the physics of propulsion systems to be solved 
such as the burning of fuel in gas turbine combustors. Intricate multiphase physics equations 
couple the behavior of gas phase CFD algorithms with dispersed fields of solid particles and/or 
liquid droplets. This innovation, associated with more recent efforts, allows the numerical analysis 
of the environment within burning solid rocket motors. Because of its influence on chemistry and 
on dispersed particle/droplet fields, turbulence becomes a dominant factor in the solution of 
engineering problems. Within the past decade, Large Eddy Simulation (LES) has evolved to 
become a major force in solving many types of multiphase problems. Modern LES advances 
beyond the older Reynolds Averaged Navier-Stokes (RANS) turbulence models by exploiting 
mathematical similarity between the resolved Leonard stress and the modeled subgrid stress.  
Through the use of proper closure terms, modern LES algorithms can now capture the correct rates 
for finite rate chemical reactions. All of these capabilities exist within LESLIE3D, the Large Eddy 
Simulation with LInear Eddy model in 3 Dimensions, a computer code developed by Professor 
Suresh Menon at the Georgia Institute of Technology.[1]  
 
 Guided by the technological needs of the Munitions Directorate, over the past fourteen 
years LESLIE3D has evolved from being designed for subsonic combustion applications to a 
versatile code suited for all flight regimes with dense multiphase fields. Its crowning achievement 
is found in its shock turbulence algorithms. In earlier days, shock capturing algorithms held a 
distinct conflict of interest with turbulence simulation algorithms. Shock capturing methods are 
overly dissipative tending to wash subtle turbulent fluctuations out of the numerical flow field. On 
the other hand, turbulence simulation schemes often apply centered difference stencils. Centered 
stencils do not respect the directionality of acoustic waves in the flow field causing destructive 
oscillations near shock waves. Careful research culminating in 2005 produced the hybrid scheme 
employed by LESLIE3D to combine a set of low dissipation shock capturing schemes with the 
highly accurate Locally Dynamic subgrid Kinetic energy Model (LDKM) developed by Professor 
Suresh Menon. These algorithms are core capabilities installed within the parallel, multi-block 
version of LESLIE3D applied for the problems discussed here. 
 
 An issue that routinely confronts computational physics computer codes is that of code 
validation. Without getting into details, validation is intended to ensure that the computer solution 
generated for a particular problem renders results that compare favorably either with experimental 
results or with archived or exact solutions. For the standpoint of the computational physicist, 
physics computer codes should be developed based on “unit experiments” that elucidate the core 
physics behind the problem in question. These experiments are highly controlled and above all, 
have repeatable results that form the foundation of a validation dataset. The impression of 
validation held by the project engineer (or the customer) is often different. The customer often 
views validation as involving the comparison of code results for a much larger, less well controlled 
test configuration. In many cases, the type of test performed is not truly repeatable. The statistical 



3 
Distribution A 

variation for measured parameters may be much larger. As a result, comparisons between test and 
computer code results may differ to a greater degree. In many cases the differences result from 
unknown or imprecisely known aspects of the test. For example, the precise location of a solid 
wall or say, an accurate representation of the surface roughness of a wall may not be known. 
Secondly, the same parameter may change between different test realizations. Addressing this type 
of uncertainty goes beyond the basic computational physics equations. The field of uncertainty 
quantification (UQ) is required to address these issues. The interested reader is referred to [2] for 
a discussion of this field. 
 
 At first glance, validation certainly encompasses the performance of the computational 
physics computer code, but it also must address the post-processing algorithms used to transform 
code results into usable engineering parameters. As an example, many CFD codes produce files 
containing say, pressure, temperature and velocity components at each point in the flow field. 
These are critical physics properties of the flow field, but they are, in many cases, not directly 
useful to the engineer. Instead, the engineer requires knowledge of the force components (lift and 
drag) or aerodynamic moments. Also, it may be desirable to know the rotational character of the 
flow. In each case, the data provided by the computational physics computer program must be 
post-processed to extract the required data. This process involves algorithms that also require 
validation. 
 
 Our outstanding project needs involve the simulation of high speed, turbulent flow around 
solid bodies where flow separation may occur. It is important to compute forces on this type of 
configuration, so we have selected a sphere as the solid body, and our task is to compute the time 
varying forces exerted on it by the flow field. By comparing the average drag coefficient exhibited 
by the sphere against archival data, we obtain a validation point for the post-processing algorithms 
and for the user's LESLIE3D input. Documenting the results of this validation effort is the goal of 
this report. 
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3.0 METHODS, ASSUMPTIONS AND PROCEDURES 
 
3.1 Navier-Stokes Equations 
 
 An assessment of the physics of high speed flow fields under normal atmospheric 
conditions (excluding free molecular flow in rarefied air) for common finite length scales implies 
the existence of high Reynolds number flow. In a simple interpretation, the Reynolds number, a 
dimensionless quantity, represents the ratio of inertial forces to viscous forces in the flow field.[3] 
The Reynolds number is defined as 
 
                                                                      Re = 𝜌𝜌𝜌𝜌𝐿𝐿

𝜇𝜇
                                                                   (1) 

 
where 𝜌𝜌 and V are the local flow density and speed. L is the characteristic length scale, and 𝜇𝜇 is 
the dynamic viscosity. Low Reynolds numbers are indicative of flows where viscous effects are 
dominant; turbulence is unlikely. In high Reynolds number flows, inertial effects are important 
and overwhelm viscous effects. These flow fields tend to incur instability that leads to the 
formation of turbulence. All real flow fields are governed by the conservation of mass, momentum, 
energy and chemical elements. In the continuum limit, these properties are conserved by the 
Navier-Stokes equations [4], i.e., 
 
 
                                                             𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 +  𝛻𝛻 ⋅ �𝜌𝜌𝑉𝑉�⃗ � =  0                                                        (2) 

 
is the conservation of mass (or continuity equation) where 𝜌𝜌 is the density of the gas mixture and 
𝑉𝑉�⃗  is the flow velocity vector. The time coordinate is t. The momentum equation may be written as 
 

                                               𝜕𝜕�𝜌𝜌𝑉𝑉
��⃗ �

𝜕𝜕𝜕𝜕
 +  𝛻𝛻 ⋅ �𝜌𝜌𝑉𝑉�⃗ 𝑉𝑉�⃗ � +  𝛻𝛻𝛻𝛻 =  𝛻𝛻 ⋅ 𝜏𝜏                                             (3) 

 
In equation (3), the construct 𝑉𝑉�⃗ 𝑉𝑉�⃗  is the tensor (or dyad) product of the velocity vector with itself 
resulting in the second order advection tensor. The thermodynamic pressure is denoted by P. The 
final term in this equation is 𝜏𝜏, the deviatoric stress tensor. It is in this term that the viscous effects 
are included. This tensor may be written in Cartesian components as 
 

                                          𝜏𝜏 =  𝜏𝜏𝑖𝑖,𝑗𝑗 =  𝜆𝜆 �𝜕𝜕𝑢𝑢𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

� 𝛿𝛿𝑖𝑖,𝑗𝑗 +  𝜇𝜇 �𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

 +  
𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖
�                                      (4) 

 
where the velocity vector is denoted as 𝑉𝑉�⃗ = (𝑢𝑢1,𝑢𝑢2, 𝑢𝑢3)𝑇𝑇. The parameter 𝜆𝜆 is denoted as the bulk 
viscosity coefficient. Using Stoke's hypothesis, this coefficient is usually expressed as 
 
                                                                 𝜆𝜆 =  − �2

3
� 𝜇𝜇                                                               (5) 

 
Equation (3) is an expression of Newton's second law for the flow field in the absence of body 
forces. Note that equation (3) is vector valued. It actually represents three distinct scalar equations. 
The conservation of total energy is enforced by the energy equation, i.e., 
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                                         𝜕𝜕(𝜌𝜌𝜌𝜌)
𝜕𝜕𝜕𝜕

 +  
𝜕𝜕�𝜌𝜌𝑢𝑢𝑗𝑗𝐸𝐸�
𝜕𝜕𝑥𝑥𝑗𝑗

 +  
𝜕𝜕�𝑢𝑢𝑗𝑗𝑃𝑃�
𝜕𝜕𝑥𝑥𝑗𝑗

 =  
𝜕𝜕�𝜏𝜏𝑖𝑖,𝑗𝑗�
𝜕𝜕𝑥𝑥𝑖𝑖

 −  𝜕𝜕𝑞𝑞𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

                                    (6) 

 
where E is the total energy per unit mass given by 
 
                                                               𝐸𝐸 =  𝑒𝑒 +  1

2
𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖                                                           (7) 

 
Note that the summation convention is in effect over repeated indices. Also, the internal energy 
per unit mass is denoted as 
 
                                                      𝑒𝑒𝑛𝑛 =  𝑒𝑒𝑛𝑛0 +  ∫ 𝐶𝐶𝑣𝑣,𝑛𝑛

𝑇𝑇
𝑇𝑇0

�𝑇́𝑇�𝑑𝑑𝑇́𝑇                                                   (8) 
 
For a single calorically perfect gas, it is advantageous to use the form 
 
                                                                      𝑒𝑒 =  𝐶𝐶𝑣𝑣𝑇𝑇                                                                 (9) 
 
For species n, the constant volume specific heat is denoted 𝐶𝐶𝑣𝑣,𝑛𝑛 while T is the absolute temperature. 
The final term in equation (6) represents the heat flux vector defined within the fluid; specifically,  
 
                                                 𝑞𝑞𝑖𝑖 =  − 𝜅𝜅 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥𝑖𝑖
 +  𝜌𝜌∑ 𝑌𝑌𝑛𝑛𝑁𝑁

𝑛𝑛=1 ℎ𝑛𝑛𝑉𝑉𝑖𝑖,𝑛𝑛                                           (10) 
 
where 𝜅𝜅 is the thermal conductivity of the fluid, and ℎ𝑛𝑛is the sensible enthalpy of species n 
computed as 
 
                                                      ℎ𝑛𝑛 =  ℎ𝑛𝑛0  +  ∫ 𝐶𝐶𝑝𝑝,𝑛𝑛

𝑇𝑇
𝑇𝑇0

�𝑇́𝑇�𝑑𝑑𝑇́𝑇                                                (11) 
 
The system comprised of equations (2), (3) and (6) is the common system of conservative Navier-
Stokes equation, but to achieve mathematical closure, the system must include an equation of state 
such as that for a perfect gas, i.e., 
 
                                                                     𝑃𝑃 =  𝜌𝜌𝜌𝜌𝜌𝜌                                                               (12) 
 
R is the perfect gas constant; that is 
 
                                                                    𝑅𝑅 =  𝑅𝑅𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

𝑀𝑀𝑀𝑀
                                                               (13) 

 
In this case, R is written for a single species with molecular weight MW. For a mixture of N gaseous 
species, the perfect gas constant is written as 
 
                                                         𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 =  𝑅𝑅𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 ∑

𝑌𝑌𝑛𝑛
𝑀𝑀𝑀𝑀𝑛𝑛

𝑁𝑁
𝑛𝑛=1                                                    (14) 

where 𝑌𝑌𝑛𝑛 is the mass fraction of the nth species, and univR  is the universal gas constant. The 
problems considered in this report involve more than one gaseous species. LESLIE3D has been 
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generalized to include multiple species, so the system of governing equations is augmented by a 
species equation that is written as 
 
                                       𝜕𝜕(𝜌𝜌𝑌𝑌𝑛𝑛)

𝜕𝜕𝜕𝜕
 +  𝜕𝜕

𝜕𝜕𝑥𝑥𝑖𝑖
�𝜌𝜌𝑌𝑌𝑛𝑛�𝑢𝑢𝑖𝑖 +  𝑉𝑉𝑖𝑖,𝑛𝑛�� =  0,   𝑛𝑛 =  1, … ,𝑁𝑁                        (15) 

 
where 𝑉𝑉𝑖𝑖,𝑛𝑛 is the diffusion velocity defined by 
 
                                                             𝑉𝑉𝑖𝑖,𝑛𝑛 =  − �𝐷𝐷𝑛𝑛

𝑌𝑌𝑛𝑛
� 𝜕𝜕𝑌𝑌𝑛𝑛
𝜕𝜕𝑥𝑥𝑖𝑖

                                                         (16) 
 
𝐷𝐷𝑛𝑛is the diffusion coefficient for species n.[5]  
 
 In equation (4), viscosity, a key property for viscous flow fields, is computed as 
 

                                                            𝜇𝜇 =  𝜇𝜇0 �
𝑇𝑇
𝑇𝑇0
�
3 2⁄ 𝑇𝑇0+𝑆𝑆

𝑇𝑇+𝑆𝑆
                                                        (17) 

 
a relationship known as Sutherland's law where 𝜇𝜇0 and 𝑇𝑇0 are the reference viscosity and 
temperature, respectively, and S is a constant. These parameters depend on the gaseous substance 
in question. To attain highly accurate results for mixtures of gases, a viscous transport model may 
be needed. 
 
3.2  Filtered Navier-Stokes Equations for Large Eddy Simulation 
 
 Fundamentally, the Navier-Stokes equations are based upon the continuum hypothesis 
where it is assumed that mass is modeled as a mathematical continuum, not as a vast collection of 
tiny particles.[6] This assumption works quite well as long as the mean free path for molecular 
motion remains far smaller than the characteristic dimension of the immersed body. This 
assumption holds extremely well for the application described in this report. One may ask that, 
given the viability of these equations, why not solve them directly for the fluid properties of 
interest? Why resort to the added complexity of large eddy simulation? The answer to these 
questions is reliant on required grid resolution and its impact on computer memory. The reader 
may recall that the direct numerical solution of the Navier-Stokes equation is referred to as Direct 
Numerical Simulation (DNS). For DNS, if one knows the initial conditions well enough, the 
Navier-Stokes equations could, in theory, be solved to produce a highly accurate solution. The 
difficulty associated with this idea lies in grid resolution. Turbulence has a range of scales that 
must be resolved to grant an accurate solution.[7] Accordingly ,the grid must be resolved well 
enough to capture the smallest scales. This grid resolution scale as the Reynolds number raised to 
the 9/4 power.[8] That is to say, a simulation where Re = 8 million requires a grid possessing about 
3.4 x  1015 points. This figure still remains well beyond the capability of current computer designs. 
So DNS is confined to very small Reynolds numbers.  Since DNS is not a viable option, we must 
exploit the separation between the scales of fluid and filter the Navier-Stokes equations in three-
space. In doing so, we can separate the large scales of motion (for resolution via the governing 
equations) from the small scales of motion. Fluid activity at the smaller scales is modeled; thus, 
the large eddy simulation requires substantially less computational resources than does DNS. The 
mathematical development of the filtered equations is lengthy, so only the results are stated here. 
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For an in-depth discussion of the derivations, the interested reader is referred to [5]. 
 
 The filtered mass conservation equation is written as 
 
                                                             𝜕𝜕𝜌̄𝜌

𝜕𝜕𝜕𝜕
 +  𝜕𝜕(𝜌̄𝜌𝑢𝑢�𝑖𝑖)

𝜕𝜕𝑥𝑥𝑖𝑖
 =  0                                                         (18) 

 
where the overbar indicates the spatial (top hat, in this case) filter. The tilde notation indicates the 
use of mass (Favre) averaging, i.e.,  
 
                                                                       𝑢𝑢�𝑖𝑖= 𝜌𝜌𝑢𝑢𝑖𝑖

𝜌̄𝜌
                                                                 (19) 

 
The filtered momentum equation is derived by a similar process; this equation contains the 
modeled term 𝜏𝜏𝑖𝑖,𝑗𝑗

𝑠𝑠𝑠𝑠𝑠𝑠 and is written as 
 
                                      𝜕𝜕(𝜌𝜌 ¯ 𝑢𝑢�𝑖𝑖)

𝜕𝜕𝜕𝜕
 +  𝜕𝜕

𝜕𝜕𝑥𝑥𝑗𝑗
�𝜌̄𝜌𝑢𝑢�𝑖𝑖𝑢𝑢�𝑗𝑗 +  𝑃̄𝑃𝛿𝛿𝑖𝑖,𝑗𝑗 +  𝜏𝜏𝑖𝑖,𝑗𝑗

𝑠𝑠𝑠𝑠𝑠𝑠 −  𝜏𝜏𝑖𝑖𝑖𝑖� = 0                             (20) 

 
More specifically, the subgrid stress tensor is given by 
 

                                                         




















−= jiji
sgs

ji uuuu ~~
~

, ρτ                                                          (21) 

 
Due to the presence of a correlation term, the subgrid stress (21) must be modeled. The filtered 
total energy equation may be written as 
 
                         𝜕𝜕(𝜌̄𝜌𝐸𝐸�)

𝜕𝜕𝜕𝜕
 +  𝜕𝜕

𝜕𝜕𝑥𝑥𝑗𝑗
�𝜌̄𝜌𝑢𝑢�𝑗𝑗𝐸𝐸 � +  𝑢𝑢�𝑗𝑗𝑃̄𝑃 +  𝑞𝑞𝚥̄𝚥 −  𝑢𝑢�𝑖𝑖𝜏𝜏𝑗𝑗,𝑖𝑖 +  𝐻𝐻𝑗𝑗

𝑠𝑠𝑠𝑠𝑠𝑠 +  𝜎𝜎𝑗𝑗
𝑠𝑠𝑠𝑠𝑠𝑠� = 0                (22) 

 
where 
 
                                      𝑞𝑞𝚥̄𝚥 = −𝜅𝜅�𝑇𝑇�� 𝜕𝜕𝑇𝑇�

𝜕𝜕𝑥𝑥𝑗𝑗
+ 𝜌̄𝜌 ∑ 𝑌𝑌�𝑛𝑛ℎ𝑛𝑛�𝑇𝑇��𝑁𝑁

𝑛𝑛=1 𝑉𝑉�𝑖𝑖,𝑛𝑛 + 𝑞𝑞𝑗𝑗
𝑠𝑠𝑠𝑠𝑠𝑠                                    (23) 

 
The modeled terms in this case are the subgrid total enthalpy flux, the subgrid viscous work and 
the subgrid heat flux 𝑞𝑞𝑗𝑗

𝑠𝑠𝑠𝑠𝑠𝑠.[1] Respectively, these terms are mathematically defined as 
 

                                               

 





















−+



















−= iiii
sgs
i uPPuuEEuH ~~~

_~
ρ                                             (24) 
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                                                              ijjijj
sgs
i uu ,,

~
~

ττσ −=


                                                       (25) 
 
The filtered total energy per unit mass is given by 
 

                                                       
sgs

kk kuueE ++= ~~~~
2
1                                                              (26) 

 
where the subgrid kinetic energy is defined by 
 

                                                     





















−= kkkk
sgs uuuuk ~~

~
2
1                                                              (27) 

 
We can write the filtered species equation as shown below. 
 

                               
( )[ ] NnYVYuY

xt
Y sgs

ni
sgs
nininin

i

n ,,1,0~~~~)~(
,,, ==+++

∂
∂

+
∂

∂ θρρ                     (28) 

 
The two subgrid closure terms existing in equation (26) are mathematically defined as 
 

                                                         





















−= nini
sgs
ni YuYuY ~~

~
, ρ                                                          (29) 

 
the subgrid convective species flux and 

                                                  


















−= nkinni
sgs
ni YVYV ~~

,,,

~
ρθ                                                             (30) 

 
the subgrid diffusive species flux.[1] As is the gas with the other governing equations, the multi-
species perfect gas equation of state also requires filtering. The result is 
 

                                                    
( )sgs

univTRTRP += ~~ρ                                                             (31) 
 
This equation of state contains 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠, the temperature-species correlation given mathematically as 
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

∑
=





















−
=

N

n n

nnsgs

MW
TYTYT

1

~~
~

                                                       (32) 

 
The internal energy must also be filtered. It can be shown for calorically perfect gases that 
 

                                                     
( )∑

=

′∆+=
N

n
nfnnnv hYTYCe

1
,,

~~~~                                                    (33) 

 
where 𝛥𝛥ℎ′𝑓𝑓,𝑛𝑛 is the standard heat of formation at T0, a reference temperature. Specifically, 
 
                                                    𝛥𝛥ℎ′𝑓𝑓,𝑛𝑛 =  𝛥𝛥ℎ𝑓𝑓,𝑛𝑛

0  −  𝐶𝐶𝑃𝑃,𝑛𝑛𝑇𝑇0                                                     (34) 
 
 
3.3  LES Modeling Considerations for the Filtered Governing Equations 
 
 A significant investment in research time has been made to adapt the LES framework 
briefly discussed above for fully compressible flow fields. As it happens, a key aspect involved in 
formulating a compressible model entails altering the evolution equation for the subgrid kinetic 
energy. Although this equation acts, in some sense, like a governing equation, it is, in effect, a 
model, so it presented in this section of the report. An earlier form [9] of the subgrid kinetic energy 
equation is written as 
 
                             𝜕𝜕𝜌̄𝜌𝑘𝑘

𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝜕𝜕
 +  𝜕𝜕

𝜕𝜕𝑥𝑥𝑖𝑖
(𝜌̄𝜌𝑢𝑢�𝑖𝑖𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠) =  𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 −  𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠 +  𝜕𝜕

𝜕𝜕𝑥𝑥𝑖𝑖
�𝜌̄𝜌 𝜈𝜈𝑡𝑡

𝑃𝑃𝑃𝑃𝑡𝑡

𝜕𝜕𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝑥𝑥𝑖𝑖
�                    (35) 

 
where the production and dissipation terms are, as one may suspect, modeled as 
 
                                                            𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 =  − 𝜏𝜏𝑖𝑖,𝑗𝑗

𝑠𝑠𝑠𝑠𝑠𝑠 𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

                                                         (36) 

 

                                                                   𝜀𝜀 =  𝐶𝐶𝜀𝜀
𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠
3 2⁄

𝛥𝛥
                                                              (37) 

 
The parameter 𝜈𝜈𝑡𝑡is the turbulent eddy viscosity, and Pr𝑡𝑡 is the turbulent Prandtl number. The 
width of the filter is given by 𝛥𝛥, and 𝐶𝐶𝜀𝜀is a parameter that is automatically adjustable. 
 
As one may suspect, each term in this equation has a specific meaning. The first and second terms 
on the left side of the equation are the local and convective rates, respectively. On the right side of 
the equation, we have the production, dissipation and diffusion terms, respectively, for subgrid 
kinetic energy. Equation (33) is suited moreover for lower speed flows where compressibility 
effects are small.  Modifications are required for the inclusion of major compressibility. A 
modified form that does include Mach number effects may be written as 
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                          𝜕𝜕

𝜕𝜕𝜕𝜕
𝜌̄𝜌𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠 +  𝜕𝜕

𝜕𝜕𝑥𝑥𝑖𝑖
(𝜌̄𝜌𝑢𝑢�𝑖𝑖𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠) =  𝛵𝛵𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠  +  ℘𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠 +  𝑃𝑃𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠  −  𝐷𝐷𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠                   (38) 

 
The terms on the right side of (36) are the diffusion, pressure-dilatation correlation, production 
and dissipation, respectively, for subgrid kinetic energy. The diffusion, pressure-dilatation 
correlation and dissipation cannot be directly computed from resolved scale quantities, so these 
terms require modeling based, in part, upon their mathematical definitions. In the interest of 
brevity, only the final subgrid kinetic energy equation is presented here.[5] 
 

𝜕𝜕
𝜕𝜕𝜕𝜕
𝜌̄𝜌𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠 +  

𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

(𝜌̄𝜌𝑢𝑢�𝑖𝑖𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠) =  
𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

�(𝜌̄𝜌𝜈𝜈𝑡𝑡 +  𝜇𝜇)
𝜕𝜕𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝑥𝑥𝑖𝑖
 +  

𝜌̄𝜌𝜈𝜈𝑡𝑡𝑅𝑅�
𝑃𝑃𝑃𝑃𝑡𝑡

𝜕𝜕𝑇𝑇�
𝜕𝜕𝑥𝑥𝑖𝑖

� 

                                         − �1 +  𝛼𝛼℘�𝑀𝑀𝑡𝑡
𝑠𝑠𝑠𝑠𝑠𝑠�

2
�𝜌̄𝜌𝑆̃𝑆𝑘𝑘

𝑠𝑠𝑠𝑠𝑠𝑠

𝐷𝐷𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠
�
2
� �𝜏𝜏𝑖𝑖,𝑗𝑗

𝑠𝑠𝑠𝑠𝑠𝑠 𝜕𝜕𝑢𝑢�𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

 +  𝜌̄𝜌𝐶𝐶𝜀𝜀
(𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠)3 2⁄

𝛥𝛥
�              (39) 

 
where 𝜈𝜈𝑡𝑡  is the turbulent eddy viscosity; 𝜇𝜇 is the dynamic viscosity, and 𝑅𝑅� is the mass-averaged 
mixture perfect gas constant. 𝑀𝑀𝑡𝑡

𝑠𝑠𝑠𝑠𝑠𝑠 is the turbulent Mach number based upon 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠. Also, we have 
that 
 

                                                            𝑆̃𝑆 =  �1
2
�𝑆̃𝑆𝑖𝑖,𝑗𝑗𝑆̃𝑆𝑖𝑖,𝑗𝑗�                                                            (40) 

 
where 
 

                                                        𝑆𝑆𝑖𝑖,𝑗𝑗 =  1
2
�𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

 +  
𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖
�                                                        (41) 

 
A major difference existing in the new subgrid kinetic energy equation (38) is that the pressure-
dilatation correlation, as shown as the second line in the equation, is expressed as a Mach number 
dependent quantity; the parameter 𝛼𝛼℘is a model coefficient. A new expression for the dissipation 
of turbulent subgrid kinetic energy, 𝐷𝐷𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠 , is utilized, i.e., 
 

                                                             𝐷𝐷𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠  =  𝜌̄𝜌𝐶𝐶𝜀𝜀(𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠)3 2⁄

𝛥𝛥
                                                      (42) 

 
 As described above, the subgrid kinetic energy is an important property in modeling 
turbulence in the flow field. Directly dependent upon this property is the subgrid stress tensor. It 
is modeled as follows. 
 
                                     𝜏𝜏𝑖𝑖,𝑗𝑗

𝑠𝑠𝑠𝑠𝑠𝑠 =  − 2𝜌̄𝜌𝜈𝜈𝑡𝑡 �𝑆̃𝑆𝑖𝑖,𝑗𝑗 −  1
3
𝑆̃𝑆𝑘𝑘,𝑘𝑘𝛿𝛿𝑖𝑖,𝑗𝑗�  +  2

3
𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑖𝑖,𝑗𝑗                               (43) 

 
With subgrid kinetic energy provided by the solution to (38), (42) becomes mathematically closed. 
Basic model coefficients may be obtained for the turbulent eddy viscosity and dissipation. Note 
that 
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                                                              𝜈𝜈𝑡𝑡 =  𝐶𝐶𝜈𝜈√𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝛥𝛥                                                            (44) 
 
and 
 

                                                             𝜀𝜀 =  𝐶𝐶𝜀𝜀
(𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠)3 2⁄

𝛥𝛥
                                                              (45) 

 
An examination of turbulent spectra [10] shows that good values for 𝐶𝐶𝜈𝜈 and 𝐶𝐶𝜀𝜀 can be estimated 
as 
 
                                                    𝐶𝐶𝜈𝜈 =  0.067 ; 𝐶𝐶𝜀𝜀 =  0.916                                                    (46) 
 
Other values are possible for these coefficients, and dynamic evaluation of these coefficients is a 
validated option in LESLIE3D. Since this variant is not applied in the present work, it is not 
discussed here.  
 
 There are other modeling terms that arise from the filtering process. A brief discussion of 
these terms is warranted. Recall the filtered total energy equation (21). The closure terms that arise 
in this equation are the subgrid total enthalpy flux 𝐻𝐻𝑖𝑖

𝑠𝑠𝑠𝑠𝑠𝑠(22) and the subgrid viscous work 𝜎𝜎𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠(23); 

accordingly, they are modeled [5] as a sum, i.e., 
 
                             𝐻𝐻𝑖𝑖

𝑠𝑠𝑠𝑠𝑠𝑠 +  𝜎𝜎𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠 =  − (𝜌̄𝜌𝜈𝜈𝑡𝑡 + 𝜇𝜇) 𝜕𝜕𝑘𝑘

𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝑥𝑥𝑖𝑖
 −  𝜌̄𝜌𝜈𝜈𝑡𝑡𝐶𝐶𝑃𝑃

𝑃𝑃𝑃𝑃𝑡𝑡

𝜕𝜕𝑇𝑇�

𝜕𝜕𝑥𝑥𝑖𝑖
 +  𝑢𝑢�𝑗𝑗𝜏𝜏𝑖𝑖,𝑗𝑗

𝑠𝑠𝑠𝑠𝑠𝑠                      (47) 
 
All of the terms on the right side of (45) are either already modeled, known parameters or 
properties extracted from the resolved field. The first two terms on the right side are developed by 
a process known as gradient modeling since each involves a gradient computed from another flow 
property. A similar form exists for the subgrid convective species flux 𝑌𝑌𝑖𝑖,𝑛𝑛

𝑠𝑠𝑠𝑠𝑠𝑠in (28). That is 
 
                                                             𝑌𝑌𝑖𝑖,𝑛𝑛

𝑠𝑠𝑠𝑠𝑠𝑠 =  − �𝜌̄𝜌𝜈𝜈𝑡𝑡
𝑆𝑆𝑆𝑆𝑡𝑡
� 𝜕𝜕𝑌𝑌

�𝑛𝑛
𝜕𝜕𝑥𝑥𝑖𝑖

                                                      (48) 
 
In the above equations, one notes the presence of the turbulent Schmidt number 𝑆𝑆𝑆𝑆𝑡𝑡, the ratio of 
the turbulent viscous diffusion rate to the molecular diffusion rate. This dimensionless number is 
taken as unity.[1] The subgrid species diffusive flux term 𝜃𝜃𝑖𝑖,𝑛𝑛

𝑠𝑠𝑠𝑠𝑠𝑠in (29) is regarded as small in high 
Reynolds number flow fields, so it is neglected. The temperature-species correlation term 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 
(30) is also believed to be very small in magnitude, so it too is neglected as is the subgrid heat flux 
𝑞𝑞𝑗𝑗
𝑠𝑠𝑠𝑠𝑠𝑠 introduced in (22). 

 
 The equations shown in Section 2 represent a translation of physical laws (conservation 
equations, equation of state) into the language of mathematics. This process serves to formulate a 
mathematical model for fluid flow, but it is not without assumptions. This system of equations is 
built upon the continuum hypothesis, and although it is somewhat tacit, a Cartesian coordinate 
system resides under the mathematics. It is also worth mentioning that the perfect gas equation of 
state is, in fact, a model, an interpretation of reality not entirely unlike a drawing made by an 
illustrator. Regarding the scenarios for which they are designed, these equations are sound and 
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form a reliable and quantifiable mathematical model. Still, one should never lose sight of the fact 
that this system of equations is only a sketch of reality, albeit a detailed one. In Section 3, we learn 
that it is not currently possible for us to extract the level of detail inherent in this mathematical 
model. A primary inhibiter is the lack of computer memory. A more surreptitious difficulty is that 
at the same scales, we may be unable to accurately describe both boundary and initial conditions. 
For this reason, we back away from the fine scale and take a more macroscale view of the problem. 
That is to say, we apply filters to the mathematical flow field and extract “averaged” or “filtered” 
flow field properties in space. This process lacks neatness in that it introduces closure terms that 
must be modeled via a set of auxiliary equations that sit aside from the conservation laws requiring, 
in some cases, the use of empirical data and curve fitting. In the mathematical sense, closure terms 
add variables to the system. For that reason, we must add equations to the system to affect closure 
and admit a solution. Section 4 introduces specific closure term models including the time and 
space dependent model for subgrid kinetic energy, a property used to elucidate the subgrid stress 
tensor. In fact, subgrid kinetic energy is governed by an evolution equation. It is interesting to 
realize that although this equation has a production term, it is not capable of predicting the 
development of turbulence where none exists as an initial value. This equation is “sourceless”. 
One must prescribe a turbulent field, one with non-zero subgrid kinetic energy and non-zero 
velocity components, a priori. A non-turbulent flow field simply evolves with zero turbulence. 
Then one may ask, of what good is the subgrid kinetic energy equation if it cannot predict the 
creation of turbulence? The answer to this question is provided through an understanding of the 
evolution equation. The evolution equation describes how a property evolves from a presumed 
initial value. Suppose that a non-physically weak field of turbulence is prescribed at the initial 
condition. If so, the evolution equation alters this field based upon other physical inputs and 
strengthens the turbulent field. On the other hand, suppose that a turbulent field is prescribed where 
little or no turbulence really exists. In this case, based upon other physical inputs, in time the 
evolution equation depletes away the turbulent field as though none ever existed; the dissipation 
term dominates the equation. The subgrid kinetic energy equation endeavors to ensure that the 
evolving turbulent field is physically realizable. 
 
3.4  Numerical Algorithms 
 
 In the preceding three sections of this report, we introduced and discussed the Navier-
Stokes equations for multi-species, non-reacting flow fields. Then spatial filtering is applied to the 
equations, and the resulting closure terms are modeled. This development is largely mathematical; 
we have not discussed any of the numerical methods associated with solving these equations. In 
this section of the report, we present a brief discussion of the core solver methodology; the details 
are omitted because a full description of LESLIE3D’s numerical algorithms is very lengthy and 
covers many years of research. For these details, the interested reader is referred to References [5] 
and [10]. 
 
 It is worthwhile to sketch the basic layout of LESLIE3D. The version used to support the 
present work is referred to as the “SVN code”, a loose designation named for the source code 
control method used for its development. The SVN code is admittedly an older computer code that 
is used predominantly for research, and it contains the primary computational physics algorithms 
for solving a wide array of problems. A principal capability of LESLIE3D is that it is a multi-block 
computer program. The computational domain is broken apart into “blocks” of grid. As a result, 
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LESLIE3D can solve problems on irregular geometries such as winged bodies like aircraft, or on 
the spherical shell used for problems addressed later in this report. Through the Message Passing 
Interface (MPI), the data associated with these blocks can communicate with more blocks being 
assigned to a processor or core. It follows that LESLIE3D is also fully parallelized. It ports and 
operates in parallel to a wide variety of computer systems including LINUX and CRAY clusters. 
Problems of local interest have been run on over 4,000 cores. 
 
 A structured grid must be generated for each block. For three-dimensional problems, this 
requirement implies that there is a local (i, j, k) index system assigned to the block, so each grid 
point has its own ordered index triplet (i, j, k).  One can “navigate” through the grid in simple 
counting order where 
 
                       i =1, 2, …, IMAX;     j = 1, 2, …, JMAX, and k = 1, 2, …, KMAX. 
 
The index maxima IMAX, JMAX and KMAX can, with some restrictions, differ for each block. 
Moreover, it follows that each block has six sides forming a hexahedron in the computational 
plane. Specifically, a given block has a side where i =1 and a side where i =IMAX. The other 
sides of the block correspond to indices j and k. It is on each of these block sides (or interfaces) 
that either boundary conditions are enforced and/or parallel communication is established. A 
restriction on maximum block indices arises at the block sides. LESLIE3D presumes that block 
grids are constructed point-on-point. This statement implies that if two blocks communicate on a 
particular interface, then both blocks possess the same points on the interface. As a result, both 
blocks must share the same maximum lateral indices along the side shared by the blocks. That 
having been written, the “direction” of say, index i in one block need not be the same as an 
adjoining block. This property also applies to the other indices. Another restriction is that the index 
systems in each block must be right-handed in the physical space. 
 
 One may correctly surmise that LESLIE3D is a structured finite volume code. The 
hexahedral topology of a computational block extends to its interior, so the block is comprised of 
hexahedral cells. Since the grid is structured, if a block has maximum grid indices IMAX, JMAX 
and KMAX, then the cell indices will have maxima IMAX-1, JMAX-1 and KMAX-1. It follows 
that the total number of cells for the block is (IMAX-1)x(JMAX-1)x(KMAX-1). Neither the blocks 
nor the finite volumes need to be brick-shaped. LESLIE3D easily allows arbitrary geometries; a 
Cartesian grid system is not required. LESLIE3D computes cell normal vectors and metrics as 
required for both the advective and viscous terms. A general curvilinear coordinate transformation 
is inherent in the coding. A strength of the finite volume method is noted when examining the 
governing equations. Although significant manipulation is required to achieve it, the system of 
governing equations can be written in the vector form 
 

                                                              𝜕𝜕𝑄𝑄
�⃗

𝜕𝜕𝜕𝜕
 +  𝛻𝛻 ⋅ 𝐹⃗⃗𝐹 =  0                                                          (49) 

 
In this expression, 𝑄𝑄�⃗ is the vector of conserved variables i.e., 
 
                                         𝑄𝑄�⃗ = {𝜌𝜌,𝜌𝜌𝜌𝜌,𝜌𝜌𝜌𝜌,𝜌𝜌𝜌𝜌,𝜌𝜌𝜌𝜌,𝜌𝜌𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠,𝜌𝜌𝑌𝑌1, … ,𝜌𝜌𝑌𝑌𝑁𝑁}𝑇𝑇                                    (50) 
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The construct 𝐹⃗⃗𝐹 is a vector of flux vectors containing all of the advective and viscous terms 
found in the governing equations. It may be expressed as 
 

                                                       [ ]zyx FkFjFiF
 ˆ,ˆ,ˆ=                                                                (51) 

 
where 𝚤̂𝚤, 𝚥̂𝚥 and 𝑘𝑘 are the Cartesian unit vectors. On the other hand, vectors such as 𝑄𝑄�⃗ , 𝐹𝐹𝑥𝑥���⃗ , 𝐹𝐹𝑦𝑦���⃗  and 𝐹𝐹𝑧𝑧���⃗  
are not geometric vectors in three-space (ℜ3); rather, they are vectors in the sense that they are 
linear arrays of length 6+N. To see the contents of the vectors in (51), consult reference [5]. To 
achieve a versatile numerical form for (47), we integrate this equation over a finite volume cell of 
volume V. 
 

                                                 ∭ 𝜕𝜕𝑄𝑄�⃗

𝜕𝜕𝜕𝜕𝑉𝑉 𝑑𝑑𝑑𝑑 +  ∭ 𝛻𝛻𝑉𝑉 ⋅ 𝐹⃗⃗𝐹𝑑𝑑𝑑𝑑 =  0                                               (52) 
 
We note that the first integral is time independent, so for this term, the order of differentiation and 
integration may be interchanged. To the second integral, the divergence theorem is applied; hence, 
 

                                                  𝜕𝜕
𝜕𝜕𝜕𝜕∭ 𝑄𝑄�⃗𝑉𝑉  +  ∯ 𝐹⃗⃗𝐹𝜕𝜕(𝑉𝑉) ⋅ 𝑑𝑑𝑆𝑆 =  0                                               (53) 

 
An interesting fact concerning (53) is that the second integral has been reduced to an integral over 
the closed surface (denoted 𝜕𝜕(𝑉𝑉)) surrounding the finite volume cell. The leftmost integral in (53) 
contains the volume integral of the vector of conserved variables. This integral can be envisioned 
as the volume average of 𝑄𝑄�⃗  multiplied by the cell volume. With this assertion in mind, let us 
evaluate (53) for cell (i, j, k). We obtain 
 

                                                 𝑉𝑉𝑖𝑖,𝑗𝑗,𝑘𝑘
𝑑𝑑𝑄𝑄�⃗ 𝑖𝑖,𝑗𝑗,𝑘𝑘

𝑑𝑑𝑑𝑑
 =  −∯ 𝐹⃗⃗𝐹𝜕𝜕�𝑉𝑉𝑖𝑖,𝑗𝑗,𝑘𝑘�

⋅ 𝑑𝑑𝑆𝑆                                              (54) 
 
or 
 

                                               
𝑑𝑑𝑄𝑄�⃗ 𝑖𝑖,𝑗𝑗,𝑘𝑘

𝑑𝑑𝑑𝑑
 =  − � 1

𝑉𝑉𝑖𝑖,𝑗𝑗,𝑘𝑘
�∯ 𝐹⃗⃗𝐹𝜕𝜕�𝑉𝑉𝑖𝑖,𝑗𝑗,𝑘𝑘�

⋅ 𝑑𝑑𝑆𝑆                                             (55) 

 
This procedure has reduced the system of governing equations to a system of ordinary differential 
equations, one for each cell. Recalling that the finite volume cells are six-sided (hexahedral), the 
surface integral is performed over six planar sides indexed by s. By implementing this idea, we 
have that 
 

                                           
𝑑𝑑𝑄𝑄�⃗ 𝑖𝑖,𝑗𝑗,𝑘𝑘

𝑑𝑑𝑑𝑑
 =  − � 1

𝑉𝑉𝑖𝑖,𝑗𝑗,𝑘𝑘
�∑ 𝐹⃗⃗𝐹𝑖𝑖,𝑗𝑗,𝑘𝑘

𝑠𝑠6
𝑠𝑠=1 ⋅ 𝑛𝑛�𝑠𝑠𝛥𝛥𝛥𝛥                                              (56) 

 
where 𝑛𝑛�𝑠𝑠 is the outward pointing normal vector for cell side s, and 𝛥𝛥𝛥𝛥 is the area of the side. The 

construct 𝐹⃗⃗𝐹𝑖𝑖,𝑗𝑗,𝑘𝑘
𝑠𝑠 is the flux vector evaluated at side s of cell (i , j, k). Equation (56) is in what is 

referred to a semi-discrete form. The right side of this equation is discretized pending the 
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mechanics of the space scheme while the left side is an ordinary time derivative. Of course, the 
𝑉𝑉𝑖𝑖,𝑗𝑗,𝑘𝑘 are the cell volumes. The left side still remains to be discretized. 
 
 To accurately resolve wave motion in a given flow field, LESLIE3D is developed with an 
“explicit” time marching algorithm. That is to say, the solution at time step N+1 relies only upon 
the solution computed at time N. This property of the solver renders highly accurate numerical 
solutions for waves with minimal numerical dissipation, and it streamlines the structure of the 
code. A disadvantage is that often a very small time step size is required to maintain stability for 
the numerical solution. Of course, LESLIE3D adjusts its time step automatically. The time 
marching scheme involved is a relatively simple Runge-Kutta method devised for integrating 
ordinary differential equations.[12]  If we regard the right side of (54) as 𝛥𝛥𝑄𝑄 𝛥𝛥⁄ 𝑡𝑡, then this scheme 
may be written in two steps as 
 
                                                       𝑄𝑄𝑎𝑎�����⃗     =  𝑄𝑄𝑛𝑛�����⃗ + 𝛥𝛥𝑄𝑄𝑛𝑛�����⃗  
                                                                                                                                                     (57) 
                                                      𝑄𝑄𝑛𝑛+1����������⃗  =  1

2
�𝑄𝑄𝑛𝑛�����⃗ + 𝑄𝑄𝑎𝑎�����⃗ + 𝛥𝛥𝑄𝑄𝑎𝑎�����⃗ � 

 
In this case, 𝑄𝑄𝑎𝑎�����⃗  is the intermediate solution between times n and n+1.  Given the small time steps 
required for stability, this time stepping scheme is very accurate. 
 
 The larger portion of the work associated with the computation of a LESLIE3D solution 
lies in accomplishing the integration in space, i.e., calculating the sum in equation (56). Years ago, 
LESLIE3D was really developed with the use of second and fourth order MacCormack 
schemes.[5] For shock free flow fields, these schemes work quite well. Possessing very little 
dissipation, these space schemes capture turbulent motions in the flow field with great accuracy. 
Unfortunately, when LESLIE3D was adapted for shocked flowfields, the MacCormack scheme 
performed poorly (as expected). MacCormack methods are basically centered finite difference 
schemes meaning that information on the grid is weighted symmetrically in all directions. Shocked 
flow fields contain shock waves, and in the vicinity of a shock wave information does not arrive 
from all directions. Rather, the flow of information has a preferential direction. In fact, it comes 
from upstream of the shock wave, and the numerical algorithms to capture shock waves must be 
written accordingly. The associated algorithms are called upwind algorithms for this reason. There 
are many upwind algorithms divided into two major subdivisions: flux vector splitting schemes 
and flux difference splitting schemes. Generally, for problems that involve more complicated 
equations of state, flux difference splitting methods are preferred. These schemes are closely 
related to Godunov's method, but where Godonov's scheme entails an exact solution for the 
Riemann problem, flux difference splitting schemes tend to use approximate Riemann 
solvers.[13,14] The Riemann problem basically addresses the flow solution that occurs at a 
discontinuity. A discontinuity can be thought of as two volumes of gas separated by a fictitious, 
massless barrier that vanishes at the start of the problem. On one side of the barrier, we may have 
high pressure, temperature and density while on the other side, these properties have lower 
magnitudes. We apply this idea at every cell side in the flow field. Approximate Riemann solvers, 
like Roe's solver [15], provide an exact solution for this problem at each interface. Roe's method 
is of substantial theoretical interest, but it difficult to apply for complicated equations of state.[16] 
Other methods that do not so heavily rely on a mechanical characteristic wave decomposition are 



16 
Distribution A 

preferred for general application. 
 
 This effort has encountered great success with variations of the Harten, Lax and van Leer 
(HLL) family of schemes. Departing from the strict flux difference splitting form for the flux, 
i.e., 
 
                                                             𝑑𝑑𝐹⃗𝐹 =  𝛢𝛢𝛢𝛢𝑄𝑄�⃗                                                                     (58) 
 
where 𝛢𝛢 is a flux Jacobian matrix, the Riemann problem is sketched as an entity in space-time 
coordinate system. Space, in this regard, is cast in one dimension. For a simple description of the 
HLL solver, suppose a discontinuity is initiated at x = 0; the solution is formulated by one left 
traveling wave and one right traveling wave.[17] The x direction, as it were, is aligned 
perpendicular to the discontinuity (or interface). The HLL method is built upon an integral form 
of the Euler equations. Note that the Euler equations are considered in this analysis because upwind 
methods are designed for advective terms. The Navier-Stokes equations possess the same 
advective terms. The integral form is obtained as follows. The vector form (51) of our system of 
conservation laws can be written aligned perpendicular to an interface as 
 

                                                          𝜕𝜕𝑄𝑄
�⃗

𝜕𝜕𝜕𝜕
 −  𝜕𝜕𝐹⃗𝐹

𝜕𝜕𝜕𝜕
 =  0                                                                 (59) 

 
By performing a cyclical integral around the rectangular x-t region, we have that 
 

                                                   ∮ �𝜕𝜕𝑄𝑄
�⃗

𝜕𝜕𝜕𝜕
 −  𝜕𝜕𝐹⃗𝐹

𝜕𝜕𝜕𝜕
� 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  =  0                                                        (60) 

 
Hence, 
 
                                                      ∮�𝑄𝑄�⃗ 𝑑𝑑𝑑𝑑 −  𝐹⃗𝐹𝑑𝑑𝑑𝑑�  =  0                                                          (61) 
 
The multi-component, non-geometric, vectors 𝑄𝑄�⃗ and 𝐹⃗𝐹 are easily evaluated on the fixed x and fixed 
t rectangular boundaries of this region resulting in a system of equations that relate their 
components allowing the shock properties to be calculated. To the left of the left traveling wave, 
the properties are uniform with values 𝑄𝑄�⃗ 𝐿𝐿with a uniform flux vector 𝐹⃗𝐹𝐿𝐿. The wave is assumed to 
propagate with speed 𝑆𝑆𝐿𝐿. Corresponding values for the right traveling wave are 𝑄𝑄�⃗ 𝑅𝑅, 𝐹⃗𝐹𝑅𝑅and 𝑆𝑆𝑅𝑅, 
respectively. The region in between the left and right traveling waves is assumed to have the 
uniform properties 𝑄𝑄�⃗ *and flux 𝐹⃗𝐹*. Equation (61) can then be evaluated on the perimeter of the 
rectangular x-t region to show that 
 

                                                       𝑄𝑄�⃗ * = 𝐹⃗𝐹𝐿𝐿−𝑆𝑆𝐿𝐿𝑄𝑄�⃗ 𝐿𝐿−�𝐹𝐹𝑅𝑅−𝑆𝑆𝑅𝑅𝑄𝑄�⃗ 𝑅𝑅�
𝑆𝑆𝑅𝑅−𝑆𝑆𝐿𝐿

                                                      (62) 
 
as the properties vector in the region between the waves. After applying (61) across the individual 
left and right waves, it can be shown that 
 



17 
Distribution A 

                                                     𝐹⃗𝐹* = 𝑆𝑆𝑅𝑅𝐹⃗𝐹𝐿𝐿−𝑆𝑆𝐿𝐿𝐹⃗𝐹𝑅𝑅−𝑆𝑆𝐿𝐿𝑆𝑆𝑅𝑅�𝑄𝑄�⃗ 𝑅𝑅−𝑄𝑄�⃗ 𝐿𝐿�
𝑆𝑆𝑅𝑅−𝑆𝑆𝐿𝐿

                                                  (63) 
 
is the flux vector for the region between the waves. The upwind flux is then defined at the interface 
(located here at x = 0, but at the cell side in practice) as 
 

                                                     𝐹⃗𝐹𝐻𝐻𝐻𝐻𝐻𝐻 = �
𝐹⃗𝐹𝐿𝐿          0 ⩽ 𝑆𝑆𝐿𝐿
𝐹⃗𝐹*   𝑆𝑆𝐿𝐿 ⩽ 0 ⩽ 𝑆𝑆𝑅𝑅
𝐹⃗𝐹𝑅𝑅          𝑆𝑆𝑅𝑅 ⩽ 0

                                                    (64) 

 
The left and right wave speeds must still be estimated before this method is utilized. Commonly 
used wave speed estimates are provided by the work of Einfeldt.[18] These estimates are 
 
                                                     𝑆𝑆𝐿𝐿 =  min[𝑉𝑉𝐿𝐿 − 𝑐𝑐𝐿𝐿 , ⟨𝑉𝑉⟩ − ⟨𝑐𝑐⟩]                                               (65) 
 
                                                     𝑆𝑆𝑅𝑅 =  max[𝑉𝑉𝑅𝑅 + 𝑐𝑐𝑅𝑅 , ⟨𝑉𝑉⟩ + ⟨𝑐𝑐⟩]                                             (66) 
 
The angle brackets used in (65) and (66) are indicative of the use of a Roe average. The HLL 
method is not difficult to implement, but it does have one disadvantage. It does not recognize the 
presence of a contact discontinuity between the waves. Instead the solution is effectively smeared 
across this region. The contact discontinuity is added back into the Riemann problem solution in 
the HLLC solver.[19] Due to the additional complexity of this solver and in keeping with the 
brevity of this report, HLLC is not derived here. 
 
 There are many important aspects of upwind solvers that cannot be included in this brief 
report. Among these are interface variable reconstruction schemes, total variation diminishing 
(TVD) schemes (limiters) and others that allow first order upwind scheme solutions like HLL to 
be extrapolated to higher order. For those readers who are interested, refer to References [5], [11] 
and [13]; many other such references also exist in the public domain. 
 
 Another core capability of LESLIE3D's algorithms that requires mention is the hybrid 
shock-turbulence capture scheme. Earlier in the report, it is mentioned that the algorithms for 
capturing shocks clash with the algorithms for capturing turbulence in the flow field. The former 
adds a significant amount of numerical viscosity while the latter abhors it. LESLIE3D possesses a 
specially modified HLLC shock-capturing scheme that includes some of the features of the 
Piecewise Parabolic Method (PPM) [20] to create an approximate Riemann solver that has very 
little excess numerical dissipation. Secondly, LESLIE3D adapts a special switching method to 
only apply the pure upwind solver in regions where discontinuities are detected. In smooth regions 
of flow, the MacCormack scheme is employed to accurately capture turbulence. The upwind 
method is adjoined carefully to the MacCormack scheme through a special shock detection 
algorithm to ensure that the appropriate solver algorithm is turned on at the appropriate time. 
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Figure 1. Spherical grid with one block set aside for illustrative purposes 

 
 

Figure 2. Perturbation induced along an arc on the inner surface of block 10 

 
3.5  Problem Set-Up 
 
 As mentioned near the beginning of the this report, the problem at hand is to validate post-
processing computer codes developed in-house against physical parameters for a known flow 
configuration. Due to the substantial amount of available drag data, flow around a sphere is 
selected for study, and the key parameter for comparison is the average drag coefficient. In truth, 
we expect that the drag coefficient is somewhat time dependent, perhaps with the some periodic 
character depending on the Reynolds number. Naturally, a grid must be generated for this 
configuration. The general form of a spherical shell is chosen. The flow field grid exists between 
the inner and outer spherical surfaces. Figure 1 illustrates this concept. The grid is produced by 
rotating key vectors one onto another with the origin as a vertex. In particular, an octant is divided 
into three grid volumes by selecting a central vector for the octant. For example, the first octant is 
delineated by the vectors: 
                                             ( ) ( ) ( )1,0,0;0,1,0;0,0,1 321 === VVV


                                         (67) 

 
This volume can be divided into three smaller volumes of equal size and shape by adding the 
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vector 

                                                       





=

3
1,

3
1,

3
1

cV


                                                    (68) 

 
as the central vector. Accomplishing this procedure in each of the eight octants between the inner 
and outer spherical shells leads to the formation of 24 volumes or blocks. To facilitate viscous 
spacing, the grid is stretched in the radial direction equivalently in each block. A simple finite 
geometric series is used as the stretching function. The spherical shell grid has inner and outer 
radii of 0.1 meter and 1 meter, respectively. For this test case, the minimum spacing at the sphere's 
surface is set at 10-4 meter. To provide for LESLIE3D's multi-block data communication, two 
ghost surfaces are installed adjacent to each of the six boundary surfaces for each block. For those 
surfaces that communicate to an adjacent block, the ghost surfaces must precisely overlay on the 
adjacent block's grid surfaces. If there is a mismatch in the ghost point locations, errors quickly 
arise in LESLIE3D's derivative computations. A final issue that sometimes arises for this type of 
problem is that of flow symmetry. The geometry of this grid configuration is highly symmetric. In 
some cases, this symmetry can be inherited by the numerical solution creating an unlikely physical 
realization of the flow field around the sphere. Two measures are implemented to prevent this 
problem from occurring. First, the grid is altered at the sphere's surface in block 10 on the -x side 
of the sphere. A perturbation is made along an arc that extends across the block face; at the block 
boundary, the perturbation is zero while at the center of the arc, the perturbation is a maximum. 
The shape of the perturbation is that of an arc-shaped indentation on the sphere. A picture of this 
perturbation is shown in Figure 2. 
 
 Another important aspect of computing a flow solution for the sphere is that of boundary 
conditions. As one may expect, boundary conditions have to be established for this problem in 
each block. The lateral surfaces, those with constant index coordinates, (i = 1, IMAX or k = 1, 
KMAX) are communicating interfaces that exchange data with neighboring blocks. This type of 
condition is not a true boundary condition. The inner surface boundary is quite simple. A viscous 
(no-slip) boundary condition is enforced for the inner (j = 1) surface for each block. The outer 
boundary is a bit more complicated. The yz-plane separates the regions of inflow from the regions 
of outflow. Given the order in which block grids are computed, the outer (j = JMAX) boundary 
for blocks 1 through 12 is designated as an inflow. The JMAX boundary for the remaining blocks 
13 through 24 is designated as a supersonic outflow. LESLIE3D allows the user to specify the type 
of inflow and outflow as either characteristic variable for subsonic flow or interpolated for 
supersonic flow. Although the boundary conditions are specified in an input file by the user, these 
conditions are read by the pre-processor (pre_les3d) and formally set in LESLIE3D's processor 
communication files. 
 
 LESLIE3D also requires that the user specify initial conditions. For the purposes of this 
work, initial conditions are specified in an initial restart file REST_000.DATA created in the data 
directory for each block. Pressure, temperature, velocity components, subgrid kinetic energy and 
initial chemical species mass fractions must be set by the user. For the problems solved here, 
uniform flow conditions are set for the entire flow field without regard for the presence of the 
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Figure 3. Grid block arrangement for the simulation of subsonic flow outside of the sphere 

 
sphere's surface. Starting the numerical solution in this way creates a "slug flow" condition that is 
non-physical. Solver time is required for LESLIE3D to advect this non-physical slug of flow from 
the solution. For refined grids, this process can be time consuming. An approach used in this case 
is to first run the problem on a uniform (equally spaced) radial grid. This process allows larger 
time steps and can more quickly dispense with the slug flow. At this point, the numerical solution 
is remapped onto a refined grid, and LESLIE3D is restarted. The solution is, of course, incorrect 
near the body surface due to the lack of refinement, so LESLIE3D is run forward with the LES 
algorithms activated until the flow near the surface becomes stationary. Stationarity can be verified 
by examining time histories for flow variables say, vorticity magnitude and subgrid kinetic energy. 
A series of restart files taken after the flow solution has become stationary may be used to calculate 
the force time histories, e.g. the drag force in time. 
 
 The spherical grid presented above functions well for supersonic flow problems but not for 
subsonic flow. At subsonic speeds, the treatment of inflow and outflow boundaries requires special 
attention. At these boundaries, acoustic waves can enter or exit the computational domain. As a 
result, these waves can alter the numerical solution. A better grid is generated for this problem by 
projecting the outer surfaces of the component spherical blocks onto flat planes. Rectangular 
inflow and outflow blocks, numbered 25 through 32, are added to the grid to implement 
characteristic variable boundary conditions. This grid arrangement is shown in Figure 3. The blue 
block shown in Figure 3 connects the sphere to one of brick shaped inflow blocks. Similar blocks 
connect to the brick-shaped outflow blocks. The red block extends laterally to the outer boundary 
which is coded as a slip surface. LESLIE3D’s characteristic variable inflow/outflow boundary 
conditions require grid blocks with a higher degree of uniformity and more importantly, coincident 
indicial axis directions. The revised grid design satisfies these requirements. 
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4.0  RESULTS 
 

 
Figure 4. Slice pressure plot on the xy-plane of the sphere flow field at Mach 2, units in Pascals 

 
 

Figure 5. Contoured slice pressure plot on the xy-plane of the sphere flow field at Mach 2, units in Pascals 

4.1  Supersonic Test Case - Flow Field Results 
 
 The first test case considered assumes that the sphere is traveling at Mach 2, altitude 1000 
feet. The altitude data allows the freestream pressure and density to be set based upon atmospheric 
tables. The Reynolds number is computed as about 8.1 million based upon the sphere's diameter 
of 0.2 meters. At this altitude, the freestream velocity is 667.7 meters per second. Figure 4 contains 
a slice plot of the pressure field taken along the xy-plane. The curved shock wave is evident as is 
the wake region even though the grid is not zoned well in the far field. Rather the best zoning is 
adjacent to the body to support better drag calculations. Figure 5 contains a contoured slice plot of 
pressure taken from the flow field along the xy-plane at 12.5 ms solution time. In this case, the 
region near the sphere's surface is magnified for better viewing. The stagnation region is clearly 
visible, and the wake region is characterized by asymmetric contouring, just as expected. 
Temperature plots show similar behavior. A slice plot along the xy-plane is presented in Figure 6 
with absolute temperature indicated in Kelvin. The high temperature stagnation region is evident, 
but more interestingly, the gas heated in the boundary layer washes off from the sphere's surface 
and advects into the wake. This phenomenon is also visible in Figure 7, a close in view of the same 
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slice. 
 

 
Figure 6. Full field slice temperature plot of the sphere flow field at Mach 2, units in Kelvin 

 
 

Figure 7. Contoured slice temperature plot of the sphere flow field at Mach 2, units in Kelvin 

 
Figure 8. Slice plot of u velocity with contours of velocity magnitude at 13.61 ms; units are m/s 
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Figure 9. Slice plot of v velocity with contours of velocity magnitude at 13.61 ms; units are m/s 

 
Figure 10. Slice plot of w velocity with contours of velocity magnitude at 13.61 ms; units are m/s 

 
Figure 11. Time history plots for x-component of vorticity, units s-1 
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Figure 12. Time history plots for y-component of vorticity, units s-1 

 
Figure 13. Time history plots for z-component of vorticity, units s-1 

 Figure 8 is an interesting slice plot of u velocity, the component of flow in the stream (or 
x) direction. Contour lines of velocity magnitude are applied to the plot. Flow separation is evident 
since gas is observed propagating upstream in the region near the back of the sphere. A 
recirculation region is likely to exist in the wake. This idea is reinforced by Figure 9, a similarly 
designed plot of v velocity, the vertical component. In this case, we can see masses of fluid 
alternatively rising and falling in the wake indicative of a recirculating flow, at least intermittently. 
This idea is also borne out by Figure 10, a plot of w velocity, the component in the z direction. In 
this case, bright red color indicates flow out of the page while blue is in the opposite direction. 
From this evidence, it is obvious that this flow field is fully three-dimensional. 
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Figure 14. Time history plots for vorticity magnitude, units s-1 

 
Figure 15. Time history plots for subgrid kinetic energy, units m2/s2 

 Prior to post-processing solver output data for drag information, it is necessary to show 
that the flow field is stationary. That is to say, its statistical quantities are unchanging. We can 
illustrate this idea by the use of time histories of fluctuating quantities like vorticity or subgrid 
kinetic energy. Also, we examine how these properties behave on the sphere's surface in time. If 
these properties exhibit periodic behavior in time, then the flow is stationary. To examine the 
approach to stationarity, we consider 𝛺𝛺𝑥𝑥, 𝛺𝛺𝑦𝑦, 𝛺𝛺𝑧𝑧 and 𝛺𝛺, the x, y and z components of vorticity 
along with the vorticity magnitude. Also, the subgrid kinetic energy 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠 is studied. These 
properties are selected because of their strong roles in the evolution of turbulence. Time histories 
are sampled on the sphere's surface with exactly one sampling point per block. In most cases, the  
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Figure 16. Drag coefficient time history for the sphere at Mach 2.0 

 
sampling point is located at the center of the block's inner surface. The two exceptions are blocks 
12 and 18, where the sample point is located near the block boundary.  Time histories for 𝛺𝛺𝑥𝑥, 𝛺𝛺𝑦𝑦, 
𝛺𝛺𝑧𝑧 and 𝛺𝛺 are shown in Figures 11, 12, 13 and 14, respectively. Time evolution of ksgs is shown in 
Figure 15. In each of these figures, we observe that envelopes form around the time history traces 
for almost all of the sample points. The exceptions are the x-component of vorticity and with 
subgrid scale kinetic energy. Traces for 𝛺𝛺𝑥𝑥 depart from the envelope for sample points 23 and 24. 
These points are located on the trailing section of the sphere in the +y,+z octant. The excursion in 
ksgs occurs at sample point 14 on the trailing section of the sphere in the +x,-y,-z octant. Both of 
these regions are subject to vortex shedding and recirculation, so it is expected that both of these 
properties rise and fall in time. Histories formed at the remainder of the sample points exhibit 
nearly periodic behavior. Based upon these plots, the flow field is sufficiently stationary to admit 
force calculations. Force components (particularly drag, the force exerted in the +x direction) are 
obtained by post-processing a series of solution files. For the supersonic solution, a time history 
for the drag coefficient is shown in Figure 16. The archived drag coefficient for this configuration 
is essentially 1.0, so the numerical solution agrees well with this datum.[22] 
 
4.2  Subsonic Test Case - Flow Field Results 
 
 The previous test case examines the flow field around the sphere at high Reynolds number 
where the drag curve levels out. In itself, that test case is very important because high Reynolds 
number situations are widely applicable. Still, it is important to verify the performance of our 
computer codes at low Reynolds number where the drag curve exhibits changes. At a Reynolds 
number of approximately 400,000, the drag curve dips sharply due to boundary layer separation.[3] 
It is desirable to verify our computer codes for this case. The flow geometry and grids remain the 
same as in the preceding case. The freestream flow conditions do change. This problem is 
conducted at an altitude of 1,000 feet and Mach 0.1, a low speed flow condition corresponding to 
about 33.3 m/s. A major change in problem set-up involves LESLIE3D's boundary conditions.  At 



27 
Distribution A 

 
Figure 17. Slice plot of the pressure field for the subsonic solution at 43.68 ms 

 
Figure 18. Slice plot of the temperature field for the subsonic solution at 43.68 ms 

this flow speed, acoustic waves can travel in both directions, with and against the flow. Physically, 
this means that an acoustic signal can travel from the sphere to the numerical inflow boundary 
altering the flow at that location. This situation cannot happen in supersonic flow, so different 
algorithms must be used to account for this type of wave propagation. To properly capture physics 
at the inflow boundary, characteristic variable boundary conditions are employed.[21] This type 
of algorithm uses entropy, vorticity and acoustic wave information from the different flow 
directions to solve simultaneously for the inflow conditions. The outflow boundary is also 
structured in a similar manner. Characteristic boundary conditions are employed at the outflow to 
set properties at the outflow plane. Sample plots of the flow field are shown below at solution time 
43.68 ms. Figure 17 contains a slice plot of pressure while Figure 18 contains a plot of temperature. 
MacCormack’s space scheme is utilized for computing the subsonic solution since the flow field 
is turbulent but completely free of shock waves. Vortex shedding is evident in both Figures 17 and 
18; the downstream direction is to the right in both figures. Note the high pressure stagnation point 
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Figure 19. Drag coefficient time history for the sphere at Mach 0.1 

 
existing on the windward side of the sphere in Figure 17. The elevated temperature generated in 
the boundary layer is shed into the flow field at the back of the sphere. A high temperature locus 
corresponding to this region is visible in Figure 18. Vortices shed somewhat irregularly from the 
sphere creating oscillatory forces, and the drag force may be extracted by post-processing. 
Accordingly, a time history for the drag coefficient is shown in Figure 19. The drag coefficient is 
unsteady, but its average is calculated as 0.464. Note that the early time values (less than 0.02 s) 
are taken before the solution has become stationary. The average CD for this Reynolds number 
agrees quite well with the archived coefficient plot recorded in Schlicting.[3] 
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5.0  CONCLUSIONS 
 
 This report focuses on a validation study conducted for the Large Eddy Simulation with 
LInear Eddy modeling in 3 Dimensions (LESLIE3D) multiphase physics computer program. This 
computer program has application for air-to-air missile aerodynamics, so it is important to 
demonstrate user capabilities for LESLIE3D and also to ensure that solution data can be accurately 
post-processed to extract aerodynamics data. Aerodynamic drag is of principal interest in this 
report. The validation problem selected for analysis is the turbulent, multi-species flow around a 
sphere, a typical bluff body often used for validation. The flow field is computed first at Mach 2.0, 
Reynolds number 8 million and then at Mach 0.1, Reynolds number 400,000. The first problem 
involves a shocked flow field while the latter flow field is smooth. Both flow fields are turbulent 
and set at an altitude of 1,000 feet. In each case, a significant amount of work is invested in the 
generation of grids for these two flow fields. In each case, the appropriate numerical boundary 
conditions are applied for the two different flight conditions. Drag coefficients are computed from 
the numerical solution for these problems. For the supersonic problem, the average drag coefficient 
is computed as 0.973, and for the subsonic case, the average drag coefficient is calculated as 0.464. 
These results compare favorably with archived data. Accordingly, these results serve to validate 
the methodology for problem set-up employed in this work. Our post-processing algorithms are 
validated simultaneously. Validation problems recommended for future accomplishment may 
involve the oblate spheroids or hemisphere-cylinder configurations. These problems may be 
solved for hypersonic flight conditions with atmospheric chemical reactions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



30 
Distribution A 

REFERENCES 
 
1. Sankaran, V. and Menon, S., LES of spray combustion in swirling flows, Journal of Turbulence,  
Vol. 3, No. 1, 2002, pp. 011. 
 
2. Nance, D.V., Stochastic Estimation via Polynomial Chaos, Technical Report, AFRL-RW-EG-
TR-2015-108, 2015. 
 
3. Schlichting, H., Boundary-Layer Theory. McGraw-Hill, Inc., New York, New York, 1979. 
 
4. Anderson, J.D., Jr., Hypersonic and High Temperature Gas Dynamics, McGraw-Hill, Inc, New 
York, New York, 1989. 
 
5. Genin, F. Study of Compressible Turbulent Flows in Supersonic Environment by Large-Eddy 
Simulation. Doctoral Dissertation, Georgia Institute of Technology, 2009. 
 
6. Narasimhan, M.N.L., Principles of Continuum Mechanics. John Wiley & Sons, Inc., New York, 
New York, 1993. 
 
7. Tennekes, H. and Lumley, J.L., A First Course in Turbulence. The MIT Press, Cambridge, 
Massachusetts, 1992. 
 
8. Lesieur, M., Turbulence in Fluids, 2nd Revised Ed., Fluid Mechanics and Its Applications, Vol. 
1, Kluwer Academic Publishers, Boston, Massachusetts, 1990. 
 
9. Menon, S., Yeung, P.-K. and Kim, W.-W., “Effect of subgrid models on the computed interscale 
energy transfer in isotropic turbulence”, Computers & Fluids, Vol. 25, No. 2, 1996, pp. 165-180. 
 
10. Sankaran, V., Sub-grid Combustion Modeling for Compressible Two-Phase Reacting Flows. 
Doctoral Disssertation, Georgia Institure ofTechnology, 2003. 
 
11. Hirsch, C., Numerical Computation of Internal and External Flows, Vol. 2, Computational 
Methods for Inviscid and Viscous Flows. John Wiley & Sons, New York, NY, 1990. 
 
12. Burden, R.L., Faires, J.D. and Reynolds, A.C., Numerical Analysis, 2nd Ed., Prindle, Weber & 
Schmidt, Boston, Massachusetts, 1981. 
 
13. Toro, E.F., Riemann Solvers and Numerical Methods for Fluid Dynamics - A Practical 
Introduction. Addison-Wesley Publishing Co., Inc., Boston, Massachusetts, 1999. 
 
14. Sod, G.A., Numerical Methods in Fluid Dynamics: Initial and Boundary Value Problems. 
Cambridge University Press, New York, New York, 1985. 
 
15. Roe, P.L., "Approximate Riemann Solver, parameters vector and difference schemes", Journal 
of Computational Physics, Vol. 43, 1981, pp. 357-371. 
 



31 
Distribution A 

16. Glaister, P., "An approximate linearised Riemann solver for the Euler equations for real gases", 
Journal of Computational Physics, Vol. 74, 1988, pp. 382-408. 
 
17. Harten, A., Lax, P.D. and van Leer, B., "On upstream differencing and Godunov-type schemes 
for hyperbolic conservation laws", SIAM Review, Vol. 25, pp. 35-61, 1983. 
 
18. Einfeldt, B., "On Godunov-type methods for gas dynamics", SIAM Journal of Numerical 
Analysis. Vol. 25, No. 2, pp. 294-318, 1988. 
 
19. Toro, E.F., "Restoration of the contact surface in the HLL Riemann solver", Shock Waves. Vol. 
4, pp. 25-34, 1994. 
 
20. Collela, P. and Woodward, P., "The piece-wise parabolic method for hydrodynamics", Journal 
of Computational Physics. Vol. 54, pp. 174-201, 1984. 
 
21. Poinsot, T.J. and Lele, S.K., "Boundary conditions for direct simulations of compressible 
viscous flows", Journal of Computational Physics. Vol. 1, No. 1, 1992, pp. 104-129. 
 
22. Spearman, M.L. and Braswell, D.O., Aerodynamics of a Sphere and an Oblate Spheroid for 
Mach Numbers from 0.6 to 10.5 Including Some Effects of Test Conditions, NASA Technical 
Memorandum 109016, 1993. 



32 
Distribution A 

LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS 
 
This section contains brief definitions of various terms and acronyms used throughout this 
document. Only terms and acronyms whose definitions are considered uncommon are included. 
 
HLLC .........................Harten, Lax and van Leer Contact preserving 
LDKM ........................Locally Dynamic subgrid Kinetic Energy Model 
LES ............................Large Eddy Simulation 
LESLIE3D .................Large Eddy Simulation with LInear Eddy modeling in 3 Dimensions 
MUSCL ......................Monotone Upstream centered Schemes for Conservation Laws 
 
CD ...............................Drag coefficient 
CP ...............................Constant specific heat at constant pressure 
Cv ................................Constant volume specific heat capacity 
Dk ...............................Species diffusion coefficient 
E .................................Energy per unit volume 
e ..................................Internal energy per unit mass 
h..................................Sensible enthalpy 
MWn............................Molecular weight of species n 
P .................................Pressure 
qi .................................Heat flux vector component 
R .................................Species gas constant 
Runiv ............................Universal gas constant 
Re ...............................Reynolds number 
sgs ..............................Subgrid scale 
T .................................Temperature 
ui  ................................Cartesian velocity component 
V .................................Velocity magnitude 
V


................................Velocity vector 
Vik ...............................Diffusion velocity 
Yk  ...............................Species mass fraction 
 
xi .................................Cartesian space coordinate 
λ  ................................Bulk viscosity 
κ  ................................Heat transfer coefficient 
δ  ................................Delta function 
ρ ................................Density 

jiτ  ..............................Shear stress tensor 
µ ................................Dynamic viscosity 

kω ...............................Species production rate 
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