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ABSTRACT 

Satellites and several specially equipped scientific aircraft provide basin-wide 

altimetric measurements of sea ice freeboard, from which sea ice thickness can be 

estimated. Up to now, few methods have been developed to use these measurements to 

quantitatively assess the skill of predictive models of sea ice for the Arctic. This thesis 

addresses this problem, using measured freeboard from ICESat and Operation IceBridge 

(OIB). Output from the Regional Arctic System Model (RASM) is used to demonstrate 

applicability of both variance- and correlation-weighted skill scores of freeboard that 

quantify model skill and take measurement error into account. The techniques are 

demonstrated using two different RASM configurations, one using Elastic-Viscous-

Plastic (EVP) ice mechanics, the other using the Elastic-Anisotropic-Plastic (EAP) 

rheology, both simulated for 2004 and 2007, during which ICESat was in operation. 

RASM variance skill scores ranged from 0.712 to 0.824 and correlation skill scores were 

between 0.319 and 0.511. The skill scores were calculated for monthly periods and 

require little adaption to be applicable for monthly to decadal Navy forecasts of the 

Arctic. This will help improve sea ice prediction by quantifying model limitations and 

thus maximize the usefulness of ICESat-2 freeboard measurements after that satellite is 

launched next year. 
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I. INTRODUCTION 

Climate change is rapidly altering the Arctic environment, as evidenced by the 

decline of Arctic sea ice (Jeffries et al. 2013). Sea ice extent, the region of the ocean with 

greater than 15% ice concentration, has greatly reduced across the Northern Hemisphere 

during the 21st century relative to climatological records (IPCC 2013). Continuous 

records of sea ice extent measured via satellites since 1979, confirm that sea ice extent 

has retreated toward the poles during the satellite era (NSIDC 2016). Using passive 

microwave satellite data, Figures 1 and 2 have been constructed by the National Snow 

and Ice Data Center (NSIDC) and depict a downward trend of sea ice extent for both 

September and March spanning more than 37 years (NSIDC 2016). These months were 

chosen because September follows the summer melt season and typically provides yearly 

minimum monthly sea ice extent. March is the observed month for maximum sea ice 

extent following the winter growth period. In recent years, September and March 

monthly extents have been well below the 30-year monthly average, which is evidence of 

the rapid, persistent decline of Arctic sea ice over the last several decades.  

 

Figure 1.  Northern Hemisphere extent anomalies, September 2015. Source: 
NSIDC (2016). The Northern Hemisphere sea ice extent for the month 

of September 2015 is declining at a rate of –13.4 ± 2.7% per decade 
since the late 1970s. The mean sea ice extent is 6.5 million square 

kilometers. 
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Figure 2.  Northern Hemisphere extent anomalies, March 2016. Source: NSIDC 
(2016). The Northern Hemisphere sea ice extent for the month of 

March 2016 is declining at a rate of –2.7 ± 0.5% per decade since the 
late 1970s. The March mean sea ice extent is 15.5 million square 

kilometers. 

Aside from interactions with the climate system, the transpiring changes in Arctic 

sea ice will potentially have large future impacts on local ecosystems, ocean 

biochemistry, and physical processes. These are of great interest to scientists, 

governments, and the business and indigenous communities. With the decline of sea ice, 

there are opportunities for development of the Arctic as a transport route and as an oil, 

gas and fishing industry center. Nonetheless, associated with these opportunities are high 

latitude territorial claims as nations contend for natural resources within and beneath the 

Arctic Ocean. By drawing upon Department of Defense (DOD) capabilities and the 

expertise of the scientific research community, the U.S. can protect national interests and 

establish diplomatic strategies for the Arctic (Showstack 2013). 

Knowledge of sea ice thickness provides insight into how the Arctic environment 

is evolving. Sea ice thickness trends are indicative of climatic changes within the Arctic 

Circle in response to global climate warming and its linkage to mid-latitude weather 

patterns (Francis and Vavrus 2012). Satellites and aircraft equipped with altimetric 

instruments have been developed to measure sea ice freeboard, which can be used to 
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provide sea ice thickness estimates across vast sections of the Arctic Ocean. Sea ice 

freeboard is the height of floating ice, with surficial snow, that protrudes above the ocean 

surface. Knowing the freeboard, as well as the density of sea ice and snow, allows the 

thickness of sea ice to be calculated using Archimedes’ Principle. The introduction of 

altimetric measurements from satellites has greatly improved our understanding of sea ice 

thickness changes in the Arctic. However, due to measurement uncertainty as well as 

variations in snow cover and ice and snow density, thickness derived from freeboard has 

high uncertainty bounds (Kwok and Cunningham 2008; NASA 2012). Still, the collected 

freeboard data is very useful for developing and evaluating climate and sea ice forecast 

models. These classes of models are typically capable of predicting sea ice thickness, but 

the simulations have historically been difficult to evaluate with thickness derived from 

freeboard measurements due to the aforementioned uncertainty. In this thesis, we instead 

evaluate a model using just sea ice freeboard, which removes large potential sources of 

error associated with converting observed freeboard to thickness. 

This thesis focuses on the use of altimetric measurements to evaluate sea ice in 

fully-coupled, high-resolution climate and seasonal forecast models. Sea ice thickness 

and snow cover are highly variable both spatially and temporally, and the main objective 

of this thesis is to account for this heterogeneity in developing skill metrics for sea ice 

models that utilize measurements of freeboard from space using LASERs. The thesis is 

organized as follows: Chapter I provides an overview of why sea ice important in the 

global climate system and how the changing Arctic is pertinent to both U.S. national 

interests and the U.S. Navy. Chapter II introduces sea ice thickness, a brief history of sea 

ice numerical modeling and altimetric sea ice observations. Chapter III discusses the 

methodology, including the statistical analysis used to inter-compare modeled ice 

thickness with measured ice freeboard. In Chapter IV, the results from this research are 

examined followed by the conclusion in Chapter V, which presents a final set of skill 

scores applicable to both seasonal and climate model forecasts of sea ice thickness.  
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A. WHY IS ARCTIC SEA ICE IMPORTANT?  

Sea ice is a floating medium between the atmosphere and ocean of vital 

importance to the Arctic marine ecosystem, Earth’s energy budget as well as oceanic and 

atmospheric circulation (Perovich and Richter-Menge 2009). Arctic sea ice forms part of 

a dynamic coupled climate system, involving thermodynamic, biochemical and dynamic 

interactions between the atmosphere, terrestrial sources and the Arctic Ocean.  

1. Arctic Sea Ice Characteristics 

Sea ice formation, drift, deformation and melt change seasonally in the Arctic 

Ocean. Sea ice forms in fall after the surface air temperature drops below freezing and the 

top layer of the ocean cools to its freezing temperature. The ice continues to grow 

through the winter season and in the process rejects brine into the ocean, changing the 

density of the sea ice and the surrounding ocean water, which is important for mixing and 

deep ocean convection (Parkinson and Washington 1979). During this time, sea ice 

accumulates snow, which substantially increases the shortwave albedo of the surface 

(Webster et al. 2014). During the summer, the surface snow and sea ice melt, reducing 

Northern Hemisphere extent from an average of about 15 million km2 in the winter to 

below about 7 million km2 by late summer (NSIDC 2016). Inside the floating pack 

heterogeneous ice floes, or fragmented slabs of sea ice, typically vary in caliper diameter 

from about 100 to 5000 m, amongst which the sea ice morphology is assembled into level 

ice interspersed by lines of ridges and keels (Davis and Wadhams 1995; Feltham 2008; 

Rothrock and Thorndike 1984). With increased sunlight during the summer, slush and 

melt ponds develop across the floes, which greatly reduces the albedo of the surface. The 

thinnest sea ice melts the fastest, and sea ice that survives the summer melt season is 

defined as perennial, or multiyear ice.  

Sea ice thickness is an indicator of the thermodynamic and dynamic history of the 

ice, all of which vary spatially across the Arctic Basin (Kwok et al. 2005; Nolin et al. 

2002; Thorndike et al. 1975). Due to gradients in external wind and current forcing, and 

land boundaries, sea ice shears and compresses horizontally into thicker ice, and the 

mechanical strain rates and stresses within the pack may best be described with an 
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anisotropic sea ice rheology (Tsamados 2013). The anisotropic rheology of sea ice is a 

source for a network of oriented cracks, leads and ridges, formed along regions of weaker 

sea ice (Feltham 2008). Regions where sea ice floes converge, pressure ridges develop 

(Figure 3a). Conversely, regions of sea ice where floes diverge develop leads, narrow and 

long areas of open water (Figure 3b).  

 

Figure 3.  A ridge and lead in the Beaufort Sea, March 2016. Figure 3a is an 
image of a pressure ridge in the Beaufort Sea. Figure 3b is an image of 

a developing lead, horizontally tilted.  

Surface roughness is an indicator of sea ice age, where first-year ice is smooth, in 

contrast to multi-year ice, which has typically been subjected to considerable 

deformation. Figures 4 and 5 show sea ice located north of Prudhoe Bay, Alaska, in the 

Beaufort Sea. Present in the images are areas of multi-year and first-year ice, numerous 

ridges, leads, and regions of convergence and divergence, giving insight into the spatial 

heterogeneity of sea ice on scales of less than 5 km.  
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Figure 4.  Sea ice ridges in the Beaufort Sea, March 2016. This image of a sea 
ice floe was captured north of Prudhoe Bay, Alaska, and depicts the 

development of a sea ice ridge. 

 

 

Figure 5.  Leads in sea ice in the Beaufort Sea, March 2016. This image of a sea 
ice floe is north of Prudhoe Bay, Alaska, and depicts leads between the 

floes. 

2. Sea Ice Energy Balance 

Between the Northern and Southern Hemispheres, sea ice covers a region about 

2.5 times the size of Canada at any given time (NSIDC 2016). Given this vast coverage, 

sea ice is important to the Earth’s total albedo and energy budget. Snow and sea ice act as 

an insulator, limiting the absorption of shortwave radiation by the ocean in summer 

where it is covered by sea ice, and blanketing the ocean from turbulent heat transfer to a 

frigid atmosphere above in the winter. Sea ice albedo changes seasonally and inter-
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annually as a result of the formation and melting processes of sea ice and snow 

distribution on ice, as seen in Figure 6. Sea ice with large albedo values, such as for snow 

covered multi-year ice (albedo of ~0.8), reflect more of the incoming solar radiation and 

enable sea ice to survive the summer months. Bare first-year ice, with an albedo of 0.52, 

reflects significantly less solar radiation than multi-year ice, which enhances melting 

progression. Melt ponds have a range of albedo values, from 0.15 to 0.29, depending 

upon the age, depth, and type of sea ice and snow coverage during the melt period. In 

stark contrast, sea water albedo is only about 0.06, meaning it absorbs more incoming 

solar radiation than sea ice resulting in warmer sea surface temperatures. One of the main 

concerns with sea ice retreat and record low sea ice extent is the increasing period of 

exposed ocean to radiational heating in summer. This leads to warming of the upper 

ocean waters; and with a higher specific heat content than ice, the ocean is able to store 

the added heat well into the winter months, in turn delaying the onset of sea ice formation 

and melting ice from below (Perovich et al. 2007).  
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Figure 6.  Albedo of sea ice. Source: Perovich (1996). The scale represents the 
albedo of sea ice in differing physical states. Measurements were 

conducted by Perovich during a spring to summer season transition to 
observe the albedos associated with the changes in the physical states 

of sea ice. 

In addition to sea ice albedo varying both temporally and spatially, the albedo also 

depends upon the physical conditions of sea ice. Both first-year and multi-year ice 

experience growth, melt, and are subject to snow coverage. Perovich and Polashenski 

(2012) observed seven surface states of first-year ice: 1) cold snow; 2) melting snow; 3) 

pond formation; 4) pond drainage; 5) pond evolution; 6) open water; and 7) freezeup. 

Each of the states have a different albedo as seen in Figure 6, varying from 0.06 prior to 

freezeup to 0.85 in the winter. Multi-year ice has larger albedo during the melt season 
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(Figure 7), as compared to first-year ice, mainly because it does not reach the open water 

state (Perovich and Polashenski 2012). With the decline in multi-year sea ice area at a 

rate of -17.2% per decade (Comiso 2011) in the Arctic, there is a shift to more prevalent 

first year ice (Figure 8).  

 

Figure 7.  Annual evolution of sea ice albedo. Source: Perovich and Polashenski 
(2012). Time series sea ice albedo from the winter season to fall freeze 

up. The red line represents first year ice and the seven associated 
phases. The blue line represents multi-year ice.  
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Figure 8.  March sea ice categorized by age. Source: Perovich et al. (2015). 
Between the years 1981–2015, there has been a decline in multi-year 

ice and a shift to more first year ice. 

With the changes in sea ice extent, a shift from perennial to first-year ice, and the 

associated disparity of albedo values, there has been increased absorption of incoming 

solar radiation into the Arctic, sustaining the ice-albedo feedback loop (Perovich and 

Polashenski 2012). 

Between 1979 and 2005, there has been a positive trend of incoming solar 

radiation into the Arctic Ocean as seen in Figure 9 across 89% of the Arctic Ocean 

(Perovich et al. 2007). With the observed rates of sea ice retreat, Perovich’s associated 

values of solar heat flux into the ocean have increased by as much as 4% per year with a 

mean of 0.81% per year. This adds another source for sea ice ablation, well beyond the 

summer melt season. Warm waters may continue to melt sea ice from the bottom, if they 

are mixed upward into the surface mixed layer and to the bottom of sea ice (Perovich and 

Polashenski 2012). With the current pace of sea ice retreat, delay in winter formation and 

failure to accumulate to the historic levels, more ocean surface is absorbing solar 

radiation, which in turn is affecting the Arctic surface energy balance.  
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Figure 9.  Linear Trend (%/year) of solar heat flux into the Arctic Ocean. Source: 
Perovich (2007). The color scale represents average percent per year 
increase of heat input into the Arctic Ocean, with the largest increase 

in the Chukchi Sea. 

B. CONSEQUENCES OF A CHANGING ARCTIC ENVIRONMENT 

The unprecedented speed and magnitude at which the changes in the Arctic are 

occurring have both local and global reaching impacts and consequences. Given the 

observed, dramatic sea ice loss, there may be correlation between sea ice decline and 

extreme weather in the mid-latitudes and ocean circulation patterns (Francis and Vavrus 

2012). Atmospheric temperatures in the Arctic region are increasing more rapidly than in 

the rest of the world (Figure 10) supporting enhanced rates of sea ice melt and warmer 

sea surface temperatures. 
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Figure 10.  Arctic and global mean annual surface air temperature anomaly 
between the years 1900–2014.Source: NOAA (2016). The mean 

annual surface temperature, relative to the 1981–2010 mean, for the 
Arctic region has an increasing positive trend since the 1980s. The rate 

at which the Arctic surface temperatures are increasing is twice the 
rate of increase in global surface temperatures.  

Due to Arctic Amplification, which is the enhanced warming of the atmosphere 

and ocean temperatures in the Arctic relative to the mid-latitudes and tropics, the 

Northern Hemisphere atmospheric latitudinal thickness gradients are decreasing (Francis 

and Vavrus 2012). The weakened atmospheric gradient between the polar region and 

mid-latitudes has been hypothesized to have widespread atmospheric ramifications, 

including atmospheric blocking and prolonged synoptic events, including persistent 

droughts and extreme cold spells (Francis and Vavrus 2012). This synoptic regime,- 

which corresponds with the latitudinal elongation of the jet stream, has been studied in 

parallel with Arctic climate change. The change in jet stream, global weather patterns, 

and extreme weather phenomena across the Northern Hemisphere may be one 

consequence of the Artic sea ice retreat. However, given the rapid rate at which the 

Arctic is warming, and short data records available, there is uncertainty in the degree to 

which climate change observed in the Arctic is impacting mid-latitude weather (Cohen et 

al. 2014). 

The potential of longer ice-free seasons over expanding area of the Arctic Ocean 

increases the opportunity for seasonal international trade routes, fishing and commercial 

tourism industries (Smith and Stephenson 2013). Many climate models predict a shipping 
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route to be ice free during September along the Northern Sea Route (Figure 11) by the 

middle of the 21st century (Smith and Stephenson 2013). This would enable ships, 

without ice strengthened hulls to transit the Arctic (Smith and Stephenson 2013). Pending 

fruition of the ice-free environment, international trading through the Arctic would 

greatly reduce travel distances for ships moving between Pacific and Atlantic countries, 

in lieu of the Suez Canal (Figure 11).  

 

Figure 11.  Trans-polar sea routes decreased sea ice extent. Source: Arctic 
Roadmap (2014). With the decline in sea ice, shipping routes through 
the Arctic Ocean may provide the opportunity for trans-polar maritime 

routes and increased maritime activities.  
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The climate forecast of open water area furthers human involvement and 

development across the Arctic. The Arctic region has prospective natural resources, 

including oil and gas, particularly along the continental shelf (Gautier et al. 2009). Such 

increased activities and development may further disrupt the delicate environment and 

clash with the indigenous culture and their way of life in the Arctic.  

Sea ice loss also alters the local and distant ecosystems. From acting as a habitat 

for Arctic mammals, such as polar bears, walruses and ringed seals, to enabling 

subsurface phytoplankton blooms, and becoming a region of primary production for 

marine life, sea ice is an important resource to ensure the Arctic ecosystem remains in 

balance. Studies conducted by Arrigo et al. (2012) show the importance of sea ice and 

melt ponds to phytoplankton blooms, with under-ice biomass in much higher 

concentrations than in open water, during early spring. Such studies emphasize the 

importance of sea ice and melt ponds enabling solar radiation penetration into the upper 

oceanic layer, providing a favorable environment for phytoplankton growth, which is the 

base of the Artic food web. With the sea ice reduction across continental shelves and 

slopes, Arctic wildlife is at risk of having to travel longer distances for food sources.  

C. UNITED STATES’ INTEREST IN THE CHANGING ARCTIC 
ENVIRONMENT 

The Arctic is the polar region north of the line of latitude 66 degrees, 33’ 44” N, 

consisting of both the terrestrial and oceanic areas, with approximately 4 million 

inhabitants (UNEP 2013). There are eight Arctic nations, including the United States 

(Figure 12). In addition to the Arctic states, there are six organizations representing 

Arctic indigenous tribes living within the Arctic Circle (Arctic Council 2016).  
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Figure 12.  Map of the Arctic nations. Source: National Science Foundation 
(1998). The United States, Canada, Russia, Norway, Denmark, 

Finland, Sweden, and Iceland are the eight Arctic nations that encircle 
the Arctic Ocean. Russia has the longest coastline in the region and 
about two-thirds of Canada’s marine coastline lies within the Arctic. 

Five of these countries border the Arctic Ocean and have a right to claim 

territorial seas within the Arctic Circle. Their claims may extend within 12 nautical miles 

from a coast baseline, with an Exclusive Economic Zones (EEZ) extending up to 200 

nautical miles, adjacent to the territorial sea (UNCLOS 1994). Per the United Nations 

Convention on the Law of the Sea (UNCLOS), a state that has a continental shelf with a 

submarine ridge, shall not exceed more than 350 nautical miles from the territorial sea 

baseline (UNCLOS 1994). Following this UNCLOS rule, Russia has claimed that the 

Lomonosov Ridge is an extension of the Siberian continental shelf (Figure 13; New York 

Times 2007). With the evolving Artic environment, new opportunities arise for the use 

and exploration of the vast area, with risks of potential cultural and government conflicts.  
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Figure 13.  Arctic territorial claims. Source: Encyclopedia Britannica (2010). The 
Arctic territorial claims by the Arctic States. The red line represents 

the 200 nautical miles EEZ as authorized by UNCLOS. Russia’s 
proposed claim extends toward the North Pole, into international 

waters. Russia considers the Lomonosov ridge as an extension of the 
Siberian continental shelf.  

Fishing, oil, gas, mineral and tourism opportunities are all economic drivers for 

Arctic states to develop a plan and regulations within the Arctic. Estimates from the 

United States Energy Information Administration (USEIA) suggests the Arctic region 

may contain about 22% of the world’s undiscovered oil and natural gas deposits. 

Additionally, national security interests, territorial claims and resource protection have 

motivated Arctic states to develop their own capabilities in the harsh environment (2009). 

The United States National Strategy for the Arctic Region focuses on three priorities: 1) 

advancing security interests; 2) regional stewardship; and 3) international cooperation. In 

April 2014, the United States assumed the role of chairmanship of the Arctic Council 

Ministerial, allowing for the opportunity for the United States to promote Arctic policy 

(U.S. Department of State 2016). Regulation enforcement, freedom of the seas, safety, 

and advancing security are paramount for the United States in the Arctic region. The 

United States has focused efforts on Alaska and tribal communities to develop 

infrastructure supporting U.S. economic and security interests. United States’ efforts will 
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pursue proper stewardship, while respecting differing cultures and traditions, as well as 

the environment and natural resources, in an effort to continue to maintain peaceful 

negotiations of maritime boundaries.  

The Arctic is a region where relatively few people live and sustain livelihoods. 

Both ongoing research and a fundamental understanding of the region are required to 

determine long-term impacts on, and interactions between, ecosystems, indigenous 

cultures and the physical environment. International cooperation and respect is the third 

focal point of the U.S. National Strategy to avoid conflict, protect the environment and 

support emerging industry. Challenges and opportunities will arise in an otherwise 

peaceful region of the Earth as the region becomes more conducive to human activities. 

The United States is focused on protecting its national interests, respecting the 

environment and working in cooperation with other Arctic States and indigenous people 

to explore the Arctic, build a sustainable infrastructure, protect sovereign claims and 

promote safety (National Strategy for the Arctic Region 2013). 

D. U.S. NAVY RELEVANCE 

For decades, the U.S. submarine forces have trained and operated within the 

Arctic Region (Arctic Roadmap 2014). However, and as noted earlier, the Arctic 

environment is changing at an unprecedented rate. Warmer regional temperatures, longer 

sea ice melt seasons, and significant multi-year ice melt rates, together are leading to an 

increase in accessibility to the region and potential security implications for the United 

States. The U.S. national security objectives are to ensure geopolitical stability in the 

Arctic, preserve freedom of the seas, and to protect national interests and resources 

(National Strategy for the Arctic Region 2013). 

To support national objectives, the U.S. Navy, including surface and aviation 

assets, must be prepared and adequately equipped to operate within the Arctic 

environment. Armed with the initiative to increase the number of naval personnel 

operating in the Arctic by 2020, advances must be made to further understand the 

changing Arctic environment which is critical to personnel safety, effective use of assets, 

and operational support (Arctic Roadmap 2014). 
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Canada, Norway, Russia and Denmark have all increased military activity within 

the Arctic region as sea ice extent has diminished and countries pursue natural resource 

exploration (New York Times 2016). Russia is currently establishing Arctic Command 

Headquarters and opening bases across the Arctic, as shown in Figure 14 (New York 

Times 2015; Wall Street Journal 2016a; Wall Street Journal 2016b; Wall Street Journal 

2015). In 2007, Russia planted a Russian flag at the North Pole seabed as a symbolic 

claim (New York Times 2007). In the fall of 2015, Russia’s Arctic claim consisted of 

continental shelf region, extending beyond 200 nautical miles from the coastline, which is 

the internationally recognized EEZ (New York Times; 2016, United Nations 2016). This 

claim includes an additional area of 1.2 million square kilometers. While Arctic states 

may not have hostile intent, with the increase of military activities, the nations are 

making scientific advancements and progress in understanding the climate to protect their 

national interests. Additionally, Arctic nations are developing a logistical framework 

essential to maintaining year round operations in the Arctic.  

 

Figure 14.  Russian Military Bases within the Arctic Circle since 2014. Source: 
Center for Strategic and International Studies (2015) and New York 
Times (2015). Russia has established an Arctic command with the 

intent of re-opening former airfields and bases.  

The U.S. aims to maintain peaceful relations with all Arctic states. Although the 

U.S. is not a signatory to United Nations Convention on the Law of the Sea (UNCLOS), 
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intentions are to use international means, including UNCLOS, to work toward resolutions 

of potential conflicts in lieu of military force. However, in line with the National 

Strategy, U.S. military forces need the ability to train and develop skills for operating in 

the Arctic environment, using subsurface, surface and aircraft assets (DOD Arctic 

Strategy 2013). The U.S. military must obtain a level of readiness to defend U.S. 

territorial waters, national interests and protect maritime trade routes. Strategic advances, 

Arctic training and operations, gave way to the military playing a scientific role in the 

Arctic following the Cold War (Arctic Roadmap 2014). The U.S. military and U.S. Coast 

Guard have been sources of environmental observations, science and research throughout 

the Arctic, with limited military training events. Aside from the biennial Ice Exercise 

(ICEX) and the Scientific Arctic Science Program (SCICEX), which are collaborative 

submarine and scientific research exercises conducted by the U.S. Navy, few U.S. 

military operations take place in the Arctic. As stated by Vice Admiral Joseph Tofala, 

Commander, Submarine Forces: 

The (ICEX) objectives were demonstrating presence, gaining additional 
Arctic operational experience, furthering partnerships and expanding 
scientific research. (America’s Navy 2016) 

With the U.S. Navy roadmap guidance, the role of the Navy will gradually expand 

its role in the Arctic over the next two decades. This objective will enable the U.S. Navy 

to pursue continued Arctic presence, and maximize the effectiveness of the military 

operations assimilated with civilian science (Showstack 2013). 

Further research and understanding of the Arctic environment is critical to the 

U.S. military operations and National security. Current fiscal constraints are a challenge 

for the United States (Showstack 2013). Having been restrained in its involvement in the 

Arctic, the United States will now need to develop better equipment, build new 

icebreakers, establish training plans and develop guidelines for Arctic operations. To 

further aid leadership and policy makers, scientists and predictive computer models of the 

Arctic environments have a vital role in understanding the regional changes, physical 

processes, potential dangers and resources available across the region (National Strategy 

for the Arctic Region 2013). A solid understanding of the physical environment will 
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enable further understanding of equipment limitations in the region. Ice thickness needs 

to be continually observed to support maritime vessels and operations, however satellite 

coverage is non-existent near the North Pole. The U.S. Navy assets and personnel can fill 

in the gaps in science and train in this environment in support of U.S. national interests.  
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II. PREVIOUS WORK ON SEA ICE 

This chapter discusses Arctic sea ice thickness, the evolution of sea ice models 

and altimetric observations of ice freeboard. As discussed in Chapter I, the rapid decline 

of Arctic sea ice thickness can be indicative of both local and global climate changes. 

Climate models are continually being improved and observational records extended in 

efforts to understand the decline of sea ice thickness. The purpose of this section is to 

provide insight into the significance of sea ice thickness, sea ice models and observations. 

Sea ice thickness is discussed here to explain the challenges of accurately depicting 

Arctic sea ice volume from sea-ice models and from observations.  

A. ARCTIC SEA ICE THICKNESS  

Changes in Arctic and Antarctic sea ice extent can be discerned, however sea ice 

volume measurements over large distances and over longer times (i.e., interannual to 

decadal) are much more difficult to acquire. Understanding of sea ice volume changes is 

critical to understanding the rate at which sea ice is melting. Using ICESat records, a loss 

of 42% multi-year ice between 2004 and 2008 was estimated (Kwok et al. 2009). This 

rate of loss is much larger than the decrease in sea ice extent, which is about -13.4% per 

decade (NSIDC 2016). Changes in sea ice thicknesses can be attributed to advection, 

thermodynamics and mechanical processes (Thorndike 1975). The ice pack is continually 

moving, undergoing stress and strain. In regions of convergence, ridges develop, which 

increases sea ice thickness. In divergent regions, leads open, exposing warmer ocean 

waters below to cooling and new ice formation in winter, and lower surface albedos 

important for summer melt. Thermodynamically, the ice pack is influenced from both the 

ocean and atmosphere, which means sea ice thickness and volume vary with the change 

in season.  

We discussed first-year and multi-year ice in Chapter I, and here the physics of 

their evolution is described. First-year ice thickens much faster than multi-year ice 

(Figure 15; Thorndike 1975). This is because first-year ice is typically thinner than multi-

year ice, but may therefore not survive the summer melt season, unless it is subjected to 
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substantial ridging (Thorndike 1975). Arctic first-year ice is more susceptible to changes 

in atmospheric heat fluxes, corresponding to faster growth rates and onset of the freeze 

up cycle (Thorndike 1975). First-year ice starts to form as early as late August, where 

multi-year ice starts to accumulate basal ice and begins the growth cycle in November 

(Thorndike 1975; Perovich 2009). Similarly, during the melt season, first year ice melts 

sooner and faster than multi-year ice. The growth rates of both Arctic multi-year sea ice 

and first-year sea ice are illustrated in Figures 15 and 16. This is important to the 

changing Arctic environment because there is a shift from multi-year to first-year ice 

(Figure 8). Consequently, there may be longer periods and more expansive regions of 

open water in the near future within the central Arctic. 

 

Figure 15.  Central Arctic sea ice growth rates relative to ice thickness. Source: 
Thorndike et al. (1975). Sea ice growth rate, the thermodynamic 

thickening of sea ice, is dependent upon sea ice thickness. Thinner ice 
has a larger growth rate than perennial ice.  
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Figure 16.  Monthly variation in sea ice growth rates for multi-year and first-year 
ice. Source: Thorndike et al. (1975). Thin sea ice responds to changes 

in the atmospheric heat fluxes faster than thicker ice for both the 
growth and melt phases. This is evident by the significantly larger 
growth and melt rates of thin ice, and earlier onset of each process, 
whereas the thicker ice responds to atmospheric fluxes at a much 

slower rate and at a later time period. The growth rate of thick sea ice 
does not increase until November, compared to thin ice, which begins 

the growth phase mid-August.  

During the formation of sea-ice, salt and other impurities are rejected from the 

ice. This process decreases the density of the sea ice. Sea ice buoyancy may be 

approximated using Archimedes’ principle. This states that a solid placed upon a denser 

fluid will displace a fluid mass equivalent to the mass of the solid under the force of 

gravity, and then remain at rest (Heath 1897). This explains how sea-ice is buoyed atop 

denser oceanic water, and may then remain in isostatic balance (Geiger et al. 2015). This 

isostatic assumption can be used to measure sea ice thickness by measuring its freeboard 

(Geiger et al. 2015). However, there are uncertainties introduced due to intra-seasonal 

changes in the density of sea ice and sea water, heterogeneous snow loading and snow 

density, and cavernous spaces between blocks of deformed ice in ridges, which are not 

always in local isostatic balance (Geiger et al. 2015). 

Distribution and composition of sea ice thickness vary both temporally and 

spatially and can be described statistically with a thickness distribution over a given area, 

which we designate g(hi ) (Thorndike et al. 1975; Figure 17). The Ice Cloud and Land 
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Elevation Satellite (ICESat), Operation IceBridge (OIB), and Cryosphere Satellite 

(CryoSat-2) data sets have been used to estimate basin wide Arctic sea ice thickness 

distributions. The Kwok and Cunningham (2012) analysis of the ICESat data focuses on 

estimation of ice thickness along ICESat ground tracks by converting surface elevation 

changes to sea ice freeboard, and then to ice thickness using Archimedes’ Principle 

(Equation 1 in the next paragraph). Additional research has been conducted comparing 

and analyzing Cyrosat-2 measurements against ICESat, upward looking sonar 

measurements of ice draft, electromagnetic birds and IceBridge measurements of 

freeboard to further understand sea ice thickness (Hutchings et al. 2008; Kwok and 

Cunningham 2008). While such studies compare several data sets to one another to help 

reduce uncertainty in thickness estimates, the ice is assumed to be vertically 

homogeneous, which is not always true. However, in making this assumption, freeboard 

measurements can be converted into sea ice thickness as follows.  

 

Figure 17.  The sea ice thickness distribution g(hi ). Source: Hutchings et al. 
(2008). On April 5 and 9, 2007, an airborne LASER altimeter took 

measurements of sea ice freeboard, while an electromagnetic bird was 
used to detect its draft, thus deriving the sea ice thickness distribution 
along survey lines in the Beaufort Sea. Due to sea ice deformation, a 

change in sea ice thickness distribution, or redistribution, was 
observed between the two days. 
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Figure 18.  Variables used in the estimation of sea ice thickness from freeboard, 
hf, which is designated with the fb  symbol throughout this thesis. 

Source: Teleti and Luis (2013). 

Figure 18 depicts ice freeboard, hf, from Teleti and Luis (2013), which we will 

designate fb  in this thesis, derived from Archimedes’ Principle: 

 

fb  hi 1
i

w






 hs 1

s

w







,   (1) 

 

where hi  is sea ice thickness, w , i  and s  are the density of sea water, sea ice, and 

snow, respectively, fb  is freeboard of the ice and snow column floating in the water and 

hs  is freeboard snow thickness. From this equation, it is clear that accurate sea ice 

freeboard calculations are dependent upon accurate density and snow depth 

measurements, which fluctuate across Arctic Ocean and are locally heterogeneous.  

B. SEA ICE THICKNESS UNCERTAINTY 

The largest contributions to freeboard error comes from snow depth and ice 

density, which contribute up to 70% and 35% of the uncertainty in measurements, 

respectively (Zygmuntowska 2013). A small uncertainty in freeboard measurements can 

translate into large errors in sea ice thickness estimates. Though the role of snow is 

essential to maintaining sea ice thickness and multi-year ice floes by increasing the 

surface albedo of the pack, snow depth measurements across the Arctic are sporadic, at 

best. Even across short distances, snow depth distribution can vary significantly between 

seasons (Figure 19). In particular, snow depth measurements vary significantly between 
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the fall and winter seasons. In Warren’s (1999) research, the average snow depth for the 

fall and winter seasons had averages of 8.7 centimeters and 28.9 centimeters, 

respectively, across a distance of 1000 meters. These differences in mean snow depths 

can have drastically different outcomes for sea ice thickness and sea ice mass quantities.  

 

Figure 19.  Snow depths along a sea ice transect in the Arctic, where the x-axis 
indicates transect distance in meters. Source: Warren et al. (1999). 

Snow measurements were conducted along a 1000-meter snow line in 
October 1985 and March 1986, representing the fall and winter 

seasons for snow accumulation. The mean snow depth for the winter is 
28.9 cm, and for fall is 8.7 cm. 

Actual snow depth distribution, variations in snow density and snow load 

quantities are not well known. A climatological record was developed by Warren et al. 

(1999; Figure 19) incorporating 37 years of snow depth data from drifting stations, 

providing insight into snow accumulation and melting months in addition to snow depth 

quantities. Warren’s study indicated a weak negative trend in snow depths for all months 

with the largest downward trend for May. This study also indicated the largest snow 

depths are in the vicinity of hummocks, pressure ridges and sastrugi, which are regions 

where wind erosion has created ridge features upon the snow covered sea ice (Warren et 

al. 1999). Still, the depths of snow upon the aforementioned features vary spatially 
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(Warren et al. 1999). Since 1999, the Arctic has changed dramatically. Using Operation 

IceBridge (OIB) airborne radar measurements between 2009–2013, Webster et al. (2014) 

observed a decrease in snow depth of 37±29% in the Western Arctic and 56±33% in the 

Beaufort and Chukchi seas, relative to Warren et al. (1999) climatology.  

In the summer, snow on the sea ice melts forming melt ponds or mushy layer. 

Snow density is also affected by winter wind packing (Kwok and Cunningham 2008). 

The albedo for melt ponds is less than sea ice with values ranging from 0.15-0.29 which 

allows for further absorption of incoming solar radiation and further melting through the 

summer season (Perovich 1996). During the winter, these pools refreeze and have a 

fresher salinity. At smaller scales with sea ice, brine inclusions and channels are 

ubiquitous (see also Figure 26 later in this chapter) Sea salt is rejected from ice crystal 

structure during ice formation, and as a column of sea ice develops, brine inclusions and 

channels are formed within it, consisting of the brine fluid, surrounded by solid-phase 

material. The brine, which is denser than the surrounding crystal solid, does not reach 

temperatures that would allow it to freeze, and therefore gravity drainage typically causes 

the gradual rejection of brine from the ice column into the ocean. This process is not 

instantaneous, and therefore sea ice has varying density resulting from the porosity 

associated with brine channels (Wadhams 2000). 

C. A BRIEF SUMMARY OF OBSERVATIONS AND MODELING OF THE 
ARCTIC 

Sea ice extent records, prior to satellite measurements, were obtained by 

observers aboard ships, aircrafts or in-situ measurements (Teleti and Luis 2013). 

Additionally, submarines have conducted ice thickness measurements using upward 

looking sonar (Teleti and Luis 2013). Creating these records has been limited by the 

inaccessibility of the Arctic environment, has been time consuming and has often lacked 

a standardized system for recording observations (Teleti and Luis 2013). In-situ 

observations often provide limited spatial and temporal resolution of sea ice across the 

Arctic Ocean, fueling uncertainty in sea ice thickness measurements and calculations. As 

technology advances, various scientific methods are being used to further understand the 

physical processes of the cryospheric environment, including attempts to recreate 
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historical records of sea ice, as well as use of altimetric observations and numerical 

models.  

Arctic paleoclimatologists have recreated a time series of Arctic summer sea ice 

extent to determine if the reduced extent is anomalous or a cyclical process. Analyzing a 

time period of 1450 years up to the present decade, periods of relatively low and 

extensive ice coverage have been identified (Kinnard 2011). Potential forcing 

mechanisms of sea ice decay, including advection of warm air and the North Atlantic 

Oscillation bringing warmer waters to the Arctic, contribute to historical minimum sea 

ice extent values. However, the rapid 21st century decay of Arctic sea ice, exceeding the 

historical rate of decay (Figure 1 and Figure 2), suggests both anthropogenic and natural 

forces play a role in the recent decline of perennial Arctic sea ice volume (Kinnard 2011). 

Due to limited historical observations, with poor temporal and spatial resolution, 

measures to further understand the current state of the Arctic environment are essential.  

D. ALTIMETRIC OBSERVATIONS 

With the introduction of passive satellite microwave technology in the late 1970s, 

scientists were able to use regular measurements of microwave emissions from Earth’s 

surface to better understand the seasonal variability of sea ice extent (Teleti and Luis 

2013). The new satellite imagery provided spatially and temporally regular data of the 

world’s oceans covered by sea ice. These passive microwave observations modernized 

cryospheric science by providing a continuous, well documented record of sea ice cover 

of the world’s oceans. This record continues to be expanded today. Currently, using 

visible, infrared and microwave satellite imagery, sea ice extent data is available almost 

daily. While these records show an overall decline of Arctic sea ice extent, they do not 

provide insight into the changes occurring to sea ice thickness.  

Altimetric measurements conducted from satellites and aircraft have sought to fix 

this problem, providing unprecedented intra-seasonal observations, aiding in the 

understanding of pack ice. Airborne and spaceborne altimeters measure changes in sea 

ice freeboard, fb , above the sea surface, where local differences in elevation correspond 

to changes in ice thickness and hence sea ice mass (Kwok et al. 2009). Even with the use 
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of aircraft and satellites, it is difficult to continually monitor of sea ice thickness, due to 

limited spatial and temporal resolution. Though passive microwave imagery has used 

since 1979 to monitor sea ice extent, sea ice thickness measurements from remote sensing 

instruments have only been used recently. It was not until 2003, with National 

Aeronautics and Space Administration’s (NASA) launch of Ice, Cloud, and land 

Elevation Satellite, (ICESat), that the first basin-scale estimates of sea ice thickness were 

conducted using satellite altimetry (Kwok and Cunningham 2007; Farrell et al. 2009). 

1. ICESAT 

ICESat was launched in January 2003, allowing NASA to collect surface 

elevation measurements of sea ice along its orbital tracks via the use of a LASER 

altimeter with an elevation accuracy of 14 cm (Abdalati et al., 2010; Kwok et al., 2007; 

Schutz et al., 2005; Zwally 2009). The Geoscience LASER Altimeter System (GLAS), 

mounted aboard ICESat, collected elevation data intermittently between February 2003 

and October 2008 alternating between three LASERs, with both a red and green beam 

(Abdalati et al., 2010; Kwok et al., 2007). The red and green beams correspond to near 

infrared and visible wavelengths, respectively. Near infrared wavelengths are less 

sensitive to atmospheric conditions, such as clouds, as compared to green, visible 

wavelengths (Abdalati et al., 2010). To determine sea ice elevation, GLAS transmitted 

the LASER pulses (Figure 20), and counted the number of photons reflected back to the 

satellite to determine surface elevation (NASA, 2015). The data collected has been 

processed into estimates of freeboard and sea ice thickness. For the GLAS instrument, the 

horizontal sampling rate was 172 meters along track, with footprint resolution of 

approximately 65 meters (Abdalati et al., 2010; Kwok et al., 2007; Farrell et al., 2009) 

and 40 Hz sampling rate (Zwally 2002). 
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Figure 20.  Depiction of ICESat collecting data along the orbital track. Source: 
NASA (2005). NASA’s ICESat orbited the earth, using LASER to 

measure the travel time between the Earth’s surface and the satellite. 
Along the path, the LASER path is affected by clouds, aerosols and 

differing surface types.  

Limitations of ICESat included no coverage north of 86°N due to satellite 

inclination, which leaves the North Pole region void of data. Data collection periods 

during the ICESat mission were influenced by the presence of atmospheric clouds and 

aerosols, and also LASER malfunctions. Upon launch, the first two data collection 

periods, designated LASER 1A and LASER 1B, each had an 8-day repeat orbit for 

instrument calibration and validation (NSIDC, 2016). The first 10 days of LASER 2A 

conducted an 8-day orbit, and then cycled into a 91-day repeat orbit. The remaining 

operations used a 91-day repeat obit, meaning that ground tracks were repeated 

approximately every three months. ICESat’s 91-day repeat orbit comprised of 1354 along 

ground tracks, approximately 14.8 tracks per day (NSIDC, 2016). Operational LASER 

malfunctions led to varied temporal resolutions for each individual data collection 

campaign, instead of full year round coverage, as summarized in Table 1. Data collection 

durations varied in length, between 12 to 55 days, for all campaigns between 2003 and 

2008 (NSIDC, 2016). While the ICESat mission was not able to monitor sea ice 

continually for these 5 years, the orbit configuration increased sea ice coverage by 15% 

of total winter sea ice (Farrell et al., 2009).  
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Figure 21 shows an image of a twelve-day period of actual data collected from 

GLAS. From this image one can see the coverage provided, as well as the breaks in 

individual orbit retrievals resulting from atmospheric or surface disturbances.  

 

Figure 21.  ICESat Surface Elevations for the 2009 fall orbital period. Source: 
NSIDC (2014). ICEat measured sea surface elevations across the polar 

regions along its orbital track. The color scale depicts surface 
elevation height in meters; white space is void of satellite coverage. 
Gaps in satellite coverage are noted by the break in ground tracks. 

While the instrument was unable to make continuous, year round elevation 

measurements along each track, the ICESat mission helped improve the knowledge of 

spatial changes in Arctic sea ice thickness. Table 1 summarizes the 14 individual ice 

freeboard data campaigns relevant to this thesis. They include 6 spring seasons, 2 

summer seasons and 6 fall seasons.  
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Table 1.   ICESat campaign time periods and associated LASERs. Source: 
NSIDC (2016) and NASA (2016b). This table highlights ICESat 
operational dates, duration, LASER used to conduct sea surface 

elevation measurements and repeat orbit. The table is color coded to 
represent each season. Orange represents fall operations, blue is spring 
and green is for the summer operations. Gray represents data used in 

analysis presented later in this thesis.  

Campaign 

Start 

Campaign 

End 

Operational 

Days 

LASER Used Repeat 

Orbit 

Data used 

in 

Emulator 

2003‐02‐20  2003‐03‐29  38  1  8 day  No 

2003‐09‐25  2003‐11‐19  8  2A  8 day  No 

2003‐10‐04  2003‐11‐19  45  2A  91 day  No 

2004‐02‐17  2004‐03‐21  34  2B  91 day  Yes 

2004‐05‐18  2004‐06‐21  35  2C  91 day  No 

2004‐10‐03  2004‐11‐08  37  3A  91 day  Yes 

2005‐02‐17  2005‐03‐24  36  3B  91 day  No 

2005‐05‐20  2005‐06‐23  35  3C  91 day  No 

2005‐10‐21  2005‐11‐24  35  3D  91 day  No 

2006‐02‐22  2006‐03‐28  34  3E  91 day  No 

2006‐05‐24  2006‐06‐26  33  3F  91 day  No 
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2006‐10‐25  2006‐11‐27  34  3G  91 day  No 

2007‐03‐12  2007‐04‐14  34  3H  91 day  Yes 

2007‐10‐02  2007‐11‐05  37  3I  91 day  Yes 

2008‐02‐17  2008‐03‐21  34  3J  91 day  No 

2008‐10‐04  2008‐10‐19  16  3K  91 day  No 

2008‐11‐25  2008‐12‐17  23  2D  91 day  No 

2009‐03‐09  2009‐04‐11  34  2E  91 day  No 

2009‐09‐30  2009‐10‐11  12  2F  91 day  No 

 

2. Operation IceBridge 

Operation IceBridge (OIB) is a NASA led mission involving the use of aircraft 

with a mounted altimeter instrument measuring sea ice elevation along the flight path 

(Farrell et al., 2012). OIB supports ongoing NASA cryospheric data collection operations 

in polar regions in between ICESAT and the upcoming ICESat-2 mission, and has been 

conducted annually since 2009 (Kurtz et al., 2013). Arctic sea ice freeboard 

measurements are collected by OIB during the spring season, at the beginning of the melt 

season. OIB uses the Airborne Topographic Mapper (ATM), a Light Detection And 

Ranging (LIDAR) instrument, to measure sea ice freeboard. (Donghui et al., 2015; 

NSIDC, 2016; Farrell et al., 2012; NASA, 2012). The ATM revolving path (Figure 22) is 

250 m and LASER footprint of about 1 m to 4 m, depending on the altitude of the plane, 

with surface diameter of 3–4 m (Farrell et al., 2012; Kwok et al., 2012).  
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Figure 22.  Airborne Topographic Mapper Scan 24 March 2013. Source: Andrew 
Roberts (2015). Figure (a) is the surface elevation measurements taken 

by the ATM aboard the OIB flight on 24 March 2013. The dataset 
plotted is ILNSA1B. Figure (b) is the flight track. Figure (c) represents 
the red square overlying a portion of the track in (b), which indicates 

the leading direction of the subsection of the ATM scan.  

The OIB footprint diameter varies with the aircraft altitude, which ideally 

operates at approximately 500m above sea level, and the ATM measures topography to 

an accuracy of 10 cm-20cm (NASA, 2012). So called “Quicklook” data is made available 

via the U.S. National Snow and Ice Data Center (NSIDC) soon after each flight. In this 

thesis, we will analyze 43 individual OIB flights (Figure 18) between the years 2009 and 

2015 from the Quicklook product.  
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Figure 23.  OIB flight tracks across western Arctic 2009–2015.Source: NSIDC 
(2016). Flights were flown during the annual spring season, to provide 

altimetric measurements of sea ice freeboard following winter 
freezeup. Depicted are the tracks from 43 OIB flights. ICESat-2 

3. ICESat-2 

Estimating sea ice thickness from freeboard measurements is a primary objective 

for the upcoming ICESat-2 mission. The impending mission launch date is December 

2017, which will provide coverage up to 88°N. ICESat-2 will also have a 91-day repeat 

orbit with a pulse repetition frequency of 10kHz for photon counting (Abdalati et al., 

2010). The 91-day repeat orbit will allow continuous, intra-seasonal observations of the 

sea ice. The on ground LASER footprint will be 10 meters in diameter, taking 

measurements every 70 centimeters along the ground track (Abdalati et al., 2010). 

A significant difference in the ICESat-2 LASER configuration as compared to 

ICESat’s GLAS is the use of Advanced Topographic LASER Altimeter System 

(ATLAS), which will consist of two LASERs, with one as a backup. Differing from 
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GLAS, the ATLAS LASER will be split into 3 pairs of LASER beams, six in total. Each 

pair will consist of one weak and one high energy beam. The three pairs will be spaced 

by about ~3 km when incident at the sea surface, with a 90-meter spacing between the 

paired high and low energy beams (Abdalati et al., 2010). The additional beams and new 

configuration will provide increased spatial coverage relative to GLAS on ICESat and 

improved accuracy of ±3 cm for freeboard (Abdalati et al., 2010).  

 

Figure 24.  Schematic of ICESat-2 LASER footprint along track. Source: NASA 
(2016a). ATLAS will generate three pairs of LASER beams, 

improving sea ice coverage and elevation estimates. 

E. SEA ICE MODELS 

Current observations provide insufficient spatial and temporal coverage. Few 

details of sea ice volume, local thickness distribution of sea ice and snow, and melt-pond 

coverage are inferred from the observations, all of which are critical to properly 

understand climatic changes occurring across the Arctic Ocean. For this reason, 

numerical models have been developed to help gain an understanding of physical 

interactions that may lead to seasonal and climatic changes in Earth’s polar regions. 

Numerical models of polar regions are continually refined and attempt to simulate the 

physical processes of the sea ice development by computationally integrating governing 

geophysical fluid models. The models attempt to simulate the processes of sea ice 
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development to determine the cause of sea ice decline as well as resolve interactions that 

are not readily observable.  

Modeling of sea ice requires not only an understanding of the atmospheric and 

oceanic variables driving the formation, drift, deformation and melt of sea ice, but also 

the physics and characteristics of sea ice present. Many small-scale processes, related to 

sea ice thermodynamics, dynamics and interactions across the air-ice and ice-water 

interfaces are not well modeled in global climate models (GCM) due to their low 

resolution (IPCC, 2013). Sea ice models rely on parameterizations that are sometimes 

poorly supported by observations. Sea ice, ocean and atmospheric processes are closely 

coupled and are highly variable both temporally and spatially. To accurately represent 

these processes, many input parameters would be required (Hunke et al., 2015). It is 

important to note that with each added variable, there is a degree of error that may 

increase total error within the model. Individual physical processes, variables and 

parameters of sea ice need to be well understood and analyzed before coupling with other 

processes to enhance sea ice model capabilities. However, it is difficult to quantify 

potential errors from each individual processes. 

Understanding the limitations of the modeled sea ice physics and maximizing 

effectiveness of observations will help focus and promulgate the requirements needed to 

accurately categorize and incorporate small scale sea ice processes within numerical 

models (Maslowski et al., 2012). The initial inputs, implemented boundary conditions, or 

even computational constraints all have large impacts on modeled sea ice morphology. 

1. Advances in Sea Ice Modeling Since 1970 

The observed transformations of Arctic sea ice are governed by dynamic and 

thermodynamic processes (Perovich and Richter-Menge 2009). Thermodynamic 

processes involve varying surface energy fluxes, resulting in sea ice growth and melt. Sea 

ice dynamics pertain to the movement of the sea ice floe. Sea ice motion is influenced by 

surface wind forcing, ocean stress, Coriolis force, sea surface tilt and internal ice stresses 

(Perovich and Richter-Menge 2009). Sea ice models have evolved to incorporate sea ice 

physics, including both thermodynamic and dynamic computations.  
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a. Thermodynamics 

Maykut and Untersteiner (1971) describe a one-dimensional sea ice model that 

accounted for vertical changes in snow cover, ice salinity parameters, and energy fluxes 

due to incoming solar radiation. Focusing on the sea ice thermodynamics, this model 

assumed sea ice was a homogeneous slab, in which initial conditions were set for snow 

depths, albedo, salinity and energy fluxes. The upper surface energy budget is: 

 

(1 )Fr  Io  FL   LTo
4  Fs  Fl  Fc 

0,T0  273.15K
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dt
(hi  hs )
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Table 2.   Thermodynamic notation for Equation 2 

Term Meaning 

 Surface albedo 

 Downward shortwave radiation 

 
Downward Radiative energy 
passing through ice 

 Downward Longwave radiation 

 surface emissivity 

 Stefan-Boltzmann Constant 

 Surface Temperature 

 Sensible heat flux 

 Latent heat flux 

 
Net heat conduction through the ice 
and snow column 

 
Latent heat of fusion of the surface 
material 

hs   Snow thickness 

hi   Ice thickness 

 



Fr

Io

FL

L



T0

Fs

Fl

Fc

q
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This equation includes radiative fluxes, turbulent fluxes and conduction through 

the ice-snow column, with notation given in Table 2. Sea ice growth and melt is 

dependent upon interactions with the atmosphere and ocean, as illustrated in Figure 26. 

Using a downward positive sign convention for fluxes, when the sum of the fluxes is 

negative, sea ice will grow; when the sum is positive, sea ice melts (Perovich and 

Richter-Menge 2009). The spatially varying ice thickness distribution, g(hi ), is important 

to the heat budget for this model affecting heat loss quantities (Thorndike et al., 1975). 

The ice thickness distribution is vital to the heat exchange between the atmosphere-

ocean-sea ice layers. Leads and thin ice absorb incoming solar radiation, leading to 

warmer ocean temperatures. Leads are also regions of oceanic heat loss to the 

atmosphere, accounting for nearly 50% of oceanic heat loss (Thorndike et al., 1975). The 

thickness distribution of sea ice is important to sea ice dynamics and will be discussed in 

the next section.  

 

Figure 25.  Sea Ice surface heat budget. Source: Perovich and Richter-Menge, 
(2009). Radiative and turbulent heat fluxes are primary contributors to 
sea ice growth and melt. Sea ice melt is omnidirectional, while growth 

is downward. Radiative fluxes are annotated in orange, turbulent 
fluxes in red.  
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There have been many enhancements to thermodynamic models since Maykut 

and Untersteiner (1971). An energy-conserving model was developed to account for the 

heat capacity of sea ice by Bitz and Lipscomb (1999). This research compared energy 

conserving and non-conserving models for both a zero-layer and three-layer model, 

introducing variation in salinity profiles, albedo and porosity differences (Bitz and 

Lipscomb 1999). The zero-layer model overestimated sea ice thickness by 50%, whereas 

the three-layer model over estimated by 5% for energy conserving model, and 15% for 

the non-conserving model (Bitz and Lipscomb 1999). Brine pockets (Figure 26) which 

are present throughout sea ice, influence the specific heat of the ice layer and affect the 

amount of energy required to melt the sea ice. Therefore, they should be modeled where 

possible. 

 

Figure 26.  Image of brine pockets in first year ice. Source: Light et al. (2003). 
Brine inclusions and gas bubbles are visible, which change the density 

and specific heat of sea ice. 

Several physical processes influence the bulk salinity of sea ice, including 

melting, freezing, gravity drainage and melt pond flushing (Turner and Hunke 2015). By 

applying ‘mushy layer’ thermodynamics in a sea ice model, Turner and Hunke (2015) 

were able to simulate these effects. This is the most recent generation of sea ice 

thermodynamic model, and is used in this thesis to help resolve seasonal and spatial 

variations of sea ice salinity and its effects on sea ice thickness. 
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b. Dynamics 

As already mentioned, sea ice dynamics is important for building thick, ridged ice 

in the Arctic. Most sea ice away from coastal regions is almost always in motion due 

inertia and four forces: wind stress, ocean current stress, internal ice stress and ocean sea 

surface tilt (Hibler 1979), as illustrated in Figure 27. The dynamic processes of sea ice 

involve feedbacks between ice deformation, transport, the sea ice thickness distribution 

and applied mechanical stresses from the atmosphere and ocean (Thorndike et al., 1975).  

 

Figure 27.  Mechanical forcing of Arctic sea ice from (a) Source: Perovich and 
Richter-Menge (2009), (b) Source: Jack Cook, Woods Hole 

Oceanographic Institute. Four forcing mechanisms, as well as the 
Coriolis force, influence the motion of sea ice as seen in (a). Wind 

forcing and ocean currents transport sea ice across the Arctic Basin is 
seen in (b). Sea ice motion is dependent upon wind and current speed, 

ice roughness and drag.  

Hibler (1979) created one of the first Arctic sea ice dynamic and thermodynamic 

models, best known for its sophisticated treatment of internal ice. The model introduced 

an isotropic viscous-plastic constitutive law for sea ice to represent the horizontal internal 

ice force vector, F , based upon sea ice thickness distribution g(hi ). However, for the 

Hibler (1979) model, g(hi ) was simplified into just two thickness categories divided at 

0.5m. The model integrated the sea ice momentum balance, relating ice mass per unit 

area, m , the Coriolis parameter, f , ice-water and air-ice stresses,  w  and  a  

respectively, and sea surface tilt, H , with the sea ice horizontal velocity, u , as follows: 
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m
Du

Dt
 mfk  u  a  w  mgH  F

  (3) 

In many sophisticated sea ice models, this is solved in conjunction with sea ice 

thermodynamics as previously described, which are then used to solve for continuity of 

the thickness distribution:  

g(hi )

t
  (g(hi )u) (hi ) F(hi )   (4)  

where  (hi ) is the rate of mechanical redistribution and F(hi ) is thermodynamic growth 

or decay rate.  

With the momentum balance equation and constitutive law for F , this equation 

can be used to predict the movement of ice over time t . The sea ice thickness 

distribution is important to the energy budget between sea ice and ocean boundary layers 

(Thorndike et al., 1975). Ice strength is also dependent on the thickness distribution and 

varies seasonally. Using this approach, daily, seasonal and climatic changes in ice 

thickness can be modeled across the Arctic basin, and that is the approach used in the 

model assessed in this thesis.  

Parkinson and Washington (1979) developed a sea ice model around the same 

time at Hibler (1979) that modeled thermodynamic and dynamic processes of sea ice 

except for a sophisticated rheology, which was Hibler’s main 1979 contribution. Rather 

than focusing on sea ice dynamics, Parkinson and Washington’s 200 km resolution model 

demonstrated the importance of coupling sea ice simulations with the atmosphere and 

ocean, albeit in a simplified way. Coupled sea ice modeling allows for more accurate 

incorporation of wind stress, sea surface temperatures and advection of model ice by 

reproducing atmospheric and oceanic events that can drive changes in sea ice (Parkinson 

and Washington 1979).  

Over the last forty years, Hibler’s 1979 sea ice model has been the foundation for 

many other subsequent sea ice models, and the demonstration of coupling by Parkinson 

and Washington (1979) initiated the use of sophisticated sea ice models in climate 
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simulations. Further research incorporated an elastic element to the sea ice constitutive 

equation to enhance computational efficiency (Hunke and Dukowicz 1997). This Elastic-

Viscous-Plastic (EVP) assumption applied to sea ice dynamics accounts for Viscous- 

Plastic sea ice deformation modeled by Hibler (1979), but with a small added elastic 

component that offers an efficient solution of the sea ice momentum equation on 

massively parallel supercomputers, including those used by the Navy to forecast sea ice 

state. 

Some recent sea ice models use an anisotropic rheology assumption for sea ice 

behavior across the Arctic basin as a potential improvement upon the isotropic 

assumption. The foundation for this anisotropic assumption is to add “realism” to the 

model, and depict anisotropy seen in satellite imagery and the geometry of ice floes 

(Tsamados 2013). Ice floes can change shape through interactions with other floes and 

from thermodynamic processes. Observations show the intersection angle between leads 

is about 30–40 degrees (Figure 28), which is indicative of anisotropy (Tsamados 2013). 

Additionally, use of the anisotropic sea ice mechanics can result in reduced ice drift 

speed in the Beaufort Gyre and Transpolar Drift (Figure 27b), while increasing simulated 

thickness due to deformation, ridging and sliding during the winter and spring seasons, 

which compares relatively well with observations (Tsamados 2013).  
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Figure 28.  Anisotropic ice flow in the Beaufort Sea, April 29, 2011. Source: 
Global Fiducials Library (2015) Angles between leads that are formed 

across ice floes are often 30˚ to 40˚.  

In addition to the recent advances in ice thermodynamics and dynamics discussed 

here, recent research has focused on simulating specific, smaller scale sea ice processes, 

and their impact upon the large scale (Arctic Basin). These processes include optical 

scattering affecting ice and snow albedo, snow redistribution on ice, and changes in melt 

ponds (IPCC, 2013).  

2. LIMITATIONS OF COUPLED MODELS 

These advancements in sea ice models has enabled researchers to further 

understand key elements of sea ice physics, but each model and theory has its own 

limitations and biases (IPCC, 2013). Within numerical models, sea ice interactions with 

the atmosphere and ocean are often poorly represented (IPCC, 2013). This is supported 

by the observed rate of sea ice decline in the Arctic more often exceeding the rates 

projected by climate models than not. To better understand how models handle the 
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complex environment of the Arctic, ensemble averages are often required to quantify 

internal variability. 

The World Climate Research Programme Coupled Model Intercomparison Project 

(WCRP/CMIP) was established in 1995 for improving general circulation models (CMIP 

2009). The Coupled Model Inter-comparison Project Phase 5 (CMIP5) compared 

modeled Arctic sea ice extent trends for the years 1850–2100 and compared the results to 

satellite records from 1979–2005. By incorporating anthropogenic emissions into the 

models’ radiative forcing, the multi-model ensemble tracked, with some degree of 

accuracy, the historical observations of Arctic sea ice extent (Stroeve 2012). Without the 

anthropogenic forcing, the world’s top performing climate models failed to reproduce the 

same downward trend in Arctic sea ice extent.  

These models are now collectively capable of reproducing sea ice extent to an 

accuracy of ±10%, and project a steep rate of decline in Arctic sea ice (IPCC, 2013). The 

models suggest Arctic ice cover becoming seasonal, around 2045, where nearly the entire 

ice cover will be just first year ice (IPCC, 2013). The CMIP5 analysis also indicates that 

more than 50% of the decline in sea ice extent occurring between 1979 and 2011 is due to 

anthropogenic forcing (Stroeve 2012). Stroeve acknowledged the strength of the models 

is dependent upon sea ice processes, observations, how the models handle natural climate 

variability. More importantly, there these results analyzed sea ice extent, whereas a 

perhaps more meaningful metric is sea ice thickness. 

Give these caveats, it is essential to understand how well models perform in 

simulating thickness. Models have limitations and historical satellite imagery has 

provided a 2-dimensional perspective of the sea ice (Maslowski 2012). To fully 

understand the 3-dimensional view of sea ice in models, research is required to quantify 

how well ice volume is simulated. In this thesis, we used a sophisticated, coupled 

regional climate model to investigate this question.  

3. Los Alamos Sea Ice Model (CICE) and Its Use in This Study  

The Regional Arctic System Model (RASM) used in this study, and described in 

the next chapter, uses the Los Alamos Sea ice model version 5 (CICE5) in a fully coupled 
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regional climate model framework. CICE5 incorporates some of the latest available sea 

ice model thermodynamics and dynamics discussed earlier, and can also be used to 

simulate chemistry and biological processes in sea ice. This model is typically run on 

parallel supercomputers. Its physics options include: the previously discussed mushy-

layer sea ice thermodynamics of Turner and Hunke (2015), the Elastic-Viscous-Plastic 

(EVP; Hunke and Dukowicz 1997) or the Elastic Anisotropic Plastic (EAP) rheology of 

Tsamados et al. (2013), surface radiation scattering by snow (Briegleb and Light (2007), 

explicit melt ponds (Hunke et al. 2013), and a thickness distribution with five default 

thickness categories to approximate g(hi ), with thickness bounds at 0.65, 1.39, 2.47 and 

4.56 m (Hunke et al., 2015). Yet there remain fundamental difficulties in quantitatively 

evaluating forecast skill of this model, particularly in the sea ice thickness distribution 

(Hunke et al. 2015), and this thesis focuses particularly on this topic. 

F. INTENT TO STUDY 

With the upcoming launch of ICESat-2, there is motivation to make better use of 

spaceborne LASER altimeters to try to improve on the knowledge gap in our 

understanding of model ice thickness predictions. This thesis describes one small step to 

address this problem, by developing a capability to regularly use altimetric freeboard 

measurements from LASERs to quantitatively evaluate the skill of modeled sea ice 

thickness. The methods used in this thesis can be applied to the design of an “ICESat-2 

emulator” described in the following chapters and could be built to run in CICE for 

operational Navy forecasts. It would enable skill scores to be extracted from model 

simulations to quantify the ability of CICE to represent sea ice thickness in both the 

Arctic and Antarctic using measurements from both ICESat, and, when it is launched, 

ICESat-2. For the current study, we just focus our attention to the Arctic, which has 

particular Naval significance, as detailed in Chapter I. We will also make use of 

IceBridge observations as part of this work. However, there are several other datasets of 

sea ice freeboard or draft that are not being used in this thesis. Only brief mention was 

made of CryoSat-2, which is currently providing routine measurements of ice freeboard 

globally (Tilling et al. 2015), but does not use LASERs, and so is beyond the scope of 

this thesis. In addition, there is a high quality dataset of submarine draft profiles of sea ice 



 47

(e.g. Lindsay 2010), declassified for parts of the central Arctic. These measurements, too, 

are not included in the ensuing analysis. However, the methods of analysis discussed 

herein could be applied to both CryoSat-2 and submarine profiles in future, in the latter 

case solving for draft and instead of freeboard. Now, with this defined scope of the thesis, 

a method for evaluating models now follows. 
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III. MODEL DESCRIPTION AND METHODS 

A. OBJECTIVE 

In the previous chapter, we reviewed three core equations solved by pan-Arctic 

and global sea ice models, and discussed the skill of coupled models in simulating Arctic 

sea ice. This chapter discusses the methods used to evaluate sea ice thickness in models 

using the LASER altimeter measurements discussed in Chapter II. The methods 

described here are specific to high-resolution sea ice models with horizontal grid spacing 

of 10km or less, but could in future be generalized to lower-resolution global climate 

models. Using a high-resolution model is the easiest starting point for this work, because 

it resolves scales closest to those observed by satellites. We begin with a description of 

the Regional Arctic System Model (RASM) output as used in later chapters. We then 

discuss how freeboard measured along satellite ground tracks can be statistically 

compared with model freeboard derived from the modeled g(hi ). This method thus 

serves as a proxy for evaluating modeled sea ice thickness.  

B. THE REGIONAL ARCTIC SYSTEM MODEL 

The Regional Arctic System Model is a fully coupled, high-resolution model 

developed at the Naval Postgraduate School in collaboration with the University of 

Colorado, University of Washington, Los Alamos National Laboratory, Iowa State 

University and the University of Arizona. The RASM ice-ocean component has a 

horizontal resolution of 1/12˚ (~9 km). This is significantly more resolute than typical 

CMIP5 GCM sea ice grids discussed in Chapter II, which have resolutions on the order of 

100 km. (Roberts et al., 2015; IPCC, 2013). With an overall temporal resolution of 20 

minutes for the sea ice model (Table 3) RASM’s sea ice output can be compared with 

hourly observations (Roberts et al., 2015). The full RASM ice-ocean domain extends 

beyond the Arctic Ocean, but we will focus only on the Central Arctic (black, Figure 29).  
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Figure 29.  RASM domain. Source: Andrew Roberts, Naval Postgraduate School, 
(2015). The red line bounds the atmosphere-land domain with 50 km 

grid cells. The white line surrounds the ice-ocean domain with 
approximately 9 km grid cells and green represents major rivers and 

lakes delivering runoff to the ocean. The black line is the Central 
Arctic analysis domain, the focal region of this thesis. Blue shades 
detail bathymetry with the ocean domain, while orange and yellow 

hues indicate topography gradation. 

RASM includes the Weather Research and Forecasting model (WRF; Cassano et 

al. 2016), the Variable Infiltration Capacity model (VIC; Hamman et al. 2016), the 

Parallel Ocean Program (POP; see Maslowski et al. 2012) and Los Alamos Sea Ice 

Model (CICE; see Roberts et al. 2015, with updates to CICE Version 5 detailed in Hunke 

et al. 2015). The WRF model is a high resolution, meso-scale numerical weather 

prediction model developed by the National Center for Atmospheric Research, (NCAR). 

The University of Washington developed VIC, which is a macro-scale, hydrologic model 

that provides runoff to the ocean (Liang et al., 1994). POP, developed at Los Alamos 

National Laboratory (Smith et al. 1992; Dukowicz and Smith 1994), is an energy-

conserving ocean model that solves the three-dimensional primitive equations for fluid 

motion on the sphere under hydrostatic and Boussinesq approximations. CICE was 

discussed previously in Chapter II, but here we describe the configuration of CICE as 

used in RASM for this thesis, especially the sea ice model, because it is relevant to results 
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analyzed in Chapter IV, and the way in which freeboard measurements may be converted 

into “model equivalent” quantities.  

Table 3.   RASM configuration. This table provides the spatial and temporal 
resolution of RASM. Source: Roberts et al. (2015, table 1)  

 
 

The mean model freeboard for each grid cell is calculated using the following 

equations: 

 fb
model

 fb(hi ,hs )  hi 1
i

w






 hs 1

i

w







 (5) 

where  

hi  hi g(hi )
0



 dhi  hni
n1

5

 An  

and 

hs  hs g(hs )
0



 dhs  hns
n1

5

 An  

given the sea ice thickness distribution g(hi ) and snow thickness distribution g(hs ). 

CICE used in this configuration only uses one mean snow thickness, hns  unique to and on 

top of each of the five sea ice thickness categories hni  given n 1,2,...,5 . Recall from 
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Chapter II that these are divided at 0.65, 1.39, 2.47 and 4.56 m. Each ice category 

occupies an area An  in a single model grid cell. The modeled sea ice concentration in 

each grid cell is thus given by: 

 A  An
n1

5

   

Using the five thickness categories, g(hi ) can be discretized using methods 

discussed by Lipscomb (2001). The best way to evaluate freeboard in a model is to 

construct a mean observed freeboard fbobs  to compare with mean model freeboard 

fbmodel . To do this, the disparity between model and observational spatial resolution must 

be sufficiently similar. RASM, using the spatial resolution at about 9 km, equivalent to 1/

12˚ on a rotated sphere grid with equator passing through the pole, is a good tool for this 

test due to the high spatial resolution.  

The ice and snow thickness distributions, g(hi )and g(hs ), are predicted quantities 

in RASM. In addition, ice and snow density, i  and s , are held constant in RASM, and 

therefore fbmodel  is easily calculated for each 20 minute time step of CICE in RASM. Due 

to the fact that g(hi )and g(hs ) vary infinitesimally in the model over an hour, we have 

analyzed hourly instantaneous fields of fbmodel  in this thesis in order to reduce the 

quantity of data required if one were to analyze every single 20 minute time step of CICE 

in RASM. Also, in order to determine the impact of surface snow in the modeled 

freeboard, we conduct a twin analyses in subsequent chapters of fbmodel  and 

fbmodel (hs  0), the latter case indicating that snow is not included in the freeboard 

calculation. Analyzing results of fbmodel  and fbmodel (hs  0) in tandem is a convenient 

way to quantify the contribution of modeled snowfall and surface snow physics on 

simulation skill. In a fully coupled model such as RASM, this is important, because sea 

ice freeboard is not just an indication of sea ice model skill, but also in the skill of the 

atmospheric model to deposit snow on sea ice, and of the coupled model system in 

representing the hydrologic cycle.  
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C. ICESAT-2 EMULATOR 

A key purpose of this research is to understand how best to construct compatible 

values of fbobs  and fbmodel  for each model grid cell so as to use them in metrics of model 

performance in a statistically meaningful way. Satellite and aircraft observations of 

freeboard have a small footprint when compared to a ~9 kilometer grid cell (see Chapter 

II). Here we look to determine how to optimize the use of observational data and compare 

them to the model output and potentially increase the use of narrow tracks of LASER 

measurements across sea ice to be applicable to a broader swath of RASM model grid 

cells in the vicinity of a satellite ground track.  

To gain an initial appreciation of the problem, an ICESat-2 sampling algorithm 

was constructed using MATLAB. For the purpose of this thesis, we will call this the 

“ICESat-2 emulator.” The purpose of this emulator is to quantify the spatiotemporal 

sampling bias that is introduced by only constructing temporal averages whenever 

ICESat-2 passes over a 9-km grid cell of RASM. This is compared to the case where 

temporal averages for each model grid cell are calculated at every time step of the model. 

This latter method is the normal method by which climate model output is organized to 

summarize sea ice state. We use the planned 91-day repeat orbit for ICESat-2, since the 

satellite is not yet launched. 

The ICESat-2 emulator works like this: In one output stream, we sample model 

output to the nearest hour of an overpass of ICESat-2. The model is only sampled directly 

under the satellite track. All model grid cells not directly in the vicinity of the satellite 

overpass in that hour remain unsampled. In this case, a model grid cell’s temporal 

average is only constructed from the times the satellite passes directly overhead. In a 

second output stream from the emulator, each model grid cell is sampled at each hourly 

time step to contribute to that model grid cell’s mean value over a given time period. 

During the course of a 91-day repeat orbit, or another temporal period of our choosing, 

when all model grid cells that could possibly receive an overflight of ICESat-2 have done 

so, we tally up the samples to construct the mean freeboard from both sampling methods 

and compare the biased mean (satellite sampled) and unbiased mean (each grid cell 
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sampled at each timestep). This analysis is only conducted within the central Arctic 

domain annotated in Figure 29, but could be applied elsewhere.  

We will symbolize the unbiased temporal freeboard mean as fbmodel . It 

represents the true temporal mean of the freeboard at each model grid point without 

spatial bias. The angled brackets indicate an arithmetic temporal mean. The biased 

temporal mean, constructed by only sampling each model grid point directly under and at 

the point in time of an ICESAT-2 overpass, is symbolized as fbmodel
 , where the arrow 

indicates sampling along the satellite track only. We now discuss exactly how we sample 

model grid points in the vicinity of an ICESat-2 overpass.  

First, this satellite-biased mean is constructed by sampling the model for each of 

the nearest 9km RASM grid points along the projected ICESat-2 91-day repeat orbit 

paths across the Arctic, equivalent to 1387 ground tracks per cycle. The bias this 

introduces is given by: 

 Bias fbICESat2   fbmodel  fbmodel
   

The physical meaning of this field is that it indicates the “biased view” of sea ice if we 

were to only analyze the pack from measurements by the satellite.  

Bias was calculated for two different years of RASM output taken from a 

developmental simulation of the model: 1996 and 2007. The year 2007 was selected 

because it represents one of the lowest minimum ice extent years in the satellite record 

(see Figures 1 and 2 in Chapter I). The year 1996 was selected to determine if similar bias 

was found, in a typical year prior to the rapid retreat of perennial Arctic ice this century. 

Each year was subdivided into four seasons to study seasonal variation, each period 

approximately spanning the 91-day repeat orbit of ICESat-2. In order to quantify the 

contribution of surface snow to the bias, tandem experiments were conducted with and 

without surface snow, as previously discussed, so that a second bias was calculated for 

the “no-snow” case: 

Bias fbICESat2 (hs  0)   fbmodel (hs  0)  fbmodel
 (hs  0)  
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Sensitivity of the bias to the precise method of sampling under the satellite track 

was then investigated. In the bias estimate discussed previously, samples are only taken 

directly under the projected ICESat-2 flight path. In a second set of tests, this path was 

expanded out to sample 8 model grid cells directly adjacent to the grid cells sampled at 

the time of an ICESat-2 overpass. The difference between the two approaches is 

illustrated in Figures 30 and 31. The first approach we will call “single grid point 

sampling.” The second method will be referred to as either “expanded grid point 

sampling” or the “multiple grid point” method. The main purpose of this second set of 

experiments is to determine if the statistical significance of the bias could be improved 

(reduced) with a slightly large satellite “swath.” This has implications that will become 

apparent later in this thesis. 

 

 

Figure 30.  Single grid point method of sampling model freeboard along satellite 
paths. The temporal mean of the freeboard is calculated for each 

corresponding RASM grid point directly under the satellite track. The 
red box indicates the single grid point sampled under the satellite 

track.  
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Figure 31.  Expanded cross-track sampling. The satellite data collected at one 
RASM grid point is averaged and expanded to the surrounding 8 grid 
points. This approach is designed to make better use of the available 
data by expanding its spatial reach. The gray box details the multiple 

grid points sampled, expanding from the single (red) grid cell 

The statistical significance of the freeboard bias can be estimated using Welch’s t-

test, necessary because the sample size differs between fbmodel  and fbmodel
 .  From 

Wilks (2006), the unbiased estimation for standard deviation is: 

  
1

N '1
(X

i
 X )2

i1

N

  , 

where the effective sample size, N ', is given by 

N '  N
1 r1
1 r1

 

given the lag-1 autocorrelation r1 . From this, the effective degrees of freedom, for 

samples with unequal variances is given by:  

df  N 'a N 'b 2  

as discussed in von Storch and Zwiers (1999). This may then be used to determine 

statistical significance at the 95% confidence interval for bias using a two-sided t-test: 
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t 
X a  Xb

 a
2

N 'a

 b

2

N 'b

 

 

Where subscript a indicates samples taken for the temporal mean fbmodel , and subscript 

b indicates samples taken for the temporal mean fbmodel
  at each 9 km grid point. That 

is, Xa  fbmodel , and Xb  fbmodel
 , substituted in the equations to avoid needless 

complexity. We use the densities if snow, ice and sea water as set in CICE within RASM: 

s  300  300 kg m-3, i  917kg m-3 and w  1026 kg m-3.  

An important point to note here is that if we expand the number of grid points 

sampled surrounding the ICESat-2 track, as in Figure 31, then N 'b increases relative to 

the case where only a single grid point is sampled under the satellite track (Figure 30) . 

As a result, the effective degrees of freedom increases, refining the t-test. So the ICESat-

2 emulator described here represents an idealized test, where we simply sample the model 

data in two different ways: One way along the satellite track, the other way by sampling 

all model grid cells with equal weight in time. We are in effect treating the model as “real 

world” sea ice to understand the significance, or not, of selective spatiotemporal sampling 

of the pack with LASERs from space. By expanding out the grid points sampled in a 

second set of tests (increasing N 'b), we learn of the local spatial dependence in the 

temporal bias. However, as yet, we have not physically justified why it might be 

acceptable to sample beyond the immediate range of a LASER measurement of 

freeboard, and we now look to a set of experiments that could justify “multiple grid point 

sampling.” 

D. CHARACTERIZING SPATIAL RELATIONSHIPS IN FREEBOARD  

In order to understand how freeboard measurements by LASER are spatially 

related over scales of 10–100km we will make use of the ICESat and OIB dataset 

described in Chapter II. The scales 10–100km represent 1 to 10 model grid points, and by 
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analyzing this scale range, we can determine if there is a close statistical relationship that 

could justify multiple grid point sampling introduced in the previous section.  

Both the ICESat mission and Operation IceBridge (OIB) flight data were 

analyzed using spectral analysis to determine how measured freeboard varies spatially. 

The ICESat data set analyzed is “Arctic Sea Ice Freeboard and Thickness, Version 1,” 

written by Yi and Zwally (2009), and includes measurements from the 14 ICESat LASER 

campaigns described in Chapter II. Each mission data set was analyzed individually, by 

season and as individual tracks to determine how the results varied spatially and 

temporally. Additionally, freeboard measurements from 43 OIB flights were analyzed 

using the National Snow and Ice Data Center datasets introduced in Chapter II (Kurtz et 

al., 2015). 

Freeboard tracks from ICESat and OIB were spatially detrended, and data gaps 

were filled by linear interpolation where missing samples did not exceed three times the 

standard deviation of the approximate sampling distance of 200m and 40m, respectively. 

Where data gaps exceeded this distance, the distance gap was removed from the tracks as 

if the track continued in space unimpeded. This procedure is only acceptable due to the 

relatively continuous nature of the freeboard tracks with few data gaps, and would 

otherwise be prohibitive due to erroneous spatial signals it introduces. It was found to 

have minimal impact on the final statistical confidence of the results.  

From Priestly (1981), the spectra were calculated using the Fourier transform of 

the autocovariance weighted by the Parzen Window, Cyy , with a maximum lag,  max , 

determined by the spatial sampling distance along the tracks, giving the power spectral 

density function f ( ). The resulting power spectral density distribution enabled analysis 

of freeboard along the tracks as a function of wavelength,   1/ , which indicates the 

spatial scale of interest. A chi-square goodness of fit was then applied to the spectra at the 

95%confidence interval to gauge statistical significance of the emergent signal, as 

described in Emery and Thomson (2014). Dependence of spectra on the particular 

window chosen was tested by also doing spectral analysis using a Hamming window, but 
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this did not affect the final conclusions of the investigation, and so results have been 

omitted from this thesis. 

Results presented in Chapter IV reveal strongly linear spectra across large 

wavenumber ranges. For the purpose of this research, a least-squares linear fit was used 

to test the strength of the linearity between 400m and 30 kilometers for ICESat and OIB. 

This scale was chosen because it matched the spatial extent of the multiple grid point 

sampling of RASM discussed for the ICESat-2 emulator earlier. The linear relationship 

revealed in the spectra were further interpreted with the aid of Rothrock and Thorndike 

(1980) and Wadhams and Davis (1994), who used linear relationships in spectra of sea 

ice draft to characterize spatial noise in their submarine datasets for the Arctic. The 

gradient of a statistically significant line in spectra on log-log axes, p, reveals a power 

law relationship between power spectral density, P, and wavenumber: 

 P 
1

 p
  

Pink noise indicates a weak spatial signal; for this project pink noise occurs when p=1. 

Pink noise is part of the colored noise spectrum which means the power spectrum is 

correlated with frequency (Sprott 2003), which translates in this case to the mean 

freeboard being correlated with distance. When p=0, this is indicative of white, 

uncorrelated noise and p=2 is Brownian noise. The purpose of conducting this test is to 

determine if a weak (p<1) spatial noise characteristic exists over the scales of interest 

when comparing LASER derived freeboard with the model. If a weak spatial relation 

exists, then the method of expanding out the sampled grid cells (Figure 30) can be 

justified, otherwise we must be content with only sampling grid cell directly under the 

satellite track. 

Table 4.   Variable notation used in OIB and ICESat Calculations 

Symbol Description 

 Wavenumber  

 wavelength 

 Spatial lag 

 Gradient of straight line of spectra on log-log axes 




p
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E. APPLYING THESE METHODS TO UNDERSTAND SKILL IN MODELS 

Using the methods outlined earlier, the final step in this thesis was to derive a way 

to make an “apples-to-apples” comparison with real LASER freeboard measurements 

already collected by ICESat. This then serves as an example to follow for when ICESat-2 

is launched next year. To do this, we will determine bias in a similar way as discussed at 

the start of this chapter, only this time, it is not a sampling bias, but a model bias. We 

assess model bias using the following equation in a similar manner to assessing spatial 

bias for the ICESat-2 emulator mentioned earlier: 

Bias( fbmodel )  fbmodel
  fbobs

  

where fbmodel
 is the model freeboard sampled along ICESat ground tracks, identical to 

that described earlier for the ICESat-2 emulator, and fbobs
  is the mean observed 

freeboard from Yi and Zwally (2009), averaged for all samples that fall within a single 

model grid cell for the duration of the model-measurement comparison. The model data 

is sampled to within ±1 hour of satellite passing overhead. Therefore, for one pass of the 

satellite, a mean model grid cell freeboard will be sampled once from the model, but as 

many as 150 samples of freeboard exist for the satellite track within each model grid cell. 

The intention of this thesis is to demonstrate the method, and for this, two years of 

ICESat data, 2007 and 2004, were used to compare observed freeboard estimates against 

two different RASM simulations of sea ice thickness. The first simulation used the 

Anisotropic (EAP) sea ice rheology, the second the isotropic rheology (EVP), for which 

the spatial thickness and ice drift summaries are shown in Figure 32 and 33. This is then 

used to gain a measure of the performance of the model’s g(hi ) and g(hs ) simulation 

using Taylor diagrams (Taylor 2001) and thereafter to estimate skill scores, introduced in 

the final chapter of this thesis. We next introduce results obtained in applying these 

methods. 
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Figure 32.  RASM 2004 EAP and EVP mean seasonal thickness hi . The vectors 
represent sea ice drift. The shading represents the mean sea ice 

thickness for each grid cell. The magenta line is from the NOAA 
Climate Data Record of sea ice extent (Meier et al., 2013)  

 

Figure 33.  For a more detailed description, see Figure 32. This data is for year 
2007. 
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IV. BIAS IN OBSERVATIONS AND IN MODELS USING 
ALTIMETRICALLY DERIVED SEA ICE FREEBOARD  

A. OVERVIEW 

Using the methods introduced in the previous chapter, results are now presented 

in the order in which the methods were discussed. First, model results from the ICESat-2 

emulator are examined to determine the freeboard bias when sampling only along 

satellite tracks to construct temporal means. Then, spectral analysis was applied to both 

ICESat and OIB freeboard estimates, to determine the spatial noise characteristics of the 

mean freeboard signals. Finally, using the results from the spectral analysis, model bias is 

calculated using ICESat freeboard samples. The results demonstrate how satellite 

freeboard measurements may be used to evaluate RASM, and, more broadly, numerical 

models of sea ice.  

B. ICESAT-2 TEST EMULATOR 

The ICESat-2 emulator was used to calculate freeboard temporal averages along 

its orbital tracks using developmental RASM model runs from 1996 and 2007, analogous 

to the model simulations discussed in Chapter III. The only role the model simulations 

have at this point is to provide a stable representation of the pack that enables us to 

estimate the ICESat-2 Bias( fbICESat2 ) at each model grid point within the central Arctic 

domain (black outline, Figure 29). This is representative, also, of the ICESat sampling 

bias relevant later in this chapter. 

The Bias( fbICESat2 )
 
results are segmented into 4 seasons, using the projected 91-

day repeat orbit cycle and presented in Figures 34 to 37. Figures 34a and 35a illustrate 

the difference between the track-sampled and regular freeboard means for both 2007 

spring and fall seasons. Each season corresponds to one complete 91-day repeat orbit 

period. Here, the spring season is defined as April to June and the fall season is October 

to December. The largest mean freeboard biases, greater than 0.09 m, are in the Arctic 

Ocean regions furthest from the North Pole. This corresponds to the areas of minimal or 

no sampling conducted by the satellite where orbital paths diverge with increasing 
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distance from the pole. Additionally, during the fall, this is a region of large sea ice drift 

velocities (Figure 32 and Figure 33), associated with the Beaufort Gyre, which may be 

influencing for the positive bias. It is also a region of greatest thermodynamic growth and 

melt, and is thus sensitive to sampling frequency. 

Using the calculated differences of the freeboard means, Welch’s two-sided t-test 

was applied to determine the statistical significance of the model bias at each grid point, 

as described in Chapter III. The results are provided in Figures 34(b) and 35(b) alongside 

the bias values. Red shading in these Figures indicates a difference significant at the 95% 

confidence interval. The most important results illustrated in Figures 34 and 35 is that 

although the sampling bias, Bias( fbICESat2 ), is greatest furthest from the pole, the result 

is statistically insignificant over a single repeat orbit period of 91 days, because that part 

of the pack is seldom sampled. By contrast, the largest statistical significance is closest to 

the pole, where the bias between evenly sample freeboard, and satellite-sample freeboard 

is smallest. These results are representative of the 1996 case also tested, not shown here, 

but included in Appendix 1 due to the strong similarity in the bias and statistical 

significance pattern. This similarity between 1996 and 2007 indicates the problem is not 

climatologically driven, but instead a sampling problem mostly independent of the state 

of the pack. Similarly, results from the 2007 winter and summer seasons show less bias 

and are provided in Appendix 1. These seasons are outside the periods of significant 

freezeup or melting cycles, accounting for the reduced bias.  
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Figure 34.  a) 2007 Bias( fbICESat2 )
 
for freeboard sampled along ICESat-2 tracks 

for one complete 91-day repeat orbit period over the spring for April 
to June using the ICESat-2 emulator and RASM described in Chapter 

3. b) Biases in (a) that are statistically significant at the 95% 
confidence interval (red). In this case, only model grid cells were 
sampled directly under each satellite track within ±1 hour of the 

satellite pass as shown in Figure 30. 

 

 

Figure 35.  For a more detailed description, see Figure 34. This data is for fall 
months October to December 2007 over one complete 91-day repeat 

orbital period. 

In order to understand the impact of expanding the number of grid cells sampled 

under each satellite track, multiple grid cell sampling, as demonstrated in Figure 31, was 
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applied to the ICESat-2 emulator for the same model data presented in earlier. In 

practical terms, the sampling was adjusted to sample freeboard for a grid cell underneath 

an ICESat-2 track, as well as the surrounding 8 RASM grid points. This expands the 

“reach” of the track-sampled data from an approximate 9 km grid cell to approximately 

27x27 km grid box. Results for this test are provided in Figures 36 and 37, which are 

analogous to Figure 34 and 35, respectively.  

The cell expansion method reduces the biases between the satellite and model 

freeboards across much of the Arctic region. By expanding the sampled area to include a 

total of 9 grid cells (middle grid cell plus 8 surrounding grid cells), the statistical 

significance of the bias is greatly expanded, and includes most of the Artic basin. At 

same time, the sampling bias is greatly reduced. These results are consistent with both 

winter (January-March) and summer (July-September) cases, which are not shown for 

brevity. 

 

Figure 36.  a) 2007 Bias( fbICESat2 )
 
for freeboard sampled along ICESat-2 tracks 

for one complete 91-day repeat orbit period over the spring for April 
to June using the ICESat-2 emulator and RASM described in Chapter 

III using multiple grid-point sampling. b) Biases in (a) that are 
statistically significant at the 95% confidence interval (red).  
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Figure 37.  For a more detailed description, see Figure  36. This data is for fall 
months October to December over one complete 91-day repeat orbital 
period. The broad, circular feature depicted in Figure b may represent 
an inconsistency within the model and how RASM is handling the ice 

edge during this season.  

Developing this ICESat-2 emulator using RASM output as “real” sea ice 

thickness data provided valuable insight into how to maximize the use of the altimetric 

data within the model. First, from using the 91-day repeat orbit, we were able to acquire a 

biased seasonal signal, allowing us to quantify satellite bias implicit in model-observation 

comparisons. By expanding the grid point sampling from 1 to 9 grid cells, the spatial 

coverage and the statistical significance of the bias is increased drastically for the Arctic 

Basin, and the overall bias is reduced. This is important due to the limited spatial 

resolution of the ATLAS measurements that will be taken when ICESat-2 is launched 

next year. But it is equally relevant to comparing models with ICESat data that has 

already been collected, because that satellite used a similar 91-day repeat orbit for much 

of its mission.  

The ICESat-2 emulator was also used to analyze differing snow regimes in a 

second series of tests. To do this, the freeboard bias was calculated by removing snow 

from the calculation, as shown in Chapter III for Bias( fbICESat2 (hs  0)), again for all 

months in 1996 and 2007. This calculation is only possible because we are using model 

data for which we explicitly know the snow cover distribution, as detailed in Equation 5 

in Chapter III. However, there was little sensitivity to the change in terms of the spatial 
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pattern in bias magnitude and statistical significance as compared to the results presented 

earlier. Therefore, we may conclude that, if possible, expanding the sampling of model 

output beyond a strict ground track of a LASER altimeter will lead to a more accurate 

estimate of model bias.  

The ICESat-2 cases presented here assumes an ideal environment, providing 

perfect coverage along each track throughout both the tested years. In this case, we tested 

our results sampling for each 9km grid cell on the ground track, and also expanded the 

sampled area to ~27x27 kilometers. The next step in this project is to use the spectral 

analysis described in Chapter III to determine whether or not expanding the satellite track 

is physically justifiable.  

1. ICESAT AND OIB SPECTRAL ANALYSIS 

Spectral analysis was used to characterize spatial noise relationships of the 

ICESat and OIB freeboard data introduced in Chapter II. The power spectral density was 

characterized with the p-exponent described in Chapter III, using the R2 statistic (von 

Storch and Zwiers 1999) as an indication of the goodness of fit of the noise 

characterization. The p-exponent and correlation coefficient, R2, were calculated for the 

14 ICESat campaigns discussed in Chapter II using ensemble freeboard means with 

varying temporal scales. This approach allowed determination of differing p-exponents 

and goodness of fit between observational campaigns, presented as an ensemble mean of 

individual ground tracks. Statistical significance of the spectra were estimated at the 99% 

confidence interval, an power spectral density is presented on a relative scale of decibels 

(dB), converted to 10 log10 P  for power P (that is, referenced to 1 m-2 of freeboard 

power). 

a. ICESat 

For ICESat, the analysis of freeboard was conducted using three temporal scales: 

a) ensemble series for winter, summer and fall campaigns (Figure 38, Figure 39, and 

Figure 40); b) individual campaigns (Table 5); and c) single, cross-basin tracks were 

processed (Table 5). The ensemble series comprised of all fourteen data sets, which 
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includes approximately 35 days of data for each campaign. Six campaigns are included in 

both the winter and fall series and the summer series includes two campaigns. The 

cumulative winter series, Figure 38, resulted in a p exponent of 0.49 with an excellent 

goodness of fit (R2=0.98). This result indicates that for the spatial scales between 400m 

and 30km, the freeboard has a signal ‘half way’ between white and pink noise. In other 

words, it varies only weakly with distance in this range of spatial scales. Similar p-

exponent results were detected for all the summer and fall series (Figure 39 and Figure 

40). These results suggest that the RASM model sampling can be expanded roughly to a 

3x3 grid cells (27x27 km) on a monthly time frame to improve the robustness of model 

evaluation using ICESat. The results presented so far are for an ensemble average of all 

ICESat orbits, and the solidity of the result was frayed when looking at individual tracks: 

R2 values decreased significantly for the single, cross-basin tracks (Table 5) mainly due 

to smaller sample sizes.  

 

Figure 38.  a) Winter ICESat freeboard series 2003 to 2008: Ensemble mean of 
Power Spectral Density in dB. with the p exponent estimated from the 
line in red, and associated R2 fit between 400 meters to 30 kilometers. 

b) The individual ICESat tracks used to calculate the ensemble 
average. Winter flights are annotated by the blue cells in Table 1 in 

Chapter II. The color bar represents freeboard in meters.  
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Figure 39.  For a more detailed description, see Figure 38. This data is for summer 
2004 and 2006, corresponding to the green cells in Table 1 in Chapter 

II. 

 

 

Figure 40.  For a more detailed description, see Figure 38. This data is for fall, 
2003 to 2008, corresponding to the orange cells in Table 1 in Chapter 

II. 
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Table 5.   Summary of ICESat spatial freeboard noise characteristics, and R2 
values.  

Campaign Season and 
Year 

p 
exponent 

R2 

    
Winter  Cumulative 0.47 0.98 
Summer  Cumulative 0.42 0.97 
Fall  Cumulative 0.49 0.99 
    
2B Winter 2004 0.54 0.99 
3H Winter 2007 0.44 0.98 
3A Fall 2004 0.40 0.98 
3I Fall 2007 0.51 0.96 
    
Single Track 
3H0217002 

Spring 2007 0.43 0.58 

Single Track 
3B0197002 

Winter 2005 0.29 0.35 

Single Track 
3A0270002 

Fall 2004 0.35 0.40 

Single Track 
3D0392002 

Fall 2005 0.44 0.50 

 

Beyond the spatial scale range from 400m to 30km, there is a transition zone seen 

in the ICESat signal in the range between 30 and 100 kilometers. This may represent a 

region in the spectra where the GLAS measurements shift from effectively being an arial 

average of freeboard, through the solid angle of the incident LASER beam on sea ice and 

snow, to representing more of a grid point sample on the scales of 100km or greater. As 

already stated, the spatial scales associated with the transition region are not in 

wavelengths of interest for this study, and so we dispose of the further analysis of this 

transition zone. However, it is an important limitation of the data that may not be widely 

understood or appreciated by the research community.  
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b. OIB  

Forty-three flights between 2009 and 2015 were analyzed using the same method 

as for the ICESat data to characterize spatial noise. Figure 41 shows the analysis for the 

ensemble mean spectra for all OIB Arctic flights in the indicated year range. Here, 

focusing on the data between 400 meters and 100 kilometers, the p exponent is 0.74, 

again indicative of noise between white and pink characterizations. The confidence in 

this estimate is high with an R2 value of 0.99. Below the ATM resolution of 250 meters, 

the p-exponent values increase beyond the pink and even the brown noise regime. While 

this result is not relevant to the scales of interest here, we hypothesize whether it may 

indicate a limitation of the Quicklook freeboard product for small scales. Rothrock and 

Thorndike (1980) detected an analogous drop-off in their spectral power of draft with 

decreasing spatial scales, which they attributed to the expanse of their sonar swath 

looking up at sea ice. By contrast here, the drop-off may be attributable to processing of 

the spiral ATM data indicated in Figure 22 in Chapter II. 

Each individual flight was analyzed in the same manner as in Figure 42 and 

Figure 43. While the p exponents were larger than for ICESat, the noise is still weakly 

varying with space over the scale of interest, further justifying a slight expansion of 

model grid points used to evaluate RASM. Table 6 provides values for one single, cross 

basin flight for each year. The p exponent values are all indicative of the spectrum 

between white and pink noise, which further supports expanding the model sampling 

spatial scale to 27x27 km grid cells. 
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Figure 41.  a.) OIB spring series for 2009 to 2015: Ensemble mean of power 
spectral density in dB. with the p exponent estimated from the line in 
red, and associated R2 fit between 400 meters to 100 kilometers. b) 
The individual OIB tracks used to calculate the ensemble average.  

 

Figure 42.  Individual OIB Flight conducted on 02 April 2009: Power Spectral 
Density in dB. with the p exponent estimated from the line in red, and 

associated R2 fit between 400 meters to 100 kilometers. b) The 
individual OIB track used to calculate PSD. 
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Figure 43.  For a more detailed description, see Figure 42. This data is for an OIB 
Flight conducted on March 14, 2014. 

Table 6.   OIB Spectral Analysis Values 

Flight  p  R2 
   
Ensemble 
average 

0.74 0.99 

   
IDC20090402 0.77 0.94 
IDC20100419 0.67 0.90 
IDC20110326 0.63 0.92 
IDC20120324 0.54 0.80 
IDC 20130321 0.72 0.90 
OIB_20140314 0.59 0.90 
OIB_20150324 0.83 0.87 

 

2. Discussion 

Both ICESat and OIB spectral analysis results support the objective to expand 

altimetric measurements to three RASM grid cells for monthly and seasonal estimates of 

bias. Only weak spatial correlation is evident from the gradient of both the OIB and 

ICESat flight path power spectrums. Sub-pink noise is consistent between spatial 

resolutions of 400 meters to 30 kilometers. For the ICESat campaigns, the p exponent 

results were similar, varying between 0.29 and 0.61 for all tracks. The R2 for each 

campaign ensemble and cumulative seasonal ensemble is consistently between 0.96 and 
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0.99. We note that the transition zone between 30km and 100km detected in ICESat does 

not exist in OIB data, and is probably attributable instrument bias in ICESat data. 

However, for the scales of interest, the results support using the multiple grid cell 

sampling method described in Chapter III. We now apply this to the design of a sampling 

method to estimate the skill of RASM simulations for two selected years in the ICESat 

record.  

C. INITIAL ICESAT EMULATOR RESULTS 

The ICESat-2 bias estimates provided at the start of this chapter quantify the 

spatial bias in sampling a model as if a satellite were flying across model grid cells. Here, 

we use collected ICESat data to evaluate the actual model bias along satellite tracks as 

compared to measurements of freeboard. In other words, we opened this chapter seeking 

to determine how to best evaluate
 
Bias( fbICESat2 )  fbmodel  fbmodel

 , and we close this 

chapter by using the experience gained in that exercise to evaluate 

Bias( fbmodel
 )  fbmodel

  fbobs
 . This is done for the ICESat campaign years of 2004 

and 2007, selected because the first year (2004) represents a period at the onset of the 

rapid decline of perennial sea ice this century, and the second year (2007) represents one 

of the lowest summer sea ice extents in the Passive Microwave record, as discussed 

Chapter II. We analyze the two different model simulations discussed in Chapter III 

(Figure 32 and Figure 33) that utilize EAP and EVP sea ice rheology. In this section, we 

will be using sea ice freeboard measurements which includes snow loading. However, 

ICESat assumes measures just one value for all freeboard measurements. A complication, 

not experienced with the ICESat-2 ideal test case results, is the ICESat campaign’s 

mechanical failures and erratic environmental impacts along the satellite tracks. These 

resulted in breaks in satellite coverage and causing data paucity along some tracks, but 

are easily handled by the chosen statistical tools. 
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a. Single versus Multiple Grid Points ICESat Emulator 2007: Freeboard 
calculations plus snow 

Here we investigate again the impact of sampling only a single line of model grid 

cells underneath a LASER track, as compared to including adjacent grid cells in the 

analysis. In this case we use real measurements for freeboard taken by GLAS aboard 

ICESat. In Figure 44, results from the ICESat emulator results are displayed for 2007 

spring and fall periods of March 12-April 14, and October 2-November 5, respectively. 

For clarity, we refer to the March 12-April 14 campaign as “spring” in the following 

Figures and analysis. This specific campaign includes both “spring” and “fall” dates as 

we have defined in section B, unlike the other ICESat campaigns analyzed. This is 

consistent with previous literature on the ICESat dataset. 

For the model freeboard calculations including snow loading, Figure 44 (a) and 

(b), depicts the calculated freeboard fbobs


 
for ICESat. The spring 2007 campaign had 

significantly more ground track coverage as compared to the fall season. This is 

important to recognize, as we step through the process and prove the satellite emulator 

works with varied spatial coverage from the satellite observations. Of note, an anomaly 

was identified within the ICESat fbobs
  Figures, which depict large freeboard values 

around the Greenwich meridian. This is an issue with the ICESat freeboard data issued by 

NASA, rather than the methods used here.  

The largest freeboard values for both seasons are to the north of the Canadian 

Archipelago and Greenland coastlines, which aligns with the spatial thickness pattern 

seen in RASM (Figure 32). However, there are discrepancies evident in freeboard 

between the observations and the model. For both the EAP and EVP RASM simulations, 

the largest freeboard biases occur near the center of the Arctic Ocean and in the Nansen 

Basin during the spring season. The EAP model depicts larger, wide-spread biases in 

these regions. In fall, the modeled sea ice freeboard bias is mode subtle, with the EVP 

model run depicting less discrepancy. This is possibly due to how each model 

characterizes the WRF snow values and biases associated with the snow input.  
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Figure 44.  fbobs


 
for ICESat, calculated for single grid-point sampling in a) 

spring and b) fall 2007. The model bias for these seasons, 

Bias( fbmodel
 )

 
is provided in c) and d), respectively, for the RASM 

simulation using EAP sea ice mechanics, and e) and f) for the EVP sea 
ice mechanics variant. 

Applying a t-test to these results, Figure 45, indicates that only a slender margin 

of Bias( fbmodel
 ) is significant at the 95% confidence interval around the “pole hole.” This 

corresponds to the region with the largest sample sizes for each 9km model grid cell, as 

indicated in, Figure 46.  
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Figure 45.  ICESat Emulator 2007 Welch’s T-test using Single Grid Point. Panels 

a-d correspond to Figure 44 c-f. Bias( fbmodel
 ) that is statistically 

significant at the 95% confidence interval is represented in red. 
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Figure 46.  ICESat Emulator 2007 sample size using single grid point sampling. 
Color bars represent the number of samples for the satellite and 

models corresponding to results in Figures 44 and 45. 

As expected, a similar distribution of freeboard differences is evident in the 

multiple grid cell results presented in Figure 47. By expanding to the neighboring grid 

points, spatial coverage of the model bias estimate is enhanced for both seasons. The 

disparities between modeled and observed freeboard are more evident, as they are 

covering more grid cells. The most significant difference between the ICESat single and 

multiple grid point sampling are the t-test results (Figure 48). The statistical significance 

for the spring season provides nearly basin wide statistical significance for the model 

bias. The fall season statistical significance also provides increased coverage away from 

the Arctic hole, but is more limited by a scarcity of available tracks. The model bias is 

statistically significant to 95% for a much larger portion of the Arctic due to the increased 
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sample size (Figure 49). The results are similar to those seen earlier in this chapter for the 

ICESat-2 emulator.  

 

Figure 47.  fbobs


 
for ICESat, calculated for multiple grid-point sampling in a) 

spring and b) fall 2007. The model bias for these seasons, 

Bias( fbmodel
 )  is provided in c) and d), respectively, for the RASM 

simulation using EAP sea ice mechanics, and e) and f) for the EVP sea 
ice mechanics variant. 
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Figure 48.  ICESat Emulator 2007 Welch’s T-test using Multiple Grid Points. 

Panels a-d correspond to Figure 47 c-f. Bias( fbmodel
 ) that is 

statistically significant at the 95% confidence interval is represented in 
red. 
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Figure 49.  ICESat Emulator 2007 Sample Size using Single Grid Point sampling. 
Color bars represent the number of samples for the satellite and 

models corresponding to results in Figures 44 and 45. 

These results from the ICESat emulator comparing single and multiple grid point 

sample were similar to the ICESat-2 emulator results discussed at the beginning of this 

chapter. The expanded grid cell technique provides enhanced spatial coverage of the 

Arctic Ocean, supported by statistical significance with a 95% confidence interval.  

The RASM sea ice thickness distribution for both EVP and EAP sea ice models 

(Figure 50), depicts similar results for both the single point and multiple grid point 

sampling, supporting the multiple grid expansion method. For both 2007 model results, 

the model thickness distribution is skewed to the right of the ICESat data, which may be 

due to the record minimum sea ice observed during this time period not being correctly 

captured by the model, except the EVP case in fall 2007. More importantly for our 

results, both the single grid and multiple grid techniques are well aligned with one 
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another. The ice thickness distribution does not vary substantially between the two 

methods, supporting the expansion technique.  

 

Figure 50.  ICESat 2007 thickness distribution. Probability density function of 
freeboard, analogous to thickness distribution PDF displayed from 
Hutchings et al. (2008). Blue represents ICESat observations, Red 

represents multiple grid point sampling technique and magenta 
represents single grid point sampling.  

A Taylor diagram summarizes the ICESat emulator analysis for the pattern means 

presented in Figures 51(a) and 51(b), which explains statistical relationships between the 

basin-wide model and measured freeboard patterns across the Arctic Basin. The Taylor 

Diagram provides a concise statistical summary of how well the multiple and single grid 

point techniques are similar in terms of correlation, variance and root-mean-square 

differences (RMSD) (Taylor 2001). To plot the statistical differences between the models 
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and observations, the model variables are normalized relative to the standard deviation of 

the observations (Taylor 2001).  

For the spring 2007 season, the multiple-grid-point sampling correlation is 0.6. 

The multiple-grid-point sampling almost perfectly replicates observed freeboard variance 

across the Arctic basin, with a Standard Deviation of ~1, normalized against the pattern 

standard deviation. The single grid point sampling technique has a slightly smaller 

variance than the observations. For the fall season, both of the model runs decrease 

correlation and increase variance, opposite to the equivalent observational shift. The 

significant difference between the seasons may be due to a smaller sample size for the 

fall of 2007, but, when viewed in context of earlier results, it is more likely an indication 

of the inability of the model to replicate extreme seasonal sea ice decline that occurred in 

2007.  

Applying the multiple grid point sampling technique to both individual ICESat 

LASER campaigns and to a series of campaigns, we are able to obtain statistical 

significance for approximately one third of a 91-day repeat orbit, which corresponds to an 

individual seasonal campaign of approximately 35 days (Table 1). This allows the 

analysis technique to be used to evaluate all climate models, in addition to monthly sea 

ice forecasts, making this methodology a universal tool applicable to both short and long 

term navy forecasts.  
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Figure 51.  ICESat Emulator 2007 Taylor Diagram. The red and blue circles 
represent observations, and the squares are the model representations 

of both the single grid point and multiple grid point technique.  

D. FINAL ICESAT/ICESAT-2 EMULATOR DESIGN—EXAMPLES FROM 
2004 AND 2007 

Having settled on the 9-grid-point sampling method, we know view the full 

complement of results for 2004 and 2007 for the aforementioned EVP and EAP model 

runs (Figure 32 and Figure 33). Here, two freeboard biases were assessed, the model 

freeboard with snow loading, Bias( fbmodel
 ),

 
and the model freeboard without snow 

loading, Bias( fbmodel
 (hs  0)), thus generating a second set of freeboard bias estimates:  

Bias fbmodel
 (hs  0)   fbmodel

 (hs  0)  fbobs
   

Importantly, at no time were the observed freeboards from ICESat adjusted for the 

presence of snow, because this requires assumptions about snow density and thickness 

for which we have only limited knowledge in the observed dataset. In contrast, we have a 

complete understanding of the snow thickness and density in the sea ice model. Thus, by 

adjusting the model, rather than the satellite data for the presence of snow, we circumvent 

a long-standing issue in that satellites have no knowledge of the density of snow and ice 

along the ground track. This is an important aspect of our emulator. 
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2004 ICESat freeboard estimates are depicted in Figure 52(a) and Figure 52(b) for 

the winter and fall seasons, respectively. Recalling Figure 32 which provides a seasonal 

analysis of sea ice thicknesses for both sea ice models, spatially, the sea ice thickness 

distribution corresponds fairly well to the ICESat observations. Sea ice thickness values 

are largest north of the Canadian Archipelago for much of the year and ice thickness 

values decrease toward the Chuchki Sea and Siberian coast. However, we have calculated 

the biases in freeboard means to evaluate the model using both freeboard regimes, with 

and without snow loading. 

 

Figure 52.  fbobs


 
for ICESat, calculated for multiple grid-point sampling in a) 

winter and b) fall 2004. The model bias for these seasons, 

Bias( fbmodel
 )  is provided in c) and d), respectively, for the RASM 

simulation using EAP sea ice mechanics, and e) and f) for the EVP sea 
ice mechanics variant. 
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For the 2004 EAP winter test, the model has a large bias, overestimating sea ice 

freeboard across a vast portion of the Arctic with values ranging between 0.15 and 0.3 

meters. During the fall, EAP overestimates freeboard near the Arctic hole and Eastern 

Arctic Ocean, but underestimates across the western Arctic. The EVP sea ice model 

depicts similar distribution to the EAP for both seasons, with a more widespread region 

where the bias is -0.30 along the Canadian Archipelago and Greenland coasts. From 

Figure 52 (c-f), it is evident that both RASM model runs, incorporating the snow loading, 

have biased sea ice thickness estimates for both the winter and fall seasons. With snow 

loading included in the freeboard measurements, neither sea ice model accurately 

represents the sea ice distribution observed by ICESat during the winter and fall months 

of 2004. Snow loading adds a degree of uncertainty to the calculations within each sea ice 

model.  

2004 ICESat emulator results without snow loading estimates are represented in 

Figure 53. The Bias( fbmodel
 (hs  0)) , varies between both sea ice models and seasons 

(Figures 53 (c-f)). Both EAP and EVP models underestimates thickness along the 

Canadian Archipelago and Fram Strait for both seasons. The EAP model also has a high 

bias in Barents Sea and Laptev Sea during the winter. Otherwise the EAP matches the 

ICESat observations fairly well, with freeboard estimates within ±0.15 meters, which is 

nearly the same value as the ICESat GLAS uncertainty. 

The EVP model has larger Bias( fbmod el[hs  0]) with values exceeding -0.30 

across the Eastern Arctic Ocean. The winter season has a smaller difference in the 

Western Arctic, with values between ±0.15 meters. For 2004, the EAP model with 

Bias( fbmodel
 (hs  0))  has freeboard values closer in proximity to ICESat observations 

than the EVP sea ice model. 
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Figure 53.  fbobs


 
for ICESat, calculated for multiple grid-point sampling in a) 

winter and b) Fall 2004. The model bias for these seasons, 
Bias( fbmodel

 (hs  0)) is provided in c) and d), respectively, for the 

RASM simulation using EAP sea ice mechanics, and e) and f) for the 
EVP sea ice mechanics variant. 

Further to the ICESat-model comparison presented for 2007 in the previous 

section, we briefly discuss their relevance in terms of skill, and also present the case for 

snow was removed from the model freeboard calculations. The freeboard differences 

between the satellite and models are seen in Figure 54 and Figure 55. Figure 54(a) and 

54(b) display the ICESat observations across 9 grid cells, and is repeated from Figure 47 

for clarity. 

Similar to the 2004 results, there is a large bias in the models using the freeboard 

with snow regime. EAP bias exceeds +0.30 within the Central Arctic and Barents Sea 

region during the spring season. For the EAP fall season test, the EAP maintains larger 
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freeboard values within the Eastern Arctic, but underestimates freeboard in the Western 

Arctic. The EVP sea ice model shows similar trends in the model bias. As seen with the 

2004 emulator run, applying snow loading to freeboard calculations increases uncertainty 

within the models. 

 

 

Figure 54.  fbobs


 
for ICESat, calculated for multiple grid-point sampling in a) 

spring and b) fall 2007. The model bias for these seasons, 

Bias( fbmodel
 )is provided in c) and d), respectively, for the RASM 

simulation using EAP sea ice mechanics, and e) and f) for the EVP sea 
ice mechanics variant. 

EAP and EVP models had similar Bias( fbmodel
 (hs  0)) in freeboard 

measurements when compared against ICESat observations, Figure 55. The largest 

freeboard biases, -0.3 meters, are along the Canadian Archipelago, Alaska, Siberia and 
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the Fram Strait during the spring. Both sea ice models have a -0.30 error in the vicinity of 

the Fram Strait and along the Canadian Archipelago during the fall. Spatially, the spring 

season had larger regions of sea ice freeboard biases, with the model underestimating 

freeboard across most of the basin, as compared to the fall.  

 

 

Figure 55.  fbobs


 
for ICESat, calculated for multiple grid-point sampling in a) 

spring and b) fall 2007. The model bias for these seasons, 
Bias( fbmodel

 (hs  0))is provided in c) and d), respectively, for the 

RASM simulation using EAP sea ice mechanics, and e) and f) for the 
EVP sea ice mechanics variant. 

In summary, the EAP an EVP models have very similar thickness distribution, 

from a spatial perspective. The largest differences between the models and observations 

occur along the Fram Strait and Canadian Coast. Around the Arctic hole, EAP provides 
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more accurate measurements. Referencing back to Figures 32 and 33, the largest change 

in velocity occurs within the Fram Strait for both models, which may partially account 

for the disparity in freeboard measurements. Additionally, during the 2007 spring and 

2004 winter seasons, the transport of sea ice increases along the Canadian coast for the 

EVP simulation, which may also be a source of uncertainty within the model causing the 

difference in freeboard measurements. For the freeboard without snow loading, both 

models have a bias of calculating too low for freeboard measurements in regions of 

largest differences.  

The basin-wide freeboard distributions are represented in Figure 56 for 2004 and 

Figure 57 for 2007. For the 2004 winter season, both the EVP and EAP models have 

bimodal distribution of sea ice thickness. Bias( fbmodel
 (hs  0)) , has the most comparable 

freeboard distribution trends to the ICESat observations. Bias( fbmodel
 )  maintains a 

positive bias for both model configuration (EAP and EVP) and both seasons. Neither 

model perfectly duplicates the observation tendencies, but significant differences are 

evident between the two freeboard regimes.  

From Figure 56, it is evident that both the RASM tests, incorporating snow 

loading, overestimates sea ice thickness during the winter and the fall 2004 EAP 

simulation. However, the EVP model with snow provides the most similar results to the 

ICESat observations for the fall 2004 season.  
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Figure 56.  ICESat 2004 freeboard variability. Probability density function of 
freeboard, analogous to thickness distribution PDF displayed from 
Hutchings et al. (2008). Blue represents ICESat observations, Red 

represents multiple grid point sampling technique and magenta 
represents single grid point sampling.  

In 2007, a similar bimodal distribution and outcome was found, Figure 57. The 

biases between Bias( fbmodel
 (hs  0)) and Bias( fbmodel

 )  are apparent, with the 

Bias( fbmodel
 )  skewed to the right of the ICESat distribution. In both the winter 2004 and 

spring 2007 seasons, the ICESat freeboard distribution most closely resembles the sea ice 

model output without snow loading, with the exception being the fall EVP simulation. 
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Figure 57.  For a more detailed description, see Figure 56.  This data is for 2007 
central Arctic freeboard  

Taylor diagrams were constructed to evaluate the model runs’ spatial bias pattern 

(Figure 58). In winter 2004, the snow loading and non-snow loading for both EVP and 

EAP runs have nearly the same correlations and root mean square differences from 

ICESat measurements. With the addition of snow loading, the standard deviation 

increases, resulting in larger freeboard variances and closer agreement between the model 

calculations and ICESat observations. The fall 2004 Taylor Diagram (Figure 58(b)) also 

depicts increasing standard deviation with the snow loading model runs. For the EVP 

runs, the correlation and RMSD slightly decreases whereas the EAP runs are more or less 

constant.  
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Figure 58.  ICESat Emulator 2004: RASM model performance. The EAP results 
are in light blue, the EVP results are in red and the observations are 
indicated by the dark blue circle. The solid circles are calculations 

using freeboard with snow loading, the white circles are calculations 
using freeboard without snow loading.  

The spring 2007 EAP and EVP model configurations depict decreasing 

correlation, while increasing RMSD and standard deviation (Figure 59). The fall 2007 

runs increase normalized standard deviation significantly with the addition of snow, 

while correlation decreases. All four Taylor diagrams signify that it is important to 

accurately depict snow loading in order to correctly represent sea ice thickness in climate 

models, and more importantly, that the snow loading is improving the model estimate of 

freeboard variance. With these results in hand, we now conclude this thesis by deriving 

skill scores the nicely summarize these final results. 
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Figure 59.  ICESat Emulator 2007: RASM model performance. The EAP results 
are in light blue, the EVP results are in red and the observations are 
indicated by the dark blue circle. The solid circles are calculations 

using freeboard with snow loading, the white circles are calculations 
using freeboard without snow loading.  
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V. CONCLUSION: METRICS FOR EVALUATING SEA ICE 
MODELS USING SATELLITE ALTIMETRY 

A. CULMINATION OF THIS THESIS: SKILL SCORES FOR SEA ICE 
MODELS USING LASER ALTIMETERS  

 Arctic sea ice continually undergoes physical changes and its characteristics are 

strongly seasonal, making it difficult to accurately simulate in models. Due to the effects 

of dynamics and thermodynamics discussed in Chapter II, sea ice model performance can 

be relatively poor, but seldom is this performance quantitatively characterized. In this 

thesis, we have seen that detailed, quantitative analysis of models can achieved using 

LASER measurements of freeboard from space.  

This thesis has developed a method for using a satellite emulator to maximize 

usefulness of satellite and aircraft altimetric observations with the intention of 

quantifying bias in sea ice models. Given the pattern estimates of fbobs


 
and

 
fbmodel

 , 

across the Arctic basin, we can not only employ pattern Taylor Diagrams, but we can also 

use the associated skill scores suggested by Taylor (2001) to numerically rate model 

freeboard skill against comparable variance and correlation with observations. Moreover, 

for the first time, we are able to do this in a way that is physically consistent between 

models and observations, and that takes into account observational error. 

To do this, we first need to quantify the maximum possible agreement one may 

expect between models and observations, based upon the measurement error. The 

maximum pattern correlation for the sampled observed freeboard at each model grid 

point fbobs
  is given by: 

 

 R0 

1
N

fbobs
  fbobs



err
 fbobs

  fbobs


err  fbobs
  fbobs



err 
n1

N


 f  ferr

 f
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where the large overbars indicate the basin-wide pattern mean, and we have abbreviated 

the pattern standard deviation with and without observational error as  f  ferr
 and  f

 

respectively. The observational error at each model grid cell for the Yi and Zwally (2009) 

datasets is 0.14 m for each observation, thus error for the arithmetic mean freeboard is  

 fbobs


err


0.14

N
,  

 

given N ICESat freeboard samples within a model grid cell. Using this information, a 

weighted variance skill score (Taylor 2001), is given by: 

 
 

and weighted correlation skill score using Taylor (2001) equation: 
 

 

 
 

where ̂ f  model / obs  for the pattern standard deviations of model and observed 

freeboard along satellite tracks. Using these skill scores, one is able to summarize 

numerically the graphical representation of the results in Taylor diagrams at the end of 

Chapter IV. 

The results from these skill scores are annotated in Table 7 and Table 8 for the 

model bias results presented and discussed in the last part of Chapter IV. The variance 

weighted skill scores are larger for the EAP simulations for both 2007 and 2004. For the 

weighted correlation skill scores, neither EAP nor EVP perform noticeably better than 

one-another. Importantly, R0 values ranged from 0.994-0.999 for all model runs, meaning 

that the best possible values one might expect are surprisingly close to the observed 

values on Taylor Diagrams presented in Chapter IV. 

These skill scores are the most important outcome from this thesis, because, 

regardless of their exact values, they give a clear, concise, quantitative summary of the 

SV 
4(1 R)

(̂ f 1/̂ f )2 1 Ro 

Sc 
4(1 R)4

(̂ f 1/̂ f )2 1 Ro 4
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performance of a sea ice model’s ability to simulate the sea ice thickness distribution, 

g(hi ) and snow distribution g(hs ). Moreover, the basin-wide model biases associated 

with the skill scores are statistically significant across the entire basin, and represent a 

relatively slender period of time (about one month), making the score useable from just a 

short duration of satellite retrievals. This makes the methods described in this thesis 

equally applicable to Navy seasonal sea ice forecasts, and to evaluating centennial scale 

climate models.  

Table 7.   Variance and correlation weighted skill scores for fall 2004 and 2007 

FALL 2004 2007 
 fb fb(hs=0) fb fb(hs=0) 

Variance 
Weighted 

EAP 0.824 0.691 0.712 0.795 
EVP 0.720 0.507 0.785 0.763 

      
Correlation 
Weighted 

EAP 0.511 0.412 0.319 0.399 

EVP 0.413 0.308 0.390 0.388 

 

Table 8.   Variance and correlation weighted skill scores for winter 2004 and 
spring 2007 

 2004 (WINTER) 2007(SPRING) 
 fb fb(hs=0) fb fb(hs=0) 
Variance 
Weighted 

EAP 0.786 0.670 0.793 0.676 
EVP 0.766 0.453 0.799 0.577 

      

Correlation 
Weighted 

EAP 0.394 0.351 0.396 0.400 
EVP 0.402 0.222 0.434 0.344 

 

B. CONCLUSIONS 

As the Arctic environment continues to change, maximizing the use of available 

observations is essential to understanding sea ice thickness and physical processes. Sea 

ice is a fundamental component of the Arctic and global climate systems, but is difficult 
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to accurately model due to the many physical processes influencing growth, drift, 

deformation and melt and there are limited observations of it across much of the Arctic 

region. As discussed in Chapter II, sea ice thickness measurements over large distances 

are difficult to obtain. With the current rapid climatic shift of the Arctic sea ice regime 

from multi-year to first-year ice, it is essential to accurately depict the sea-ice thickness 

distribution across the Arctic in sea-ice models.  

For this thesis, we used freeboard as a proxy for evaluating the thickness 

distribution, g(hi ), in one model (RASM), but the technique developed is broadly 

applicable to all sea ice models simulating at least a month of continuous thickness 

changes. This thesis has shown that altimetric freeboard observations from aircraft and 

from space, and with relatively small surface footprints, can be used with a high degree 

of statistical confidence in estimating model bias. In so doing, it has also been 

demonstrated, using planned ICESat-2 orbital tracks, that relatively small sample bias 

exists over the 91-day repeat orbits used for ICESat and, from next year, for ICESat-2. 

Using two independent observation datasets, OIB and ICESat, weak spatial noise 

relationships were exploited to improve the statistical significance of the final estimates 

of model bias, and model skill. High-resolution models, below 10 km grid cell size, can 

take advantage of the technique employed in this work to improve statistical confidence. 

However, global climate models typically operate outside the range of the weak spatial 

noise relation identified in ICESat and OIB data, and so can only employ single grid-

point sampling when comparing observed and modeled freeboard.  

A primary objective of this thesis was to arrive at a basic design criteria for an 

ICESat/ICESat-2 emulator that can be instituted in CICE, and used by the ice prediction 

community. This objective has been achieved. The techniques presented in this thesis can 

be used to routinely output model statistics that compare simulations of g(hi ) with 

ICESat-2 observations when the satellite is launched next year. This will put the research 

community a step closer to producing intercomparable metrics, and to properly 

accounting for model skill, or the lack thereof. These efforts will support both national 

and U.S. Navy strategies within the Arctic region, by pursuing scientific advancements to 



 101

reduce uncertainty and further understand why the Arctic environment is changing at an 

unprecedented rate. 

C. RECOMMENDATIONS FOR FUTURE STUDIES 

This research did not investigate total volume distribution of the Arctic, nor 

variations in sea ice and snow density on skill. Therein rests work to be undertaken to 

extend on the results presented here. Instead, this research focused on deriving skill 

metrics applicable to a broad range of sea ice models and freeboard measurements. 

Hence, techniques developed in this thesis can also be applied to other Arctic sea ice 

freeboard and draft data collections, such as CryoSat-2 and submarine profiles, in 

addition to OIB and other measurements across the Antarctic. The methodology may 

even be applied to different geophysical variables predicted by models to quantify model 

skill.  

From here, the next step is to institute the ICESat/ICESat-2 emulator design into a 

version of CICE so that the calculated metrics can be automatically output. Realistically, 

density varies significantly across the pack. Seasonal variation in brine pockets, first year 

ice distribution and ridged ice rubble can also significantly impact bulk sea ice density 

and hence overall Arctic sea ice volume estimated from freeboard in observations. 

Consequently, different assumptions about ice densities, as well as about snow cover, 

used in converting freeboard to ice thickness can strongly impact sea ice thickness 

estimates, and hence estimates of total Arctic sea ice mass. Therefore, future research 

building upon the work here needs to account for density heterogeneity. With the 

projected launch of ICESat-2 in December 2017, there is no better time to proceed with 

this research than the present. 
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APPENDIX ADDITIONAL ICESAT-2 EMULATOR RESULTS 

The following Figures are the Bias( fbICESat2 ) and Welch’s t-test results for the 

ICESat-2 emulator for the summer and winter season of 2007 and full series for 1996. As 

seen in Chapter IV, both the single grid point and multiple grid point results are provided. 

The freeboard bias was calculated by using snow in the freeboard measurements for all 

Figures 60 to 71. 

 

Figure 60.  a) 2007 Bias( fbICESat2 )
 
for freeboard sampled along ICESat-2 tracks 

for one complete 91-day repeat orbit period over the winter for 
January to March using the ICESat-2 emulator and RASM described 
in Chapter III. b) Differences in (a) that are statistically significant at 
the 95% confidence interval (red). In this case, only model grid cells 
were sampled directly under each satellite track with ±1 hour of the 

satellite pass as shown in Figure 30. 
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Figure 61.  a) For a more detailed description, see Figure 60. This data is for 
summer months July to September 2007 over one complete 91-day 

repeat orbital period. 

 

Figure 62.  2007 Bias( fbICESat2 )
 
for freeboard sampled along ICESat-2 tracks for 

one complete 91-day repeat orbit period over the winter for January to 
March using the ICESat-2 emulator and RASM described in Chapter 
III using multiple grid-point sampling. b) Differences in (a) that are 

statistically significant at the 95% confidence interval (red). 
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Figure 63.  For a more detailed description, see Figure 62. This data is for summer 
months July to September 2007 over one complete 91-day repeat 

orbital period. 

 

Figure 64.  a) 1996 Bias( fbICESat2 )
 
for freeboard sampled along ICESat-2 tracks 

for one complete 91-day repeat orbit period over the winter for 
January to March 1996 using the ICESat-2 emulator and RASM 
described in Chapter III. b) Differences in (a) that are statistically 
significant at the 95% confidence interval (red). In this case, only 

model grid cells were sampled directly under each satellite track with 
±1 hour of the satellite pass as shown in Figure 30. 
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Figure 65.  a) For a more detailed description, see Figure 64. This data is for 
spring months April to June 1996 over one complete 91-day repeat 

orbital period. 

 

Figure 66.  a) For a more detailed description, see Figure 64. This data is for but 
for fall months July to September 1996 over one complete 91-day 

repeat orbital period. 
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Figure 67.  For a more detailed description, see Figure 64. This data is for fall 
months October to December 1996 over one complete 91-day repeat 

orbital period. 

 

Figure 68.  a) 1996 Bias( fbICESat2 )
 
for freeboard sampled along ICESat-2 tracks 

for one complete 91-day repeat orbit period over the winter for 
January to March using the ICESat-2 emulator and RASM described 

in Chapter III using multiple grid-point sampling. b) Differences in (a) 
that are statistically significant at the 95% confidence interval (red). 
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Figure 69.  For a more detailed description, see Figure 68. This data is for spring 
months April to June 1996 over one complete 91-day repeat orbital 

period. 

 

Figure 70.  For a more detailed description, see Figure 68. This data is for summer 
months July to September 1996 over one complete 91-day repeat 

orbital period. 
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Figure 71.  For a more detailed description, see Figure 68. This data is for fall 
months October to December 1996 over one complete 91-day repeat 

orbital period. 
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