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ABSTRACT 

This dissertation contributes to model-based systems engineering (MBSE) by 

formally defining an MBSE methodology for employing architecture in system analysis 

(MEASA) that presents a comprehensive framework detailing the relationship between 

system architecture products and external models and simulations used to analyze system 

performance and feasibility. Specifically, the research combines the use of Systems 

Modeling Language (SysML) products and operational simulation models to support 

assessment of system requirements for systems engineering. The MBSE MEASA 

transforms operational needs into preferred system configurations through the analysis of 

detailed simulation models. The research does this by using designed experiments to 

generate architecture tradespace visualizations that highlight the impact that system 

design parameters, system-environment interactions, system operational implementation, 

and system component interactions have on system performance. The research 

demonstrates a procedure for iterations of the methodology when analysis suggests 

potentially impactful design, operational, or environmental variables (as well as potential 

interactions between those variables). The research develops and analyzes notional 

architecture products and simulation models of United States Navy mine warfare systems 

to demonstrate an application of the MBSE MEASA. 
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EXECUTIVE SUMMARY 

This dissertation defines a model-based systems engineering (MBSE) analysis 

methodology that links system architecture products with external models and 

simulations to analyze system performance. Current MBSE research has focused largely 

on the definition and formalization of Systems Modeling Language (SysML) products 

and diagrams, with insufficient definition of how SysML can be used to analyze the 

system. To address this gap this research proposes a MBSE method to link architecture 

models to analysis models. The MBSE MEASA integrates system architecture and the 

system analysis domains and maintains traceability, both forwards and backwards, from 

the system requirements to the system performance results. The MBSE MEASA 

leverages existing methods for designing, constructing, and analyzing large-scale 

simulation experiments to determine the drivers of system performance. The MBSE 

MEASA demonstrates a procedure for iteration of the methodology, based on analysis 

results, to integrate impactful design, operational, and environmental variables (as well as 

potentially impactful interactions between those variables) into subsequent SysML 

products. 

Current direction of MBSE research devotes substantial energy to the definition 

of SysML diagrams, to document system architecture views from a functional and 

physical perspective and define an executable procedure for evaluating the consistency 

and correctness of the those system architectures. Ryan, Shahram, and Mazzuchi (2013) 

provide an overview of existing MBSE methods, frameworks, and standards, which 

highlights the broad range of current MBSE applications. They demonstrate that SysML 

diagrams can describe a system comprehensively, in terms of requirements, functions and 

physical components. 

 This focus on utilizing SysML products to define a system and to analyze the 

performance of that system extends to industrial applications of MBSE. Leaders in the 

engineering field, such as the International Council on Systems Engineering (INCOSE), 

IBM, and Vitech have developed MBSE methodologies. A thorough review of these 

methodologies shows that they share three major goals: definition of appropriate system 



 xxii 

functions based on stakeholder identified system requirements; definition of the set of 

potential system physical components; and allocation of physical components to system 

functions (to be checked for consistency through a defined operational architecture). 

These methodologies are extremely effective at demonstrating whether a given set of 

physical components is capable of performing a given set of system functions through 

analysis of these executable allocated architectures. The MBSE MEASA developed in 

this dissertation expands the utility of these methodologies by prescribing how functional 

and physical architectures can be used to define external performance models which 

allow for examination of system performance in greater detail (by examining a large 

number of system design variables, environmental variables, and operational variables). 

This dissertation recognizes that recent research has been largely segmented, with 

substantial developments occurring in functional and physical architecture development 

(the System Architecture Domain) and other developments occurring in modeling and 

simulation and system analysis (the System Analysis Domain). This research focuses on 

a revised approach for the integration of those domains. Specifically, this dissertation 

develops a comprehensive framework for the development of SysML based system 

architecture products and uses those products as the basis for the development and 

analysis of detailed external simulations. This allows the MBSE MEASA examine 

system performance in detail and to specify a procedure for iteration of the methodology 

from detailing system analysis results to subsequent system architecture products that is 

unique in the current literature.  

The MBSE MEASA is based on the analysis methodology developed in 

MacCalman (2013), which presented a sequenced analysis approach demonstrated though 

analysis of early stage ship design. That work was expanded by MacCalman, Kwak, 

McDonald, and Upton (2015) to include architectural representations and to analyze other 

system design problems. The MBSE MEASA expands on that approach by formally 

prescribing the architectural representations that enable the implementation of more 

detailed external models and simulations (and associated system analysis). The MBSE 

MEASA is a five step process, each of which defines a sequence of activities and 

products that ensures traceability from stakeholder input to system solutions. The MBSE 



 xxiii 

MEASA prescribes a procedure for updating future iterations of existing architecture 

products and informing subsequent stakeholder communications. The MBSE MEASA 

also outlines a standardized format for information capture and model development that 

ensures that any changes to system configurations can be rapidly introduced into system 

architecture products and implemented in external system models.  

The first three steps of the methodology are Requirements Analysis (Step 1), 

Functional Architecture development (Step 2), and Physical Architecture development 

(Step 3). Requirements Analysis defines the system in terms of its Real Environment as 

well as an initial set of Design-To-Specifications. Those requirements are the basis for 

Functional Architecture development, which defines the system in terms of the functions 

that the system must perform as well as the ordering and dependencies of those functions. 

This facilitates development of an initial set of system design parameters as well as 

measures of effectiveness and serves as a guideline for Physical Architecture 

development. This provides a mapping of the relationship between system components 

and the activities performed by each component. Together, these requirements and 

architectures support the final two steps of the methodology, Model Definition (Step 4) 

and Model Analysis (Step 5) and ensure consistency between model types (operational, 

physical, and cost models). Analysis of those models identifies preferred system 

configurations, which are based on based on operational, physical and cost models, which 

are based on functional and physical architecture, which are based on a stakeholder 

specified set of requirements.  In this way, the MBSE MEASA ensures traceability from 

detailed system analysis to system stakeholder identified requirements, and establishes a 

mechanism for discussions between system architecture experts (Steps 1–3) and system 

analysis experts (Steps 4–5). This creates a unique opportunity for iteration of the 

methodology, where the results of detailed system analysis can be integrated directly into 

subsequent iterations of the methodology. 

The dissertation applies the MBSE MEASA to a U.S. Navy mine warfare system. 

The dissertation builds a full set of SysML products, defines the requirements, activities, 

event sequences, use cases, states, and physical components that define a notional mine 

warfare system (the term “notional” is used to emphasize that there are assumptions and 
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limitations associated with the models that do not take away from the demonstration of 

the MBSE MEASA but limit the applicability of the analysis results to “actual” mine 

warfare systems). Two discrete event simulations are built based on the activities and 

components defined in the SysML products. The first simulation examines the 

operational effectiveness of the MCM-1 Avenger and its support systems, the current 

mine countermeasure (MCM) system for the U.S. Navy. The second simulation examines 

the operational effectiveness of the Littoral Combat Ship (LCS) and its support systems, 

the future MCM system for the U.S. Navy. Each simulation examines alterations to 

system configurations, system design parameters, system operational factors, and 

environmental factors (due to differences in operational employment, 51 factors are 

examined for the MCM-1 Avenger configurations and 32 variables are examined for the 

LCS configurations). That analysis results in several major findings. First, the operational 

performance of both the MCM-1 Avenger configurations and the LCS configurations is 

most significantly impacted by the number of passes that each system conducts through a 

minefield. Second, the probabilities of detection, classification, identification, and 

neutralization all have a substantial impact on system performance. The research also 

presents several alternative tradespace visualizations that define sets of system 

configurations that perform best with respect to four effectiveness measures (mine 

detection, mine clearance, operational duration, and operational cost).  

This dissertation develops a MBSE MEASA contributes to the existing literature 

by linking architectural descriptions to analysis. The MBSE MEASA defines a procedure 

for the utilization of architecture products as the basis for detailed system models. Model 

analysis subsequently defines a more complete set of system requirements. That more 

complete set of system requirements informs subsequent iterations of system architecture 

products. Adherence to the MBSE MEASA ensures that a full set of SysML products 

describes the system in terms of system design parameters as well as the environmental 

and operational factors that may impact system performance. Analysis of external 

simulation models based on architecture products determines the system design 

parameters that have the greatest impact on system operational effectiveness, system 

design, and system cost. System tradespace analysis can then be used to identify a 

feasible set of system design parameters. Because the MBSE MEASA bases the 
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development and analysis of external models and simulations on detailed architectural 

descriptions, adherence to the MBSE MEASA ensures that set of system design 

parameters is traceable to a set of system requirements, as described using SysML 

architecture products. This facilitates rapid iteration of the process and integration of 

analysis results back into architecture products. The MBSE MEASA ensures traceability 

between system model analysis results and system requirements and establishes defined, 

defensible linkages between system architecture products and system analysis products. 

These traceable linkages facilitate interaction and discussion with system stakeholders to 

improve the design and analysis of systems. 
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I. INTRODUCTION 

A. MOTIVATION 

The current challenges facing U.S. Department of Defense (DOD) system 

development are the primary motivation for this dissertation. In particular, because 

system development relies heavily on the creation of both system architecture products 

and system models, this dissertation develops an analysis methodology that establishes a 

link between those system architecture models and system analysis models. This analysis 

methodology acknowledges current accepted standards in systems engineering and 

model-based systems engineering, and leverages current research and architecture 

products to support the methodology. 

From a more general perspective, the motivation for this research is a speech 

made in in April 2013 by U.S. Secretary of Defense Chuck Hagel reviewing the 

effectiveness and expense of DOD systems. Secretary Hagel stated, “We need to 

continually move forward with designing an acquisition system that responds more 

efficiently, effectively, and quickly to the needs of troops and commanders in the field” 

(Hagel 2013, 1). Secretary Hagel used this statement to stress that current DOD systems 

are often more expensive and more technologically risky than originally planned, and 

therefore future systems must be defined, planned, analyzed, and constructed with a focus 

on ensuring that those systems “do not continue to take longer, cost more, and deliver 

less than initially planned and promised.” Implicit in Secretary Hagel’s speech is that, 

while improvements to system development must ensure that DOD systems do not take 

too long, cost too much, and deliver too little, the system development process exists 

specifically because DOD systems necessarily have long development times, high costs, 

and high levels of complexity. These challenges have resulted in an increased DOD focus 

on the role of systems engineering in the system development process, and this has 

focused this research to demonstrate a linkage between system architecture products 

(which define what a system is intended to do as well as the physical components that 

will define the system) and system analysis products (which assess how well the system 

actually meets operational effectiveness standards). 
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This research presents a systems engineering analysis methodology that assists in 

making impactful engineering decision for large scale, complex systems. In particular, 

this research focuses on the appropriate development and definition of system 

architecture and system analysis models. Furthermore, given the complicated nature of 

the systems of interest (particularly the large number of system components and system 

component interfaces), this research focuses largely on simulation models due to their 

ability to consider a large number of input variables and a large number of operational 

scenarios in a repeatable, controlled environment. This frames the primary research goal 

as development of a model-based systems engineering analysis methodology specifically 

tailored to develop traceable system architecture products used to guide simulation model 

development to support system level decisions. Formalization of this methodology 

uniquely defines an iteration procedure for integration of analysis results into future 

iterations of architecture products. Accordingly, this dissertation develops an analysis 

methodology that supports production of complete system requirements via definition of 

appropriate linkages between system architecture and system analysis models. 

B. RESEARCH FOCUS AND SUMMARY 

The International Council on Systems Engineering (INCOSE) definition of 

systems engineering is instructive when first considering the development of an 

engineering analysis methodology. INCOSE defines systems engineering as, “an 

interdisciplinary approach and means to enable the realization of successful systems. It is 

focused on defining customer needs and required functionality early in the development 

cycle, documenting requirements, and then proceeding with design synthesis and system 

validation while considering the complete problem: operations, cost and schedule, 

performance, training and support, test, manufacturing, and disposal” (SE Handbook 

Working Group 2011, 6). While this definition suggests that systems engineering may be 

useful to support system development, INCOSE’s definition of model-based systems 

engineering (MBSE) is even more instructive. INCOSE defines MBSE as “the formalized 

application of modeling to support system requirements, design, analysis, verification and 

validation activities beginning in the conceptual design phase and continuing throughout 

development and later life cycle phase” (Technical Operations, INCOSE 2007, 15). The 
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definitions are largely similar, but the slight differences between INCOSE’s definitions of 

systems engineering and MBSE are important.  While both definitions emphasize that 

systems engineering should support requirements, design, analysis, and verification and 

validation activities, the MBSE definition specifies a mechanism by which this support is 

realized, specifically the “formalized application of modeling.” This subtle difference 

more clearly establishes why MBSE is appropriate to support system development. 

MBSE intends to formally apply modeling and simulation to support definition of system 

requirements, system design, system analysis, and system verification and validation. 

System development necessarily leans on models (specifically simulation models) for 

support. While various MBSE methodologies exist, it is necessary to define an MBSE 

MEASA specifically tailored to analyze large scale, complex systems using external 

models and simulations, such as those developed in MATLAB/Simulink, ExtendSim, 

MASON, SimPy, AnyLogic, NetLogo, iThink or other simulation software packages. 

The current focus of MBSE research and methodology development necessitates this 

additional clarification regarding the use of “external models and simulations.” 

Within the domain of MBSE, substantial effort has been spent on creation of a 

standardized system architecture modeling language, the Systems Modeling Language 

(SysML). Bjorkman, Sarkani, and Mazzuchi (2013) recognize that, while development of 

SysML is important, there is limited research into MBSE system performance analysis. 

Specifically, they state, “although MBSE approaches have much promise for improving 

existing systems engineering processes, to date not much attention has been paid 

regarding the role of test and evaluation” (15). Similarly, INCOSE, IBM, Vitech 

Corporation, and NASA, have developed MBSE methodologies that demonstrate the 

value of utilizing SysML as an enabler of MBSE (those methodologies, along with 

several other preeminent MBSE methodologies, are reviewed in detail in Chapter II). 

While the creation of SysML and the development of MBSE methodologies have 

established an excellent framework for the development of clear, consistent system 

models, that research has focused primarily on development of system architecture 

models and has largely ignored the need to link system architecture products to detailed 

external models and simulations.  
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Examining the goals of each of the leading MBSE methodologies highlights a 

limitation to the current state of the art of MBSE. IBM Harmony for Systems 

Engineering satisfies three objectives: identification of system requirements; 

identification of system models; and allocation of system functions/states to system 

structure (Hoffman 2011). INCOSE’s Object Oriented Systems Engineering Method 

(OOSEM) supports similar goals: understand system specifications; improve integration 

between physical systems and software systems; and facilitate system, element, and 

component reuse (INCOSE 2011). Vitech’s MBSE Methodology links four domains of 

systems engineering, progressing from requirements to functions to physical elements to 

design validation and verification (Vitech Corporation 2011). Each of these 

methodologies has the same focus, they link stakeholder input to system functions and 

system physical components. Subsequently, they develop and execute allocated 

architectures, which map system physical components to system functions, which are 

used to validate and verify system physical design. While these methodologies 

comprehensively describe systems, they fall short in their analysis of system 

performance. Specifically, the use of allocated and executable architectures to verify and 

validate system design is insufficient to completely analyze system performance because 

they are incapable of completely examining a system in terms of the interactions between 

the system and the environment, the potential impact of alterations to system operation 

and implementation, as well as the interactions between system components. Detailed 

external models are required to completely examine these aspects of system performance.  

Recent MBSE research, in particular Acheson, Dagli, and Kilicy-Ergin (2013), 

Cao, Liu, and Paredis (2011), Giammarco and Auguston (2013), Huang (2011), Huang, 

Ramamurthy, and McGinnis (2007), and Sitterle, Freeman, Goerger, and Ender (2015) 

has focused on expanding the conceptualization of MBSE beyond the development of 

system architecture models to the development of physical system models and 

operational system models. That work has, often necessarily, restricted model 

development and analysis to a single demonstration of either a physical system model or 

an operational system model. Recent analysis work, in particular Tolk and Hughes (2014) 

and MacCalman, Kwak, McDonald, and Upton (2015), has demonstrated the potential 
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utility of examining both physical system models and operational system models 

concurrently. The MBSE MEASA formalizes a comprehensive approach that details the 

transition from the current focus of MBSE (creation and examination of detailed system 

architectures) to the creation of system architectures that serve as the basis for the 

development and analysis of detailed physical system models and detailed operational 

system models. Further, the MBSE MEASA demonstrates the iteration of the 

methodology from the analysis of those physical and operational models into the 

previously developed system architecture models. Because the physical and operational 

models allow for a more detailed examination of system design, operational, and 

environmental variables, the MBSE MEASA is therefore able to prescribe an appropriate 

integration technique for introducing impactful variables of any kind into subsequent 

iterations of the system architecture. This provides a more detailed, integrated 

formalization of the use of system architecture to support system analysis (and the use of 

system analysis to support subsequent iterations of the system architecture) than is 

possible using any existing method. 

An examination of the systems engineering process highlights the utility of the 

MBSE MEASA. Figure 1 provides an overview of a single iteration of an idealized, 

generic systems engineering process (Chapter II presents a detailed review of the leading 

systems engineering process models). 
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Figure 1 Single Iteration of a Generic Systems Engineering Process 

 
 

As a point of clarification, defining the terms “system architecture” and the 

“system architecture domain” in the context of this research is valuable. Perhaps the most 

widely read systems architecting textbook, The Art of Systems Architecting by Maier and 

Rechtin (2009), includes an Appendix devoted solely to producing a definition of system 

architecture. While this Appendix does not actually produce a clear, concise definition, it 

does identify several unifying characteristics of system architectures. It notes that system 

architectures identify and organize fundamental system components, relationships, 

interfaces, processes, constraints, and behaviors. In particular, architecting creates 

concrete objects, which are traditionally lists of components, relationships, interfaces, 

process, constraints, and behaviors. Development of these products is considered 

development of “system architectures” within the context of this research. Likewise, 

research and work supporting the creation of system architectures, from refinement of 
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system requirements to development of specifically defined architecture products, is 

considered work in the system architecture domain. Emes et al. (2012) examine the 

relationship between systems engineering and system architecture and likewise do not 

arrive at a complete definition of systems engineering or system architecture, but do 

develop a similar description of the role and purpose of systems architecting and system 

architectures. Accordingly, those unifying characteristics of system architecture guide 

this research. 

Figure 1 does not completely describe all of the detail necessary to capture the 

systems engineering effort typically conducted throughout system development; rather it 

presents a generic representation of the commonly implemented systems engineering 

process. Sequentially, after a group of stakeholders is identified and an initial set of 

system requirements is developed through interaction with those stakeholders, system 

architectures are constructed, where a functional architecture specifies what the system 

must do in order to satisfy the developed requirements and the physical architecture 

specifies what system components are necessary to perform the functions identified in the 

functional architecture. Subsequently, system models and simulations are built and 

exercised, and the analysis of the outputs of those models and simulations develops a set 

of potential system solutions. The linkage of these processes, as well as iteration between 

the processes and subsequent iterations of the complete process, ensures that any 

recommended system solutions are based on previously conducted system analysis, 

which is based on system models and simulations, which are based on previously 

developed system architectures, which represent stakeholder needs. Tolk and Hughes 

(2014) advocate this defined, traceable process, stating “SE processes need to be aligned 

and synchronized to support a variety of technical team members and stakeholders and all 

phases of the life cycle of a system” (38). While adherence to the process is valuable, 

substantial domain specific expertise is required to conduct research that expands the 

scope and utility of any stage of the systems engineering process. Within MBSE, this 

problem has been compounded by the need to formally define the characteristics and 

utility of SysML. Due to the desire to gain acceptance for SysML as a standardized 

modeling language, the MBSE community has devoted substantial research time into the 
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analysis of the utility of SysML products and demonstration of the value of SysML 

development within the architecture domain. Figure 2 presents a graphical description of 

recent research in both the system architecture domain and the system analysis domain. A 

more detailed assessment of recent work conducted in the MBSE and analysis 

communities is presented in Appendix A to substantiate Figure 2. 

Figure 2 Current MBSE Research Focus 

 

 

Note that Figure 2 suggests that the majority of the MBSE Methods research has 

focused in the system architecture domain. This aligns with the focus of each of the 

leading MBSE Methodologies, although only one of these MBSE Methodologies restricts 
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the external modeling to the architecture. Recent work by Acheson, Dagli, and Kilicy-

Ergin (2013), Bataresh and McGinnis (2012), Cao, Liu, and Paredis (2011), Giammarco 

and Auguston (2013), Haveman and Bonnema (2015), Huang (2011), Huang, 

Ramamurthy, and McGinnis (2007), Neches and Madni (2013), Sitterle, Freeman, 

Goerger, and Ender (2015), and Wang and Dagli (2011) has expanded the scope of 

MBSE research to consider the creation of external models, as well as more detailed 

analysis. Other MBSE development research that use SysML architecture, and 

incorporate operational or environmental variables into external parametric or 

spreadsheet models, includes the work of Bjorkman, Sarkani, and Mazzuchi (2013), Cao, 

Liu, Fan, and Fan (2013), Carson and Sheeley (2013), Fisher (2013), Kim, Fried, 

Menegay, Soremekun, and Oster (2013), Ross (2003), Ross, Stein, and Hastings (2014), 

and Ryan, Sarkani, and Mazzuchi (2013). Similarly, there has been substantial work in 

the analysis community on the development of detailed analysis and tradespace 

visualization techniques that can be used to support system development. Lucas, Kelton, 

Sanchez, Sanchez, and Anderson (2015) describe the state-of-the-art in simulation 

modeling and analysis for addressing complex problems, and Sanchez, Lucas, Sanchez, 

Nannini, and Wan (2012) demonstrate the utility of such an approach to aid development 

and analysis of unmanned aerial vehicles. MacCalman, Kwak, McDonald, and Upton 

(2015) use this approach to develop and analyze operational models of an Army unit 

based on architecture models. While these efforts provide many useful demonstrations of 

the potential utility of linking architectural and simulation models, system architecture 

developers who are unfamiliar with simulation modeling may benefit from a more 

detailed description of that linkage.  

The MBSE MEASA is most closely related to that of MacCalman (2013), who 

describes an MBSE analysis methodology for ship design (see also MacCalman, Beery, 

and Paulo working paper); the language in that methodology is adapted for more general 

system design problems in Chapter III. MacCalman and other co-authors subsequently go 

on to use this methodology, in conjunction with the integration of SysML and their 

external simulation models, for other system design problems (MacCalman, Kwak, 

McDonald, and Upton 2015). The MBSE MEASA provides a comprehensive 

formalization of the use of architecture models (the current focus of MBSE) as a basis for 
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the development of physical system models and operational system models. Further, the 

MBSE MEASA uniquely specifies how the results of the analysis of those models can be 

integrated back into future iterations of the system architecture. Figure 3 presents a 

visualization of the expected utility of the MBSE MEASA. 

Figure 3 MBSE MEASA Intended Utility 
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The MBSE MEASA contributes to MBSE in the areas of system architecture and 

system analysis in such a way that the distinction between the two domains is no longer 

necessary. The MBSE MEASA formally defines the use of architecture to support 

analysis (and vice versa) to ensure that behaviors represented in the models and 

simulations created in the System Analysis Domain can be traced to functions prescribed 

in the System Architecture Domain. Similarly, it ensures that the system configurations 

and performance standards established in the physical architecture are consistent with the 

systems and system components created in any external models and simulations. The 

MBSE MEASA uses SysML products to formally describe these relationships, which 

enables integration and iteration of the process in a unique fashion. Because the MBSE 

MEASA creates dynamic architecture products (using SysML) as the basis for detailed 

system physical and operational models, the MBSE MEASA can incorporate a wide 

range of potential outcomes (specifically impactful design, operational, and 

environmental variables, as well as interactions between those variables) back into the 

system architecture products. The MBSE MEASA provides a comprehensive framework 

for the creation of system architecture products, the creation of external simulation 

models, and the iteration of the systems engineering process beyond the capabilities of 

any existing systems engineering approach.  

This chapter presents a general description of the dissertation contribution, as well 

as motivation and relevant background information. This research demonstrates in 

Chapter II that the existing MBSE methodologies align closely with that process of 

creating products that describe the system of interest from architecture perspective, but 

do not provide a mechanism for detailed analysis of system performance using external 

simulation based on those architecture products. Chapter II also reviews recent 

developments in MBSE and simulation analysis to position the utility of the MBSE 

MEASA in terms of recent literature. In Chapter III, this research presents an analysis 

methodology that expands that architecture focus of current MBSE methodologies by 

identifying the appropriate usage of those descriptive architecture products to create 

external models and simulations that facilitate more in-depth exploration and analysis of 

system performance. Chapter IV subsequently demonstrates the application of this new 
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analysis methodology through a study of a notional U.S. Navy mine countermeasures 

system. Finally, Chapter V presents conclusions and recommendations for future 

research. 

C. PROBLEM STATEMENT 

This dissertation develops an MBSE MEASA for analyzing large scale, complex 

systems through operational simulations and system synthesis models. Current industrial 

MBSE research focuses on appropriate definition of functional, physical, and allocated 

architectures through the use of SysML products. Academic research has expanded that 

architecture focused approach by developing external models and simulations based on 

system architectures. Current system analysis research successfully applies models and 

simulations both with and without the use of detailed system architectures. This research 

presents a comprehensive framework that expands the applicability of the state of the art 

of MBSE by establishing traceability from detailed architectures to detailed external 

models (and back again). This research demonstrates how system architecture products 

developed in SysML can support a methodology for conducting detailed system analysis, 

and how analysis results can be integrated into subsequent iterations of system 

architectures. This new analysis methodology is demonstrated through a notional analysis 

of the operational performance and feasibility of a future United States Navy mine 

warfare system. 

D. RESEARCH SCOPE AND ASSUMPTIONS 

Systems engineering emphasizes the importance of creation of system 

architectures. Systems engineering also recognizes the important role that simulation and 

modeling can play in system testing. This research focuses largely on ensuring proper 

linkage between defined system architecture products and system simulation models. 

MBSE uses these simulation models to inform many aspects of a system. This research 

presents a revised approach to properly establish a linkage between the operational 

effectiveness of a system and its functional and physical characteristics. Specifically, the 

MBSE MEASA advocates a simultaneous investigation of both operational effectiveness 

and system feasibility through simulation. After simulations in each of these areas are 
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developed, executed, explored using designed experiments, and analyzed, predictive 

surrogate models are developed that link system performance characteristics to both 

operational effectiveness and system characteristics. This dissertation formalizes an 

MBSE MEASA that defines the process steps, systems engineering products, simulation 

characteristics, experimental design techniques, and analysis methodologies that 

distinguish each phase of the MBSE MEASA. To ensure consistency with current efforts 

in the MBSE community, this research uses SysML products to define the “systems 

engineering products” appropriate for use in the analysis methodology and demonstrates 

the use of those products to support simulation models. 

This research assumes that previously conducted stakeholder analysis establishes 

a system need. Accordingly, this work focuses on system simulation techniques that 

assume that the system of interest has, at least broadly, been defined. This research 

focuses on the conceptual design phase of system development and assumes simulation 

models conduct system testing. Note that simulation models can also be used earlier in 

the system life cycle to aid in stakeholder analysis and development of a concept of 

operations as well as system requirements (the Institute of Electrical and Electronics 

Engineers (IEEE) hosts an annual requirements engineering conference 

(http://www.re15.org/) that demonstrates the power and utility of engineering 

requirements), but that usage is not the focus of this research. This research focus may 

prompt additional work into development of systems engineering and modeling and 

simulations techniques earlier in the system life cycle, or the development of engineering 

methodologies for ill-defined systems, as well as systems of systems. 
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II. PRIOR WORK 

Before demonstrating the utility of the MBSE MEASA, this chapter formally 

identifies the purpose of systems engineering process models in the abstract and reviews 

the motivation of MBSE, recent developments in MBSE, and important developments in 

simulation and analysis. 

A. SYSTEMS ENGINEERING CONTEXT 

The systems engineering process provides guidance for the development of the 

MBSE MEASA. However, discussion of “the systems engineering process” inevitably 

transitions to discussion of candidate systems engineering process models, which 

typically advocate a particular approach to following the more general systems 

engineering process. This research necessarily follows a similar path, but it is useful to 

consider the overall goal of a systems engineering process. Per the Systems Engineering 

Handbook, “the SE process has an iterative nature that supports learning and continuous 

improvement. As the processes unfold, systems engineers uncover the real requirements 

and the emergent properties of the system. Complexity can lead to unexpected and 

unpredictable behavior of systems” (SE Handbook Working Group 2011, 8). While this 

may not provide a comprehensive definition of a systems engineering process, this 

statement does makes it clear that a systems engineering process should lead to learning, 

continuous improvement, discovery of requirements, discovery of system properties, and 

discovery of system behavior.  

The Systems Engineering Handbook’s explanation of a systems engineering 

process model is a useful starting point for developing an understanding of the systems 

engineering process. However, the primary objective of this research is development of 

the MBSE MEASA (which is intended to be implemented within the context of the 

general systems engineering process); therefore, it is critically important that fundamental 

characteristics of a systems engineering process be stated. Furthermore, this research 

requires a review of candidate systems engineering process models within the context of 

this general characterization of the “systems engineering process” to define how the 
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newly developed MBSE MEASA should be implemented within a systems engineering 

process model. 

MIL-STD-499A and MIL-STD-499B provide a straightforward definition of the 

systems engineering process. (The author recognizes that MIL-STD-499A was 

superseded by MIL-STD-499B on 24 August 1993; however, several of the definitions 

provided in Revision A are considered clearer and more concise than the definitions 

provided in Revision B.) Using the definitions of Engineering Management and Systems 

Engineering Process from MIL-STD-499A, coupled with the definition of Systems 

Engineering and Systems Engineering Process from MIL-STD-499B, a systems 

engineering process can be succinctly defined as: “a comprehensive, iterative, problem-

solving process (defined by a logical sequence of activities and decisions) that generates 

information for decision makers by transforming an operational need into a description of 

system performance parameters and a preferred system configurations.” Decomposition 

of that definition identifies four characteristics of the general systems engineering 

process. 

 The process must be comprehensive. It must not focus on individual 

aspects of the system and instead should consider the system as an 

integrated whole.  

 The process must be iterative. It must consider an initially stated 

operational need and evaluate system configurations against that need. 

The process must simultaneously scope the operational capabilities of 

the system such that the process can be repeated for a more focused 

operational need.  

 The process must define a logical sequence of activities and decisions. 

As noted, the process must be iterative, but there is necessarily an 

element of sequence. The process must explicitly define the ordering and 

characteristics of each event in the process. Ambiguity must be kept to a 

minimum in order to clearly delineate each event and clearly define the 

achievements that trigger the transition between events. 

 The process transforms operational needs into descriptions of the system 

in the form of system performance parameters as well as preferred 

system configurations. This is perhaps the most important characteristic 

of a quality systems engineering process. In short, the objective of any 

systems engineering process is to ensure that the decisions that lead to 
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recommendation of a system configuration can be directly linked to a 

clearly defined operational need. 

These four process characteristics have been synthesized by the author from each 

of the sources presented previously and are considered to be fundamental to any quality 

systems engineering process. Accordingly, the author describes several well-known SE 

process models and shows how MBSE can be integrated within a generic SE process 

model.  

Stating these general characteristics of the systems engineering process facilitates 

comparisons between four distinct widely used systems engineering process models. 

Popular systems engineering texts, such as Blanchard and Fabrycky (2010), Sage and 

Armstrong (2000), and Buede (2009) describe each of these models, suggesting that they 

provide a reasonable overview of existing models. Figures of each process model are 

provided for the unfamiliar reader. Note that many versions of each process model exist, 

and it is possible (and recommended by most texts) to choose a process model that is 

tailored to specific problems. The figures shown in this Chapter provide domain neutral 

visualizations of each process model and provide a clear representation of each process 

model. Assessment of clear, domain neutral representations of each process model 

facilitates identification of the mechanisms within each model that most clearly address 

the overall goals of a “systems engineering process.” 

The waterfall model, developed by Royce (1970), is the oldest systems 

engineering process model. The waterfall model is a useful starting point due to the 

extensive history and documentation of the model (Figure 4). The model espouses a set 

of distinct, sequential steps, beginning with concept definition and requirements analysis. 

This ensures resources are not wasted early in the process. System design, coding, and 

testing immediately follow the requirements analysis. Finally, the system is fielded, 

operated, and maintained (suggesting that the model satisfies both process characteristics 

1 and 4). This sequential, distinct process allows for segmentation of tasks and easy 

identification of deliverables required to progress from one step to the next (satisfying 

process characteristic 3). However, very few system productions can follow a rigid, linear 

set of processes. Development processes are interdependent and cannot be viewed as a 
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linear series of events. Such a representation is an oversimplification of the complexities 

associated with system design (Forsberg, Mooz, and Cotterman 2005). More importantly, 

there exist no mechanisms for the introduction of new system capabilities. The model is 

inflexible and does not allow for large design changes. It is evident that any attempt to 

introduce design changes would prove extremely difficult. If forced to integrate a new 

system capability, the entire process would likely need to be completed and restarted with 

the change defined as part of the system from the beginning of the process. Note that 

sequentially linking several waterfall models results in iteration (somewhat satisfying 

process characteristic 2), but the model is certainly not tailored to redefine the operational 

need for each iteration. When implemented properly the process model certainly can be 

used to enable successful system development, but more recent process models have been 

developed that explicitly address some of the shortcomings of the waterfall model. 

Figure 4 Waterfall Model 

 

Source: Florida Department of Transportation. 2003. A Process Review and Appraisal of 

the Systems Engineering Capability for the Florida Department of Transportation 

(FDOT). Technical Memorandum No. 1. Tallahassee, FL: Florida Department of 

Transportation. 
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The spiral model of system development, first introduced in Boehm (1986), 

provides an interesting contrast to the waterfall model (Figure 5). While it was evident 

that the introduction of new operational needs and system capabilities into the waterfall 

model would prove quite difficult, the spiral model assumes that available technologies 

will change over the system development timeframe, and therefore, the process model is 

robust to new operational needs and potential system capabilities. The spiral model 

assumes that new technologies, capabilities, and needs are introduced during the system 

life cycle, and therefore the system must be fielded incrementally in order to take 

advantage of the technological growth that occurred during the system development (the 

process model is explicitly iterative, satisfying process characteristic 2). The spiral model 

is essentially a sequence of waterfall models, and after each iteration of the model a 

smaller system or subsystem is developed and new technologies are introduced 

(satisfying process characteristic 1). This model requires frequent problem redefinition as 

well as prototype recreation to allow for the introduction of new technologies. Over the 

course of system development the system is constantly redefined and redesigned. While a 

set of activities and decisions are presented in the model, there is potential ambiguity 

regarding the point at which an appropriate level of system development has been 

reached to trigger a new design cycle (somewhat satisfying process characteristic 3). 

More importantly, this may result in system delays as well as prevent a final, 

understandable definition of the system itself (making satisfying process characteristic 4 

difficult using the spiral model). This ambiguity regarding system definition is the basis 

of most criticisms of the spiral. A particularly notable failure was the use of spiral 

development for the U.S. Army’s Future Combat System, as detailed in Ellman (2009). 

However, as noted in Farr (2011), the spiral model remains particularly useful for large, 

expensive, complicated systems where technological change is inevitable and the final 

system form or configurations is difficult to define early in the system life cycle. 
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Figure 5 Spiral Model 

 

Source: Florida Department of Transportation. 2003. A Process Review and Appraisal of 

the Systems Engineering Capability for the Florida Department of Transportation 

(FDOT). Technical Memorandum No. 1. Tallahassee, FL: Florida Department of 

Transportation. 

The Vee Model (Figure 6), first developed for systems engineering in the late 

1980s, is an attempt to approach systems engineering from both a top down and a bottom 

up perspective (meaning that it focus both on decomposition of system requirements and 

integration of system components). The top down (left) portion of the Vee Model is 

similar to the waterfall model approach; system requirements are identified and 

decomposed into a particular system configuration. That system is then integrated with 

new technologies and developing subsystems during the bottom up (right) side of the Vee 

Model (satisfying process characteristic 1). This clearly identifies a sequence of activities 

and decisions (satisfying process characteristic 3) and, provided that the completion of a 

system phase is defined by a milestone, the process may be iterated. This somewhat 

satisfies process characteristic 2, but, as with the spiral model, each milestone must be 
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properly defined by a set of requirements that must be met in order to continue system 

development. Many texts, most notably Foorsberg, Mooz, and Cotterman (2005), 

advocate system development through a linked set of Vee Models and provide guidelines 

regarding management of large scale projects and definition of appropriate milestones 

using the Vee Model. However, the model itself does not provide guidance regarding the 

development of these requirements or milestones. Perhaps better than the waterfall model 

or the spiral mode, the Vee Model does build toward a preferred system configuration, 

satisfying process characteristic 4. 

Figure 6  Vee Model 

 

Source: FHWA Operations. 2013. “Systems Engineering for ITS Handbook - Section 3 

What Is Systems Engineering?” Dec 9. <http://ops.fhwa.dot.gov/publications/seitsguide 

/section3.htm>. 

The incremental model, first documented in the mid-1970s, is the final systems 

engineering process model of interest. The incremental model (Figure 7) uses the 

simplicity and well defined structure of the waterfall model, but rather than aggregating 

all system functions, divides each functional element of the system into an increment and 

develops each increment distinctly (implicitly satisfying process characteristic 1). 

Effectually, each system functional element (or subsystem) is developed using a waterfall 



 22 

model, defining a set of system development activities (satisfying process characteristic 

3). This shifts the focus from a final, large deliverable to multiple, smaller deliverables. 

The overall system functionality can be broken down into distinct development efforts. 

The model stresses that each system functional element is a cohesive part of the larger 

system (which suggests that satisfying process characteristics 4 may be difficult, but that 

the challenge is not ignored by the model). As a result, parallel development of 

subsystem components is possible, as well as parallel development of subsystem 

alternatives. New system capabilities can be introduced to each functional element 

throughout the system development timeframe because each functional element is being 

developed individually, and the larger system is not impacted by smaller changes. 

Furthermore, the incremental model implicitly creates product development cycles that 

are more independent than spiral model cycles but allow for integration of new 

capabilities without impacting the overall development timeframe (facilitating easy 

iteration and satisfying process characteristic 2). 

Figure 7 Incremental Model 

 

Source: Florida Department of Transportation. 2003. A Process Review and Appraisal of 

the Systems Engineering Capability for the Florida Department of Transportation 

(FDOT). Technical Memorandum No. 1. Tallahassee, FL: Florida Department of 

Transportation. 
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Each of the systems engineering process models is capable of satisfying each of 

the process characteristics outlined previously if implemented properly. Selection of a 

particular process model is often domain dependent. For example, the Systems 

Engineering Handbook suggests that the Vee Model is often more popular for project 

management applications, while the Spiral Model is more population in software 

engineering applications. While each of the process models defines a slightly different 

approach and set of activities, considering each of the systems engineering processes 

models presented in conjunction with the general definition and characteristics of systems 

engineering process models presented earlier, it is possible to generate a generic systems 

engineering process that summarizes each systems engineering process model. Recall 

that MIL-STD-499A and MIL-STD-499B identify the four characteristics of a systems 

engineering process as: the process must be comprehensive, the process must be iterative, 

the process must be defined by a logical sequence of activities and decisions, and the 

process must transform “an operational need into a description of system performance 

parameters and a preferred system configuration” (Department of Defense 1974, 3). 

Summarizing each of these systems engineering process models into a generic systems 

engineering process is necessary. This ensures that the MBSE MEASA is implementable 

within a more general systems engineering process model. This allows for definition of 

consistent terminology and defines how a model-based systems engineering analysis 

methodology integrates with the general systems engineering process (use of a specific 

process model may be problematic given that differing terminology is used in each 

systems engineering process model). Accordingly, the following steps are identified as 

vital to a single iteration of any systems engineering process model (recall that each 

process model emphasizes the importance of iteration, which may occur between each 

step as well as at the conclusion of the implementation of the sequence): 

1. Problem Definition 

i) Stakeholder Analysis 

ii) Requirements Identification 

 

2. System Design 

 

i) Functional Architecture Development 
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ii) Physical Architecture Development 

iii) Allocated Architecture Development 

iv) Modeling and Simulation 

 

3. System Analysis 

 

i) Assessment of System Designs 

ii) Cost Analysis 

 

4. System Implementation 

 

i) System Production 

ii) System Deployment 

iii) System Operation 

iv) System Disposal 

 

Chapter III discusses this generic process in more detail, provides detailed 

descriptions of each stage, and links the MBSE MEASA to the generic process. 

B. MODEL-BASED SYSTEMS ENGINEERING DEFINITION AND REVIEW 

As with most subjects within Systems Engineering, a clear, concise definition 

serves as a useful starting point for understanding the MBSE. Fortunately, INCOSE’s 

Systems Engineering Vision 2020 defines MBSE as, “the formalized application of 

modeling to support system requirements, design, analysis, verification and validation 

activities beginning in the conceptual design phase and continuing throughout 

development and later life cycle phases” (Technical Operations, INCOSE 2007, 15).  

When viewed in the context of the systems engineering process outlined previously, the 

goal of “supporting system requirements, design, analysis, verification, and validation” 

can be realized through adherence to an appropriate systems engineering process model. 

However, the definition provided by INCOSE also stresses that each of those activities be 

supported by “the formalized application of modeling.” Accordingly, this research 

develops an MBSE MEASA that explicitly states how the modeling process supports 

each activity in the systems engineering process (system requirements, design, analysis, 

verification, and validation).  
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1. Introduction and MBSE Progression 

While the INCOSE definition of MBSE is a useful starting point, it may remain 

unclear why MBSE is a useful expansion of systems engineering. The intended benefits 

of MBSE, presented at the INCOSE 2007 Symposium, provide clarification. Friedenthal, 

Griego, and Sampson (2007) state that MBSE results in the following benefits: 

1. Improved communications among the development stakeholders 

2. Increased ability to manage system complexity by enabling a system 

model to be viewed from multiple perspectives, and to analyze the impact 

of changes 

3. Improved product quality by providing an unambiguous and precise model 

of the system that can be evaluated for consistency, correctness, and 

completeness 

4. Enhanced knowledge capture and reuse of the information by capturing 

information in more standardized ways and leveraging built in abstraction 

mechanisms inherent in model driven approaches. This in-turn can result 

in reduced cycle time and lower maintenance costs to modify the design 

5. Improved ability to teach and learn systems engineering fundamentals by 

providing a clear and unambiguous representation of the concepts 

(Friedenthal, Griego, and Sampson 2007, 7) 

These intended benefits are adapted into criteria that can assess the ability of a 

methodology to realize the intended benefits of MBSE. The assessment of the fitness of 

the MBSE MEASA based on those criteria and the systems engineering process 

characteristics outlined in the previous section.  

Estefan (2008) provides a comprehensive overview of many existing MBSE 

methodologies, and therefore serves as an excellent starting point for reviewing several 

existing methodologies. Before reviewing each of those methodologies in detail, it is 

useful to review the most well-known MBSE enabler, the Object Management Group’s 

Unified Modeling Language (UML) and Systems Modeling Language (SysML). 

Discussion of SysML provides a nice transition from a discussion of general systems 

engineering process models to MBSE methodologies. SysML provides a framework for 

capturing the maximum possible information about a system in a model-based structure 

rather than specifying mechanisms for system development decisions. Furthermore, 

because SysML enables the system model to be viewed from multiple perspectives in a 

standardized form, use of SysML products as the starting point of the MBSE MEASA 
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ensures that the methodology is grounded in an enabler that was developed specifically to 

realize the intended benefits of MBSE. Specifically, this ensures that the architecture 

domain portion of this research aligns with the most broadly used MBSE architecting 

approach. 

2. SysML Overview 

Friedenthal, Moore, and Steiner (2009) provide a clear definition of SysML, 

stating, “SysML is a general-purpose graphical modeling language that supports the 

analysis, specification, design, verification, and validation for complex systems.” This 

definition of SysML aligns closely with the previously presented definition of MBSE. 

SysML attempts to satisfy each of these stated goals through a formal definition of 

various diagrams, specifically a requirement diagram, an activity diagram, a sequence 

diagram, a state machine diagram, a use case diagram, a block definition diagram, an 

internal block diagram, a parametric diagram, and a package diagram. Figure 8 is a 

taxonomy diagram that more clearly establishes the intended linkage between these 

diagrams. 

Figure 8 SysML Diagram Taxonomy 

 

Source: Friedenthal, Sanford., Alan Moore, and Rick Steiner. 2009. A Practical Guide to 

SysML The Systems Modeling Language. San Francisco, CA: Morgan Kaufmann 

Publishers. 
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Any system developed following a SysML framework should be able to avoid the 

development of products or system components that do not support the overall system 

concept due to the hierarchical structure of the taxonomy. This discussion examines each 

diagram in detail later, but this high level overview of the SysML diagram taxonomy 

makes it immediately clear that SysML is used “to capture the system modeling 

information as part of an MBSE approach without imposing a specific method on how 

this is performed,” (Friedenthal, Moore, and Steiner 2009, 31). This statement makes it 

easier to contrast the overall goals of SysML with the goals of the MBSE MEASA being 

developed by this research as well as the various existing MBSE methodologies. SysML 

supports various MBSE development methodologies, but does not specify any preferred 

method. By specifying a standard set of products (as shown in Figure 8), utilization of 

SysML aids in the realization of several of the intended benefits of MBSE (specifically: 

improving communication between stakeholders; defining a model of the system that can 

be evaluated for consistency, correctness, and completeness; and standardizing 

information capture to facilitate reuse of information). Friedenthal, Moore, and Steiner 

(2009) state that SysML can be used to support various system development approaches, 

such structured analysis use case-driven approaches, or object-oriented approaches. 

SysML diagrams support the MBSE MEASA due to the popularity of SysML within the 

MBSE community and the benefits of SysML outlined previously. A detailed discussion 

of each SysML Diagram is included for the unfamiliar reader. Chapter III presents 

examples of each type of SysML diagram in the context of a U.S. Navy mine 

countermeasures operation. 

a. SysML Requirement Diagram 

Discussion of the Requirement Diagram Review is a logical starting point for 

review of SysML diagrams. In an effort to improve communication between systems 

engineers and the other participants in the systems engineering process, INCOSE released 

“UML for Systems Engineering,” a request for proposal that defined the need for a 

systems modeling language. The proposal emphasized that a language similar to UML, 

which is the standard modeling language for software engineering, could not be directly 

translated to support systems engineering projects. The proposal recommended that UML 
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be customized for systems engineering to “support the analysis, specification, design, and 

verification of complex systems by: 

 

1. Capturing the systems information in a precise and efficient manner that 

enables it to be integrated and reused in a wider context 

2. Analyzing and evaluating the system being specified, to identify and 

resolve system requirements and design issues, and to support trade-offs 

3. Communicating systems information correctly and consistently among 

various stakeholders and participants” (Object Management Group 2003, 

1) 

SysML was developed using UML as a basis; Figure 9 shows the relationship 

between SysML and UML. 

Figure 9 Relationship Between SysML and UML 

 

Source: Object Management Group. 2012. OMG Systems Modeling Language (OMG 

SysML) Version 1.3. OMG document number ptc/2012-04-07. 
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UML was extended by SysML to support modeling of general systems, rather 

than only modeling of software systems. Figure 9 shows that a subset of UML was reused 

or modified for use in SysML, while portions that were not needed for systems modeling 

were excluded. Additionally, new diagrams were developed to capture system 

information that is not needed for software modeling. Figure 10 shows the specific 

diagrams that were reused or created for SysML. 

Figure 10 SysML Diagram Taxonomy and Relationship to UML 

 

Source: Object Management Group. 2006. OMG Systems Modeling Language (OMG 

SysML) Tutorial. Presented at the INCOSE 2006 Symposium, Orlando, FL. 

Figure 10 demonstrates why a discussion of SysML (in terms of its relationship to 

UML) should begin with a discussion of the Requirement Diagram. The Requirement 

Diagram is the most noticeable difference between SysML and UML. While a 

Requirement Diagram is not included in UML (because the software engineering 

community understandably focuses development on behaviors and structures), it is a 

focal point of SysML. The INCOSE definition of systems engineering emphasizes that a 

major function of systems engineering is “documenting requirements” and the INCOSE 

definition of a systems engineering process states, “systems engineers uncover real 

requirements.” Note that this does not mean that stakeholders do not provide 



 30 

requirements, rather it means that systems engineers are tasked with determining whether 

or not those requirements are “real requirements,” or simply things that the stakeholder 

desires but does not actually require. Given the focus on requirements in the definitions 

of systems engineering and the systems engineering process, it is unsurprising that the 

most obvious extension that SysML makes to UML is the specification of a Requirement 

Diagram. 

A Requirement Diagram is used “to graphically depict hierarchies of requirements 

or to depict an individual requirement and its relationship to other model elements” 

(Friedenthal, Moore, and Steiner 2009, 538). Containment, derive, or copy relationships 

are used to describe requirements to requirements relationships. Satisfy, verify, refine, or 

trace relationships are used to relate requirements to other model elements.  

b. SysML Activity Diagram 

An Activity Diagram “is used to model behavior in terms of the flow of inputs, 

outputs, and control” (Friedenthal, Moore, and Steiner 2009, 527). It can be used to 

represent different types of system behaviors, such as control flow or data flow. It is 

typically used to show sequences of operations and is described in terms of activities, 

controls (join, fork, decision, loop), data flows (required or optional), and swim lanes. 

Activity Diagrams are similar in purpose and structure to Functional Flow Block 

Diagrams (FFBD) and Enhanced Functional Flow Block Diagrams (EFFBD), two of the 

more commonly used systems engineering architecture products. For the unfamiliar 

reader, Blanchard and Fabrycky (2010) provide an overview of the role of FFBDs and 

EFFBDs in the systems engineering process and provide a detailed discussion of the 

alternative graphical approaches (such as Integrated Definition (IDEF) methods, 

modeling methods, behavior diagram methods, and N-Squared charting methods). 

c. SysML Block Definition Diagram 

The Block Definition Diagram defines blocks (often the physical elements) of a 

model. Block Definition Diagrams are particularly useful for defining hierarchical 

relationships, as well as the structural and behavioral features of each element of the 

model. 
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d. SysML Internal Block Diagram 

The Internal Block diagram is similar in structure to the Block Definition 

Diagram, but specifically defines the internal structure of a block (typically a physical 

element) with a focus on the connections between parts of a block. 

e. SysML Sequence Diagram 

Sequence Diagrams show interactions. These interactions occur between elements 

of a block (as defined in the Block Definition and Internal Block Diagrams). Sequence 

Diagrams are particularly useful for defining sequences of message exchanges or trigger 

actions between blocks. 

f. SysML State Machine Diagram 

A State Machine Diagram describes state dependent actions of a block. This 

allows each block to perform different behaviors, which are mutually exclusive (note that 

a block may only be in one state at a given time). This ensures that no conflicting 

responses to events are prescribed. The State Machine Diagram also specifies how 

transitions between states should occur. 

g. SysML Use Case Diagram 

The Use Case Diagram describes the behavior of a system, specifically the 

relationship between a system and actors that impact the operation of that system. 

Typically Use Case Diagrams represent actors internal to the system of interest (for 

example, a driver) but depending on the level of abstraction they may also represent the 

relationship between the system of interest and external actors (for example, a traffic 

police officer). 

h. SysML Parametric Diagram 

The Parametric Diagram defines systems of equations that describe the behavior 

of a block (recall that a block is most often a physical element of a system). The 

Parametric Diagram constrains properties of blocks and those constraints check for 

consistency between the physical elements of a system. They can be used as the basis for 
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the construction of external models or simulations. Parametric Diagrams are most useful 

during the later stages of system development (when their representation of system 

properties as defined values is necessary). This research focuses on early stage system 

development. As such, Parametric Diagrams, which are most useful when systems can be 

specified by specific constraints, are not a major focus of this research. 

i. SysML Package Diagram 

Package Diagrams organize SysML blocks. While they do not provide additional 

functionality, they can aid in organization of stakeholder guidance to ensure proper 

organization of model elements. 

3. Current MBSE Methods and Processes 

SysML defines a set of products that can be used to improve communication and 

cohesion throughout the systems engineering process. Importantly, it does not make any 

assumptions regarding the implementation of those products or their application within 

the systems engineering process. As mentioned, MBSE formalizes the application of 

modeling to support system development. Along those lines, several major companies 

and organizations have defined MBSE methods and processes, most of which rely on 

SysML products as enablers of the methods or processes. A useful starting point for 

identification of the most widely used MBSE methods and processes is the running 

repository of MBSE methodologies managed by INCOSE. Using INCOSE and Estefan 

(2008) as a guideline (the Estefan (2008) research was also managed by INCOSE), the 

most well-known MBSE processes/methods are: IBM Harmony for Systems Engineering, 

INCOSE Object Oriented Systems Engineering Method, Vitech Model-Based Systems 

Engineering Methodology, NASA Jet Propulsion Lab State Analysis, Dori Object-

Process Methodology, and Weilkiens Systems Modeling Process. Note that each 

methodology is presented along with the developer (ex: Object Oriented Systems 

Engineering Method was developed by INCOSE, Object-Process Methodology was 

developed by Dori). Each of these methods and processes represent an expansion of the 

general systems engineering process presented earlier. Specifically, they formalize a 

methodology for integrating a set of models within the general systems engineering 
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process. A review of each of these methods demonstrates how MBSE is implemented by 

different organizations and highlights the current gap that the MBSE MEASA addresses. 

a. IBM Harmony for Systems Engineering 

IBM Harmony for Systems Engineering, based largely on IBM’s Rational 

Integrated Systems/Embedded Software Development Process Harmony, supports a 

model driven development approach to MBSE that is intended to satisfy three major 

objectives, as presented in Hoffman (2011): 

1. Identification of derivation of required system functions 

2. Identification of associated system modes and states 

3. Allocation of the identified system functions and models/states to a 

subsystem structure (Hoffman 2011, 4). 

The process relies heavily on creation and use of UML/SysML products and is 

implemented using IBM’s Rational Rhapsody tool. Harmony emphasizes that the process 

develops models that support requirements analysis (through generation of Requirements 

Models and Use Case Models) as well as design synthesis models (using Architectural 

Analysis Models and System Architecture Models). The comprehensive Rational 

Integrated Systems/Embedded Software Development Process Harmony (Figure 11) uses 

the Vee Model as a basis and provides a guideline for system development. 
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Figure 11 Rational Integrated Systems/Embedded Software 

Development Process Harmony 

 

Source: Hoffman, Hans-Peter. 2011. Model-Based Systems Engineering with Rational 

Rhapsody and Rational Harmony for Systems Engineering, Release 3.1.2. Somers, NY: 

IBM Corporation. 

Note that the process includes each of the portions of the general SE process 

(Problem Definition, System Design, System Analysis, and System Implementation). 

Harmony describes how UML/SysML products support each segment of the general 

process (Figure 12).  
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Figure 12 Linkage of Model Artifacts to Systems Engineering 

Process Steps 

 

Source: Hoffman, Hans-Peter. 2011. Model-Based Systems Engineering with Rational 

Rhapsody and Rational Harmony for Systems Engineering, Release 3.1.2. Somers, NY: 

IBM Corporation. 

Note that the title of Figure 12 is “Model-based Systems Engineering” in the 

original document. The author altered the title for clarification and consistency with other 

MBSE methodologies. Examination of Figure 12 demonstrates that IBM Harmony for 

Systems Engineering defines the artifacts/models, as well as the work-flow elements 

transition from Stakeholder Input to Requirements Analysis to System Functional 

Analysis to System Architectural Design. Most importantly, Hoffman (2011) describes 

the overall work-flow as well as a use case example that demonstrates which SysML 

products are required to support the overall process. Note that the analysis of system 

performance is addressed through examination of scenarios during the detailed 

architectural design and relies largely on generation of utility curves for each 
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performance criterion, not through the use of external simulations. This is intentional; as 

Fisher (2013) emphasizes that the IBM Rational Rhapsody tool is best utilized to serve as 

a central design hub to enable stakeholder collaboration and document generation and 

reporting, all to realize coordinated and correct system architecture and design. This 

highlights the difference between IBM Harmony for Systems Engineering and the MBSE 

MEASA. Harmony for Systems Engineering focuses on improving collaboration and 

communication through definition of coordinated SysML products, while the MBSE 

MEASA uses those SysML products to support system performance analysis through 

external simulations. 

b. INCOSE Object-Oriented Systems Engineering Method 

INCOSE Object Oriented Systems Engineering Method (OOSEM) is an 

alternative methodology that also relies heavily on generation of SysML products. 

OOSEM is an attempt to integrate traditional systems engineering process models with 

object-oriented techniques typically used in the software engineering community.  

Specifically, INCOSE (2011) states that OOSEM defines notation and concepts that: 

1. Support capture, analysis and understanding of complex systems 

specifications and design 

2. Improve integration between systems, software, hardware, test, and other 

engineering disciplines 

3. Facilitate system, element, and component level reuse and design 

evolution (INCOSE 2011, 1) 

Like IBM’s Harmony for Systems Engineering, OOSEM mimics the traditional 

systems engineering Vee Model. Note that OOSEM emphasizes that progression through 

the Vee Model is not a terminating, linear set of processes, but rather should be applied 

recursively and iteratively (as recommended in the review of the generic Vee Model). 

Figure 13 provides a visual description of the OOSEM activities. 



 37 

Figure 13 OOSEM Activities and Modeling Artifacts 

 

Source: Estefan, Jeff A. 2008. Survey of Model-Based Systems Engineering (MBSE) 

Methodologies, Rev B. Pasadena, CA: California Institute of Technology. 

Figure 13 clarifies the approach advocated by OOSEM. The OOSEM appears to 

mirror the Waterfall Model rather than the Vee Model. Recall that the Vee Model, which 

includes many of the same activities as the Waterfall Model, emphasizes the relationships 

between each system development activity and the integration of system components. 

OOSEM specifies the relationships between activities and the integration of system 

components. It may help with visualization of OOSEM as a Vee Model-based 

methodology to “bend” the major SE Development Activities upwards after the Define 

System Requirements block (and Optimize and Evaluate Alternative and Validate and 

Verify System should certainly be included on this upwards portion of the Vee). On that 

subject, the Major SE Development Activities (above the line) make it clear that the 

OOSEM provides a roadmap for system development, beginning with a needs analysis 

and concluding with a synthesized allocated architecture (which should ensure that all 

physical system elements satisfy defined system functions). Finally, OOSEM regards 

system testing and analysis as processes that are distinct from major development 
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activities (see their classification as “Common Subactivities” below the line). Because 

OOSEM is intended to be realized through creation of SysML products, it advocates 

analysis of system performance through use of parametric diagrams, which are used to 

optimize individual system architectures using weighting factors and value measures 

(largely similar to IBM’s Harmony for Systems Engineering). External modeling and 

simulation is not described as a part of OOSEM. Friedenthal, Moore, and Steiner (2009) 

provide a comprehensive overview of using SysML products to enable OOSEM and 

acknowledge that external models and simulation may be valuable in examining system 

performance, but no formal linkage between SysML products or OOSEM with external 

models and simulations is established. 

c. Vitech Model-Based Systems Engineering Methodology 

Vitech’s Model-Based Systems Engineering Methodology is based on the tenant 

that there are four major domains of the systems engineering process, “requirements, 

functional behavior, architecture/synthesis, and design validation and verification” 

(Vitech Corporation 2011, 66). The methodology further advocates solving each domain 

at increasing layers of granularity, progressing toward realization of a complete system. 

The methodology refers to this progression as “onion layers,” Figure 14 illustrates the 

approach. 
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Figure 14 Onion Layers for Vitech’s Model-Based Systems 

Engineering Methodology 

 

Source: Vitech Corporation. 2011. A Primer for Model-Based Systems Engineering. 

Blacksburg, VA: Vitech Corporation. 

Vitech’s Model-Based Systems Engineering Methodology (Figure 15) specifies 

the sequencing within each layer. 
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Figure 15 Systems Engineering Activities for Vitech’s Model-Based 

Systems Engineering Methodology 

 

Source: Vitech Corporation. 2010. CORE 7 System Definition Guide. Blacksburg, VA: 

Vitech Corporation. 

The progression of the systems engineering activities moves clockwise, beginning 

with the Requirements Domain (note that a slightly revised version of the figure has been 

developed by Vitech since 2010, but the author feels that the revised versions, while 

aesthetically superior, actually provide less information). The methodology defines 

products within the Requirements Domain, which specify the products in the Behavior 

Domain (typically system functions), which generate products in the Architecture 

Domain (typically physical system alternatives), which are assessed in the Verification 

and Validation Domain. Note that Vitech’s use of the term Architecture Domain differs 

from the use of the term earlier in this dissertation. As used by Vitech, Architecture 

Domain refers solely to physical system alternatives, and while it is linked to functions 

and system behaviors, it does not include those products (which are included as part of 

the Architecture Domain as the term in used in Chapter I). As with both IBM’s Harmony 
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for Systems Engineering and INCOSE’s OOSEM, this progression aligns nicely with the 

general systems engineering process. Vitech departs slightly from the IBM and INCOSE 

defined methodology in the verification and validation domain. Rather than relying on 

SysML parametric diagrams to assess system performance, Vitech advocates use of 

CORESim, a dynamic verification simulation that checks system architecture models for 

logical consistency and physical model consistency that is executable within Vitech’s 

proprietary software program, CORE. Note that Vitech’s entire methodology is intended 

to be supported within CORE, similar to the support that IBM offers for Harmony for 

Systems Engineering with the Rhapsody tool. The CORE tool can support creation of 

SysML diagrams as well as more traditional systems engineering architecture artifacts. 

While the implementation of CORESim is different from the use of Parametric Diagrams, 

there are very few practical differences. CORESim interprets system behavior, as defined 

previously in Functional Flow Block Diagrams (which are nearly equivalent to generic 

versions of SysML Activity Diagrams). Parametric Diagrams interpret system behaviors, 

as defined previously in Activity Diagrams. System performance characteristics are 

defined in both cases using probabilistic functions and weighting criteria. Both 

approaches establish traceability between previously established system architecture 

products and provide a mechanism for verifying the integrity of those models. Such an 

approach is extremely valuable and powerful for ensuring consistency, completeness, and 

correctness of architecture models. However, none of the approaches provide a 

mechanism for efficiently and comprehensively analyzing the impact that alterations to 

system configurations, system operating procedures, or external environment have on 

system performance. 

d. NASA Jet Propulsion Lab State Analysis 

The Jet Propulsion Lab (JPL) State Analysis MBSE methodology is a departure 

from the previously presented MBSE methodologies. State Analysis is an attempt to 

integrate both model-based architectures and state based architectures. The approach is 

drastically different from the architecture view based approach advocated by the IBM, 

INCOSE, and Vitech methodologies and instead resembles a control systems approach to 

MBSE. As defined in Wagner et al. (2012), the State Analysis methodology is intended 
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to produce a control system architecture, rather than a physical or functional system 

architecture, by: 

1. Discovering, characterizing, representing, and documenting the states of a 

system 

2. Modeling the behavior of state variables and relationships among them, 

including information about hardware interfaces and operation; 

3. Capturing the mission objectives in detailed scenarios motivated by 

operator intent (Wagner et al. 2012, 3) 

The State Analysis methodology is initiated by definition of a physical system and 

subsequently focuses on modeling the potential states (or momentary system conditions) 

of that system and the relationships between those states. Control objectives are imposed 

as mathematical formulas that govern system behavior. The approach does use UML 

representations (with particular emphasis given to State Chart Diagrams, but also allows 

for the creation of alternative diagrams, such as Elaboration Diagrams). The State 

Analysis approach delineates between the system of interest and the control system that 

governs behavior (this delineation is often quite complex, but may be as simple as the 

difference between hardware and software). Figure 16 provides a visual representation of 

this separation: 
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Figure 16 State Based Control Architecture 

 

Source: Wagner, David A., Matthew B. Bennett, Robert Karban, Nicolas Rouquette, 

Steven Jenkins, Michel Ingham. 2012. “An Ontology for State Analysis: Formalizing the 

Mapping to SysML.” Aerospace Conference, 2012 IEEE, 1–16. 

This distinction between the “Control System” and the “System Under Control” 

improves communication between physical engineers and software engineers by bridging 

the gap that arises due to differing requirements for each set of engineers. Utilization of 

JPL State Analysis provides a formal process for developing models of both physical 

systems, software systems, and the interfaces between them. JPL State Analysis focuses 

on ensuring that any developed software requirements are tied to previously developed 

system requirements, thereby eliminating potential gaps or conflicts between the 
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hardware and software domains. This is certainly a tremendously powerful methodology 

for early stage system development, but focuses primarily on the interactions between 

hardware and software and is therefore most applicable for software focused systems. 

The MBSE MEASA presented in this research intends to prescribe a mechanism for 

developing and analyzing performance models that focus on the interactions between 

system hardware components as well as the interactions between a system and its 

physical environment. Accordingly, comparisons between the two methodologies may 

not be appropriate. Rather, the two methodologies could be applied concurrently during 

the system design phase, where the MBSE MEASA focuses on system operational 

performance and JPL State Analysis ensures compatibility between hardware and 

software requirements. 

e. Dori Object-Process Methodology 

Object-Process Methodology, developed and refined by Dov Dori and first 

presented in Dori (2002), is a systems engineering approach that is intended to be domain 

independent and enables system architecture development and design, primarily focusing 

on information exchanges between systems. Object-Process Methodology represents 

systems of interest through both graphics (termed Object-Process Diagrams) and text 

descriptions (through use of Object-Process Methodology’s Object Process Language). 

Object-Process Methodology is certainly more similar to JPL State Analysis than the 

IBM, INCOSE, or Vitech methodologies. The major departure from the methodologies 

presented earlier (which can be viewed as more object oriented methodologies) is that 

Object-Process Methodology delineates between physical systems (termed “objects” in 

Object-Process Methodology) and processes as two distinct classes of things that are 

considered the fundamental basis for any model (not dissimilar to the separation between 

the System Under Control and the Control System in JPL State Analysis). Object-Process 

Methodology emphasizes that objects are in different states at different times, and that 

changes in states are initiated by processes. The methodology focuses on definition of 

these objects, states, and the processes that initiate changes between states. Dori (2002) 

formally defines objects as things that exist or may exist; states as situations in which an 

object may exist; and processes as patterns of change that transform objects by changing 
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their states. Object-Process Methodology follows a roadmap similar to the general 

systems engineering process outlined earlier. Dori, Reinhartz-Berger, and Sturm (2003) 

provide a visualization of the system development processes that occur within Object-

Process Methodology implementations (Figure 17). 

Figure 17 Object-Process Methodology Progression 

 

Source: Dori, Dov, Iris Reinhartz-Berger, and Arnon Sturm. 2003. “Developing Complex 

Systems with Object-Process Methodology using OPCAT.” Industrial Presentation in 

Proceedings of the 22nd International Conference on Conceptual Modeling, Chicago, IL. 

Figure 17 defines the system development steps for Object-Process Methodology 

from the top-down. The methodology defines procedures for Requirement Specifying, 

Analyzing and Designing, Implementing, and Using and Maintaining. The methodology 

notes that each process can “invoke restarting of the entire development process, which 

potentially enables the introduction of changes to the requirements, analysis, design, and 

implementation of the system” (Dori, Reinhartz-Berger, and Sturm 2003, 6). In this way, 

the methodology allows for iteration not only of the entire process, but of individual steps 
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of the process. The Analyzing and Designing stage is of particular interest to this 

research. The stage is initiated by pulling a Requirements Document from the 

Requirements Specifying stage to enable development of system dynamics and system 

control structure models (in this way, it is again not dissimilar from the focus of JPL 

State Analysis). These models are used to identify discrepancies, inconsistencies, and 

deviations in system behaviors resulting from poor definition of system object and 

process specification. While the methodology enables rapid examination of analysis of 

proper linkages between software and hardware systems (much like the JPL State 

Analysis methodology) the ability to use Object-Process Methodology architecture 

products to develop detailed external performance models is limited. The methodology 

does provide a useful extension of JPL State Analysis by explicitly specifying objects and 

processes that are internal or external to the system of interest (delineating between the 

system and the external environment) but due to the intended implementation of Object-

Process Methodology, it is poorly suited for utilization as a mechanism for conducting 

detailed performance analysis of large scale, complex systems. It should be noted that, as 

with JPL State Analysis, Object-Process Methodology could be applied concurrently with 

the MBSE MEASA developed in this dissertation, as the two approaches examine system 

performance from different perspectives. 

f. Weilkiens Systems Modeling Process 

A recent MBSE modeling process specifically focused on utilization of 

SysML/UML products, presented in Weilkiens (2008), is the Systems Modeling 

(SYSMOD) Process. SYSMOD presents an approach to definition of system 

requirements, system functional architecture, and system physical architecture. The 

SYSMOD process is comprised of a defined set of activities: Identify stakeholders, elicit 

requirements, define system context, analyze requirements through use cases, define 

domain model, and define functional, physical, and logical system architecture. The 

process relies heavily on the use of SysML products (the primary developer of SYSMOD 

has written several SysML specifications). The mechanisms for conducting stakeholder 

identification, requirements elicitations, and system context definition are similar to the 

INCOSE OOSEM approach and result in the production of SysML diagrams. Use Case 
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Diagrams are the primary mechanism for assessing the quality of system requirements, 

and accordingly the system performance analysis focuses on system controls (the 

importance of which was emphasized in the discussion of JPL State Analysis and Object-

Process Methodologies) as well as the flow of objects within the system. SYSMOD 

expands the utility of the competing methodologies by explicitly defining roles for each 

individual involved in system development (roles include: Administrator, Domain 

Expert, Process Designer, Requirements Engineer, Systems Analyst, Systems Architect, 

Systems Engineer, and Systems Tester). Each task within the system development 

process is assigned to one or more roles, thereby ensuring complete definition of each 

task. This addition ensures that the SYSMOD process is perhaps the most comprehensive 

MBSE methodology from a system management perspective. However, it still relies 

solely on the use of organic SysML products to assess system performance.  

As with each of the methodologies outlined previously, SYSMOD effectively 

establishes that, given a set of functions (based on a set of requirements) a system must 

be capable of performing in a given set of scenarios (typically represented through use 

case diagrams). However, no methodology prescribes a mechanism for using existing 

products to completely define how external system performance models should be built, 

allowing examination of these use cases in greater detail. The number of system variables 

(in terms of physical system configurations, system component interactions, system 

operating procedures, system-environment interactions, etc.) that are examined and 

assessed using Use Case and Parametric Diagrams is limited. These types of external 

performance models are essential to examining system performance in detail. The MBSE 

MEASA developed in this research fills that gap. 

As an additional point of emphasis, note that each of these methodologies 

recognizes that system performance must be analyzed to ensure that proper system 

requirements are established. More importantly, note that each of the applications relies 

on some form of mathematical modeling and value function assignment (either through 

Package Diagrams, CORESim, or Object-Process/State Analysis) to evaluate system 

performance. The MBSE MEASA extends that approach by formalizing a method for 

utilizing SysML diagrams to define inputs and outputs to external system performance 
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models. The MBSE MEASA is not a comprehensive alternative to these existing MBSE 

methodologies. Rather, by leveraging existing approaches for constructing external 

simulations and conducting and analyzing large-scale simulation experiments, the MBSE 

MEASA is a mechanism for expanded performance analysis beyond mathematical 

models and value function assignment.  

4. Recent MBSE Advances 

MBSE research has taken on multiple forms, and substantial development has 

occurred in the last ten years to formalize the various aspects of MBSE. Recent work in 

MBSE and simulation relevant to this research can be classified into four general areas, 

MBSE focused system architecting, MBSE-related system analysis, linkage of SysML to 

simulation, and design and analysis of large scale simulation experiments. Recent 

advances in system architecture development, specifically the use of SysML products 

(the utility of which is often evaluated through presentation of case studies and analysis 

of past projects), must be examined to ensure that a comprehensive definition of how 

SysML products should enable development of external models and simulations has not 

been developed. The systems engineering community has focused substantial effort into 

analysis of SysML utility, but the MBSE MEASA provides a unique formalization of 

how those products should be used to support development of external models and 

simulations. Similarly, there has been substantial research, particularly in the area of 

Engineered Resilient Systems, into the use of models and simulations to enable 

exploration of large trade spaces. It is necessary to review these advances to reinforce 

that the MBSE MEASA is being developed in support of areas of emphasis for the larger 

systems engineering community and that it expands the body of knowledge associated 

with not only model-based engineering approaches but also model-based system analysis 

approaches. 

a. MBSE Architecture and SysML Development 

While each of the MBSE methodologies presented earlier advocated a different 

theoretical approach and framework to system architecture development, the one 

common thread was the use of SysML products as the primary enabler to the 
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methodology (in the case of JPL State Analysis and Object-Process Methodology, 

SysML was not used as the primary enabler but the popularity of SysML was recognized 

and procedures for interfacing with SysML were established to facilitate communication 

between users of those methodologies and the larger MBSE community). Accordingly, it 

is useful to review recent research into architecture development and SysML use within 

the context of MBSE. 

Per the generic systems engineering process outlined earlier, architecture 

development typically initiates with definition of a functional architecture. A complete 

functional architecture translates defined system requirements into defined activities that 

the system must perform to satisfy those requirements. A review of the importance of 

functional models to an MBSE approach was demonstrated in Carson and Sheeley 

(2013), who emphasize that a properly constructed functional architecture serves as a 

bridge between the problem space (which is primarily defined through requirements 

analysis) and the solutions space (which is primarily defined by system synthesis 

models). Through presentation of various examples across a broad range of systems, 

Carson and Sheeley demonstrate that a poorly defined functional architecture results in 

issues in the problem space (particularly that system boundaries may be improperly or ill-

defined) as well as in the solution space (particularly that systems may exhibit less than 

ideal performance because they are not developed with emphasis on satisfaction of well-

defined functions). This demonstration of the importance of functional architecture 

development to MBSE focused development is integral to the construction of the MSBE 

MEASA. Russell (2012) presents similar findings, demonstrating that architecture 

development in support of MBSE enables understanding of complex interactions and 

supports decision making by establishing a clear linkage between requirements, metrics, 

processes, and standards to system design elements. Specifically, it is vitally important to 

develop a clear functional architecture that defines exactly what a system must do to 

ensure proper system boundary development and proper operational performance model 

development. 

Summers, Eckert, and Goel (2013) and Wu, Ciavola, and Gershenson (2013), 

survey various functional modeling techniques and develop criteria for assessing those 
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approaches. This emphasizes the importance of functional architecture development early 

in the system life cycle. Summers, Eckert, and Goel emphasize that these criteria may 

differ depending on the type of system being considered (as an example, functional 

modeling for reverse engineered systems differs from functional modeling for novel 

products). Kenley, Dannenhoffer, Wood, and DeLaurenitis (2014) demonstrate that UML 

products can capture the functionality of a large scale system of systems to support 

communication and subsequent model development. As a unifying thread across different 

types of systems, functional modeling enforces consistency across models, captures 

system behaviors to enable simulation modeling, reduces premature commitments and 

decisions, enables visibility across all aspects of a model, and possesses the flexibility to 

rapidly adapt to changes in stakeholder defined system requirements or new problems. 

Current research into development of executable architectures highlights the 

importance of enforcing consistency within architecture models. The emphasis on 

Parametric Diagrams in both IBM Harmony and INCOSE OOSEM, as well as the use of 

CORESim in Vitech’s MBSE methodology demonstrate the importance and utility of 

such an approach. However, while executable architectures can provide tremendous 

value, they are constrained by the level of detail in any associated architecture product, 

and therefore may not provide an adequate level of detail to fully analyze the system of 

interest. Ge, Hipel, Yand, and Chen (2013) highlight several of the issues associated with 

the current implementation of executable architectures, stating, “current executable 

architecture modeling efforts rely heavily on static architectural models or views of 

architectural descriptions.” Similar limitations are noted in Wang and Dagli (2008) who 

use colored petri nets to realize a discrete event model based on SysML products. 

Numerous similar applications exist, each of which emphasizes that executable 

architecture approaches demonstrate tremendous value, especially by identifying 

capability gaps and redundant physical elements. Kim, Fried, Menegay, Soremekun, and 

Oster (2013) present a similar approach for the automated generation of Parametric 

Diagrams and even note, as is emphasized in this dissertation, that subsequent research 

should focus on the definition of detailed performance models that can consider system 

operation at multiple levels of abstraction. While this is a promising research direction, 
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current implementations of executable architectures are incapable of considering 

environmental and operations factors that may impact system performance but are not 

necessary elements of system design. Accordingly, this work recognizes the value of 

executable architecture focused research but, per the limitations associated with such 

architecture approaches, focuses on the development of architecture products that are 

capable of considering alterations to the system environment as well as system 

operational implementation, two major drivers of system performance that, currently, 

cannot be modeled in sufficient detail utilizing an executable architecture approach. 

The adoption of SysML by the MBSE community is a reaction to the architecture 

challenges associated with development of proper functional and physical architectures. 

Presentation of the existing MBSE methodologies, as well as each of the SysML 

diagrams demonstrate that functional modeling through the use of SysML enforces 

consistency, captures system behavior, reduces premature commitments, and enables 

visibility. SysML has demonstrated promise that makes it suitable for application 

throughout system development, a point emphasized by Liston, Kabak, Dungan, Byrne, 

Young, and Heavey (2011, 300), who state, “On review of existing research in the area 

and the experiences gained while using the language, it is proposed that there is potential 

for using SysML as a common thread that could underlie all the activities undertaken in a 

simulation study from the initial requirements gathering phase through defining the 

conceptual model and on to the development of the simulation model.” The authors also 

emphasize that while SysML is a tremendously rich language that shows promise for 

development of external simulation it is also inherently limited by the freedom given to 

the user (which introduces the possibility for misalignment with external models) as well 

as the substantial learning curve associated with SysML (estimating that at least 1.5 

months of dedicated work is required to achieve a basic level of competency). While this 

is a significant learning curve, the authors note that it is not dissimilar from most other 

languages, and if it is utilized properly it has the potential to be used in support of 

discrete event simulations and “would provide a common language, which has been 

noted to be lacking in this domain” (Liston, Kabak, Dungan, Byrne, Young, and Heavey 

2011, 303). 
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As an additional note, none of the research presented to this point has made it 

clear that the use of SysML creates the flexibility to rapidly adapt to changing problems 

and stakeholder requirements. That issue is currently a major focus within the MBSE 

community. Balestrini-Robinson, Freeman, and Browne (2015) develop a framework and 

interface for rapid generation of SysML products based on stakeholder interaction. While 

the interface is currently unable to generate visual representations of the SysML diagrams 

(a limitation that is currently being addressed by the authors), it defines a computer 

interface that rapidly creates and alters SysML products based on changes in stakeholder 

inputs. Furthermore, the authors emphasizes that the use of SysML is ideal for creation of 

architecture products due to its widespread acceptance, well-defined foundation, and its 

ability to represent both system performance and system interactions. Research into the 

use of SysML diagrams to rapidly incorporate stakeholder input is outside the scope of 

this research but is certainly an enabler of the methodology developed in this work. 

Pending further development, the use of a decision support tool to generate SysML 

products based on stakeholder input may be the first step in the initiation of the generic 

systems engineering process. 

b. SysML and Simulation Linkage 

Given the importance of SysML to the MBSE community and the focus within 

this dissertation on the specification of the appropriate usage of SysML products to link 

architecture and analysis it is important to review past work discussing the utilization of 

SysML products in the development of simulations. 

Johnson (2008) presents a demonstration of the use of graph transformations to 

enable development of continuous dynamics models in Modelica based on SysML 

products. As the term continuous dynamics implies, the work focused exclusively on the 

physical domain, but provides a valuable demonstration of the potential to translate 

SysML representations into another modeling program. Cao, Liu, and Paredis (2011) 

extend this approach to a far more complex mechatronic system, reinforcing the potential 

to expand SysML products to physical modeling programs. Qamar, During, and 

Wikander (2009) similarly demonstrate that SysML can be linked to Simulink to 
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facilitate communication with stakeholders early in the design of a mechatronic system. 

Palachi, Cohen, and Takashi (2013) establish a similar linkage of SysML to Simulink and 

extend the code generation to both continuous and discrete modeling approaches. 

Spangelo et al. (2013) also present a similar demonstration where SysML diagrams are 

the basis for the development and analysis of more detailed models, in this case for a 

small satellite. While this work acknowledges the need to conduct operational modeling 

as well as physical modeling, it focuses on the utilization of Parametric Diagrams to 

conduct this operational modeling. The research focuses on one variable at a time 

changes to values in Parametric Diagrams, thereby restricting the analysis done for each 

potential system.  

Cao, Liu, Fan, and Fan (2013) present another example of developing physical 

models for mechatronic systems using SysML. That work emphasizes the current 

direction of many relevant projects linking SysML to external simulations, specifically 

stating that “only the physical part of the mechatronic system is considered” and 

specifically scoping out control and behavior of the system. Note that this is not a 

negative development. In order to fully realize the benefits of SysML as a standardized 

architecture development language it must be linked in an executable fashion and the 

work referenced in this section demonstrates that such a linkage is possible from a 

physics based perspective. Huang, Ramamurthy, and McGinnis (2007) expand this work, 

demonstrating a procedure for the development of manufacturing simulation models 

based on SysML products. Huang (2011) expands further and develops discrete event 

logistics system simulations based on SysML products. That research represents one of 

the most substantial developments in the execution of SysML products to examine 

system performance. In particular, it makes a substantial contribution to the number of 

system states that are typically considered when systems are architected from a software 

perspective by utilizing internal block diagrams to fix the interactions between system 

components as state dependent characteristics of each component of the system. This 

substantially reduces the number of system interactions must be present in any 

subsequent discrete event model. Bataresh and McGinnis (2012) present a similar 

approach and create a discrete even model of a manufacturing system in Arena based on 
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SysML products. However, while substantial work is being done to consider external 

simulations after SysML products are created, past research has focused on isolated cases 

with a limited number of variables. It is certainly valuable to demonstrate how individual 

SysML Diagrams may be used to support the development of external models, but a more 

comprehensive framework is needed that emphasizes the need for detailed operational 

simulations that consider system design parameters, system components interactions, the 

impact of alterations to system operation, and the impact that the external environment 

may have on system performance. Further, no current MBSE research discusses 

appropriate integration of simulation model analysis results into subsequent iterations of 

SysML system architecture products. 

c. Design and Analysis of Large Scale Simulation Experiments 

Recent work at the Simulation Experiment & Efficient Designs (SEED) Center at 

the Naval Postgraduate School focuses on the proper design and analysis of large-scale 

simulation experiments (the term large scale, as generally referenced in Lucas at al. 

(2015), classifies simulations examining hundreds of input variables). Sanchez et al. 

(2012) detail that large scale simulation work and present fundamentals for the selection 

of an appropriate experimental design for a large scale simulation experiments (generally 

Latin hypercubes are shown to be good all-purpose designs), techniques for the 

utilization of fractional factorial designs to supplement traditional implemented designs 

(such as central composite designs), and sequential screening approaches to designs that 

may be implemented when the number of factors is very large. The utility of this 

approach to large scale simulation experiments is demonstrated in an analysis of U.S. 

Army Unmanned Aerial Vehicles, where descriptive statistical analysis, interactive 

regression analysis, regression trees, and contour profilers are shown to be useful analysis 

techniques for the analysis of unrealized systems using a large scale simulation 

experiment. The results of the analysis directly changed procurement decisions made by 

the U.S. Army. The principles presented in that work have been applied successfully in 

multiple domains to conduct analysis of complicated systems characterized by a very 

large number of components. Kaymal (2013) investigates the operational effectiveness of 

a surface combatant in an anti-surface warfare environment, Parker (2015) investigates 
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the development of future Marine Corps amphibious capabilities, Treml (2013) 

investigates the development of the U.S. Army Future Ground Combat Vehicle, and 

Wakeman (2012) analyzes key leader engagements using discrete event simulation. This 

is by no means a comprehensive list; rather it is an example of the utilization of large 

scale simulation experiments to support analysis of: a Navy system (Kaymal), a Marine 

Corps system (Parker), an Army system (Treml), and a social system (Wakeman). It is 

possible to develop and analyze high quality simulation models for a wide variety of 

systems without the use of MBSE (or systems engineering in general). Accordingly, it is 

vitally important to emphasize the role of MBSE from a simulation perspective and to 

identify the similarities and differences between MBSE approaches and fundamentals and 

currently established simulation development techniques. 

The examples above make use of system, operational, and environmental 

variables; in many cases explicitly developing systems that are robust to uncertainties in 

the environment. Consideration of that broad range of variables and the use of design 

experiments facilitates trade space analysis. Links to these theses, methodological and 

application papers, as well as software and spreadsheets for constructing large-scale 

design can be found at the SEED Center’s web page harvest.nps.edu. 

d. MBSE Focused System Analysis and Trade Space Exploration 

Development of models and simulations during the conceptual design phase is 

often challenging due to the immense number of potential system configurations. This 

issue is addressed in detail in Chapter III, but several guidelines have been established in 

recent MBSE research. In particular, Haveman and Bonnema (2015) survey modeling 

and simulation in early stage systems engineering and conclude that discrete event 

simulations are particularly well suited to conceptual systems. This could be extended to 

include low fidelity agent based models, as the authors advocate the use of discrete event 

models by noting that, “we are often more interested in the system as a whole than 

exploring physics based principles.” Humman and Madni (2014) support using agent 

based models early in the system design cycle, presenting two case studies that detail 

successful use of agent based models to support early stage systems engineering 
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decisions. Sha, Le, and Panchal (2011) develop a basic agent based model based on 

SysML products that represents products as directed graphs. Acheson, Dagli, and 

Kilicay-Ergin (2013) also present a demonstration of the utilization of model-based 

architectures to ensure proper definition of agent based models for systems of systems. 

Wang and Dagli (2011) present a similar demonstration for the use of discrete event 

simulation to model a network sensor system. MacCalman (2013) presents the 

simultaneous analysis of agent based simulations developed by McKeown (2012) and 

Yoosiri (2012) as well as a spreadsheet based model developed by Ashpari (2012). 

MacCalman, Beery, and Paulo (working paper) use the same simulations to formally 

define a tradespace visualization approach. This research does not intend to expand the 

body of knowledge associated with these simulation models, rather the discussion of the 

alternative modeling approaches is included to demonstrate to the unfamiliar reader the 

breadth of potential modeling approaches that have been applied successfully in support 

of MBSE. Readers with limited experience developing and implementing models and 

simulations should refer to Law (2014) for an overview of simulation basics, simulation 

software alternatives, basic probability and statistics, model construction guidelines, 

output analysis, and a detailed review of both discrete event and agent based models. 

Of particular interest within Law (2014) is the creation and management of an 

assumptions document. Also reviewed and summarized more briefly in Law (2009), the 

assumptions document is presents “all concepts, assumptions, algorithms, and data 

summaries” that reduce potential communication issues. The assumption document is 

provides a “blueprint” that “represents the model developers’ initial thoughts on the form 

the model will eventually take” (Law 2009, 29). An assumptions document includes a list 

of system processes, subsystems, simplifying assumptions, limitations, input data, and 

information sources to aid in communication with stakeholders. In this way the 

assumptions document shares many of the same goals of SysML product development. 

Several notable differences demonstrate the value of SysML product development. First, 

capture of system information using SysML compatible software ensures consistency and 

traceability between multiple models. For instance, if a function is developed and 

allocated to a subsystem in a SysML Activity Diagram but that subsystem is not 
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associated with a system that also performs that function, the inconsistency will be 

immediately visible in a SysML Internal Block Diagram. Perhaps more importantly, 

while processes and layouts trace to system requirements or performance measures 

within an assumptions document, that traceability cannot be mandated or enforced. 

Utilization of SysML compatible software ensures that system processes and layouts are 

directly linked to system requirements and performance measures and rapidly and 

consistently updates system requirements based on changes to system structure. This does 

not suggest that the creation of an assumptions document is inappropriate or invaluable, 

rather it emphasizes that the use of detailed model-based systems engineering 

architecture products allows for more detailed, relationships to be modeled in an 

architecture program that ensures traceability and consistency as well as rapid updating 

and reuse. 

Law (2009) also draws a loose analogy between assumptions documents and 

conceptual models. The most notable developments regarding conceptual models, to 

include the verification and validation of conceptual models, is summarized in Sargent 

(2013), where a conceptual model is defined as “the mathematical/logical/verbal 

representation (mimic) or the problem entity developed for a particular study” (Sargent 

2013, 323). The purpose of the conceptual model is to establish a linkage between the 

real system and a more detailed computerized model that can be validated by 

“determining that the theories and assumptions underlying the conceptual model are 

correct” (Sargent 2013, 324). This is analogous to the approach that will be advocated by 

this dissertation, which suggests that SysML architecture products can be used as a 

linkage between real systems and more detailed simulation models. However, as with the 

assumptions document, the conceptual model is often a static narrative model that 

describes a system, rather than a dynamic architecture formulation that establishes 

interactive, rapidly configurable relationships between system functions and components. 

While the general process advocated by Sargent (2013) that uses an intermediate (or 

conceptual model) to link the real world to the simulation world is a hugely powerful and 

appropriate paradigm, the power and richness of SysML compatible software allows for 
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the utility of this linkage to be increased and the codification of this linkage is a major 

focus of this research. 

While both Law (2009) and Sargent (2013) emphasize the importance of describing 

a system to be modeled in a formalized way prior to the development of more detailed 

computer models, it should also be noted that the system must also be described in the 

context of its intended operation and environment. As mentioned previously, this has been 

one of the major limitations associated with current executable architecting approaches. 

The importance of using models and simulations to consider the entire system, as well as 

its external environment, is the basis for robust design research (see Sanchez (2000) and 

Montgomery (2012)). That importance is summarized by Giammarco and Auguston 

(2013), who define two key principles for system modeling, specifically. 

1. In addition to modeling the behavior of the system along with its 

interfaces to external systems, also model the behavior of the environment 

in which the system operates 

2. Model component interactions abstractly and separately, rather than 

instantiated in specific use cases (Giammarco and Auguston 2013, 280) 

While the authors established those principles to support development of a 

specific MBSE architecture framework, when considered with the work of Haveman and 

Bonnema (2015) it is evident that development of external models and simulations (both 

discrete event and agent based) that consider the interactions between system components 

as well as interactions between the system and its environment is necessary to examine 

system performance during the conceptual design phase. Accordingly, discrete event and 

agent based models are recommended for use in conjunction with this research and users 

should ensure that the two key principles presented above are used as guidelines during 

simulation development. Furthermore, the work of MacCalman et al. (2015) presents a 

demonstration of the potential value of building external models and simulations based 

on stakeholder analysis and system architecture development. That research closely 

aligns with the approach advocated by this dissertation and provides an in depth 

demonstration of the use of new experimental design techniques to design and exercise 

an agent based simulation of a U.S. Army infantry squad. That research further explores 

the development of tradespace visualization tools and provides a comprehensive 

overview of the value of such tools as well as guidelines for development of tradespace 
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visualization software. That work provides a complete description of the utility of 

complete tradespace exploration and makes a substantial contribution to the system 

analysis domain, as outlined earlier in this dissertation. However, none of the recent 

advances in system analysis and tradespace visualization provide a roadmap for the 

utilization of system architecture products to develop external simulation models.  

This section familiarizes the reader with current MBSE focused architecture 

research as well as current simulation development research. In general, this research 

demonstrates the appropriate definition of model-based system architecture products 

given that they will subsequently be used to develop detailed models and simulations. 

Recent MBSE research has progressed to the point that development of such architecture 

products is possible; however recent research focuses almost exclusively on the 

formalization of those descriptive architecture products. Furthermore, simulation and 

system analysis research is conducted successfully and products such as assumptions 

documents and conceptual models are used in lieu of detailed system architectures. 

However, the recent advances within the MBSE community to formalize SysML 

products now makes it possible to utilize those products (in much the same manner as 

assumptions documents and conceptual models) to better define necessary system 

functions and components and to more rapidly integrate system analysis results into 

formal system descriptions. That definition and integration is the major focus of the 

MBSE MEASA. A review of the most widely known architecting approach for DOD 

systems is necessary before demonstrating the utility of the MBSE MEASA. 

5. Department of Defense Architecture Framework 

The Department of Defense Architecture Framework (DoDAF) is DOD’s 

framework to enable the development of system architectures and share information 

across organizational boundaries. The current DoDAF release, version 2.02 (released in 

August 2010) emphasizes the development of architectural “data” rather than the 

production of architectural “products,” although the production of architectural views is 

still the primary output of implementation of DoDAF. These architectural views are 

capability views, data and information views, operational views, project views, services 

views, standards views, or systems views, the production of which provides in depth 
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information regarding specific areas of interest while maintaining a comprehensive 

description of the full system enterprise. As presented in Department of Defense Chief 

Information Officer (2015), “each viewpoint has a particular purpose, and usually 

presents one or combinations of the following: 

1. Broad summary information about the whole enterprise (e.g., high-level 

operational concepts 

2. Narrowly focused information for a specialist purpose (e.g., system 

interface definitions) 

3. Information about how aspects of the enterprise are connected (e.g., how 

business or operational activities are supported by a systems, or how 

program management brings together the different aspects of network 

enabled capability)”  

The broad range of DoDAF views enables a multitude of potential mechanisms 

for information capture and communication (either enterprise wide or specific). Figure 18 

presents a brief summary of the data captured in each DoDAF viewpoint. 

Figure 18 DoDAF Viewpoints 

 

Source: Department of Defense Chief Information Officer. 2015. “DoDAF: DOD 

Architecture Framework Version 2.02 DOD Deputy Chief Information Officer.” August 

11. http://dodcio.defense.gov/Library/DoDArchitectureFramework.aspx 
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Utilization of DoDAF views in system development results in a definition of a 

coherent system model that can be viewed from multiple perspectives. Piaszczyk (2011) 

provides a comprehensive overview of employing a model-based systems engineering 

approach utilizing DoDAF products. Review of that work demonstrates that development 

of DoDAF views is similar in intent to development of SysML Diagrams. There are 

several major differences between DoDAF and SysML that are relevant to this research. 

First, utilization of DoDAF (from a practical perspective) is obviously restricted to 

application to DOD systems. Second, DoDAF is tailored for application at the program 

level to facilitate communication between engineers, program managers, stakeholders, 

and outside businesses, which necessarily means that it has levels of complexity that may 

be beyond the scope of this research. Garrett, Anderson, Baron, and Moreland (2011) 

summarize the true utility of DoDAF views, stating that development of DoDAF 

viewpoints “provides a means for the program manager and systems engineer to work 

with the stakeholder in translating the architecture views into verifiable requirements.” 

This dissertation research intends to facilitate communication between system architects 

and system analysts, and while it may be useful as an expansion of some portions of 

DoDAF, it is not intended to be as broadly applicable as DoDAF. Finally, the DoDAF 

Systems Viewpoints, which describe systems and interconnections between systems, 

adhere to a similar perspective as the industrial MBSE methodologies presented earlier. 

Specifically, creation of DoDAF Systems Viewpoints, even when integrated with other 

DoDAF Viewpoints, still focus development on functional architecture, physical 

architecture, and an executable architecture that checks for consistency between those 

architectures. DoDAF is not specifically configured to support development of external 

simulation models. As Garrett, Anderson, Baron, and Moreland (2011) state, “The 

development of the system architecture and corresponding executable models provide a 

way to capture the definition of the system requirements and functional and physical 

architectures that define the functions, allocated, and product baselines.” This emphasis 

on consistency within existing architecture models is certainly extremely valuable, 

however it does not allow for a complete examination of system performance. The MBSE 

MEASA presented in this research defines a roadmap for utilizing standardized, accepted 
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system architecture products to develop external models and simulations that can be used 

to conduct detailed analysis of system performance, which in turn can be used to develop 

more complete systems requirements. 

Substantial research in academia, industry, and within DOD defines a model-

based approach to system development and design. The inclusion of both architecture 

development and system performance modeling in each of the widely used MBSE 

methodologies demonstrates that these processes are essential to development of new 

systems using MBSE focused development. The substantial effort dedicated to evaluation 

of the utility of SysML products in recent systems engineering conference proceedings 

and journal articles demonstrates their importance to the systems engineering community 

as well as their acceptance as the standard starting point for MBSE focused development 

of a new system. The system analysis community has developed system description 

approaches (most notably in the form of assumptions documents and conceptual models) 

that describe the relationship between the real world and detail simulation models. 

However, while there has been industrial research that developed MBSE methodologies 

and academic research that defined methods for generation of simulations based on 

SysML products, neither the industrial or academic community has defined an end-to-end 

integrative methodology that establishes linkage between model-based architectures and 

detailed system operational, physical, and cost models. The MBSE MEASA expands the 

state of the art in MBSE by defining a comprehensive framework that uses SysML based 

system architecture products as the basis for external simulation models and integrates 

the results of the analysis of those models into future iterations of the system architecture 

for a wide range of potential analysis results. This expands the utility of the current 

systems development approach advocated by IBM, INCOSE, Vitech, and DoDAF, where 

the execution and evaluation of an allocated architecture is often the endpoint of the 

system development process. The MBSE MEASA prescribes the use of architecture 

products that characterize operational, physical, and cost models. By leveraging existing 

state-of-the-art methods in the design and analysis of large-scale simulation experiments, 

this expands the reach of any current MBSE methodology by considering not only the 

ability of a physical system configuration to satisfy a given set of functions but also 
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considering the interactions between the system and the environment, variations to 

system operations, and interactions between system components. Further, the 

consideration of each of these variable types, as well as the interactions between those 

variables, allows the MBSE MEASA to uniquely define a procedure for the integration of 

analysis results into future iterations of the system architecture. 
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III. MODEL-BASED SYSTEMS ENGINEERING 

METHODOLOGY FOR EMPLOYING ARCHITECTURE IN 

SYSTEM ANAYLSIS DEFINITION 

This research develops an MBSE MEASA that establishes a linkage between the 

system architecture and system analysis domains by defining the proper use of external 

models and simulations, based on SysML architecture products, to develop more 

complete system requirements. Given that processes such as IBM Harmony for Systems 

Engineering, INCOSE Object Oriented Systems Engineering, Vitech’s Model-Based 

Systems Engineering Methodology, NASA’s Jet Propulsion Lab State Analysis, Dori’s 

Object-Process Methodology, and Weilkiens’ Systems Modeling Process have 

established frameworks for executing the systems engineering process through a model-

based approach, the MBSE MEASA can be considered an extension of those processes 

that facilitates detailed analysis of system performance earlier in the systems engineering 

process. Specifically, the MBSE MEASA is intended to enable development of 

complicated, large scale systems effectively through analysis of models and simulations 

that consider not only system design attributes (as is done in each of the MBSE 

methodologies presented in the previous chapter) but also environmental and operational 

factors during system conceptual design. Development of the MBSE MEASA must fit 

within the context of a general MBSE process model and augment the capabilities 

already provided by existing process models. More specifically, an MBSE MEASA must 

be developed within the context of the previously stated systems engineering process 

characteristics and should be shaped to satisfy the following goals, developed by 

synthesizing the previously presented benefits of both systems engineering and model-

based systems engineering: 

1. The process will result in learning, continuous improvement, discovery of 

requirements, discovery of system properties, and discovery of system 

behavior 

2. As a result, the process will reduce uncertainty about a system and serve 

as a framework and mechanism that drives system development towards a 

solution that best satisfies predefined system requirements 
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The MBSE MEASA satisfies each of those goals, given implementation within a 

quality systems engineering process (integration of the MBSE MEASA with the model-

based systems engineering processes/methods described previously may be particularly 

useful, depending on the system of interest).  

A. SYSTEMS ENGINEERING PROCESS DEFINITION 

As demonstrated in Chapter II, numerous systems engineering process models 

exist, and the MBSE MEASA is usable within the context of any of those models. Rather 

than choose a specific systems engineering process model and implement the MBSE 

MEASA within that model, the general systems engineering process, comprised of the 

following steps, is considered and used as the basis for development of the MBSE 

MEASA. Recall that all systems engineering processes should be iterative, in particular 

system analysis results should be used to inform the system stakeholder, which should 

then promulgate down to subsequent requirements and architectures. 

1. Problem Definition 

i) Stakeholder Analysis 

ii) Requirements Identification 

 

2. System Design 

 

i) Functional Architecture Development 

ii) Physical Architecture Development 

iii) Allocated Architecture Development 

iv) Modeling and Simulation 

 

3. System Analysis 

 

i) Assessment of System Designs 

ii) Cost Analysis 

 

4. System Implementation 

 

i) System Production 

ii) System Deployment 

iii) System Operation 

iv) System Disposal 
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The generic systems engineering process generalizes the steps outlined in each of 

the systems engineering processes presented earlier. This generalization is advantageous 

for two reasons. First, it establishes a general process that the MBSE MEASA supports. 

Second, when each step of the process is analyzed, a defined set of products are 

established that demonstrate the value added by completing each step of the process.  

Two assumptions are important before proceeding. Given that this research is 

focused on development of an analysis methodology, particular attention is given to the 

first three major sections of the general systems engineering process: Problem Definition, 

System Design, and System Analysis. This is due to the focus of the MBSE MEASA, 

specifically the intent for the methodology to be used for definition, design, and analysis 

of large scale, complex systems. While system implementation is extraordinarily 

important, it is distinct from system development and is therefore more appropriate for 

discussion in project management literature than it is for inclusion in development of a 

systems engineering process model or systems engineering analysis methodology. Note 

that this does not reduce the importance of iteration of the process; rather it means that 

iteration occurs within the steps of the process, as well as at the end of system analysis 

(rather than system implementation), to inform subsequent iterations of stakeholder 

analysis or requirements identification. 

Furthermore, the MBSE MEASA assumes that an initial stakeholder analysis (the 

first step of Problem Definition) is complete. The importance of quality stakeholder 

analysis should not be understated. As Trainor and Parnell (2011, 297) state, “a great 

solution to the wrong problem is…wrong.” Improper problem definition results in 

substantially diminished impact for system design, system analysis, and system 

implementation. Balestrini-Robinson, Freeman, and Browne (2015) outline current 

MBSE related research in this area. Because the MBSE MEASA focuses on the 

conceptual design phase, stakeholder analysis is not the focus of this dissertation. Figure 

19 provides a high level overview of a generic system life cycle and highlights the 

portion of the system life cycle of interest to this research (note that 

Conceptual/Preliminary Design is only initiated subsequent to development of an 

Established Need): 
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Figure 19 Generic System Life Cycle 

 

Adapted from: Blanchard, Benjamin S., and Wolter J. Fabrycky. 2010. Systems 

Engineering and Analysis, 5th ed. Upper Saddle River, NJ: Pearson Prentice Hall 

It is now possible to state the set of products created during Problem Definition, 

System Design, and System Analysis. Synthesizing the set of products recommended for 

development in Blanchard and Fabrycky (2010) and Buede (2009), Problem Definition 

results in: a Defined Problem, a Defined System Boundary, a Defined System Objective, 

and Defined System Requirements. System Design results in Defined Functional 

Behaviors, Defined Functional Performance, Defined Allocation of Requirements to 

Functions, Defined Candidate Physical Solutions, and a Defined Model of Physical 

Solutions. System Analysis results in: Evaluation of Candidate Physical Solutions and an 

Assessment of Physical Solutions’ Satisfaction of System Requirements. If all of these 

products are generated (this is most easily accomplished by adherence to the general 

systems engineering process), it is likely that any system development decisions will be 

made in support of stakeholder identified needs/requirements. The MBSE MEASA 

supports each of the above products, which facilitates use of the MBSE MEASA in 

conjunction with any systems engineering process model (since all process models follow 

the same generic systems engineering process and therefore all process models will create 

the same set of products outlined above). 

The MBSE MEASA enables realization of the intended benefits of MBSE. 

Creation of each of the products outlined above ensures that the MBSE MEASA supports 

a generic systems engineering process, while additional criteria assess the ability of the 

MBSE MEASA to realize the intended benefits of MBSE. The four intended benefits of 

MBSE developed by Friedenthal, Griego, and Sampson (2007) (these intended benefits 

are shown as bullets 1, 2, 3, and 4), along with related criteria developed by the author 
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(shown as bullets “a” and “b” for each intended benefit) that can be used to assess the 

utility of the MBSE MEASA: 

1. Improved communications among the development stakeholders 

(a) Does the MBSE MEASA explicitly incorporate stakeholder input? 

 

2. Increased ability to manage system complexity by enabling a system 

model to be viewed from multiple perspectives, and to analyze the impact 

of changes 

(a) Does the MBSE MEASA allow the system model to be viewed from 

multiple perspectives? 

(b) Does the MBSE MEASA incorporate a method for analyzing the impact 

of changes to the system design? 

 

3. Improved product quality by providing an unambiguous and precise model 

of the system that can be evaluated for consistency, correctness, and 

completeness 

(a) Does the MBSE MEASA provide an unambiguous and precise model of 

the system? 

(b) Can the models developed in the context of the MBSE MEASA be 

evaluated for consistency, correctness, and completeness? 

 

4. Enhanced knowledge capture and reuse of information by capturing 

information in more standardized ways and leveraging built in abstraction 

mechanism inherent in model driven approaches. This is turn can result in 

reduced cycle time and lower maintenance costs to modify the design 

(a) Does the MBSE MEASA capture information in standard ways? 

(b) Does the MBSE MEASA enable reduced cycle time and lower 

maintenance costs to modify system designs? 

 

Note that the fifth intended benefit of MBSE, the “improved ability to teach and 

learn systems engineering” is not included because it relates to the larger intended 

benefits of MBSE and not to the benefits of MBSE in terms of system definition, design, 

and analysis. Given these stated criteria, SysML (which was developed to support many 

of these goals) should be incorporated with the MBSE MEASA. 
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B. MBSE MEASA PRESENTATION 

1. Analysis Methodology 

Figure 20, from MacCalman (2013) and expanded in MacCalman, Beery, and 

Paulo (working paper), provides a starting point for identifying the characteristics of an 

MBSE based analysis methodology. It is a desirable starting point for this research 

because it establishes the formal linkage between operational need and physical system 

configuration that should be the focus of any MBSE based analysis methodology. Note 

that Figure 20 uses the term “MBSE Design” as a description but the approach is termed 

“Analysis Methodology” in the context of this research. 

Figure 20 Analysis Methodology 

 

Source: MacCalman, Alexander D. 2013. “Flexible Space-Filling Designs for Complex 

System Simulations.” Ph.D. Dissertation, Naval Postgraduate School. 

The analysis methodology shown above formally defines the methodological 

building blocks inherent to any MBSE based analysis process. Because the process 

provides such a concise definition of many aspects of analysis and MBSE, it is used as 

the basis for the development of an MBSE MEASA. The analysis methodology 
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emphasizes that both operational simulation models and ship synthesis models are built 

using a common set (or at least a set that can be mapped) of inputs. The analysis 

methodology also suggests that those models be represented using regression meta-

models to simultaneously visualize the Operational Space and Physical Space. That 

simultaneous visualization is shown in MacCalman, Beery, and Paulo (working paper) 

and an example (presented in Figure 21) highlights the value of such an approach. The 

example is based on operational simulations presented in McKeown (2012), who 

developed the Anti-Surface Warfare model, Yoosiri (2012), who developed the Maritime 

Interdiction model, Ashpari (2012), who developed the Search and Rescue model, and 

Lineberry (2012), who developed the cost model, and assumes that the system under 

consideration is a naval ship, with operational constraints imposed for various MOEs, in 

this case: Objected Protected, Search Time (hr), and Interdiction. There are also system 

constraints imposed for: Ship Length, Ship Beam, Displacement (k lbs), Crew Size, and 

Ship Cost (2012$M). Below each of these lists of constraints are Operational and 

Synthesis trade spaces. These trade spaces represent two dimensional projections of the 

overall potential trade space (which exists in more than two dimensions). These trade 

spaces are defined by the imposed constraints, where all ship combinations that cannot 

satisfy a given constraint are shaded out (for example, a maximum acceptable Search 

Time is established at 25 hours and all ship combinations shaded in Blue in the 

Operational trade space are incapable of satisfying that operational constraint). The 

resulting white region defines an operationally feasible trade space on the left and a 

feasible system synthesis trade space on the right. These trade spaces can be dynamically 

altered based on changing constraints, and potential ship combinations can be 

investigated for feasibility based on those constraints. For further discussion of the utility 

and use of such an approach, see MacCalman, Beery, and Paulo (working paper). For 

recommendations regarding general development of a tradespace exploration tool as well 

as a list of best practices regarding implementation of such a tool see Spero et al. (2014). 

That work is a specific expansion of the multi-attribute tradespace exploration approach 

first presented in Ross (2003), which developed a normative decision making approach 

for exploration of multi-dimensional tradespaces. That work presents a sequential 
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procedure, further expanded in an application to a satellite system by Ross, Stein, and 

Hastings (2014) that may be used to guide the sequencing of factor examination. 

Figure 21 Trade Space of Operational and System Synthesis 

Simulation Models 

 

Source: MacCalman, Alexander D., Paul T. Beery, and Eugene P. Paulo. (working 

paper). A Systems Design Exploration Approach that Illuminates Tradespaces Using 

Statistical Experimental Designs.  

There is utility to implementing an analysis methodology that enables the 

simultaneous visualization of operational and synthesis models. However, alteration of 

the general process presented in Figure 20 is necessary to ensure consistent, more 

generalizable terminology and to provide a more coherent description of the intended 

implementation of the approach. There is a practical segmentation of operational 

effectiveness models and system synthesis models because different individuals typically 

construct and analyze these models. Any analysis methodology that addresses both 
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operational effectiveness modeling and system synthesis modeling must emphasize that 

the models must begin with a common set of inputs (or inputs that may be mapped, as 

noted in Figure 21) to facilitate shared analysis of model results. Accordingly, Figure 22 

presents an update version of Figure 20 that introduces these changes.  

Figure 22 Revised Analysis Methodology 
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There are several critical differences between Figure 22 and Figure 20. The 

methodology presents events from a top-down perspective to communicate the intended 

sequencing of events. Specifically, the analysis methodology now explicitly 

acknowledges that the Real Environment and Design-To-Specifications are typically the 

start point for the development of operational effectiveness models and system synthesis 

models, respectively. Similarly, the Trade Space Visualization is now the clear, common 

endpoint of the analysis methodology, emphasizing that development and analysis of the 

operational effectiveness models and system synthesis models supports shared tradespace 

visualization. Note that, per the definitions of systems engineering process models 

presented earlier, iteration of the process may be necessary. In this case, the results of 

Trade Space Visualization should develop new system descriptions in terms of the Real 

Environment and the Design-To-Specifications. Figure 23, Figure 24, and Figure 25 

segment the methodology to facilitate a more complete description; however before 

presenting that detail it is important to highlight several terminology changes from Figure 

20 to Figure 22. 

Figure 22 implements numerous terminology changes. The term “MBSE Design” 

is now “Analysis Methodology.” The altered terminology more accurately represents the 

intended utility because the analysis methodology is intended to be used in conjunction 

with previously developed SysML products (which, when combined, comprise the MBSE 

MEASA). The term “Physical Ship Characteristics Factors” is now “Design Parameters.” 

This emphasizes the generalizability of the analysis methodology and also avoids 

confusion with the terminology used to define synthesis models. Note that “Design 

Parameters” describes both Simulation Inputs, shown on the left of Figure 22, as well as 

Synthesis Inputs, shown on the right of Figure 22. Several Simulation Inputs and 

Synthesis Inputs are also updated to preserve solution neutrality. The term “Ship 

Synthesis Model” is now “System Synthesis Model” and the term “Synthesis Meta-

Model” is now “System Surrogate Model” to emphasize generalizability. The term 

“Design Considerations” is now “System Synthesis Outputs” to provide a clearer linkage 

of the System Synthesis Outputs to both the System Synthesis Model and the System 

Synthesis Surrogate Model. The term “MOEs” is now “Operational MOEs” to provide a 
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similar linkage to the Operational Simulation Model and the Operational Surrogate 

Model. 

Examination of Figure 22 in more detail is necessary. Segmenting the figure into 

three distinct subsections and examining them sequentially makes this examination 

easier. Note that Figure 22 defines the analysis methodology in the context of a naval 

ship, but the process is generalizable to any large scale, complex system. This research 

utilizes the naval ship example to more easily demonstrate the potential utility of the 

analysis methodology. 

Implementation of the analysis methodology begins with the development of 

operational simulation models (Figure 23). Defining the intended model inputs and model 

outputs initiates development of operational simulation. In the case an operational 

simulation model for a new naval vessel, the modeling inputs are segmented into two 

distinct categories, controllable ship design characteristics (listed in Figure 23 under 

Design Parameters – Simulation Inputs) and uncontrollable environmental or operational 

factors (listed in Figure 23 as Environmental/Operational Factors). The controllable ship 

design characteristics (ex: Speed, Endurance, Detection Range, Engagement Range, etc.) 

are evaluated across a broad range of uncontrollable environmental and operational 

factors (ex: Enemy Behavior, Weather, Friendly Behavior, etc.) in the operational 

simulation. The purpose of the operational simulation model is to establish a linkage 

between these model inputs to an operationally relevant set of model outputs (listed in 

Figure 23 as Operational MOEs). Through the use of proper experimental designs, the 

linkage of the model inputs to model outputs, or measures of effectiveness (MOEs), can 

be represented in a statistically valid surrogate model, which can subsequently serve as a 

surrogate to the simulation itself. Use of such a surrogate model allows for a rapid 

examination of the relationships between model inputs and outputs. As an example, it 

would be possible for a minimum acceptable performance standard to be set for one of 

the MOEs (ex: Attrition Rate) and the set of ships capable of satisfying that performance 

standard could be defined (ex: the ships with sufficient Speed, Endurance, Detection 

Range, Engagement Range, and Engagement Time to satisfy the standard for Attrition 

Rate). 
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Starting the design process with operational simulations is the foundation of the 

analysis methodology. Rather than defining a desired ship (or system) in terms of a 

preferred ship length, ship beam, ship displacement, radar range, number of guns, etc., 

and subsequently assessing the ability of that ship to meet various performance criteria, 

the analysis methodology advocates beginning the design process by considering the 

performance criteria. If done properly, the analysis methodology should prevent 

development of any system that does not directly support specific Operational MOEs (as 

well as any system that does not provide satisfactory performance with respect to each of 

those Operational MOEs). 

Figure 23 Analysis Methodology: Operational Effectiveness 

Modeling 
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While the value of initiating the process with the development of operational 

simulation models may be clear, it should not be underemphasized. This ordering aligns 

with each of the systems engineering process models presented earlier. In particular, 

system development and analysis should focus on the functions that a system must 

perform (informally described as “what” a system must do) before exploring the set of 

system configurations that can perform those functions (informally described as “how” 

the system will be configured). While this aligns with the systems engineering processes 

models, the ship building community does not always practice this sequencing of 

operational models and system synthesis models. This issue was first identified by Frits, 

Weston, Pouchet, Kusmik, Krol, and Mavris (2002) and formally stated by Hootman and 

Whitcomb (2005, 44), who state, “the use of effectiveness analysis existed, but it was 

virtually decoupled from the design process.” This decoupling runs the risk of entering 

into a sequence where physical systems are developed and subsequently analyzed to 

determine performance, which may result in development of systems without emphasis 

on functionality. Developing and analyzing operational simulation models prior to system 

synthesis models can mitigate this risk. 

After developing and analyzing operational simulation models, the analysis 

methodology moves to development and analysis of system synthesis models (Figure 24). 

The modeling approach is nearly equivalent to the operational simulation models. Model 

inputs, shown under Design Parameters – Synthesis Inputs (in this case, Number of 

Engines, Fuel Capacity, Detection Range, Engagement Range, etc.) are linked to model 

outputs (shown as Synthesis Outputs – Ship Stability, Length at Waterline, Displacement, 

etc.). Analysis of the output results in development of a surrogate model that rapidly 

reproduces the results of any system synthesis model. Introduction of design standards 

(such as maximum acceptable ship length, maximum acceptable displacement, etc.) 

prompts assessment (using the surrogate models) of the feasibility of those design 

standards for a given set of ship characteristics (Speed, Endurance, Detection Range, 

Engagement Range, etc.). Linkage of modeling results is possible because the system 

synthesis models and the previously developed operational synthesis models have the 

same inputs (with some potential mapping, such as Endurance to Fuel Capacity).  
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Figure 24 Analysis Methodology: System Synthesis Modeling 

 

 

Figure 25 highlights the final step in the process, simultaneous presentation of the 

results of operational simulation models and system synthesis models. Simultaneous and 

dynamic examination of the operational and system space is possible after analysis of the 

modeling results and development of surrogate models. This facilitates examination of 

the complete trade space rather than a single design recommendation based on some form 

of multi-objective optimization. A set of operational constraints (performance standards) 

can be imposed and the set of ship combinations (in terms of Design Parameters such as 

Speed, Endurance, etc.) that satisfy those constraints can be defined as an operationally 

feasible trade space. Similarly, a set of system constraints (design standards) can be 

imposed and the set of ship combinations (in terms of Design Parameters such as Speed, 

Endurance, etc.) that satisfy those constraints can be defined as a feasible system trade 

space. The set of ship combinations that satisfy both the operational and system 

constraints can immediately be visualized and a set of feasible ship combinations can be 
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defined. There are three potential situations where no feasible configurations exist. First, 

there may be no feasible configurations in the Operational Space. Second, there may be 

no feasible configurations in the System Space. Finally, there may be no overlap between 

the feasible configurations identified in the Operational Space and the feasible 

configurations identified in the System Space. Two potential solutions exist in these 

situations. The first solution, which is far more difficult, is re-running each model for 

different ranges of each Design Parameter (for example, if the Speed was examined from 

0 to 40 initially, it may be examined from 0 to 50 instead). This increases the size of the 

trade space and may increase the number of potentially feasible configurations. The 

second potential solution is that the operational and system constraints may be relaxed to 

increase the number of feasible configurations. 

Figure 25 Analysis Methodology: Trade Space Visualization 
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While analysis of a large scale, complex system using the process defined above 

certainly may define a system trade space and ensure that system development decisions 

are not made without consideration of operational performance, the process must be 

expanded, clarified, and defined. Fitting the above analysis methodology process into the 

standard SE process assumes that several earlier tasks have already been completed, 

namely, that a comprehensive user requirements analysis has taken place, that a 

functional architecture has been developed, that a set of candidate physical architectures 

has been defined, and that an operational/allocated architecture that supports modeling 

decisions has been completed. Clear definition of how each of these systems engineering 

tasks integrates with this analysis methodology is a major effort of this dissertation. This 

research defines how each of these traditional systems engineering tasks supports and 

integrates with the analysis methodology presented above and, in particular, defines how 

various SysML products can be used to support system analysis and development. As 

mentioned, the use of SysML products is the major focus of the majority of the leading 

MBSE methodologies. This research considers development of those SysML products the 

primary enabler of the MBSE MEASA from a system architecture perspective. This 

research uses those products as a basis, segments the products according to their 

implementation within the generic systems engineering process, and identifies the 

characteristics of each system architecture product that supports the development of 

external models and simulations. 

2. MBSE MEASA Definition 

This research defines a linkage between system architecture products and system 

analysis products. Specifically, this research identifies a mechanism for the integration of 

SysML products, grouped into functional and physical architecture focused diagrams, 

with external models and simulations. The full description of the integration between 

those products comprises the MBSE MEASA. To support that development, Figure 26 

presents the baseline analysis methodology again establishes a starting point for linkage 

of simulation models.  
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Figure 26 Analysis Methodology 

 

 
 

Figure 26 establishes a baseline analysis methodology implemented subsequent to 

the development of SysML products. Integration of this baseline analysis methodology 

with the SysML products outlined earlier establishes an MBSE MEASA. Five distinct 

stages comprise the MBSE MEASA and demonstrate that the MBSE MEASA conforms 

to the generic systems engineering process identified previously. Recall that the generic 
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systems engineering process takes a set of system requirements (in terms of SysML, these 

can be captured in a Requirement Diagram), identifies the functions that support those 

requirements (in terms of SysML, these can be captured in Activity, Sequence, Use Case, 

and State Machine Diagrams), identifies the physical elements that enable performance of 

those functions (in terms of SysML, these can be captured in Block Definition and 

Parametric Diagrams) and performs some analysis that can be used to assess how well 

those physical elements satisfy each function (and, by extension, how well a physical 

system satisfies identified requirements). 

Figure 27 presents a visual construction of the MBSE MEASA. SysML modeling 

supports the first three stages of the methodology. Experimental design selection, 

simulation analysis, and trade space analysis support the final two stages. Figure 27 

segments the MBSE MEASA into these five stages and identifies the SysML products 

and simulation analysis products that support each stage of the process. Note that the 

MBSE MEASA depends on generation of SysML products, but expands the scope of 

SysML modeling by adding the Analysis Methodology process (DOE Selection, 

Simulation Analysis, and Trade Space Analysis). Application of the MBSE MEASA 

ensures that SysML architecture products directly link to an analysis approach. This 

prevents development of overly complicated SysML architecture products (note that the 

MBSE MEASA also links these SysML products to traditional systems engineering 

product groupings) that remain stagnant and cannot be used to make actionable decisions. 

This also facilitates rapid iteration of the MBSE MEASA; Section C will discuss and 

demonstrate iteration in detail.  



 83 

Figure 27 MBSE MEASA 

 

 

Figure 27 is information dense and may appear overly complicated; accordingly 

Figure 30, Figure 35, Figure 43, Figure 47, and Figure 49 segment the process and 

present the details associated with each step. However, an initial discussion of the overall 

goal of segmenting the analysis methodology is required prior to isolated discussion of 

each phase. The first goal of segmenting the MBSE MEASA definition of a process 

based on successfully generated SysML products. The second goal specification of the 

SysML products required to support each stage of the analysis process. The integration of 

SysML products as the enablers for the development of system architecture product fills 

the gap identified in Chapter I. Specifically; Step 1 develops a Requirement Diagram to 

capture both the environment and set of design specifications for the system, which aligns 

with the initial step of the generic systems engineering process. The MBSE MEASA 
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subsequently recommends the SysML products that define both the system functional 

architecture and physical architecture, as is recommended in the generic systems 

engineering process. The MBSE MEASA then uses those products to support 

development of external models and simulations, a vital expansion of the current MBSE 

methodological process and the primary enabler of the linkage between the system 

architecture and system analysis domains. This segmentation of the MBSE MEASA 

illustrates how each component of the MBSE MEASA supports creation of the 

previously identified products essential to realization of the generic systems engineering 

process. Table 1 provides a template that is updated throughout the dissertation to 

identify how each step of the MBSE MEASA supports creation of vital systems 

engineering products, defined earlier in this dissertation as: a Defined Problem, a Defined 

System Boundary, a Defined System Objective, Defined System Requirements, Defined 

Functional Behaviors, Defined Functional Performance, Defined Allocation of 

Requirements to Functions, Defined Candidate Physical Solutions, a Defined Model of 

Physical Solutions, Evaluation of Candidate Physical Solutions and an Assessment of 

Physical Solutions’ Satisfaction of System Requirements. 
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Table 1 Template for Linkage of MBSE MEASA Steps to Systems 

Engineering Products 

 

 

3. Introduction to Mine Warfare Operations 

This chapter focuses on presentation of the MBSE MEASA. Prior to presentation 

of the methodology, this chapter presents an example mine warfare (MIW) system that 

provides context for presentation of each step of the methodology. This research presents 

a demonstration of MBSE MEASA using the same mine warfare system in Chapter IV. 

This research builds off of the graduate research of Becker et al. (2014) which developed 

functional architecture (in the form of EFFBD) and physical architecture products that 

characterized the activities associated with mine warfare. That research developed a 

discrete event simulation model, which was analyzed to compare the effectiveness of the 

Littoral Combat Ship (LCS) and MCM-1 Avenger Class ship in Mine Countermeasure 

(MCM) operations. That same simulation model, with a few minor updates, is used in 

this dissertation. 
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A brief introduction to MIW operations is necessary to support understanding of 

each product developed in the MBSE MEASA prior to a detailed examination of each 

step of the MBSE MEASA. Carpenter (2010) provides an overview of the current and 

future challenges associated with MIW. Figure 28 illustrates the scope of MIW 

operations and also identifies the MIW operations of interest to this analysis. 

Figure 28 MIW Activities 

 

Adapted from: Carpenter, Wendi B. 2010. Navy Warfare Publication: Naval Mine 

Warfare. Vol. 1. NWP 3–15. Norfolk, VA: Navy Warfare Development Command. 

MIW Operations are vital to the ability of a Navy to conduct uninhibited 

operations in strategic areas. Benes and Sandel (2009) show that, since 1950, mines 

damaged more U.S. Navy ships than missiles, torpedoes, aircraft, and small boats 

combined. Accordingly, the U.S. Navy has shifted resources toward MIW operations. 

Note that MIW encompasses both Mining Operations and MCM operations, two distinct 

challenges. This research facilitates comparison between legacy and future MCM 

operations by focusing on defensive MCM operations. Offensive MCM operations focus 

on neutralizing an enemy’s ability to conduct mining activities, which is a challenge 

addressed by non-MIW dedicated assets. Furthermore, Active MCM operations are more 

relevant than Passive MCM operations, which are concerned with the ability to locate and 

avoid mines. Because Passive MCM operations are so dependent on operational 

decisions, they are not appropriate for consideration with the MBSE MEASA. Focus on 
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Active, Defensive MCM Operations bounds the overall MIW problem and focuses this 

research on a problem area that is well understood but requires additional investigation.  

Further explanation of MCM Operations facilitates understanding of MCM 

systems. Sandel (2008) provides an overview of the activities typically performed in 

support of Active, Defensive MCM Operations. Those activities are: Detection, 

Classification, Identification, and Neutralization. Detection is the process of segmenting 

underwater clutter into Minelike Echoes (MILECs) and Non-Minelike Echoes (Non-

MILECs). Classification is the process of classifying MILECs as either Minelike 

Contacts (MILCOs) or Non-Minelike Contacts (Non-MILCOs). Identification is the 

process of identifying MILCOs as Identified Mines and Identified Non-Mines. 

Neutralization is the process of successfully or unsuccessfully neutralizing Identified 

Mines. The details of each activity conducted within Defensive MCM operations 

supports development of architecture views later in this research. Additional clarification 

regarding the scope of this research is required before presenting those architecture 

views. Underwater mines can take several forms, but there are two types of mines (in 

terms of activation methods) of particular interest. Contact mines activate through contact 

with another object. Contact mines can fix to the seafloor, rest on the seafloor, bury, or 

float on the surface. Influence mines activate by either an acoustic, magnetic, pressure, or 

seismic signature. Like contact mines, influence mines can fix to the seafloor, rest on the 

seafloor, bury, or float on the surface. This research focuses on the ability of current 

systems to detect, classify, identify, and neutralize influence mines. Figure 29 provides a 

visualization of the types of mines of interest to Defensive MCM operations. 
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Figure 29 Types of Underwater Mines 

 

Source: Amador, Brian. 2011. “U.S. Navy Funding Goals for Future Mine Warfare 

Capability.” Lecture at the 16th Annual Expeditionary Warfare Conference, Panama 

City, FL. 

The intent of this review is not to provide a comprehensive overview of MIW 

operations, but rather to establish a focus area for the presentation of the MBSE MEASA. 

In particular, substantial development is necessary in each area of MIW Operations. This 

research uses Active, Defensive MCM Operations as a demonstration case. The above 

familiarization provides direction for the introduction to example system architecture 

views. Chapter IV provides more detail regarding Active, Defensive MCM operations for 

influence mines prior to demonstration of the MBSE MEASA. 

4. Requirements Analysis Products 

The goal of the stakeholder analysis phase, which is completed using a 

Requirement Diagram (and potentially a Package Diagram), is to summarize the system 

into a series of “The system shall” statements, both in terms of the operational 

environment and design specifications. This is supported by generation of a SysML 

Requirement Diagram (SysML Package Diagrams may also be used to support 

organization of system documentation). Figure 30 provides a visual representation of the 

first step in the MBSE MEASA, which uses a SysML Requirement Diagram to define a 
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set of system requirements that capture both the intended operational environment and 

design specifications for the system. 

Figure 30 MBSE MEASA (Step 1) 

 

 
 

Generation of the SysML Requirement Diagram for the MBSE MEASA assumes 

that a stakeholder analysis has been conducted and a set of requirements has been 

developed (this research does not assume that these requirements are necessarily “good” 

and investigation of the quality of those requirements is a major focus of the MBSE 

MEASA). Requirement Diagrams development is often the final step of the stakeholder 

analysis process, and is often supported through development of more traditional systems 

engineering products. In particular, visualization and communications of system 
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requirements is challenging, and is often accomplished through presentation, discussion, 

and iteration Integrated Definition (IDEF) models (in particular, IDEF0 models). Note 

that IDEF0 models are typically described as functional models; however the level of 

detail presented in these models as well as the comfortable description of the system in 

terms of inputs, outputs, controls, and mechanisms make them extremely useful for 

discussion with stakeholders who may not be familiar with the formal definitions 

associated with more detailed models. The National Institute for Standards and 

Technology (1993), advocate the use of IDEF0 models in this context and defines IDEF0 

models as graphical system representations that describe the system in terms of the 

functions and activities that the system will perform, as well as the data, objects, and 

information that inter-relate the functions and activities. 

Figure 31 provides an example of an IDEF0 model that was developed based on 

the information provided in Carpenter (2010) and Sandel (2008) to describe the general 

functions and activities of an active, defensive MCM operation. In general, such 

diagrams may be developed through analysis of supporting documentation or through 

interaction with project stakeholders. It is expected that most systems engineers will be 

familiar with the construct of IDEF0 models, the unfamiliar reader should refer to the 

original IDEF0 definitions presented in National Institute for Standards and Technology 

(1993). As a brief introduction, IDEF0 models present each function associated with a 

process in a box. These boxes accept inputs on the left and transform them into outputs 

on the right. Controls are shown at the top of each box. Controls present the conditions 

necessary for each function to take place. Mechanisms are shown at the bottom of each 

box. Mechanisms are the human or component resources necessary for each function to 

take place. Many approaches exist to guide the development of IDEF models. It is often 

easier to develop a conceptual understanding of the full system, as well as its interactions 

with external systems and the environment, by first considering the system as a 

subsystem within a larger context level IDEF representation. Figure 31 presents such an 

IDEF model, which presents the functions that define Defensive MCM Operations. 
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Figure 31 Context IDEF0 Model 

 

 

Figure 31 presents the Active, Defensive MCM Operations of interest to this 

research in the context of larger Defensive MCM Operations. Note that the Active, 

Defensive MCM Operations function (highlighted in gold for emphasis) accepts inputs 

(Potential Mines and Non-Neutralized Mines) from the Exhibit Environmental Feedback 

function. The Active, Defensive MCM Operations uses a generic MCM System (shown 

on the bottom as a mechanism), controlled by a generic MCM strategy (shown on the top 

as a control that is created by the Provide Command and Control function) to create both 

Neutralized Mines and Post Mission Analysis (PMA) Data. Both the Neutralized Mines 

and PMA Data are inputs to the Environmental Feedback function, which creates a list of 

Missed Mines (which is sent back to Passive Defensive MCM Operations) and Non-
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Neutralized Mines, which prompts another instance of the Active, Defensive MCM 

Operations function. This diagram establishes a baseline understanding of the high level 

behaviors that must be represented in any system simulation. Specifically, a simulation of 

Active, Defensive MCM Operations must represent an MCM System that follows a set 

MCM Strategy, accepts a list of Potential Mines and Non-Neutralized Mines, and 

converts them to Neutralized Mines and creates PMA Data. Figure 32 presents a similar 

IDEF0 model for Active, Defensive MCM Operations and provides increased detail 

regarding the functions that define Active, Defensive MCM Operations. 

Figure 32 IDEF0 Model for Active, Defensive MCM Operations 

 

 

The IDEF0 model in Figure 32 presents the functions associated with Active, 

Defensive MCM Operations, as well as the inputs, controls, outputs, and mechanisms 

associated with each function. A brief examination of the inputs and outputs captures the 
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primary goal of Active, Defensive MCM Operations. The system accepts Potential Mines 

and Non-Neutralized Mines and outputs Neutralized Mines and PMA Data (the same set 

of inputs and outputs shown in the Context Level IDEF0). The expanded IDEF0 model 

for Active, Defensive MCM Operations details that conversion and can develop a more 

detailed understanding of the processes that must be represented in a simulation of 

Active, Defensive MCM Operations. This detailed examination of Figure 32 shows the 

humans and components essential to the process (each of which is a decomposition of the 

generalized MCM System previously shown in Figure 31) as well as the conditions 

necessary to conduct the process (each of which is a decomposition of the generalized 

MCM Strategy previously shown in Figure 31). Active, Defensive MCM Operations 

begin with Minehunting, which subsequently prompts MCM logistics functions, which in 

turn prompts Mine Neutralization and Minesweeping. The IDEF0 model also represents 

operational control. Each of these functions can also be decomposed to fully understand 

each sub-process associated with Active, Defensive MCM Operations. The IDEF0 

captures the processes, system components, and conditions associated with Active, 

Defensive MCM Operations beyond the general description presented earlier. While this 

decomposition is extremely valuable for communications with stakeholders, the MBSE 

MEASA advocates the definition of system processes and components using SysML 

products, which are more easily translated to external models and simulations.  

As mentioned, IDEF0 models facilitate easy communications with stakeholders, 

although perhaps more importantly they are a starting point for the generation of 

Requirements Analysis Products. Development of this diagram is vitally important 

because it ensures consistent terminology in both the functional and physical 

architectures (and later, between operational models and synthesis models). A high level 

SysML Requirement Diagram describes the general requirements for an Active, 

Defensive MCM system. The general requirement “Perform MCM Operations” 

aggregates lower level requirements. A SysML Requirement Diagram specifies any and 

all system requirements, including intended capabilities, expected functions, and 

performance conditions. Many requirements will describe an intended capability in terms 

of its expected functionality and quantify a performance metric. The SysML Requirement 
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Diagram provides that functionality and also allows for specification of relationships 

between requirements, as well as between requirements and other model elements. The 

types of relationships allowed within a SysML Requirement Diagram are: Requirements 

is satisfied by, Requirement is derived from, Requirement derives, Requirement is refined 

by, and Requirement is verified by. Figure 33 presents an example of a SysML 

Requirement Diagram for the Requirement “Perform Mine Warfare Operations.” 

Figure 33 Requirement Diagram: Perform Mine Warfare Operations 

 

 

While the high level SysML Requirement Diagram presented in Figure 32 does 

not capture all of the aspects of MCM operations, it does establish a common operating 

model that can be supplemented with increased detail. Figure 33 provides an example of 

an abstract, high level requirement (Perform Mine Warfare Operations), which is refined 

by additional requirements (ex: Perform MCM Operations). Figure 33 also shows several 

more detailed relationships (ex: Perform Defensive MCM Operations refines Perform 

MCM Operations).  
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For clarity regarding the level of potential detail that may be included in a 

Requirement Diagram, Figure 34 presents a decomposition of the Perform Minehunting 

Operations requirement, which is a requirement that refines Perform Active, Defensive 

MCM Operations, as shown in Figure 33. Note that the use of a consistent numbering 

convention clarifies the relationships between requirements; Detect Mines (requirement 

id 1.2.1.1.1) refines Perform Minehunting Operations (requirement id 1.2.1.1), which 

refines Perform Active, Defensive MCM Operations (requirement id 1.2.1). In terms of 

requirement development in support of the MBSE MEASA, which necessarily relies on 

Requirement Diagrams for definition of system level performance parameters as well as 

guidance regarding development of operational MOEs, several specific steps should be 

taken when developing Requirement Diagrams. At a minimum, the MBSE MEASA 

recommends that all requirements include an id number as well as a text description. 

Requirements that are not refined by any additional requirements should also include a 

property, which should be a quantifiable, assessable quantity. Assessment of these 

quantifiable metrics for lower level requirements provides assessment of the high level 

requirements (even those that are text based). This defines the system parameters, 

environmental factors, and operational factors represented in an external model, and 

establishes traceability between those performance parameters and operational MOEs. 

While each requirement can be supplemented with additional detail regarding the 

criticality or risk of the requirement, it is recommended that these characteristics not be 

ascribed to any requirements prior to initial examination of an external model, which will 

provide insight regarding the impact of each system design parameter on the performance 

of the overall system. If a stakeholder identifies a requirement as critical this should be 

included in the text description of the requirement for examination in future iterations of 

the MBSE MEASA. 
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Figure 34 Requirement Diagram: Perform Minehunting Operations 

 

 

Note that each requirement that is not refined by additional requirements includes 

at least one property that can assess the system performance in terms of that requirement. 

As mentioned, this is vitally important because these properties will guide the selection of 

input variables to all external simulation models. Note that, as the MBSE MEASA is 

iterated, these properties may be supplemented with increased detail. As an example, 

Figure 34 presents Requirement 1.2.1.1.4 (Identify Mines) on the far right. Currently, two 

properties define Identify Mines: Probability of Identification and Identification Time. 

During a subsequent iteration of the MBSE MEASA (which should be based on the 

analysis of a system simulation model) this property may be specified with more detail 

(ex: Probability of Identification greater than 0.80). The level of detail shown in Figure 

34 presents an expected level of definition for each higher level requirement shown in 

Figure 33. The first step of the MBSE MEASA (Requirements Analysis) is considered 

complete after a Requirement Diagram captures the full set of stakeholder needs and a 

quantifiable metric is established for each low level (unrefined) requirement. A 

completed Requirement Diagram should include sufficient detail to accomplish the first 
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four systems engineering products presented earlier. Table 2 presents an updated linkage 

of the systems engineering products supported after Step 1 (Requirements Analysis) of 

the MBSE MEASA. 

Table 2 Requirements Analysis Support of Linkage of MBSE MEASA 

Steps to Systems Engineering Products 

 

 

Development of a comprehensive Requirement Diagram allows any user to 

communicate a clearly defined problem system boundary, system objectives, and system 

requirements. This aligns with the previously presented definition of system requirements 

as a set of “The system shall,” statements that capture the operational environment and 

design specifications for the system in terms of intended capabilities, expected functions, 

and quantified performance conditions. Note that development of a SysML Package 

Diagram can be conducted prior to development of a Requirement Diagram, but is not 

necessary. The Package Diagram can organize the information collected from a 

Stakeholder Analysis. For example, a SysML Package Diagram can classify and organize 

system requirements, use cases, behaviors, structure, and definitions in a SysML 
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modeling tool. Using Package Diagrams as brainstorming organizational tools may ease 

the construction of future diagrams and products, but is not necessary, and therefore a 

detailed discussion is not included in this dissertation. For an in depth presentation of the 

potential value of beginning SysML modeling with the creation of a Package Diagram 

see Friedenthal, Moore, and Steiner (2009). 

5. Functional Architecture Products 

The system development process moves from Problem Definition to System 

Design after a Requirement Diagram is complete. System Design is defined as: 

Functional Architecture Development, Physical Architecture Development, Feasible 

Design Generation, and Modeling and Simulation. Note that in this context the term 

Modeling and Simulation describes the process of evaluating the ability of a given 

Physical Architecture to satisfy the functions outlined in a given Functional Architecture. 

Subsequent to the creation of a comprehensive Requirement Diagram SysML Diagrams 

capture these Functional Architecture products.  

Functional Architectures summarize the system in terms of HOW it will satisfy 

the requirements identified in Step 1 (Requirements Definition), but do necessarily not 

define what physical system elements will satisfy those requirements. Development of 

SysML Activity, Sequence, State Machine, and Use Case Diagrams (Figure 35) support 

this definition. Further, the definition of the set of sequenced activities, the state 

dependent transitions between those activities, and the users responsible for the execution 

of each of those activities guides development of external operational simulation models. 
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Figure 35 MBSE MEASA (Step 2) 

 

 

As mentioned, Functional Architectures specify how a system will behave. 

Accordingly, an Activity Diagram, which specifies what a system must do in order to 

satisfy requirements, is an appropriate first product to generate as part of a functional 

architecture. As mentioned when presenting the intended benefits of MBSE, the 

utilization of MBSE software to create various architecture views (rather than the 

utilization of static, standalone documents) ensures that conflicts are resolved between 

different types of diagrams as well as between different levels of each diagram. As with 

the IDEF0 models presented previously, it is difficult to capture the utility of this 

enforced consistency through the presentation of static figures. However, a major focus 

of this chapter is demonstrating the fundamental elements that can be included in each 

SysML Diagram, demonstrating the traceability and consistency that these diagrams 
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ensure, and highlighting the expected utilization of each diagram as a guideline for the 

development of external simulation models. Accordingly, this chapter will present several 

representations of each diagram, beginning with the simplest, highest level diagram of 

interest to this research (typically Active, Defensive MCM Operations), then moving to a 

decomposition of Minehunting Operations, and finally decomposing Mine Detection. 

Additional detail regarding Mine Neutralization, Mine Classification, Mine 

Reacquisition, Mine Identification, and MCM Logistics Functions will be included in 

Chapter IV as needed to demonstrate proper development of an external simulation 

models.  

Activity Diagrams are a reasonable starting point for the development of 

functional architecture products for several reasons. Note only do Activity Diagrams 

describe what the system must do to satisfy each function, they also describe the external 

objects that are necessary to complete or trigger each function. Activity Diagrams can 

also model parallel operations, loops, iterations, and replications of activities. Also 

notable is the ability to group activities into partitions (also called swim lanes) that allow 

a user to specify responsibility (in terms of model parameters) regarding execution of 

those activities. While most activities must be completed to trigged subsequent activities, 

some activities within these partitions can be specified as interruptible if any stop or 

delay in that activity does not impact any other actions or activities. While these 

characteristics are difficult to understand through narrative text, they are easily visualized 

and understood through examination of the diagrams. As mentioned, the sequenced 

presentation of figures in this chapter demonstrates the fundamental elements and 

structure of each diagram in detail (to include highlighting traceability and consistency 

between diagrams) and demonstrates their utility in development of external simulation 

models. Figure 36 presents an Activity Diagram for Active, Defensive MCM Operations. 

Note that it provides similar detail to the IDEF0 model of Active, Defensive MCM 

Operations but also provides increased information regarding the ordering of each 

activity.  
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Figure 36 Activity Diagram: Active, Defensive MCM Operations 
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The Activity Diagram shown in Figure 36 demonstrates that there are three 

parallel processes associated with Active, Defensive MCM Operations: a sequence of 

Minehunting, Mine Neutralization, and Minesweeping; Active Defensive MCM 

Logistics; and Control of Active, Defensive MCM Operations. The parallel nature of 

these activities suggests that it may be necessary to concurrently allow for each of them 

within an external simulation model. The Activity Diagram also specifies that after 

Minehunting Operations conclude there is a choice between Mine Neutralization 

Operations and Minesweeping Operations. This research will focus on Mine 

Neutralization Operations (Minesweeping Operations has accordingly been shaded in 

gray by the author). This choice was made to facilitate a more accurate comparison 

between legacy and future MCM systems since there is very little detail available 

regarding the performance of the future minesweeping system that will be utilized by the 

LCS MCM Package. Note that the Activity Diagram also specifies the external 

components that will be created and used by each activity, which provides detail 

regarding the physical entities that must be represented in an external simulation model. 

It is possible to further decompose the Activity Diagram shown in Figure 36. Figure 37 

presents an example Activity Diagram that describes Minehunting Operations.  

Figure 37 Activity Diagram: Minehunting Operations 
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A straightforward sequence of events defines Minehunting Operations and 

therefore the Activity Diagram is actually simpler than the Activity Diagram for Active, 

Defensive MCM Operations. Minehunting Operations is comprised of: Detect Mines, 

Classify Mines, Reacquire Mines, and Identify Mines. Note that the Activity Diagram 

specifies the inputs that are necessary for each Activity, as well as the outputs that result 

from each Activity (some of which are subsequently used as inputs to other Activities). 

Because MILCOs, non-MILCOs, etc., may not exist in every scenario the Activity 

Diagram classifies some outputs as optional to indicate that their creation is not required 

to continue through the activity. Figure 38 presents a further decomposition of the Detect 

Mines activity and provides greater detail regarding the level of detail that Activity 

Diagrams can present. 

Figure 38 Activity Diagram: Detect Mines 
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The Activity Diagram in Figure 38 shows that Mine Detection is initiated by the 

selection of either the MCM-1 Sequence (top) or the LCS Sequence (bottom). Each 

sequence then enters a loop that continues for a specified number of detection tracks. 

This loop begins with streaming of search gear and requires a hunt strategy, previously 

non-neutralized mines, other potential mines, and MCM equipment as inputs. The system 

then transits within the minefield and detects mines (that sequence is conducted for the 

number of potential mines on the track). That creates a list of MILECs and non-MILECs 

and the system then records the number of detection tracks, which may prompt an 

additional pass through the loop. If the loop has finished, the system begins classification, 

which uses the MILECs as an input. This sequencing is used to guide development of an 

external simulation model for Active, Defensive MCM Operations (in conjunction with 

functional architecture products that describe Mine Classification, Mine Reacquisition, 

Mine Identification, Mine Neutralization, and Control and Logistics of Active Defensive 

MCM Operations, which will be shown in detail in Chapter IV). The richness of Activity 

Diagrams, and their ability to represent behaviors through a presentation of not just 

activities (which translate nicely to events that must be modeled within external models) 

but also interactions and triggers (which translate generally to event sequencing and 

provide generic guidance for the development of physical architecture products) that are 

consistent across multiple levels of decomposition make Activity Diagrams a reasonable 

starting point for the development of functional architecture products in support of the 

MBSE MEASA. Note that the implementation of Activity Diagrams in the software 

program chosen by the author (CORE) can result in diagrams that are extremely busy. 

This is a result of a requirement within the software program that each diagram be 

“connected,” meaning that any entity created within an activity be consumed and used 

within that activity. This can create extremely busy diagrams and cause issues when 

executing the architecture. Appendix C provides more details and recreates the 

architecture in an alternative software program that overcomes some of the limitations 

associated with this implementation of Activity Diagrams using CORE. 

After an Activity Diagram describes all the activities that a system will complete, 

Sequence Diagrams provide additional information regarding interactions between 

elements of the internal structure of an activity. Generally, Sequence Diagrams 

supplement the information shown in Activity Diagrams by providing details regarding 
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what is necessary to support a particular activity, which helps provide clarity regarding 

ordering of activities. Specifically, it should alert any user to conflicts that may result 

from expecting an activity to commence prior to creation of external information 

necessary to support that activity, a level of detail that may be difficult to attain when 

using only Activity Diagrams, which provide no detail regarding the control of activity 

inputs or outputs while modeling at the level of abstraction shown. Figure 39 and Figure 

40 present Sequence Diagrams for Mine Detection and Mine Classification that 

demonstrate the dependencies between the activities and within the sub-activities for each 

function, as well as the physical components responsible for the control of each activity. 

Figure 39 Sequence Diagram: Detect Mines 
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The Sequence Diagram for Mine Detection shown in Figure 39 provides 

additional clarity regarding Mine Detection beyond the information presented in the 

Activity Diagram for Mine Detection (shown previously as Figure 38). As with the 

Activity Diagram, there are two alternate series, one for the MCM-1 and one for the LCS. 

Each series is comprised of the same set of activities as shown in Figure 38, each series is 

conducted by distinct physical components (the physical components associated with 

mine detection are shown in gray boxes along the top of Figure 39 and vertical lines 

descending from each figure intersect with the activities that each physical component 

conducts). This formal definition of the physical components associated with each 

activity may guide the definition of resource requirements in an external simulation 

model and may aid in identifying potential conflicts when multiple events are dependent 

on a single physical component. Just as importantly, Sequence Diagrams trace not only 

events (as was shown in the Activity Diagram) but also of the outputs of each function 

and the triggers to each function. As a side note, Sequence Diagrams may be assessed for 

correctness by conducting a flow continuity check, which checks that the flow from the 

first activity to the final activity is possible without referencing activities shown in 

another diagram. Notice that the Sequence Diagram shown in Figure 40 would fail such a 

test, since MILECs are outputs of Mine Detection and leave the page on the right side. 

This is a function of the segmentation of Minehunting by the author to ease 

understanding. Specifically, the MILECs that exit the Mine Detection Sequence Diagram 

are immediately accepted by the Mine Classification Diagram (Figure 40). If Mine 

Detection and Classification were grouped as a single function and a combined Sequence 

Diagram was developed, the resulting Mine Detection & Classification Sequence 

Diagram would pass the flow continuity check for consistency. As mentioned, this 

segmentation was done to ease communication for the reader unfamiliar with MIW and 

MCM operations since static architecture figures that consider the entire sequence of 

mine detection through neutralization would be difficult to present. That said this visual 

issue with Figure 39 further demonstrates the value of Sequence Diagrams. They ensure 

that the outputs of each activity are used by a follow on activity, and identify potential 
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issues resulting from redundant activities, physical components that are simultaneously 

utilized by multiple activities, and dependencies between activities. 

Figure 40 Sequence Diagram: Classify Mines 

 

 

While Sequence Diagrams provide increased detail regarding system 

functionality, they are often focused on sequences of message exchanges from a control 

perspective and may not allow for maximum detail regarding specific actors in specific 

scenarios. Use Case Diagrams can be used to further aid development of functional 

architecture views by providing that increased level of detail regarding the actors that are 

involved in each activity. Use Case Diagrams are particularly useful for multi-purpose 
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systems, which may require a different set of personnel to execute each activity. Used in 

conjunction with Sequence Diagrams, this allows a systems architect to identify potential 

conflicts in terms of both system control and system implementation. Figure 41 provides 

an example of a Use Case Diagram. 

Figure 41 Use Case Diagram: Perform Mine Hunting Operations 

 

 

Figure 41 shows that the MCM System performs the Perform Minehunting 

Operations activity. As a point of emphasis, during the conceptual design phase all effort 

should be made to remain solution neutral, the Use Case Diagram uses the generic term 

“MCM System” rather than specifying that the system as MCM-1 Avenger or the LCS. 

The Use Case Diagram prescribes the same list of activities that define Minehunting 

Operations in the Activity Diagram in Figure 37 (Detection, Classification, 

Reacquisition, and Identification); however the Use Case Diagram also defines the actors 
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(MCM System Operator, MCM Commander, and MCM System Analyst, who are 

involved in each of these activities). Note that each of the actors is external to the system 

of interest and each actor participates in each activity. In this example each actor is also 

defined as a subclass of “MCM Crew,” however this aggregation may not be appropriate 

in all cases. The Use Case Diagram also specifies that Mission Complete is a potential 

extension of each of the Minehunting Operations activities, which is triggered by the 

extension point “No Potential Mines Remain.”  

Development of an Activity Diagram prescribes the general functions that a 

system will perform as well as the outputs and inputs of each of those functions. 

Development of a Sequence Diagrams prescribes the ordering of those functions and also 

defines the environmental triggers that may be necessary to initiate each function. 

Development of a Use Case Diagram provides clarity regarding the boundary of the 

system of interest by defining the external actors who may interact with the system and 

the activities that each actor may participate in during system operation. The final step in 

development of Functional Architecture views is generation of a State Machine Diagram 

(Figure 42), which provides additional clarity regarding the range of behaviors possible 

for a given entity, as well as the differing modes of activities in different states. This 

allows for a more formal examination of the control system of the system of interest than 

is possible in the Sequence Diagram. For a discrete activity like Minehunting, the State 

Machine Diagram is certainly less impactful, however it does demonstrate to the users 

that there is a defined exit and entry from Minehunting during the activity (between 

Classification and Reacquisition) that is dependent on an external activity. It is 

impossible to complete the transition between all of the states of the Minehunting activity 

prior to completion of this external activity, which is not evident from the Activity, 

Sequence, or Use Case Diagrams. Note that while State Machine Diagrams can be used 

to define a behavior, this minimizes the utility of the figure by duplicating information 

and restricting freedom, and therefore it is recommended that State Machine Diagrams be 

used to describe the state dependent behaviors of physical components. This should 

facilitate development of an external model by defining capabilities and limitations on 

system behavior related to the current status of the system. 
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Figure 42 State Machine Diagram: Perform Mine Hunting Operations 

 

 

Note that the coloring presented in Figure 42 is not typically presented in State 

Machine Diagram; however the author feels that the addition of colors aided 

understanding of the figure. Specifically, red coloring shows transitions that cause 

termination of minehunting operations, green coloring shows transitions from the first 

portion of the minehunting sequence (Detection and Classification) to the second portion 

of the minehunting sequence (Reacquisition and Identification), and yellow coloring 

shows transitions within each sub portion of the minehunting sequence. This movement 

within the functional architecture products toward describing the functions performed by 

different physical components (which at this point should still be kept as solution neutral 

as possible) suggests that a comprehensive description of the system must move to a 

more detailed description of those physical components. The completion of Activity, 

Sequence, Use Case, and State Machine Diagrams defines the system comprehensively 

from a functional perspective. The system architect can completely describe the 

sequencing of system activities, which can be used as a basis for model development. The 

system architect can also formally present limitations to system performance, whether 

they arise from some alteration to system environmental conditions (as identified in a 

State Machine Diagram), some issue with personnel availability (as identified in Use 
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Case Diagrams), some issue with system control (which, depending on implementation, 

may be represented in either a State Machine or Sequence Diagram), that must be 

represented in an external model. Table 3 presents an updated linkage of the systems 

engineering products supported by Step 2 (Functional Architecture) of the MBSE 

MEASA. Note that Table 3 suggests that only a single Functional Architecture SysML 

Diagram is required to support Defined Functional Behaviors and Defined Functional 

Performance, the intent of this section is to emphasize that each of the Functional 

Architecture SysML Diagrams provide a unique capability and each of the diagrams 

should be created in this MBSE MEASA Step. 

Table 3 Functional Architecture Support of Linkage of MBSE MEASA 

Steps to Systems Engineering Products 

 

 

The Functional Architecture products describe the system in terms of functional 

behaviors and performance and ensure that external models and simulations accurately 

represent the activities that the system must perform, the sequence of those activities, the 

actors that should perform and impact those activities, and the transitions between those 
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activities. Because each of these SysML products are explicitly linked to the previously 

developed Requirement Diagram, any behaviors and activities represented in external 

operational simulations are directly linked to stakeholder input, and no extraneous 

behaviors are modeled and no fundamental system behaviors are ignored. 

6. Physical Architecture Products 

Completion of the functional architecture (which is now represented in 

Activity Diagrams, Sequence Diagrams, Use Case Diagrams, and State Machine 

Diagrams) triggers creation of Physical Architecture Products. These products are 

necessary to more completely describe the system and enable creation of external 

models. Figure 43 provides a description of the SysML products appropriate to 

support physical architecture development. 

Figure 43 MBSE MEASA (Step 3) 
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Creation of a Block Definition Diagram is the first step in Physical Architecture 

development. Block Definition Diagrams decompose physical entities, which are only 

shown in a general sense in each of the Functional Architecture products, into more 

detailed components. One of the major advantages of Block Definition Diagrams is that 

they allow complete representations of the potential physical configurations of a system, 

even if components are mutually exclusive. In the case of the MIW System, the easiest 

illustration of such a relationship is the MCM-1 Avenger and the LCS, which are classified 

as “generalizations of” the MCM System component, indicating that they completely 

describe the MCM System of interest but cannot both exist in a given physical 

configuration. Conversely, the MIW System component is “built from” the MCM System 

component and the Mining System component, indicating that each exist for every 

configuration of a complete MIW System. Figure 44 provides a graphical representation of 

the Block Definition Diagram for the high level components of a MIW System. 

Figure 44 Custom Block Definition Diagram: MIW System 
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Note that this research presents a slightly altered version of the Block Definition 

Diagram in Figure 44. This is a result of a software limitation; the software selected for 

generation of SysML diagrams in this research (Vitech’s CORE) does not allow for 

generation of traditional SysML Block Definition Diagrams. Rather, CORE requires 

users to create Structure Block Definition Diagrams (similar to a traditional physical 

hierarchy) and Classification Block Definition Diagrams (which represents the 

inheritance structure of each system component, similar to a UML Class Diagram). This 

convention segments “built from” and “built in” relationships (shown in the Structure 

Block Definition Diagrams) from “generalization of” and “generalizes” relationships 

(shown in the Classification Block Definition Diagram). Practically, this reduces the 

potential for incorrect relationship specification within the CORE software since it 

requires a user to truly understand the differences between the naming conventions. The 

power and richness of the CORE tool ensures that the relationships are represented 

properly in each diagram and also ensures that the linkages are traceable to the previously 

created SysML products. Within the software itself, separating Block Definition 

Diagrams into structural and classification perspectives is not a limitation, however for a 

user who wishes to present static representations of those diagrams (as in this research) it 

requires a user to create a custom diagram to fully capture both the structural and 

classification relationships between system components as a traditional SysML Block 

Definition Diagram.  

This research develops custom SysML Block Definition Diagrams that combine 

the information that CORE typically presents as a Structure Block Definition Diagram 

and a Classification Block Definition Diagram. Figure 44 presented a simple example of 

a custom generated Block Definition Diagram and Figure 45 presents a more detailed 

example that decomposes the airborne components of both the MCM-1 Avenger MCM 

System and the Littoral Combat Ship MCM System (note that within the software these 

relationships were established within the Structure and Classification Block Definition 

Diagrams to check that each relationship was properly defined). Block Definition 

Diagrams allow the user to decompose each system component in as much detail as is 

necessary for the system of interest. In the case of the MIW System, the decomposition 
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continued through identification of all systems and subsystems, but did not decompose 

each subsystem into physical components. This decision is a result of the mature nature 

of the systems of interest, currently they have been completely designed (and many of the 

systems have been operated for thirty years). Within the context of the MBSE MEASA 

Block Definition Diagrams inform the physical components represented in external 

models and simulations (typically operational, physical, and cost models). Accordingly, 

the MBSE MEASA recommends that development of Block Definition Diagrams 

proceed to a sufficient level of detail to ensure that the physical components represented 

in external models and simulations can be checked for consistency with the physical 

components represented in Block Definition Diagrams. 

Figure 45 Custom Block Definition Diagram: MCM System 

 

 

The Physical Architecture information captured in the Block Definition Diagrams 

defines the physical systems that exist in each potential system configuration. Internal 

Block Diagrams expand this functionality by establishing a connection between Block 

Definition Diagrams and Activity Diagrams by specifying how the elements shown in the 
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Block Definition Diagrams perform the activities shown in Activity Diagrams to achieve 

the intended functionality of the system. The major difference between the Internal Block 

Diagram and the Activity Diagram is the system perspective of the diagrams. As 

indicated by their grouping within the MBSE MEASA, Internal Block Diagrams present 

the system from a physical/structural perspective while Activity Diagrams present the 

system from a functional/behavioral perspective. Similarly, the simultaneous examination 

of Activity Diagrams defines the behaviors represented in an external model while 

Internal Block Diagrams defines the physical entities represented in an external model. 

Figure 46 shows an Internal Block Diagram for the MH-53E (which conducts airborne 

MCM in support of the MCM-1 Avenger MCM System). Note that the MH-53E is 

capable of performing the full sequence of mine detection through mine neutralization 

(although it must use a different subsystem when performing mine detection through 

identification and when performing mine neutralization).  



 117 

Figure 46 Internal Block Diagram: MH-53E 

 

 

Note that Figure 46 adds organizational blocks (a yellow block for Detection, 

Classification, Identification; a green block for Minesweeping; and a grey block for 

Neutralization), that are not necessary components of Internal Block Diagrams. The 

author added the organizational blocks to aid visualization and the blocks do not need to 

be added in situations where the Internal Block Diagram is simple enough that they add 
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no value (as a general guidance, this will most likely be for system components that only 

perform one or two activities represented in Activity Diagrams). Figure 46 highlights the 

utility of the Internal Block Diagram, specifically the definition of the physical 

components that make up larger components (not dissimilar for the Block Definition 

Diagram) and also the establishment of the interfaces between components and the links 

between each component and components external to the system of interest. For example, 

Figure 46 shows that the AN/AQS-24A sonar links to an external system through the 

creation of MILECs and MILCOs. That same external system (represented on the left 

side of Figure 46) links to the MK-103, MK-104, and MK-105 minesweeping systems. 

While it is impossible to show within an Internal Block Diagram for a single system, an 

examination of the set of links between blocks within the modeling software establishes 

that the AN/AQS-24A, MK-103, MK-104, and MK-105 are all linked the Post Mission 

Analysis component, which is processing the list of MILECs and MILCOs and 

determining which component is appropriate to process each potential mine. Internal 

Block Diagrams can be produced for any level of detail necessary for a given system. As 

with Block Definition Diagrams, it is recommended that Internal Block Diagrams be 

produced at a sufficient level of detail to define the physical components and interfaces 

that should be represented in an external model. Given that the purpose of this study is to 

examine the performance capabilities of the MCM-1 Avenger MCM System and the 

Littoral Combat Ship MCM System, these Internal Block Diagrams represent the 

interfaces between components at the subsystem level. If this study was comparing 

alternative capabilities for mine sonar systems, Internal Block Diagrams could 

decompose the AN/AQS-24A into its components (propulsion system, detection system, 

etc.) and establish the interfaces between those components. It is left to the individual 

user to ensure that all physical architecture products (Block Definition Diagrams and 

Internal Block Diagrams) contain enough detail to accurately construct external 

operational, synthesis, and cost models. 

Table 4 presents an updated linkage of the systems engineering products 

supported after Step 3 (Physical Architecture) of the MBSE MEASA. Note that the use of 

Block Definition Diagrams supports definition of a complete set of physical solutions 
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while the Internal Block Diagrams are focused on ensuring allocation of physical 

components to system functions (as represented in the previously developed functional 

architecture products, most notably the Activity Diagrams). 

Table 4 Physical Architecture Support of Linkage of MBSE MEASA Steps 

to Systems Engineering Products 

 
 

7. Modeling and Simulation Definition 

Completion of physical architecture development (creation of Block Definition 

and Internal Block Diagrams) completely describes a system. The Requirement Diagram 

completely describes what a system must do to satisfy stakeholders. The Activity, 

Sequence, Use Case, and State Machine Diagrams completely describe how a system 

satisfies the requirements identified in the Requirement Diagram. The Block Definition 

and Internal Block Diagrams completely specify what physical system components 

satisfy the functions specified by the Activity, Sequence, Use Case, and State Machine 

Diagrams. While these products enable a complete description of a system from multiple 
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perspectives, they do not enable analysis of the performance of that system. Proper 

analysis requires definition and analysis of external system models. 

At this point the true utility of the MBSE MEASA (beyond generation of SysML 

products or systems engineering process products) starts to become apparent. Rather than 

conduct system analysis by attempting to link physical/functional architectures through 

Parametric Diagrams (as is advocated by the MBSE methodologies presented in Chapter 

II), the MBSE MEASA separates external Model Definition as Phase 4 of the process 

(Figure 47). Note that the MBSE methodologies presented earlier consider the creation of 

a comprehensive set of SysML products (which have been developed by the conclusion 

of the first three steps in the MBSE MEASA), along with evaluation for consistency 

through the use of Parametric Diagrams, the conclusion of the system development 

process. The MBSE MEASA utilizes the combined functional and physical architecture 

products as a basis for the development of external models and simulations. In particular, 

the Activity, Sequence, Use Case, and State Machine Diagrams specify the components, 

behaviors, and processes represented in external operational models. The Block 

Definition and Internal Block Diagrams specify the set of components, component 

interfaces, and constraints represented in external system synthesis models and system 

cost models. 
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Figure 47 MBSE MEASA (Step 4) 

 

 
 

The formalization of an analysis procedure external to the SysML modeling 

process prevents the types of oversimplifications of system performance that occur if 

sufficiently detailed modeling of system performance is not conducted. As mentioned 

previously, SysML Parametric Diagrams typically support modeling and simulation in 

the leading MBSE methodologies. While Parametric Diagrams can be useful to ensure 

consistency between functional and physical architecture products, their limitations must 

be acknowledged.   

To conduct rapid decision making regarding preferred system configurations 

Parametric Diagrams often make simplifying assumptions about each potential system 

configuration. Parametric Diagrams only examine the ability of a given system 

configuration (characterized by defined system component performance) to successfully 

complete the activities specified in associated SysML diagrams. While this often allows 
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for rapid evaluation of system configurations, it effectually over-constrains the problem 

and makes it impossible to truly assess the operational performance of a system. Various 

MBSE methodologies acknowledge this limitation, but the fundamental approach that 

those methodologies advocate regarding system performance modeling is still 

problematic. A simple example from Friedenthal, Moore, and Steiner (2009) espouses the 

usage of an external model to analyze the engine type (V6 versus V4) required to satisfy 

a vehicle system requirement for acceleration. The acceleration requirement is subject to 

constraints on Gravitational Force, Drag Force, Power Train Force, Total Force, Engine 

Torque, Transmission Torque, Differential Torque, and Wheel Force, which are all 

represented as constraints (implemented as specified constant values) within a parametric 

diagram. The diagram is subsequently executed and examined to determine what engine 

type is most appropriate. The example concludes that “the analysis results showed that 

the V6 configuration is needed to satisfy the vehicle acceleration requirement.” While 

this is useful to support engineering level analysis on specific system configurations, the 

simplicity of that statement highlights the shortcomings associated with over-constraining 

a problem through the use of detailed SysML Parametric Diagrams. Perhaps a V4 

configuration would be capable of satisfying the performance requirement if the body 

type, wheel type, chassis type, etc., were changed. By specifying values for each of these 

(potentially) impactful variables earlier in the system design process the number of 

system configuration alternatives that may be examined is limited. Limiting the amount 

of raw data generated subsequently limits the range of potential conclusions. 

Accordingly, the MBSE MEASA does not recommend that system analysis within an 

MBSE methodology rely solely on the creation and analysis of SysML Parametric 

Diagrams. Rather, the MBSE MEASA recommends the creation and analysis of external 

simulations based on the set of SysML products developed previously in the 

methodology. 

Many types of external simulation, ranging from process based to agent based 

simulations may be appropriate to support analysis within the context of the MBSE 

MEASA. It is the responsibility of the user to select an appropriate simulation, however 

in practice the selection of an “appropriate” simulation may be quite difficult. Practically 



 123 

this decision will be highly dependent on the expertise of the particular user, and the 

selection of the type of model may be based almost exclusively on this expertise. 

However, it is useful to provide some references within this dissertation that provide in 

depth discussion of the strengths and weaknesses associated with different types of 

simulation models. Perhaps the most widely read text that discusses the procedures and 

characteristics of process based and agent based models is Law (2014), which is essential 

reading for any simulation developer. Law (2014) certainly focuses more detail on the 

development and analysis of discrete event simulations, for more concise guidance on 

agent based simulation Macal and North (2005) provide an introduction to the principles 

and expected applications of agent based models. As mentioned, this research does not 

provide a complete description or recommendation of a particular simulation modeling 

paradigm, rather it emphasizes that an appropriate simulation modeling approach must be 

selected and tailored for each study and provides a few references to guide the selection 

of an “appropriate” simulation model, while recognizing that the choice is often reduced 

to the familiarity and expertise of a particular user. 

After an appropriate simulation has been chosen to support the MBSE MEASA, 

proper testing procedures for those models and simulations must be defined. Substantial 

work has been done in the field of experimental design that must be reviewed by any user 

implementing the MBSE MEASA. 

8. Experimental Design Recommendations 

As mentioned in Chapter II, existing MBSE methodologies, as well as recent 

research in MBSE, fail to emphasize the importance of proper experimental design 

selection in the development of external models and simulations to support MBSE 

focused system development. An exception is MacCalman et al. (2015), which provides a 

case study analysis of a U.S. Army infantry squad that demonstrates the value of proper 

experimental design specification in a MBSE approach. However, a discussion of 

experimental design is necessary in this dissertation to establish guidelines for application 

of the MBSE MEASA. 
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Experimental design selection is vital to ensure that alternative system 

configurations are examined properly. Simply establishing a baseline system 

configuration and conducting testing and evaluation through isolated excursions is 

inappropriate (see Sanchez and Wan 2012). As discussed in Giammarco and Auguston 

(2013), it is vitally important to consider system component interactions as well as the set 

of possible interactions between a system and its environment. The formalization of 

testing procedures that ensures that system configurations and potential interactions are 

considered falls under the category of experimental design. While a detailed review of 

experimental design is not the focus of this dissertation, Appendix B provides a brief 

introduction to experimental design for the unfamiliar reader and highlights the 

consequences associated with establishing a baseline system and testing through isolated 

excursions. More details on the fundamentals of experimental design are provided in 

Montgomery (2012) and Myers, Montgomery, and Anderson-Cook (2009). Detailed 

discussion of experimental design for computer experiments can be found in Santner, 

Williams, and Notz (2003), and guidelines for the implementation and analysis of 

simulation models (to include a brief review of experimental design, as well as further 

detail regarding the differences between agent based and discrete event models) can be 

found in Law (2014). 

Sanchez and Wan (2012) present a focused discussion of the guidelines for proper 

experimental design selection for simulation experiments. That research addressed the 

challenges associated with different factor types, specifically quantitative vs qualitative 

factors, discrete vs continuous factors, and controllable vs uncontrollable factors. That 

research demonstrates that space filling experimental designs offer tremendous 

advantages over traditional factorial experimental designs for computer experiments, 

specifically in terms of the number of variables that may be considered (this issue is 

discussed in Appendix B) and the tremendous flexibility that space filling designs offer in 

terms of model fitting (while traditional experimental designs typically restrict model 

fitting to linear or quadratic models, space filling designs impose almost no restrictions 

on model fitting). In the context of this research, the experimental design comparison 

chart found in Sanchez and Wan (2012) guides the type of experimental design 
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appropriate for a given number of input factors, the characteristics of those factors, and 

the desired type of model fit (Figure 48).  

Figure 48 Experimental Design Comparison Chart 

 

Source: Sanchez, Susan M., and Hong Wan. 2012.  “Work Smarter, Not Harder: A 

Tutorial on Designing and Constructing Simulation Experiments.” Simulation 

Conference (WSC), Proceedings of the 2012 Winter Simulation Conference, 1–15. 
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Figure 49 may be used as a starting point for selection of experimental design for 

almost any scenario where testing is conducted in a simulation model. Examination of the 

chart key presented in the lower portion of Figure 48 suggests that designs represented 

with a black square should work exceptionally well (that is, they provide maximum 

modeling flexibility) for examination of large scale, complex systems, which are 

comprised of a large number of components and have the potential to exhibit higher order 

interactions. This aligns nicely with the definition of the systems of interest to this 

research presented earlier. Furthermore, because the systems of interest to the 

methodology typically contain at least 100 factors it is potentially dangerous to assume 

that their behavior can be characterized through simple linear or quadratic models. 

Accordingly, utilization of designs that can examine at least 100 factors that provide 

maximum modeling flexibility is desirable.  

Examination of Figure 48 suggests that 512 design point NO/B designs are 

appropriate for these scenarios (note that NO/B stands for Nearly Orthogonal/Balanced). 

Those designs are discussed in detail in Vieira et al. (2011) and Vieira et al. (2013), 

which presents a mixed integer programming approach for the generation of experimental 

designs for discrete and continuous factors. The ability of these 512 design point NO/B 

designs to consider both discrete and continuous factors is vitally important when 

considered large scale, complex systems. Because these types of systems may include 

components that can only take defined, discrete values (ex: an on/off factor can only take 

two values, a high/medium/low factor can only take three values, etc.) it is valuable to 

use experimental designs created specifically for these types of factors. Vieira et al. 

(2013) details the issues associated with choosing an experimental design created only for 

continuous factors and rounding the values of each design point, specifically it reduces 

the orthogonality of the designs.  Additional information on the latest design and analysis 

techniques for large-scale simulation experiments, as well as over 150 examples of their 

application to problems in defense and homeland security can be found at the Simulation 

Experiments & Efficient Designs (SEED) Center for Data Farming’s web pages at 

harvest.nps.edu.  
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Table 5 presents an updated linkage of the systems engineering products 

supported after Step 4 (Model Definition) of the MBSE MEASA. Note that the sole focus 

of Step 4 is creating external models and simulations of potential physical solutions 

(meaning that the objects represented in both the external operational and system 

synthesis models and simulations are defined by the physical solutions described by the 

Physical Architecture SysML Diagrams developed in Step 3 of the MBSE MEASA). 

This facilitates analysis of system performance beyond the capabilities of SysML 

Parametric Diagrams and, after appropriate analysis of results is conducted, establishes a 

quantitative linkage between operational MOEs and system design parameters as well as 

between system design characteristics and system design parameters. Previously 

developed SysML products define the activities and entities included in these models and 

the experimental design techniques prescribed in this section guide the testing of these 

models and simulations. 

Table 5 Model Definition Support of Linkage of MBSE MEASA Steps to 

Systems Engineering Products 

 
 



 128 

9. Model Analysis 

While experimental design is vital to definition and analysis of all models and 

simulations, the presentation of those analysis results is also extraordinarily important in 

the context of modeling and simulation. The final step of the MBSE MEASA (Figure 49) 

is presentation and analysis of the results of simulation models. The analysis assesses 

how well various Physical Architecture combinations (from Step 3) satisfy the Functional 

Architecture (Step 2) defined system performance. Sitterle et al. (2015) advocate this 

approach, demonstrating an interactive tool that enables analysts “to quickly and 

accurately assess and compare alternatives” supports consistent, analytical, traceable 

decision making. Creation of a dynamic dashboard, as presented earlier in this research, 

is a demonstrated method that supports the MBSE MEASA and facilitates traceable 

decision making. Such an approach rapid visualizes of system level trade-offs and 

facilitates discussion of potentially conflicting system requirements based on both 

operational and system level models and simulations.  As mentioned previously, 

MacCalman et al. (2015) present modeling results for a U.S. Army simulation in a 

dynamic fashion. That work, details instructions regarding the utility of dynamic decision 

making displays, also guides the definition and creation of these displays. The objective 

of this research is not to provide a formal definition of analysis procedures or instructions 

for creation of dynamic decision making displays. Accordingly this research does not 

present explicit guidelines, although the process prescribed in MacCalman et al. (2015) is 

a valuable starting point.  
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Figure 49 MBSE MEASA (Step 5) 

 

 

 

Table 6 presents an updated linkage of the systems engineering products 

supported after Step 5 (Model Analysis) of the MBSE MEASA is complete. 
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Table 6 Model Analysis and Analysis Iteration Support of Linkage of 

MBSE MEASA Steps to Systems Engineering Products 

 

 

C. MBSE MEASA ITERATION 

As mentioned in Chapter II, one of the major contributions of the MBSE MEASA 

is an explicit focus on the iteration of the methodology to demonstrate not only how 

system architecture supports system analysis, but also how system analysis results can be 

incorporated into existing system architecture products to refine subsequent system 

analysis. While there are numerous approaches to ensuring consistency within system 

architecture products, within system models, and within system analysis results, the 

MBSE MEASA presents a framework and guidelines for ensuring consistency across 

these domains. To ensure consistency with the five steps of the MBSE MEASA, the 

iteration of the methodology will focus on appropriate integration of system analysis 

results into SysML products. 

Recall that one of the primary emphases of the MBSE MEASA is that system 

architecture and analysis must incorporate and examine system design variables, system 
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operational variables, and system environmental variables. Equally importantly, the 

MBSE MEASA emphasized that potential interactions between variables (either within 

or between categories) must be recognized. Generally, this allows for nine potentially 

impactful variable relationships that can be identified during system analysis that must be 

represented in future iterations of the system architecture (assuming that the analyst and 

stakeholders are interested in identifying these relationships explicitly, rather than using a 

robust design approach to develop systems that are inherently robust to variation in 

environmental and other uncontrollable variables). Table 7 presents a visual 

representation of these nine potentially impactful cases, grouped according to the variable 

type of interest and the analysis results. For brevity the cases are coded, Cases 1a, 1b, and 

1c correspond to analysis results indicating that a single design, operational, or 

environmental variable impacts system performance. Cases 2a, 2b, and 2c correspond to 

analysis results indicating that there are interactions between design variables, 

interactions between operational variables, and interactions between environmental 

variables that impact system performance. Case 3a corresponds to impactful interactions 

between design and operational variables, Case 3b corresponds to impactful interactions 

between operational and environmental variables, and Case 3c corresponds to impactful 

interactions between environmental and design variables. Note that the numbering is 

introduced to aid organization and does not imply that Case 1 relationships are inherently 

more important that Case 2 or Case 3 relationships. 
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Table 7 Listing of Analysis Result-Variable Type Cases Requiring MBSE 

MEASA Iteration 

 

 

The classification of a variable as design, operational, or environmental is often 

intuitive, but general definitions are necessary to provide clarity regarding the definition 

of variables in the context of the MBSE MEASA. Recall that the MBSE MEASA 

assumes that the system of interest is being examined within a simulation model, where 

every variable is controllable (even variables such as the impact of the environment, 

which are not controllable in reality, are controlled and specified in the simulation 

model). The controllable nature of every variable within the simulation makes 

classification of variables important. Sanchez (2000) and Santner, Williams and Notz 

(2007) present variable definitions for simulation models, focusing primarily on whether 

or not a variable that is controllable in the simulation model is practically controllable in 

the real world environment. Accordingly, the MBSE MEASA follows a similar grouping 

convention to the definitions presented in Sanchez (2000). Specifically, the MBSE 

MEASA classifies design and operational variables as decision factors (other literature 

classifies these types of variables as control, engineering, or manufacturing variables), 

defined by Sanchez (2000) as factors “which are controllable in the real world setting 

modeled by the simulation” (70). The MBSE MEASA further segments decision factors 
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into design and operational variables, where a design variable refers to a design 

parameter within the control of the systems engineer that describes the configuration of 

the system, and an operational variable is within the control of the systems engineer and 

describes the operation of the system. The MBSE MEASA relies on the Sanchez (2000, 

70) definition of noise factors as “not easily controllable or controllable only at great 

expense” to develop the characteristics of environmental variables. In the context of the 

MBSE MEASA, an environmental variable is outside of control of the systems engineer 

and potentially impacts the operation of the system. 

1. Iteration of MBSE MEASA for Significant Main Effects 

This section presents guidelines and illustrative examples demonstrating how 

impactful main effects identified in Step 5 of the MBSE MEASA can be introduced in 

future iterations of the MBSE MEASA. This section will provide three illustrate 

examples, one describing appropriate integration of impactful design variables (Case 1a), 

one describing appropriate integration of impactful operational variables (Case 1b), and 

one describing appropriate integration of impactful environmental variables (Case 1c). 

a. Iteration of MBSE MEASA for Impactful Design Variables 

Case 1a corresponds to situations when simulation model analysis suggests that a 

design variable has an impact on system performance. Because the MBSE MEASA 

advocates the creation and definition of a comprehensive Requirement Diagram as Step 1 

of the process, the integration of this result into a future iteration of the MBSE MEASA 

is straightforward. This demonstration continues the example of the Active, Defensive 

MCM system and provides an example of the procedure that can be used to integrate 

such a result into a Requirement Diagram. This example assumes that analysis indicates 

that the Probability of Detection has been identified through analysis as impactful and 

that further analysis suggests that the Probability of Detection must be at least 0.80 for 

the system to achieve acceptable performance. Figure 50 provides a visual representation 

of how such a finding can be integrated into a SysML Requirement Diagram. Note that 

the analysis snapshot is purely notional, as stated, this example demonstrates iteration 
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when the effect of a given design variable is identified as potential impactful (in this case, 

the Probability of Detection). 

Figure 50 Integration of Impactful Design Variable in Subsequent 

MBSE MEASA Iteration 
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Note that Figure 50 presents a visual representation of the Requirement Diagram 

presented in Figure 35, a notional analysis result that suggests that the Probability of 

Detection should be set at a value greater than 0.80, and subsequently modifies the 

Requirement Diagram to expand the property for “Detect Mines” to specify that it should 

be at least 0.80. 

b. Iteration of MBSE MEASA for Impactful Operational Variables 

Case 1b corresponds to situations where simulation models analysis suggests that 

an operational variable has an impact on system performance. Integration of such a result 

may require additional alterations to the previously developed SysML products beyond 

editing of properties in SysML Requirement Diagrams. Note that there are scenarios 

where the integration of operational variables may mirror the example presented in the 

previous section on design variables (for example, the percentage of a minefield that is 

searched by one asset versus a second asset may be fixed in a SysML Requirement 

Diagram following the same procedure as used for the Probability of Detection shown in 

the design variable section). However, detailed integration of alterations for impactful 

operational variables most likely requires simultaneous consideration of both the 

Requirement Diagram and the Activity Diagram, which requires additional consideration 

of the relationships specified for each system requirement. As mentioned in Chapter II, 

Requirement Diagrams can represent containment, derive, or copy relationships to 

expand requirements to requirements relationships as well as satisfy, verify, refine, or 

trace relationships to relate requirements to system elements or activities. In particular, 

the satisfy relationship is particularly useful to coherently integrate impactful operational 

variables into future iterations of the MBSE MEASA. The satisfy relationship allows a 

user to specify that a requirement is satisfied by a model element other than another 

requirement. This allows a user to directly link a requirement (such as Detect Mines) to 

an activity (such as Detect Mines). The “Detect Mines” activity can then be expanded 

based on information contained in the “Detect Mines” requirement. Figure 51 presents an 

example of the implementation of a Requirement Diagram that has been expanded using 

a satisfy relationship (note that within the modeling software selected the satisfy 

relationship has been re-termed specify. The properties associated with the specify 
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relationship are exactly the same as the SysML satisfy relationship, future users may wish 

to select an alternative modeling program that is completely SysML compliant, users of 

CORE should be aware of this slight deviation from SysML convention. Note that this 

example (and the examples for each subsequent case) assumes a similar analysis 

procedure to the one highlighted for Case 1a has been conducted, but the analysis results 

will not be presented for each case. 

Figure 51 Integration of Impactful Operational Variable in 

Subsequent MBSE MEASA Iteration (Requirement Diagram 

Satisfied by Activity Diagram Details) 

 

 

Each of the requirements shown is associated with an activity in the same manner 

as the “Detect Mines” requirement and the “Detect Mines” activity. The “Detect Mines” 

activity is expanded on the bottom right of Figure 51 to show the description, inputs, 

outputs, and triggers for the activity. Particularly important is the “Hunt Strategy” trigger, 

which specifies whether the activity utilizes the MCM-1 Sequence or the LCS Sequence 
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(an operational variable) as well as the number of Detection Tracks utilized in the activity 

(another operational variable). This explicit linkage between requirements and activities 

ensures that any operational variable findings identified in previous versions of the 

MBSE MEASA (such as a preference between the MCM-1 or the LCS or a preferred 

number of Detection Tracks) can be integrated completely and consistently in future 

iterations of the MBSE MEASA. 

c. Iteration of MBSE MEASA for Impactful Environmental Variables 

Case 1c corresponds to situations when analysis indicates that an environmental 

variable has an impact on system performance. Environmental variables are outside the 

control of the systems engineer, and therefore the user must take a more holistic view of 

the system. Recall that Step 1 of the MBSE MEASA advocated creation of context level 

system architecture products. This not only aided conceptual understanding of the system 

of interest but also explicitly defined the inputs and outputs to the system as well as the 

interactions between the system and the external environment. This facilitated 

development of high level SysML Requirement Diagrams, positioning the system 

requirements in terms of the broader operating concept. Because environmental variables 

have broad applicability to the system of interest, it is easiest to incorporate them into 

future iterations of the MBSE MEASA via higher level Requirement Diagrams (that is, 

specify that an environmental condition exists within a higher level requirement, thereby 

ensuring that it applies to each possible application of the system of interest). Figure 52 

provides an example of the integration of an impactful environmental (in this theoretical 

example analysis has indicated that the system must conduct minehunting in Sea States 

0–4) variable for Detect Mines using a higher level requirement (Perform Minehunting 

Operations).  
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Figure 52 Integration of Impactful Environmental Variable in 

Subsequent MBSE MEASA Iteration (Inclusion of Environmental 

Condition in Higher Level Requirement) 

 

 

After the Requirement Diagram has been expanded to include explicit reference 

to the importance of the environment on the system, it can be explicitly added to the 

SysML functional architecture products to ensure that it is properly represented in 

subsequent external models. While it is possible to environmental considerations to 

SysML Activity Diagrams (through a series of if-then decisions) or SysML Use Case 

Diagrams (while not intuitive, the environment could be represented as an external actor 

and its relationship with the system could be explicitly defined), the most thorough 

representation of the relationship between the environment and the system of interest is 

achieved through alterations to SysML Sequence Diagrams. Because Sequence Diagrams 

explicitly represent what the system is doing, the ordering of activities, and the allocation 

of those activities to physical elements (or blocks) it is easy to define the external 

environment as a physical element that is checked at the beginning of each sequence and 
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alters the properties of each subsequent activity within that sequence. Figure 53 provides 

a visual representation of this type of addition to the Detect Mines activity. 

Figure 53 Integration of Impactful Environmental Variable in 

Subsequent MBSE MEASA Iteration (Inclusion of Environment as 

First Event in Sequence Diagram) 

 

 

Note that the Minefield Environment is now included as a Physical Entity that 

activities may be allocated to within the Sequence Diagram. In this example a new 

activity “Check Environmental Conditions” has been added and is allocated to the 

environment. The activity produces an “Environmental Conditions Impact” that is used as 

the trigger to the first activity in the sequence (note in this case the Sequence Diagram 

actually represents two alternative loops so there are two potential first activities in the 

sequence). Definition of the environment as a Physical Entity is primary enabler of 
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inclusion of impactful environmental variables in subsequent iterations of the MBSE 

MEASA. This allows for inclusion of activities that check the environmental conditions 

at the beginning of any number of activities, which ensures that each of the sub activities 

occur subject to any alterations to the environmental conditions. Note that this could be 

implemented by including a series of “if-then” statements before every potential activity, 

but this inclusion of the environment as a physical entity and the addition of an 

environmental checking activity allows the impact of environmental conditions to 

promulgate throughout an entire activity in a far more concise manner. 

2. Iteration of MBSE MEASA for Significant In-Category Interactions 

This section provides guidelines and illustrative examples for situations where 

analysis suggests that there is a potentially impactful interaction between variables within 

the same category. Case 2a describes situations where the impactful interactions occur 

between design variables, Case 2b describes situations where the impactful interactions 

occur between operational variables, and Case 2c describes situations where the 

impactful interactions occur between environmental variables. Note that an interaction 

between variables (of any type) suggests that the impact of an increase (or decrease) to 

the value of one variable is different depending on the value of another variable. For 

instance, the impact of an increase to the Probability of Detection of an MCM system 

may be different depending on the number of passes that the system conducts through the 

minefield (this corresponds to Case 3a, an interaction between a design variable, the 

Probability of Detection, and an operational variable, the number of minefield passes). If 

the Probability of Detection is set to some minimum value, additional minefield passes 

may be required. Similarly, if the Probability of Detection is set to a maximum value, 

fewer minefield passes may be required. The relationship can also be considered in the 

opposite direction, where the ability to conduct a given number of minefield passes may 

necessitate a certain probability of detection. The purpose of Cases 2a, 2b, 2c, 3a, 3b, and 

3c is to provide guidelines regarding the integration of these types of analysis results 

from one iteration of the MBSE MEASA into future iterations of the MBSE MEASA. 
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a. Iteration of MBSE MEASA for Impactful Interactions between Design 

Variables 

Recall that iteration of the MBSE MEASA when individual design variables are 

identified as potentially impactful requires alterations to existing Requirement Diagrams. 

These alterations were straightforward and did not require alterations to any other SysML 

products. Iteration of the MBSE MEASA when interactions exist between design 

variables requires additional work. For example, consider an analysis result that suggests 

that there is an impactful interaction between the probability of detection of an MCM 

system and the maximum search speed of the MCM system. This cannot be implemented 

within SysML through a simple alteration to the Requirement Diagram because the 

appropriate probability of detection is now dependent on the maximum search speed (and 

vice versa). Further, this cannot be implemented in SysML through alterations to either 

the Detect Mines activity or the Intra Minefield Transit activity because analysis results 

that identify potentially impactful interactions are not based on any assumptions of 

sequence (the user cannot simply assume that the search speed can be set and the 

probability of detection can be altered through an “if-then” statement simply because the 

transit activity occurs first because the interaction may imply that a reduced maximum 

search speed is sufficient provided the system has an increased probability of detection). 

Accordingly, integration of impactful interactions between design variables requires a 

user to alter the system operation at a level of abstraction that includes both of the design 

variables of interest. In this case, this means that the SysML products must be altered for 

the complete Minehunting sequence, rather than the specific activities associated with 

Mine Detection (where the Probability of Detection and the Maximum Search Speed 

could be altered directly if there were no interaction between those variables). Figure 54 

provides a visualization of the revised Sequence Diagram for Minehunting. 
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Figure 54 Integration of Impactful Interactions Between Design 

Variables 

 

 

Note that an additional activity is now included in the Minehunting Sequence 

Diagram. The previous version of the Sequence Diagram did not include an initial 

activity used to define appropriate system configuration. This activity specifies 

appropriate values for each of the activities within Detect Mines. This is preferable to 

supplementing the Detect Mines with a series of “if-then” statements (while it would be 

possible to add a series of these statements for every design variable interaction it could 

become untenable if there were a simple number of design variable interactions). 

b. Iteration of MBSE MEASA for Impactful Interactions between 

Operational Variables 

Case 2b describes scenarios where analysis results suggest that there are impactful 

interactions between operational variables. Once again, this cannot be implemented 

within SysML through straightforward alterations to Requirement Diagrams or through 

additional “satisfied by” relationships within Requirement Diagrams. As with Case 2a, 

impactful interactions between operational variables requires the user to consider the 
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system at a level of abstraction above the variables that the analysis has identified as 

having an impactful interaction. As an example, consider an analysis result that suggests 

that there is an impactful interaction between the number of passes that the system 

conducts through the minefield and the percentage of the minefield that is searched by 

surface assets (rather than airborne assets). As with the Case 2a, there is no sequence 

implied by the analysis result that there is an interaction between these variables (a user 

cannot just set the number of minefield passes and subsequently select a preferred 

minefield search percentage). Accordingly, the impact of the interaction between the 

operational variables must be incorporated at a higher level of abstraction. It may also be 

useful to establish an external “Command and Control (C2)” physical entity that manages 

each of the operational decisions (this is shown in Figure 55). In the example the C2 

entity is responsible for the Provide Command and Control activity, which specifies an 

MCM Strategy for Active Defensive MCM Operations. This MCM Strategy is 

decomposed into a Hunt Strategy, Localization Strategy, etc., which is then used as an 

input to each of the sub activities to Active Defensive MCM Operations. In this case, the 

C2 specifies a broader MCM Strategy, which includes the Hunt Strategy that is utilized 

for Mine Detection, which can describe the appropriate operational decisions regarding 

the number of minefield passes and the surface search percentage. 
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Figure 55 Integration of Impactful Interactions Between Operational 

Variables 
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c. Iteration of MBSE MEASA for Impactful Interactions between 

Environmental Variables 

Case 2c describes situations where analysis results suggest that an interaction 

between environmental variables has a potential impact on system performance. While 

interactions between design and operational variables required substantially different 

strategies compared to situations where only a single variable impacted system 

performance the integration of interactions between environmental variables closely 

mirrors the integration of a single impactful environmental variable. Recall that Case 1c 

advocated the definition of an environmental checking activity at the beginning of any 

activity sequence where analysis indicated that an environmental variable impacted 

system performance. If multiple environmental variables impact system performance the 

same strategy may be used because the introduction of the environmental checking 

activity at the beginning of the sequence ensures that the outputs may be directed to any 

subsequent activity and ensures that the result of the activity promulgates throughout the 

entire sequence. For example, if there is an interaction between the impact of sea state 

and the impact of current (or drift) conditions, both of these may be included in the 

Check Environmental Conditions activity (just as in Case 1c) and the output can inform 

any associated subsequent activity. 

3. Iteration of MBSE MEASA for Significant Between Category 

Interactions 

This section discusses situations where analysis suggests that there are potentially 

impactful interactions between different variable types. Case 3a describes situations 

where the impactful interactions occur between design variables and operational 

variables, Case 3b describes situations where the impactful interactions occur between 

operational variables and environmental variables, and Case 3c describes situations 

where the impactful interactions occur between environmental variables and design 

variables. 
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a. Iteration of MBSE MEASA for Impactful Interactions between Design 

Variables and Operational Variables 

Case 3a describes scenarios where analysis indicates that an interaction between 

and design and operational variable impacts system performance. Continuing the 

variables used in previous examples, this example utilizes the probability of detection as 

the design variable and the number of passes through the minefield as the operational 

variable. To ensure maximum applicability of the MBSE MEASA, note that the 

sequencing should not be assumed. Even though the focus is the design of the system, 

and therefore on the definition of design variable values, it is imprudent to design a 

system that can only operate in certain operating systems. Likewise, it is unrealistic to 

assume that, based on a given operational decision; it will be possible to alter the value of 

a design variable. However, there are numerous mechanisms within SysML to ensure that 

there is a process for including the interaction in both possible directions. In Figure 56 the 

activity for Detect Mines directly precedes the activity for Count Number of Detection 

Tracks. The Detect Mines activity produces an item (MCM Detections) that directly 

informs the activity for Count Number of Detection Tracks. Note that (as developed in 

Case 1b) this activity diagram incorporates the Hunt Strategy on the left of Figure 56. 

This allows a user to specify the appropriate number of detection tracks that will be 

conducted, which either can be held constant or updated based on the input from the 

Detect Mines activity. Furthermore, because the Hunt Strategy is inputted at the 

beginning of the activity sequence, it can update the procedure for Detect Mines. The 

inclusion of a an operational consideration at the beginning of an activity sequence (in 

this case, the Hunt Strategy, as developed in Case 1b) and the direct linkage of the design 

variable to the operational variable allows a user to account for any interactions between 

the variables. 
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Figure 56 Integration of Impactful Interactions Between Design and 

Operational Variables 

 
 

 

b. Iteration of MBSE MEASA for Impactful Interactions between 

Operational Variables and Environmental Variables 

Case 3b describes situations where there is an impactful interaction between 

operational and environmental variables. Recall that the integration of impactful 

environmental variables focused on the addition of the system environment as a physical 

entity that performed an activity that provided environmental conditions to each of the 

subsequent activities in a sequence. A similar technique is valuable in Case 3b, however 

additional work is necessary. As emphasized, it is inappropriate to assume sequencing 

when updating SysML products based on analysis results that suggest impactful 

interactions. In Case 3b this is particularly important, since environmental conditions can 

impact system operation and system operation can impact environmental conditions. The 

definition of the system environment as a physical entity within the system allows a user 
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to model each of these potential situations. Figure 58 provides an example of a 

supplemented sequence diagram for mine detection where prior analysis suggested that 

the interaction between the sea state and the number of minefield passes has an impact on 

system performance. Note that the environmental condition (in this case the sea state) is 

checked before and after the operational decision activity (the decision on the number of 

minefield passes). This allows a user to specify before the operational decision any 

alterations that should be made based on the environmental condition, and also allows the 

user to update the environmental condition based on changes to the operational decision. 

Note that Figure 57 demonstrates this alteration for both the MCM-1 and the LCS 

sequences. 
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Figure 57 Integration of Impactful Interactions Between Operational 

and Environmental Variables 

 

 

c. Iteration of MBSE MEASA for Impactful Interactions between 

Environmental Variables and Design Variables 

The integration of analysis results that suggest that there is an impactful 

interaction between environmental and design variables (Case 3c) is less cumbersome 

than Case 3b. While it is possible to modify the system operational implementation 
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continuously based on environmental conditions, the system design typically cannot be 

continuously modified throughout a simulation model (or a real life operation) to suit 

altered environmental conditions. Accordingly, Case 3c can be implemented similarly to 

Case 1c, an activity should be added to any sequence where a potentially impactful 

interaction exists and the impact of that altered environmental condition should be 

incorporated within that activity. Because more detail is available in Case 3c scenarios 

than was available in Case 1c scenarios (the user knows specifically what design 

variable-environmental variable interactions impact system performance) it may be 

useful to have the environmental condition directly feed the design variable of interest 

(this should not make any difference in terms of the underlying SysML model but may 

aid communication to stakeholders). Figure 58 provides an example within a mine 

detection sequence where the sea state is modeled as an environmental condition that 

directly feeds the activity for mine detection (which models the design variable for the 

probability of detection). 
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Figure 58 Integration of Impactful Interactions Between 

Environmental and Design Variables 

 

 

Systems engineering recognizes the importance of iteration. The need to feed 

subsequent processes based on past results is emphasized throughout the systems 

engineering literature. However, the MBSE MEASA goes beyond the simple 

acknowledgment that iteration is important. The MBSE MEASA considers a broad range 
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of potential variables (Design, Operational, and Environmental). The MBSE MEASA 

also recognizes that interactions between these variables are inevitable and likely to have 

potential impacts on system performance. Accordingly, the MBSE MEASA provides 

guidelines and illustrative examples for iteration of the methodology. These guidelines 

and examples should allow any user who has followed the MBSE MEASA and 

developed SysML architecture products, constructed a simulation model, and conducted 

analysis of the modeling results to update the previously developed SysML architecture 

products for a wide range of potential analysis results. 
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IV. MBSE MEASA DEMONSTRATION AND ANALYSIS 

In order to highlight the expected utility and applicability of the MBSE MEASA, 

this research presents an analysis comparing the operational effectiveness of future and 

current U.S. Navy mine warfare systems. As mentioned, this analysis leverages an 

operational simulation developed by Becker et al. (2014). The focus of the original 

research was comparing the performance of future U.S. mine warfare capabilities 

(evaluated through a simulation of the LCS in a mine warfare operation) against current 

U.S. mine warfare capabilities (evaluated through a simulation of the MCM-1 in a mine 

warfare operation). The research focused on the ability of both systems to clear a 

minefield in a representative operational scenario where the MCM systems began the 

operation at the potential minefield and each system was only capable of making one pass 

through the minefield. This demonstration adds four additional variables to the earlier 

investigation, specifically considering the need for each system to transit to the minefield 

prior to commencement of minehunting activities and examining the impact of making 

multiple passes with each system within the minefield. Note that, as for most detailed 

analyses, the analysis of system performance may be highly dependent on the established 

initial conditions. A major advantage of the MBSE MEASA is the ability to capture these 

initial conditions in a standardized set of SysML products, which can be presented to 

stakeholders to determine relevance, operational feasibility, and correctness and can also 

be rapidly updated to reflect any alterations to guidance or stakeholder preference. As an 

important note, this demonstration will focus primarily on the development of an 

operational simulation model (rather than synthesis models) and will only present a single 

iteration of the methodology. This should not understate the importance of iteration, 

recall that Chapter III presented illustrations of the iteration procedure for the full range 

of potential analysis results. 

A. SYSTEM DEFINITION AND SYSML PRODUCT GENERATION 

As mentioned in Chapter III, this research focuses on Active, Defensive 

minehunting and neutralization operations for influence mines between 40–200 feet 

below the surface. After the system enters the minefield, those operations are typically 

conducted by a linear sequence of activities, namely: Mine Detection, Mine 
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Classification, Mine Identification, and Mine Neutralization. Based on the MBSE 

MEASA, a set of system requirements describes what a system must do in terms of each 

of these activities. Furthermore, based on the description of the full set of MCM 

challenges outlined NWP 3–15 and PEO LMW Instruction 3370.1A, the additional 

activity of transit to the minefield is included in this analysis. 

Analysis of that MCM doctrine dictates the functions that satisfy each system 

requirement. These functions then define an operational model of minehunting and 

neutralization operations. The system architecture also defines the physical elements that 

satisfy those requirements, which supports the operational model as well as any synthesis 

model (cost, physical, etc.) of the system. Simulation and analysis of these models 

describes the set of systems that best satisfy the initial set of requirements. Iteration of the 

process evaluates those requirements in more detail. 

1. Requirements Analysis 

As demonstrated in Chapter III, the MBSE MEASA begins with creation of a 

SysML Requirement Diagram. Chapter III presented an example Requirement Diagram 

that detailed the system requirements for the minehunting capability of the MCM system. 

A similar diagram (Figure 59) presents a SysML Requirement Diagram for the additional 

logistics requirements that exist for a MCM system. 

Figure 59 SysML Requirement Diagram: Perform Logistics 

Functions 
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Figure 59 presents an overview of the requirements associated with system 

operations management. System operational models must represent these requirements. 

Specifically, operational models must represent (and potentially vary) transit to the target 

area. Furthermore, a tow speed must be modeled, streaming of the search and 

neutralization gear must be modeled (as a note, “streaming” is defined as the time to 

deploy MCM equipment prior to entering a minefield), recovery of the search and 

neutralization gear must be modeled, a turnaround time must be modeled once the system 

reaches the edge of the minefield, transit from the staging area to the minefield must be 

modeled, and operational availability must also be modeled. Each of these operations 

management requirements will be incorporated as variables into the external simulation 

model to determine their impact on the overall system effectiveness. Functional 

Architecture products that capture the behaviors necessary to support these requirements 

(and the requirements for Mine Hunting, presented in Chapter III) must provide 

additional detail regarding the representation of these requirements in the simulation. 

2. Functional Architecture 

As presented in Chapter III, the purpose of Functional Architecture development 

is to describe the system of interest in terms of how it will satisfy the previously defined 

set of system requirements. This prompts development of Activity Diagrams (which 

present not only activities, but also external objects that trigger each activity), Sequence 

Diagrams (which defines the ordering of system activities as well as the interactions 

between system objects), Use Case Diagrams (which describes the set of actors that 

conduct each activity, as well as potential extensions of each activity), and State Machine 

Diagrams (which describe how alterations to system operating conditions alter the 

implementation of each activity). Note that it is necessary to define some of the physical 

elements that comprise a system (as well as external physical elements) but all effort 

should be made to remain as solution neutral as possible during the creation of functional 

architecture products to ensure that the range of potential solutions are not unnecessarily 

restricted. For example, in the case of the MCM-1 Avenger, the exact physical system 

that will conduct Airborne Mine Detection is known (the AN/AQS-24A) because the 

system has already been built. However, as a general rule for systems that have not 
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already been built, this level of detail should not be included until physical architecture 

products are developed. Within the functional architecture it is sufficient (and preferable) 

to describe that element as a Sensor System. Given that these SysML products is intended 

to be used in conjunction with the SysML products developed in the previous chapter to 

define a discrete event simulation for an Active, Defensive MCM system, the functional 

architecture products that are most relevant are Activity Diagrams. Recall that Active, 

Defensive MCM operations are defined by a discrete sequence of: transit to minefield, 

detect mines, classify mines, reacquire mines, identify mines, and neutralize mines. In 

Chapter III the high level Activity Diagram defined that decomposition from Active, 

Defensive MCM Operations to Minehunting Operations to Detect Mines was shown, but 

did not provide sufficient detail regarding Mine Classification, Reacquisition, 

Identification, and Neutralization to enable development of a simulation model. Figure 

60, Figure 61, and Figure 62 present those activities in more detail to guide this 

development. 

Figure 60 Activity Diagram (Classify Mines) 
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Figure 61 Activity Diagrams (Reacquire Mines & Identify Mines) 

 
 

Figure 62 Activity Diagram (Neutralize Mines) 
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Note that while this research focuses on presentation of Activity Diagrams, the 

Sequence Diagram and State Machine Diagram presented in Chapter III specified the 

ordering of the Activity Diagrams within the discrete event simulation (as a practical 

note, it is far easier in the CORE software to map physical components to functions 

within Sequence Diagrams than within Activity Diagrams). The Use Case Diagram was 

necessary to establish the actors that performed each high level activity, but was less vital 

to the development of the external simulation. Note that Use Case Diagrams are often 

vitally important to systems where multiple missions must be defined and exercised, as 

would be the case if this research were expanded beyond Active, Defensive MCM 

operations to include other mine warfare operations, as detailed previously. 

3. Physical Architecture 

As prescribed by the MBSE MEASA, completion of the set of Functional 

Architecture products (specifically the Activity, Sequence, Use Case, and State Machine 

Diagrams) prompts the development of Physical Architecture products (Block Definition 

and Internal Block Diagrams). In this case, Chapter III presents a comprehensive Block 

Definition Diagram (Figure 45). As noted, definition of the Block Definition Diagram 

terminated at the system level, for systems that are less well defined it may be necessary 

to expand Block Definition Diagrams to include subsystems, system components, and 

system end items. As mentioned, physical architecture definition should proceed to a 

sufficient level to develop a model or simulation of the system of interest, which requires 

that the each system function can be allocated to one or more system components. While 

this is not evident from an isolated study of the Block Definition Diagram, considering 

the diagram simultaneously with the functional architecture products (which describe 

system components in a solution neutral form) as well as Internal Block Diagrams 

confirms that each system function is allocated to appropriate system components.  

Figure 46 presented an Internal Block Diagram for the MH-53E, which showed 

that the MH-53E was capable of completing the full detection through neutralization 

sequence of Active, Defensive MCM operations (albeit with a required change to the 

supporting subsystems) for MCM-1 configurations. Figure 63 presents an Internal Block 
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Diagrams for the LCS MCM system. The Internal Block Diagrams shows that it is 

necessary for the LCS to employ multiple systems to complete the full sequence of mine 

detection through neutralization. Specifically, the RMMV completes mine detection and 

classification while the MH-60S completes mine identification and neutralization (note 

that a further decomposition of the Internal Block Diagram focused solely on the MH-

60S would suggest that the MH-60S requires a supporting external system to conduct 

mine neutralization, which in this case is assumed to be the AN/AQS-25 Archerfish 

system (this level of detail was shown in Figure 45). Note that organizational blocks are 

once again shown to aid visualization; these organizational blocks are not necessary 

elements of Internal Block Diagrams but are shown to demonstrate the segmenting of 

physical systems that conduct each mine warfare activity. Those blocks shown in grey 

(the MQ-8B Fire Scout and the Unmanned Influence Sweep System) are unrealized 

systems (at least in terms of utilization for mine countermeasures operations) expected to 

provide future functionality that are beyond the scope of this study but are included for 

completeness and to facilitate better comparison with the Internal Block Diagrams shown 

for the MCM-1 Avenger configurations.  
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Figure 63 Internal Block Diagram (LCS MCM Systems) 

 

 

It is certainly difficult to provide a complete demonstration of the utility of 

SysML architecture products through presentation of static figures. While these figures 

do provide a defined picture of the major functional and physical properties of potential 

systems, it is difficult to present the level of detail associated with the connections 
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between each of the diagrams. Much of the value of a coordinated set of architecture 

products is that changes to system requirements, functions, elements, etc., in one diagram 

will promulgate through each diagram, substantially reducing the need for rework and 

providing nearly instantaneous checks on consistency between the functional and 

physical representations of a system. While this is certainly a limitation of architecture 

presentation through static figures, a sufficient level of detail has been presented to guide 

development of an external model of Active, Defensive MCM operations based on the 

SysML architecture products. Recall that the focus of this chapter is to demonstrate the 

importance of aligning an external model or simulation with previously developed 

architecture products. Accordingly, the next section will provide an overview of the 

external model built in support of this research with a focus on ensuring that each of the 

functions and activities, as well as the appropriate physical elements, are represented 

properly in the simulation model. 

B. MODEL DEFINITION 

Examination of the set of functional and physical architecture products defined in 

the first three stages of the MBSE MEASA serve as the primary guidance for the 

development of an external model of Active, Defensive MCM operations. The functional 

architecture products have defined the set of behaviors that must be represented in the 

simulation and the physical architecture products have defined the set of systems and 

subsystems that must be represented in the simulation. As mentioned, the choice of 

simulation approach is often highly dependent on the expertise of the user, in this case 

familiarity with discrete event simulation, as well as a system of interest that performs a 

clearly defined sequence of events, led to the selection of a discrete event simulation to 

model Active, Defensive MCM operations. 

1. Model Representation 

Chapters III and IV presented the set of functional behaviors and activities that 

must be represented in the model using a set of SysML products. Similarly, another set of 

SysML products presents the systems and subsystems represented in the discrete event 

simulation. Detailed examination of those SysML products suggests that the discrete 
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event simulation must represent three distinct stages of operation: transit to and from the 

minefield, minehunting, and mine neutralization. Furthermore, physical systems must 

exist in the simulation to conduct transit, mine detection, mine classification, mine 

identification, and mine neutralization. The SysML products are the basis for model 

construction; however additional clarification may be required for the reader unfamiliar 

with SysML products or discrete event models. Appendix D presents a mapping of 

SysML products to the external simulation. To aid with description of these process and 

the related physical systems within the discrete event simulation, Figure 64, Figure 65, 

Figure 66, and Figure 67 provide a visual representation of each stage of operation. 

Figure 64 Transit to the Minefield and Minefield Definition 

 

 

As prescribed by the system architecture, the operation begins with transit to the 

minefield. Note that while Figure 64 shows a notional operational environment, the 

simulation varies the total transit distances and transit speed within the boundary 

conditions specified by Figure 64 (increased detail will also be shown in Table 8 and 

Table 9) to ensure that the results are as generalizable as possible. To facilitate 
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comparisons between system alternatives the characteristics of the minefield are constant. 

The simulation creates the minefield by assigning a random x and y coordinate to 400 

non-mines and 100 mines, which are the entities within the discrete event simulation. 

Note that this constant specification of the minefield means that the application of the 

analysis results should be restricted to similar operational scenarios. In this case, the 

specific operational scenario was chosen after discussion with subject matter experts 

suggested that this was a stressing implementation of a likely operational scenario. That 

said, it is important to note that, as demonstrated by Allen, Buss, and Sanchez (2004), 

environmental factors such as current speed, current offset, and range from the sensor to a 

mine may also have a substantial impact on system performance. The simulation does not 

include these factors, but investigation is possible in future work. Several other 

assumptions and limitations, as presented in Becker, et al. (2014) may be of interest and 

may restrict the applicability of the results, particularly: 

1. The only mines present would be bottom mines in water deeper than 200 

feet (Becker 2014, 154) 

2. Sea state, weather, water visibility, and sea floor type were not modeled 

3. Each target is only considered a single time (the sensor is modeled as a 

“cookie cutter” sensor). This is based on SME opinion that the search 

speed is slow enough and the tracks are spaced closely enough that each 

target can be detected in a single instance and that any target that is missed 

can be ignored 

The system then transits to a staging area located several miles from the minefield 

(the distance from the staging area to the minefield as well as the transit speed from the 

staging area to the minefield are varied). After minefield definition and transit to the 

minefield is complete, the simulation moves to the detection function. Note that to this 

point the simulation models the MCM-1 configurations and the LCS simulations exactly 

the same; however, each configuration is represented differently in the discrete event 

simulation after this point due to the variations in the physical entities that conduct mine 

detection, classification, reacquisition, identification, and neutralization operations. 

Specifically, MCM-1 configurations utilize multiple systems (the MCM-1 Avenger and 

the MH-53E) to conduct each stage of the operation while the LCS configurations utilize 

one system (the RMS) to conduct mine detection and classification and a second system 

(the MH-60S) to conduct mine reacquisition, identification, and neutralization. Figure 65 
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and Figure 66 provide visual representations of the simulation implementation of the 

MCM-1 configurations, while Figure 67 provides a visual representation of the 

simulation implementation of the LCS configurations. As mentioned, Appendix D 

presents a more detailed representation of each of those figures within the discrete event 

modeling software (ExtendSim). 

Prior to the commencement of mine detection, the simulation further defines the 

minefield by varying the portion of the minefield that will be searched by the MCM-1 

Avenger and the portion that will be searched by the MH-53E (note that this will not be 

necessary for the LCS configurations, as only one system performs mine detection). This 

is highlighted in Figure 65 (which assumes a that half the minefield is searched by the 

MCM-1 Avenger and half the minefield is searched by the MH-53E) where the y-

coordinate on the right side of the figure is specified as the “Surface Search Percentage,” 

and is later varied from 0.30 to 0.70.  

Figure 38 and Figure 60, which presented Activity Diagrams for Mine Detection 

and Mine Classification, are the basis for the set of events defined in the simulation. In 

general, one or more simulation variables are associated with each event. Note that there 

is no system movement for the MCM-1 configurations between mine detection and mine 

classification; therefore Figure 65 presents detection and classification happening at each 

point in the minefield. The simulation implements a sequence where each search system, 

proceeds from left to right along a track, stopping at each potential mine and identifying 

it as either a MILEC or a non-MILEC. The simulation models detection of each potential 

mine, and proceeds to mine classification for those potential mines identified as MILECs. 

The MILECs are then classified as either MILCOs or non-MILCOs, the list of which is 

then saved for PMA. In the portion of the minefield being covered by the MCM-1 

Avenger, the system proceeds with mine neutralization. In Figure 65, the lower half of 

the region is searched by the MCM-1 Avenger, which completes the full sequence of 

detection through neutralization, and the top half of the region is searched by the MH-

53E, which completes only mine detection and mine classification. Note that in the 

example shown, the MCM-1 Avenger only requires a single sortie but the MH-53E 

returns to the staging area, because the search sequence requires two sorties to complete 
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(the simulation model varies the Sortie Time and it is different for each simulation run). 

As mentioned, one or more variables are associated with each event, the variables 

associated with mine detection and classification are: the search speed, the probability of 

mine detection, the probability of correct classification (for both MILCOs and non-

MILCOs), the time to stream and recover the search gear, the number of tracks the 

system will complete per nautical mile, the time to turn around to begin a new track, the 

duration of each mine detection sortie, and the maintenance time required at the end of 

each sortie.  

Figure 65 Detection and Classification: MCM-1 Configurations 

 

 

After PMA has created a list of the MILCOs that must be reacquired for 

neutralization, both the MH-53E and the MCM-1 Avenger proceed to travel to each 

target and conduct a sequence of reacquisition, identification, and neutralization. Again, 

the percentage of the targets engaged by each system is varied. Each system is assigned a 

percentage of the MILCOs to neutralize, and a nearest neighbor algorithm dictates the 

sequence of MILCOs engaged by each system. If either the MH-53E or MCM-1 Avenger 

is required to return to the staging area during this portion of the simulation (due to the 

number of neutralizers carried on the system) the nearest neighbor algorithm resets, using 
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the staging area as the starting point (in Figure 66, this is shown for the top portion of the 

region, searched by the MH-53E, but not for the bottom portion of the region, searched 

by the MCM-1 Avenger). The full set variables associated with mine identification and 

neutralization are: the probability of reacquisition, the probability of identification (for 

both MILCOs and non-MILCOs), the probability of neutralization, the time to deploy and 

recover the reacquisition, identification, and neutralization (RI&N) gear, the time for 

reacquisition and identification (defined with both a mean and a standard deviation, 

assuming a normal distribution), the time for neutralization (defined with both a mean 

and a standard deviation, assuming a normal distribution), the speed of the neutralizers, 

the portion of the MILCOs neutralized by the MCM-1, and the portion of the MILCOs 

neutralized by the MH-53E. 

Figure 66 Identification and Neutralization: MCM-1 Configurations 

 
 

Recall that while each of the systems used in the MCM-1 configurations are 

capable of conducting the full sequence of mine detection through neutralization, the 

LCS configurations use two separate systems for each portion of the operation. The 

RMMV conducts mine detection and classification, after which the MH-60S conducts 

mine reacquisition, identification, and neutralization. For the purposes of the simulation, 
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the RMMV operates similarly to the MH-53E in the first stage of MCM-1 configuration 

simulations, beginning at the bottom left of the minefield and proceeding to the right, 

conducting mine detection and classification for each potential mine. Once the system 

has reached its maximum sortie time, it transits back to the staging area. This prompts the 

PMA sequence, which creates a list of targets for the MH-60S. The MH-60S then 

operates similarly to the MH-53E in the second stage of the MCM-1 configuration 

simulations, proceeding to each target as prescribed by a nearest neighbor algorithm and 

conducting mine reacquisition, identification, and neutralization. The LCS simulation 

uses the same general set of variables as the MCM-1 simulations (although fewer total 

variables are required because the LCS simulations do not require values for airborne 

mine detection or classification or values for surface mine reacquisition, identification, or 

classification). Figure 67 presents a visual representation of the simulation model for the 

LCS configurations, where the MH-60S is conducting mine neutralization activities in an 

area previously searched by the RMMV. 

Figure 67 Detection-Neutralization Sequence: LCS Configurations 
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Table 8 and Table 9 present a full list of variable names, maximum values, and 

minimum values (discrete variables are denoted using asterisks). To aid organization, the 

functions and activities are grouped into three broad categories as defined previously in 

the MBSE MEASA: Design Variables, Operational Variables, and Environmental 

Variables. Note that for presentation the set of design variables has also been segmented 

into surface and airborne design variables. The variables are defined for each model: 

MCM-1 Avenger Configurations and LCS Configurations.  
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Table 8 Input Variable Summary: MCM-1 Configurations 
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Table 9 Input Variable Summary: LCS Configurations 
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2. Experimental Design Selection 

The Active, Defensive MCM operation discrete event simulation is characterized 

by 51 input variables for the MCM-1 Configurations and 32 input variables for the LCS 

configurations (as noted in the previous section, the difference arises from the operating 

procedures of each configuration, for example the LCS does not conduct airborne mine 

detection, therefore the variable for the probability of airborne mine detection is not 

needed for the LCS configurations). Per Figure 48 (presented in Chapter III), utilization 

of a 512 design point NOB design is well suited for this situation. These designs allow 

for both discrete and continuous variables, provide excellent space filling properties 

across the design space, and allow for maximum flexibility during model fitting after the 

simulation has been run.  

Vieira et al. (2011) provides a summary of the importance of minimal correlation 

and minimum imbalance for a space filling design with both discrete and continuous 

factors. As a brief review, designs with correlations between factors introduce the 

possibility of mischaracterizing the relationship between input variables and output 

variables. Accordingly, designs with near zero correlation between columns of the 

experimental design matrix are preferred. Equally important when a simulation must 

consider both continuous and discrete variables is the balance between columns of the 

experimental design matrix. As presented in Vieira et al. (2011), when a design intended 

to be used solely for continuous factors is used for discrete factors, rounding of each 

design point is required. While some rounding may be acceptable, this rounding has the 

potential to increase the correlation between columns of the experimental design matrix. 

The design methodology presented in Vieira et al. (2011) defines a procedure for creating 

designs for both continuous and discrete factors and presents an imbalance criterion, 

where designs with near zero imbalance between columns of the experimental design 

matrix are preferred. A scatterplot matrix for the ten surface search variables for the 

MCM-1 configurations variables is presented in Figure 68 to provide visual confirmation 

that the design provides adequate space filling between variables, the correlation and 

space filling are subsequently assessed numerically. Notice that eight of the variables are 

continuous; therefore nearly all of the space is filled with design points. Two variables 
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(Number of Tracks per Nautical Mile and Number of Minefield Passes) are discrete 

variables, and are therefore only tested at six and three levels, respectively. Examination 

of the full correlation matrix showed a maximum absolute pairwise correlation of 0.0266 

and a maximum imbalance of 0.1015, suggesting that correlation between input variables 

and imbalanced testing of discrete variables is not an issue for this design. 

Figure 68 Scatterplot Matrix (First Ten Simulation Variables) 
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Each of the 512 design points prescribed by the NOB designs was replicated 30 

times for each model. This resulted in a total of 15,360 runs for each model and an 

overall total of 30,720 model runs. This replication of design points is important for 

stochastic simulations, and allows for an examination of the variability at each design 

point within each model (if that is also of interest). 

C. MODEL ANALYSIS 

The second goal of this dissertation research is to demonstrate the utility of the 

MBSE MEASA through an analysis of a U.S. Navy system. In particular, this research 

analyzes the operational effectiveness of the MCM-1 Avenger MCM System and the 

LCS MCM System. Per the MBSE MEASA, the goal of that analysis is to establish a 

relationship between system design parameters (as well as operational and environmental 

factors) and operational MOEs.  

1. Effectiveness Definition 

As presented earlier in this chapter, the MCM simulation model assesses the 

ability of different MCM configurations to complete an Active, Defensive MCM 

operation. Accordingly, measures of effectiveness are required that quantify the mission 

accomplishment capabilities of the system in this environment. Detailed review of mine 

warfare guidance, in particular NWP 3–15, suggests that traditional MCM metrics focus 

on the idea of “residual risk,” which is informally defined as the probability that 

something remains in the minefield. This naturally leads to the first measure of 

effectiveness used in this analysis, specifically the percentage of mines cleared. This is 

also the basis of the traditionally used mine countermeasures metric, the area coverage 

rate sustained (ACRS), which is defined as the ratio of the area covered during an 

operation and the operational duration. Becker et al. (2014) utilize these metrics and 

demonstrate that the probabilities of detection, classification, identification, and 

neutralization dominate performance in terms of percent clearance and ACRS. However, 

while these metrics capture the idea of “residual risk” quite well, the broad range of 

values assigned to the probabilities of detection, classification, identification, and 

neutralization may result in a compounding of error if the probabilities modeled do not 
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correspond to the true performance of the systems of interest (recall that utilizing a broad 

range is still considered preferable to using actual performance data, which would result 

in classification of the results). In order to conduct analysis that reduces the impact of the 

potential compounding of error a new metric is introduced, specifically the probability 

that the system achieves 90% detection of mines in the minefield. This metric captures 

the idea of residual risk (the probability that a mine is undetected) and also highlights the 

potential impact of multiple passes through the minefield. Furthermore, while the 

potential issue of an incorrect specification of detection probability remains; incorrect 

specification of classification, identification, and neutralization probabilities does not 

compound the issue. 

1. Percent Clearance 

2. Area Coverage Rate Sustained 

3. Probability of 90% Detection 

Analysis of these three measures of effectiveness aligns with the guidance 

specified in standard mine warfare guidance. Use of these three measures also tailors the 

analysis to capture the full range of behaviors specified in the architecture products and 

also acknowledges the potential limitations of the simulation model resulting from the 

choice not to input classified system design parameter data. 

a. MCM-1 Model Analysis 

Analysis of the MCM-1 model determines the input variables that have the 

greatest impact on each of the three output variables presented earlier. Initial analysis of 

the Percent Clearance metric show similar results to the previous study, which suggest 

that the probabilities of detection, classification, identification, and neutralization have a 

substantial impact on the percentage of mines cleared. Regression analysis (Figure 99, 

Figure 100, and Figure 101 in Appendix E) shows that the number of passes through the 

minefield (an operational variable) has a substantial impact on each of the Operational 

MOEs.  

This analysis also explores the impact of multiple passes through the minefield to 

better characterize the variables that have the largest impact on system performance. 

Given that the regression analysis suggests that there is little difference between 
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conducting two or three passes through the minefield, these simulation runs are grouped 

and compared to the simulation runs conducting only one pass through the minefield. 

Figure 69 presents two histograms that reinforce the difference between configurations 

conducting multiple minefield passes and configurations conducting only a single 

minefield pass. It also demonstrates that the approximately 4% increase in Percent 

Clearance can be seen across the interquartile range and at the maximum Percent 

Clearance values. 

Figure 69 Histogram Comparison of Percent Clearance for Single 

versus Multiple Minefield Passes (MCM-1 Configurations) 

 

 

While multiple minefield passes demonstrate some potential value in terms of 

percent clearance, multiple passes are likely associated with some increase to operational 

duration and cost. Examination of histograms comparing the performance for each 

potential configuration in terms of the second metric of interest, the Probability of 90% 

Detection, suggests a more distinct difference between the configurations (Figure 70). 
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Figure 70 Histogram Comparison of Probability of 90% Detection for 

Single versus Multiple Minefield Passes (MCM-1 Configurations) 

 

 

Initial data examination suggests that the selection of Probability of 90% 

Detection is a potentially illuminating measure of effectiveness beyond the Percent 

Clearance for this simulation. Examination of Figure 70 shows that configurations 

conducting multiple minefield passes increase the Probability of 90% Detection by 55%. 

Perhaps more importantly, the median Probability of 90% Detection for configurations 

conducting multiple passes is 100%.   

While the realization that multiple passes through the minefield improves system 

performance is not shocking, it is useful for two reasons. First, from a practical 

perspective, the stark difference between scenarios where only one minefield pass is 

conducted and scenarios where multiple passes are conducted may be a useful 

demonstrator of the importance of allowing time to conduct Active, Defensive MCM 

Operations. Second, the objective of the Model Analysis step of the MBSE MEASA is to 

identify feasible system configurations. The breadth of the operational simulations 

advocated by the MBSE MEASA, which consider not only system design parameters, but 
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also operational and environmental factors, can complicate this identification. This can 

present challenges when presenting results because it is possible to consider these factors 

in either order. It is possible to hold operational and environmental factors constant and 

examine the impact of changes to the system design parameters to identify preferred 

system configurations for a specific implementation, and it is also possible to hold the 

system configurations constant and examine the impact of changes to system operational 

implementation to identified preferred methods of operation given a constant system. A 

third approach, called robust design, allows environmental factors and other “noise” 

factors to vary, and examines the expected mean and variability of performance across 

these noise conditions. Subsequently, the analyst can seek to identify system design 

parameters that yield solutions with robust performance. This dissertation does not use a 

robust design approach, but the approach, developed by noted engineer and statistician 

Genichi Taguchi in the 1960s, is frequently applied in industrial applications for product 

design. A description of the utility of robust design approaches is presented in Sanchez 

(2000) and an application of robust design for multi-nation mine clearing is presented in 

Thompson (2015). In this case conducting a single pass through the minefield results in a 

near zero probability of achieving the desired level of system performance (in terms of 

mine detection), therefore future analysis focuses on identification of feasible system 

configurations that conduct multiple minefield passes. A similar analysis is conducted for 

the LCS MCM configurations to facilitate development of tradespace visualization tools 

per Step 5 of the MBSE MEASA. 

b. LCS Model Analysis 

As with the MCM-1 model data, examination of the LCS model data determines 

the variables that have the greatest impact on each operational MOE. Regression analysis 

results (Presented in Figure 102, Figure 103, Figure 104, and Figure 105 in Appendix E) 

suggest that, as with the MCM-1 configurations, it may be interesting to examine the 

impact of conducting multiple passes through the minefield. Histogram analysis (Figure 

71) suggests that there is a 7% improvement to Percent Clearance resulting from multiple 

passes both at the median clearance level as well as across the full range of Percent 

Clearance. 
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Figure 71 Histogram Comparison of Percent Clearance for Single 

versus Multiple Minefield Passes (LCS Configurations) 

 

 

As with the MCM-1 configurations, detailed analysis of the distribution of the 

second operational MOE (the Probability of 90% Detection) provides additional insight. 

While there are only minimal differences in terms of the percent clearance, there is a 

substantial difference in distributions for the Probability of 90% Detection for 

configurations that conduct a single minefield pass and configurations that conduct 

multiple passes (Figure 72).  
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Figure 72 Histogram Comparison of Probability of 90% Detection for 

Single versus Multiple Minefield Passes (LCS Configurations) 

 

 

For the LCS configurations conducting multiple minefield passes, the average 

Probability of 90% Detection jumps from less than 6% to over 95% compared to 

configurations conducting only a single minefield pass. Furthermore, the minimum 

Probability of 90% Detection conducting multiple minefield passes is actually equal to 

the maximum Probability of 90% Detection when conducting only a single minefield 

pass. This emphasizes the impact that operational decisions can have on system 

performance, even in terms of simulation models. While it is certainly not 

groundbreaking that searching a minefield more thoroughly results in improvements to 

system performance, this analysis demonstrated that a simple alteration to an operational 

factor had a substantial impact on operational performance, dominating the impact of 

alterations to system design parameters. Furthermore, this analysis suggests that when 

comparing potential changes to system design parameters such as the probability of 

identification or the probability of neutralization using a tradespace visualization tool, it 

is prudent to include the operational factor of the number of minefield passes in the 
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visualization tool to highlight the set of feasible system design parameter configurations 

subject to operational decisions. 

2. Tradespace Analysis 

The final step of the MBSE MEASA suggests development of a tradespace 

visualization tool to allow for examination of system tradeoff decisions from multiple 

perspectives. In particular, the methodology advocates development of external 

operational and system synthesis models to allow for definition of a set of system 

configurations that are feasible from an operational, physical, and cost perspective. In this 

particular case, development of physical models are not necessary, given that the analysis 

is focused on a comparison of systems that exist and alterations to their physical design 

are unrealistic. However, the cost modeling and analysis of the MCM-1 Avenger and the 

LCS presented in Becker at al. (2014) can be used in conjunction with the operational 

effectiveness analysis modeling and analysis presented in this research to develop a 

tradespace visualization tool that highlights a set of feasible system configurations in 

terms of both operational effectiveness and operational cost (a function of operational 

duration). While the example tool presented in Chapter III assumes that a single system is 

being developed (and therefore a single tradespace visualization tool is sufficient), this 

demonstration considers two distinct systems, therefore two distinct tradespace 

visualization tools are required (one for the MCM-1 configurations and one for the LCS 

configurations).  

Figure 73 shows an operational tradespace visualization approach for defining a 

feasible set of system configurations for the MCM-1 Avenger, focused solely on 

operational MOEs. Note that the prediction formulas developed in the regression analysis 

shown in Appendix E for each of the operational MOEs are used as surrogate models to 

facilitate rapid updating of the tool. Recall that the visualization approach presents two-

dimensional projections of the larger, multi-dimensional tradespace. Figure 73 assumes 

that a threshold of 90% has been established for the Probability of 90% Detection, a 

threshold of 0.20 has been established for the ACRS, and threshold of $15 million has 
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been established for the Operational cost, and a threshold of 40% has been established for 

the Percent Clearance. 

Note that the system design parameters, environmental factors, and operational 

factors identified as having a significant effect on the operational effectiveness of the 

MCM-1 Avenger for each of the operational MOEs shown earlier are shown as “Factors” 

in Figure 73. Selection of which factor is shown on the Horizontal and Vertical axis is 

accomplished by interaction with the selection bubble next on the left side of each factor. 

Each factor not shown on either the x-axis or y-axis is held constant at the value shown to 

the right of each factor name (note that each factor is initially set at the mean of the 

minimum and maximum values shown in Table 8 and Table 9). The current settings 

define a feasible region (shown in white) in terms of the Probability of Detection (x-axis) 

and the Number of Minefield Passes (y-axis) for MCM-1 configurations, assuming that 

each of the other factors is fixed at the value shown.  

The importance of setting each of these factors at a constant value cannot be 

overemphasized. As mentioned, there are millions of potential combinations of factors 

that may be investigated. This research presents tradespace visualization and 

investigation as an alternative for system design to emphasize that the goal of analysis at 

this stage should be to reduce the potential tradespace by identifying factor combinations 

that are infeasible, rather than driving toward a specific system configuration. Additional 

research is required to investigate efficient techniques for the investigation of large, 

multi-dimensional tradespaces. As mentioned previously, Ross (2003) defines a multi 

attributed trade space exploration procedure that documented a method for the definition 

of a Pareto frontier of solutions. That work was expanded to a 48 step multi-attribute 

trade space exploration process and demonstrated more recently in Ross, Stein, and 

Hastings (2014) and applied to survivability analysis of satellite systems. The process is 

intended to be implemented for communication with stakeholders and accordingly only 

utilizes more traditional factorial designs to conduct detailed modeling and simulation. 

Integration of that approach, which demonstrates that it is possible to quickly reduce the 

size of a system tradespace through interaction with stakeholders as well as simulation 

modeling, with the MBSE MEASA developed in this research is an area of potentially 
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interesting future research. For the purposes of this dissertation, a simple demonstration 

of the utility of tradespace exploration is presented that focuses primarily on several of 

the most significant performance drivers (as identified by the regression analysis), the 

probability of detection, the number of minefield passes, the search speed, and (for the 

MCM-1) the Surface Search Percentage as well as (for the LCS) the Surface Sortie Time. 

Note that each of the other factors are held constant in this example (as mentioned, the 

Probabilities of Classification, Reacquisition, Identification, and Neutralization are held 

constant at the mean of the ranges presented in Table 8and Table 9) and the conclusions 

identified in this approach are only valid given the fixed values of each of those factors. 

Figure 73 Operational Tradespace Visualization (View 1): MCM-1 

Configurations 
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Note that the system MOE for cost is presented in the same window as the 

operational MOEs to conserve space. There are several major conclusions that can be 

drawn from examination of Figure 73. First, the system requires a Probability of 

Detection of at least approximately 0.83 to ensure that the threshold of 90% Probability 

of 90% Detection is met. Second, two minefield passes must be conducted to satisfy the 

thresholds for Probability of 90% Detection and ACRS. Notably, three minefield passes 

cannot be conducted due to the threshold imposed for the Operational Cost. Recall that 

this tradespace for Probability of Detection and Number of Minefield Passes exists given 

the values set for each of the other factors in Figure 73. This analysis follows the 

exploration approach outlined in Chapter III, and once as many two-dimensional 

projections as possible are explored could be used to define a set of feasible system 

design parameters. As a point of caution, note that there is variability associated with the 

prediction formulas used to generate the tradespace shown in Figure 73 and accordingly 

it is imprudent to make specific recommendations at the constraint boundaries (the same 

is true for subsequent tradespace visualizations). The goal of examining these tradespaces 

should be to identify portions of the tradespace that are infeasible, rather than to 

recommend a particular system configuration. This should facilitate development of more 

refined system requirements (ex: Probability of Detection greater than 0.80) that can then 

be used to bound future iterations of system analysis. It is possible to examine alternate 

two-dimensional projections that may change the conclusions drawn from Figure 73. 

Figure 74 presents a visualization of the tradespace between the Surface Search 

Percentage (x-axis) and the Number of Minefield Passes (again on the y-axis). 
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Figure 74 Operational Tradespace Visualization (View 2): MCM-1 

Configurations 

 

 

Notice that the shape of the tradespace is completely different from Figure 73 as a 

result of the change to the two-dimensional projection being examined. Once again, a single 

minefield pass is incapable of satisfying the threshold for the Probability of 90% Detection or 

ACRS. However, a third minefield pass is now possible if the Surface Search Percentage is 

reduced below approximately 0.40. This suggests that the Operational Cost is dependent on 

the operational decision to have the surface asset search a larger portion of the minefield but 

not on the Probability of Detection, which makes intuitive sense. It is possible to examine an 

additional two-dimensional projection (Figure 75) that again shows the Number of Minefield 

Passes on the y-axis and now shows the Surface Search Speed on the x-axis. 
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Figure 75 Operational Tradespace Visualization (View 3): MCM-1 

Configurations 

 

 

Notice that the Probability of 90% Detection threshold and the ACRS threshold 

both once again suggest that a single minefield pass in infeasible. If two minefield passes 

are conducted a Search Speed of approximately 3.5 knots is required. Knowledge of these 

alternative two-dimensional projections is helpful when the original two-dimensional 

project (showing the Number of Minefield Passes and the Probability of Detection) is 

reexamined and modified. Recall that Figure 73 suggested that, for the given values of 

each factor, a Probability of Detection of approximately 0.83 is required. However, it is 

useful to demonstrate how the tradespace visualization tool can aid decision making 

when the configurations initially defined as feasible cannot actually be realized. For 

example, there may be a scenario where the Probability of Detection is restricted to 0.80. 
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Figure 76 presents a visualization of the original two-dimensional projection with the 

Probability of Detection restricted to 0.80. 

Figure 76 Operational Tradespace Visualization (View 4): MCM-1 

Configurations 

 

 

Notice that the crosshair now suggests that the system is incapable of satisfying the 

Probability of 90% Detection threshold with a Probability of Detection of 0.80 (note that an 

additional minefield pass is also infeasible due to the Operational Cost constraint. It is 

possible to increase the size of the feasible region by relaxing one or more constraints it is 

also possible to increase the size of the feasible region by altering the settings for factors 

other than the Number of Minefield Passes and the Probability of Detection. Figure 77 

presents two screenshots of the two-dimensional projection original presented in Figure 74 
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(where the Number of Minefield passes is shown on the y-axis and the Surface Search 

Percentage is shown on the x-axis). The left side of Figure 77 shows the resulting two-

dimensional projection when the Probability of Detection is restricted to 0.80. Notice that the 

system is classified as infeasible for the Probability of 90% Detection MOE. However, when 

examining the tradespace, a third minefield pass can actually be conducted (something that 

was not apparent when examining the projection for the Number of Minefield Passes and the 

Probability of Detection) by decreasing the Surface Search Percentage. The right side of 

Figure 77 presents a visualization of such a solution, where a third minefield pass is 

conducted and the system is not infeasible for Operational Cost because the Surface Search 

Percentage has been reduced to 0.38 (previously it was 0.50). 

Figure 77 Operational Tradespace Visualization (View 5): MCM-1 

Configurations 
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While the reduction of Surface Search Percentage is certainly a legitimate 

solution when the Probability of Detection is restricted to 0.80 it is certainly not the only 

potential solution. Figure 78 presents a similar examination of the two-dimensional 

tradespace originally presented in Figure 75 (where the Number of Minefield Passes is 

shown on the y-axis and the Surface Search Speed is shown on the x-axis). On the left 

side of Figure 78 the system is infeasible due to the inability to meet the Probability of 

90% Detection threshold due to the reduction of Probability of Detection (note that this 

example assumes that the Surface Search Percentage has been reset to 0.50). On the right 

side of Figure 78 a potential solution is identified, showing that the system can conduct a 

third minefield pass, which will satisfy the Probability of 90% Detection threshold, 

without exceeding the Operational Cost threshold by increasing the Surface Search Speed 

from 4 knots to 4.5 knots. Note that there are numerous potential two-dimensional 

projections that may be explored. This particular example focused on operational 

decisions regarding the Number of Minefield Passes, the Surface Search Percentage, and 

the Surface Search Speed that can be made to overcome a restriction on the Probability of 

Detection (assuming constant values for the Probabilities of Classification, Reacquisition, 

Identification, and Neutralization). Each user must make a decision regarding the 

appropriate ordering of factor investigation; however this example demonstrated the 

utility that a tradespace visualization approach can have for multi-attribute tradespaces. 
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Figure 78 Operational Tradespace Visualization (View 6): MCM-1 

Configurations 

 

 

A similar analysis can be conducted for the LCS MCM configurations. Figure 79 

presents a similar tradespace visualization approach for defining a set of feasible design 

parameters for LCS configurations. Once again, a threshold of 90% has been established for 

the Probability of 90% Detection and a 40% threshold has been established for the Percent 

Clearance. For the purposes of presenting an interesting demonstration, slightly altered 

thresholds were imposed for the ACRS and the Operational Cost. A threshold of 0.22 has 

been established for the ACRS (the LCS configurations demonstrated slightly better 

performance), and threshold of $17 million has been established for the Operational Cost (the 

LCS configurations demonstrated a reduced operational cost). Once again the demonstration 
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begins with the presentation of the two-dimensional tradespace (Figure 79) for the Number of 

Minefield Passes (y-axis) and the Probability of Detection (x-axis). 

Figure 79 Operational Tradespace Visualization (View 1): LCS 

 
 

The LCS configurations will not be discussed in the same level of detail because 

many of the conclusions are similar, but the same approach used to explore the MCM-1 

configuration tradespaces can be used to examine the LCS configuration tradespaces. For 

example, the LCS system requires a Probability of Detection of at least approximately 

0.78 to ensure that the threshold of 90% Probability of 90% Detection is met. Once again, 

a single minefield pass is infeasible for all values of Probability of Detection from an 

operational perspective and a third minefield pass is infeasible for all values of 

Probability of Detection from a cost perspective. An alternative projection shows the 
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tradespace between the Surface Sortie Time, on the x-axis, and the Number of Minefield 

Passes (Figure 80). 

Figure 80 Operational Tradespace Visualization (View 2): LCS 

 

 

As with the previous two-dimensional projection, the threshold for the Time to 

Achieve 90% Detection and for Percentage Mine Clearance eliminate all configurations 

where only a single minefield pass is conducted and the threshold for Operational Cost 

eliminates all configurations where three minefield passes are conducted. Considered 

with the ACRS threshold, two minefield passes are required and a Surface Sortie Time of 

approximately 15 hours is required. A similar situation is shown in Figure 81, which 
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presents a two-dimensional tradespace projection with the Number of Minefield Passes 

on the y-axis and the Surface Search Speed on the x-axis. 

Figure 81 Operational Tradespace Visualization (View 3): LCS 

 

 

Once again, the operational MOEs restrict all combinations with a single 

minefield pass. The Operational Cost threshold suggests that a third minefield pass is 

possible is the Surface Search Speed exceeds 12 knots. Once again, the information 

obtained from this visualization can be used to inform operational decisions if the 

Probability of Detection is restricted. Figure 82 presents a visualization of the two-

dimensional projection with the Number of Minefield Passes shown on the x-axis and the 
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Probability of Detection shown on the x-axis with the Probability of Detection restricted 

to 0.75.  

Figure 82 Operational Tradespace Visualization (View 4): LCS 

 

Notice that the system configuration prescribed by the crosshair is identified as 

infeasible. If the Probability of Detection cannot exceed 0.75 it is necessary to conduct a 

third minefield pass to satisfy the Probability of 90% Detection threshold. Recalling the 

information presented in Figure 81 it may be possible to conduct a third minefield pass if 

the Surface Search Speed is increased. Figure 83 presents a visualization of the 

implementation of such a decision.  



 194 

Figure 83 Operational Tradespace Visualization (View 5): LCS 

 

 

Note that the system configuration specified on the left of Figure 83 is infeasible 

for the Probability of 90% Detection due to the restriction of the Probability of Detection 

to 0.75. Once again a potential solution is highlighted on the right of Figure 83. By 

increasing the Surface Search Speed from 10 knots to 13 knots, it is now possible to 

conduct a third minefield pass without violating the Operational Cost threshold. In turn 

this allows the system to satisfy the Probability of 90% Detection threshold even though 

the Probability of Detection has been restricted to 0.75. 

The presentation of the examination of the operational and system tradespace for 

each of the MCM system configurations is intended to emphasize the importance of 

complete tradespace exploration through a dynamic tool. The MBSE MEASA relies on 

development of external models and simulations, based on system architecture products. 

Detailed analysis of those external models (in this case an operational simulation model) 

enables development of predictive surrogate models, which can subsequently be 

implemented in profilers to provide visualization of the system tradespace. Such an 

approach is intended to illuminate the full range of potential system design parameter 
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options, subject to operational MOE standards. The visualization is intended to aid 

decision making, rather than recommend a single system alternative. Recall that there are 

parallel efforts into efficient explorations of multi-attribute tradespaces and integration of 

this general approach with that work should be investigated. A more general integration 

of the MBSE MEASA advocated tradespace visualization with alternative response 

surface methods or subset selection procedures is also a worthy research direction. 
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V. CONCLUSIONS 

A. SUMMARY 

This dissertation presents an MBSE MEASA that formalizes a comprehensive 

linkage between the system architecture domain and the system analysis domain. Due to 

the substantial expertise required to conduct research in each domain, recent 

developments focus largely within each of these domains, and there is insufficient 

emphasis on the link between descriptive architecture products, in particular SysML 

products, and external models and simulations. In particular, there is a need for a 

methodology that emphasizes that system architecture products should be the basis for 

not only physical system models, but also operational models and cost models. Further, 

those models must be capable of considering system design variables, operational 

variables, and environmental variables. The MBSE MEASA presents a revised approach 

for the utilization of SysML products to support external modeling and simulation efforts, 

groups those SysML products according to the traditionally conducted systems 

engineering processes, and demonstrates the utility of the new MBSE MEASA through a 

study of the MCM-1 Avenger and the LCS in an Active, Defensive MCM operation. The 

MBSE MEASA also provides a comprehensive demonstration of the methodology 

iteration, which provides a more explicit, dynamic iteration capability than possible using 

any alternative MBSE methodology. 

Recall that this research is motivated by the need to produce more complete 

system requirements. This research presents a procedure that begins with an initial set of 

system requirements, translates those requirements into detailed SysML architecture 

products, uses those SysML architecture products as the foundation for assessment of 

system performance through designed experiments of external models and simulations, 

and uses the results of those assessments to visualize the impact that each system design 

parameter has on the operational performance of the system. This identifies feasible set of 

system design parameters that may be investigated in more detail, as well as identifies 

those system requirements that have little to no impact on system performance and 

therefore may not require additional analysis or definition. Most importantly, adherence 
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to this methodology provides traceability from an initial set of requirements to a set of 

architecture products and external models and simulations that can be used to assess 

those requirements and develop system design parameters. Finally, because the MBSE 

MEASA explicitly considers design, operational, and environmental variables, the MBSE 

MEASA uniquely describes how impactful variables in each of these domains (as well as 

potential interactions between those variables) can be integrated into future iterations of 

system architecture products. 

The dissertation expands the scope of the existing MBSE methodologies 

developed by IBM, NASA, INCOSE, Vitech, etc. The dissertation extends the current 

focus of MBSE by expanding the focus from descriptive architectural based frameworks 

to a more comprehensive framework that links formally defined architecture products to 

detailed external models and simulations. While the MBSE MEASA has a broader 

applicability than any existing MBSE methodology, it is also vitally important to position 

the MBSE MEASA in relation to recent academic and professional research, particularly 

in two areas: model-based systems engineering and simulation analysis. 

This research is broader in scope and applicability than existing model-based 

systems engineering focused research. Recent work, such as Wang and Dagli (2008), Ge, 

Hipel, Yang, and Chen (2013), and Kim, Fried, Menegay, Soremekun, and Oster (2013) 

present approaches for the automated execution of system analysis, through colored petri 

nets and discrete event models. However, these approaches assume that the system 

architecture is completely defined and static, and are currently restricted to systems 

whose operational procedure will not be altered. The MBSE MEASA makes no such 

assumptions, and is therefore applicable to a wider range of potential systems. Note that 

while this extension by the MBSE MEASA is currently relevant, it is not a general 

criticism of the idea of executable architectures and future coordination between the 

efforts may be possible. Limitations regarding computing power necessarily limit current 

implementations of executable architectures. However, in the future, some of the 

fundamental concepts developed in the domain of executable architectures may be 

integrated with the emphasis on designed experiments presented in the MBSE MEASA 
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as a means to automate the translation of SysML diagrams to more detailed external 

models. 

While MBSE is a relatively new field, modeling and simulation, in particular 

large scale modeling and simulation, has existed for many years and has successfully 

supported system development. Traditional approaches to model development (such as 

the assumptions document, presented in Law (2014) or conceptual models, presented in 

Sargent (2013)) share many goals and characteristics with descriptive architectural based 

development. While there are similar concepts, the goal of the MBSE MEASA is to 

provide a more powerful framework to link descriptive and analysis focused models. The 

MBSE MEASA establishes a framework that ensures traceability and consistency 

between multiple models in an easier-to-manage environment than previously possible. 

The MBSE MEASA defines an approach that mandates and enforces this consistency and 

facilitates identification and resolution of conflicts for system requirements, functions, 

and physical elements. 

Finally, the MBSE MEASA utilizes SysML products as a basis for system 

architecture development to ensure compatibility with the widest range of MBSE 

approaches. While SysML is a relatively new approach for system description and 

development, several recent research efforts demonstrate the potential utility of SysML 

focused development. Of particular note, Johnson (2008), Cao, Liu, and Paredis (2011), 

Qamar, During, and Wikander (2009), Palachi, Cohen, and Takahaski (2013) and 

Spangelo, et al. (2013) all demonstrate the potential for automated generation of physical 

models based on SysML products. Huang, Ramamurthy, and McGinnis (2007), Huang 

(2011), and Bataresh and McGinnis (2012) also demonstrate a similar approach for the 

generation of manufacturing models based on SysML products. That research is a 

tremendously powerful generation of the potential utility of SysML. The MBSE MEASA 

presents a more general framework for the overall utility of SysML products that 

integrates those approaches, at the same time that it emphasizes the need to consider large 

number of system parameters, system component interactions, and system operational 

and environmental interactions, considerations which are limitations of existing works 

into the generation of external models using SysML products. Once again, this is not a 
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universal criticism of existing work, the assumptions and limitations associated with the 

automated SysML-focused research and executable architecture research exist because it 

is necessary to demonstrate simple use cases before more complicated cases.  

The MBSE MEASA establishes a framework usable as the basis for future 

developments in MBSE focused research. Ideally, the lessons learned and computational 

advances made possible by existing work in executable architecture research and 

automated SysML development research will integrate within the framework of the 

MBSE MEASA to support system development in a rapid fashion, ensuring a more 

holistic approach to system development. 

The MBSE MEASA uses SysML products as a basis to ensure the usability of the 

methodology. SysML, the current focus of a large portion of current MBSE research, 

facilitates implementation in conjunction within any existing MBSE methodology. This 

research focuses on the analysis portion of MBSE and presents a methodology that 

provides a roadmap for any user to leverage a set of SysML architecture products, which 

are defined in this research and prescribed by almost every existing MBSE methodology, 

to conduct detailed analysis of system performance and behavior through external models 

and simulations. This improves the efficiency and effectiveness of the engineering 

process by linking detailed system architecture products to detailed external models and 

simulations. This improves traceability, later iterations of those architecture products, and 

facilitates assessment of the quality of previously defined system requirements.  

This research demonstrates the potential utility of the MBSE MEASA through 

analysis of an Active, Defensive MCM operation. This demonstration establishes a 

roadmap to implementation of the methodology for any future user. However, it is also 

useful to refer to the previously presented intended characteristics of a systems 

engineering process to ensure that the MBSE MEASA supports each of those 

characteristics. 

1. The process must be comprehensive. It must not focus on individual 

aspects of the system and instead should consider the system as an 

integrated whole.  
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By leveraging SysML products, which capture not only system structures and 

functions, but also the relationships between system elements, potential constraints on 

each system element, and the allocations of system components to system functions, the 

MBSE MEASA ensures that architectural representations of the system consider the 

system as an integrated whole. Furthermore, the MBSE MEASA’s use of those products 

to define the behaviors and physical entities that must be represented in any external 

model or simulation ensures that all aspects of the system are included and assessed to 

determine their impact on system performance, behavior, structure, and cost.  

2. The process must be iterative. It must be capable of considering an 

initially stated operational need and evaluating system configurations 

against that need, while simultaneously scoping the operational 

capabilities of the system such that the process can be repeated for a more 

focused operational need. 

The MBSE MEASA supports analysis within some implementation of the 

systems engineering methodology or within some implementation of an MBSE 

methodology. It defines a path for translating a set of system requirements into system 

architecture products, which facilitate development of external models and simulations. 

Modeling and simulation analysis results are the basis for the development of a 

tradespace visualization tool. Properly visualizing the system tradespace allows for 

definition of a feasible set of system configurations. The MBSE MEASA explicitly 

defines an iteration procedure based on that tradespace analysis to update system 

architecture products for impactful design, operational, or environmental variables (as 

well as any potential interactions between those variables).  

3. The process must be defined by a logical sequence of activities and 

decisions. As noted, the process must be iterative, but there is necessarily 

an element of sequence. The process must explicitly define the ordering 

and characteristics of each event in the process. Ambiguity must be kept to 

a minimum in order to clearly delineate each event and clearly define the 

achievements that trigger the transition between events. 

The MBSE MEASA defines the ordering and application of SysML based 

architecture products. This aligns the methodology with the current direction of MBSE 

research, which advocates SysML for its clear system architecture representation 
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capability. Furthermore, the MBSE MEASA prescribes a defined set of steps that 

facilitate the use of SysML products as a basis for external models and simulations. 

4. The process must transform an operational need into a description of 

system performance parameters and preferred system configurations. This 

is perhaps the most important characteristic of a quality systems 

engineering process. In short, the objective of any systems engineering 

process is to ensure that the decisions that lead to recommendation of a 

system configuration can be directly linked to a clearly defined operational 

need. 

As mentioned, the intended output of the MBSE MEASA is a definition of a 

feasible set of system configurations. Adherence to the MBSE MEASA ensures that the 

feasible set of system configurations is traceable to a set of system functions and 

requirements through SysML architecture products. That traceability ensures that there is 

no disconnect between the originally identified stakeholder need and the final set of 

feasible system configurations identified by the MBSE MEASA. 

Finally, it is useful to recall the intended benefits of MSBE developed by 

Friedenthal, Griego, and Sampson (2007) and show that the MBSE MEASA aids 

realization of those benefits. 

1. Improved communications among the development stakeholders (Friedenthal, 

Griego, and Sampson (2007, 7). 

a. The MBSE MEASA uses stakeholder input to develop a SysML 

Requirement Diagram, which is the simplest way to capture stakeholder 

needs in a defined, concise format. Because this Requirement Diagram is 

used as the basis for architecture construction (and therefore model 

building) it can easily be updated based on the results of the MBSE 

MEASA. For example, the tradespace examination in Chapter IV 

recommended a Probability of Detection for the LCS MCM system of at 

least 0.80 (recall that this exploration and the associated recommendations 

apply exclusively to the LCS MCM system defined by constant values for 

each of the other factors shown in Figure 83). Figure 34 presented a 

Requirement Diagram for Minehunting Operation, which presents the 
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Probability of Detection as a system requirement. This requirement can be 

updated based on the results of the MBSE MEASA and any stakeholder 

discussions can revolve around model results that are traceable back to the 

original Requirement Diagram.  

2. Increased ability to manage system complexity by enabling a system model to be 

viewed from multiple perspectives, and to analyze the impact of changes 

(Friedenthal, Griego, and Sampson (2007, 7). 

a. One of the central goals of this research is to develop an analysis 

methodology that supports the development of architecture models and 

external operational simulation models for large scale, complex systems. 

Accordingly, SysML products, which are currently the most popular tool 

for development of system architecture products, are used to ensure that a 

comprehensive system model is developed that allows the system to be 

viewed from multiple perspectives. This facilitates development of 

external simulation models that are traceable and establishes a linkage 

between any proposed system design changes to originally established 

system requirements (and therefore to an original set of stakeholder 

needs). 

3. Improved product quality by providing an unambiguous and precise model of the 

system that can be evaluated for consistency, correctness, and completeness 

(Friedenthal, Griego, and Sampson (2007, 7). 

a. As mentioned in the discussion of the utilization of the MBSE MEASA to 

facilitate multi-perspective system views, the utilization of SysML 

products as a baseline for system architecture and system analysis ensures 

that the full set of system architecture products can be evaluated for 

completeness and consistency. If some expected system functionality is 

not present in an external operational simulation, the accuracy and 

completeness of the SysML Activity Diagram and the SysML Sequence 

Diagram can be evaluated and updated to properly define the sequencing 
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of the expected functionality within the simulation model and to describe 

the expected system components that are required to conduct the activities. 

If some expected system component is not included in a cost or physical 

model, the SysML Block Definition Diagram can be examined to 

determine whether or not the component is currently considered a part of 

the system physical hierarchy and, if it is not, the SysML Internal Block 

Diagram can be examined to determine what system components are 

performing the activities expected to be performed by the missing 

component. The comprehensive, unambiguous nature of these architecture 

models ensures that any external models built to support system analysis 

can be evaluated and revised to ensure that they provide a complete, 

correct, consistent representation of each system component and each 

system behavior. 

4. Enhanced knowledge capture and reuse of information by capturing information 

in more standardized ways and leveraging built in abstraction mechanisms 

inherent in model driven approaches. This in turn can result in reduced cycle time 

and lower maintenance costs to modify the design (Friedenthal, Griego, and 

Sampson (2007, 7). 

a. The MBSE MEASA provides a formal definition of the use of SysML 

products to establish a linkage between the system architecture and system 

analysis domain. This definition establishes a bridge between the domains 

where standardized information can be shared to remove any potential 

conflicts between architecture models and analysis models (either 

operational models, physical models, or cost models). As with any 

proposed method of operation the utility of the MBSE MEASA will 

certainly be a function of proper implementation, however creation of a 

standard set of products that facilitate communication between multiple 

domains should reduce the potential for conflict and therefore reduce the 

time needed to rework system architecture models to reflect external 

models and to reduce the time needed to revise system operational, 
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physical, and cost models to reflect changes to system functions and 

components that results from alterations to system architecture models. 

B. CONCLUSIONS 

The MBSE MEASA developed in this research strengthens the linkage between 

descriptive system architecture products and system analysis products. The current 

direction of MBSE research suggests that SysML products will be the standard for 

system architecture development for the foreseeable future. Accordingly, this research 

defined an analysis methodology that leverages SysML products but expands their utility 

by defining a comprehensive framework for their application to external models. 

Definition of a procedure for using those SysML products to support the development 

and structured exploration of external models and simulations is a valuable approach 

within the system architecture domain and system analysis domain. This research 

maximizes the utility of descriptive system architecture products by defining a method 

for utilizing those products to evaluate the operational effectiveness, structure, and cost of 

potential system configurations. This research emphasizes that the results of those 

external models and simulations must assess any previously established system 

requirements. This assessment ensures that the set of system requirements completely 

describe a system that is feasible and effective in terms of operation, structure, and cost. 

Because this comprehensive framework links descriptive system architecture products to 

detailed system analysis products, this research is able to develop a unique iteration 

procedure that demonstrates proper integration of analysis results into future versions of 

descriptive architecture products. 

C. AREAS TO CONDUCT FUTURE RESEARCH 

This research presented a defined methodology for linking the system architecture 

and system analysis domains in the context of model-based systems engineering. There exist 

numerous potential related research areas that would further extend the systems engineering 

body of knowledge. The most direct contribution consists of applications of the MSBE 

MEASA to non-traditional systems (systems with limited control over design as well as 

systems that exhibit emergent behavior are potential examples, although others may exist).  
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Another logical (and potentially related) application of the MSBE MEASA is to 

development of systems of systems. While this methodology was demonstrated using an 

integrated set of systems in the MCM simulation, this only establishes utility for a 

“directed” system of systems, or one where the command and control of the set of 

systems can be attributed to a single user (or set of users) and each of the systems is 

designed and operated to satisfy a predetermined set of functions. Other systems of 

systems (acknowledged, collaborative, and virtual systems of systems) are often 

distributed, independently managed and operated, and may not operate in support of the 

same defined set of functions. This certainly introduces new challenges due to the 

potential for emergent behaviors, the lack of central ownership and management, the 

potential for potentially conflicting objectives, and the inability to define a unifying set of 

standards and goals. In particular, research and applications in this area may benefit from 

further investigation of heuristics or modeling techniques that allow for mapping of 

operational simulation inputs to system synthesis inputs. 
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APPENDIX A. MBSE MEASA COMPARISON TABLE 

This appendix presents a detailed comparison table that positions the MBSE 

MEASA in terms of recent work. The table presents general criteria in six areas: 

Architectural Approach, External Modeling Approach, External Model Components, 

Analysis Approach, Application & Demonstration, and Iteration. It summarizes the 

contributions that each of the leading MBSE Methodologies, recent work in MBSE 

Development, and relevant work in Simulation & Analysis made to each of those areas. 

The table is presented in three parts to facilitate readability. 
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Table 10 MBSE MEASA Comparison Table (Part 1: MBSE MEASA and 

MBSE Methodologies) 
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Table 11 MBSE MEASA Comparison Table (Part 2: Recent MBSE 

Development) 
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Table 12 MBSE MEASA Comparison Table (Part 3: Relevant Simulation & 

Analysis Development) 
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APPENDIX B. EXPERIMENTAL DESIGN VERSUS BASELINE 

FOLLOWED BY EXCURSIONS 

This appendix provides guidance in two areas. First, it demonstrates the risks 

associated with testing systems by establishing a baseline and conducting individual 

excursions, and shows that proper experimental design utilization prevents mistakes in 

test configuration specification that may result from testing by “baseline followed by 

excursions.” Second, it demonstrates that the types of experimental designs that may be 

familiar to systems engineers from experience with physical system testing may 

experience limitations when used for simulation models and presents guidance regarding 

the selection of efficient experimental designs.  

As noted previously, Friedenthal, Griego, and Sampson (2007) state that MBSE 

provides five major benefits, summarized as: improved communications, increased 

ability to manage system complexity, improved product quality, enhanced knowledge 

capture and reuse of information, and improved ability to teach and learn systems 

engineering fundamentals. Experimental design, particularly in the context of simulation 

experiments, is vitally important to realizing several of those benefits. Increased ability to 

manage system complexity cannot be achieved without development of a system 

architecture model that can be viewed from many perspectives to examine the impact of 

those potential changes. Experimental design specifies the system configurations that 

should be modeled in order to properly analyze the impact of changes in system 

configurations on system performance. Improved product quality cannot be achieved 

without capturing information in standardized ways. Again, experimental design provides 

the standards for simulation model construction that ensures that all product decisions are 

made in support of the end goal of increased system performance. As mentioned in 

Chapter III, several excellent references, in particular Montgomery (2012) provide a 

comprehensive overview of experimental design. Sanchez et al. (2012) present a more 

specific overview of experimental design for simulation experiments. Any user of the 

MBSE MEASA would be well served to review that work; however, a brief discussion of 

experimental design clarifies the benefits that experimental design may have in the 
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context of MBSE. This provides a basic introduction and to discourages users from 

implementing a “baseline followed by excursions” approach to system testing. 

A. PRINCIPLES OF EXPERIMENTAL DESIGN 

Before examining specific experimental designs techniques in detail, it is useful to 

consider the general purpose of DOE. Experimental designs are the basis for conducting 

tests and experiments. In the context of systems engineering, the purpose of conducting 

tests or experiments is to understand the drivers of a system’s performance. Kleijnen et 

al. (2005) present three basic goals of simulation analysis (these goals also apply to 

systems engineering tests and experiments): “developing a basic understanding of a 

particular simulation model or system, finding robust decisions or policies, and 

comparing the merits of various decisions or policies.” The first goal is most applicable 

to tests and experiments for the types of large scale, complex systems being studied by 

this research. Kleijnen at al. (2005) further specify that these tests or experiments may be 

conducted “to gain insight into situations where the underlying mechanisms are not well 

understood, and where real-world data are limited or even nonexistent.” This serves as a 

useful definition of the purpose of the tests and experiments relevant to this research. 

This establishes that, in general, a test or experiment is used to establish a relationship 

between input variables, which characterize system capabilities or configurations, and 

output variables, which characterize system performance.  

Experimental designs add rigor to the process of experimentation by planning the 

experiment and defining the nature of the data to be collected. This allows experimenters 

to effectively conduct tests and experiments that uncover insights regarding system 

performance. As mentioned previously, the often used “baseline followed by excursions” 

approach may lead to inappropriate conclusions or an incomplete understanding of the 

true drivers of system performance. Use of a good experimental design ensures that the 

assumptions behind any statistical tests conducted on the experimental results are not 

violated.  

At the simplest level, a conceptual model of a stochastic relationship between 

factors (inputs) and responses (outputs) is: 
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 ( )Y f x     (1) 

A simple functional model that is often assumed, in practice, to represent this 

function in the basis linear model: 

 0 1 1iy x       (2) 

where yi is the value of some output variable, β0 is a constant intercept value, β1 is a 

multiplying coefficient for x1, x1 is the value of some input, and ε is an error term. This is 

especially useful when attempting to predict system performance. By formulating the 

relationship between inputs and output in this fashion, it is possible to predict the change 

in system performance (yi) associated with a change in some system characteristic (x1). 

An instructive example is an equation that quantifies how an increase in the amount of 

fertilizer used in farming (xi) impacts the total crop yield (yi). Data collected either from a 

designed experiment or from observation can be used to estimate the coefficients of the 

model. 

Unfortunately, most processes are not as simple as in the example above. 

Typically, more than one system characteristic (input) will impact system performance 

(output). Accordingly, the type of relationship described above becomes more complex. 

Examples include: 

   

 0 1 1 2 2iy x x        (3) 

 2
0 1 21 1iy x x         (4) 

 0 1 1 2 2 3 1 2iy x x x x          (5) 

Equation (2) previously presented system performance in terms of a single input 

variable, Equations 3–5 present system performance as a function of: (3) two input 

variables; (4) the linear and quadratic effect of one input variable; (5) two input variables 

as well as the interaction between those variables. Examples of these equations are fairly 

intuitive. A system with behavior specified by Equation (5) provides an excellent 

example of the value of experimental design. 
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Equation (5) describes a situation where the behavior of the system cannot be 

understood through an isolated study of the system components. As an example, recall 

that two of the variables with the largest impact on LCS MCM performance were the 

Probability of Mine Classification and the Probability of Mine Neutralization. 

Accordingly, an engineer of LCS MCM subsystems (who suspected that these variables 

would have a significant impact on performance but did not have access to the detailed 

analysis presented earlier in this research) may be interested in examining the impact that 

the probability of classification and neutralization have on system performance. If the 

engineer were interested in utilizing a model (such as the one presented earlier in this 

research) to describe the impact of these variables very generally, the system 

configurations to be tested must be defined before testing begins. There are an infinite 

number of system configurations (in terms of probability of classification and probability 

of neutralization) that may be tested. For the purposes of this example, the probabilities 

of classification and neutralization are both restricted to the range [0.70, 0.90]. If the 

engineer were to proceed with testing through the “baseline followed by excursions” 

approach a “baseline” system configuration could be established with the probability of 

classification and probability of neutralization both set to a minimum value, in this case 

0.70. The engineer could conduct a test at this baseline configuration and subsequently 

conduct follow on tests where first the probability of classification is maximized and 

second the probability of neutralization is maximized. Table 13 presents a definition of 

what these tests (which define system configurations) would look like in terms of 

probability of classification and probability of neutralization. 

Table 13 Example Test Configurations: Baseline Followed by Excursions 
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The engineer could subsequently proceed to collect performance data for each of 

these test configurations. In terms of the LCS MCM model, the performance data of 

interest may be the percentage of mines successfully neutralized. Note that proper testing 

procedures dictate that each test configuration be replicated (tested multiple times) to 

enable examination of the variability associated with each test configuration, in this 

example 30 replications of each test configuration is presented. Equation (6) presents an 

example equation that describes the true system performance (where yi represents the 

percent clearance, x1 represents the probability of classification, and x2 represents the 

probability of neutralization) and Table 14 presents an example of what the data 

collection looks like for a situation where the engineer conducts the three tests prescribed 

by the “baseline followed by excursions” approach (note that some variability was 

introduced to the model to emphasize the importance of replication). 

 1 2 1 20.35 0.35 0.1iy x x x x     (6) 

Table 14 Example Test Data: Baseline Followed by Excursions 

 

 

Subsequent to this data collection, the engineer may conduct regression analysis, 

which can be used to describe the performance of the system (the percent clearance) in 

terms of the input variables (in this case, the probability of classification and 

neutralization). As noted in Montgomery (2012), the use of regression models to present 

the results of an experiment or model is intuitive and, in this specific example, 

demonstrates that errors in the characterization of system behavior can result from a 

flawed approach to the specification of test configurations. The results of least squares 

regression based on the data presented in Table 14 are shown in Figure 84. 
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Figure 84 Example Regression Analysis: Testing With Baseline 

Followed by Excursions 

 

 

The analysis output of interest is highlighted in red in Figure 84. The coefficient 

associated with the probability of classification is estimated as 0.44 coefficient associated 

with the probability of neutralization is estimated as 0.43 (as well as an intercept value of 

-0.052) in the regression model. Recall that Equation (6) presented the true system 

performance (which regression analysis is attempting to estimate) and the coefficients 

associated with the probability of classification and neutralization were both 0.35. The 

regression analysis summarized in Figure 84 incorrectly estimated the relationship 

between the probabilities of classification and neutralization and the percent clearance. 

This incorrect estimation is not a result of incorrect regression analysis; rather it is a 

result of an incorrect definition of test configurations. By defining test configurations 

haphazardly, the engineer made it impossible to correctly describe the relationship 

between input variables and output variables.  

A simple experimental design can be used to better define the test configurations 

that should be examined in this example. Recall that the engineer previously restricted the 

range of both the probability of classification and the probability of neutralization to 
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[0.70, 0.90]. To use experimental design generating software (or to generate a good 

experimental design by hand), the engineer must also specify the number of levels at 

which each input variable will be tested. For this example, assume that the engineer 

decides to test each variable at two levels (testing at the minimum and the maximum). 

The resulting test configurations are presented in Table 15. 

Table 15 Example Test Configurations: 2 Variable, 2 Level Factorial Design 

 

 

Table 15 presents an example of a two variable, two level factorial design (two 

levels indicating that each input can take only two values, in this case the minimum and 

maximum probabilities of classification and neutralization). The design provides the 

engineer with a list of test configurations that should be run and defines the value of each 

input variable for each of those tests. The engineer can subsequently proceed to collect 

output data (in this case percent clearance data) for each test configuration, the results are 

shown in Table 16. Note that once again 30 tests are conducted for each test 

configuration. 

Table 16 Example Test Data: 2 Variable, 2 Level Factorial Design 

 

 

This data can be analyzed using regression analysis to estimate the relationship 

between the input variables (the probabilities of classification and neutralization) and the 
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output variable (the percent clearance). The results of the regression analysis are shown 

in Figure 85. 

Figure 85 Example Regression Analysis: Testing With 2 Variable, 2 

Level Factorial Design 

 

 

Note that the estimated coefficients in Figure 85 match (with minimal error due to 

the introduced variability) the true system performance presented in Equation (6). The 

probability of classification is estimated as 0.355 and probability of neutralization is 

estimated as 0.356 and the interaction between the variables is estimated as 0.0925; 

confidence intervals for all three coefficients include the actual values of 0.35, 0.35, and 

0.10. The regression techniques employed on the data collected for the test configurations 

specified by the “baseline followed by excursions” approach are exactly the same as the 

regression techniques employed on the data collected for the test configurations specified 

by the factorial design approach. However, the coefficients are only estimated correctly 

when the test configurations are specified by an appropriate experimental design. 

The above example provided an example of the most basic experimental design 

technique, a two-level full factorial design. Montgomery (2012) defines factorial designs 

as designs where, “in each complete trial or replication of the experiment all possible 
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combinations of the levels of the factors are investigated.” By framing the problem in this 

way, it is possible to calculate the total number of design points that are required to 

completely explore all possible combinations of input factors using a factorial design. In 

the example shown above (two factors, each at two levels) the total number of runs is 

calculated by: 2×2=4 total runs. For a slightly larger design (three factors, two levels) the 

total number of runs is calculated by 2×2×2=8 total runs. In general, the number of 

design points required for a factorial design can be calculated (for k factors, each at m 

levels) as m×m×m×…×m=m
k
 , and the designs are typically referred to as m

k
 factorial or 

m
k
 full factorial designs. 

B. TRADITIONAL VERSUS SIMULATION EXPERIMENTS 

This focus on correctly revealing the underlying relationship between inputs and 

outputs is one of the major reasons that experimental design is preferred to a “baseline 

followed by excursions” approach. In the example presented, the baseline-excursion 

approach failed to account for the potential interaction between the probabilities of 

classification and neutralization. Utilization of a factorial design ensured that this 

interaction could be correctly estimated through regression. While the value of examining 

all possible combinations of variables is evident from the example, it may not be apparent 

why factorial designs are not appropriate for examining large scale, complex systems, 

especially those tested in a simulation model. As mentioned, the previous example used a 

2
k
 factorial design. It is often necessary to examine system components at more than two 

levels. However, increasing the number of levels for multiple components quickly 

renders factorial designs inappropriate for use in examining large scale, complex systems. 

Specifically, the total number of design points required to conduct a factorial design 

becomes untenable. A more detailed example based on the LCS MCM system presented 

in this research is illustrative of this challenge. 

In the example presented in the previous section the true model performance was 

defined by Equation (6), which described a system where the percent clearance was 

impacted in a linear manner by the probability of classification, the probability of 

neutralization, and the interaction between those variables. Utilization of a 2
k
 factorial 
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design was sufficient to describe the performance of that system. However, when the true 

system behavior becomes more complicated, it may be necessary to test at an increased 

number of levels.  Estimating a quadratic effect requires a minimum of three levels, 

estimating a cubic effect requires a minimum of four levels, etc. This need to move 

beyond 2
k
 factorial designs, as well as the need to examine more than two variables, 

quickly leads to issues with factorial designs. 

As shown in Chapter IV, the LCS MCM performance is impacted by many 

factors, such as: the probability of detection, the probability of identification, the 

probability of reacquisition, the search speed, the transit speed to the minefield, the 

percentage of the minefield searched by surface assets, etc. If the engineer wants to 

investigate the impact of these six factors, along with the probability of classification and 

neutralization, through a 3
k
 factorial design the engineer would need to investigate 

3
8
=6,561 different design points. This dramatic increase in the required number of design 

points is the primary reason that factorial designs are unsuitable for investigating large 

scale, complex systems. Because factorial designs explicitly investigate each input 

variable of interest, as well as all of the interactions between these input variables, 

eventually factorial designs become unsuitable for examination of large scale, complex 

systems (as well as large scale, complex system simulation models). Table 17 

summarizes the total number of design points required to conduct a factorial design based 

experiment for different numbers of factors and levels. 
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Table 17 Number of Runs Required: Full Factorial Designs 

 

 

Table 17 shows why factorial designs are inappropriate for testing the 

performance of large scale, complex systems. Sanchez and Wan (2012) present a 

powerful example demonstrating the incredible number of runs associated with full 

factorial designs. Referencing the IBM “Sequoia” supercomputer, which is capable of 16 

petaflops (a single petaflop is a quadrillion operations per second), they note that it would 

require over 2.5 million years to conduct an investigation of a 2
k
, 100 variable design 

(defined in Table 17 as approximately 1.26×10
30

 design points). In the case of large scale, 

complex systems, the use of traditional factorial experimental designs to evaluate the 

performance of various system characteristics is unreasonable. Other experimental design 

techniques must be considered. Figure 48 in Chapter III provided a summary of 

appropriate types of experimental designs that should be used in different situations and 

recommended the use of nearly orthogonal, balanced designs for investigation of large 

scale, complex systems through simulation models. Per the guidance presented earlier, 

both Sanchez and Wan (2012) and Vieira et al., (2013) provide concise explanations of 

the power of those designs, as well as instructions regarding their development and 
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implementation. These designs are available at harvest.nps.edu as well as overview 

presentations that provide detailed guidance on their implementation and application.  

As mentioned, if the engineer from the example presented earlier wanted to 

investigate eight variables at three levels each using a full factorial design in an LCS 

MCM simulation model, 3
8
=6,561 test configurations would need to be tested. 

Conducting 30 replications of each test point would therefore require 6,561×30=196,830 

tests. Space filling designs have been developed that overcome the computational 

limitations of factorial designs while continuing to provide excellent coverage throughout 

the design space. In particular, the NOLH and NO/B designs recommended by this 

research can be developed to handle any number of factors at any number of levels. As an 

example, the eight variables mentioned above could be explored using an NOLH with 33 

test configurations instead of 6,561, and the computational savings increase as the 

number of factors increases. The NOLH designs are created with an emphasis on 

ensuring minimal correlation between factors (that is, an increase in one factor is not 

associated with an increase in a second factor). The NO/B designs also ensure a relatively 

equal number of design points at each level for each discrete-valued factor.  

While this simple example does not fully cover the capabilities and limitations of 

space filling designs (see Sanchez and Wan 2012 for a more complete discussion on the 

application of space filling designs for simulation experiments), it should provide a 

general overview of the intended utility of such designs and demonstrate their 

applicability in scenarios with a large number of potential factors, each of which must 

take multiple levels, which makes it impractical or improbable to use traditional factorial 

designs. 
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APPENDIX C. INNOSLATE ARCHITECTURE IMPLEMENTATION 

This appendix presents an alternative representation of the mine warfare 

architecture products detailed in the body of the dissertation. This demonstrates that the 

development of the architecture is possible within multiple tools, and also overcomes a 

limitation associated with the current implementation of the methodology in Vitech 

CORE. While Vitech CORE is a powerful tool that enforces consistency between 

architecture products and facilitates rapid generation and iteration of those products, there 

are limitations associated with development of an executable architecture within CORE 

that can check for logical consistency within the architecture. Recall that each SysML 

Diagram required a “connected” structure. That is, any elements created within a diagram 

needed to be contained and utilized within that diagram. For many cases this is not an 

issue, however it is often necessary to create control type elements to represent decisions 

that are made at different levels of the organizational structure that cannot be represented 

within a single, connected diagram. As an example, the MCM-1 Avenger and the LCS do 

not choose which system will be utilized in a given operation; this is done by a higher 

level command and control element.  This can be represented within the SysML 

Diagrams created in CORE, however it requires the user to integrate a command and 

control output (the decision to use either the MCM-1 Avenger or the LCS) into a decision 

loop for the Active, Defensive MCM Operations. The implementation of such a 

disconnected decision is notionally possible within CORE, but requires scripting and 

abstracting of system elements that removes potentially valuable information and element 

characteristics from visibility on the diagram itself. Re-implementing the diagrams using 

Innoslate’s LML Action Diagrams allows a user to execute activities even when a nested 

alternative requires representation at another level of the system physical hierarchy or 

organizational structure. While CORE is capable of utilizing a “kill” setting for AND 

branches to provide a similar capability, that setting is only applicable to concurrent 

(rather than alternate) branches, limiting the applicability in this specific instance. Note 

that this limitation is not exclusive to CORE, many software architecting tools assume 

that control is transferred linearly and while they facilitate representation of this type of 
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structure, the creation of an executable architecture that checks for logical consistency 

does not support those types of definitions. This appendix demonstrates that the 

utilization of an alternative system architecting tool (Innoslate) allows a user to mirror the 

creation of the system architecture diagrams created in CORE and, due to the increased 

capabilities of the software, run a simulation of the system architecture to check for 

logical consistency. This appendix will walk through a series of diagrams which mirror 

the activity diagrams presented earlier in this dissertation. It will then show the results of 

an execution of the activities to demonstrate that the logical structure is consistent. The 

activities have been associated with durations and probabilities and the execution 

duration approximates the duration (17.42 days) of scenarios modeled in ExtendSim (an 

average of 19 days) when the system conducts a single minefield pass. 

This appendix begins with Figure 86, which presents a representation of the 

highest level activity, Mine Warfare Operations. Note that it is decomposed by Active 

Defensive MCM Operations as well as an Environmental Feedback activity and a 

Command and Control activity. 
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Figure 86 Mine Warfare Operations Activities (Innoslate 

Representation) 

 

 

Figure 87 and Figure 88 present decompositions of the Environmental Feedback 

and Command and Control activities, respectively. Note that the Environmental Feedback 

activity produces and entity termed “Potential Mines” and the Command and Control 

activity produces an entities termed “Instruction to Use MCM-1 Avenger” and 

“Instruction to Use Littoral Combat Ship.” 
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Figure 87 Exhibit Environmental Feedback Activities (Innoslate 

Representation) 

 

Figure 88 Provide Command and Control Activities (Innoslate 

Representation) 

 

 

 

As mentioned, the advantage that Innoslate offers as an architectural software 

program is the ability to transfer these entities to alternative levels of the system 

architecture. While this can be done in CORE, it creates inconsistencies when the 

architecture is executed. Innoslate’s representation allows the architecture to transfer 

these entities between levels. Figure 89 presents a decomposition of Active Defensive 
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MCM Operations, where the “Instruction to Use MCM-1 Avenger” and the “Instruction 

to Use Littoral Combat Ship” are also represented and are serving as triggers to 

subsequent functions. 

Figure 89 Perform Active Defensive MCM Operations Activities 

(Innoslate Representation) 

 

 

This use of these entities at different levels of decomposition would result in an 

error message if implemented in CORE, but is possible using Innoslate’s representation. 

Note that the “Potential Mines” created by the Environmental Feedback activity are not 

utilized until several additional levels of decomposition have been explored. The 

“Potential Mines” are used in the Conduct Minehunting Operations activity 

decomposition, which is decomposed by Detect Mines, which is utilizes the “Potential 

Mines.” Figure 90 and Figure 91 present these additional levels of decomposition. 
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Figure 90 Conduct Minehunting Operations Activities (Innoslate 

Representation) 

 

Figure 91 Detect Mines Activities (Innoslate Representation) 

 

Note that each entity created in Innoslate must be utilized by another entity at 

some level of decomposition. If the logical structure is consistent and each activity is 

associated with a duration (and probable path, as necessary), the architecture may be 

executed. Figure 92 presents the results of an example execution, which approximates the 

results of the ExtendSim implementation of the same processes (17.42 days in Innoslate, 

approximately 19 days in ExtendSim). 
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Figure 92 Detect Mines Activities (Innoslate Representation) 
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APPENDIX D. MODEL IMPLEMENTATION IN EXTENDSIM 

This appendix presents a series of annotated figures (screenshots of architecture 

models and discrete event models) that demonstrate the development of a discrete event 

model (in the ExtendSim software) based on the architecture products presented 

throughout the simulation. As a point of emphasis, this appendix is not a tutorial on 

ExtendSim or discrete event modeling; rather it provides a visualization guiding the 

implementation of architecture products in an external simulation model. Note that this 

section does not provide a roadmap for simulation development. 

As mentioned in Chapter IV, the Activity Diagram for Active, Defensive MCM 

Operations suggested that the external simulation model represent three distinct activities. 

Figure 93 provides an annotated version of that Activity Diagram. 

Figure 93 Annotated Activity Diagram: Active, Defensive MCM 

Operations 
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Development of a framework for a discrete event simulation that captures each of 

the three major elements of the operation occurs per the guidelines established in the 

Active, Defensive MCM Operations Activity Diagram. Figure 94 presents an annotated 

screenshot of ExtendSim, highlighting the portions of the discrete event model that 

correspond to each element of the Active, Defensive MCM Operation per Figure 93. This 

appendix uses the simulation model for the MCM-1 Avenger configurations for brevity 

and consistency. A similar procedure for the LCS configurations produced similar 

mappings.  

Figure 94 Annotated Implementation of Active, Defensive MCM 

Operations in ExtendSim 

 

 

Note that the transit and logistics management functions are implemented 

throughout the simulation model, first by setting initial conditions, then by designating a 

target area, and in between minehunting and mine neutralization by conducting post 

mission analysis. Minehunting and Mine Neutralization are implemented for both 
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airborne and surface assets. Following the general convention presented in the body of 

the dissertation, it is possible to decompose the Minehunting function (both in 

architecture products and in the simulation model) into Mine Detection and Mine 

Classification to visualize the mapping from the architecture models to the external 

simulation model. Figure 95 presents an annotated Activity Diagram for Mine Detection 

and Figure 96 presents an annotated screenshot of the Mine Detection events within the 

simulation model. Note that the SysML Activity diagram begins with a choice of either 

the MCM-1 Avenger Configuration or the LCS Configuration. Only the MCM-1 Avenger 

portion is annotated and Figure 96 only shows the ExtendSim implementation of the 

MCM-1 Avenger configuration. 

Figure 95 Annotated Activity Diagram: Detect Mines 
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Figure 96 Annotated Implementation of Detect Mines in ExtendSim 

 

 

Notice that three major phases comprise both the SysML Activity Diagram and 

the ExtendSim screenshot: Begin Track, Detect Mines, and Loop for Number of Tracks. 

ExtendSim implements the activities associated with each phase as discrete events. A 

distribution is assigned to each event and varied between simulation runs. A similar 

visualization is possible for Mine Classification. Figure 97 presents a SysML Activity 

Diagram for Mine Classification and Figure 98 presents an ExtendSim implementation of 

Mine Classification. Note once again that only the MCM-1 Avenger configuration 

implementation is presented and annotated. 
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Figure 97 Annotated Activity Diagram: Classify Mines 

 

Figure 98 Annotated Implementation of Classify Mines in ExtendSim 
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As with Mine Detection, three major phases define Mine Classification, both 

within the SysML Activity Diagram and the ExtendSim implementation. The three major 

phases shown are: Accept MILEC List (which is an output from Mine Detection, as 

shown in Figure 95 and Figure 96 and highlighted during the discussion of Sequence 

Diagrams in Chapter III), Classify Mines, and Loop and Record Data. Once again, 

ExtendSim implements each of the activities associated with each phase as a discrete 

event and varies the characteristics of that event between simulation runs. 
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APPENDIX E. SUPPORTING ANALYSIS AND FIGURES 

This section provides supporting analysis and figures not deemed necessary for 

presentation in the body of the dissertation but may be of interest for review of the details 

of some analysis presented previously. Figure 99–Figure 101 provides initial analysis 

results for MCM-1 configurations while Figure 102–Figure 105 provides initial analysis 

results for LCS configurations.  

A. SUPPORTING ANALYSIS PRODUCTS (MCM-1 CONFIGURATIONS) 

This section presents the regression analysis referenced in Chapter IV. This 

regression analysis is the basis for the surrogate models used in the tradespace 

visualizations in Chapter IV. 
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Figure 99 Regression Analysis: Percent Clearance (MCM-1 

Configurations) 
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Figure 100 Regression Analysis: Probability of 90% Detection (MCM-

1 Configurations) 

 

Figure 101 Regression Analysis: Area Coverage Rate Sustained 

(MCM-1 Configurations) 
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B. SUPPORTING ANALYSIS PRODUCTS (LCS CONFIGURATIONS) 

This section presents the regression analysis for the LCS MCM Configurations 

referenced in Chapter IV. This regression analysis is the basis for the surrogate models 

used in the tradespace visualizations in Chapter IV. Note that the regression model for the 

Probability of 90% Detection suggested two distinct groupings in the data; therefore a 

Partition Tree analysis is used as an alternative to regression analysis. 

Figure 102 Regression Analysis: Percent Clearance (LCS 

Configurations) 
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Figure 103 Regression Analysis: Probability of 90% Detection (LCS 

Configurations) 
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Figure 104 Regression Analysis: Area Coverage Rate Sustained (LCS 

Configurations) 

 

 



 243 

Figure 105 Regression Analysis: Area Coverage Rate Sustained (LCS 

Configurations) 
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