
NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

DISSERTATION

Approved for public release; distribution is unlimited

A MODEL-BASED SYSTEMS ENGINEERING

METHODOLOGY FOR EMPLOYING ARCHITECTURE

IN SYSTEM ANALYSIS: DEVELOPING SIMULATION

MODELS USING SYSTEMS MODELING LANGUAGE

PRODUCTS TO LINK ARCHITECTURE AND ANALYSIS

by

Paul T. Beery

June 2016

Dissertation Supervisor Eugene P. Paulo

THIS PAGE INTENTIONALLY LEFT BLANK

i

REPORT DOCUMENTATION PAGE Form Approved OMB

No. 0704–0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing

instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection

of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including

suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215

Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork

Reduction Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY

(Leave blank)

2. REPORT DATE

June 2016
3. REPORT TYPE AND DATES COVERED

Master’s Thesis

4. TITLE AND SUBTITLE

A MODEL-BASED SYSTEMS ENGINEERING METHODOLOGY FOR

EMPLOYING ARCHITECTURE IN SYSTEM ANALYSIS: DEVELOPING

SIMULATION MODELS USING SYSTEMS MODELING LANGUAGE

PRODUCTS TO LINK ARCHITECTURE AND ANALYSIS

5. FUNDING NUMBERS

6. AUTHOR(S) Paul T. Beery

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School

Monterey, CA 93943-5000

8. PERFORMING

ORGANIZATION REPORT

NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND

ADDRESS(ES)

N/A

10. SPONSORING /

MONITORING AGENCY

REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the

official policy or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

 This dissertation contributes to model-based systems engineering (MBSE) by formally defining an MBSE methodology for

employing architecture in system analysis (MEASA) that presents a comprehensive framework detailing the relationship between

system architecture products and external models and simulations used to analyze system performance and feasibility. Specifically,

the research combines the use of Systems Modeling Language (SysML) products and operational simulation models to support

assessment of system requirements for systems engineering. The MBSE MEASA transforms operational needs into preferred system

configurations through the analysis of detailed simulation models. The research does this by using designed experiments to generate

architecture tradespace visualizations that highlight the impact that system design parameters, system-environment interactions,

system operational implementation, and system component interactions have on system performance. The research demonstrates a

procedure for iterations of the methodology when analysis suggests potentially impactful design, operational, or environmental

variables (as well as potential interactions between those variables). The research develops and analyzes notional architecture

products and simulation models of United States Navy mine warfare systems to demonstrate an application of the MBSE MEASA.

14. SUBJECT TERMS

model-based systems engineering, Systems Modeling Language, system architecture, system

analysis, modeling and simulation, mine warfare, MCM-1 Avenger, Littoral Combat Ship

15. NUMBER OF

PAGES
283

16. PRICE CODE

17. SECURITY

CLASSIFICATION OF

REPORT
Unclassified

18. SECURITY

CLASSIFICATION OF THIS

PAGE

Unclassified

19. SECURITY

CLASSIFICATION

OF ABSTRACT

Unclassified

20. LIMITATION

OF ABSTRACT

UU

NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89)

Prescribed by ANSI Std. 239–18

ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

A MODEL-BASED SYSTEMS ENGINEERING METHODOLOGY FOR

EMPLOYING ARCHITECTURE IN SYSTEM ANALYSIS: DEVELOPING

SIMULATION MODELS USING SYSTEMS MODELING LANGUAGE

PRODUCTS TO LINK ARCHITECTURE AND ANALYSIS

Paul T. Beery

B.A., Rutgers University, 2009

M.S., Naval Postgraduate School, 2011

Submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY IN SYSTEMS ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

June 2016

Approved by: Eugene P. Paulo

Associate Professor of Systems Engineering

Dissertation Supervisor

Matthew G. Boensel Susan M. Sanchez

Senior Lecturer Professor

Systems Engineering Operations Research

Kristin Giammarco Douglas H. Nelson

Associate Professor Associate Professor

Systems Engineering Systems Engineering

Approved by: Ronald Giachetti, Chair, Department of Systems Engineering

Approved by: Douglas Moses, Vice Provost for Academic Affairs

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This dissertation contributes to model-based systems engineering (MBSE) by

formally defining an MBSE methodology for employing architecture in system analysis

(MEASA) that presents a comprehensive framework detailing the relationship between

system architecture products and external models and simulations used to analyze system

performance and feasibility. Specifically, the research combines the use of Systems

Modeling Language (SysML) products and operational simulation models to support

assessment of system requirements for systems engineering. The MBSE MEASA

transforms operational needs into preferred system configurations through the analysis of

detailed simulation models. The research does this by using designed experiments to

generate architecture tradespace visualizations that highlight the impact that system

design parameters, system-environment interactions, system operational implementation,

and system component interactions have on system performance. The research

demonstrates a procedure for iterations of the methodology when analysis suggests

potentially impactful design, operational, or environmental variables (as well as potential

interactions between those variables). The research develops and analyzes notional

architecture products and simulation models of United States Navy mine warfare systems

to demonstrate an application of the MBSE MEASA.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1

A. MOTIVATION ..1

B. RESEARCH FOCUS AND SUMMARY ...2

C. PROBLEM STATEMENT ...12

D. RESEARCH SCOPE AND ASSUMPTIONS12

II. PRIOR WORK...15

A. SYSTEMS ENGINEERING CONTEXT ..15

B. MODEL-BASED SYSTEMS ENGINEERING DEFINITION

AND REVIEW ...24

1. Introduction and MBSE Progression ...25

2. SysML Overview ..26

a. SysML Requirement Diagram ..27

b. SysML Activity Diagram ...30

c. SysML Block Definition Diagram30

d. SysML Internal Block Diagram31

e. SysML Sequence Diagram ...31

f. SysML State Machine Diagram31

g. SysML Use Case Diagram ..31

h. SysML Parametric Diagram ...31

i. SysML Package Diagram ...32

3. Current MBSE Methods and Processes32

a. IBM Harmony for Systems Engineering33

b. INCOSE Object-Oriented Systems Engineering

Method ...36

c. Vitech Model-Based Systems Engineering

Methodology ..38

d. NASA Jet Propulsion Lab State Analysis41

e. Dori Object-Process Methodology44

f. Weilkiens Systems Modeling Process46

4. Recent MBSE Advances ..48

a. MBSE Architecture and SysML Development48

b. SysML and Simulation Linkage52

c. Design and Analysis of Large Scale Simulation

Experiments ...54

d. MBSE Focused System Analysis and Trade Space

Exploration ..55

 viii

5. Department of Defense Architecture Framework59

III. MODEL-BASED SYSTEMS ENGINEERING METHODOLOGY

FOR EMPLOYING ARCHITECTURE IN SYSTEM ANAYLSIS

DEFINITION ...65

A. SYSTEMS ENGINEERING PROCESS DEFINITION66

B. MBSE MEASA PRESENTATION ..70

1. Analysis Methodology ..70

2. MBSE MEASA Definition ...80

3. Introduction to Mine Warfare Operations85

4. Requirements Analysis Products ..88

5. Functional Architecture Products ..98

6. Physical Architecture Products ..112

7. Modeling and Simulation Definition ..119

8. Experimental Design Recommendations123

9. Model Analysis ...128

C. MBSE MEASA ITERATION ...130

1. Iteration of MBSE MEASA for Significant Main Effects133

a. Iteration of MBSE MEASA for Impactful Design

Variables ..133

b. Iteration of MBSE MEASA for Impactful

Operational Variables ...135

c. Iteration of MBSE MEASA for Impactful

Environmental Variables ..137

2. Iteration of MBSE MEASA for Significant In-Category

Interactions ...140

a. Iteration of MBSE MEASA for Impactful

Interactions between Design Variables141

b. Iteration of MBSE MEASA for Impactful

Interactions between Operational Variables142

c. Iteration of MBSE MEASA for Impactful

Interactions between Environmental Variables.............145

3. Iteration of MBSE MEASA for Significant Between

Category Interactions ..145

a. Iteration of MBSE MEASA for Impactful

Interactions between Design Variables and

Operational Variables ...146

b. Iteration of MBSE MEASA for Impactful

Interactions between Operational Variables and

Environmental Variables ..147

 ix

c. Iteration of MBSE MEASA for Impactful

Interactions between Environmental Variables and

Design Variables ...149

IV. MBSE MEASA DEMONSTRATION AND ANALYSIS153

A. SYSTEM DEFINITION AND SYSML PRODUCT

GENERATION ..153

1. Requirements Analysis ..154

2. Functional Architecture ..155

3. Physical Architecture ...158

B. MODEL DEFINITION ...161

1. Model Representation ..161

2. Experimental Design Selection ...171

C. MODEL ANALYSIS ...173

1. Effectiveness Definition ...173

a. MCM-1 Model Analysis ..174

b. LCS Model Analysis ..177

2. Tradespace Analysis ..180

V. CONCLUSIONS ..197

A. SUMMARY ..197

B. CONCLUSIONS ..205

C. AREAS TO CONDUCT FUTURE RESEARCH205

APPENDIX A. MBSE MEASA COMPARISON TABLE ...207

APPENDIX B. EXPERIMENTAL DESIGN VERSUS BASELINE

FOLLOWED BY EXCURSIONS ..211

A. PRINCIPLES OF EXPERIMENTAL DESIGN212

B. TRADITIONAL VERSUS SIMULATION EXPERIMENTS...........219

APPENDIX C. INNOSLATE ARCHITECTURE IMPLEMENTATION...............223

APPENDIX D. MODEL IMPLEMENTATION IN EXTENDSIM231

APPENDIX E. SUPPORTING ANALYSIS AND FIGURES237

A. SUPPORTING ANALYSIS PRODUCTS (MCM-1

CONFIGURATIONS) ...237

B. SUPPORTING ANALYSIS PRODUCTS (LCS

CONFIGURATIONS) ...240

 x

LIST OF REFERENCES ..245

INITIAL DISTRIBUTION LIST ...253

 xi

LIST OF FIGURES

Figure 1 Single Iteration of a Generic Systems Engineering Process6

Figure 2 Current MBSE Research Focus ...8

Figure 3 MBSE MEASA Intended Utility ...10

Figure 4 Waterfall Model ...18

Figure 5 Spiral Model...20

Figure 6 Vee Model ..21

Figure 7 Incremental Model ...22

Figure 8 SysML Diagram Taxonomy ..26

Figure 9 Relationship Between SysML and UML ...28

Figure 10 SysML Diagram Taxonomy and Relationship to UML29

Figure 11 Rational Integrated Systems/Embedded Software Development

Process Harmony ...34

Figure 12 Linkage of Model Artifacts to Systems Engineering Process Steps35

Figure 13 OOSEM Activities and Modeling Artifacts ...37

Figure 14 Onion Layers for Vitech’s Model-Based Systems Engineering

Methodology ..39

Figure 15 Systems Engineering Activities for Vitech’s Model-Based Systems

Engineering Methodology ...40

Figure 16 State Based Control Architecture...43

Figure 17 Object-Process Methodology Progression ...45

Figure 18 DoDAF Viewpoints ...60

Figure 19 Generic System Life Cycle ..68

Figure 20 Analysis Methodology ...70

Figure 21 Trade Space of Operational and System Synthesis Simulation

Models..72

Figure 22 Revised Analysis Methodology ...73

Figure 23 Analysis Methodology: Operational Effectiveness Modeling76

Figure 24 Analysis Methodology: System Synthesis Modeling78

Figure 25 Analysis Methodology: Trade Space Visualization79

Figure 26 Analysis Methodology ...81

Figure 27 MBSE MEASA ..83

 xii

Figure 28 MIW Activities ..86

Figure 29 Types of Underwater Mines...88

Figure 30 MBSE MEASA (Step 1) ..89

Figure 31 Context IDEF0 Model ..91

Figure 32 IDEF0 Model for Active, Defensive MCM Operations92

Figure 33 Requirement Diagram: Perform Mine Warfare Operations94

Figure 34 Requirement Diagram: Perform Minehunting Operations96

Figure 35 MBSE MEASA (Step 2) ..99

Figure 36 Activity Diagram: Active, Defensive MCM Operations101

Figure 37 Activity Diagram: Minehunting Operations ..102

Figure 38 Activity Diagram: Detect Mines ..103

Figure 39 Sequence Diagram: Detect Mines ..105

Figure 40 Sequence Diagram: Classify Mines ...107

Figure 41 Use Case Diagram: Perform Mine Hunting Operations108

Figure 42 State Machine Diagram: Perform Mine Hunting Operations110

Figure 43 MBSE MEASA (Step 3) ..112

Figure 44 Custom Block Definition Diagram: MIW System...................................113

Figure 45 Custom Block Definition Diagram: MCM System115

Figure 46 Internal Block Diagram: MH-53E ...117

Figure 47 MBSE MEASA (Step 4) ..121

Figure 48 Experimental Design Comparison Chart ...125

Figure 49 MBSE MEASA (Step 5) ..129

Figure 50 Integration of Impactful Design Variable in Subsequent MBSE

MEASA Iteration ...134

Figure 51 Integration of Impactful Operational Variable in Subsequent MBSE

MEASA Iteration (Requirement Diagram Satisfied by Activity

Diagram Details) ..136

Figure 52 Integration of Impactful Environmental Variable in Subsequent

MBSE MEASA Iteration (Inclusion of Environmental Condition in

Higher Level Requirement) ...138

Figure 53 Integration of Impactful Environmental Variable in Subsequent

MBSE MEASA Iteration (Inclusion of Environment as First Event

in Sequence Diagram) ..139

Figure 54 Integration of Impactful Interactions Between Design Variables142

 xiii

Figure 55 Integration of Impactful Interactions Between Operational Variables144

Figure 56 Integration of Impactful Interactions Between Design and

Operational Variables ..147

Figure 57 Integration of Impactful Interactions Between Operational and

Environmental Variables ...149

Figure 58 Integration of Impactful Interactions Between Environmental and

Design Variables ..151

Figure 59 SysML Requirement Diagram: Perform Logistics Functions154

Figure 60 Activity Diagram (Classify Mines) ..156

Figure 61 Activity Diagrams (Reacquire Mines & Identify Mines)157

Figure 62 Activity Diagram (Neutralize Mines) ..157

Figure 63 Internal Block Diagram (LCS MCM Systems)160

Figure 64 Transit to the Minefield and Minefield Definition162

Figure 65 Detection and Classification: MCM-1 Configurations165

Figure 66 Identification and Neutralization: MCM-1 Configurations166

Figure 67 Detection-Neutralization Sequence: LCS Configurations167

Figure 68 Scatterplot Matrix (First Ten Simulation Variables)172

Figure 69 Histogram Comparison of Percent Clearance for Single versus

Multiple Minefield Passes (MCM-1 Configurations)175

Figure 70 Histogram Comparison of Probability of 90% Detection for Single

versus Multiple Minefield Passes (MCM-1 Configurations)...................176

Figure 71 Histogram Comparison of Percent Clearance for Single versus

Multiple Minefield Passes (LCS Configurations)178

Figure 72 Histogram Comparison of Probability of 90% Detection for Single

versus Multiple Minefield Passes (LCS Configurations)179

Figure 73 Operational Tradespace Visualization (View 1): MCM-1

Configurations..182

Figure 74 Operational Tradespace Visualization (View 2): MCM-1

Configurations..184

Figure 75 Operational Tradespace Visualization (View 3): MCM-1

Configurations..185

Figure 76 Operational Tradespace Visualization (View 4): MCM-1

Configurations..186

Figure 77 Operational Tradespace Visualization (View 5): MCM-1

Configurations..187

 xiv

Figure 78 Operational Tradespace Visualization (View 6): MCM-1

Configurations..189

Figure 79 Operational Tradespace Visualization (View 1): LCS190

Figure 80 Operational Tradespace Visualization (View 2): LCS191

Figure 81 Operational Tradespace Visualization (View 3): LCS192

Figure 82 Operational Tradespace Visualization (View 4): LCS193

Figure 83 Operational Tradespace Visualization (View 5): LCS194

Figure 84 Example Regression Analysis: Testing With Baseline Followed by

Excursions ..216

Figure 85 Example Regression Analysis: Testing With 2 Variable, 2 Level

Factorial Design ...218

Figure 86 Mine Warfare Operations Activities (Innoslate Representation)225

Figure 87 Exhibit Environmental Feedback Activities (Innoslate

Representation) ..226

Figure 88 Provide Command and Control Activities (Innoslate Representation)226

Figure 89 Perform Active Defensive MCM Operations Activities (Innoslate

Representation) ..227

Figure 90 Conduct Minehunting Operations Activities (Innoslate

Representation) ..228

Figure 91 Detect Mines Activities (Innoslate Representation)228

Figure 92 Detect Mines Activities (Innoslate Representation)229

Figure 93 Annotated Activity Diagram: Active, Defensive MCM Operations231

Figure 94 Annotated Implementation of Active, Defensive MCM Operations in

ExtendSim ..232

Figure 95 Annotated Activity Diagram: Detect Mines ..233

Figure 96 Annotated Implementation of Detect Mines in ExtendSim234

Figure 97 Annotated Activity Diagram: Classify Mines ..235

Figure 98 Annotated Implementation of Classify Mines in ExtendSim235

Figure 99 Regression Analysis: Percent Clearance (MCM-1 Configurations)238

Figure 100 Regression Analysis: Probability of 90% Detection (MCM-1

Configurations) ..239

Figure 101 Regression Analysis: Area Coverage Rate Sustained (MCM-1

Configurations) ..239

Figure 102 Regression Analysis: Percent Clearance (LCS Configurations)240

 xv

Figure 103 Regression Analysis: Probability of 90% Detection (LCS

Configurations) ..241

Figure 104 Regression Analysis: Area Coverage Rate Sustained (LCS

Configurations) ..242

Figure 105 Regression Analysis: Area Coverage Rate Sustained (LCS

Configurations) ..243

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

LIST OF TABLES

Table 1 Template for Linkage of MBSE MEASA Steps to Systems

Engineering Products ...85

Table 2 Requirements Analysis Support of Linkage of MBSE MEASA Steps

to Systems Engineering Products ...97

Table 3 Functional Architecture Support of Linkage of MBSE MEASA

Steps to Systems Engineering Products ...111

Table 4 Physical Architecture Support of Linkage of MBSE MEASA Steps

to Systems Engineering Products ...119

Table 5 Model Definition Support of Linkage of MBSE MEASA Steps to

Systems Engineering Products ...127

Table 6 Model Analysis and Analysis Iteration Support of Linkage of MBSE

MEASA Steps to Systems Engineering Products130

Table 7 Listing of Analysis Result-Variable Type Cases Requiring MBSE

MEASA Iteration ...132

Table 8 Input Variable Summary: MCM-1 Configurations..................................169

Table 9 Input Variable Summary: LCS Configurations170

Table 10 MBSE MEASA Comparison Table (Part 1: MBSE MEASA and

MBSE Methodologies) ..208

Table 11 MBSE MEASA Comparison Table (Part 2: Recent MBSE

Development) ...209

Table 12 MBSE MEASA Comparison Table (Part 3: Relevant Simulation &

Analysis Development) ..210

Table 13 Example Test Configurations: Baseline Followed by Excursions214

Table 14 Example Test Data: Baseline Followed by Excursions215

Table 15 Example Test Configurations: 2 Variable, 2 Level Factorial Design217

Table 16 Example Test Data: 2 Variable, 2 Level Factorial Design217

Table 17 Number of Runs Required: Full Factorial Designs..................................221

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 xix

LIST OF ACRONYMS AND ABBREVIATIONS

C2 Command and Control

DOD Department of Defense

FFBD Functional Flow Block Diagram

EFFBD Enhanced Functional Flow Block Diagram

IDEF Integrated Definition

INCOSE International Council on Systems Engineering

JPL Jet Propulsion Lab

LCS Littoral Combat Ship

MBSE Model-Based Systems Engineering

MEASA Methodology for Employing Architecture in System Analysis

MCM Mine Countermeasures

MILCO Minelike Contact

MILEC Minelike Echo

MIW Mine Warfare

MOE Measure of Effectiveness

NO/B Nearly Orthogonal/Balanced

Non-MILCO Non-Minelike Contact

Non-MILEC Non-Minelike Echo

OOSEM Object Oriented Systems Engineering Method

RI&N Reacquisition, Identification, and Neutralization

SysML Systems Modeling Language

SYSMOD Systems Modeling

UML Unified Modeling Language

 xx

THIS PAGE INTENTIONALLY LEFT BLANK

 xxi

EXECUTIVE SUMMARY

This dissertation defines a model-based systems engineering (MBSE) analysis

methodology that links system architecture products with external models and

simulations to analyze system performance. Current MBSE research has focused largely

on the definition and formalization of Systems Modeling Language (SysML) products

and diagrams, with insufficient definition of how SysML can be used to analyze the

system. To address this gap this research proposes a MBSE method to link architecture

models to analysis models. The MBSE MEASA integrates system architecture and the

system analysis domains and maintains traceability, both forwards and backwards, from

the system requirements to the system performance results. The MBSE MEASA

leverages existing methods for designing, constructing, and analyzing large-scale

simulation experiments to determine the drivers of system performance. The MBSE

MEASA demonstrates a procedure for iteration of the methodology, based on analysis

results, to integrate impactful design, operational, and environmental variables (as well as

potentially impactful interactions between those variables) into subsequent SysML

products.

Current direction of MBSE research devotes substantial energy to the definition

of SysML diagrams, to document system architecture views from a functional and

physical perspective and define an executable procedure for evaluating the consistency

and correctness of the those system architectures. Ryan, Shahram, and Mazzuchi (2013)

provide an overview of existing MBSE methods, frameworks, and standards, which

highlights the broad range of current MBSE applications. They demonstrate that SysML

diagrams can describe a system comprehensively, in terms of requirements, functions and

physical components.

 This focus on utilizing SysML products to define a system and to analyze the

performance of that system extends to industrial applications of MBSE. Leaders in the

engineering field, such as the International Council on Systems Engineering (INCOSE),

IBM, and Vitech have developed MBSE methodologies. A thorough review of these

methodologies shows that they share three major goals: definition of appropriate system

 xxii

functions based on stakeholder identified system requirements; definition of the set of

potential system physical components; and allocation of physical components to system

functions (to be checked for consistency through a defined operational architecture).

These methodologies are extremely effective at demonstrating whether a given set of

physical components is capable of performing a given set of system functions through

analysis of these executable allocated architectures. The MBSE MEASA developed in

this dissertation expands the utility of these methodologies by prescribing how functional

and physical architectures can be used to define external performance models which

allow for examination of system performance in greater detail (by examining a large

number of system design variables, environmental variables, and operational variables).

This dissertation recognizes that recent research has been largely segmented, with

substantial developments occurring in functional and physical architecture development

(the System Architecture Domain) and other developments occurring in modeling and

simulation and system analysis (the System Analysis Domain). This research focuses on

a revised approach for the integration of those domains. Specifically, this dissertation

develops a comprehensive framework for the development of SysML based system

architecture products and uses those products as the basis for the development and

analysis of detailed external simulations. This allows the MBSE MEASA examine

system performance in detail and to specify a procedure for iteration of the methodology

from detailing system analysis results to subsequent system architecture products that is

unique in the current literature.

The MBSE MEASA is based on the analysis methodology developed in

MacCalman (2013), which presented a sequenced analysis approach demonstrated though

analysis of early stage ship design. That work was expanded by MacCalman, Kwak,

McDonald, and Upton (2015) to include architectural representations and to analyze other

system design problems. The MBSE MEASA expands on that approach by formally

prescribing the architectural representations that enable the implementation of more

detailed external models and simulations (and associated system analysis). The MBSE

MEASA is a five step process, each of which defines a sequence of activities and

products that ensures traceability from stakeholder input to system solutions. The MBSE

 xxiii

MEASA prescribes a procedure for updating future iterations of existing architecture

products and informing subsequent stakeholder communications. The MBSE MEASA

also outlines a standardized format for information capture and model development that

ensures that any changes to system configurations can be rapidly introduced into system

architecture products and implemented in external system models.

The first three steps of the methodology are Requirements Analysis (Step 1),

Functional Architecture development (Step 2), and Physical Architecture development

(Step 3). Requirements Analysis defines the system in terms of its Real Environment as

well as an initial set of Design-To-Specifications. Those requirements are the basis for

Functional Architecture development, which defines the system in terms of the functions

that the system must perform as well as the ordering and dependencies of those functions.

This facilitates development of an initial set of system design parameters as well as

measures of effectiveness and serves as a guideline for Physical Architecture

development. This provides a mapping of the relationship between system components

and the activities performed by each component. Together, these requirements and

architectures support the final two steps of the methodology, Model Definition (Step 4)

and Model Analysis (Step 5) and ensure consistency between model types (operational,

physical, and cost models). Analysis of those models identifies preferred system

configurations, which are based on based on operational, physical and cost models, which

are based on functional and physical architecture, which are based on a stakeholder

specified set of requirements. In this way, the MBSE MEASA ensures traceability from

detailed system analysis to system stakeholder identified requirements, and establishes a

mechanism for discussions between system architecture experts (Steps 1–3) and system

analysis experts (Steps 4–5). This creates a unique opportunity for iteration of the

methodology, where the results of detailed system analysis can be integrated directly into

subsequent iterations of the methodology.

The dissertation applies the MBSE MEASA to a U.S. Navy mine warfare system.

The dissertation builds a full set of SysML products, defines the requirements, activities,

event sequences, use cases, states, and physical components that define a notional mine

warfare system (the term “notional” is used to emphasize that there are assumptions and

 xxiv

limitations associated with the models that do not take away from the demonstration of

the MBSE MEASA but limit the applicability of the analysis results to “actual” mine

warfare systems). Two discrete event simulations are built based on the activities and

components defined in the SysML products. The first simulation examines the

operational effectiveness of the MCM-1 Avenger and its support systems, the current

mine countermeasure (MCM) system for the U.S. Navy. The second simulation examines

the operational effectiveness of the Littoral Combat Ship (LCS) and its support systems,

the future MCM system for the U.S. Navy. Each simulation examines alterations to

system configurations, system design parameters, system operational factors, and

environmental factors (due to differences in operational employment, 51 factors are

examined for the MCM-1 Avenger configurations and 32 variables are examined for the

LCS configurations). That analysis results in several major findings. First, the operational

performance of both the MCM-1 Avenger configurations and the LCS configurations is

most significantly impacted by the number of passes that each system conducts through a

minefield. Second, the probabilities of detection, classification, identification, and

neutralization all have a substantial impact on system performance. The research also

presents several alternative tradespace visualizations that define sets of system

configurations that perform best with respect to four effectiveness measures (mine

detection, mine clearance, operational duration, and operational cost).

This dissertation develops a MBSE MEASA contributes to the existing literature

by linking architectural descriptions to analysis. The MBSE MEASA defines a procedure

for the utilization of architecture products as the basis for detailed system models. Model

analysis subsequently defines a more complete set of system requirements. That more

complete set of system requirements informs subsequent iterations of system architecture

products. Adherence to the MBSE MEASA ensures that a full set of SysML products

describes the system in terms of system design parameters as well as the environmental

and operational factors that may impact system performance. Analysis of external

simulation models based on architecture products determines the system design

parameters that have the greatest impact on system operational effectiveness, system

design, and system cost. System tradespace analysis can then be used to identify a

feasible set of system design parameters. Because the MBSE MEASA bases the

 xxv

development and analysis of external models and simulations on detailed architectural

descriptions, adherence to the MBSE MEASA ensures that set of system design

parameters is traceable to a set of system requirements, as described using SysML

architecture products. This facilitates rapid iteration of the process and integration of

analysis results back into architecture products. The MBSE MEASA ensures traceability

between system model analysis results and system requirements and establishes defined,

defensible linkages between system architecture products and system analysis products.

These traceable linkages facilitate interaction and discussion with system stakeholders to

improve the design and analysis of systems.

LIST OF REFERENCES

MacCalman, Alexander D. 2013. “Flexible Space-Filling Designs for Complex System

Simulations.” Ph.D. Dissertation, Naval Postgraduate School.

MacCalman, Alex, Hyangshim Kwak, Mary McDonald, and Stephen Upton. 2015.

“Capturing experimental design insights in support of the model-based systems

engineering approach.” In Procedia Computer Sciences: Vol. 44, edited by Jon

Wade and Robert Cloutier, 315–324. Hoboken, NJ: Elsevier.

Ryan, Jessica, Shahram Sarkani, and Thomas Mazzuchi. 2013. “Leveraging Variability

Modeling Techniques for Architecture Trade Studies and Analysis.” Systems

Engineering 17 (1): 10–25.

 xxvi

THIS PAGE INTENTIONALLY LEFT BLANK

xxvii

ACKNOWLEDGMENTS

Lindsay and Olivia, thank you for being my best friends.

Gene, I cannot imagine that anyone could possibly be more responsible

for someone else’s success than you have been for mine. Thank you.

Matt, Kristin, Doug, Susan, I know that serving on a dissertation committee is

often a thankless job, so I wanted to say thank you for taking your time to be patient with

me and ensure that I produced the best possible dissertation.

xxviii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. MOTIVATION

The current challenges facing U.S. Department of Defense (DOD) system

development are the primary motivation for this dissertation. In particular, because

system development relies heavily on the creation of both system architecture products

and system models, this dissertation develops an analysis methodology that establishes a

link between those system architecture models and system analysis models. This analysis

methodology acknowledges current accepted standards in systems engineering and

model-based systems engineering, and leverages current research and architecture

products to support the methodology.

From a more general perspective, the motivation for this research is a speech

made in in April 2013 by U.S. Secretary of Defense Chuck Hagel reviewing the

effectiveness and expense of DOD systems. Secretary Hagel stated, “We need to

continually move forward with designing an acquisition system that responds more

efficiently, effectively, and quickly to the needs of troops and commanders in the field”

(Hagel 2013, 1). Secretary Hagel used this statement to stress that current DOD systems

are often more expensive and more technologically risky than originally planned, and

therefore future systems must be defined, planned, analyzed, and constructed with a focus

on ensuring that those systems “do not continue to take longer, cost more, and deliver

less than initially planned and promised.” Implicit in Secretary Hagel’s speech is that,

while improvements to system development must ensure that DOD systems do not take

too long, cost too much, and deliver too little, the system development process exists

specifically because DOD systems necessarily have long development times, high costs,

and high levels of complexity. These challenges have resulted in an increased DOD focus

on the role of systems engineering in the system development process, and this has

focused this research to demonstrate a linkage between system architecture products

(which define what a system is intended to do as well as the physical components that

will define the system) and system analysis products (which assess how well the system

actually meets operational effectiveness standards).

 2

This research presents a systems engineering analysis methodology that assists in

making impactful engineering decision for large scale, complex systems. In particular,

this research focuses on the appropriate development and definition of system

architecture and system analysis models. Furthermore, given the complicated nature of

the systems of interest (particularly the large number of system components and system

component interfaces), this research focuses largely on simulation models due to their

ability to consider a large number of input variables and a large number of operational

scenarios in a repeatable, controlled environment. This frames the primary research goal

as development of a model-based systems engineering analysis methodology specifically

tailored to develop traceable system architecture products used to guide simulation model

development to support system level decisions. Formalization of this methodology

uniquely defines an iteration procedure for integration of analysis results into future

iterations of architecture products. Accordingly, this dissertation develops an analysis

methodology that supports production of complete system requirements via definition of

appropriate linkages between system architecture and system analysis models.

B. RESEARCH FOCUS AND SUMMARY

The International Council on Systems Engineering (INCOSE) definition of

systems engineering is instructive when first considering the development of an

engineering analysis methodology. INCOSE defines systems engineering as, “an

interdisciplinary approach and means to enable the realization of successful systems. It is

focused on defining customer needs and required functionality early in the development

cycle, documenting requirements, and then proceeding with design synthesis and system

validation while considering the complete problem: operations, cost and schedule,

performance, training and support, test, manufacturing, and disposal” (SE Handbook

Working Group 2011, 6). While this definition suggests that systems engineering may be

useful to support system development, INCOSE’s definition of model-based systems

engineering (MBSE) is even more instructive. INCOSE defines MBSE as “the formalized

application of modeling to support system requirements, design, analysis, verification and

validation activities beginning in the conceptual design phase and continuing throughout

development and later life cycle phase” (Technical Operations, INCOSE 2007, 15). The

 3

definitions are largely similar, but the slight differences between INCOSE’s definitions of

systems engineering and MBSE are important. While both definitions emphasize that

systems engineering should support requirements, design, analysis, and verification and

validation activities, the MBSE definition specifies a mechanism by which this support is

realized, specifically the “formalized application of modeling.” This subtle difference

more clearly establishes why MBSE is appropriate to support system development.

MBSE intends to formally apply modeling and simulation to support definition of system

requirements, system design, system analysis, and system verification and validation.

System development necessarily leans on models (specifically simulation models) for

support. While various MBSE methodologies exist, it is necessary to define an MBSE

MEASA specifically tailored to analyze large scale, complex systems using external

models and simulations, such as those developed in MATLAB/Simulink, ExtendSim,

MASON, SimPy, AnyLogic, NetLogo, iThink or other simulation software packages.

The current focus of MBSE research and methodology development necessitates this

additional clarification regarding the use of “external models and simulations.”

Within the domain of MBSE, substantial effort has been spent on creation of a

standardized system architecture modeling language, the Systems Modeling Language

(SysML). Bjorkman, Sarkani, and Mazzuchi (2013) recognize that, while development of

SysML is important, there is limited research into MBSE system performance analysis.

Specifically, they state, “although MBSE approaches have much promise for improving

existing systems engineering processes, to date not much attention has been paid

regarding the role of test and evaluation” (15). Similarly, INCOSE, IBM, Vitech

Corporation, and NASA, have developed MBSE methodologies that demonstrate the

value of utilizing SysML as an enabler of MBSE (those methodologies, along with

several other preeminent MBSE methodologies, are reviewed in detail in Chapter II).

While the creation of SysML and the development of MBSE methodologies have

established an excellent framework for the development of clear, consistent system

models, that research has focused primarily on development of system architecture

models and has largely ignored the need to link system architecture products to detailed

external models and simulations.

 4

Examining the goals of each of the leading MBSE methodologies highlights a

limitation to the current state of the art of MBSE. IBM Harmony for Systems

Engineering satisfies three objectives: identification of system requirements;

identification of system models; and allocation of system functions/states to system

structure (Hoffman 2011). INCOSE’s Object Oriented Systems Engineering Method

(OOSEM) supports similar goals: understand system specifications; improve integration

between physical systems and software systems; and facilitate system, element, and

component reuse (INCOSE 2011). Vitech’s MBSE Methodology links four domains of

systems engineering, progressing from requirements to functions to physical elements to

design validation and verification (Vitech Corporation 2011). Each of these

methodologies has the same focus, they link stakeholder input to system functions and

system physical components. Subsequently, they develop and execute allocated

architectures, which map system physical components to system functions, which are

used to validate and verify system physical design. While these methodologies

comprehensively describe systems, they fall short in their analysis of system

performance. Specifically, the use of allocated and executable architectures to verify and

validate system design is insufficient to completely analyze system performance because

they are incapable of completely examining a system in terms of the interactions between

the system and the environment, the potential impact of alterations to system operation

and implementation, as well as the interactions between system components. Detailed

external models are required to completely examine these aspects of system performance.

Recent MBSE research, in particular Acheson, Dagli, and Kilicy-Ergin (2013),

Cao, Liu, and Paredis (2011), Giammarco and Auguston (2013), Huang (2011), Huang,

Ramamurthy, and McGinnis (2007), and Sitterle, Freeman, Goerger, and Ender (2015)

has focused on expanding the conceptualization of MBSE beyond the development of

system architecture models to the development of physical system models and

operational system models. That work has, often necessarily, restricted model

development and analysis to a single demonstration of either a physical system model or

an operational system model. Recent analysis work, in particular Tolk and Hughes (2014)

and MacCalman, Kwak, McDonald, and Upton (2015), has demonstrated the potential

 5

utility of examining both physical system models and operational system models

concurrently. The MBSE MEASA formalizes a comprehensive approach that details the

transition from the current focus of MBSE (creation and examination of detailed system

architectures) to the creation of system architectures that serve as the basis for the

development and analysis of detailed physical system models and detailed operational

system models. Further, the MBSE MEASA demonstrates the iteration of the

methodology from the analysis of those physical and operational models into the

previously developed system architecture models. Because the physical and operational

models allow for a more detailed examination of system design, operational, and

environmental variables, the MBSE MEASA is therefore able to prescribe an appropriate

integration technique for introducing impactful variables of any kind into subsequent

iterations of the system architecture. This provides a more detailed, integrated

formalization of the use of system architecture to support system analysis (and the use of

system analysis to support subsequent iterations of the system architecture) than is

possible using any existing method.

An examination of the systems engineering process highlights the utility of the

MBSE MEASA. Figure 1 provides an overview of a single iteration of an idealized,

generic systems engineering process (Chapter II presents a detailed review of the leading

systems engineering process models).

 6

Figure 1 Single Iteration of a Generic Systems Engineering Process

As a point of clarification, defining the terms “system architecture” and the

“system architecture domain” in the context of this research is valuable. Perhaps the most

widely read systems architecting textbook, The Art of Systems Architecting by Maier and

Rechtin (2009), includes an Appendix devoted solely to producing a definition of system

architecture. While this Appendix does not actually produce a clear, concise definition, it

does identify several unifying characteristics of system architectures. It notes that system

architectures identify and organize fundamental system components, relationships,

interfaces, processes, constraints, and behaviors. In particular, architecting creates

concrete objects, which are traditionally lists of components, relationships, interfaces,

process, constraints, and behaviors. Development of these products is considered

development of “system architectures” within the context of this research. Likewise,

research and work supporting the creation of system architectures, from refinement of

 7

system requirements to development of specifically defined architecture products, is

considered work in the system architecture domain. Emes et al. (2012) examine the

relationship between systems engineering and system architecture and likewise do not

arrive at a complete definition of systems engineering or system architecture, but do

develop a similar description of the role and purpose of systems architecting and system

architectures. Accordingly, those unifying characteristics of system architecture guide

this research.

Figure 1 does not completely describe all of the detail necessary to capture the

systems engineering effort typically conducted throughout system development; rather it

presents a generic representation of the commonly implemented systems engineering

process. Sequentially, after a group of stakeholders is identified and an initial set of

system requirements is developed through interaction with those stakeholders, system

architectures are constructed, where a functional architecture specifies what the system

must do in order to satisfy the developed requirements and the physical architecture

specifies what system components are necessary to perform the functions identified in the

functional architecture. Subsequently, system models and simulations are built and

exercised, and the analysis of the outputs of those models and simulations develops a set

of potential system solutions. The linkage of these processes, as well as iteration between

the processes and subsequent iterations of the complete process, ensures that any

recommended system solutions are based on previously conducted system analysis,

which is based on system models and simulations, which are based on previously

developed system architectures, which represent stakeholder needs. Tolk and Hughes

(2014) advocate this defined, traceable process, stating “SE processes need to be aligned

and synchronized to support a variety of technical team members and stakeholders and all

phases of the life cycle of a system” (38). While adherence to the process is valuable,

substantial domain specific expertise is required to conduct research that expands the

scope and utility of any stage of the systems engineering process. Within MBSE, this

problem has been compounded by the need to formally define the characteristics and

utility of SysML. Due to the desire to gain acceptance for SysML as a standardized

modeling language, the MBSE community has devoted substantial research time into the

 8

analysis of the utility of SysML products and demonstration of the value of SysML

development within the architecture domain. Figure 2 presents a graphical description of

recent research in both the system architecture domain and the system analysis domain. A

more detailed assessment of recent work conducted in the MBSE and analysis

communities is presented in Appendix A to substantiate Figure 2.

Figure 2 Current MBSE Research Focus

Note that Figure 2 suggests that the majority of the MBSE Methods research has

focused in the system architecture domain. This aligns with the focus of each of the

leading MBSE Methodologies, although only one of these MBSE Methodologies restricts

 9

the external modeling to the architecture. Recent work by Acheson, Dagli, and Kilicy-

Ergin (2013), Bataresh and McGinnis (2012), Cao, Liu, and Paredis (2011), Giammarco

and Auguston (2013), Haveman and Bonnema (2015), Huang (2011), Huang,

Ramamurthy, and McGinnis (2007), Neches and Madni (2013), Sitterle, Freeman,

Goerger, and Ender (2015), and Wang and Dagli (2011) has expanded the scope of

MBSE research to consider the creation of external models, as well as more detailed

analysis. Other MBSE development research that use SysML architecture, and

incorporate operational or environmental variables into external parametric or

spreadsheet models, includes the work of Bjorkman, Sarkani, and Mazzuchi (2013), Cao,

Liu, Fan, and Fan (2013), Carson and Sheeley (2013), Fisher (2013), Kim, Fried,

Menegay, Soremekun, and Oster (2013), Ross (2003), Ross, Stein, and Hastings (2014),

and Ryan, Sarkani, and Mazzuchi (2013). Similarly, there has been substantial work in

the analysis community on the development of detailed analysis and tradespace

visualization techniques that can be used to support system development. Lucas, Kelton,

Sanchez, Sanchez, and Anderson (2015) describe the state-of-the-art in simulation

modeling and analysis for addressing complex problems, and Sanchez, Lucas, Sanchez,

Nannini, and Wan (2012) demonstrate the utility of such an approach to aid development

and analysis of unmanned aerial vehicles. MacCalman, Kwak, McDonald, and Upton

(2015) use this approach to develop and analyze operational models of an Army unit

based on architecture models. While these efforts provide many useful demonstrations of

the potential utility of linking architectural and simulation models, system architecture

developers who are unfamiliar with simulation modeling may benefit from a more

detailed description of that linkage.

The MBSE MEASA is most closely related to that of MacCalman (2013), who

describes an MBSE analysis methodology for ship design (see also MacCalman, Beery,

and Paulo working paper); the language in that methodology is adapted for more general

system design problems in Chapter III. MacCalman and other co-authors subsequently go

on to use this methodology, in conjunction with the integration of SysML and their

external simulation models, for other system design problems (MacCalman, Kwak,

McDonald, and Upton 2015). The MBSE MEASA provides a comprehensive

formalization of the use of architecture models (the current focus of MBSE) as a basis for

 10

the development of physical system models and operational system models. Further, the

MBSE MEASA uniquely specifies how the results of the analysis of those models can be

integrated back into future iterations of the system architecture. Figure 3 presents a

visualization of the expected utility of the MBSE MEASA.

Figure 3 MBSE MEASA Intended Utility

 11

The MBSE MEASA contributes to MBSE in the areas of system architecture and

system analysis in such a way that the distinction between the two domains is no longer

necessary. The MBSE MEASA formally defines the use of architecture to support

analysis (and vice versa) to ensure that behaviors represented in the models and

simulations created in the System Analysis Domain can be traced to functions prescribed

in the System Architecture Domain. Similarly, it ensures that the system configurations

and performance standards established in the physical architecture are consistent with the

systems and system components created in any external models and simulations. The

MBSE MEASA uses SysML products to formally describe these relationships, which

enables integration and iteration of the process in a unique fashion. Because the MBSE

MEASA creates dynamic architecture products (using SysML) as the basis for detailed

system physical and operational models, the MBSE MEASA can incorporate a wide

range of potential outcomes (specifically impactful design, operational, and

environmental variables, as well as interactions between those variables) back into the

system architecture products. The MBSE MEASA provides a comprehensive framework

for the creation of system architecture products, the creation of external simulation

models, and the iteration of the systems engineering process beyond the capabilities of

any existing systems engineering approach.

This chapter presents a general description of the dissertation contribution, as well

as motivation and relevant background information. This research demonstrates in

Chapter II that the existing MBSE methodologies align closely with that process of

creating products that describe the system of interest from architecture perspective, but

do not provide a mechanism for detailed analysis of system performance using external

simulation based on those architecture products. Chapter II also reviews recent

developments in MBSE and simulation analysis to position the utility of the MBSE

MEASA in terms of recent literature. In Chapter III, this research presents an analysis

methodology that expands that architecture focus of current MBSE methodologies by

identifying the appropriate usage of those descriptive architecture products to create

external models and simulations that facilitate more in-depth exploration and analysis of

system performance. Chapter IV subsequently demonstrates the application of this new

 12

analysis methodology through a study of a notional U.S. Navy mine countermeasures

system. Finally, Chapter V presents conclusions and recommendations for future

research.

C. PROBLEM STATEMENT

This dissertation develops an MBSE MEASA for analyzing large scale, complex

systems through operational simulations and system synthesis models. Current industrial

MBSE research focuses on appropriate definition of functional, physical, and allocated

architectures through the use of SysML products. Academic research has expanded that

architecture focused approach by developing external models and simulations based on

system architectures. Current system analysis research successfully applies models and

simulations both with and without the use of detailed system architectures. This research

presents a comprehensive framework that expands the applicability of the state of the art

of MBSE by establishing traceability from detailed architectures to detailed external

models (and back again). This research demonstrates how system architecture products

developed in SysML can support a methodology for conducting detailed system analysis,

and how analysis results can be integrated into subsequent iterations of system

architectures. This new analysis methodology is demonstrated through a notional analysis

of the operational performance and feasibility of a future United States Navy mine

warfare system.

D. RESEARCH SCOPE AND ASSUMPTIONS

Systems engineering emphasizes the importance of creation of system

architectures. Systems engineering also recognizes the important role that simulation and

modeling can play in system testing. This research focuses largely on ensuring proper

linkage between defined system architecture products and system simulation models.

MBSE uses these simulation models to inform many aspects of a system. This research

presents a revised approach to properly establish a linkage between the operational

effectiveness of a system and its functional and physical characteristics. Specifically, the

MBSE MEASA advocates a simultaneous investigation of both operational effectiveness

and system feasibility through simulation. After simulations in each of these areas are

 13

developed, executed, explored using designed experiments, and analyzed, predictive

surrogate models are developed that link system performance characteristics to both

operational effectiveness and system characteristics. This dissertation formalizes an

MBSE MEASA that defines the process steps, systems engineering products, simulation

characteristics, experimental design techniques, and analysis methodologies that

distinguish each phase of the MBSE MEASA. To ensure consistency with current efforts

in the MBSE community, this research uses SysML products to define the “systems

engineering products” appropriate for use in the analysis methodology and demonstrates

the use of those products to support simulation models.

This research assumes that previously conducted stakeholder analysis establishes

a system need. Accordingly, this work focuses on system simulation techniques that

assume that the system of interest has, at least broadly, been defined. This research

focuses on the conceptual design phase of system development and assumes simulation

models conduct system testing. Note that simulation models can also be used earlier in

the system life cycle to aid in stakeholder analysis and development of a concept of

operations as well as system requirements (the Institute of Electrical and Electronics

Engineers (IEEE) hosts an annual requirements engineering conference

(http://www.re15.org/) that demonstrates the power and utility of engineering

requirements), but that usage is not the focus of this research. This research focus may

prompt additional work into development of systems engineering and modeling and

simulations techniques earlier in the system life cycle, or the development of engineering

methodologies for ill-defined systems, as well as systems of systems.

 14

THIS PAGE INTENTIONALLY LEFT BLANK

 15

II. PRIOR WORK

Before demonstrating the utility of the MBSE MEASA, this chapter formally

identifies the purpose of systems engineering process models in the abstract and reviews

the motivation of MBSE, recent developments in MBSE, and important developments in

simulation and analysis.

A. SYSTEMS ENGINEERING CONTEXT

The systems engineering process provides guidance for the development of the

MBSE MEASA. However, discussion of “the systems engineering process” inevitably

transitions to discussion of candidate systems engineering process models, which

typically advocate a particular approach to following the more general systems

engineering process. This research necessarily follows a similar path, but it is useful to

consider the overall goal of a systems engineering process. Per the Systems Engineering

Handbook, “the SE process has an iterative nature that supports learning and continuous

improvement. As the processes unfold, systems engineers uncover the real requirements

and the emergent properties of the system. Complexity can lead to unexpected and

unpredictable behavior of systems” (SE Handbook Working Group 2011, 8). While this

may not provide a comprehensive definition of a systems engineering process, this

statement does makes it clear that a systems engineering process should lead to learning,

continuous improvement, discovery of requirements, discovery of system properties, and

discovery of system behavior.

The Systems Engineering Handbook’s explanation of a systems engineering

process model is a useful starting point for developing an understanding of the systems

engineering process. However, the primary objective of this research is development of

the MBSE MEASA (which is intended to be implemented within the context of the

general systems engineering process); therefore, it is critically important that fundamental

characteristics of a systems engineering process be stated. Furthermore, this research

requires a review of candidate systems engineering process models within the context of

this general characterization of the “systems engineering process” to define how the

 16

newly developed MBSE MEASA should be implemented within a systems engineering

process model.

MIL-STD-499A and MIL-STD-499B provide a straightforward definition of the

systems engineering process. (The author recognizes that MIL-STD-499A was

superseded by MIL-STD-499B on 24 August 1993; however, several of the definitions

provided in Revision A are considered clearer and more concise than the definitions

provided in Revision B.) Using the definitions of Engineering Management and Systems

Engineering Process from MIL-STD-499A, coupled with the definition of Systems

Engineering and Systems Engineering Process from MIL-STD-499B, a systems

engineering process can be succinctly defined as: “a comprehensive, iterative, problem-

solving process (defined by a logical sequence of activities and decisions) that generates

information for decision makers by transforming an operational need into a description of

system performance parameters and a preferred system configurations.” Decomposition

of that definition identifies four characteristics of the general systems engineering

process.

 The process must be comprehensive. It must not focus on individual

aspects of the system and instead should consider the system as an

integrated whole.

 The process must be iterative. It must consider an initially stated

operational need and evaluate system configurations against that need.

The process must simultaneously scope the operational capabilities of

the system such that the process can be repeated for a more focused

operational need.

 The process must define a logical sequence of activities and decisions.

As noted, the process must be iterative, but there is necessarily an

element of sequence. The process must explicitly define the ordering and

characteristics of each event in the process. Ambiguity must be kept to a

minimum in order to clearly delineate each event and clearly define the

achievements that trigger the transition between events.

 The process transforms operational needs into descriptions of the system

in the form of system performance parameters as well as preferred

system configurations. This is perhaps the most important characteristic

of a quality systems engineering process. In short, the objective of any

systems engineering process is to ensure that the decisions that lead to

 17

recommendation of a system configuration can be directly linked to a

clearly defined operational need.

These four process characteristics have been synthesized by the author from each

of the sources presented previously and are considered to be fundamental to any quality

systems engineering process. Accordingly, the author describes several well-known SE

process models and shows how MBSE can be integrated within a generic SE process

model.

Stating these general characteristics of the systems engineering process facilitates

comparisons between four distinct widely used systems engineering process models.

Popular systems engineering texts, such as Blanchard and Fabrycky (2010), Sage and

Armstrong (2000), and Buede (2009) describe each of these models, suggesting that they

provide a reasonable overview of existing models. Figures of each process model are

provided for the unfamiliar reader. Note that many versions of each process model exist,

and it is possible (and recommended by most texts) to choose a process model that is

tailored to specific problems. The figures shown in this Chapter provide domain neutral

visualizations of each process model and provide a clear representation of each process

model. Assessment of clear, domain neutral representations of each process model

facilitates identification of the mechanisms within each model that most clearly address

the overall goals of a “systems engineering process.”

The waterfall model, developed by Royce (1970), is the oldest systems

engineering process model. The waterfall model is a useful starting point due to the

extensive history and documentation of the model (Figure 4). The model espouses a set

of distinct, sequential steps, beginning with concept definition and requirements analysis.

This ensures resources are not wasted early in the process. System design, coding, and

testing immediately follow the requirements analysis. Finally, the system is fielded,

operated, and maintained (suggesting that the model satisfies both process characteristics

1 and 4). This sequential, distinct process allows for segmentation of tasks and easy

identification of deliverables required to progress from one step to the next (satisfying

process characteristic 3). However, very few system productions can follow a rigid, linear

set of processes. Development processes are interdependent and cannot be viewed as a

 18

linear series of events. Such a representation is an oversimplification of the complexities

associated with system design (Forsberg, Mooz, and Cotterman 2005). More importantly,

there exist no mechanisms for the introduction of new system capabilities. The model is

inflexible and does not allow for large design changes. It is evident that any attempt to

introduce design changes would prove extremely difficult. If forced to integrate a new

system capability, the entire process would likely need to be completed and restarted with

the change defined as part of the system from the beginning of the process. Note that

sequentially linking several waterfall models results in iteration (somewhat satisfying

process characteristic 2), but the model is certainly not tailored to redefine the operational

need for each iteration. When implemented properly the process model certainly can be

used to enable successful system development, but more recent process models have been

developed that explicitly address some of the shortcomings of the waterfall model.

Figure 4 Waterfall Model

Source: Florida Department of Transportation. 2003. A Process Review and Appraisal of

the Systems Engineering Capability for the Florida Department of Transportation

(FDOT). Technical Memorandum No. 1. Tallahassee, FL: Florida Department of

Transportation.

 19

The spiral model of system development, first introduced in Boehm (1986),

provides an interesting contrast to the waterfall model (Figure 5). While it was evident

that the introduction of new operational needs and system capabilities into the waterfall

model would prove quite difficult, the spiral model assumes that available technologies

will change over the system development timeframe, and therefore, the process model is

robust to new operational needs and potential system capabilities. The spiral model

assumes that new technologies, capabilities, and needs are introduced during the system

life cycle, and therefore the system must be fielded incrementally in order to take

advantage of the technological growth that occurred during the system development (the

process model is explicitly iterative, satisfying process characteristic 2). The spiral model

is essentially a sequence of waterfall models, and after each iteration of the model a

smaller system or subsystem is developed and new technologies are introduced

(satisfying process characteristic 1). This model requires frequent problem redefinition as

well as prototype recreation to allow for the introduction of new technologies. Over the

course of system development the system is constantly redefined and redesigned. While a

set of activities and decisions are presented in the model, there is potential ambiguity

regarding the point at which an appropriate level of system development has been

reached to trigger a new design cycle (somewhat satisfying process characteristic 3).

More importantly, this may result in system delays as well as prevent a final,

understandable definition of the system itself (making satisfying process characteristic 4

difficult using the spiral model). This ambiguity regarding system definition is the basis

of most criticisms of the spiral. A particularly notable failure was the use of spiral

development for the U.S. Army’s Future Combat System, as detailed in Ellman (2009).

However, as noted in Farr (2011), the spiral model remains particularly useful for large,

expensive, complicated systems where technological change is inevitable and the final

system form or configurations is difficult to define early in the system life cycle.

 20

Figure 5 Spiral Model

Source: Florida Department of Transportation. 2003. A Process Review and Appraisal of

the Systems Engineering Capability for the Florida Department of Transportation

(FDOT). Technical Memorandum No. 1. Tallahassee, FL: Florida Department of

Transportation.

The Vee Model (Figure 6), first developed for systems engineering in the late

1980s, is an attempt to approach systems engineering from both a top down and a bottom

up perspective (meaning that it focus both on decomposition of system requirements and

integration of system components). The top down (left) portion of the Vee Model is

similar to the waterfall model approach; system requirements are identified and

decomposed into a particular system configuration. That system is then integrated with

new technologies and developing subsystems during the bottom up (right) side of the Vee

Model (satisfying process characteristic 1). This clearly identifies a sequence of activities

and decisions (satisfying process characteristic 3) and, provided that the completion of a

system phase is defined by a milestone, the process may be iterated. This somewhat

satisfies process characteristic 2, but, as with the spiral model, each milestone must be

 21

properly defined by a set of requirements that must be met in order to continue system

development. Many texts, most notably Foorsberg, Mooz, and Cotterman (2005),

advocate system development through a linked set of Vee Models and provide guidelines

regarding management of large scale projects and definition of appropriate milestones

using the Vee Model. However, the model itself does not provide guidance regarding the

development of these requirements or milestones. Perhaps better than the waterfall model

or the spiral mode, the Vee Model does build toward a preferred system configuration,

satisfying process characteristic 4.

Figure 6 Vee Model

Source: FHWA Operations. 2013. “Systems Engineering for ITS Handbook - Section 3

What Is Systems Engineering?” Dec 9. <http://ops.fhwa.dot.gov/publications/seitsguide

/section3.htm>.

The incremental model, first documented in the mid-1970s, is the final systems

engineering process model of interest. The incremental model (Figure 7) uses the

simplicity and well defined structure of the waterfall model, but rather than aggregating

all system functions, divides each functional element of the system into an increment and

develops each increment distinctly (implicitly satisfying process characteristic 1).

Effectually, each system functional element (or subsystem) is developed using a waterfall

 22

model, defining a set of system development activities (satisfying process characteristic

3). This shifts the focus from a final, large deliverable to multiple, smaller deliverables.

The overall system functionality can be broken down into distinct development efforts.

The model stresses that each system functional element is a cohesive part of the larger

system (which suggests that satisfying process characteristics 4 may be difficult, but that

the challenge is not ignored by the model). As a result, parallel development of

subsystem components is possible, as well as parallel development of subsystem

alternatives. New system capabilities can be introduced to each functional element

throughout the system development timeframe because each functional element is being

developed individually, and the larger system is not impacted by smaller changes.

Furthermore, the incremental model implicitly creates product development cycles that

are more independent than spiral model cycles but allow for integration of new

capabilities without impacting the overall development timeframe (facilitating easy

iteration and satisfying process characteristic 2).

Figure 7 Incremental Model

Source: Florida Department of Transportation. 2003. A Process Review and Appraisal of

the Systems Engineering Capability for the Florida Department of Transportation

(FDOT). Technical Memorandum No. 1. Tallahassee, FL: Florida Department of

Transportation.

 23

Each of the systems engineering process models is capable of satisfying each of

the process characteristics outlined previously if implemented properly. Selection of a

particular process model is often domain dependent. For example, the Systems

Engineering Handbook suggests that the Vee Model is often more popular for project

management applications, while the Spiral Model is more population in software

engineering applications. While each of the process models defines a slightly different

approach and set of activities, considering each of the systems engineering processes

models presented in conjunction with the general definition and characteristics of systems

engineering process models presented earlier, it is possible to generate a generic systems

engineering process that summarizes each systems engineering process model. Recall

that MIL-STD-499A and MIL-STD-499B identify the four characteristics of a systems

engineering process as: the process must be comprehensive, the process must be iterative,

the process must be defined by a logical sequence of activities and decisions, and the

process must transform “an operational need into a description of system performance

parameters and a preferred system configuration” (Department of Defense 1974, 3).

Summarizing each of these systems engineering process models into a generic systems

engineering process is necessary. This ensures that the MBSE MEASA is implementable

within a more general systems engineering process model. This allows for definition of

consistent terminology and defines how a model-based systems engineering analysis

methodology integrates with the general systems engineering process (use of a specific

process model may be problematic given that differing terminology is used in each

systems engineering process model). Accordingly, the following steps are identified as

vital to a single iteration of any systems engineering process model (recall that each

process model emphasizes the importance of iteration, which may occur between each

step as well as at the conclusion of the implementation of the sequence):

1. Problem Definition

i) Stakeholder Analysis

ii) Requirements Identification

2. System Design

i) Functional Architecture Development

 24

ii) Physical Architecture Development

iii) Allocated Architecture Development

iv) Modeling and Simulation

3. System Analysis

i) Assessment of System Designs

ii) Cost Analysis

4. System Implementation

i) System Production

ii) System Deployment

iii) System Operation

iv) System Disposal

Chapter III discusses this generic process in more detail, provides detailed

descriptions of each stage, and links the MBSE MEASA to the generic process.

B. MODEL-BASED SYSTEMS ENGINEERING DEFINITION AND REVIEW

As with most subjects within Systems Engineering, a clear, concise definition

serves as a useful starting point for understanding the MBSE. Fortunately, INCOSE’s

Systems Engineering Vision 2020 defines MBSE as, “the formalized application of

modeling to support system requirements, design, analysis, verification and validation

activities beginning in the conceptual design phase and continuing throughout

development and later life cycle phases” (Technical Operations, INCOSE 2007, 15).

When viewed in the context of the systems engineering process outlined previously, the

goal of “supporting system requirements, design, analysis, verification, and validation”

can be realized through adherence to an appropriate systems engineering process model.

However, the definition provided by INCOSE also stresses that each of those activities be

supported by “the formalized application of modeling.” Accordingly, this research

develops an MBSE MEASA that explicitly states how the modeling process supports

each activity in the systems engineering process (system requirements, design, analysis,

verification, and validation).

 25

1. Introduction and MBSE Progression

While the INCOSE definition of MBSE is a useful starting point, it may remain

unclear why MBSE is a useful expansion of systems engineering. The intended benefits

of MBSE, presented at the INCOSE 2007 Symposium, provide clarification. Friedenthal,

Griego, and Sampson (2007) state that MBSE results in the following benefits:

1. Improved communications among the development stakeholders

2. Increased ability to manage system complexity by enabling a system

model to be viewed from multiple perspectives, and to analyze the impact

of changes

3. Improved product quality by providing an unambiguous and precise model

of the system that can be evaluated for consistency, correctness, and

completeness

4. Enhanced knowledge capture and reuse of the information by capturing

information in more standardized ways and leveraging built in abstraction

mechanisms inherent in model driven approaches. This in-turn can result

in reduced cycle time and lower maintenance costs to modify the design

5. Improved ability to teach and learn systems engineering fundamentals by

providing a clear and unambiguous representation of the concepts

(Friedenthal, Griego, and Sampson 2007, 7)

These intended benefits are adapted into criteria that can assess the ability of a

methodology to realize the intended benefits of MBSE. The assessment of the fitness of

the MBSE MEASA based on those criteria and the systems engineering process

characteristics outlined in the previous section.

Estefan (2008) provides a comprehensive overview of many existing MBSE

methodologies, and therefore serves as an excellent starting point for reviewing several

existing methodologies. Before reviewing each of those methodologies in detail, it is

useful to review the most well-known MBSE enabler, the Object Management Group’s

Unified Modeling Language (UML) and Systems Modeling Language (SysML).

Discussion of SysML provides a nice transition from a discussion of general systems

engineering process models to MBSE methodologies. SysML provides a framework for

capturing the maximum possible information about a system in a model-based structure

rather than specifying mechanisms for system development decisions. Furthermore,

because SysML enables the system model to be viewed from multiple perspectives in a

standardized form, use of SysML products as the starting point of the MBSE MEASA

 26

ensures that the methodology is grounded in an enabler that was developed specifically to

realize the intended benefits of MBSE. Specifically, this ensures that the architecture

domain portion of this research aligns with the most broadly used MBSE architecting

approach.

2. SysML Overview

Friedenthal, Moore, and Steiner (2009) provide a clear definition of SysML,

stating, “SysML is a general-purpose graphical modeling language that supports the

analysis, specification, design, verification, and validation for complex systems.” This

definition of SysML aligns closely with the previously presented definition of MBSE.

SysML attempts to satisfy each of these stated goals through a formal definition of

various diagrams, specifically a requirement diagram, an activity diagram, a sequence

diagram, a state machine diagram, a use case diagram, a block definition diagram, an

internal block diagram, a parametric diagram, and a package diagram. Figure 8 is a

taxonomy diagram that more clearly establishes the intended linkage between these

diagrams.

Figure 8 SysML Diagram Taxonomy

Source: Friedenthal, Sanford., Alan Moore, and Rick Steiner. 2009. A Practical Guide to

SysML The Systems Modeling Language. San Francisco, CA: Morgan Kaufmann

Publishers.

 27

Any system developed following a SysML framework should be able to avoid the

development of products or system components that do not support the overall system

concept due to the hierarchical structure of the taxonomy. This discussion examines each

diagram in detail later, but this high level overview of the SysML diagram taxonomy

makes it immediately clear that SysML is used “to capture the system modeling

information as part of an MBSE approach without imposing a specific method on how

this is performed,” (Friedenthal, Moore, and Steiner 2009, 31). This statement makes it

easier to contrast the overall goals of SysML with the goals of the MBSE MEASA being

developed by this research as well as the various existing MBSE methodologies. SysML

supports various MBSE development methodologies, but does not specify any preferred

method. By specifying a standard set of products (as shown in Figure 8), utilization of

SysML aids in the realization of several of the intended benefits of MBSE (specifically:

improving communication between stakeholders; defining a model of the system that can

be evaluated for consistency, correctness, and completeness; and standardizing

information capture to facilitate reuse of information). Friedenthal, Moore, and Steiner

(2009) state that SysML can be used to support various system development approaches,

such structured analysis use case-driven approaches, or object-oriented approaches.

SysML diagrams support the MBSE MEASA due to the popularity of SysML within the

MBSE community and the benefits of SysML outlined previously. A detailed discussion

of each SysML Diagram is included for the unfamiliar reader. Chapter III presents

examples of each type of SysML diagram in the context of a U.S. Navy mine

countermeasures operation.

a. SysML Requirement Diagram

Discussion of the Requirement Diagram Review is a logical starting point for

review of SysML diagrams. In an effort to improve communication between systems

engineers and the other participants in the systems engineering process, INCOSE released

“UML for Systems Engineering,” a request for proposal that defined the need for a

systems modeling language. The proposal emphasized that a language similar to UML,

which is the standard modeling language for software engineering, could not be directly

translated to support systems engineering projects. The proposal recommended that UML

 28

be customized for systems engineering to “support the analysis, specification, design, and

verification of complex systems by:

1. Capturing the systems information in a precise and efficient manner that

enables it to be integrated and reused in a wider context

2. Analyzing and evaluating the system being specified, to identify and

resolve system requirements and design issues, and to support trade-offs

3. Communicating systems information correctly and consistently among

various stakeholders and participants” (Object Management Group 2003,

1)

SysML was developed using UML as a basis; Figure 9 shows the relationship

between SysML and UML.

Figure 9 Relationship Between SysML and UML

Source: Object Management Group. 2012. OMG Systems Modeling Language (OMG

SysML) Version 1.3. OMG document number ptc/2012-04-07.

 29

UML was extended by SysML to support modeling of general systems, rather

than only modeling of software systems. Figure 9 shows that a subset of UML was reused

or modified for use in SysML, while portions that were not needed for systems modeling

were excluded. Additionally, new diagrams were developed to capture system

information that is not needed for software modeling. Figure 10 shows the specific

diagrams that were reused or created for SysML.

Figure 10 SysML Diagram Taxonomy and Relationship to UML

Source: Object Management Group. 2006. OMG Systems Modeling Language (OMG

SysML) Tutorial. Presented at the INCOSE 2006 Symposium, Orlando, FL.

Figure 10 demonstrates why a discussion of SysML (in terms of its relationship to

UML) should begin with a discussion of the Requirement Diagram. The Requirement

Diagram is the most noticeable difference between SysML and UML. While a

Requirement Diagram is not included in UML (because the software engineering

community understandably focuses development on behaviors and structures), it is a

focal point of SysML. The INCOSE definition of systems engineering emphasizes that a

major function of systems engineering is “documenting requirements” and the INCOSE

definition of a systems engineering process states, “systems engineers uncover real

requirements.” Note that this does not mean that stakeholders do not provide

 30

requirements, rather it means that systems engineers are tasked with determining whether

or not those requirements are “real requirements,” or simply things that the stakeholder

desires but does not actually require. Given the focus on requirements in the definitions

of systems engineering and the systems engineering process, it is unsurprising that the

most obvious extension that SysML makes to UML is the specification of a Requirement

Diagram.

A Requirement Diagram is used “to graphically depict hierarchies of requirements

or to depict an individual requirement and its relationship to other model elements”

(Friedenthal, Moore, and Steiner 2009, 538). Containment, derive, or copy relationships

are used to describe requirements to requirements relationships. Satisfy, verify, refine, or

trace relationships are used to relate requirements to other model elements.

b. SysML Activity Diagram

An Activity Diagram “is used to model behavior in terms of the flow of inputs,

outputs, and control” (Friedenthal, Moore, and Steiner 2009, 527). It can be used to

represent different types of system behaviors, such as control flow or data flow. It is

typically used to show sequences of operations and is described in terms of activities,

controls (join, fork, decision, loop), data flows (required or optional), and swim lanes.

Activity Diagrams are similar in purpose and structure to Functional Flow Block

Diagrams (FFBD) and Enhanced Functional Flow Block Diagrams (EFFBD), two of the

more commonly used systems engineering architecture products. For the unfamiliar

reader, Blanchard and Fabrycky (2010) provide an overview of the role of FFBDs and

EFFBDs in the systems engineering process and provide a detailed discussion of the

alternative graphical approaches (such as Integrated Definition (IDEF) methods,

modeling methods, behavior diagram methods, and N-Squared charting methods).

c. SysML Block Definition Diagram

The Block Definition Diagram defines blocks (often the physical elements) of a

model. Block Definition Diagrams are particularly useful for defining hierarchical

relationships, as well as the structural and behavioral features of each element of the

model.

 31

d. SysML Internal Block Diagram

The Internal Block diagram is similar in structure to the Block Definition

Diagram, but specifically defines the internal structure of a block (typically a physical

element) with a focus on the connections between parts of a block.

e. SysML Sequence Diagram

Sequence Diagrams show interactions. These interactions occur between elements

of a block (as defined in the Block Definition and Internal Block Diagrams). Sequence

Diagrams are particularly useful for defining sequences of message exchanges or trigger

actions between blocks.

f. SysML State Machine Diagram

A State Machine Diagram describes state dependent actions of a block. This

allows each block to perform different behaviors, which are mutually exclusive (note that

a block may only be in one state at a given time). This ensures that no conflicting

responses to events are prescribed. The State Machine Diagram also specifies how

transitions between states should occur.

g. SysML Use Case Diagram

The Use Case Diagram describes the behavior of a system, specifically the

relationship between a system and actors that impact the operation of that system.

Typically Use Case Diagrams represent actors internal to the system of interest (for

example, a driver) but depending on the level of abstraction they may also represent the

relationship between the system of interest and external actors (for example, a traffic

police officer).

h. SysML Parametric Diagram

The Parametric Diagram defines systems of equations that describe the behavior

of a block (recall that a block is most often a physical element of a system). The

Parametric Diagram constrains properties of blocks and those constraints check for

consistency between the physical elements of a system. They can be used as the basis for

 32

the construction of external models or simulations. Parametric Diagrams are most useful

during the later stages of system development (when their representation of system

properties as defined values is necessary). This research focuses on early stage system

development. As such, Parametric Diagrams, which are most useful when systems can be

specified by specific constraints, are not a major focus of this research.

i. SysML Package Diagram

Package Diagrams organize SysML blocks. While they do not provide additional

functionality, they can aid in organization of stakeholder guidance to ensure proper

organization of model elements.

3. Current MBSE Methods and Processes

SysML defines a set of products that can be used to improve communication and

cohesion throughout the systems engineering process. Importantly, it does not make any

assumptions regarding the implementation of those products or their application within

the systems engineering process. As mentioned, MBSE formalizes the application of

modeling to support system development. Along those lines, several major companies

and organizations have defined MBSE methods and processes, most of which rely on

SysML products as enablers of the methods or processes. A useful starting point for

identification of the most widely used MBSE methods and processes is the running

repository of MBSE methodologies managed by INCOSE. Using INCOSE and Estefan

(2008) as a guideline (the Estefan (2008) research was also managed by INCOSE), the

most well-known MBSE processes/methods are: IBM Harmony for Systems Engineering,

INCOSE Object Oriented Systems Engineering Method, Vitech Model-Based Systems

Engineering Methodology, NASA Jet Propulsion Lab State Analysis, Dori Object-

Process Methodology, and Weilkiens Systems Modeling Process. Note that each

methodology is presented along with the developer (ex: Object Oriented Systems

Engineering Method was developed by INCOSE, Object-Process Methodology was

developed by Dori). Each of these methods and processes represent an expansion of the

general systems engineering process presented earlier. Specifically, they formalize a

methodology for integrating a set of models within the general systems engineering

 33

process. A review of each of these methods demonstrates how MBSE is implemented by

different organizations and highlights the current gap that the MBSE MEASA addresses.

a. IBM Harmony for Systems Engineering

IBM Harmony for Systems Engineering, based largely on IBM’s Rational

Integrated Systems/Embedded Software Development Process Harmony, supports a

model driven development approach to MBSE that is intended to satisfy three major

objectives, as presented in Hoffman (2011):

1. Identification of derivation of required system functions

2. Identification of associated system modes and states

3. Allocation of the identified system functions and models/states to a

subsystem structure (Hoffman 2011, 4).

The process relies heavily on creation and use of UML/SysML products and is

implemented using IBM’s Rational Rhapsody tool. Harmony emphasizes that the process

develops models that support requirements analysis (through generation of Requirements

Models and Use Case Models) as well as design synthesis models (using Architectural

Analysis Models and System Architecture Models). The comprehensive Rational

Integrated Systems/Embedded Software Development Process Harmony (Figure 11) uses

the Vee Model as a basis and provides a guideline for system development.

 34

Figure 11 Rational Integrated Systems/Embedded Software

Development Process Harmony

Source: Hoffman, Hans-Peter. 2011. Model-Based Systems Engineering with Rational

Rhapsody and Rational Harmony for Systems Engineering, Release 3.1.2. Somers, NY:

IBM Corporation.

Note that the process includes each of the portions of the general SE process

(Problem Definition, System Design, System Analysis, and System Implementation).

Harmony describes how UML/SysML products support each segment of the general

process (Figure 12).

 35

Figure 12 Linkage of Model Artifacts to Systems Engineering

Process Steps

Source: Hoffman, Hans-Peter. 2011. Model-Based Systems Engineering with Rational

Rhapsody and Rational Harmony for Systems Engineering, Release 3.1.2. Somers, NY:

IBM Corporation.

Note that the title of Figure 12 is “Model-based Systems Engineering” in the

original document. The author altered the title for clarification and consistency with other

MBSE methodologies. Examination of Figure 12 demonstrates that IBM Harmony for

Systems Engineering defines the artifacts/models, as well as the work-flow elements

transition from Stakeholder Input to Requirements Analysis to System Functional

Analysis to System Architectural Design. Most importantly, Hoffman (2011) describes

the overall work-flow as well as a use case example that demonstrates which SysML

products are required to support the overall process. Note that the analysis of system

performance is addressed through examination of scenarios during the detailed

architectural design and relies largely on generation of utility curves for each

 36

performance criterion, not through the use of external simulations. This is intentional; as

Fisher (2013) emphasizes that the IBM Rational Rhapsody tool is best utilized to serve as

a central design hub to enable stakeholder collaboration and document generation and

reporting, all to realize coordinated and correct system architecture and design. This

highlights the difference between IBM Harmony for Systems Engineering and the MBSE

MEASA. Harmony for Systems Engineering focuses on improving collaboration and

communication through definition of coordinated SysML products, while the MBSE

MEASA uses those SysML products to support system performance analysis through

external simulations.

b. INCOSE Object-Oriented Systems Engineering Method

INCOSE Object Oriented Systems Engineering Method (OOSEM) is an

alternative methodology that also relies heavily on generation of SysML products.

OOSEM is an attempt to integrate traditional systems engineering process models with

object-oriented techniques typically used in the software engineering community.

Specifically, INCOSE (2011) states that OOSEM defines notation and concepts that:

1. Support capture, analysis and understanding of complex systems

specifications and design

2. Improve integration between systems, software, hardware, test, and other

engineering disciplines

3. Facilitate system, element, and component level reuse and design

evolution (INCOSE 2011, 1)

Like IBM’s Harmony for Systems Engineering, OOSEM mimics the traditional

systems engineering Vee Model. Note that OOSEM emphasizes that progression through

the Vee Model is not a terminating, linear set of processes, but rather should be applied

recursively and iteratively (as recommended in the review of the generic Vee Model).

Figure 13 provides a visual description of the OOSEM activities.

 37

Figure 13 OOSEM Activities and Modeling Artifacts

Source: Estefan, Jeff A. 2008. Survey of Model-Based Systems Engineering (MBSE)

Methodologies, Rev B. Pasadena, CA: California Institute of Technology.

Figure 13 clarifies the approach advocated by OOSEM. The OOSEM appears to

mirror the Waterfall Model rather than the Vee Model. Recall that the Vee Model, which

includes many of the same activities as the Waterfall Model, emphasizes the relationships

between each system development activity and the integration of system components.

OOSEM specifies the relationships between activities and the integration of system

components. It may help with visualization of OOSEM as a Vee Model-based

methodology to “bend” the major SE Development Activities upwards after the Define

System Requirements block (and Optimize and Evaluate Alternative and Validate and

Verify System should certainly be included on this upwards portion of the Vee). On that

subject, the Major SE Development Activities (above the line) make it clear that the

OOSEM provides a roadmap for system development, beginning with a needs analysis

and concluding with a synthesized allocated architecture (which should ensure that all

physical system elements satisfy defined system functions). Finally, OOSEM regards

system testing and analysis as processes that are distinct from major development

 38

activities (see their classification as “Common Subactivities” below the line). Because

OOSEM is intended to be realized through creation of SysML products, it advocates

analysis of system performance through use of parametric diagrams, which are used to

optimize individual system architectures using weighting factors and value measures

(largely similar to IBM’s Harmony for Systems Engineering). External modeling and

simulation is not described as a part of OOSEM. Friedenthal, Moore, and Steiner (2009)

provide a comprehensive overview of using SysML products to enable OOSEM and

acknowledge that external models and simulation may be valuable in examining system

performance, but no formal linkage between SysML products or OOSEM with external

models and simulations is established.

c. Vitech Model-Based Systems Engineering Methodology

Vitech’s Model-Based Systems Engineering Methodology is based on the tenant

that there are four major domains of the systems engineering process, “requirements,

functional behavior, architecture/synthesis, and design validation and verification”

(Vitech Corporation 2011, 66). The methodology further advocates solving each domain

at increasing layers of granularity, progressing toward realization of a complete system.

The methodology refers to this progression as “onion layers,” Figure 14 illustrates the

approach.

 39

Figure 14 Onion Layers for Vitech’s Model-Based Systems

Engineering Methodology

Source: Vitech Corporation. 2011. A Primer for Model-Based Systems Engineering.

Blacksburg, VA: Vitech Corporation.

Vitech’s Model-Based Systems Engineering Methodology (Figure 15) specifies

the sequencing within each layer.

 40

Figure 15 Systems Engineering Activities for Vitech’s Model-Based

Systems Engineering Methodology

Source: Vitech Corporation. 2010. CORE 7 System Definition Guide. Blacksburg, VA:

Vitech Corporation.

The progression of the systems engineering activities moves clockwise, beginning

with the Requirements Domain (note that a slightly revised version of the figure has been

developed by Vitech since 2010, but the author feels that the revised versions, while

aesthetically superior, actually provide less information). The methodology defines

products within the Requirements Domain, which specify the products in the Behavior

Domain (typically system functions), which generate products in the Architecture

Domain (typically physical system alternatives), which are assessed in the Verification

and Validation Domain. Note that Vitech’s use of the term Architecture Domain differs

from the use of the term earlier in this dissertation. As used by Vitech, Architecture

Domain refers solely to physical system alternatives, and while it is linked to functions

and system behaviors, it does not include those products (which are included as part of

the Architecture Domain as the term in used in Chapter I). As with both IBM’s Harmony

 41

for Systems Engineering and INCOSE’s OOSEM, this progression aligns nicely with the

general systems engineering process. Vitech departs slightly from the IBM and INCOSE

defined methodology in the verification and validation domain. Rather than relying on

SysML parametric diagrams to assess system performance, Vitech advocates use of

CORESim, a dynamic verification simulation that checks system architecture models for

logical consistency and physical model consistency that is executable within Vitech’s

proprietary software program, CORE. Note that Vitech’s entire methodology is intended

to be supported within CORE, similar to the support that IBM offers for Harmony for

Systems Engineering with the Rhapsody tool. The CORE tool can support creation of

SysML diagrams as well as more traditional systems engineering architecture artifacts.

While the implementation of CORESim is different from the use of Parametric Diagrams,

there are very few practical differences. CORESim interprets system behavior, as defined

previously in Functional Flow Block Diagrams (which are nearly equivalent to generic

versions of SysML Activity Diagrams). Parametric Diagrams interpret system behaviors,

as defined previously in Activity Diagrams. System performance characteristics are

defined in both cases using probabilistic functions and weighting criteria. Both

approaches establish traceability between previously established system architecture

products and provide a mechanism for verifying the integrity of those models. Such an

approach is extremely valuable and powerful for ensuring consistency, completeness, and

correctness of architecture models. However, none of the approaches provide a

mechanism for efficiently and comprehensively analyzing the impact that alterations to

system configurations, system operating procedures, or external environment have on

system performance.

d. NASA Jet Propulsion Lab State Analysis

The Jet Propulsion Lab (JPL) State Analysis MBSE methodology is a departure

from the previously presented MBSE methodologies. State Analysis is an attempt to

integrate both model-based architectures and state based architectures. The approach is

drastically different from the architecture view based approach advocated by the IBM,

INCOSE, and Vitech methodologies and instead resembles a control systems approach to

MBSE. As defined in Wagner et al. (2012), the State Analysis methodology is intended

 42

to produce a control system architecture, rather than a physical or functional system

architecture, by:

1. Discovering, characterizing, representing, and documenting the states of a

system

2. Modeling the behavior of state variables and relationships among them,

including information about hardware interfaces and operation;

3. Capturing the mission objectives in detailed scenarios motivated by

operator intent (Wagner et al. 2012, 3)

The State Analysis methodology is initiated by definition of a physical system and

subsequently focuses on modeling the potential states (or momentary system conditions)

of that system and the relationships between those states. Control objectives are imposed

as mathematical formulas that govern system behavior. The approach does use UML

representations (with particular emphasis given to State Chart Diagrams, but also allows

for the creation of alternative diagrams, such as Elaboration Diagrams). The State

Analysis approach delineates between the system of interest and the control system that

governs behavior (this delineation is often quite complex, but may be as simple as the

difference between hardware and software). Figure 16 provides a visual representation of

this separation:

 43

Figure 16 State Based Control Architecture

Source: Wagner, David A., Matthew B. Bennett, Robert Karban, Nicolas Rouquette,

Steven Jenkins, Michel Ingham. 2012. “An Ontology for State Analysis: Formalizing the

Mapping to SysML.” Aerospace Conference, 2012 IEEE, 1–16.

This distinction between the “Control System” and the “System Under Control”

improves communication between physical engineers and software engineers by bridging

the gap that arises due to differing requirements for each set of engineers. Utilization of

JPL State Analysis provides a formal process for developing models of both physical

systems, software systems, and the interfaces between them. JPL State Analysis focuses

on ensuring that any developed software requirements are tied to previously developed

system requirements, thereby eliminating potential gaps or conflicts between the

 44

hardware and software domains. This is certainly a tremendously powerful methodology

for early stage system development, but focuses primarily on the interactions between

hardware and software and is therefore most applicable for software focused systems.

The MBSE MEASA presented in this research intends to prescribe a mechanism for

developing and analyzing performance models that focus on the interactions between

system hardware components as well as the interactions between a system and its

physical environment. Accordingly, comparisons between the two methodologies may

not be appropriate. Rather, the two methodologies could be applied concurrently during

the system design phase, where the MBSE MEASA focuses on system operational

performance and JPL State Analysis ensures compatibility between hardware and

software requirements.

e. Dori Object-Process Methodology

Object-Process Methodology, developed and refined by Dov Dori and first

presented in Dori (2002), is a systems engineering approach that is intended to be domain

independent and enables system architecture development and design, primarily focusing

on information exchanges between systems. Object-Process Methodology represents

systems of interest through both graphics (termed Object-Process Diagrams) and text

descriptions (through use of Object-Process Methodology’s Object Process Language).

Object-Process Methodology is certainly more similar to JPL State Analysis than the

IBM, INCOSE, or Vitech methodologies. The major departure from the methodologies

presented earlier (which can be viewed as more object oriented methodologies) is that

Object-Process Methodology delineates between physical systems (termed “objects” in

Object-Process Methodology) and processes as two distinct classes of things that are

considered the fundamental basis for any model (not dissimilar to the separation between

the System Under Control and the Control System in JPL State Analysis). Object-Process

Methodology emphasizes that objects are in different states at different times, and that

changes in states are initiated by processes. The methodology focuses on definition of

these objects, states, and the processes that initiate changes between states. Dori (2002)

formally defines objects as things that exist or may exist; states as situations in which an

object may exist; and processes as patterns of change that transform objects by changing

 45

their states. Object-Process Methodology follows a roadmap similar to the general

systems engineering process outlined earlier. Dori, Reinhartz-Berger, and Sturm (2003)

provide a visualization of the system development processes that occur within Object-

Process Methodology implementations (Figure 17).

Figure 17 Object-Process Methodology Progression

Source: Dori, Dov, Iris Reinhartz-Berger, and Arnon Sturm. 2003. “Developing Complex

Systems with Object-Process Methodology using OPCAT.” Industrial Presentation in

Proceedings of the 22nd International Conference on Conceptual Modeling, Chicago, IL.

Figure 17 defines the system development steps for Object-Process Methodology

from the top-down. The methodology defines procedures for Requirement Specifying,

Analyzing and Designing, Implementing, and Using and Maintaining. The methodology

notes that each process can “invoke restarting of the entire development process, which

potentially enables the introduction of changes to the requirements, analysis, design, and

implementation of the system” (Dori, Reinhartz-Berger, and Sturm 2003, 6). In this way,

the methodology allows for iteration not only of the entire process, but of individual steps

 46

of the process. The Analyzing and Designing stage is of particular interest to this

research. The stage is initiated by pulling a Requirements Document from the

Requirements Specifying stage to enable development of system dynamics and system

control structure models (in this way, it is again not dissimilar from the focus of JPL

State Analysis). These models are used to identify discrepancies, inconsistencies, and

deviations in system behaviors resulting from poor definition of system object and

process specification. While the methodology enables rapid examination of analysis of

proper linkages between software and hardware systems (much like the JPL State

Analysis methodology) the ability to use Object-Process Methodology architecture

products to develop detailed external performance models is limited. The methodology

does provide a useful extension of JPL State Analysis by explicitly specifying objects and

processes that are internal or external to the system of interest (delineating between the

system and the external environment) but due to the intended implementation of Object-

Process Methodology, it is poorly suited for utilization as a mechanism for conducting

detailed performance analysis of large scale, complex systems. It should be noted that, as

with JPL State Analysis, Object-Process Methodology could be applied concurrently with

the MBSE MEASA developed in this dissertation, as the two approaches examine system

performance from different perspectives.

f. Weilkiens Systems Modeling Process

A recent MBSE modeling process specifically focused on utilization of

SysML/UML products, presented in Weilkiens (2008), is the Systems Modeling

(SYSMOD) Process. SYSMOD presents an approach to definition of system

requirements, system functional architecture, and system physical architecture. The

SYSMOD process is comprised of a defined set of activities: Identify stakeholders, elicit

requirements, define system context, analyze requirements through use cases, define

domain model, and define functional, physical, and logical system architecture. The

process relies heavily on the use of SysML products (the primary developer of SYSMOD

has written several SysML specifications). The mechanisms for conducting stakeholder

identification, requirements elicitations, and system context definition are similar to the

INCOSE OOSEM approach and result in the production of SysML diagrams. Use Case

 47

Diagrams are the primary mechanism for assessing the quality of system requirements,

and accordingly the system performance analysis focuses on system controls (the

importance of which was emphasized in the discussion of JPL State Analysis and Object-

Process Methodologies) as well as the flow of objects within the system. SYSMOD

expands the utility of the competing methodologies by explicitly defining roles for each

individual involved in system development (roles include: Administrator, Domain

Expert, Process Designer, Requirements Engineer, Systems Analyst, Systems Architect,

Systems Engineer, and Systems Tester). Each task within the system development

process is assigned to one or more roles, thereby ensuring complete definition of each

task. This addition ensures that the SYSMOD process is perhaps the most comprehensive

MBSE methodology from a system management perspective. However, it still relies

solely on the use of organic SysML products to assess system performance.

As with each of the methodologies outlined previously, SYSMOD effectively

establishes that, given a set of functions (based on a set of requirements) a system must

be capable of performing in a given set of scenarios (typically represented through use

case diagrams). However, no methodology prescribes a mechanism for using existing

products to completely define how external system performance models should be built,

allowing examination of these use cases in greater detail. The number of system variables

(in terms of physical system configurations, system component interactions, system

operating procedures, system-environment interactions, etc.) that are examined and

assessed using Use Case and Parametric Diagrams is limited. These types of external

performance models are essential to examining system performance in detail. The MBSE

MEASA developed in this research fills that gap.

As an additional point of emphasis, note that each of these methodologies

recognizes that system performance must be analyzed to ensure that proper system

requirements are established. More importantly, note that each of the applications relies

on some form of mathematical modeling and value function assignment (either through

Package Diagrams, CORESim, or Object-Process/State Analysis) to evaluate system

performance. The MBSE MEASA extends that approach by formalizing a method for

utilizing SysML diagrams to define inputs and outputs to external system performance

 48

models. The MBSE MEASA is not a comprehensive alternative to these existing MBSE

methodologies. Rather, by leveraging existing approaches for constructing external

simulations and conducting and analyzing large-scale simulation experiments, the MBSE

MEASA is a mechanism for expanded performance analysis beyond mathematical

models and value function assignment.

4. Recent MBSE Advances

MBSE research has taken on multiple forms, and substantial development has

occurred in the last ten years to formalize the various aspects of MBSE. Recent work in

MBSE and simulation relevant to this research can be classified into four general areas,

MBSE focused system architecting, MBSE-related system analysis, linkage of SysML to

simulation, and design and analysis of large scale simulation experiments. Recent

advances in system architecture development, specifically the use of SysML products

(the utility of which is often evaluated through presentation of case studies and analysis

of past projects), must be examined to ensure that a comprehensive definition of how

SysML products should enable development of external models and simulations has not

been developed. The systems engineering community has focused substantial effort into

analysis of SysML utility, but the MBSE MEASA provides a unique formalization of

how those products should be used to support development of external models and

simulations. Similarly, there has been substantial research, particularly in the area of

Engineered Resilient Systems, into the use of models and simulations to enable

exploration of large trade spaces. It is necessary to review these advances to reinforce

that the MBSE MEASA is being developed in support of areas of emphasis for the larger

systems engineering community and that it expands the body of knowledge associated

with not only model-based engineering approaches but also model-based system analysis

approaches.

a. MBSE Architecture and SysML Development

While each of the MBSE methodologies presented earlier advocated a different

theoretical approach and framework to system architecture development, the one

common thread was the use of SysML products as the primary enabler to the

 49

methodology (in the case of JPL State Analysis and Object-Process Methodology,

SysML was not used as the primary enabler but the popularity of SysML was recognized

and procedures for interfacing with SysML were established to facilitate communication

between users of those methodologies and the larger MBSE community). Accordingly, it

is useful to review recent research into architecture development and SysML use within

the context of MBSE.

Per the generic systems engineering process outlined earlier, architecture

development typically initiates with definition of a functional architecture. A complete

functional architecture translates defined system requirements into defined activities that

the system must perform to satisfy those requirements. A review of the importance of

functional models to an MBSE approach was demonstrated in Carson and Sheeley

(2013), who emphasize that a properly constructed functional architecture serves as a

bridge between the problem space (which is primarily defined through requirements

analysis) and the solutions space (which is primarily defined by system synthesis

models). Through presentation of various examples across a broad range of systems,

Carson and Sheeley demonstrate that a poorly defined functional architecture results in

issues in the problem space (particularly that system boundaries may be improperly or ill-

defined) as well as in the solution space (particularly that systems may exhibit less than

ideal performance because they are not developed with emphasis on satisfaction of well-

defined functions). This demonstration of the importance of functional architecture

development to MBSE focused development is integral to the construction of the MSBE

MEASA. Russell (2012) presents similar findings, demonstrating that architecture

development in support of MBSE enables understanding of complex interactions and

supports decision making by establishing a clear linkage between requirements, metrics,

processes, and standards to system design elements. Specifically, it is vitally important to

develop a clear functional architecture that defines exactly what a system must do to

ensure proper system boundary development and proper operational performance model

development.

Summers, Eckert, and Goel (2013) and Wu, Ciavola, and Gershenson (2013),

survey various functional modeling techniques and develop criteria for assessing those

 50

approaches. This emphasizes the importance of functional architecture development early

in the system life cycle. Summers, Eckert, and Goel emphasize that these criteria may

differ depending on the type of system being considered (as an example, functional

modeling for reverse engineered systems differs from functional modeling for novel

products). Kenley, Dannenhoffer, Wood, and DeLaurenitis (2014) demonstrate that UML

products can capture the functionality of a large scale system of systems to support

communication and subsequent model development. As a unifying thread across different

types of systems, functional modeling enforces consistency across models, captures

system behaviors to enable simulation modeling, reduces premature commitments and

decisions, enables visibility across all aspects of a model, and possesses the flexibility to

rapidly adapt to changes in stakeholder defined system requirements or new problems.

Current research into development of executable architectures highlights the

importance of enforcing consistency within architecture models. The emphasis on

Parametric Diagrams in both IBM Harmony and INCOSE OOSEM, as well as the use of

CORESim in Vitech’s MBSE methodology demonstrate the importance and utility of

such an approach. However, while executable architectures can provide tremendous

value, they are constrained by the level of detail in any associated architecture product,

and therefore may not provide an adequate level of detail to fully analyze the system of

interest. Ge, Hipel, Yand, and Chen (2013) highlight several of the issues associated with

the current implementation of executable architectures, stating, “current executable

architecture modeling efforts rely heavily on static architectural models or views of

architectural descriptions.” Similar limitations are noted in Wang and Dagli (2008) who

use colored petri nets to realize a discrete event model based on SysML products.

Numerous similar applications exist, each of which emphasizes that executable

architecture approaches demonstrate tremendous value, especially by identifying

capability gaps and redundant physical elements. Kim, Fried, Menegay, Soremekun, and

Oster (2013) present a similar approach for the automated generation of Parametric

Diagrams and even note, as is emphasized in this dissertation, that subsequent research

should focus on the definition of detailed performance models that can consider system

operation at multiple levels of abstraction. While this is a promising research direction,

 51

current implementations of executable architectures are incapable of considering

environmental and operations factors that may impact system performance but are not

necessary elements of system design. Accordingly, this work recognizes the value of

executable architecture focused research but, per the limitations associated with such

architecture approaches, focuses on the development of architecture products that are

capable of considering alterations to the system environment as well as system

operational implementation, two major drivers of system performance that, currently,

cannot be modeled in sufficient detail utilizing an executable architecture approach.

The adoption of SysML by the MBSE community is a reaction to the architecture

challenges associated with development of proper functional and physical architectures.

Presentation of the existing MBSE methodologies, as well as each of the SysML

diagrams demonstrate that functional modeling through the use of SysML enforces

consistency, captures system behavior, reduces premature commitments, and enables

visibility. SysML has demonstrated promise that makes it suitable for application

throughout system development, a point emphasized by Liston, Kabak, Dungan, Byrne,

Young, and Heavey (2011, 300), who state, “On review of existing research in the area

and the experiences gained while using the language, it is proposed that there is potential

for using SysML as a common thread that could underlie all the activities undertaken in a

simulation study from the initial requirements gathering phase through defining the

conceptual model and on to the development of the simulation model.” The authors also

emphasize that while SysML is a tremendously rich language that shows promise for

development of external simulation it is also inherently limited by the freedom given to

the user (which introduces the possibility for misalignment with external models) as well

as the substantial learning curve associated with SysML (estimating that at least 1.5

months of dedicated work is required to achieve a basic level of competency). While this

is a significant learning curve, the authors note that it is not dissimilar from most other

languages, and if it is utilized properly it has the potential to be used in support of

discrete event simulations and “would provide a common language, which has been

noted to be lacking in this domain” (Liston, Kabak, Dungan, Byrne, Young, and Heavey

2011, 303).

 52

As an additional note, none of the research presented to this point has made it

clear that the use of SysML creates the flexibility to rapidly adapt to changing problems

and stakeholder requirements. That issue is currently a major focus within the MBSE

community. Balestrini-Robinson, Freeman, and Browne (2015) develop a framework and

interface for rapid generation of SysML products based on stakeholder interaction. While

the interface is currently unable to generate visual representations of the SysML diagrams

(a limitation that is currently being addressed by the authors), it defines a computer

interface that rapidly creates and alters SysML products based on changes in stakeholder

inputs. Furthermore, the authors emphasizes that the use of SysML is ideal for creation of

architecture products due to its widespread acceptance, well-defined foundation, and its

ability to represent both system performance and system interactions. Research into the

use of SysML diagrams to rapidly incorporate stakeholder input is outside the scope of

this research but is certainly an enabler of the methodology developed in this work.

Pending further development, the use of a decision support tool to generate SysML

products based on stakeholder input may be the first step in the initiation of the generic

systems engineering process.

b. SysML and Simulation Linkage

Given the importance of SysML to the MBSE community and the focus within

this dissertation on the specification of the appropriate usage of SysML products to link

architecture and analysis it is important to review past work discussing the utilization of

SysML products in the development of simulations.

Johnson (2008) presents a demonstration of the use of graph transformations to

enable development of continuous dynamics models in Modelica based on SysML

products. As the term continuous dynamics implies, the work focused exclusively on the

physical domain, but provides a valuable demonstration of the potential to translate

SysML representations into another modeling program. Cao, Liu, and Paredis (2011)

extend this approach to a far more complex mechatronic system, reinforcing the potential

to expand SysML products to physical modeling programs. Qamar, During, and

Wikander (2009) similarly demonstrate that SysML can be linked to Simulink to

 53

facilitate communication with stakeholders early in the design of a mechatronic system.

Palachi, Cohen, and Takashi (2013) establish a similar linkage of SysML to Simulink and

extend the code generation to both continuous and discrete modeling approaches.

Spangelo et al. (2013) also present a similar demonstration where SysML diagrams are

the basis for the development and analysis of more detailed models, in this case for a

small satellite. While this work acknowledges the need to conduct operational modeling

as well as physical modeling, it focuses on the utilization of Parametric Diagrams to

conduct this operational modeling. The research focuses on one variable at a time

changes to values in Parametric Diagrams, thereby restricting the analysis done for each

potential system.

Cao, Liu, Fan, and Fan (2013) present another example of developing physical

models for mechatronic systems using SysML. That work emphasizes the current

direction of many relevant projects linking SysML to external simulations, specifically

stating that “only the physical part of the mechatronic system is considered” and

specifically scoping out control and behavior of the system. Note that this is not a

negative development. In order to fully realize the benefits of SysML as a standardized

architecture development language it must be linked in an executable fashion and the

work referenced in this section demonstrates that such a linkage is possible from a

physics based perspective. Huang, Ramamurthy, and McGinnis (2007) expand this work,

demonstrating a procedure for the development of manufacturing simulation models

based on SysML products. Huang (2011) expands further and develops discrete event

logistics system simulations based on SysML products. That research represents one of

the most substantial developments in the execution of SysML products to examine

system performance. In particular, it makes a substantial contribution to the number of

system states that are typically considered when systems are architected from a software

perspective by utilizing internal block diagrams to fix the interactions between system

components as state dependent characteristics of each component of the system. This

substantially reduces the number of system interactions must be present in any

subsequent discrete event model. Bataresh and McGinnis (2012) present a similar

approach and create a discrete even model of a manufacturing system in Arena based on

 54

SysML products. However, while substantial work is being done to consider external

simulations after SysML products are created, past research has focused on isolated cases

with a limited number of variables. It is certainly valuable to demonstrate how individual

SysML Diagrams may be used to support the development of external models, but a more

comprehensive framework is needed that emphasizes the need for detailed operational

simulations that consider system design parameters, system components interactions, the

impact of alterations to system operation, and the impact that the external environment

may have on system performance. Further, no current MBSE research discusses

appropriate integration of simulation model analysis results into subsequent iterations of

SysML system architecture products.

c. Design and Analysis of Large Scale Simulation Experiments

Recent work at the Simulation Experiment & Efficient Designs (SEED) Center at

the Naval Postgraduate School focuses on the proper design and analysis of large-scale

simulation experiments (the term large scale, as generally referenced in Lucas at al.

(2015), classifies simulations examining hundreds of input variables). Sanchez et al.

(2012) detail that large scale simulation work and present fundamentals for the selection

of an appropriate experimental design for a large scale simulation experiments (generally

Latin hypercubes are shown to be good all-purpose designs), techniques for the

utilization of fractional factorial designs to supplement traditional implemented designs

(such as central composite designs), and sequential screening approaches to designs that

may be implemented when the number of factors is very large. The utility of this

approach to large scale simulation experiments is demonstrated in an analysis of U.S.

Army Unmanned Aerial Vehicles, where descriptive statistical analysis, interactive

regression analysis, regression trees, and contour profilers are shown to be useful analysis

techniques for the analysis of unrealized systems using a large scale simulation

experiment. The results of the analysis directly changed procurement decisions made by

the U.S. Army. The principles presented in that work have been applied successfully in

multiple domains to conduct analysis of complicated systems characterized by a very

large number of components. Kaymal (2013) investigates the operational effectiveness of

a surface combatant in an anti-surface warfare environment, Parker (2015) investigates

 55

the development of future Marine Corps amphibious capabilities, Treml (2013)

investigates the development of the U.S. Army Future Ground Combat Vehicle, and

Wakeman (2012) analyzes key leader engagements using discrete event simulation. This

is by no means a comprehensive list; rather it is an example of the utilization of large

scale simulation experiments to support analysis of: a Navy system (Kaymal), a Marine

Corps system (Parker), an Army system (Treml), and a social system (Wakeman). It is

possible to develop and analyze high quality simulation models for a wide variety of

systems without the use of MBSE (or systems engineering in general). Accordingly, it is

vitally important to emphasize the role of MBSE from a simulation perspective and to

identify the similarities and differences between MBSE approaches and fundamentals and

currently established simulation development techniques.

The examples above make use of system, operational, and environmental

variables; in many cases explicitly developing systems that are robust to uncertainties in

the environment. Consideration of that broad range of variables and the use of design

experiments facilitates trade space analysis. Links to these theses, methodological and

application papers, as well as software and spreadsheets for constructing large-scale

design can be found at the SEED Center’s web page harvest.nps.edu.

d. MBSE Focused System Analysis and Trade Space Exploration

Development of models and simulations during the conceptual design phase is

often challenging due to the immense number of potential system configurations. This

issue is addressed in detail in Chapter III, but several guidelines have been established in

recent MBSE research. In particular, Haveman and Bonnema (2015) survey modeling

and simulation in early stage systems engineering and conclude that discrete event

simulations are particularly well suited to conceptual systems. This could be extended to

include low fidelity agent based models, as the authors advocate the use of discrete event

models by noting that, “we are often more interested in the system as a whole than

exploring physics based principles.” Humman and Madni (2014) support using agent

based models early in the system design cycle, presenting two case studies that detail

successful use of agent based models to support early stage systems engineering

 56

decisions. Sha, Le, and Panchal (2011) develop a basic agent based model based on

SysML products that represents products as directed graphs. Acheson, Dagli, and

Kilicay-Ergin (2013) also present a demonstration of the utilization of model-based

architectures to ensure proper definition of agent based models for systems of systems.

Wang and Dagli (2011) present a similar demonstration for the use of discrete event

simulation to model a network sensor system. MacCalman (2013) presents the

simultaneous analysis of agent based simulations developed by McKeown (2012) and

Yoosiri (2012) as well as a spreadsheet based model developed by Ashpari (2012).

MacCalman, Beery, and Paulo (working paper) use the same simulations to formally

define a tradespace visualization approach. This research does not intend to expand the

body of knowledge associated with these simulation models, rather the discussion of the

alternative modeling approaches is included to demonstrate to the unfamiliar reader the

breadth of potential modeling approaches that have been applied successfully in support

of MBSE. Readers with limited experience developing and implementing models and

simulations should refer to Law (2014) for an overview of simulation basics, simulation

software alternatives, basic probability and statistics, model construction guidelines,

output analysis, and a detailed review of both discrete event and agent based models.

Of particular interest within Law (2014) is the creation and management of an

assumptions document. Also reviewed and summarized more briefly in Law (2009), the

assumptions document is presents “all concepts, assumptions, algorithms, and data

summaries” that reduce potential communication issues. The assumption document is

provides a “blueprint” that “represents the model developers’ initial thoughts on the form

the model will eventually take” (Law 2009, 29). An assumptions document includes a list

of system processes, subsystems, simplifying assumptions, limitations, input data, and

information sources to aid in communication with stakeholders. In this way the

assumptions document shares many of the same goals of SysML product development.

Several notable differences demonstrate the value of SysML product development. First,

capture of system information using SysML compatible software ensures consistency and

traceability between multiple models. For instance, if a function is developed and

allocated to a subsystem in a SysML Activity Diagram but that subsystem is not

 57

associated with a system that also performs that function, the inconsistency will be

immediately visible in a SysML Internal Block Diagram. Perhaps more importantly,

while processes and layouts trace to system requirements or performance measures

within an assumptions document, that traceability cannot be mandated or enforced.

Utilization of SysML compatible software ensures that system processes and layouts are

directly linked to system requirements and performance measures and rapidly and

consistently updates system requirements based on changes to system structure. This does

not suggest that the creation of an assumptions document is inappropriate or invaluable,

rather it emphasizes that the use of detailed model-based systems engineering

architecture products allows for more detailed, relationships to be modeled in an

architecture program that ensures traceability and consistency as well as rapid updating

and reuse.

Law (2009) also draws a loose analogy between assumptions documents and

conceptual models. The most notable developments regarding conceptual models, to

include the verification and validation of conceptual models, is summarized in Sargent

(2013), where a conceptual model is defined as “the mathematical/logical/verbal

representation (mimic) or the problem entity developed for a particular study” (Sargent

2013, 323). The purpose of the conceptual model is to establish a linkage between the

real system and a more detailed computerized model that can be validated by

“determining that the theories and assumptions underlying the conceptual model are

correct” (Sargent 2013, 324). This is analogous to the approach that will be advocated by

this dissertation, which suggests that SysML architecture products can be used as a

linkage between real systems and more detailed simulation models. However, as with the

assumptions document, the conceptual model is often a static narrative model that

describes a system, rather than a dynamic architecture formulation that establishes

interactive, rapidly configurable relationships between system functions and components.

While the general process advocated by Sargent (2013) that uses an intermediate (or

conceptual model) to link the real world to the simulation world is a hugely powerful and

appropriate paradigm, the power and richness of SysML compatible software allows for

 58

the utility of this linkage to be increased and the codification of this linkage is a major

focus of this research.

While both Law (2009) and Sargent (2013) emphasize the importance of describing

a system to be modeled in a formalized way prior to the development of more detailed

computer models, it should also be noted that the system must also be described in the

context of its intended operation and environment. As mentioned previously, this has been

one of the major limitations associated with current executable architecting approaches.

The importance of using models and simulations to consider the entire system, as well as

its external environment, is the basis for robust design research (see Sanchez (2000) and

Montgomery (2012)). That importance is summarized by Giammarco and Auguston

(2013), who define two key principles for system modeling, specifically.

1. In addition to modeling the behavior of the system along with its

interfaces to external systems, also model the behavior of the environment

in which the system operates

2. Model component interactions abstractly and separately, rather than

instantiated in specific use cases (Giammarco and Auguston 2013, 280)

While the authors established those principles to support development of a

specific MBSE architecture framework, when considered with the work of Haveman and

Bonnema (2015) it is evident that development of external models and simulations (both

discrete event and agent based) that consider the interactions between system components

as well as interactions between the system and its environment is necessary to examine

system performance during the conceptual design phase. Accordingly, discrete event and

agent based models are recommended for use in conjunction with this research and users

should ensure that the two key principles presented above are used as guidelines during

simulation development. Furthermore, the work of MacCalman et al. (2015) presents a

demonstration of the potential value of building external models and simulations based

on stakeholder analysis and system architecture development. That research closely

aligns with the approach advocated by this dissertation and provides an in depth

demonstration of the use of new experimental design techniques to design and exercise

an agent based simulation of a U.S. Army infantry squad. That research further explores

the development of tradespace visualization tools and provides a comprehensive

overview of the value of such tools as well as guidelines for development of tradespace

 59

visualization software. That work provides a complete description of the utility of

complete tradespace exploration and makes a substantial contribution to the system

analysis domain, as outlined earlier in this dissertation. However, none of the recent

advances in system analysis and tradespace visualization provide a roadmap for the

utilization of system architecture products to develop external simulation models.

This section familiarizes the reader with current MBSE focused architecture

research as well as current simulation development research. In general, this research

demonstrates the appropriate definition of model-based system architecture products

given that they will subsequently be used to develop detailed models and simulations.

Recent MBSE research has progressed to the point that development of such architecture

products is possible; however recent research focuses almost exclusively on the

formalization of those descriptive architecture products. Furthermore, simulation and

system analysis research is conducted successfully and products such as assumptions

documents and conceptual models are used in lieu of detailed system architectures.

However, the recent advances within the MBSE community to formalize SysML

products now makes it possible to utilize those products (in much the same manner as

assumptions documents and conceptual models) to better define necessary system

functions and components and to more rapidly integrate system analysis results into

formal system descriptions. That definition and integration is the major focus of the

MBSE MEASA. A review of the most widely known architecting approach for DOD

systems is necessary before demonstrating the utility of the MBSE MEASA.

5. Department of Defense Architecture Framework

The Department of Defense Architecture Framework (DoDAF) is DOD’s

framework to enable the development of system architectures and share information

across organizational boundaries. The current DoDAF release, version 2.02 (released in

August 2010) emphasizes the development of architectural “data” rather than the

production of architectural “products,” although the production of architectural views is

still the primary output of implementation of DoDAF. These architectural views are

capability views, data and information views, operational views, project views, services

views, standards views, or systems views, the production of which provides in depth

 60

information regarding specific areas of interest while maintaining a comprehensive

description of the full system enterprise. As presented in Department of Defense Chief

Information Officer (2015), “each viewpoint has a particular purpose, and usually

presents one or combinations of the following:

1. Broad summary information about the whole enterprise (e.g., high-level

operational concepts

2. Narrowly focused information for a specialist purpose (e.g., system

interface definitions)

3. Information about how aspects of the enterprise are connected (e.g., how

business or operational activities are supported by a systems, or how

program management brings together the different aspects of network

enabled capability)”

The broad range of DoDAF views enables a multitude of potential mechanisms

for information capture and communication (either enterprise wide or specific). Figure 18

presents a brief summary of the data captured in each DoDAF viewpoint.

Figure 18 DoDAF Viewpoints

Source: Department of Defense Chief Information Officer. 2015. “DoDAF: DOD

Architecture Framework Version 2.02 DOD Deputy Chief Information Officer.” August

11. http://dodcio.defense.gov/Library/DoDArchitectureFramework.aspx

 61

Utilization of DoDAF views in system development results in a definition of a

coherent system model that can be viewed from multiple perspectives. Piaszczyk (2011)

provides a comprehensive overview of employing a model-based systems engineering

approach utilizing DoDAF products. Review of that work demonstrates that development

of DoDAF views is similar in intent to development of SysML Diagrams. There are

several major differences between DoDAF and SysML that are relevant to this research.

First, utilization of DoDAF (from a practical perspective) is obviously restricted to

application to DOD systems. Second, DoDAF is tailored for application at the program

level to facilitate communication between engineers, program managers, stakeholders,

and outside businesses, which necessarily means that it has levels of complexity that may

be beyond the scope of this research. Garrett, Anderson, Baron, and Moreland (2011)

summarize the true utility of DoDAF views, stating that development of DoDAF

viewpoints “provides a means for the program manager and systems engineer to work

with the stakeholder in translating the architecture views into verifiable requirements.”

This dissertation research intends to facilitate communication between system architects

and system analysts, and while it may be useful as an expansion of some portions of

DoDAF, it is not intended to be as broadly applicable as DoDAF. Finally, the DoDAF

Systems Viewpoints, which describe systems and interconnections between systems,

adhere to a similar perspective as the industrial MBSE methodologies presented earlier.

Specifically, creation of DoDAF Systems Viewpoints, even when integrated with other

DoDAF Viewpoints, still focus development on functional architecture, physical

architecture, and an executable architecture that checks for consistency between those

architectures. DoDAF is not specifically configured to support development of external

simulation models. As Garrett, Anderson, Baron, and Moreland (2011) state, “The

development of the system architecture and corresponding executable models provide a

way to capture the definition of the system requirements and functional and physical

architectures that define the functions, allocated, and product baselines.” This emphasis

on consistency within existing architecture models is certainly extremely valuable,

however it does not allow for a complete examination of system performance. The MBSE

MEASA presented in this research defines a roadmap for utilizing standardized, accepted

 62

system architecture products to develop external models and simulations that can be used

to conduct detailed analysis of system performance, which in turn can be used to develop

more complete systems requirements.

Substantial research in academia, industry, and within DOD defines a model-

based approach to system development and design. The inclusion of both architecture

development and system performance modeling in each of the widely used MBSE

methodologies demonstrates that these processes are essential to development of new

systems using MBSE focused development. The substantial effort dedicated to evaluation

of the utility of SysML products in recent systems engineering conference proceedings

and journal articles demonstrates their importance to the systems engineering community

as well as their acceptance as the standard starting point for MBSE focused development

of a new system. The system analysis community has developed system description

approaches (most notably in the form of assumptions documents and conceptual models)

that describe the relationship between the real world and detail simulation models.

However, while there has been industrial research that developed MBSE methodologies

and academic research that defined methods for generation of simulations based on

SysML products, neither the industrial or academic community has defined an end-to-end

integrative methodology that establishes linkage between model-based architectures and

detailed system operational, physical, and cost models. The MBSE MEASA expands the

state of the art in MBSE by defining a comprehensive framework that uses SysML based

system architecture products as the basis for external simulation models and integrates

the results of the analysis of those models into future iterations of the system architecture

for a wide range of potential analysis results. This expands the utility of the current

systems development approach advocated by IBM, INCOSE, Vitech, and DoDAF, where

the execution and evaluation of an allocated architecture is often the endpoint of the

system development process. The MBSE MEASA prescribes the use of architecture

products that characterize operational, physical, and cost models. By leveraging existing

state-of-the-art methods in the design and analysis of large-scale simulation experiments,

this expands the reach of any current MBSE methodology by considering not only the

ability of a physical system configuration to satisfy a given set of functions but also

 63

considering the interactions between the system and the environment, variations to

system operations, and interactions between system components. Further, the

consideration of each of these variable types, as well as the interactions between those

variables, allows the MBSE MEASA to uniquely define a procedure for the integration of

analysis results into future iterations of the system architecture.

 64

THIS PAGE INTENTIONALLY LEFT BLANK

 65

III. MODEL-BASED SYSTEMS ENGINEERING

METHODOLOGY FOR EMPLOYING ARCHITECTURE IN

SYSTEM ANAYLSIS DEFINITION

This research develops an MBSE MEASA that establishes a linkage between the

system architecture and system analysis domains by defining the proper use of external

models and simulations, based on SysML architecture products, to develop more

complete system requirements. Given that processes such as IBM Harmony for Systems

Engineering, INCOSE Object Oriented Systems Engineering, Vitech’s Model-Based

Systems Engineering Methodology, NASA’s Jet Propulsion Lab State Analysis, Dori’s

Object-Process Methodology, and Weilkiens’ Systems Modeling Process have

established frameworks for executing the systems engineering process through a model-

based approach, the MBSE MEASA can be considered an extension of those processes

that facilitates detailed analysis of system performance earlier in the systems engineering

process. Specifically, the MBSE MEASA is intended to enable development of

complicated, large scale systems effectively through analysis of models and simulations

that consider not only system design attributes (as is done in each of the MBSE

methodologies presented in the previous chapter) but also environmental and operational

factors during system conceptual design. Development of the MBSE MEASA must fit

within the context of a general MBSE process model and augment the capabilities

already provided by existing process models. More specifically, an MBSE MEASA must

be developed within the context of the previously stated systems engineering process

characteristics and should be shaped to satisfy the following goals, developed by

synthesizing the previously presented benefits of both systems engineering and model-

based systems engineering:

1. The process will result in learning, continuous improvement, discovery of

requirements, discovery of system properties, and discovery of system

behavior

2. As a result, the process will reduce uncertainty about a system and serve

as a framework and mechanism that drives system development towards a

solution that best satisfies predefined system requirements

 66

The MBSE MEASA satisfies each of those goals, given implementation within a

quality systems engineering process (integration of the MBSE MEASA with the model-

based systems engineering processes/methods described previously may be particularly

useful, depending on the system of interest).

A. SYSTEMS ENGINEERING PROCESS DEFINITION

As demonstrated in Chapter II, numerous systems engineering process models

exist, and the MBSE MEASA is usable within the context of any of those models. Rather

than choose a specific systems engineering process model and implement the MBSE

MEASA within that model, the general systems engineering process, comprised of the

following steps, is considered and used as the basis for development of the MBSE

MEASA. Recall that all systems engineering processes should be iterative, in particular

system analysis results should be used to inform the system stakeholder, which should

then promulgate down to subsequent requirements and architectures.

1. Problem Definition

i) Stakeholder Analysis

ii) Requirements Identification

2. System Design

i) Functional Architecture Development

ii) Physical Architecture Development

iii) Allocated Architecture Development

iv) Modeling and Simulation

3. System Analysis

i) Assessment of System Designs

ii) Cost Analysis

4. System Implementation

i) System Production

ii) System Deployment

iii) System Operation

iv) System Disposal

 67

The generic systems engineering process generalizes the steps outlined in each of

the systems engineering processes presented earlier. This generalization is advantageous

for two reasons. First, it establishes a general process that the MBSE MEASA supports.

Second, when each step of the process is analyzed, a defined set of products are

established that demonstrate the value added by completing each step of the process.

Two assumptions are important before proceeding. Given that this research is

focused on development of an analysis methodology, particular attention is given to the

first three major sections of the general systems engineering process: Problem Definition,

System Design, and System Analysis. This is due to the focus of the MBSE MEASA,

specifically the intent for the methodology to be used for definition, design, and analysis

of large scale, complex systems. While system implementation is extraordinarily

important, it is distinct from system development and is therefore more appropriate for

discussion in project management literature than it is for inclusion in development of a

systems engineering process model or systems engineering analysis methodology. Note

that this does not reduce the importance of iteration of the process; rather it means that

iteration occurs within the steps of the process, as well as at the end of system analysis

(rather than system implementation), to inform subsequent iterations of stakeholder

analysis or requirements identification.

Furthermore, the MBSE MEASA assumes that an initial stakeholder analysis (the

first step of Problem Definition) is complete. The importance of quality stakeholder

analysis should not be understated. As Trainor and Parnell (2011, 297) state, “a great

solution to the wrong problem is…wrong.” Improper problem definition results in

substantially diminished impact for system design, system analysis, and system

implementation. Balestrini-Robinson, Freeman, and Browne (2015) outline current

MBSE related research in this area. Because the MBSE MEASA focuses on the

conceptual design phase, stakeholder analysis is not the focus of this dissertation. Figure

19 provides a high level overview of a generic system life cycle and highlights the

portion of the system life cycle of interest to this research (note that

Conceptual/Preliminary Design is only initiated subsequent to development of an

Established Need):

 68

Figure 19 Generic System Life Cycle

Adapted from: Blanchard, Benjamin S., and Wolter J. Fabrycky. 2010. Systems

Engineering and Analysis, 5th ed. Upper Saddle River, NJ: Pearson Prentice Hall

It is now possible to state the set of products created during Problem Definition,

System Design, and System Analysis. Synthesizing the set of products recommended for

development in Blanchard and Fabrycky (2010) and Buede (2009), Problem Definition

results in: a Defined Problem, a Defined System Boundary, a Defined System Objective,

and Defined System Requirements. System Design results in Defined Functional

Behaviors, Defined Functional Performance, Defined Allocation of Requirements to

Functions, Defined Candidate Physical Solutions, and a Defined Model of Physical

Solutions. System Analysis results in: Evaluation of Candidate Physical Solutions and an

Assessment of Physical Solutions’ Satisfaction of System Requirements. If all of these

products are generated (this is most easily accomplished by adherence to the general

systems engineering process), it is likely that any system development decisions will be

made in support of stakeholder identified needs/requirements. The MBSE MEASA

supports each of the above products, which facilitates use of the MBSE MEASA in

conjunction with any systems engineering process model (since all process models follow

the same generic systems engineering process and therefore all process models will create

the same set of products outlined above).

The MBSE MEASA enables realization of the intended benefits of MBSE.

Creation of each of the products outlined above ensures that the MBSE MEASA supports

a generic systems engineering process, while additional criteria assess the ability of the

MBSE MEASA to realize the intended benefits of MBSE. The four intended benefits of

MBSE developed by Friedenthal, Griego, and Sampson (2007) (these intended benefits

are shown as bullets 1, 2, 3, and 4), along with related criteria developed by the author

 69

(shown as bullets “a” and “b” for each intended benefit) that can be used to assess the

utility of the MBSE MEASA:

1. Improved communications among the development stakeholders

(a) Does the MBSE MEASA explicitly incorporate stakeholder input?

2. Increased ability to manage system complexity by enabling a system

model to be viewed from multiple perspectives, and to analyze the impact

of changes

(a) Does the MBSE MEASA allow the system model to be viewed from

multiple perspectives?

(b) Does the MBSE MEASA incorporate a method for analyzing the impact

of changes to the system design?

3. Improved product quality by providing an unambiguous and precise model

of the system that can be evaluated for consistency, correctness, and

completeness

(a) Does the MBSE MEASA provide an unambiguous and precise model of

the system?

(b) Can the models developed in the context of the MBSE MEASA be

evaluated for consistency, correctness, and completeness?

4. Enhanced knowledge capture and reuse of information by capturing

information in more standardized ways and leveraging built in abstraction

mechanism inherent in model driven approaches. This is turn can result in

reduced cycle time and lower maintenance costs to modify the design

(a) Does the MBSE MEASA capture information in standard ways?

(b) Does the MBSE MEASA enable reduced cycle time and lower

maintenance costs to modify system designs?

Note that the fifth intended benefit of MBSE, the “improved ability to teach and

learn systems engineering” is not included because it relates to the larger intended

benefits of MBSE and not to the benefits of MBSE in terms of system definition, design,

and analysis. Given these stated criteria, SysML (which was developed to support many

of these goals) should be incorporated with the MBSE MEASA.

 70

B. MBSE MEASA PRESENTATION

1. Analysis Methodology

Figure 20, from MacCalman (2013) and expanded in MacCalman, Beery, and

Paulo (working paper), provides a starting point for identifying the characteristics of an

MBSE based analysis methodology. It is a desirable starting point for this research

because it establishes the formal linkage between operational need and physical system

configuration that should be the focus of any MBSE based analysis methodology. Note

that Figure 20 uses the term “MBSE Design” as a description but the approach is termed

“Analysis Methodology” in the context of this research.

Figure 20 Analysis Methodology

Source: MacCalman, Alexander D. 2013. “Flexible Space-Filling Designs for Complex

System Simulations.” Ph.D. Dissertation, Naval Postgraduate School.

The analysis methodology shown above formally defines the methodological

building blocks inherent to any MBSE based analysis process. Because the process

provides such a concise definition of many aspects of analysis and MBSE, it is used as

the basis for the development of an MBSE MEASA. The analysis methodology

 71

emphasizes that both operational simulation models and ship synthesis models are built

using a common set (or at least a set that can be mapped) of inputs. The analysis

methodology also suggests that those models be represented using regression meta-

models to simultaneously visualize the Operational Space and Physical Space. That

simultaneous visualization is shown in MacCalman, Beery, and Paulo (working paper)

and an example (presented in Figure 21) highlights the value of such an approach. The

example is based on operational simulations presented in McKeown (2012), who

developed the Anti-Surface Warfare model, Yoosiri (2012), who developed the Maritime

Interdiction model, Ashpari (2012), who developed the Search and Rescue model, and

Lineberry (2012), who developed the cost model, and assumes that the system under

consideration is a naval ship, with operational constraints imposed for various MOEs, in

this case: Objected Protected, Search Time (hr), and Interdiction. There are also system

constraints imposed for: Ship Length, Ship Beam, Displacement (k lbs), Crew Size, and

Ship Cost (2012$M). Below each of these lists of constraints are Operational and

Synthesis trade spaces. These trade spaces represent two dimensional projections of the

overall potential trade space (which exists in more than two dimensions). These trade

spaces are defined by the imposed constraints, where all ship combinations that cannot

satisfy a given constraint are shaded out (for example, a maximum acceptable Search

Time is established at 25 hours and all ship combinations shaded in Blue in the

Operational trade space are incapable of satisfying that operational constraint). The

resulting white region defines an operationally feasible trade space on the left and a

feasible system synthesis trade space on the right. These trade spaces can be dynamically

altered based on changing constraints, and potential ship combinations can be

investigated for feasibility based on those constraints. For further discussion of the utility

and use of such an approach, see MacCalman, Beery, and Paulo (working paper). For

recommendations regarding general development of a tradespace exploration tool as well

as a list of best practices regarding implementation of such a tool see Spero et al. (2014).

That work is a specific expansion of the multi-attribute tradespace exploration approach

first presented in Ross (2003), which developed a normative decision making approach

for exploration of multi-dimensional tradespaces. That work presents a sequential

 72

procedure, further expanded in an application to a satellite system by Ross, Stein, and

Hastings (2014) that may be used to guide the sequencing of factor examination.

Figure 21 Trade Space of Operational and System Synthesis

Simulation Models

Source: MacCalman, Alexander D., Paul T. Beery, and Eugene P. Paulo. (working

paper). A Systems Design Exploration Approach that Illuminates Tradespaces Using

Statistical Experimental Designs.

There is utility to implementing an analysis methodology that enables the

simultaneous visualization of operational and synthesis models. However, alteration of

the general process presented in Figure 20 is necessary to ensure consistent, more

generalizable terminology and to provide a more coherent description of the intended

implementation of the approach. There is a practical segmentation of operational

effectiveness models and system synthesis models because different individuals typically

construct and analyze these models. Any analysis methodology that addresses both

 73

operational effectiveness modeling and system synthesis modeling must emphasize that

the models must begin with a common set of inputs (or inputs that may be mapped, as

noted in Figure 21) to facilitate shared analysis of model results. Accordingly, Figure 22

presents an update version of Figure 20 that introduces these changes.

Figure 22 Revised Analysis Methodology

 74

There are several critical differences between Figure 22 and Figure 20. The

methodology presents events from a top-down perspective to communicate the intended

sequencing of events. Specifically, the analysis methodology now explicitly

acknowledges that the Real Environment and Design-To-Specifications are typically the

start point for the development of operational effectiveness models and system synthesis

models, respectively. Similarly, the Trade Space Visualization is now the clear, common

endpoint of the analysis methodology, emphasizing that development and analysis of the

operational effectiveness models and system synthesis models supports shared tradespace

visualization. Note that, per the definitions of systems engineering process models

presented earlier, iteration of the process may be necessary. In this case, the results of

Trade Space Visualization should develop new system descriptions in terms of the Real

Environment and the Design-To-Specifications. Figure 23, Figure 24, and Figure 25

segment the methodology to facilitate a more complete description; however before

presenting that detail it is important to highlight several terminology changes from Figure

20 to Figure 22.

Figure 22 implements numerous terminology changes. The term “MBSE Design”

is now “Analysis Methodology.” The altered terminology more accurately represents the

intended utility because the analysis methodology is intended to be used in conjunction

with previously developed SysML products (which, when combined, comprise the MBSE

MEASA). The term “Physical Ship Characteristics Factors” is now “Design Parameters.”

This emphasizes the generalizability of the analysis methodology and also avoids

confusion with the terminology used to define synthesis models. Note that “Design

Parameters” describes both Simulation Inputs, shown on the left of Figure 22, as well as

Synthesis Inputs, shown on the right of Figure 22. Several Simulation Inputs and

Synthesis Inputs are also updated to preserve solution neutrality. The term “Ship

Synthesis Model” is now “System Synthesis Model” and the term “Synthesis Meta-

Model” is now “System Surrogate Model” to emphasize generalizability. The term

“Design Considerations” is now “System Synthesis Outputs” to provide a clearer linkage

of the System Synthesis Outputs to both the System Synthesis Model and the System

Synthesis Surrogate Model. The term “MOEs” is now “Operational MOEs” to provide a

 75

similar linkage to the Operational Simulation Model and the Operational Surrogate

Model.

Examination of Figure 22 in more detail is necessary. Segmenting the figure into

three distinct subsections and examining them sequentially makes this examination

easier. Note that Figure 22 defines the analysis methodology in the context of a naval

ship, but the process is generalizable to any large scale, complex system. This research

utilizes the naval ship example to more easily demonstrate the potential utility of the

analysis methodology.

Implementation of the analysis methodology begins with the development of

operational simulation models (Figure 23). Defining the intended model inputs and model

outputs initiates development of operational simulation. In the case an operational

simulation model for a new naval vessel, the modeling inputs are segmented into two

distinct categories, controllable ship design characteristics (listed in Figure 23 under

Design Parameters – Simulation Inputs) and uncontrollable environmental or operational

factors (listed in Figure 23 as Environmental/Operational Factors). The controllable ship

design characteristics (ex: Speed, Endurance, Detection Range, Engagement Range, etc.)

are evaluated across a broad range of uncontrollable environmental and operational

factors (ex: Enemy Behavior, Weather, Friendly Behavior, etc.) in the operational

simulation. The purpose of the operational simulation model is to establish a linkage

between these model inputs to an operationally relevant set of model outputs (listed in

Figure 23 as Operational MOEs). Through the use of proper experimental designs, the

linkage of the model inputs to model outputs, or measures of effectiveness (MOEs), can

be represented in a statistically valid surrogate model, which can subsequently serve as a

surrogate to the simulation itself. Use of such a surrogate model allows for a rapid

examination of the relationships between model inputs and outputs. As an example, it

would be possible for a minimum acceptable performance standard to be set for one of

the MOEs (ex: Attrition Rate) and the set of ships capable of satisfying that performance

standard could be defined (ex: the ships with sufficient Speed, Endurance, Detection

Range, Engagement Range, and Engagement Time to satisfy the standard for Attrition

Rate).

 76

Starting the design process with operational simulations is the foundation of the

analysis methodology. Rather than defining a desired ship (or system) in terms of a

preferred ship length, ship beam, ship displacement, radar range, number of guns, etc.,

and subsequently assessing the ability of that ship to meet various performance criteria,

the analysis methodology advocates beginning the design process by considering the

performance criteria. If done properly, the analysis methodology should prevent

development of any system that does not directly support specific Operational MOEs (as

well as any system that does not provide satisfactory performance with respect to each of

those Operational MOEs).

Figure 23 Analysis Methodology: Operational Effectiveness

Modeling

 77

While the value of initiating the process with the development of operational

simulation models may be clear, it should not be underemphasized. This ordering aligns

with each of the systems engineering process models presented earlier. In particular,

system development and analysis should focus on the functions that a system must

perform (informally described as “what” a system must do) before exploring the set of

system configurations that can perform those functions (informally described as “how”

the system will be configured). While this aligns with the systems engineering processes

models, the ship building community does not always practice this sequencing of

operational models and system synthesis models. This issue was first identified by Frits,

Weston, Pouchet, Kusmik, Krol, and Mavris (2002) and formally stated by Hootman and

Whitcomb (2005, 44), who state, “the use of effectiveness analysis existed, but it was

virtually decoupled from the design process.” This decoupling runs the risk of entering

into a sequence where physical systems are developed and subsequently analyzed to

determine performance, which may result in development of systems without emphasis

on functionality. Developing and analyzing operational simulation models prior to system

synthesis models can mitigate this risk.

After developing and analyzing operational simulation models, the analysis

methodology moves to development and analysis of system synthesis models (Figure 24).

The modeling approach is nearly equivalent to the operational simulation models. Model

inputs, shown under Design Parameters – Synthesis Inputs (in this case, Number of

Engines, Fuel Capacity, Detection Range, Engagement Range, etc.) are linked to model

outputs (shown as Synthesis Outputs – Ship Stability, Length at Waterline, Displacement,

etc.). Analysis of the output results in development of a surrogate model that rapidly

reproduces the results of any system synthesis model. Introduction of design standards

(such as maximum acceptable ship length, maximum acceptable displacement, etc.)

prompts assessment (using the surrogate models) of the feasibility of those design

standards for a given set of ship characteristics (Speed, Endurance, Detection Range,

Engagement Range, etc.). Linkage of modeling results is possible because the system

synthesis models and the previously developed operational synthesis models have the

same inputs (with some potential mapping, such as Endurance to Fuel Capacity).

 78

Figure 24 Analysis Methodology: System Synthesis Modeling

Figure 25 highlights the final step in the process, simultaneous presentation of the

results of operational simulation models and system synthesis models. Simultaneous and

dynamic examination of the operational and system space is possible after analysis of the

modeling results and development of surrogate models. This facilitates examination of

the complete trade space rather than a single design recommendation based on some form

of multi-objective optimization. A set of operational constraints (performance standards)

can be imposed and the set of ship combinations (in terms of Design Parameters such as

Speed, Endurance, etc.) that satisfy those constraints can be defined as an operationally

feasible trade space. Similarly, a set of system constraints (design standards) can be

imposed and the set of ship combinations (in terms of Design Parameters such as Speed,

Endurance, etc.) that satisfy those constraints can be defined as a feasible system trade

space. The set of ship combinations that satisfy both the operational and system

constraints can immediately be visualized and a set of feasible ship combinations can be

 79

defined. There are three potential situations where no feasible configurations exist. First,

there may be no feasible configurations in the Operational Space. Second, there may be

no feasible configurations in the System Space. Finally, there may be no overlap between

the feasible configurations identified in the Operational Space and the feasible

configurations identified in the System Space. Two potential solutions exist in these

situations. The first solution, which is far more difficult, is re-running each model for

different ranges of each Design Parameter (for example, if the Speed was examined from

0 to 40 initially, it may be examined from 0 to 50 instead). This increases the size of the

trade space and may increase the number of potentially feasible configurations. The

second potential solution is that the operational and system constraints may be relaxed to

increase the number of feasible configurations.

Figure 25 Analysis Methodology: Trade Space Visualization

 80

While analysis of a large scale, complex system using the process defined above

certainly may define a system trade space and ensure that system development decisions

are not made without consideration of operational performance, the process must be

expanded, clarified, and defined. Fitting the above analysis methodology process into the

standard SE process assumes that several earlier tasks have already been completed,

namely, that a comprehensive user requirements analysis has taken place, that a

functional architecture has been developed, that a set of candidate physical architectures

has been defined, and that an operational/allocated architecture that supports modeling

decisions has been completed. Clear definition of how each of these systems engineering

tasks integrates with this analysis methodology is a major effort of this dissertation. This

research defines how each of these traditional systems engineering tasks supports and

integrates with the analysis methodology presented above and, in particular, defines how

various SysML products can be used to support system analysis and development. As

mentioned, the use of SysML products is the major focus of the majority of the leading

MBSE methodologies. This research considers development of those SysML products the

primary enabler of the MBSE MEASA from a system architecture perspective. This

research uses those products as a basis, segments the products according to their

implementation within the generic systems engineering process, and identifies the

characteristics of each system architecture product that supports the development of

external models and simulations.

2. MBSE MEASA Definition

This research defines a linkage between system architecture products and system

analysis products. Specifically, this research identifies a mechanism for the integration of

SysML products, grouped into functional and physical architecture focused diagrams,

with external models and simulations. The full description of the integration between

those products comprises the MBSE MEASA. To support that development, Figure 26

presents the baseline analysis methodology again establishes a starting point for linkage

of simulation models.

 81

Figure 26 Analysis Methodology

Figure 26 establishes a baseline analysis methodology implemented subsequent to

the development of SysML products. Integration of this baseline analysis methodology

with the SysML products outlined earlier establishes an MBSE MEASA. Five distinct

stages comprise the MBSE MEASA and demonstrate that the MBSE MEASA conforms

to the generic systems engineering process identified previously. Recall that the generic

 82

systems engineering process takes a set of system requirements (in terms of SysML, these

can be captured in a Requirement Diagram), identifies the functions that support those

requirements (in terms of SysML, these can be captured in Activity, Sequence, Use Case,

and State Machine Diagrams), identifies the physical elements that enable performance of

those functions (in terms of SysML, these can be captured in Block Definition and

Parametric Diagrams) and performs some analysis that can be used to assess how well

those physical elements satisfy each function (and, by extension, how well a physical

system satisfies identified requirements).

Figure 27 presents a visual construction of the MBSE MEASA. SysML modeling

supports the first three stages of the methodology. Experimental design selection,

simulation analysis, and trade space analysis support the final two stages. Figure 27

segments the MBSE MEASA into these five stages and identifies the SysML products

and simulation analysis products that support each stage of the process. Note that the

MBSE MEASA depends on generation of SysML products, but expands the scope of

SysML modeling by adding the Analysis Methodology process (DOE Selection,

Simulation Analysis, and Trade Space Analysis). Application of the MBSE MEASA

ensures that SysML architecture products directly link to an analysis approach. This

prevents development of overly complicated SysML architecture products (note that the

MBSE MEASA also links these SysML products to traditional systems engineering

product groupings) that remain stagnant and cannot be used to make actionable decisions.

This also facilitates rapid iteration of the MBSE MEASA; Section C will discuss and

demonstrate iteration in detail.

 83

Figure 27 MBSE MEASA

Figure 27 is information dense and may appear overly complicated; accordingly

Figure 30, Figure 35, Figure 43, Figure 47, and Figure 49 segment the process and

present the details associated with each step. However, an initial discussion of the overall

goal of segmenting the analysis methodology is required prior to isolated discussion of

each phase. The first goal of segmenting the MBSE MEASA definition of a process

based on successfully generated SysML products. The second goal specification of the

SysML products required to support each stage of the analysis process. The integration of

SysML products as the enablers for the development of system architecture product fills

the gap identified in Chapter I. Specifically; Step 1 develops a Requirement Diagram to

capture both the environment and set of design specifications for the system, which aligns

with the initial step of the generic systems engineering process. The MBSE MEASA

 84

subsequently recommends the SysML products that define both the system functional

architecture and physical architecture, as is recommended in the generic systems

engineering process. The MBSE MEASA then uses those products to support

development of external models and simulations, a vital expansion of the current MBSE

methodological process and the primary enabler of the linkage between the system

architecture and system analysis domains. This segmentation of the MBSE MEASA

illustrates how each component of the MBSE MEASA supports creation of the

previously identified products essential to realization of the generic systems engineering

process. Table 1 provides a template that is updated throughout the dissertation to

identify how each step of the MBSE MEASA supports creation of vital systems

engineering products, defined earlier in this dissertation as: a Defined Problem, a Defined

System Boundary, a Defined System Objective, Defined System Requirements, Defined

Functional Behaviors, Defined Functional Performance, Defined Allocation of

Requirements to Functions, Defined Candidate Physical Solutions, a Defined Model of

Physical Solutions, Evaluation of Candidate Physical Solutions and an Assessment of

Physical Solutions’ Satisfaction of System Requirements.

 85

Table 1 Template for Linkage of MBSE MEASA Steps to Systems

Engineering Products

3. Introduction to Mine Warfare Operations

This chapter focuses on presentation of the MBSE MEASA. Prior to presentation

of the methodology, this chapter presents an example mine warfare (MIW) system that

provides context for presentation of each step of the methodology. This research presents

a demonstration of MBSE MEASA using the same mine warfare system in Chapter IV.

This research builds off of the graduate research of Becker et al. (2014) which developed

functional architecture (in the form of EFFBD) and physical architecture products that

characterized the activities associated with mine warfare. That research developed a

discrete event simulation model, which was analyzed to compare the effectiveness of the

Littoral Combat Ship (LCS) and MCM-1 Avenger Class ship in Mine Countermeasure

(MCM) operations. That same simulation model, with a few minor updates, is used in

this dissertation.

 86

A brief introduction to MIW operations is necessary to support understanding of

each product developed in the MBSE MEASA prior to a detailed examination of each

step of the MBSE MEASA. Carpenter (2010) provides an overview of the current and

future challenges associated with MIW. Figure 28 illustrates the scope of MIW

operations and also identifies the MIW operations of interest to this analysis.

Figure 28 MIW Activities

Adapted from: Carpenter, Wendi B. 2010. Navy Warfare Publication: Naval Mine

Warfare. Vol. 1. NWP 3–15. Norfolk, VA: Navy Warfare Development Command.

MIW Operations are vital to the ability of a Navy to conduct uninhibited

operations in strategic areas. Benes and Sandel (2009) show that, since 1950, mines

damaged more U.S. Navy ships than missiles, torpedoes, aircraft, and small boats

combined. Accordingly, the U.S. Navy has shifted resources toward MIW operations.

Note that MIW encompasses both Mining Operations and MCM operations, two distinct

challenges. This research facilitates comparison between legacy and future MCM

operations by focusing on defensive MCM operations. Offensive MCM operations focus

on neutralizing an enemy’s ability to conduct mining activities, which is a challenge

addressed by non-MIW dedicated assets. Furthermore, Active MCM operations are more

relevant than Passive MCM operations, which are concerned with the ability to locate and

avoid mines. Because Passive MCM operations are so dependent on operational

decisions, they are not appropriate for consideration with the MBSE MEASA. Focus on

 87

Active, Defensive MCM Operations bounds the overall MIW problem and focuses this

research on a problem area that is well understood but requires additional investigation.

Further explanation of MCM Operations facilitates understanding of MCM

systems. Sandel (2008) provides an overview of the activities typically performed in

support of Active, Defensive MCM Operations. Those activities are: Detection,

Classification, Identification, and Neutralization. Detection is the process of segmenting

underwater clutter into Minelike Echoes (MILECs) and Non-Minelike Echoes (Non-

MILECs). Classification is the process of classifying MILECs as either Minelike

Contacts (MILCOs) or Non-Minelike Contacts (Non-MILCOs). Identification is the

process of identifying MILCOs as Identified Mines and Identified Non-Mines.

Neutralization is the process of successfully or unsuccessfully neutralizing Identified

Mines. The details of each activity conducted within Defensive MCM operations

supports development of architecture views later in this research. Additional clarification

regarding the scope of this research is required before presenting those architecture

views. Underwater mines can take several forms, but there are two types of mines (in

terms of activation methods) of particular interest. Contact mines activate through contact

with another object. Contact mines can fix to the seafloor, rest on the seafloor, bury, or

float on the surface. Influence mines activate by either an acoustic, magnetic, pressure, or

seismic signature. Like contact mines, influence mines can fix to the seafloor, rest on the

seafloor, bury, or float on the surface. This research focuses on the ability of current

systems to detect, classify, identify, and neutralize influence mines. Figure 29 provides a

visualization of the types of mines of interest to Defensive MCM operations.

 88

Figure 29 Types of Underwater Mines

Source: Amador, Brian. 2011. “U.S. Navy Funding Goals for Future Mine Warfare

Capability.” Lecture at the 16th Annual Expeditionary Warfare Conference, Panama

City, FL.

The intent of this review is not to provide a comprehensive overview of MIW

operations, but rather to establish a focus area for the presentation of the MBSE MEASA.

In particular, substantial development is necessary in each area of MIW Operations. This

research uses Active, Defensive MCM Operations as a demonstration case. The above

familiarization provides direction for the introduction to example system architecture

views. Chapter IV provides more detail regarding Active, Defensive MCM operations for

influence mines prior to demonstration of the MBSE MEASA.

4. Requirements Analysis Products

The goal of the stakeholder analysis phase, which is completed using a

Requirement Diagram (and potentially a Package Diagram), is to summarize the system

into a series of “The system shall” statements, both in terms of the operational

environment and design specifications. This is supported by generation of a SysML

Requirement Diagram (SysML Package Diagrams may also be used to support

organization of system documentation). Figure 30 provides a visual representation of the

first step in the MBSE MEASA, which uses a SysML Requirement Diagram to define a

 89

set of system requirements that capture both the intended operational environment and

design specifications for the system.

Figure 30 MBSE MEASA (Step 1)

Generation of the SysML Requirement Diagram for the MBSE MEASA assumes

that a stakeholder analysis has been conducted and a set of requirements has been

developed (this research does not assume that these requirements are necessarily “good”

and investigation of the quality of those requirements is a major focus of the MBSE

MEASA). Requirement Diagrams development is often the final step of the stakeholder

analysis process, and is often supported through development of more traditional systems

engineering products. In particular, visualization and communications of system

 90

requirements is challenging, and is often accomplished through presentation, discussion,

and iteration Integrated Definition (IDEF) models (in particular, IDEF0 models). Note

that IDEF0 models are typically described as functional models; however the level of

detail presented in these models as well as the comfortable description of the system in

terms of inputs, outputs, controls, and mechanisms make them extremely useful for

discussion with stakeholders who may not be familiar with the formal definitions

associated with more detailed models. The National Institute for Standards and

Technology (1993), advocate the use of IDEF0 models in this context and defines IDEF0

models as graphical system representations that describe the system in terms of the

functions and activities that the system will perform, as well as the data, objects, and

information that inter-relate the functions and activities.

Figure 31 provides an example of an IDEF0 model that was developed based on

the information provided in Carpenter (2010) and Sandel (2008) to describe the general

functions and activities of an active, defensive MCM operation. In general, such

diagrams may be developed through analysis of supporting documentation or through

interaction with project stakeholders. It is expected that most systems engineers will be

familiar with the construct of IDEF0 models, the unfamiliar reader should refer to the

original IDEF0 definitions presented in National Institute for Standards and Technology

(1993). As a brief introduction, IDEF0 models present each function associated with a

process in a box. These boxes accept inputs on the left and transform them into outputs

on the right. Controls are shown at the top of each box. Controls present the conditions

necessary for each function to take place. Mechanisms are shown at the bottom of each

box. Mechanisms are the human or component resources necessary for each function to

take place. Many approaches exist to guide the development of IDEF models. It is often

easier to develop a conceptual understanding of the full system, as well as its interactions

with external systems and the environment, by first considering the system as a

subsystem within a larger context level IDEF representation. Figure 31 presents such an

IDEF model, which presents the functions that define Defensive MCM Operations.

 91

Figure 31 Context IDEF0 Model

Figure 31 presents the Active, Defensive MCM Operations of interest to this

research in the context of larger Defensive MCM Operations. Note that the Active,

Defensive MCM Operations function (highlighted in gold for emphasis) accepts inputs

(Potential Mines and Non-Neutralized Mines) from the Exhibit Environmental Feedback

function. The Active, Defensive MCM Operations uses a generic MCM System (shown

on the bottom as a mechanism), controlled by a generic MCM strategy (shown on the top

as a control that is created by the Provide Command and Control function) to create both

Neutralized Mines and Post Mission Analysis (PMA) Data. Both the Neutralized Mines

and PMA Data are inputs to the Environmental Feedback function, which creates a list of

Missed Mines (which is sent back to Passive Defensive MCM Operations) and Non-

 92

Neutralized Mines, which prompts another instance of the Active, Defensive MCM

Operations function. This diagram establishes a baseline understanding of the high level

behaviors that must be represented in any system simulation. Specifically, a simulation of

Active, Defensive MCM Operations must represent an MCM System that follows a set

MCM Strategy, accepts a list of Potential Mines and Non-Neutralized Mines, and

converts them to Neutralized Mines and creates PMA Data. Figure 32 presents a similar

IDEF0 model for Active, Defensive MCM Operations and provides increased detail

regarding the functions that define Active, Defensive MCM Operations.

Figure 32 IDEF0 Model for Active, Defensive MCM Operations

The IDEF0 model in Figure 32 presents the functions associated with Active,

Defensive MCM Operations, as well as the inputs, controls, outputs, and mechanisms

associated with each function. A brief examination of the inputs and outputs captures the

 93

primary goal of Active, Defensive MCM Operations. The system accepts Potential Mines

and Non-Neutralized Mines and outputs Neutralized Mines and PMA Data (the same set

of inputs and outputs shown in the Context Level IDEF0). The expanded IDEF0 model

for Active, Defensive MCM Operations details that conversion and can develop a more

detailed understanding of the processes that must be represented in a simulation of

Active, Defensive MCM Operations. This detailed examination of Figure 32 shows the

humans and components essential to the process (each of which is a decomposition of the

generalized MCM System previously shown in Figure 31) as well as the conditions

necessary to conduct the process (each of which is a decomposition of the generalized

MCM Strategy previously shown in Figure 31). Active, Defensive MCM Operations

begin with Minehunting, which subsequently prompts MCM logistics functions, which in

turn prompts Mine Neutralization and Minesweeping. The IDEF0 model also represents

operational control. Each of these functions can also be decomposed to fully understand

each sub-process associated with Active, Defensive MCM Operations. The IDEF0

captures the processes, system components, and conditions associated with Active,

Defensive MCM Operations beyond the general description presented earlier. While this

decomposition is extremely valuable for communications with stakeholders, the MBSE

MEASA advocates the definition of system processes and components using SysML

products, which are more easily translated to external models and simulations.

As mentioned, IDEF0 models facilitate easy communications with stakeholders,

although perhaps more importantly they are a starting point for the generation of

Requirements Analysis Products. Development of this diagram is vitally important

because it ensures consistent terminology in both the functional and physical

architectures (and later, between operational models and synthesis models). A high level

SysML Requirement Diagram describes the general requirements for an Active,

Defensive MCM system. The general requirement “Perform MCM Operations”

aggregates lower level requirements. A SysML Requirement Diagram specifies any and

all system requirements, including intended capabilities, expected functions, and

performance conditions. Many requirements will describe an intended capability in terms

of its expected functionality and quantify a performance metric. The SysML Requirement

 94

Diagram provides that functionality and also allows for specification of relationships

between requirements, as well as between requirements and other model elements. The

types of relationships allowed within a SysML Requirement Diagram are: Requirements

is satisfied by, Requirement is derived from, Requirement derives, Requirement is refined

by, and Requirement is verified by. Figure 33 presents an example of a SysML

Requirement Diagram for the Requirement “Perform Mine Warfare Operations.”

Figure 33 Requirement Diagram: Perform Mine Warfare Operations

While the high level SysML Requirement Diagram presented in Figure 32 does

not capture all of the aspects of MCM operations, it does establish a common operating

model that can be supplemented with increased detail. Figure 33 provides an example of

an abstract, high level requirement (Perform Mine Warfare Operations), which is refined

by additional requirements (ex: Perform MCM Operations). Figure 33 also shows several

more detailed relationships (ex: Perform Defensive MCM Operations refines Perform

MCM Operations).

 95

For clarity regarding the level of potential detail that may be included in a

Requirement Diagram, Figure 34 presents a decomposition of the Perform Minehunting

Operations requirement, which is a requirement that refines Perform Active, Defensive

MCM Operations, as shown in Figure 33. Note that the use of a consistent numbering

convention clarifies the relationships between requirements; Detect Mines (requirement

id 1.2.1.1.1) refines Perform Minehunting Operations (requirement id 1.2.1.1), which

refines Perform Active, Defensive MCM Operations (requirement id 1.2.1). In terms of

requirement development in support of the MBSE MEASA, which necessarily relies on

Requirement Diagrams for definition of system level performance parameters as well as

guidance regarding development of operational MOEs, several specific steps should be

taken when developing Requirement Diagrams. At a minimum, the MBSE MEASA

recommends that all requirements include an id number as well as a text description.

Requirements that are not refined by any additional requirements should also include a

property, which should be a quantifiable, assessable quantity. Assessment of these

quantifiable metrics for lower level requirements provides assessment of the high level

requirements (even those that are text based). This defines the system parameters,

environmental factors, and operational factors represented in an external model, and

establishes traceability between those performance parameters and operational MOEs.

While each requirement can be supplemented with additional detail regarding the

criticality or risk of the requirement, it is recommended that these characteristics not be

ascribed to any requirements prior to initial examination of an external model, which will

provide insight regarding the impact of each system design parameter on the performance

of the overall system. If a stakeholder identifies a requirement as critical this should be

included in the text description of the requirement for examination in future iterations of

the MBSE MEASA.

 96

Figure 34 Requirement Diagram: Perform Minehunting Operations

Note that each requirement that is not refined by additional requirements includes

at least one property that can assess the system performance in terms of that requirement.

As mentioned, this is vitally important because these properties will guide the selection of

input variables to all external simulation models. Note that, as the MBSE MEASA is

iterated, these properties may be supplemented with increased detail. As an example,

Figure 34 presents Requirement 1.2.1.1.4 (Identify Mines) on the far right. Currently, two

properties define Identify Mines: Probability of Identification and Identification Time.

During a subsequent iteration of the MBSE MEASA (which should be based on the

analysis of a system simulation model) this property may be specified with more detail

(ex: Probability of Identification greater than 0.80). The level of detail shown in Figure

34 presents an expected level of definition for each higher level requirement shown in

Figure 33. The first step of the MBSE MEASA (Requirements Analysis) is considered

complete after a Requirement Diagram captures the full set of stakeholder needs and a

quantifiable metric is established for each low level (unrefined) requirement. A

completed Requirement Diagram should include sufficient detail to accomplish the first

 97

four systems engineering products presented earlier. Table 2 presents an updated linkage

of the systems engineering products supported after Step 1 (Requirements Analysis) of

the MBSE MEASA.

Table 2 Requirements Analysis Support of Linkage of MBSE MEASA

Steps to Systems Engineering Products

Development of a comprehensive Requirement Diagram allows any user to

communicate a clearly defined problem system boundary, system objectives, and system

requirements. This aligns with the previously presented definition of system requirements

as a set of “The system shall,” statements that capture the operational environment and

design specifications for the system in terms of intended capabilities, expected functions,

and quantified performance conditions. Note that development of a SysML Package

Diagram can be conducted prior to development of a Requirement Diagram, but is not

necessary. The Package Diagram can organize the information collected from a

Stakeholder Analysis. For example, a SysML Package Diagram can classify and organize

system requirements, use cases, behaviors, structure, and definitions in a SysML

 98

modeling tool. Using Package Diagrams as brainstorming organizational tools may ease

the construction of future diagrams and products, but is not necessary, and therefore a

detailed discussion is not included in this dissertation. For an in depth presentation of the

potential value of beginning SysML modeling with the creation of a Package Diagram

see Friedenthal, Moore, and Steiner (2009).

5. Functional Architecture Products

The system development process moves from Problem Definition to System

Design after a Requirement Diagram is complete. System Design is defined as:

Functional Architecture Development, Physical Architecture Development, Feasible

Design Generation, and Modeling and Simulation. Note that in this context the term

Modeling and Simulation describes the process of evaluating the ability of a given

Physical Architecture to satisfy the functions outlined in a given Functional Architecture.

Subsequent to the creation of a comprehensive Requirement Diagram SysML Diagrams

capture these Functional Architecture products.

Functional Architectures summarize the system in terms of HOW it will satisfy

the requirements identified in Step 1 (Requirements Definition), but do necessarily not

define what physical system elements will satisfy those requirements. Development of

SysML Activity, Sequence, State Machine, and Use Case Diagrams (Figure 35) support

this definition. Further, the definition of the set of sequenced activities, the state

dependent transitions between those activities, and the users responsible for the execution

of each of those activities guides development of external operational simulation models.

 99

Figure 35 MBSE MEASA (Step 2)

As mentioned, Functional Architectures specify how a system will behave.

Accordingly, an Activity Diagram, which specifies what a system must do in order to

satisfy requirements, is an appropriate first product to generate as part of a functional

architecture. As mentioned when presenting the intended benefits of MBSE, the

utilization of MBSE software to create various architecture views (rather than the

utilization of static, standalone documents) ensures that conflicts are resolved between

different types of diagrams as well as between different levels of each diagram. As with

the IDEF0 models presented previously, it is difficult to capture the utility of this

enforced consistency through the presentation of static figures. However, a major focus

of this chapter is demonstrating the fundamental elements that can be included in each

SysML Diagram, demonstrating the traceability and consistency that these diagrams

 100

ensure, and highlighting the expected utilization of each diagram as a guideline for the

development of external simulation models. Accordingly, this chapter will present several

representations of each diagram, beginning with the simplest, highest level diagram of

interest to this research (typically Active, Defensive MCM Operations), then moving to a

decomposition of Minehunting Operations, and finally decomposing Mine Detection.

Additional detail regarding Mine Neutralization, Mine Classification, Mine

Reacquisition, Mine Identification, and MCM Logistics Functions will be included in

Chapter IV as needed to demonstrate proper development of an external simulation

models.

Activity Diagrams are a reasonable starting point for the development of

functional architecture products for several reasons. Note only do Activity Diagrams

describe what the system must do to satisfy each function, they also describe the external

objects that are necessary to complete or trigger each function. Activity Diagrams can

also model parallel operations, loops, iterations, and replications of activities. Also

notable is the ability to group activities into partitions (also called swim lanes) that allow

a user to specify responsibility (in terms of model parameters) regarding execution of

those activities. While most activities must be completed to trigged subsequent activities,

some activities within these partitions can be specified as interruptible if any stop or

delay in that activity does not impact any other actions or activities. While these

characteristics are difficult to understand through narrative text, they are easily visualized

and understood through examination of the diagrams. As mentioned, the sequenced

presentation of figures in this chapter demonstrates the fundamental elements and

structure of each diagram in detail (to include highlighting traceability and consistency

between diagrams) and demonstrates their utility in development of external simulation

models. Figure 36 presents an Activity Diagram for Active, Defensive MCM Operations.

Note that it provides similar detail to the IDEF0 model of Active, Defensive MCM

Operations but also provides increased information regarding the ordering of each

activity.

 101

Figure 36 Activity Diagram: Active, Defensive MCM Operations

 102

The Activity Diagram shown in Figure 36 demonstrates that there are three

parallel processes associated with Active, Defensive MCM Operations: a sequence of

Minehunting, Mine Neutralization, and Minesweeping; Active Defensive MCM

Logistics; and Control of Active, Defensive MCM Operations. The parallel nature of

these activities suggests that it may be necessary to concurrently allow for each of them

within an external simulation model. The Activity Diagram also specifies that after

Minehunting Operations conclude there is a choice between Mine Neutralization

Operations and Minesweeping Operations. This research will focus on Mine

Neutralization Operations (Minesweeping Operations has accordingly been shaded in

gray by the author). This choice was made to facilitate a more accurate comparison

between legacy and future MCM systems since there is very little detail available

regarding the performance of the future minesweeping system that will be utilized by the

LCS MCM Package. Note that the Activity Diagram also specifies the external

components that will be created and used by each activity, which provides detail

regarding the physical entities that must be represented in an external simulation model.

It is possible to further decompose the Activity Diagram shown in Figure 36. Figure 37

presents an example Activity Diagram that describes Minehunting Operations.

Figure 37 Activity Diagram: Minehunting Operations

 103

A straightforward sequence of events defines Minehunting Operations and

therefore the Activity Diagram is actually simpler than the Activity Diagram for Active,

Defensive MCM Operations. Minehunting Operations is comprised of: Detect Mines,

Classify Mines, Reacquire Mines, and Identify Mines. Note that the Activity Diagram

specifies the inputs that are necessary for each Activity, as well as the outputs that result

from each Activity (some of which are subsequently used as inputs to other Activities).

Because MILCOs, non-MILCOs, etc., may not exist in every scenario the Activity

Diagram classifies some outputs as optional to indicate that their creation is not required

to continue through the activity. Figure 38 presents a further decomposition of the Detect

Mines activity and provides greater detail regarding the level of detail that Activity

Diagrams can present.

Figure 38 Activity Diagram: Detect Mines

 104

The Activity Diagram in Figure 38 shows that Mine Detection is initiated by the

selection of either the MCM-1 Sequence (top) or the LCS Sequence (bottom). Each

sequence then enters a loop that continues for a specified number of detection tracks.

This loop begins with streaming of search gear and requires a hunt strategy, previously

non-neutralized mines, other potential mines, and MCM equipment as inputs. The system

then transits within the minefield and detects mines (that sequence is conducted for the

number of potential mines on the track). That creates a list of MILECs and non-MILECs

and the system then records the number of detection tracks, which may prompt an

additional pass through the loop. If the loop has finished, the system begins classification,

which uses the MILECs as an input. This sequencing is used to guide development of an

external simulation model for Active, Defensive MCM Operations (in conjunction with

functional architecture products that describe Mine Classification, Mine Reacquisition,

Mine Identification, Mine Neutralization, and Control and Logistics of Active Defensive

MCM Operations, which will be shown in detail in Chapter IV). The richness of Activity

Diagrams, and their ability to represent behaviors through a presentation of not just

activities (which translate nicely to events that must be modeled within external models)

but also interactions and triggers (which translate generally to event sequencing and

provide generic guidance for the development of physical architecture products) that are

consistent across multiple levels of decomposition make Activity Diagrams a reasonable

starting point for the development of functional architecture products in support of the

MBSE MEASA. Note that the implementation of Activity Diagrams in the software

program chosen by the author (CORE) can result in diagrams that are extremely busy.

This is a result of a requirement within the software program that each diagram be

“connected,” meaning that any entity created within an activity be consumed and used

within that activity. This can create extremely busy diagrams and cause issues when

executing the architecture. Appendix C provides more details and recreates the

architecture in an alternative software program that overcomes some of the limitations

associated with this implementation of Activity Diagrams using CORE.

After an Activity Diagram describes all the activities that a system will complete,

Sequence Diagrams provide additional information regarding interactions between

elements of the internal structure of an activity. Generally, Sequence Diagrams

supplement the information shown in Activity Diagrams by providing details regarding

 105

what is necessary to support a particular activity, which helps provide clarity regarding

ordering of activities. Specifically, it should alert any user to conflicts that may result

from expecting an activity to commence prior to creation of external information

necessary to support that activity, a level of detail that may be difficult to attain when

using only Activity Diagrams, which provide no detail regarding the control of activity

inputs or outputs while modeling at the level of abstraction shown. Figure 39 and Figure

40 present Sequence Diagrams for Mine Detection and Mine Classification that

demonstrate the dependencies between the activities and within the sub-activities for each

function, as well as the physical components responsible for the control of each activity.

Figure 39 Sequence Diagram: Detect Mines

 106

The Sequence Diagram for Mine Detection shown in Figure 39 provides

additional clarity regarding Mine Detection beyond the information presented in the

Activity Diagram for Mine Detection (shown previously as Figure 38). As with the

Activity Diagram, there are two alternate series, one for the MCM-1 and one for the LCS.

Each series is comprised of the same set of activities as shown in Figure 38, each series is

conducted by distinct physical components (the physical components associated with

mine detection are shown in gray boxes along the top of Figure 39 and vertical lines

descending from each figure intersect with the activities that each physical component

conducts). This formal definition of the physical components associated with each

activity may guide the definition of resource requirements in an external simulation

model and may aid in identifying potential conflicts when multiple events are dependent

on a single physical component. Just as importantly, Sequence Diagrams trace not only

events (as was shown in the Activity Diagram) but also of the outputs of each function

and the triggers to each function. As a side note, Sequence Diagrams may be assessed for

correctness by conducting a flow continuity check, which checks that the flow from the

first activity to the final activity is possible without referencing activities shown in

another diagram. Notice that the Sequence Diagram shown in Figure 40 would fail such a

test, since MILECs are outputs of Mine Detection and leave the page on the right side.

This is a function of the segmentation of Minehunting by the author to ease

understanding. Specifically, the MILECs that exit the Mine Detection Sequence Diagram

are immediately accepted by the Mine Classification Diagram (Figure 40). If Mine

Detection and Classification were grouped as a single function and a combined Sequence

Diagram was developed, the resulting Mine Detection & Classification Sequence

Diagram would pass the flow continuity check for consistency. As mentioned, this

segmentation was done to ease communication for the reader unfamiliar with MIW and

MCM operations since static architecture figures that consider the entire sequence of

mine detection through neutralization would be difficult to present. That said this visual

issue with Figure 39 further demonstrates the value of Sequence Diagrams. They ensure

that the outputs of each activity are used by a follow on activity, and identify potential

 107

issues resulting from redundant activities, physical components that are simultaneously

utilized by multiple activities, and dependencies between activities.

Figure 40 Sequence Diagram: Classify Mines

While Sequence Diagrams provide increased detail regarding system

functionality, they are often focused on sequences of message exchanges from a control

perspective and may not allow for maximum detail regarding specific actors in specific

scenarios. Use Case Diagrams can be used to further aid development of functional

architecture views by providing that increased level of detail regarding the actors that are

involved in each activity. Use Case Diagrams are particularly useful for multi-purpose

 108

systems, which may require a different set of personnel to execute each activity. Used in

conjunction with Sequence Diagrams, this allows a systems architect to identify potential

conflicts in terms of both system control and system implementation. Figure 41 provides

an example of a Use Case Diagram.

Figure 41 Use Case Diagram: Perform Mine Hunting Operations

Figure 41 shows that the MCM System performs the Perform Minehunting

Operations activity. As a point of emphasis, during the conceptual design phase all effort

should be made to remain solution neutral, the Use Case Diagram uses the generic term

“MCM System” rather than specifying that the system as MCM-1 Avenger or the LCS.

The Use Case Diagram prescribes the same list of activities that define Minehunting

Operations in the Activity Diagram in Figure 37 (Detection, Classification,

Reacquisition, and Identification); however the Use Case Diagram also defines the actors

 109

(MCM System Operator, MCM Commander, and MCM System Analyst, who are

involved in each of these activities). Note that each of the actors is external to the system

of interest and each actor participates in each activity. In this example each actor is also

defined as a subclass of “MCM Crew,” however this aggregation may not be appropriate

in all cases. The Use Case Diagram also specifies that Mission Complete is a potential

extension of each of the Minehunting Operations activities, which is triggered by the

extension point “No Potential Mines Remain.”

Development of an Activity Diagram prescribes the general functions that a

system will perform as well as the outputs and inputs of each of those functions.

Development of a Sequence Diagrams prescribes the ordering of those functions and also

defines the environmental triggers that may be necessary to initiate each function.

Development of a Use Case Diagram provides clarity regarding the boundary of the

system of interest by defining the external actors who may interact with the system and

the activities that each actor may participate in during system operation. The final step in

development of Functional Architecture views is generation of a State Machine Diagram

(Figure 42), which provides additional clarity regarding the range of behaviors possible

for a given entity, as well as the differing modes of activities in different states. This

allows for a more formal examination of the control system of the system of interest than

is possible in the Sequence Diagram. For a discrete activity like Minehunting, the State

Machine Diagram is certainly less impactful, however it does demonstrate to the users

that there is a defined exit and entry from Minehunting during the activity (between

Classification and Reacquisition) that is dependent on an external activity. It is

impossible to complete the transition between all of the states of the Minehunting activity

prior to completion of this external activity, which is not evident from the Activity,

Sequence, or Use Case Diagrams. Note that while State Machine Diagrams can be used

to define a behavior, this minimizes the utility of the figure by duplicating information

and restricting freedom, and therefore it is recommended that State Machine Diagrams be

used to describe the state dependent behaviors of physical components. This should

facilitate development of an external model by defining capabilities and limitations on

system behavior related to the current status of the system.

 110

Figure 42 State Machine Diagram: Perform Mine Hunting Operations

Note that the coloring presented in Figure 42 is not typically presented in State

Machine Diagram; however the author feels that the addition of colors aided

understanding of the figure. Specifically, red coloring shows transitions that cause

termination of minehunting operations, green coloring shows transitions from the first

portion of the minehunting sequence (Detection and Classification) to the second portion

of the minehunting sequence (Reacquisition and Identification), and yellow coloring

shows transitions within each sub portion of the minehunting sequence. This movement

within the functional architecture products toward describing the functions performed by

different physical components (which at this point should still be kept as solution neutral

as possible) suggests that a comprehensive description of the system must move to a

more detailed description of those physical components. The completion of Activity,

Sequence, Use Case, and State Machine Diagrams defines the system comprehensively

from a functional perspective. The system architect can completely describe the

sequencing of system activities, which can be used as a basis for model development. The

system architect can also formally present limitations to system performance, whether

they arise from some alteration to system environmental conditions (as identified in a

State Machine Diagram), some issue with personnel availability (as identified in Use

 111

Case Diagrams), some issue with system control (which, depending on implementation,

may be represented in either a State Machine or Sequence Diagram), that must be

represented in an external model. Table 3 presents an updated linkage of the systems

engineering products supported by Step 2 (Functional Architecture) of the MBSE

MEASA. Note that Table 3 suggests that only a single Functional Architecture SysML

Diagram is required to support Defined Functional Behaviors and Defined Functional

Performance, the intent of this section is to emphasize that each of the Functional

Architecture SysML Diagrams provide a unique capability and each of the diagrams

should be created in this MBSE MEASA Step.

Table 3 Functional Architecture Support of Linkage of MBSE MEASA

Steps to Systems Engineering Products

The Functional Architecture products describe the system in terms of functional

behaviors and performance and ensure that external models and simulations accurately

represent the activities that the system must perform, the sequence of those activities, the

actors that should perform and impact those activities, and the transitions between those

 112

activities. Because each of these SysML products are explicitly linked to the previously

developed Requirement Diagram, any behaviors and activities represented in external

operational simulations are directly linked to stakeholder input, and no extraneous

behaviors are modeled and no fundamental system behaviors are ignored.

6. Physical Architecture Products

Completion of the functional architecture (which is now represented in

Activity Diagrams, Sequence Diagrams, Use Case Diagrams, and State Machine

Diagrams) triggers creation of Physical Architecture Products. These products are

necessary to more completely describe the system and enable creation of external

models. Figure 43 provides a description of the SysML products appropriate to

support physical architecture development.

Figure 43 MBSE MEASA (Step 3)

 113

Creation of a Block Definition Diagram is the first step in Physical Architecture

development. Block Definition Diagrams decompose physical entities, which are only

shown in a general sense in each of the Functional Architecture products, into more

detailed components. One of the major advantages of Block Definition Diagrams is that

they allow complete representations of the potential physical configurations of a system,

even if components are mutually exclusive. In the case of the MIW System, the easiest

illustration of such a relationship is the MCM-1 Avenger and the LCS, which are classified

as “generalizations of” the MCM System component, indicating that they completely

describe the MCM System of interest but cannot both exist in a given physical

configuration. Conversely, the MIW System component is “built from” the MCM System

component and the Mining System component, indicating that each exist for every

configuration of a complete MIW System. Figure 44 provides a graphical representation of

the Block Definition Diagram for the high level components of a MIW System.

Figure 44 Custom Block Definition Diagram: MIW System

 114

Note that this research presents a slightly altered version of the Block Definition

Diagram in Figure 44. This is a result of a software limitation; the software selected for

generation of SysML diagrams in this research (Vitech’s CORE) does not allow for

generation of traditional SysML Block Definition Diagrams. Rather, CORE requires

users to create Structure Block Definition Diagrams (similar to a traditional physical

hierarchy) and Classification Block Definition Diagrams (which represents the

inheritance structure of each system component, similar to a UML Class Diagram). This

convention segments “built from” and “built in” relationships (shown in the Structure

Block Definition Diagrams) from “generalization of” and “generalizes” relationships

(shown in the Classification Block Definition Diagram). Practically, this reduces the

potential for incorrect relationship specification within the CORE software since it

requires a user to truly understand the differences between the naming conventions. The

power and richness of the CORE tool ensures that the relationships are represented

properly in each diagram and also ensures that the linkages are traceable to the previously

created SysML products. Within the software itself, separating Block Definition

Diagrams into structural and classification perspectives is not a limitation, however for a

user who wishes to present static representations of those diagrams (as in this research) it

requires a user to create a custom diagram to fully capture both the structural and

classification relationships between system components as a traditional SysML Block

Definition Diagram.

This research develops custom SysML Block Definition Diagrams that combine

the information that CORE typically presents as a Structure Block Definition Diagram

and a Classification Block Definition Diagram. Figure 44 presented a simple example of

a custom generated Block Definition Diagram and Figure 45 presents a more detailed

example that decomposes the airborne components of both the MCM-1 Avenger MCM

System and the Littoral Combat Ship MCM System (note that within the software these

relationships were established within the Structure and Classification Block Definition

Diagrams to check that each relationship was properly defined). Block Definition

Diagrams allow the user to decompose each system component in as much detail as is

necessary for the system of interest. In the case of the MIW System, the decomposition

 115

continued through identification of all systems and subsystems, but did not decompose

each subsystem into physical components. This decision is a result of the mature nature

of the systems of interest, currently they have been completely designed (and many of the

systems have been operated for thirty years). Within the context of the MBSE MEASA

Block Definition Diagrams inform the physical components represented in external

models and simulations (typically operational, physical, and cost models). Accordingly,

the MBSE MEASA recommends that development of Block Definition Diagrams

proceed to a sufficient level of detail to ensure that the physical components represented

in external models and simulations can be checked for consistency with the physical

components represented in Block Definition Diagrams.

Figure 45 Custom Block Definition Diagram: MCM System

The Physical Architecture information captured in the Block Definition Diagrams

defines the physical systems that exist in each potential system configuration. Internal

Block Diagrams expand this functionality by establishing a connection between Block

Definition Diagrams and Activity Diagrams by specifying how the elements shown in the

 116

Block Definition Diagrams perform the activities shown in Activity Diagrams to achieve

the intended functionality of the system. The major difference between the Internal Block

Diagram and the Activity Diagram is the system perspective of the diagrams. As

indicated by their grouping within the MBSE MEASA, Internal Block Diagrams present

the system from a physical/structural perspective while Activity Diagrams present the

system from a functional/behavioral perspective. Similarly, the simultaneous examination

of Activity Diagrams defines the behaviors represented in an external model while

Internal Block Diagrams defines the physical entities represented in an external model.

Figure 46 shows an Internal Block Diagram for the MH-53E (which conducts airborne

MCM in support of the MCM-1 Avenger MCM System). Note that the MH-53E is

capable of performing the full sequence of mine detection through mine neutralization

(although it must use a different subsystem when performing mine detection through

identification and when performing mine neutralization).

 117

Figure 46 Internal Block Diagram: MH-53E

Note that Figure 46 adds organizational blocks (a yellow block for Detection,

Classification, Identification; a green block for Minesweeping; and a grey block for

Neutralization), that are not necessary components of Internal Block Diagrams. The

author added the organizational blocks to aid visualization and the blocks do not need to

be added in situations where the Internal Block Diagram is simple enough that they add

 118

no value (as a general guidance, this will most likely be for system components that only

perform one or two activities represented in Activity Diagrams). Figure 46 highlights the

utility of the Internal Block Diagram, specifically the definition of the physical

components that make up larger components (not dissimilar for the Block Definition

Diagram) and also the establishment of the interfaces between components and the links

between each component and components external to the system of interest. For example,

Figure 46 shows that the AN/AQS-24A sonar links to an external system through the

creation of MILECs and MILCOs. That same external system (represented on the left

side of Figure 46) links to the MK-103, MK-104, and MK-105 minesweeping systems.

While it is impossible to show within an Internal Block Diagram for a single system, an

examination of the set of links between blocks within the modeling software establishes

that the AN/AQS-24A, MK-103, MK-104, and MK-105 are all linked the Post Mission

Analysis component, which is processing the list of MILECs and MILCOs and

determining which component is appropriate to process each potential mine. Internal

Block Diagrams can be produced for any level of detail necessary for a given system. As

with Block Definition Diagrams, it is recommended that Internal Block Diagrams be

produced at a sufficient level of detail to define the physical components and interfaces

that should be represented in an external model. Given that the purpose of this study is to

examine the performance capabilities of the MCM-1 Avenger MCM System and the

Littoral Combat Ship MCM System, these Internal Block Diagrams represent the

interfaces between components at the subsystem level. If this study was comparing

alternative capabilities for mine sonar systems, Internal Block Diagrams could

decompose the AN/AQS-24A into its components (propulsion system, detection system,

etc.) and establish the interfaces between those components. It is left to the individual

user to ensure that all physical architecture products (Block Definition Diagrams and

Internal Block Diagrams) contain enough detail to accurately construct external

operational, synthesis, and cost models.

Table 4 presents an updated linkage of the systems engineering products

supported after Step 3 (Physical Architecture) of the MBSE MEASA. Note that the use of

Block Definition Diagrams supports definition of a complete set of physical solutions

 119

while the Internal Block Diagrams are focused on ensuring allocation of physical

components to system functions (as represented in the previously developed functional

architecture products, most notably the Activity Diagrams).

Table 4 Physical Architecture Support of Linkage of MBSE MEASA Steps

to Systems Engineering Products

7. Modeling and Simulation Definition

Completion of physical architecture development (creation of Block Definition

and Internal Block Diagrams) completely describes a system. The Requirement Diagram

completely describes what a system must do to satisfy stakeholders. The Activity,

Sequence, Use Case, and State Machine Diagrams completely describe how a system

satisfies the requirements identified in the Requirement Diagram. The Block Definition

and Internal Block Diagrams completely specify what physical system components

satisfy the functions specified by the Activity, Sequence, Use Case, and State Machine

Diagrams. While these products enable a complete description of a system from multiple

 120

perspectives, they do not enable analysis of the performance of that system. Proper

analysis requires definition and analysis of external system models.

At this point the true utility of the MBSE MEASA (beyond generation of SysML

products or systems engineering process products) starts to become apparent. Rather than

conduct system analysis by attempting to link physical/functional architectures through

Parametric Diagrams (as is advocated by the MBSE methodologies presented in Chapter

II), the MBSE MEASA separates external Model Definition as Phase 4 of the process

(Figure 47). Note that the MBSE methodologies presented earlier consider the creation of

a comprehensive set of SysML products (which have been developed by the conclusion

of the first three steps in the MBSE MEASA), along with evaluation for consistency

through the use of Parametric Diagrams, the conclusion of the system development

process. The MBSE MEASA utilizes the combined functional and physical architecture

products as a basis for the development of external models and simulations. In particular,

the Activity, Sequence, Use Case, and State Machine Diagrams specify the components,

behaviors, and processes represented in external operational models. The Block

Definition and Internal Block Diagrams specify the set of components, component

interfaces, and constraints represented in external system synthesis models and system

cost models.

 121

Figure 47 MBSE MEASA (Step 4)

The formalization of an analysis procedure external to the SysML modeling

process prevents the types of oversimplifications of system performance that occur if

sufficiently detailed modeling of system performance is not conducted. As mentioned

previously, SysML Parametric Diagrams typically support modeling and simulation in

the leading MBSE methodologies. While Parametric Diagrams can be useful to ensure

consistency between functional and physical architecture products, their limitations must

be acknowledged.

To conduct rapid decision making regarding preferred system configurations

Parametric Diagrams often make simplifying assumptions about each potential system

configuration. Parametric Diagrams only examine the ability of a given system

configuration (characterized by defined system component performance) to successfully

complete the activities specified in associated SysML diagrams. While this often allows

 122

for rapid evaluation of system configurations, it effectually over-constrains the problem

and makes it impossible to truly assess the operational performance of a system. Various

MBSE methodologies acknowledge this limitation, but the fundamental approach that

those methodologies advocate regarding system performance modeling is still

problematic. A simple example from Friedenthal, Moore, and Steiner (2009) espouses the

usage of an external model to analyze the engine type (V6 versus V4) required to satisfy

a vehicle system requirement for acceleration. The acceleration requirement is subject to

constraints on Gravitational Force, Drag Force, Power Train Force, Total Force, Engine

Torque, Transmission Torque, Differential Torque, and Wheel Force, which are all

represented as constraints (implemented as specified constant values) within a parametric

diagram. The diagram is subsequently executed and examined to determine what engine

type is most appropriate. The example concludes that “the analysis results showed that

the V6 configuration is needed to satisfy the vehicle acceleration requirement.” While

this is useful to support engineering level analysis on specific system configurations, the

simplicity of that statement highlights the shortcomings associated with over-constraining

a problem through the use of detailed SysML Parametric Diagrams. Perhaps a V4

configuration would be capable of satisfying the performance requirement if the body

type, wheel type, chassis type, etc., were changed. By specifying values for each of these

(potentially) impactful variables earlier in the system design process the number of

system configuration alternatives that may be examined is limited. Limiting the amount

of raw data generated subsequently limits the range of potential conclusions.

Accordingly, the MBSE MEASA does not recommend that system analysis within an

MBSE methodology rely solely on the creation and analysis of SysML Parametric

Diagrams. Rather, the MBSE MEASA recommends the creation and analysis of external

simulations based on the set of SysML products developed previously in the

methodology.

Many types of external simulation, ranging from process based to agent based

simulations may be appropriate to support analysis within the context of the MBSE

MEASA. It is the responsibility of the user to select an appropriate simulation, however

in practice the selection of an “appropriate” simulation may be quite difficult. Practically

 123

this decision will be highly dependent on the expertise of the particular user, and the

selection of the type of model may be based almost exclusively on this expertise.

However, it is useful to provide some references within this dissertation that provide in

depth discussion of the strengths and weaknesses associated with different types of

simulation models. Perhaps the most widely read text that discusses the procedures and

characteristics of process based and agent based models is Law (2014), which is essential

reading for any simulation developer. Law (2014) certainly focuses more detail on the

development and analysis of discrete event simulations, for more concise guidance on

agent based simulation Macal and North (2005) provide an introduction to the principles

and expected applications of agent based models. As mentioned, this research does not

provide a complete description or recommendation of a particular simulation modeling

paradigm, rather it emphasizes that an appropriate simulation modeling approach must be

selected and tailored for each study and provides a few references to guide the selection

of an “appropriate” simulation model, while recognizing that the choice is often reduced

to the familiarity and expertise of a particular user.

After an appropriate simulation has been chosen to support the MBSE MEASA,

proper testing procedures for those models and simulations must be defined. Substantial

work has been done in the field of experimental design that must be reviewed by any user

implementing the MBSE MEASA.

8. Experimental Design Recommendations

As mentioned in Chapter II, existing MBSE methodologies, as well as recent

research in MBSE, fail to emphasize the importance of proper experimental design

selection in the development of external models and simulations to support MBSE

focused system development. An exception is MacCalman et al. (2015), which provides a

case study analysis of a U.S. Army infantry squad that demonstrates the value of proper

experimental design specification in a MBSE approach. However, a discussion of

experimental design is necessary in this dissertation to establish guidelines for application

of the MBSE MEASA.

 124

Experimental design selection is vital to ensure that alternative system

configurations are examined properly. Simply establishing a baseline system

configuration and conducting testing and evaluation through isolated excursions is

inappropriate (see Sanchez and Wan 2012). As discussed in Giammarco and Auguston

(2013), it is vitally important to consider system component interactions as well as the set

of possible interactions between a system and its environment. The formalization of

testing procedures that ensures that system configurations and potential interactions are

considered falls under the category of experimental design. While a detailed review of

experimental design is not the focus of this dissertation, Appendix B provides a brief

introduction to experimental design for the unfamiliar reader and highlights the

consequences associated with establishing a baseline system and testing through isolated

excursions. More details on the fundamentals of experimental design are provided in

Montgomery (2012) and Myers, Montgomery, and Anderson-Cook (2009). Detailed

discussion of experimental design for computer experiments can be found in Santner,

Williams, and Notz (2003), and guidelines for the implementation and analysis of

simulation models (to include a brief review of experimental design, as well as further

detail regarding the differences between agent based and discrete event models) can be

found in Law (2014).

Sanchez and Wan (2012) present a focused discussion of the guidelines for proper

experimental design selection for simulation experiments. That research addressed the

challenges associated with different factor types, specifically quantitative vs qualitative

factors, discrete vs continuous factors, and controllable vs uncontrollable factors. That

research demonstrates that space filling experimental designs offer tremendous

advantages over traditional factorial experimental designs for computer experiments,

specifically in terms of the number of variables that may be considered (this issue is

discussed in Appendix B) and the tremendous flexibility that space filling designs offer in

terms of model fitting (while traditional experimental designs typically restrict model

fitting to linear or quadratic models, space filling designs impose almost no restrictions

on model fitting). In the context of this research, the experimental design comparison

chart found in Sanchez and Wan (2012) guides the type of experimental design

 125

appropriate for a given number of input factors, the characteristics of those factors, and

the desired type of model fit (Figure 48).

Figure 48 Experimental Design Comparison Chart

Source: Sanchez, Susan M., and Hong Wan. 2012. “Work Smarter, Not Harder: A

Tutorial on Designing and Constructing Simulation Experiments.” Simulation

Conference (WSC), Proceedings of the 2012 Winter Simulation Conference, 1–15.

 126

Figure 49 may be used as a starting point for selection of experimental design for

almost any scenario where testing is conducted in a simulation model. Examination of the

chart key presented in the lower portion of Figure 48 suggests that designs represented

with a black square should work exceptionally well (that is, they provide maximum

modeling flexibility) for examination of large scale, complex systems, which are

comprised of a large number of components and have the potential to exhibit higher order

interactions. This aligns nicely with the definition of the systems of interest to this

research presented earlier. Furthermore, because the systems of interest to the

methodology typically contain at least 100 factors it is potentially dangerous to assume

that their behavior can be characterized through simple linear or quadratic models.

Accordingly, utilization of designs that can examine at least 100 factors that provide

maximum modeling flexibility is desirable.

Examination of Figure 48 suggests that 512 design point NO/B designs are

appropriate for these scenarios (note that NO/B stands for Nearly Orthogonal/Balanced).

Those designs are discussed in detail in Vieira et al. (2011) and Vieira et al. (2013),

which presents a mixed integer programming approach for the generation of experimental

designs for discrete and continuous factors. The ability of these 512 design point NO/B

designs to consider both discrete and continuous factors is vitally important when

considered large scale, complex systems. Because these types of systems may include

components that can only take defined, discrete values (ex: an on/off factor can only take

two values, a high/medium/low factor can only take three values, etc.) it is valuable to

use experimental designs created specifically for these types of factors. Vieira et al.

(2013) details the issues associated with choosing an experimental design created only for

continuous factors and rounding the values of each design point, specifically it reduces

the orthogonality of the designs. Additional information on the latest design and analysis

techniques for large-scale simulation experiments, as well as over 150 examples of their

application to problems in defense and homeland security can be found at the Simulation

Experiments & Efficient Designs (SEED) Center for Data Farming’s web pages at

harvest.nps.edu.

 127

Table 5 presents an updated linkage of the systems engineering products

supported after Step 4 (Model Definition) of the MBSE MEASA. Note that the sole focus

of Step 4 is creating external models and simulations of potential physical solutions

(meaning that the objects represented in both the external operational and system

synthesis models and simulations are defined by the physical solutions described by the

Physical Architecture SysML Diagrams developed in Step 3 of the MBSE MEASA).

This facilitates analysis of system performance beyond the capabilities of SysML

Parametric Diagrams and, after appropriate analysis of results is conducted, establishes a

quantitative linkage between operational MOEs and system design parameters as well as

between system design characteristics and system design parameters. Previously

developed SysML products define the activities and entities included in these models and

the experimental design techniques prescribed in this section guide the testing of these

models and simulations.

Table 5 Model Definition Support of Linkage of MBSE MEASA Steps to

Systems Engineering Products

 128

9. Model Analysis

While experimental design is vital to definition and analysis of all models and

simulations, the presentation of those analysis results is also extraordinarily important in

the context of modeling and simulation. The final step of the MBSE MEASA (Figure 49)

is presentation and analysis of the results of simulation models. The analysis assesses

how well various Physical Architecture combinations (from Step 3) satisfy the Functional

Architecture (Step 2) defined system performance. Sitterle et al. (2015) advocate this

approach, demonstrating an interactive tool that enables analysts “to quickly and

accurately assess and compare alternatives” supports consistent, analytical, traceable

decision making. Creation of a dynamic dashboard, as presented earlier in this research,

is a demonstrated method that supports the MBSE MEASA and facilitates traceable

decision making. Such an approach rapid visualizes of system level trade-offs and

facilitates discussion of potentially conflicting system requirements based on both

operational and system level models and simulations. As mentioned previously,

MacCalman et al. (2015) present modeling results for a U.S. Army simulation in a

dynamic fashion. That work, details instructions regarding the utility of dynamic decision

making displays, also guides the definition and creation of these displays. The objective

of this research is not to provide a formal definition of analysis procedures or instructions

for creation of dynamic decision making displays. Accordingly this research does not

present explicit guidelines, although the process prescribed in MacCalman et al. (2015) is

a valuable starting point.

 129

Figure 49 MBSE MEASA (Step 5)

Table 6 presents an updated linkage of the systems engineering products

supported after Step 5 (Model Analysis) of the MBSE MEASA is complete.

 130

Table 6 Model Analysis and Analysis Iteration Support of Linkage of

MBSE MEASA Steps to Systems Engineering Products

C. MBSE MEASA ITERATION

As mentioned in Chapter II, one of the major contributions of the MBSE MEASA

is an explicit focus on the iteration of the methodology to demonstrate not only how

system architecture supports system analysis, but also how system analysis results can be

incorporated into existing system architecture products to refine subsequent system

analysis. While there are numerous approaches to ensuring consistency within system

architecture products, within system models, and within system analysis results, the

MBSE MEASA presents a framework and guidelines for ensuring consistency across

these domains. To ensure consistency with the five steps of the MBSE MEASA, the

iteration of the methodology will focus on appropriate integration of system analysis

results into SysML products.

Recall that one of the primary emphases of the MBSE MEASA is that system

architecture and analysis must incorporate and examine system design variables, system

 131

operational variables, and system environmental variables. Equally importantly, the

MBSE MEASA emphasized that potential interactions between variables (either within

or between categories) must be recognized. Generally, this allows for nine potentially

impactful variable relationships that can be identified during system analysis that must be

represented in future iterations of the system architecture (assuming that the analyst and

stakeholders are interested in identifying these relationships explicitly, rather than using a

robust design approach to develop systems that are inherently robust to variation in

environmental and other uncontrollable variables). Table 7 presents a visual

representation of these nine potentially impactful cases, grouped according to the variable

type of interest and the analysis results. For brevity the cases are coded, Cases 1a, 1b, and

1c correspond to analysis results indicating that a single design, operational, or

environmental variable impacts system performance. Cases 2a, 2b, and 2c correspond to

analysis results indicating that there are interactions between design variables,

interactions between operational variables, and interactions between environmental

variables that impact system performance. Case 3a corresponds to impactful interactions

between design and operational variables, Case 3b corresponds to impactful interactions

between operational and environmental variables, and Case 3c corresponds to impactful

interactions between environmental and design variables. Note that the numbering is

introduced to aid organization and does not imply that Case 1 relationships are inherently

more important that Case 2 or Case 3 relationships.

 132

Table 7 Listing of Analysis Result-Variable Type Cases Requiring MBSE

MEASA Iteration

The classification of a variable as design, operational, or environmental is often

intuitive, but general definitions are necessary to provide clarity regarding the definition

of variables in the context of the MBSE MEASA. Recall that the MBSE MEASA

assumes that the system of interest is being examined within a simulation model, where

every variable is controllable (even variables such as the impact of the environment,

which are not controllable in reality, are controlled and specified in the simulation

model). The controllable nature of every variable within the simulation makes

classification of variables important. Sanchez (2000) and Santner, Williams and Notz

(2007) present variable definitions for simulation models, focusing primarily on whether

or not a variable that is controllable in the simulation model is practically controllable in

the real world environment. Accordingly, the MBSE MEASA follows a similar grouping

convention to the definitions presented in Sanchez (2000). Specifically, the MBSE

MEASA classifies design and operational variables as decision factors (other literature

classifies these types of variables as control, engineering, or manufacturing variables),

defined by Sanchez (2000) as factors “which are controllable in the real world setting

modeled by the simulation” (70). The MBSE MEASA further segments decision factors

 133

into design and operational variables, where a design variable refers to a design

parameter within the control of the systems engineer that describes the configuration of

the system, and an operational variable is within the control of the systems engineer and

describes the operation of the system. The MBSE MEASA relies on the Sanchez (2000,

70) definition of noise factors as “not easily controllable or controllable only at great

expense” to develop the characteristics of environmental variables. In the context of the

MBSE MEASA, an environmental variable is outside of control of the systems engineer

and potentially impacts the operation of the system.

1. Iteration of MBSE MEASA for Significant Main Effects

This section presents guidelines and illustrative examples demonstrating how

impactful main effects identified in Step 5 of the MBSE MEASA can be introduced in

future iterations of the MBSE MEASA. This section will provide three illustrate

examples, one describing appropriate integration of impactful design variables (Case 1a),

one describing appropriate integration of impactful operational variables (Case 1b), and

one describing appropriate integration of impactful environmental variables (Case 1c).

a. Iteration of MBSE MEASA for Impactful Design Variables

Case 1a corresponds to situations when simulation model analysis suggests that a

design variable has an impact on system performance. Because the MBSE MEASA

advocates the creation and definition of a comprehensive Requirement Diagram as Step 1

of the process, the integration of this result into a future iteration of the MBSE MEASA

is straightforward. This demonstration continues the example of the Active, Defensive

MCM system and provides an example of the procedure that can be used to integrate

such a result into a Requirement Diagram. This example assumes that analysis indicates

that the Probability of Detection has been identified through analysis as impactful and

that further analysis suggests that the Probability of Detection must be at least 0.80 for

the system to achieve acceptable performance. Figure 50 provides a visual representation

of how such a finding can be integrated into a SysML Requirement Diagram. Note that

the analysis snapshot is purely notional, as stated, this example demonstrates iteration

 134

when the effect of a given design variable is identified as potential impactful (in this case,

the Probability of Detection).

Figure 50 Integration of Impactful Design Variable in Subsequent

MBSE MEASA Iteration

 135

Note that Figure 50 presents a visual representation of the Requirement Diagram

presented in Figure 35, a notional analysis result that suggests that the Probability of

Detection should be set at a value greater than 0.80, and subsequently modifies the

Requirement Diagram to expand the property for “Detect Mines” to specify that it should

be at least 0.80.

b. Iteration of MBSE MEASA for Impactful Operational Variables

Case 1b corresponds to situations where simulation models analysis suggests that

an operational variable has an impact on system performance. Integration of such a result

may require additional alterations to the previously developed SysML products beyond

editing of properties in SysML Requirement Diagrams. Note that there are scenarios

where the integration of operational variables may mirror the example presented in the

previous section on design variables (for example, the percentage of a minefield that is

searched by one asset versus a second asset may be fixed in a SysML Requirement

Diagram following the same procedure as used for the Probability of Detection shown in

the design variable section). However, detailed integration of alterations for impactful

operational variables most likely requires simultaneous consideration of both the

Requirement Diagram and the Activity Diagram, which requires additional consideration

of the relationships specified for each system requirement. As mentioned in Chapter II,

Requirement Diagrams can represent containment, derive, or copy relationships to

expand requirements to requirements relationships as well as satisfy, verify, refine, or

trace relationships to relate requirements to system elements or activities. In particular,

the satisfy relationship is particularly useful to coherently integrate impactful operational

variables into future iterations of the MBSE MEASA. The satisfy relationship allows a

user to specify that a requirement is satisfied by a model element other than another

requirement. This allows a user to directly link a requirement (such as Detect Mines) to

an activity (such as Detect Mines). The “Detect Mines” activity can then be expanded

based on information contained in the “Detect Mines” requirement. Figure 51 presents an

example of the implementation of a Requirement Diagram that has been expanded using

a satisfy relationship (note that within the modeling software selected the satisfy

relationship has been re-termed specify. The properties associated with the specify

 136

relationship are exactly the same as the SysML satisfy relationship, future users may wish

to select an alternative modeling program that is completely SysML compliant, users of

CORE should be aware of this slight deviation from SysML convention. Note that this

example (and the examples for each subsequent case) assumes a similar analysis

procedure to the one highlighted for Case 1a has been conducted, but the analysis results

will not be presented for each case.

Figure 51 Integration of Impactful Operational Variable in

Subsequent MBSE MEASA Iteration (Requirement Diagram

Satisfied by Activity Diagram Details)

Each of the requirements shown is associated with an activity in the same manner

as the “Detect Mines” requirement and the “Detect Mines” activity. The “Detect Mines”

activity is expanded on the bottom right of Figure 51 to show the description, inputs,

outputs, and triggers for the activity. Particularly important is the “Hunt Strategy” trigger,

which specifies whether the activity utilizes the MCM-1 Sequence or the LCS Sequence

 137

(an operational variable) as well as the number of Detection Tracks utilized in the activity

(another operational variable). This explicit linkage between requirements and activities

ensures that any operational variable findings identified in previous versions of the

MBSE MEASA (such as a preference between the MCM-1 or the LCS or a preferred

number of Detection Tracks) can be integrated completely and consistently in future

iterations of the MBSE MEASA.

c. Iteration of MBSE MEASA for Impactful Environmental Variables

Case 1c corresponds to situations when analysis indicates that an environmental

variable has an impact on system performance. Environmental variables are outside the

control of the systems engineer, and therefore the user must take a more holistic view of

the system. Recall that Step 1 of the MBSE MEASA advocated creation of context level

system architecture products. This not only aided conceptual understanding of the system

of interest but also explicitly defined the inputs and outputs to the system as well as the

interactions between the system and the external environment. This facilitated

development of high level SysML Requirement Diagrams, positioning the system

requirements in terms of the broader operating concept. Because environmental variables

have broad applicability to the system of interest, it is easiest to incorporate them into

future iterations of the MBSE MEASA via higher level Requirement Diagrams (that is,

specify that an environmental condition exists within a higher level requirement, thereby

ensuring that it applies to each possible application of the system of interest). Figure 52

provides an example of the integration of an impactful environmental (in this theoretical

example analysis has indicated that the system must conduct minehunting in Sea States

0–4) variable for Detect Mines using a higher level requirement (Perform Minehunting

Operations).

 138

Figure 52 Integration of Impactful Environmental Variable in

Subsequent MBSE MEASA Iteration (Inclusion of Environmental

Condition in Higher Level Requirement)

After the Requirement Diagram has been expanded to include explicit reference

to the importance of the environment on the system, it can be explicitly added to the

SysML functional architecture products to ensure that it is properly represented in

subsequent external models. While it is possible to environmental considerations to

SysML Activity Diagrams (through a series of if-then decisions) or SysML Use Case

Diagrams (while not intuitive, the environment could be represented as an external actor

and its relationship with the system could be explicitly defined), the most thorough

representation of the relationship between the environment and the system of interest is

achieved through alterations to SysML Sequence Diagrams. Because Sequence Diagrams

explicitly represent what the system is doing, the ordering of activities, and the allocation

of those activities to physical elements (or blocks) it is easy to define the external

environment as a physical element that is checked at the beginning of each sequence and

 139

alters the properties of each subsequent activity within that sequence. Figure 53 provides

a visual representation of this type of addition to the Detect Mines activity.

Figure 53 Integration of Impactful Environmental Variable in

Subsequent MBSE MEASA Iteration (Inclusion of Environment as

First Event in Sequence Diagram)

Note that the Minefield Environment is now included as a Physical Entity that

activities may be allocated to within the Sequence Diagram. In this example a new

activity “Check Environmental Conditions” has been added and is allocated to the

environment. The activity produces an “Environmental Conditions Impact” that is used as

the trigger to the first activity in the sequence (note in this case the Sequence Diagram

actually represents two alternative loops so there are two potential first activities in the

sequence). Definition of the environment as a Physical Entity is primary enabler of

 140

inclusion of impactful environmental variables in subsequent iterations of the MBSE

MEASA. This allows for inclusion of activities that check the environmental conditions

at the beginning of any number of activities, which ensures that each of the sub activities

occur subject to any alterations to the environmental conditions. Note that this could be

implemented by including a series of “if-then” statements before every potential activity,

but this inclusion of the environment as a physical entity and the addition of an

environmental checking activity allows the impact of environmental conditions to

promulgate throughout an entire activity in a far more concise manner.

2. Iteration of MBSE MEASA for Significant In-Category Interactions

This section provides guidelines and illustrative examples for situations where

analysis suggests that there is a potentially impactful interaction between variables within

the same category. Case 2a describes situations where the impactful interactions occur

between design variables, Case 2b describes situations where the impactful interactions

occur between operational variables, and Case 2c describes situations where the

impactful interactions occur between environmental variables. Note that an interaction

between variables (of any type) suggests that the impact of an increase (or decrease) to

the value of one variable is different depending on the value of another variable. For

instance, the impact of an increase to the Probability of Detection of an MCM system

may be different depending on the number of passes that the system conducts through the

minefield (this corresponds to Case 3a, an interaction between a design variable, the

Probability of Detection, and an operational variable, the number of minefield passes). If

the Probability of Detection is set to some minimum value, additional minefield passes

may be required. Similarly, if the Probability of Detection is set to a maximum value,

fewer minefield passes may be required. The relationship can also be considered in the

opposite direction, where the ability to conduct a given number of minefield passes may

necessitate a certain probability of detection. The purpose of Cases 2a, 2b, 2c, 3a, 3b, and

3c is to provide guidelines regarding the integration of these types of analysis results

from one iteration of the MBSE MEASA into future iterations of the MBSE MEASA.

 141

a. Iteration of MBSE MEASA for Impactful Interactions between Design

Variables

Recall that iteration of the MBSE MEASA when individual design variables are

identified as potentially impactful requires alterations to existing Requirement Diagrams.

These alterations were straightforward and did not require alterations to any other SysML

products. Iteration of the MBSE MEASA when interactions exist between design

variables requires additional work. For example, consider an analysis result that suggests

that there is an impactful interaction between the probability of detection of an MCM

system and the maximum search speed of the MCM system. This cannot be implemented

within SysML through a simple alteration to the Requirement Diagram because the

appropriate probability of detection is now dependent on the maximum search speed (and

vice versa). Further, this cannot be implemented in SysML through alterations to either

the Detect Mines activity or the Intra Minefield Transit activity because analysis results

that identify potentially impactful interactions are not based on any assumptions of

sequence (the user cannot simply assume that the search speed can be set and the

probability of detection can be altered through an “if-then” statement simply because the

transit activity occurs first because the interaction may imply that a reduced maximum

search speed is sufficient provided the system has an increased probability of detection).

Accordingly, integration of impactful interactions between design variables requires a

user to alter the system operation at a level of abstraction that includes both of the design

variables of interest. In this case, this means that the SysML products must be altered for

the complete Minehunting sequence, rather than the specific activities associated with

Mine Detection (where the Probability of Detection and the Maximum Search Speed

could be altered directly if there were no interaction between those variables). Figure 54

provides a visualization of the revised Sequence Diagram for Minehunting.

 142

Figure 54 Integration of Impactful Interactions Between Design

Variables

Note that an additional activity is now included in the Minehunting Sequence

Diagram. The previous version of the Sequence Diagram did not include an initial

activity used to define appropriate system configuration. This activity specifies

appropriate values for each of the activities within Detect Mines. This is preferable to

supplementing the Detect Mines with a series of “if-then” statements (while it would be

possible to add a series of these statements for every design variable interaction it could

become untenable if there were a simple number of design variable interactions).

b. Iteration of MBSE MEASA for Impactful Interactions between

Operational Variables

Case 2b describes scenarios where analysis results suggest that there are impactful

interactions between operational variables. Once again, this cannot be implemented

within SysML through straightforward alterations to Requirement Diagrams or through

additional “satisfied by” relationships within Requirement Diagrams. As with Case 2a,

impactful interactions between operational variables requires the user to consider the

 143

system at a level of abstraction above the variables that the analysis has identified as

having an impactful interaction. As an example, consider an analysis result that suggests

that there is an impactful interaction between the number of passes that the system

conducts through the minefield and the percentage of the minefield that is searched by

surface assets (rather than airborne assets). As with the Case 2a, there is no sequence

implied by the analysis result that there is an interaction between these variables (a user

cannot just set the number of minefield passes and subsequently select a preferred

minefield search percentage). Accordingly, the impact of the interaction between the

operational variables must be incorporated at a higher level of abstraction. It may also be

useful to establish an external “Command and Control (C2)” physical entity that manages

each of the operational decisions (this is shown in Figure 55). In the example the C2

entity is responsible for the Provide Command and Control activity, which specifies an

MCM Strategy for Active Defensive MCM Operations. This MCM Strategy is

decomposed into a Hunt Strategy, Localization Strategy, etc., which is then used as an

input to each of the sub activities to Active Defensive MCM Operations. In this case, the

C2 specifies a broader MCM Strategy, which includes the Hunt Strategy that is utilized

for Mine Detection, which can describe the appropriate operational decisions regarding

the number of minefield passes and the surface search percentage.

 144

Figure 55 Integration of Impactful Interactions Between Operational

Variables

 145

c. Iteration of MBSE MEASA for Impactful Interactions between

Environmental Variables

Case 2c describes situations where analysis results suggest that an interaction

between environmental variables has a potential impact on system performance. While

interactions between design and operational variables required substantially different

strategies compared to situations where only a single variable impacted system

performance the integration of interactions between environmental variables closely

mirrors the integration of a single impactful environmental variable. Recall that Case 1c

advocated the definition of an environmental checking activity at the beginning of any

activity sequence where analysis indicated that an environmental variable impacted

system performance. If multiple environmental variables impact system performance the

same strategy may be used because the introduction of the environmental checking

activity at the beginning of the sequence ensures that the outputs may be directed to any

subsequent activity and ensures that the result of the activity promulgates throughout the

entire sequence. For example, if there is an interaction between the impact of sea state

and the impact of current (or drift) conditions, both of these may be included in the

Check Environmental Conditions activity (just as in Case 1c) and the output can inform

any associated subsequent activity.

3. Iteration of MBSE MEASA for Significant Between Category

Interactions

This section discusses situations where analysis suggests that there are potentially

impactful interactions between different variable types. Case 3a describes situations

where the impactful interactions occur between design variables and operational

variables, Case 3b describes situations where the impactful interactions occur between

operational variables and environmental variables, and Case 3c describes situations

where the impactful interactions occur between environmental variables and design

variables.

 146

a. Iteration of MBSE MEASA for Impactful Interactions between Design

Variables and Operational Variables

Case 3a describes scenarios where analysis indicates that an interaction between

and design and operational variable impacts system performance. Continuing the

variables used in previous examples, this example utilizes the probability of detection as

the design variable and the number of passes through the minefield as the operational

variable. To ensure maximum applicability of the MBSE MEASA, note that the

sequencing should not be assumed. Even though the focus is the design of the system,

and therefore on the definition of design variable values, it is imprudent to design a

system that can only operate in certain operating systems. Likewise, it is unrealistic to

assume that, based on a given operational decision; it will be possible to alter the value of

a design variable. However, there are numerous mechanisms within SysML to ensure that

there is a process for including the interaction in both possible directions. In Figure 56 the

activity for Detect Mines directly precedes the activity for Count Number of Detection

Tracks. The Detect Mines activity produces an item (MCM Detections) that directly

informs the activity for Count Number of Detection Tracks. Note that (as developed in

Case 1b) this activity diagram incorporates the Hunt Strategy on the left of Figure 56.

This allows a user to specify the appropriate number of detection tracks that will be

conducted, which either can be held constant or updated based on the input from the

Detect Mines activity. Furthermore, because the Hunt Strategy is inputted at the

beginning of the activity sequence, it can update the procedure for Detect Mines. The

inclusion of a an operational consideration at the beginning of an activity sequence (in

this case, the Hunt Strategy, as developed in Case 1b) and the direct linkage of the design

variable to the operational variable allows a user to account for any interactions between

the variables.

 147

Figure 56 Integration of Impactful Interactions Between Design and

Operational Variables

b. Iteration of MBSE MEASA for Impactful Interactions between

Operational Variables and Environmental Variables

Case 3b describes situations where there is an impactful interaction between

operational and environmental variables. Recall that the integration of impactful

environmental variables focused on the addition of the system environment as a physical

entity that performed an activity that provided environmental conditions to each of the

subsequent activities in a sequence. A similar technique is valuable in Case 3b, however

additional work is necessary. As emphasized, it is inappropriate to assume sequencing

when updating SysML products based on analysis results that suggest impactful

interactions. In Case 3b this is particularly important, since environmental conditions can

impact system operation and system operation can impact environmental conditions. The

definition of the system environment as a physical entity within the system allows a user

 148

to model each of these potential situations. Figure 58 provides an example of a

supplemented sequence diagram for mine detection where prior analysis suggested that

the interaction between the sea state and the number of minefield passes has an impact on

system performance. Note that the environmental condition (in this case the sea state) is

checked before and after the operational decision activity (the decision on the number of

minefield passes). This allows a user to specify before the operational decision any

alterations that should be made based on the environmental condition, and also allows the

user to update the environmental condition based on changes to the operational decision.

Note that Figure 57 demonstrates this alteration for both the MCM-1 and the LCS

sequences.

 149

Figure 57 Integration of Impactful Interactions Between Operational

and Environmental Variables

c. Iteration of MBSE MEASA for Impactful Interactions between

Environmental Variables and Design Variables

The integration of analysis results that suggest that there is an impactful

interaction between environmental and design variables (Case 3c) is less cumbersome

than Case 3b. While it is possible to modify the system operational implementation

 150

continuously based on environmental conditions, the system design typically cannot be

continuously modified throughout a simulation model (or a real life operation) to suit

altered environmental conditions. Accordingly, Case 3c can be implemented similarly to

Case 1c, an activity should be added to any sequence where a potentially impactful

interaction exists and the impact of that altered environmental condition should be

incorporated within that activity. Because more detail is available in Case 3c scenarios

than was available in Case 1c scenarios (the user knows specifically what design

variable-environmental variable interactions impact system performance) it may be

useful to have the environmental condition directly feed the design variable of interest

(this should not make any difference in terms of the underlying SysML model but may

aid communication to stakeholders). Figure 58 provides an example within a mine

detection sequence where the sea state is modeled as an environmental condition that

directly feeds the activity for mine detection (which models the design variable for the

probability of detection).

 151

Figure 58 Integration of Impactful Interactions Between

Environmental and Design Variables

Systems engineering recognizes the importance of iteration. The need to feed

subsequent processes based on past results is emphasized throughout the systems

engineering literature. However, the MBSE MEASA goes beyond the simple

acknowledgment that iteration is important. The MBSE MEASA considers a broad range

 152

of potential variables (Design, Operational, and Environmental). The MBSE MEASA

also recognizes that interactions between these variables are inevitable and likely to have

potential impacts on system performance. Accordingly, the MBSE MEASA provides

guidelines and illustrative examples for iteration of the methodology. These guidelines

and examples should allow any user who has followed the MBSE MEASA and

developed SysML architecture products, constructed a simulation model, and conducted

analysis of the modeling results to update the previously developed SysML architecture

products for a wide range of potential analysis results.

 153

IV. MBSE MEASA DEMONSTRATION AND ANALYSIS

In order to highlight the expected utility and applicability of the MBSE MEASA,

this research presents an analysis comparing the operational effectiveness of future and

current U.S. Navy mine warfare systems. As mentioned, this analysis leverages an

operational simulation developed by Becker et al. (2014). The focus of the original

research was comparing the performance of future U.S. mine warfare capabilities

(evaluated through a simulation of the LCS in a mine warfare operation) against current

U.S. mine warfare capabilities (evaluated through a simulation of the MCM-1 in a mine

warfare operation). The research focused on the ability of both systems to clear a

minefield in a representative operational scenario where the MCM systems began the

operation at the potential minefield and each system was only capable of making one pass

through the minefield. This demonstration adds four additional variables to the earlier

investigation, specifically considering the need for each system to transit to the minefield

prior to commencement of minehunting activities and examining the impact of making

multiple passes with each system within the minefield. Note that, as for most detailed

analyses, the analysis of system performance may be highly dependent on the established

initial conditions. A major advantage of the MBSE MEASA is the ability to capture these

initial conditions in a standardized set of SysML products, which can be presented to

stakeholders to determine relevance, operational feasibility, and correctness and can also

be rapidly updated to reflect any alterations to guidance or stakeholder preference. As an

important note, this demonstration will focus primarily on the development of an

operational simulation model (rather than synthesis models) and will only present a single

iteration of the methodology. This should not understate the importance of iteration,

recall that Chapter III presented illustrations of the iteration procedure for the full range

of potential analysis results.

A. SYSTEM DEFINITION AND SYSML PRODUCT GENERATION

As mentioned in Chapter III, this research focuses on Active, Defensive

minehunting and neutralization operations for influence mines between 40–200 feet

below the surface. After the system enters the minefield, those operations are typically

conducted by a linear sequence of activities, namely: Mine Detection, Mine

 154

Classification, Mine Identification, and Mine Neutralization. Based on the MBSE

MEASA, a set of system requirements describes what a system must do in terms of each

of these activities. Furthermore, based on the description of the full set of MCM

challenges outlined NWP 3–15 and PEO LMW Instruction 3370.1A, the additional

activity of transit to the minefield is included in this analysis.

Analysis of that MCM doctrine dictates the functions that satisfy each system

requirement. These functions then define an operational model of minehunting and

neutralization operations. The system architecture also defines the physical elements that

satisfy those requirements, which supports the operational model as well as any synthesis

model (cost, physical, etc.) of the system. Simulation and analysis of these models

describes the set of systems that best satisfy the initial set of requirements. Iteration of the

process evaluates those requirements in more detail.

1. Requirements Analysis

As demonstrated in Chapter III, the MBSE MEASA begins with creation of a

SysML Requirement Diagram. Chapter III presented an example Requirement Diagram

that detailed the system requirements for the minehunting capability of the MCM system.

A similar diagram (Figure 59) presents a SysML Requirement Diagram for the additional

logistics requirements that exist for a MCM system.

Figure 59 SysML Requirement Diagram: Perform Logistics

Functions

 155

Figure 59 presents an overview of the requirements associated with system

operations management. System operational models must represent these requirements.

Specifically, operational models must represent (and potentially vary) transit to the target

area. Furthermore, a tow speed must be modeled, streaming of the search and

neutralization gear must be modeled (as a note, “streaming” is defined as the time to

deploy MCM equipment prior to entering a minefield), recovery of the search and

neutralization gear must be modeled, a turnaround time must be modeled once the system

reaches the edge of the minefield, transit from the staging area to the minefield must be

modeled, and operational availability must also be modeled. Each of these operations

management requirements will be incorporated as variables into the external simulation

model to determine their impact on the overall system effectiveness. Functional

Architecture products that capture the behaviors necessary to support these requirements

(and the requirements for Mine Hunting, presented in Chapter III) must provide

additional detail regarding the representation of these requirements in the simulation.

2. Functional Architecture

As presented in Chapter III, the purpose of Functional Architecture development

is to describe the system of interest in terms of how it will satisfy the previously defined

set of system requirements. This prompts development of Activity Diagrams (which

present not only activities, but also external objects that trigger each activity), Sequence

Diagrams (which defines the ordering of system activities as well as the interactions

between system objects), Use Case Diagrams (which describes the set of actors that

conduct each activity, as well as potential extensions of each activity), and State Machine

Diagrams (which describe how alterations to system operating conditions alter the

implementation of each activity). Note that it is necessary to define some of the physical

elements that comprise a system (as well as external physical elements) but all effort

should be made to remain as solution neutral as possible during the creation of functional

architecture products to ensure that the range of potential solutions are not unnecessarily

restricted. For example, in the case of the MCM-1 Avenger, the exact physical system

that will conduct Airborne Mine Detection is known (the AN/AQS-24A) because the

system has already been built. However, as a general rule for systems that have not

 156

already been built, this level of detail should not be included until physical architecture

products are developed. Within the functional architecture it is sufficient (and preferable)

to describe that element as a Sensor System. Given that these SysML products is intended

to be used in conjunction with the SysML products developed in the previous chapter to

define a discrete event simulation for an Active, Defensive MCM system, the functional

architecture products that are most relevant are Activity Diagrams. Recall that Active,

Defensive MCM operations are defined by a discrete sequence of: transit to minefield,

detect mines, classify mines, reacquire mines, identify mines, and neutralize mines. In

Chapter III the high level Activity Diagram defined that decomposition from Active,

Defensive MCM Operations to Minehunting Operations to Detect Mines was shown, but

did not provide sufficient detail regarding Mine Classification, Reacquisition,

Identification, and Neutralization to enable development of a simulation model. Figure

60, Figure 61, and Figure 62 present those activities in more detail to guide this

development.

Figure 60 Activity Diagram (Classify Mines)

 157

Figure 61 Activity Diagrams (Reacquire Mines & Identify Mines)

Figure 62 Activity Diagram (Neutralize Mines)

 158

Note that while this research focuses on presentation of Activity Diagrams, the

Sequence Diagram and State Machine Diagram presented in Chapter III specified the

ordering of the Activity Diagrams within the discrete event simulation (as a practical

note, it is far easier in the CORE software to map physical components to functions

within Sequence Diagrams than within Activity Diagrams). The Use Case Diagram was

necessary to establish the actors that performed each high level activity, but was less vital

to the development of the external simulation. Note that Use Case Diagrams are often

vitally important to systems where multiple missions must be defined and exercised, as

would be the case if this research were expanded beyond Active, Defensive MCM

operations to include other mine warfare operations, as detailed previously.

3. Physical Architecture

As prescribed by the MBSE MEASA, completion of the set of Functional

Architecture products (specifically the Activity, Sequence, Use Case, and State Machine

Diagrams) prompts the development of Physical Architecture products (Block Definition

and Internal Block Diagrams). In this case, Chapter III presents a comprehensive Block

Definition Diagram (Figure 45). As noted, definition of the Block Definition Diagram

terminated at the system level, for systems that are less well defined it may be necessary

to expand Block Definition Diagrams to include subsystems, system components, and

system end items. As mentioned, physical architecture definition should proceed to a

sufficient level to develop a model or simulation of the system of interest, which requires

that the each system function can be allocated to one or more system components. While

this is not evident from an isolated study of the Block Definition Diagram, considering

the diagram simultaneously with the functional architecture products (which describe

system components in a solution neutral form) as well as Internal Block Diagrams

confirms that each system function is allocated to appropriate system components.

Figure 46 presented an Internal Block Diagram for the MH-53E, which showed

that the MH-53E was capable of completing the full detection through neutralization

sequence of Active, Defensive MCM operations (albeit with a required change to the

supporting subsystems) for MCM-1 configurations. Figure 63 presents an Internal Block

 159

Diagrams for the LCS MCM system. The Internal Block Diagrams shows that it is

necessary for the LCS to employ multiple systems to complete the full sequence of mine

detection through neutralization. Specifically, the RMMV completes mine detection and

classification while the MH-60S completes mine identification and neutralization (note

that a further decomposition of the Internal Block Diagram focused solely on the MH-

60S would suggest that the MH-60S requires a supporting external system to conduct

mine neutralization, which in this case is assumed to be the AN/AQS-25 Archerfish

system (this level of detail was shown in Figure 45). Note that organizational blocks are

once again shown to aid visualization; these organizational blocks are not necessary

elements of Internal Block Diagrams but are shown to demonstrate the segmenting of

physical systems that conduct each mine warfare activity. Those blocks shown in grey

(the MQ-8B Fire Scout and the Unmanned Influence Sweep System) are unrealized

systems (at least in terms of utilization for mine countermeasures operations) expected to

provide future functionality that are beyond the scope of this study but are included for

completeness and to facilitate better comparison with the Internal Block Diagrams shown

for the MCM-1 Avenger configurations.

 160

Figure 63 Internal Block Diagram (LCS MCM Systems)

It is certainly difficult to provide a complete demonstration of the utility of

SysML architecture products through presentation of static figures. While these figures

do provide a defined picture of the major functional and physical properties of potential

systems, it is difficult to present the level of detail associated with the connections

 161

between each of the diagrams. Much of the value of a coordinated set of architecture

products is that changes to system requirements, functions, elements, etc., in one diagram

will promulgate through each diagram, substantially reducing the need for rework and

providing nearly instantaneous checks on consistency between the functional and

physical representations of a system. While this is certainly a limitation of architecture

presentation through static figures, a sufficient level of detail has been presented to guide

development of an external model of Active, Defensive MCM operations based on the

SysML architecture products. Recall that the focus of this chapter is to demonstrate the

importance of aligning an external model or simulation with previously developed

architecture products. Accordingly, the next section will provide an overview of the

external model built in support of this research with a focus on ensuring that each of the

functions and activities, as well as the appropriate physical elements, are represented

properly in the simulation model.

B. MODEL DEFINITION

Examination of the set of functional and physical architecture products defined in

the first three stages of the MBSE MEASA serve as the primary guidance for the

development of an external model of Active, Defensive MCM operations. The functional

architecture products have defined the set of behaviors that must be represented in the

simulation and the physical architecture products have defined the set of systems and

subsystems that must be represented in the simulation. As mentioned, the choice of

simulation approach is often highly dependent on the expertise of the user, in this case

familiarity with discrete event simulation, as well as a system of interest that performs a

clearly defined sequence of events, led to the selection of a discrete event simulation to

model Active, Defensive MCM operations.

1. Model Representation

Chapters III and IV presented the set of functional behaviors and activities that

must be represented in the model using a set of SysML products. Similarly, another set of

SysML products presents the systems and subsystems represented in the discrete event

simulation. Detailed examination of those SysML products suggests that the discrete

 162

event simulation must represent three distinct stages of operation: transit to and from the

minefield, minehunting, and mine neutralization. Furthermore, physical systems must

exist in the simulation to conduct transit, mine detection, mine classification, mine

identification, and mine neutralization. The SysML products are the basis for model

construction; however additional clarification may be required for the reader unfamiliar

with SysML products or discrete event models. Appendix D presents a mapping of

SysML products to the external simulation. To aid with description of these process and

the related physical systems within the discrete event simulation, Figure 64, Figure 65,

Figure 66, and Figure 67 provide a visual representation of each stage of operation.

Figure 64 Transit to the Minefield and Minefield Definition

As prescribed by the system architecture, the operation begins with transit to the

minefield. Note that while Figure 64 shows a notional operational environment, the

simulation varies the total transit distances and transit speed within the boundary

conditions specified by Figure 64 (increased detail will also be shown in Table 8 and

Table 9) to ensure that the results are as generalizable as possible. To facilitate

 163

comparisons between system alternatives the characteristics of the minefield are constant.

The simulation creates the minefield by assigning a random x and y coordinate to 400

non-mines and 100 mines, which are the entities within the discrete event simulation.

Note that this constant specification of the minefield means that the application of the

analysis results should be restricted to similar operational scenarios. In this case, the

specific operational scenario was chosen after discussion with subject matter experts

suggested that this was a stressing implementation of a likely operational scenario. That

said, it is important to note that, as demonstrated by Allen, Buss, and Sanchez (2004),

environmental factors such as current speed, current offset, and range from the sensor to a

mine may also have a substantial impact on system performance. The simulation does not

include these factors, but investigation is possible in future work. Several other

assumptions and limitations, as presented in Becker, et al. (2014) may be of interest and

may restrict the applicability of the results, particularly:

1. The only mines present would be bottom mines in water deeper than 200

feet (Becker 2014, 154)

2. Sea state, weather, water visibility, and sea floor type were not modeled

3. Each target is only considered a single time (the sensor is modeled as a

“cookie cutter” sensor). This is based on SME opinion that the search

speed is slow enough and the tracks are spaced closely enough that each

target can be detected in a single instance and that any target that is missed

can be ignored

The system then transits to a staging area located several miles from the minefield

(the distance from the staging area to the minefield as well as the transit speed from the

staging area to the minefield are varied). After minefield definition and transit to the

minefield is complete, the simulation moves to the detection function. Note that to this

point the simulation models the MCM-1 configurations and the LCS simulations exactly

the same; however, each configuration is represented differently in the discrete event

simulation after this point due to the variations in the physical entities that conduct mine

detection, classification, reacquisition, identification, and neutralization operations.

Specifically, MCM-1 configurations utilize multiple systems (the MCM-1 Avenger and

the MH-53E) to conduct each stage of the operation while the LCS configurations utilize

one system (the RMS) to conduct mine detection and classification and a second system

(the MH-60S) to conduct mine reacquisition, identification, and neutralization. Figure 65

 164

and Figure 66 provide visual representations of the simulation implementation of the

MCM-1 configurations, while Figure 67 provides a visual representation of the

simulation implementation of the LCS configurations. As mentioned, Appendix D

presents a more detailed representation of each of those figures within the discrete event

modeling software (ExtendSim).

Prior to the commencement of mine detection, the simulation further defines the

minefield by varying the portion of the minefield that will be searched by the MCM-1

Avenger and the portion that will be searched by the MH-53E (note that this will not be

necessary for the LCS configurations, as only one system performs mine detection). This

is highlighted in Figure 65 (which assumes a that half the minefield is searched by the

MCM-1 Avenger and half the minefield is searched by the MH-53E) where the y-

coordinate on the right side of the figure is specified as the “Surface Search Percentage,”

and is later varied from 0.30 to 0.70.

Figure 38 and Figure 60, which presented Activity Diagrams for Mine Detection

and Mine Classification, are the basis for the set of events defined in the simulation. In

general, one or more simulation variables are associated with each event. Note that there

is no system movement for the MCM-1 configurations between mine detection and mine

classification; therefore Figure 65 presents detection and classification happening at each

point in the minefield. The simulation implements a sequence where each search system,

proceeds from left to right along a track, stopping at each potential mine and identifying

it as either a MILEC or a non-MILEC. The simulation models detection of each potential

mine, and proceeds to mine classification for those potential mines identified as MILECs.

The MILECs are then classified as either MILCOs or non-MILCOs, the list of which is

then saved for PMA. In the portion of the minefield being covered by the MCM-1

Avenger, the system proceeds with mine neutralization. In Figure 65, the lower half of

the region is searched by the MCM-1 Avenger, which completes the full sequence of

detection through neutralization, and the top half of the region is searched by the MH-

53E, which completes only mine detection and mine classification. Note that in the

example shown, the MCM-1 Avenger only requires a single sortie but the MH-53E

returns to the staging area, because the search sequence requires two sorties to complete

 165

(the simulation model varies the Sortie Time and it is different for each simulation run).

As mentioned, one or more variables are associated with each event, the variables

associated with mine detection and classification are: the search speed, the probability of

mine detection, the probability of correct classification (for both MILCOs and non-

MILCOs), the time to stream and recover the search gear, the number of tracks the

system will complete per nautical mile, the time to turn around to begin a new track, the

duration of each mine detection sortie, and the maintenance time required at the end of

each sortie.

Figure 65 Detection and Classification: MCM-1 Configurations

After PMA has created a list of the MILCOs that must be reacquired for

neutralization, both the MH-53E and the MCM-1 Avenger proceed to travel to each

target and conduct a sequence of reacquisition, identification, and neutralization. Again,

the percentage of the targets engaged by each system is varied. Each system is assigned a

percentage of the MILCOs to neutralize, and a nearest neighbor algorithm dictates the

sequence of MILCOs engaged by each system. If either the MH-53E or MCM-1 Avenger

is required to return to the staging area during this portion of the simulation (due to the

number of neutralizers carried on the system) the nearest neighbor algorithm resets, using

 166

the staging area as the starting point (in Figure 66, this is shown for the top portion of the

region, searched by the MH-53E, but not for the bottom portion of the region, searched

by the MCM-1 Avenger). The full set variables associated with mine identification and

neutralization are: the probability of reacquisition, the probability of identification (for

both MILCOs and non-MILCOs), the probability of neutralization, the time to deploy and

recover the reacquisition, identification, and neutralization (RI&N) gear, the time for

reacquisition and identification (defined with both a mean and a standard deviation,

assuming a normal distribution), the time for neutralization (defined with both a mean

and a standard deviation, assuming a normal distribution), the speed of the neutralizers,

the portion of the MILCOs neutralized by the MCM-1, and the portion of the MILCOs

neutralized by the MH-53E.

Figure 66 Identification and Neutralization: MCM-1 Configurations

Recall that while each of the systems used in the MCM-1 configurations are

capable of conducting the full sequence of mine detection through neutralization, the

LCS configurations use two separate systems for each portion of the operation. The

RMMV conducts mine detection and classification, after which the MH-60S conducts

mine reacquisition, identification, and neutralization. For the purposes of the simulation,

 167

the RMMV operates similarly to the MH-53E in the first stage of MCM-1 configuration

simulations, beginning at the bottom left of the minefield and proceeding to the right,

conducting mine detection and classification for each potential mine. Once the system

has reached its maximum sortie time, it transits back to the staging area. This prompts the

PMA sequence, which creates a list of targets for the MH-60S. The MH-60S then

operates similarly to the MH-53E in the second stage of the MCM-1 configuration

simulations, proceeding to each target as prescribed by a nearest neighbor algorithm and

conducting mine reacquisition, identification, and neutralization. The LCS simulation

uses the same general set of variables as the MCM-1 simulations (although fewer total

variables are required because the LCS simulations do not require values for airborne

mine detection or classification or values for surface mine reacquisition, identification, or

classification). Figure 67 presents a visual representation of the simulation model for the

LCS configurations, where the MH-60S is conducting mine neutralization activities in an

area previously searched by the RMMV.

Figure 67 Detection-Neutralization Sequence: LCS Configurations

 168

Table 8 and Table 9 present a full list of variable names, maximum values, and

minimum values (discrete variables are denoted using asterisks). To aid organization, the

functions and activities are grouped into three broad categories as defined previously in

the MBSE MEASA: Design Variables, Operational Variables, and Environmental

Variables. Note that for presentation the set of design variables has also been segmented

into surface and airborne design variables. The variables are defined for each model:

MCM-1 Avenger Configurations and LCS Configurations.

 169

Table 8 Input Variable Summary: MCM-1 Configurations

 170

Table 9 Input Variable Summary: LCS Configurations

 171

2. Experimental Design Selection

The Active, Defensive MCM operation discrete event simulation is characterized

by 51 input variables for the MCM-1 Configurations and 32 input variables for the LCS

configurations (as noted in the previous section, the difference arises from the operating

procedures of each configuration, for example the LCS does not conduct airborne mine

detection, therefore the variable for the probability of airborne mine detection is not

needed for the LCS configurations). Per Figure 48 (presented in Chapter III), utilization

of a 512 design point NOB design is well suited for this situation. These designs allow

for both discrete and continuous variables, provide excellent space filling properties

across the design space, and allow for maximum flexibility during model fitting after the

simulation has been run.

Vieira et al. (2011) provides a summary of the importance of minimal correlation

and minimum imbalance for a space filling design with both discrete and continuous

factors. As a brief review, designs with correlations between factors introduce the

possibility of mischaracterizing the relationship between input variables and output

variables. Accordingly, designs with near zero correlation between columns of the

experimental design matrix are preferred. Equally important when a simulation must

consider both continuous and discrete variables is the balance between columns of the

experimental design matrix. As presented in Vieira et al. (2011), when a design intended

to be used solely for continuous factors is used for discrete factors, rounding of each

design point is required. While some rounding may be acceptable, this rounding has the

potential to increase the correlation between columns of the experimental design matrix.

The design methodology presented in Vieira et al. (2011) defines a procedure for creating

designs for both continuous and discrete factors and presents an imbalance criterion,

where designs with near zero imbalance between columns of the experimental design

matrix are preferred. A scatterplot matrix for the ten surface search variables for the

MCM-1 configurations variables is presented in Figure 68 to provide visual confirmation

that the design provides adequate space filling between variables, the correlation and

space filling are subsequently assessed numerically. Notice that eight of the variables are

continuous; therefore nearly all of the space is filled with design points. Two variables

 172

(Number of Tracks per Nautical Mile and Number of Minefield Passes) are discrete

variables, and are therefore only tested at six and three levels, respectively. Examination

of the full correlation matrix showed a maximum absolute pairwise correlation of 0.0266

and a maximum imbalance of 0.1015, suggesting that correlation between input variables

and imbalanced testing of discrete variables is not an issue for this design.

Figure 68 Scatterplot Matrix (First Ten Simulation Variables)

 173

Each of the 512 design points prescribed by the NOB designs was replicated 30

times for each model. This resulted in a total of 15,360 runs for each model and an

overall total of 30,720 model runs. This replication of design points is important for

stochastic simulations, and allows for an examination of the variability at each design

point within each model (if that is also of interest).

C. MODEL ANALYSIS

The second goal of this dissertation research is to demonstrate the utility of the

MBSE MEASA through an analysis of a U.S. Navy system. In particular, this research

analyzes the operational effectiveness of the MCM-1 Avenger MCM System and the

LCS MCM System. Per the MBSE MEASA, the goal of that analysis is to establish a

relationship between system design parameters (as well as operational and environmental

factors) and operational MOEs.

1. Effectiveness Definition

As presented earlier in this chapter, the MCM simulation model assesses the

ability of different MCM configurations to complete an Active, Defensive MCM

operation. Accordingly, measures of effectiveness are required that quantify the mission

accomplishment capabilities of the system in this environment. Detailed review of mine

warfare guidance, in particular NWP 3–15, suggests that traditional MCM metrics focus

on the idea of “residual risk,” which is informally defined as the probability that

something remains in the minefield. This naturally leads to the first measure of

effectiveness used in this analysis, specifically the percentage of mines cleared. This is

also the basis of the traditionally used mine countermeasures metric, the area coverage

rate sustained (ACRS), which is defined as the ratio of the area covered during an

operation and the operational duration. Becker et al. (2014) utilize these metrics and

demonstrate that the probabilities of detection, classification, identification, and

neutralization dominate performance in terms of percent clearance and ACRS. However,

while these metrics capture the idea of “residual risk” quite well, the broad range of

values assigned to the probabilities of detection, classification, identification, and

neutralization may result in a compounding of error if the probabilities modeled do not

 174

correspond to the true performance of the systems of interest (recall that utilizing a broad

range is still considered preferable to using actual performance data, which would result

in classification of the results). In order to conduct analysis that reduces the impact of the

potential compounding of error a new metric is introduced, specifically the probability

that the system achieves 90% detection of mines in the minefield. This metric captures

the idea of residual risk (the probability that a mine is undetected) and also highlights the

potential impact of multiple passes through the minefield. Furthermore, while the

potential issue of an incorrect specification of detection probability remains; incorrect

specification of classification, identification, and neutralization probabilities does not

compound the issue.

1. Percent Clearance

2. Area Coverage Rate Sustained

3. Probability of 90% Detection

Analysis of these three measures of effectiveness aligns with the guidance

specified in standard mine warfare guidance. Use of these three measures also tailors the

analysis to capture the full range of behaviors specified in the architecture products and

also acknowledges the potential limitations of the simulation model resulting from the

choice not to input classified system design parameter data.

a. MCM-1 Model Analysis

Analysis of the MCM-1 model determines the input variables that have the

greatest impact on each of the three output variables presented earlier. Initial analysis of

the Percent Clearance metric show similar results to the previous study, which suggest

that the probabilities of detection, classification, identification, and neutralization have a

substantial impact on the percentage of mines cleared. Regression analysis (Figure 99,

Figure 100, and Figure 101 in Appendix E) shows that the number of passes through the

minefield (an operational variable) has a substantial impact on each of the Operational

MOEs.

This analysis also explores the impact of multiple passes through the minefield to

better characterize the variables that have the largest impact on system performance.

Given that the regression analysis suggests that there is little difference between

 175

conducting two or three passes through the minefield, these simulation runs are grouped

and compared to the simulation runs conducting only one pass through the minefield.

Figure 69 presents two histograms that reinforce the difference between configurations

conducting multiple minefield passes and configurations conducting only a single

minefield pass. It also demonstrates that the approximately 4% increase in Percent

Clearance can be seen across the interquartile range and at the maximum Percent

Clearance values.

Figure 69 Histogram Comparison of Percent Clearance for Single

versus Multiple Minefield Passes (MCM-1 Configurations)

While multiple minefield passes demonstrate some potential value in terms of

percent clearance, multiple passes are likely associated with some increase to operational

duration and cost. Examination of histograms comparing the performance for each

potential configuration in terms of the second metric of interest, the Probability of 90%

Detection, suggests a more distinct difference between the configurations (Figure 70).

 176

Figure 70 Histogram Comparison of Probability of 90% Detection for

Single versus Multiple Minefield Passes (MCM-1 Configurations)

Initial data examination suggests that the selection of Probability of 90%

Detection is a potentially illuminating measure of effectiveness beyond the Percent

Clearance for this simulation. Examination of Figure 70 shows that configurations

conducting multiple minefield passes increase the Probability of 90% Detection by 55%.

Perhaps more importantly, the median Probability of 90% Detection for configurations

conducting multiple passes is 100%.

While the realization that multiple passes through the minefield improves system

performance is not shocking, it is useful for two reasons. First, from a practical

perspective, the stark difference between scenarios where only one minefield pass is

conducted and scenarios where multiple passes are conducted may be a useful

demonstrator of the importance of allowing time to conduct Active, Defensive MCM

Operations. Second, the objective of the Model Analysis step of the MBSE MEASA is to

identify feasible system configurations. The breadth of the operational simulations

advocated by the MBSE MEASA, which consider not only system design parameters, but

 177

also operational and environmental factors, can complicate this identification. This can

present challenges when presenting results because it is possible to consider these factors

in either order. It is possible to hold operational and environmental factors constant and

examine the impact of changes to the system design parameters to identify preferred

system configurations for a specific implementation, and it is also possible to hold the

system configurations constant and examine the impact of changes to system operational

implementation to identified preferred methods of operation given a constant system. A

third approach, called robust design, allows environmental factors and other “noise”

factors to vary, and examines the expected mean and variability of performance across

these noise conditions. Subsequently, the analyst can seek to identify system design

parameters that yield solutions with robust performance. This dissertation does not use a

robust design approach, but the approach, developed by noted engineer and statistician

Genichi Taguchi in the 1960s, is frequently applied in industrial applications for product

design. A description of the utility of robust design approaches is presented in Sanchez

(2000) and an application of robust design for multi-nation mine clearing is presented in

Thompson (2015). In this case conducting a single pass through the minefield results in a

near zero probability of achieving the desired level of system performance (in terms of

mine detection), therefore future analysis focuses on identification of feasible system

configurations that conduct multiple minefield passes. A similar analysis is conducted for

the LCS MCM configurations to facilitate development of tradespace visualization tools

per Step 5 of the MBSE MEASA.

b. LCS Model Analysis

As with the MCM-1 model data, examination of the LCS model data determines

the variables that have the greatest impact on each operational MOE. Regression analysis

results (Presented in Figure 102, Figure 103, Figure 104, and Figure 105 in Appendix E)

suggest that, as with the MCM-1 configurations, it may be interesting to examine the

impact of conducting multiple passes through the minefield. Histogram analysis (Figure

71) suggests that there is a 7% improvement to Percent Clearance resulting from multiple

passes both at the median clearance level as well as across the full range of Percent

Clearance.

 178

Figure 71 Histogram Comparison of Percent Clearance for Single

versus Multiple Minefield Passes (LCS Configurations)

As with the MCM-1 configurations, detailed analysis of the distribution of the

second operational MOE (the Probability of 90% Detection) provides additional insight.

While there are only minimal differences in terms of the percent clearance, there is a

substantial difference in distributions for the Probability of 90% Detection for

configurations that conduct a single minefield pass and configurations that conduct

multiple passes (Figure 72).

 179

Figure 72 Histogram Comparison of Probability of 90% Detection for

Single versus Multiple Minefield Passes (LCS Configurations)

For the LCS configurations conducting multiple minefield passes, the average

Probability of 90% Detection jumps from less than 6% to over 95% compared to

configurations conducting only a single minefield pass. Furthermore, the minimum

Probability of 90% Detection conducting multiple minefield passes is actually equal to

the maximum Probability of 90% Detection when conducting only a single minefield

pass. This emphasizes the impact that operational decisions can have on system

performance, even in terms of simulation models. While it is certainly not

groundbreaking that searching a minefield more thoroughly results in improvements to

system performance, this analysis demonstrated that a simple alteration to an operational

factor had a substantial impact on operational performance, dominating the impact of

alterations to system design parameters. Furthermore, this analysis suggests that when

comparing potential changes to system design parameters such as the probability of

identification or the probability of neutralization using a tradespace visualization tool, it

is prudent to include the operational factor of the number of minefield passes in the

 180

visualization tool to highlight the set of feasible system design parameter configurations

subject to operational decisions.

2. Tradespace Analysis

The final step of the MBSE MEASA suggests development of a tradespace

visualization tool to allow for examination of system tradeoff decisions from multiple

perspectives. In particular, the methodology advocates development of external

operational and system synthesis models to allow for definition of a set of system

configurations that are feasible from an operational, physical, and cost perspective. In this

particular case, development of physical models are not necessary, given that the analysis

is focused on a comparison of systems that exist and alterations to their physical design

are unrealistic. However, the cost modeling and analysis of the MCM-1 Avenger and the

LCS presented in Becker at al. (2014) can be used in conjunction with the operational

effectiveness analysis modeling and analysis presented in this research to develop a

tradespace visualization tool that highlights a set of feasible system configurations in

terms of both operational effectiveness and operational cost (a function of operational

duration). While the example tool presented in Chapter III assumes that a single system is

being developed (and therefore a single tradespace visualization tool is sufficient), this

demonstration considers two distinct systems, therefore two distinct tradespace

visualization tools are required (one for the MCM-1 configurations and one for the LCS

configurations).

Figure 73 shows an operational tradespace visualization approach for defining a

feasible set of system configurations for the MCM-1 Avenger, focused solely on

operational MOEs. Note that the prediction formulas developed in the regression analysis

shown in Appendix E for each of the operational MOEs are used as surrogate models to

facilitate rapid updating of the tool. Recall that the visualization approach presents two-

dimensional projections of the larger, multi-dimensional tradespace. Figure 73 assumes

that a threshold of 90% has been established for the Probability of 90% Detection, a

threshold of 0.20 has been established for the ACRS, and threshold of $15 million has

 181

been established for the Operational cost, and a threshold of 40% has been established for

the Percent Clearance.

Note that the system design parameters, environmental factors, and operational

factors identified as having a significant effect on the operational effectiveness of the

MCM-1 Avenger for each of the operational MOEs shown earlier are shown as “Factors”

in Figure 73. Selection of which factor is shown on the Horizontal and Vertical axis is

accomplished by interaction with the selection bubble next on the left side of each factor.

Each factor not shown on either the x-axis or y-axis is held constant at the value shown to

the right of each factor name (note that each factor is initially set at the mean of the

minimum and maximum values shown in Table 8 and Table 9). The current settings

define a feasible region (shown in white) in terms of the Probability of Detection (x-axis)

and the Number of Minefield Passes (y-axis) for MCM-1 configurations, assuming that

each of the other factors is fixed at the value shown.

The importance of setting each of these factors at a constant value cannot be

overemphasized. As mentioned, there are millions of potential combinations of factors

that may be investigated. This research presents tradespace visualization and

investigation as an alternative for system design to emphasize that the goal of analysis at

this stage should be to reduce the potential tradespace by identifying factor combinations

that are infeasible, rather than driving toward a specific system configuration. Additional

research is required to investigate efficient techniques for the investigation of large,

multi-dimensional tradespaces. As mentioned previously, Ross (2003) defines a multi

attributed trade space exploration procedure that documented a method for the definition

of a Pareto frontier of solutions. That work was expanded to a 48 step multi-attribute

trade space exploration process and demonstrated more recently in Ross, Stein, and

Hastings (2014) and applied to survivability analysis of satellite systems. The process is

intended to be implemented for communication with stakeholders and accordingly only

utilizes more traditional factorial designs to conduct detailed modeling and simulation.

Integration of that approach, which demonstrates that it is possible to quickly reduce the

size of a system tradespace through interaction with stakeholders as well as simulation

modeling, with the MBSE MEASA developed in this research is an area of potentially

 182

interesting future research. For the purposes of this dissertation, a simple demonstration

of the utility of tradespace exploration is presented that focuses primarily on several of

the most significant performance drivers (as identified by the regression analysis), the

probability of detection, the number of minefield passes, the search speed, and (for the

MCM-1) the Surface Search Percentage as well as (for the LCS) the Surface Sortie Time.

Note that each of the other factors are held constant in this example (as mentioned, the

Probabilities of Classification, Reacquisition, Identification, and Neutralization are held

constant at the mean of the ranges presented in Table 8and Table 9) and the conclusions

identified in this approach are only valid given the fixed values of each of those factors.

Figure 73 Operational Tradespace Visualization (View 1): MCM-1

Configurations

 183

Note that the system MOE for cost is presented in the same window as the

operational MOEs to conserve space. There are several major conclusions that can be

drawn from examination of Figure 73. First, the system requires a Probability of

Detection of at least approximately 0.83 to ensure that the threshold of 90% Probability

of 90% Detection is met. Second, two minefield passes must be conducted to satisfy the

thresholds for Probability of 90% Detection and ACRS. Notably, three minefield passes

cannot be conducted due to the threshold imposed for the Operational Cost. Recall that

this tradespace for Probability of Detection and Number of Minefield Passes exists given

the values set for each of the other factors in Figure 73. This analysis follows the

exploration approach outlined in Chapter III, and once as many two-dimensional

projections as possible are explored could be used to define a set of feasible system

design parameters. As a point of caution, note that there is variability associated with the

prediction formulas used to generate the tradespace shown in Figure 73 and accordingly

it is imprudent to make specific recommendations at the constraint boundaries (the same

is true for subsequent tradespace visualizations). The goal of examining these tradespaces

should be to identify portions of the tradespace that are infeasible, rather than to

recommend a particular system configuration. This should facilitate development of more

refined system requirements (ex: Probability of Detection greater than 0.80) that can then

be used to bound future iterations of system analysis. It is possible to examine alternate

two-dimensional projections that may change the conclusions drawn from Figure 73.

Figure 74 presents a visualization of the tradespace between the Surface Search

Percentage (x-axis) and the Number of Minefield Passes (again on the y-axis).

 184

Figure 74 Operational Tradespace Visualization (View 2): MCM-1

Configurations

Notice that the shape of the tradespace is completely different from Figure 73 as a

result of the change to the two-dimensional projection being examined. Once again, a single

minefield pass is incapable of satisfying the threshold for the Probability of 90% Detection or

ACRS. However, a third minefield pass is now possible if the Surface Search Percentage is

reduced below approximately 0.40. This suggests that the Operational Cost is dependent on

the operational decision to have the surface asset search a larger portion of the minefield but

not on the Probability of Detection, which makes intuitive sense. It is possible to examine an

additional two-dimensional projection (Figure 75) that again shows the Number of Minefield

Passes on the y-axis and now shows the Surface Search Speed on the x-axis.

 185

Figure 75 Operational Tradespace Visualization (View 3): MCM-1

Configurations

Notice that the Probability of 90% Detection threshold and the ACRS threshold

both once again suggest that a single minefield pass in infeasible. If two minefield passes

are conducted a Search Speed of approximately 3.5 knots is required. Knowledge of these

alternative two-dimensional projections is helpful when the original two-dimensional

project (showing the Number of Minefield Passes and the Probability of Detection) is

reexamined and modified. Recall that Figure 73 suggested that, for the given values of

each factor, a Probability of Detection of approximately 0.83 is required. However, it is

useful to demonstrate how the tradespace visualization tool can aid decision making

when the configurations initially defined as feasible cannot actually be realized. For

example, there may be a scenario where the Probability of Detection is restricted to 0.80.

 186

Figure 76 presents a visualization of the original two-dimensional projection with the

Probability of Detection restricted to 0.80.

Figure 76 Operational Tradespace Visualization (View 4): MCM-1

Configurations

Notice that the crosshair now suggests that the system is incapable of satisfying the

Probability of 90% Detection threshold with a Probability of Detection of 0.80 (note that an

additional minefield pass is also infeasible due to the Operational Cost constraint. It is

possible to increase the size of the feasible region by relaxing one or more constraints it is

also possible to increase the size of the feasible region by altering the settings for factors

other than the Number of Minefield Passes and the Probability of Detection. Figure 77

presents two screenshots of the two-dimensional projection original presented in Figure 74

 187

(where the Number of Minefield passes is shown on the y-axis and the Surface Search

Percentage is shown on the x-axis). The left side of Figure 77 shows the resulting two-

dimensional projection when the Probability of Detection is restricted to 0.80. Notice that the

system is classified as infeasible for the Probability of 90% Detection MOE. However, when

examining the tradespace, a third minefield pass can actually be conducted (something that

was not apparent when examining the projection for the Number of Minefield Passes and the

Probability of Detection) by decreasing the Surface Search Percentage. The right side of

Figure 77 presents a visualization of such a solution, where a third minefield pass is

conducted and the system is not infeasible for Operational Cost because the Surface Search

Percentage has been reduced to 0.38 (previously it was 0.50).

Figure 77 Operational Tradespace Visualization (View 5): MCM-1

Configurations

 188

While the reduction of Surface Search Percentage is certainly a legitimate

solution when the Probability of Detection is restricted to 0.80 it is certainly not the only

potential solution. Figure 78 presents a similar examination of the two-dimensional

tradespace originally presented in Figure 75 (where the Number of Minefield Passes is

shown on the y-axis and the Surface Search Speed is shown on the x-axis). On the left

side of Figure 78 the system is infeasible due to the inability to meet the Probability of

90% Detection threshold due to the reduction of Probability of Detection (note that this

example assumes that the Surface Search Percentage has been reset to 0.50). On the right

side of Figure 78 a potential solution is identified, showing that the system can conduct a

third minefield pass, which will satisfy the Probability of 90% Detection threshold,

without exceeding the Operational Cost threshold by increasing the Surface Search Speed

from 4 knots to 4.5 knots. Note that there are numerous potential two-dimensional

projections that may be explored. This particular example focused on operational

decisions regarding the Number of Minefield Passes, the Surface Search Percentage, and

the Surface Search Speed that can be made to overcome a restriction on the Probability of

Detection (assuming constant values for the Probabilities of Classification, Reacquisition,

Identification, and Neutralization). Each user must make a decision regarding the

appropriate ordering of factor investigation; however this example demonstrated the

utility that a tradespace visualization approach can have for multi-attribute tradespaces.

 189

Figure 78 Operational Tradespace Visualization (View 6): MCM-1

Configurations

A similar analysis can be conducted for the LCS MCM configurations. Figure 79

presents a similar tradespace visualization approach for defining a set of feasible design

parameters for LCS configurations. Once again, a threshold of 90% has been established for

the Probability of 90% Detection and a 40% threshold has been established for the Percent

Clearance. For the purposes of presenting an interesting demonstration, slightly altered

thresholds were imposed for the ACRS and the Operational Cost. A threshold of 0.22 has

been established for the ACRS (the LCS configurations demonstrated slightly better

performance), and threshold of $17 million has been established for the Operational Cost (the

LCS configurations demonstrated a reduced operational cost). Once again the demonstration

 190

begins with the presentation of the two-dimensional tradespace (Figure 79) for the Number of

Minefield Passes (y-axis) and the Probability of Detection (x-axis).

Figure 79 Operational Tradespace Visualization (View 1): LCS

The LCS configurations will not be discussed in the same level of detail because

many of the conclusions are similar, but the same approach used to explore the MCM-1

configuration tradespaces can be used to examine the LCS configuration tradespaces. For

example, the LCS system requires a Probability of Detection of at least approximately

0.78 to ensure that the threshold of 90% Probability of 90% Detection is met. Once again,

a single minefield pass is infeasible for all values of Probability of Detection from an

operational perspective and a third minefield pass is infeasible for all values of

Probability of Detection from a cost perspective. An alternative projection shows the

 191

tradespace between the Surface Sortie Time, on the x-axis, and the Number of Minefield

Passes (Figure 80).

Figure 80 Operational Tradespace Visualization (View 2): LCS

As with the previous two-dimensional projection, the threshold for the Time to

Achieve 90% Detection and for Percentage Mine Clearance eliminate all configurations

where only a single minefield pass is conducted and the threshold for Operational Cost

eliminates all configurations where three minefield passes are conducted. Considered

with the ACRS threshold, two minefield passes are required and a Surface Sortie Time of

approximately 15 hours is required. A similar situation is shown in Figure 81, which

 192

presents a two-dimensional tradespace projection with the Number of Minefield Passes

on the y-axis and the Surface Search Speed on the x-axis.

Figure 81 Operational Tradespace Visualization (View 3): LCS

Once again, the operational MOEs restrict all combinations with a single

minefield pass. The Operational Cost threshold suggests that a third minefield pass is

possible is the Surface Search Speed exceeds 12 knots. Once again, the information

obtained from this visualization can be used to inform operational decisions if the

Probability of Detection is restricted. Figure 82 presents a visualization of the two-

dimensional projection with the Number of Minefield Passes shown on the x-axis and the

 193

Probability of Detection shown on the x-axis with the Probability of Detection restricted

to 0.75.

Figure 82 Operational Tradespace Visualization (View 4): LCS

Notice that the system configuration prescribed by the crosshair is identified as

infeasible. If the Probability of Detection cannot exceed 0.75 it is necessary to conduct a

third minefield pass to satisfy the Probability of 90% Detection threshold. Recalling the

information presented in Figure 81 it may be possible to conduct a third minefield pass if

the Surface Search Speed is increased. Figure 83 presents a visualization of the

implementation of such a decision.

 194

Figure 83 Operational Tradespace Visualization (View 5): LCS

Note that the system configuration specified on the left of Figure 83 is infeasible

for the Probability of 90% Detection due to the restriction of the Probability of Detection

to 0.75. Once again a potential solution is highlighted on the right of Figure 83. By

increasing the Surface Search Speed from 10 knots to 13 knots, it is now possible to

conduct a third minefield pass without violating the Operational Cost threshold. In turn

this allows the system to satisfy the Probability of 90% Detection threshold even though

the Probability of Detection has been restricted to 0.75.

The presentation of the examination of the operational and system tradespace for

each of the MCM system configurations is intended to emphasize the importance of

complete tradespace exploration through a dynamic tool. The MBSE MEASA relies on

development of external models and simulations, based on system architecture products.

Detailed analysis of those external models (in this case an operational simulation model)

enables development of predictive surrogate models, which can subsequently be

implemented in profilers to provide visualization of the system tradespace. Such an

approach is intended to illuminate the full range of potential system design parameter

 195

options, subject to operational MOE standards. The visualization is intended to aid

decision making, rather than recommend a single system alternative. Recall that there are

parallel efforts into efficient explorations of multi-attribute tradespaces and integration of

this general approach with that work should be investigated. A more general integration

of the MBSE MEASA advocated tradespace visualization with alternative response

surface methods or subset selection procedures is also a worthy research direction.

 196

THIS PAGE INTENTIONALLY LEFT BLANK

 197

V. CONCLUSIONS

A. SUMMARY

This dissertation presents an MBSE MEASA that formalizes a comprehensive

linkage between the system architecture domain and the system analysis domain. Due to

the substantial expertise required to conduct research in each domain, recent

developments focus largely within each of these domains, and there is insufficient

emphasis on the link between descriptive architecture products, in particular SysML

products, and external models and simulations. In particular, there is a need for a

methodology that emphasizes that system architecture products should be the basis for

not only physical system models, but also operational models and cost models. Further,

those models must be capable of considering system design variables, operational

variables, and environmental variables. The MBSE MEASA presents a revised approach

for the utilization of SysML products to support external modeling and simulation efforts,

groups those SysML products according to the traditionally conducted systems

engineering processes, and demonstrates the utility of the new MBSE MEASA through a

study of the MCM-1 Avenger and the LCS in an Active, Defensive MCM operation. The

MBSE MEASA also provides a comprehensive demonstration of the methodology

iteration, which provides a more explicit, dynamic iteration capability than possible using

any alternative MBSE methodology.

Recall that this research is motivated by the need to produce more complete

system requirements. This research presents a procedure that begins with an initial set of

system requirements, translates those requirements into detailed SysML architecture

products, uses those SysML architecture products as the foundation for assessment of

system performance through designed experiments of external models and simulations,

and uses the results of those assessments to visualize the impact that each system design

parameter has on the operational performance of the system. This identifies feasible set of

system design parameters that may be investigated in more detail, as well as identifies

those system requirements that have little to no impact on system performance and

therefore may not require additional analysis or definition. Most importantly, adherence

 198

to this methodology provides traceability from an initial set of requirements to a set of

architecture products and external models and simulations that can be used to assess

those requirements and develop system design parameters. Finally, because the MBSE

MEASA explicitly considers design, operational, and environmental variables, the MBSE

MEASA uniquely describes how impactful variables in each of these domains (as well as

potential interactions between those variables) can be integrated into future iterations of

system architecture products.

The dissertation expands the scope of the existing MBSE methodologies

developed by IBM, NASA, INCOSE, Vitech, etc. The dissertation extends the current

focus of MBSE by expanding the focus from descriptive architectural based frameworks

to a more comprehensive framework that links formally defined architecture products to

detailed external models and simulations. While the MBSE MEASA has a broader

applicability than any existing MBSE methodology, it is also vitally important to position

the MBSE MEASA in relation to recent academic and professional research, particularly

in two areas: model-based systems engineering and simulation analysis.

This research is broader in scope and applicability than existing model-based

systems engineering focused research. Recent work, such as Wang and Dagli (2008), Ge,

Hipel, Yang, and Chen (2013), and Kim, Fried, Menegay, Soremekun, and Oster (2013)

present approaches for the automated execution of system analysis, through colored petri

nets and discrete event models. However, these approaches assume that the system

architecture is completely defined and static, and are currently restricted to systems

whose operational procedure will not be altered. The MBSE MEASA makes no such

assumptions, and is therefore applicable to a wider range of potential systems. Note that

while this extension by the MBSE MEASA is currently relevant, it is not a general

criticism of the idea of executable architectures and future coordination between the

efforts may be possible. Limitations regarding computing power necessarily limit current

implementations of executable architectures. However, in the future, some of the

fundamental concepts developed in the domain of executable architectures may be

integrated with the emphasis on designed experiments presented in the MBSE MEASA

 199

as a means to automate the translation of SysML diagrams to more detailed external

models.

While MBSE is a relatively new field, modeling and simulation, in particular

large scale modeling and simulation, has existed for many years and has successfully

supported system development. Traditional approaches to model development (such as

the assumptions document, presented in Law (2014) or conceptual models, presented in

Sargent (2013)) share many goals and characteristics with descriptive architectural based

development. While there are similar concepts, the goal of the MBSE MEASA is to

provide a more powerful framework to link descriptive and analysis focused models. The

MBSE MEASA establishes a framework that ensures traceability and consistency

between multiple models in an easier-to-manage environment than previously possible.

The MBSE MEASA defines an approach that mandates and enforces this consistency and

facilitates identification and resolution of conflicts for system requirements, functions,

and physical elements.

Finally, the MBSE MEASA utilizes SysML products as a basis for system

architecture development to ensure compatibility with the widest range of MBSE

approaches. While SysML is a relatively new approach for system description and

development, several recent research efforts demonstrate the potential utility of SysML

focused development. Of particular note, Johnson (2008), Cao, Liu, and Paredis (2011),

Qamar, During, and Wikander (2009), Palachi, Cohen, and Takahaski (2013) and

Spangelo, et al. (2013) all demonstrate the potential for automated generation of physical

models based on SysML products. Huang, Ramamurthy, and McGinnis (2007), Huang

(2011), and Bataresh and McGinnis (2012) also demonstrate a similar approach for the

generation of manufacturing models based on SysML products. That research is a

tremendously powerful generation of the potential utility of SysML. The MBSE MEASA

presents a more general framework for the overall utility of SysML products that

integrates those approaches, at the same time that it emphasizes the need to consider large

number of system parameters, system component interactions, and system operational

and environmental interactions, considerations which are limitations of existing works

into the generation of external models using SysML products. Once again, this is not a

 200

universal criticism of existing work, the assumptions and limitations associated with the

automated SysML-focused research and executable architecture research exist because it

is necessary to demonstrate simple use cases before more complicated cases.

The MBSE MEASA establishes a framework usable as the basis for future

developments in MBSE focused research. Ideally, the lessons learned and computational

advances made possible by existing work in executable architecture research and

automated SysML development research will integrate within the framework of the

MBSE MEASA to support system development in a rapid fashion, ensuring a more

holistic approach to system development.

The MBSE MEASA uses SysML products as a basis to ensure the usability of the

methodology. SysML, the current focus of a large portion of current MBSE research,

facilitates implementation in conjunction within any existing MBSE methodology. This

research focuses on the analysis portion of MBSE and presents a methodology that

provides a roadmap for any user to leverage a set of SysML architecture products, which

are defined in this research and prescribed by almost every existing MBSE methodology,

to conduct detailed analysis of system performance and behavior through external models

and simulations. This improves the efficiency and effectiveness of the engineering

process by linking detailed system architecture products to detailed external models and

simulations. This improves traceability, later iterations of those architecture products, and

facilitates assessment of the quality of previously defined system requirements.

This research demonstrates the potential utility of the MBSE MEASA through

analysis of an Active, Defensive MCM operation. This demonstration establishes a

roadmap to implementation of the methodology for any future user. However, it is also

useful to refer to the previously presented intended characteristics of a systems

engineering process to ensure that the MBSE MEASA supports each of those

characteristics.

1. The process must be comprehensive. It must not focus on individual

aspects of the system and instead should consider the system as an

integrated whole.

 201

By leveraging SysML products, which capture not only system structures and

functions, but also the relationships between system elements, potential constraints on

each system element, and the allocations of system components to system functions, the

MBSE MEASA ensures that architectural representations of the system consider the

system as an integrated whole. Furthermore, the MBSE MEASA’s use of those products

to define the behaviors and physical entities that must be represented in any external

model or simulation ensures that all aspects of the system are included and assessed to

determine their impact on system performance, behavior, structure, and cost.

2. The process must be iterative. It must be capable of considering an

initially stated operational need and evaluating system configurations

against that need, while simultaneously scoping the operational

capabilities of the system such that the process can be repeated for a more

focused operational need.

The MBSE MEASA supports analysis within some implementation of the

systems engineering methodology or within some implementation of an MBSE

methodology. It defines a path for translating a set of system requirements into system

architecture products, which facilitate development of external models and simulations.

Modeling and simulation analysis results are the basis for the development of a

tradespace visualization tool. Properly visualizing the system tradespace allows for

definition of a feasible set of system configurations. The MBSE MEASA explicitly

defines an iteration procedure based on that tradespace analysis to update system

architecture products for impactful design, operational, or environmental variables (as

well as any potential interactions between those variables).

3. The process must be defined by a logical sequence of activities and

decisions. As noted, the process must be iterative, but there is necessarily

an element of sequence. The process must explicitly define the ordering

and characteristics of each event in the process. Ambiguity must be kept to

a minimum in order to clearly delineate each event and clearly define the

achievements that trigger the transition between events.

The MBSE MEASA defines the ordering and application of SysML based

architecture products. This aligns the methodology with the current direction of MBSE

research, which advocates SysML for its clear system architecture representation

 202

capability. Furthermore, the MBSE MEASA prescribes a defined set of steps that

facilitate the use of SysML products as a basis for external models and simulations.

4. The process must transform an operational need into a description of

system performance parameters and preferred system configurations. This

is perhaps the most important characteristic of a quality systems

engineering process. In short, the objective of any systems engineering

process is to ensure that the decisions that lead to recommendation of a

system configuration can be directly linked to a clearly defined operational

need.

As mentioned, the intended output of the MBSE MEASA is a definition of a

feasible set of system configurations. Adherence to the MBSE MEASA ensures that the

feasible set of system configurations is traceable to a set of system functions and

requirements through SysML architecture products. That traceability ensures that there is

no disconnect between the originally identified stakeholder need and the final set of

feasible system configurations identified by the MBSE MEASA.

Finally, it is useful to recall the intended benefits of MSBE developed by

Friedenthal, Griego, and Sampson (2007) and show that the MBSE MEASA aids

realization of those benefits.

1. Improved communications among the development stakeholders (Friedenthal,

Griego, and Sampson (2007, 7).

a. The MBSE MEASA uses stakeholder input to develop a SysML

Requirement Diagram, which is the simplest way to capture stakeholder

needs in a defined, concise format. Because this Requirement Diagram is

used as the basis for architecture construction (and therefore model

building) it can easily be updated based on the results of the MBSE

MEASA. For example, the tradespace examination in Chapter IV

recommended a Probability of Detection for the LCS MCM system of at

least 0.80 (recall that this exploration and the associated recommendations

apply exclusively to the LCS MCM system defined by constant values for

each of the other factors shown in Figure 83). Figure 34 presented a

Requirement Diagram for Minehunting Operation, which presents the

 203

Probability of Detection as a system requirement. This requirement can be

updated based on the results of the MBSE MEASA and any stakeholder

discussions can revolve around model results that are traceable back to the

original Requirement Diagram.

2. Increased ability to manage system complexity by enabling a system model to be

viewed from multiple perspectives, and to analyze the impact of changes

(Friedenthal, Griego, and Sampson (2007, 7).

a. One of the central goals of this research is to develop an analysis

methodology that supports the development of architecture models and

external operational simulation models for large scale, complex systems.

Accordingly, SysML products, which are currently the most popular tool

for development of system architecture products, are used to ensure that a

comprehensive system model is developed that allows the system to be

viewed from multiple perspectives. This facilitates development of

external simulation models that are traceable and establishes a linkage

between any proposed system design changes to originally established

system requirements (and therefore to an original set of stakeholder

needs).

3. Improved product quality by providing an unambiguous and precise model of the

system that can be evaluated for consistency, correctness, and completeness

(Friedenthal, Griego, and Sampson (2007, 7).

a. As mentioned in the discussion of the utilization of the MBSE MEASA to

facilitate multi-perspective system views, the utilization of SysML

products as a baseline for system architecture and system analysis ensures

that the full set of system architecture products can be evaluated for

completeness and consistency. If some expected system functionality is

not present in an external operational simulation, the accuracy and

completeness of the SysML Activity Diagram and the SysML Sequence

Diagram can be evaluated and updated to properly define the sequencing

 204

of the expected functionality within the simulation model and to describe

the expected system components that are required to conduct the activities.

If some expected system component is not included in a cost or physical

model, the SysML Block Definition Diagram can be examined to

determine whether or not the component is currently considered a part of

the system physical hierarchy and, if it is not, the SysML Internal Block

Diagram can be examined to determine what system components are

performing the activities expected to be performed by the missing

component. The comprehensive, unambiguous nature of these architecture

models ensures that any external models built to support system analysis

can be evaluated and revised to ensure that they provide a complete,

correct, consistent representation of each system component and each

system behavior.

4. Enhanced knowledge capture and reuse of information by capturing information

in more standardized ways and leveraging built in abstraction mechanisms

inherent in model driven approaches. This in turn can result in reduced cycle time

and lower maintenance costs to modify the design (Friedenthal, Griego, and

Sampson (2007, 7).

a. The MBSE MEASA provides a formal definition of the use of SysML

products to establish a linkage between the system architecture and system

analysis domain. This definition establishes a bridge between the domains

where standardized information can be shared to remove any potential

conflicts between architecture models and analysis models (either

operational models, physical models, or cost models). As with any

proposed method of operation the utility of the MBSE MEASA will

certainly be a function of proper implementation, however creation of a

standard set of products that facilitate communication between multiple

domains should reduce the potential for conflict and therefore reduce the

time needed to rework system architecture models to reflect external

models and to reduce the time needed to revise system operational,

 205

physical, and cost models to reflect changes to system functions and

components that results from alterations to system architecture models.

B. CONCLUSIONS

The MBSE MEASA developed in this research strengthens the linkage between

descriptive system architecture products and system analysis products. The current

direction of MBSE research suggests that SysML products will be the standard for

system architecture development for the foreseeable future. Accordingly, this research

defined an analysis methodology that leverages SysML products but expands their utility

by defining a comprehensive framework for their application to external models.

Definition of a procedure for using those SysML products to support the development

and structured exploration of external models and simulations is a valuable approach

within the system architecture domain and system analysis domain. This research

maximizes the utility of descriptive system architecture products by defining a method

for utilizing those products to evaluate the operational effectiveness, structure, and cost of

potential system configurations. This research emphasizes that the results of those

external models and simulations must assess any previously established system

requirements. This assessment ensures that the set of system requirements completely

describe a system that is feasible and effective in terms of operation, structure, and cost.

Because this comprehensive framework links descriptive system architecture products to

detailed system analysis products, this research is able to develop a unique iteration

procedure that demonstrates proper integration of analysis results into future versions of

descriptive architecture products.

C. AREAS TO CONDUCT FUTURE RESEARCH

This research presented a defined methodology for linking the system architecture

and system analysis domains in the context of model-based systems engineering. There exist

numerous potential related research areas that would further extend the systems engineering

body of knowledge. The most direct contribution consists of applications of the MSBE

MEASA to non-traditional systems (systems with limited control over design as well as

systems that exhibit emergent behavior are potential examples, although others may exist).

 206

Another logical (and potentially related) application of the MSBE MEASA is to

development of systems of systems. While this methodology was demonstrated using an

integrated set of systems in the MCM simulation, this only establishes utility for a

“directed” system of systems, or one where the command and control of the set of

systems can be attributed to a single user (or set of users) and each of the systems is

designed and operated to satisfy a predetermined set of functions. Other systems of

systems (acknowledged, collaborative, and virtual systems of systems) are often

distributed, independently managed and operated, and may not operate in support of the

same defined set of functions. This certainly introduces new challenges due to the

potential for emergent behaviors, the lack of central ownership and management, the

potential for potentially conflicting objectives, and the inability to define a unifying set of

standards and goals. In particular, research and applications in this area may benefit from

further investigation of heuristics or modeling techniques that allow for mapping of

operational simulation inputs to system synthesis inputs.

 207

APPENDIX A. MBSE MEASA COMPARISON TABLE

This appendix presents a detailed comparison table that positions the MBSE

MEASA in terms of recent work. The table presents general criteria in six areas:

Architectural Approach, External Modeling Approach, External Model Components,

Analysis Approach, Application & Demonstration, and Iteration. It summarizes the

contributions that each of the leading MBSE Methodologies, recent work in MBSE

Development, and relevant work in Simulation & Analysis made to each of those areas.

The table is presented in three parts to facilitate readability.

 208

Table 10 MBSE MEASA Comparison Table (Part 1: MBSE MEASA and

MBSE Methodologies)

 209

Table 11 MBSE MEASA Comparison Table (Part 2: Recent MBSE

Development)

 210

Table 12 MBSE MEASA Comparison Table (Part 3: Relevant Simulation &

Analysis Development)

 211

APPENDIX B. EXPERIMENTAL DESIGN VERSUS BASELINE

FOLLOWED BY EXCURSIONS

This appendix provides guidance in two areas. First, it demonstrates the risks

associated with testing systems by establishing a baseline and conducting individual

excursions, and shows that proper experimental design utilization prevents mistakes in

test configuration specification that may result from testing by “baseline followed by

excursions.” Second, it demonstrates that the types of experimental designs that may be

familiar to systems engineers from experience with physical system testing may

experience limitations when used for simulation models and presents guidance regarding

the selection of efficient experimental designs.

As noted previously, Friedenthal, Griego, and Sampson (2007) state that MBSE

provides five major benefits, summarized as: improved communications, increased

ability to manage system complexity, improved product quality, enhanced knowledge

capture and reuse of information, and improved ability to teach and learn systems

engineering fundamentals. Experimental design, particularly in the context of simulation

experiments, is vitally important to realizing several of those benefits. Increased ability to

manage system complexity cannot be achieved without development of a system

architecture model that can be viewed from many perspectives to examine the impact of

those potential changes. Experimental design specifies the system configurations that

should be modeled in order to properly analyze the impact of changes in system

configurations on system performance. Improved product quality cannot be achieved

without capturing information in standardized ways. Again, experimental design provides

the standards for simulation model construction that ensures that all product decisions are

made in support of the end goal of increased system performance. As mentioned in

Chapter III, several excellent references, in particular Montgomery (2012) provide a

comprehensive overview of experimental design. Sanchez et al. (2012) present a more

specific overview of experimental design for simulation experiments. Any user of the

MBSE MEASA would be well served to review that work; however, a brief discussion of

experimental design clarifies the benefits that experimental design may have in the

 212

context of MBSE. This provides a basic introduction and to discourages users from

implementing a “baseline followed by excursions” approach to system testing.

A. PRINCIPLES OF EXPERIMENTAL DESIGN

Before examining specific experimental designs techniques in detail, it is useful to

consider the general purpose of DOE. Experimental designs are the basis for conducting

tests and experiments. In the context of systems engineering, the purpose of conducting

tests or experiments is to understand the drivers of a system’s performance. Kleijnen et

al. (2005) present three basic goals of simulation analysis (these goals also apply to

systems engineering tests and experiments): “developing a basic understanding of a

particular simulation model or system, finding robust decisions or policies, and

comparing the merits of various decisions or policies.” The first goal is most applicable

to tests and experiments for the types of large scale, complex systems being studied by

this research. Kleijnen at al. (2005) further specify that these tests or experiments may be

conducted “to gain insight into situations where the underlying mechanisms are not well

understood, and where real-world data are limited or even nonexistent.” This serves as a

useful definition of the purpose of the tests and experiments relevant to this research.

This establishes that, in general, a test or experiment is used to establish a relationship

between input variables, which characterize system capabilities or configurations, and

output variables, which characterize system performance.

Experimental designs add rigor to the process of experimentation by planning the

experiment and defining the nature of the data to be collected. This allows experimenters

to effectively conduct tests and experiments that uncover insights regarding system

performance. As mentioned previously, the often used “baseline followed by excursions”

approach may lead to inappropriate conclusions or an incomplete understanding of the

true drivers of system performance. Use of a good experimental design ensures that the

assumptions behind any statistical tests conducted on the experimental results are not

violated.

At the simplest level, a conceptual model of a stochastic relationship between

factors (inputs) and responses (outputs) is:

 213

 ()Y f x   (1)

A simple functional model that is often assumed, in practice, to represent this

function in the basis linear model:

 0 1 1iy x     (2)

where yi is the value of some output variable, β0 is a constant intercept value, β1 is a

multiplying coefficient for x1, x1 is the value of some input, and ε is an error term. This is

especially useful when attempting to predict system performance. By formulating the

relationship between inputs and output in this fashion, it is possible to predict the change

in system performance (yi) associated with a change in some system characteristic (x1).

An instructive example is an equation that quantifies how an increase in the amount of

fertilizer used in farming (xi) impacts the total crop yield (yi). Data collected either from a

designed experiment or from observation can be used to estimate the coefficients of the

model.

Unfortunately, most processes are not as simple as in the example above.

Typically, more than one system characteristic (input) will impact system performance

(output). Accordingly, the type of relationship described above becomes more complex.

Examples include:

 0 1 1 2 2iy x x      (3)

 2
0 1 21 1iy x x       (4)

 0 1 1 2 2 3 1 2iy x x x x        (5)

Equation (2) previously presented system performance in terms of a single input

variable, Equations 3–5 present system performance as a function of: (3) two input

variables; (4) the linear and quadratic effect of one input variable; (5) two input variables

as well as the interaction between those variables. Examples of these equations are fairly

intuitive. A system with behavior specified by Equation (5) provides an excellent

example of the value of experimental design.

 214

Equation (5) describes a situation where the behavior of the system cannot be

understood through an isolated study of the system components. As an example, recall

that two of the variables with the largest impact on LCS MCM performance were the

Probability of Mine Classification and the Probability of Mine Neutralization.

Accordingly, an engineer of LCS MCM subsystems (who suspected that these variables

would have a significant impact on performance but did not have access to the detailed

analysis presented earlier in this research) may be interested in examining the impact that

the probability of classification and neutralization have on system performance. If the

engineer were interested in utilizing a model (such as the one presented earlier in this

research) to describe the impact of these variables very generally, the system

configurations to be tested must be defined before testing begins. There are an infinite

number of system configurations (in terms of probability of classification and probability

of neutralization) that may be tested. For the purposes of this example, the probabilities

of classification and neutralization are both restricted to the range [0.70, 0.90]. If the

engineer were to proceed with testing through the “baseline followed by excursions”

approach a “baseline” system configuration could be established with the probability of

classification and probability of neutralization both set to a minimum value, in this case

0.70. The engineer could conduct a test at this baseline configuration and subsequently

conduct follow on tests where first the probability of classification is maximized and

second the probability of neutralization is maximized. Table 13 presents a definition of

what these tests (which define system configurations) would look like in terms of

probability of classification and probability of neutralization.

Table 13 Example Test Configurations: Baseline Followed by Excursions

 215

The engineer could subsequently proceed to collect performance data for each of

these test configurations. In terms of the LCS MCM model, the performance data of

interest may be the percentage of mines successfully neutralized. Note that proper testing

procedures dictate that each test configuration be replicated (tested multiple times) to

enable examination of the variability associated with each test configuration, in this

example 30 replications of each test configuration is presented. Equation (6) presents an

example equation that describes the true system performance (where yi represents the

percent clearance, x1 represents the probability of classification, and x2 represents the

probability of neutralization) and Table 14 presents an example of what the data

collection looks like for a situation where the engineer conducts the three tests prescribed

by the “baseline followed by excursions” approach (note that some variability was

introduced to the model to emphasize the importance of replication).

 1 2 1 20.35 0.35 0.1iy x x x x   (6)

Table 14 Example Test Data: Baseline Followed by Excursions

Subsequent to this data collection, the engineer may conduct regression analysis,

which can be used to describe the performance of the system (the percent clearance) in

terms of the input variables (in this case, the probability of classification and

neutralization). As noted in Montgomery (2012), the use of regression models to present

the results of an experiment or model is intuitive and, in this specific example,

demonstrates that errors in the characterization of system behavior can result from a

flawed approach to the specification of test configurations. The results of least squares

regression based on the data presented in Table 14 are shown in Figure 84.

 216

Figure 84 Example Regression Analysis: Testing With Baseline

Followed by Excursions

The analysis output of interest is highlighted in red in Figure 84. The coefficient

associated with the probability of classification is estimated as 0.44 coefficient associated

with the probability of neutralization is estimated as 0.43 (as well as an intercept value of

-0.052) in the regression model. Recall that Equation (6) presented the true system

performance (which regression analysis is attempting to estimate) and the coefficients

associated with the probability of classification and neutralization were both 0.35. The

regression analysis summarized in Figure 84 incorrectly estimated the relationship

between the probabilities of classification and neutralization and the percent clearance.

This incorrect estimation is not a result of incorrect regression analysis; rather it is a

result of an incorrect definition of test configurations. By defining test configurations

haphazardly, the engineer made it impossible to correctly describe the relationship

between input variables and output variables.

A simple experimental design can be used to better define the test configurations

that should be examined in this example. Recall that the engineer previously restricted the

range of both the probability of classification and the probability of neutralization to

 217

[0.70, 0.90]. To use experimental design generating software (or to generate a good

experimental design by hand), the engineer must also specify the number of levels at

which each input variable will be tested. For this example, assume that the engineer

decides to test each variable at two levels (testing at the minimum and the maximum).

The resulting test configurations are presented in Table 15.

Table 15 Example Test Configurations: 2 Variable, 2 Level Factorial Design

Table 15 presents an example of a two variable, two level factorial design (two

levels indicating that each input can take only two values, in this case the minimum and

maximum probabilities of classification and neutralization). The design provides the

engineer with a list of test configurations that should be run and defines the value of each

input variable for each of those tests. The engineer can subsequently proceed to collect

output data (in this case percent clearance data) for each test configuration, the results are

shown in Table 16. Note that once again 30 tests are conducted for each test

configuration.

Table 16 Example Test Data: 2 Variable, 2 Level Factorial Design

This data can be analyzed using regression analysis to estimate the relationship

between the input variables (the probabilities of classification and neutralization) and the

 218

output variable (the percent clearance). The results of the regression analysis are shown

in Figure 85.

Figure 85 Example Regression Analysis: Testing With 2 Variable, 2

Level Factorial Design

Note that the estimated coefficients in Figure 85 match (with minimal error due to

the introduced variability) the true system performance presented in Equation (6). The

probability of classification is estimated as 0.355 and probability of neutralization is

estimated as 0.356 and the interaction between the variables is estimated as 0.0925;

confidence intervals for all three coefficients include the actual values of 0.35, 0.35, and

0.10. The regression techniques employed on the data collected for the test configurations

specified by the “baseline followed by excursions” approach are exactly the same as the

regression techniques employed on the data collected for the test configurations specified

by the factorial design approach. However, the coefficients are only estimated correctly

when the test configurations are specified by an appropriate experimental design.

The above example provided an example of the most basic experimental design

technique, a two-level full factorial design. Montgomery (2012) defines factorial designs

as designs where, “in each complete trial or replication of the experiment all possible

 219

combinations of the levels of the factors are investigated.” By framing the problem in this

way, it is possible to calculate the total number of design points that are required to

completely explore all possible combinations of input factors using a factorial design. In

the example shown above (two factors, each at two levels) the total number of runs is

calculated by: 2×2=4 total runs. For a slightly larger design (three factors, two levels) the

total number of runs is calculated by 2×2×2=8 total runs. In general, the number of

design points required for a factorial design can be calculated (for k factors, each at m

levels) as m×m×m×…×m=m
k
 , and the designs are typically referred to as m

k
 factorial or

m
k
 full factorial designs.

B. TRADITIONAL VERSUS SIMULATION EXPERIMENTS

This focus on correctly revealing the underlying relationship between inputs and

outputs is one of the major reasons that experimental design is preferred to a “baseline

followed by excursions” approach. In the example presented, the baseline-excursion

approach failed to account for the potential interaction between the probabilities of

classification and neutralization. Utilization of a factorial design ensured that this

interaction could be correctly estimated through regression. While the value of examining

all possible combinations of variables is evident from the example, it may not be apparent

why factorial designs are not appropriate for examining large scale, complex systems,

especially those tested in a simulation model. As mentioned, the previous example used a

2
k
 factorial design. It is often necessary to examine system components at more than two

levels. However, increasing the number of levels for multiple components quickly

renders factorial designs inappropriate for use in examining large scale, complex systems.

Specifically, the total number of design points required to conduct a factorial design

becomes untenable. A more detailed example based on the LCS MCM system presented

in this research is illustrative of this challenge.

In the example presented in the previous section the true model performance was

defined by Equation (6), which described a system where the percent clearance was

impacted in a linear manner by the probability of classification, the probability of

neutralization, and the interaction between those variables. Utilization of a 2
k
 factorial

 220

design was sufficient to describe the performance of that system. However, when the true

system behavior becomes more complicated, it may be necessary to test at an increased

number of levels. Estimating a quadratic effect requires a minimum of three levels,

estimating a cubic effect requires a minimum of four levels, etc. This need to move

beyond 2
k
 factorial designs, as well as the need to examine more than two variables,

quickly leads to issues with factorial designs.

As shown in Chapter IV, the LCS MCM performance is impacted by many

factors, such as: the probability of detection, the probability of identification, the

probability of reacquisition, the search speed, the transit speed to the minefield, the

percentage of the minefield searched by surface assets, etc. If the engineer wants to

investigate the impact of these six factors, along with the probability of classification and

neutralization, through a 3
k
 factorial design the engineer would need to investigate

3
8
=6,561 different design points. This dramatic increase in the required number of design

points is the primary reason that factorial designs are unsuitable for investigating large

scale, complex systems. Because factorial designs explicitly investigate each input

variable of interest, as well as all of the interactions between these input variables,

eventually factorial designs become unsuitable for examination of large scale, complex

systems (as well as large scale, complex system simulation models). Table 17

summarizes the total number of design points required to conduct a factorial design based

experiment for different numbers of factors and levels.

 221

Table 17 Number of Runs Required: Full Factorial Designs

Table 17 shows why factorial designs are inappropriate for testing the

performance of large scale, complex systems. Sanchez and Wan (2012) present a

powerful example demonstrating the incredible number of runs associated with full

factorial designs. Referencing the IBM “Sequoia” supercomputer, which is capable of 16

petaflops (a single petaflop is a quadrillion operations per second), they note that it would

require over 2.5 million years to conduct an investigation of a 2
k
, 100 variable design

(defined in Table 17 as approximately 1.26×10
30

 design points). In the case of large scale,

complex systems, the use of traditional factorial experimental designs to evaluate the

performance of various system characteristics is unreasonable. Other experimental design

techniques must be considered. Figure 48 in Chapter III provided a summary of

appropriate types of experimental designs that should be used in different situations and

recommended the use of nearly orthogonal, balanced designs for investigation of large

scale, complex systems through simulation models. Per the guidance presented earlier,

both Sanchez and Wan (2012) and Vieira et al., (2013) provide concise explanations of

the power of those designs, as well as instructions regarding their development and

 222

implementation. These designs are available at harvest.nps.edu as well as overview

presentations that provide detailed guidance on their implementation and application.

As mentioned, if the engineer from the example presented earlier wanted to

investigate eight variables at three levels each using a full factorial design in an LCS

MCM simulation model, 3
8
=6,561 test configurations would need to be tested.

Conducting 30 replications of each test point would therefore require 6,561×30=196,830

tests. Space filling designs have been developed that overcome the computational

limitations of factorial designs while continuing to provide excellent coverage throughout

the design space. In particular, the NOLH and NO/B designs recommended by this

research can be developed to handle any number of factors at any number of levels. As an

example, the eight variables mentioned above could be explored using an NOLH with 33

test configurations instead of 6,561, and the computational savings increase as the

number of factors increases. The NOLH designs are created with an emphasis on

ensuring minimal correlation between factors (that is, an increase in one factor is not

associated with an increase in a second factor). The NO/B designs also ensure a relatively

equal number of design points at each level for each discrete-valued factor.

While this simple example does not fully cover the capabilities and limitations of

space filling designs (see Sanchez and Wan 2012 for a more complete discussion on the

application of space filling designs for simulation experiments), it should provide a

general overview of the intended utility of such designs and demonstrate their

applicability in scenarios with a large number of potential factors, each of which must

take multiple levels, which makes it impractical or improbable to use traditional factorial

designs.

 223

APPENDIX C. INNOSLATE ARCHITECTURE IMPLEMENTATION

This appendix presents an alternative representation of the mine warfare

architecture products detailed in the body of the dissertation. This demonstrates that the

development of the architecture is possible within multiple tools, and also overcomes a

limitation associated with the current implementation of the methodology in Vitech

CORE. While Vitech CORE is a powerful tool that enforces consistency between

architecture products and facilitates rapid generation and iteration of those products, there

are limitations associated with development of an executable architecture within CORE

that can check for logical consistency within the architecture. Recall that each SysML

Diagram required a “connected” structure. That is, any elements created within a diagram

needed to be contained and utilized within that diagram. For many cases this is not an

issue, however it is often necessary to create control type elements to represent decisions

that are made at different levels of the organizational structure that cannot be represented

within a single, connected diagram. As an example, the MCM-1 Avenger and the LCS do

not choose which system will be utilized in a given operation; this is done by a higher

level command and control element. This can be represented within the SysML

Diagrams created in CORE, however it requires the user to integrate a command and

control output (the decision to use either the MCM-1 Avenger or the LCS) into a decision

loop for the Active, Defensive MCM Operations. The implementation of such a

disconnected decision is notionally possible within CORE, but requires scripting and

abstracting of system elements that removes potentially valuable information and element

characteristics from visibility on the diagram itself. Re-implementing the diagrams using

Innoslate’s LML Action Diagrams allows a user to execute activities even when a nested

alternative requires representation at another level of the system physical hierarchy or

organizational structure. While CORE is capable of utilizing a “kill” setting for AND

branches to provide a similar capability, that setting is only applicable to concurrent

(rather than alternate) branches, limiting the applicability in this specific instance. Note

that this limitation is not exclusive to CORE, many software architecting tools assume

that control is transferred linearly and while they facilitate representation of this type of

 224

structure, the creation of an executable architecture that checks for logical consistency

does not support those types of definitions. This appendix demonstrates that the

utilization of an alternative system architecting tool (Innoslate) allows a user to mirror the

creation of the system architecture diagrams created in CORE and, due to the increased

capabilities of the software, run a simulation of the system architecture to check for

logical consistency. This appendix will walk through a series of diagrams which mirror

the activity diagrams presented earlier in this dissertation. It will then show the results of

an execution of the activities to demonstrate that the logical structure is consistent. The

activities have been associated with durations and probabilities and the execution

duration approximates the duration (17.42 days) of scenarios modeled in ExtendSim (an

average of 19 days) when the system conducts a single minefield pass.

This appendix begins with Figure 86, which presents a representation of the

highest level activity, Mine Warfare Operations. Note that it is decomposed by Active

Defensive MCM Operations as well as an Environmental Feedback activity and a

Command and Control activity.

 225

Figure 86 Mine Warfare Operations Activities (Innoslate

Representation)

Figure 87 and Figure 88 present decompositions of the Environmental Feedback

and Command and Control activities, respectively. Note that the Environmental Feedback

activity produces and entity termed “Potential Mines” and the Command and Control

activity produces an entities termed “Instruction to Use MCM-1 Avenger” and

“Instruction to Use Littoral Combat Ship.”

 226

Figure 87 Exhibit Environmental Feedback Activities (Innoslate

Representation)

Figure 88 Provide Command and Control Activities (Innoslate

Representation)

As mentioned, the advantage that Innoslate offers as an architectural software

program is the ability to transfer these entities to alternative levels of the system

architecture. While this can be done in CORE, it creates inconsistencies when the

architecture is executed. Innoslate’s representation allows the architecture to transfer

these entities between levels. Figure 89 presents a decomposition of Active Defensive

 227

MCM Operations, where the “Instruction to Use MCM-1 Avenger” and the “Instruction

to Use Littoral Combat Ship” are also represented and are serving as triggers to

subsequent functions.

Figure 89 Perform Active Defensive MCM Operations Activities

(Innoslate Representation)

This use of these entities at different levels of decomposition would result in an

error message if implemented in CORE, but is possible using Innoslate’s representation.

Note that the “Potential Mines” created by the Environmental Feedback activity are not

utilized until several additional levels of decomposition have been explored. The

“Potential Mines” are used in the Conduct Minehunting Operations activity

decomposition, which is decomposed by Detect Mines, which is utilizes the “Potential

Mines.” Figure 90 and Figure 91 present these additional levels of decomposition.

 228

Figure 90 Conduct Minehunting Operations Activities (Innoslate

Representation)

Figure 91 Detect Mines Activities (Innoslate Representation)

Note that each entity created in Innoslate must be utilized by another entity at

some level of decomposition. If the logical structure is consistent and each activity is

associated with a duration (and probable path, as necessary), the architecture may be

executed. Figure 92 presents the results of an example execution, which approximates the

results of the ExtendSim implementation of the same processes (17.42 days in Innoslate,

approximately 19 days in ExtendSim).

 229

Figure 92 Detect Mines Activities (Innoslate Representation)

 230

THIS PAGE INTENTIONALLY LEFT BLANK

 231

APPENDIX D. MODEL IMPLEMENTATION IN EXTENDSIM

This appendix presents a series of annotated figures (screenshots of architecture

models and discrete event models) that demonstrate the development of a discrete event

model (in the ExtendSim software) based on the architecture products presented

throughout the simulation. As a point of emphasis, this appendix is not a tutorial on

ExtendSim or discrete event modeling; rather it provides a visualization guiding the

implementation of architecture products in an external simulation model. Note that this

section does not provide a roadmap for simulation development.

As mentioned in Chapter IV, the Activity Diagram for Active, Defensive MCM

Operations suggested that the external simulation model represent three distinct activities.

Figure 93 provides an annotated version of that Activity Diagram.

Figure 93 Annotated Activity Diagram: Active, Defensive MCM

Operations

 232

Development of a framework for a discrete event simulation that captures each of

the three major elements of the operation occurs per the guidelines established in the

Active, Defensive MCM Operations Activity Diagram. Figure 94 presents an annotated

screenshot of ExtendSim, highlighting the portions of the discrete event model that

correspond to each element of the Active, Defensive MCM Operation per Figure 93. This

appendix uses the simulation model for the MCM-1 Avenger configurations for brevity

and consistency. A similar procedure for the LCS configurations produced similar

mappings.

Figure 94 Annotated Implementation of Active, Defensive MCM

Operations in ExtendSim

Note that the transit and logistics management functions are implemented

throughout the simulation model, first by setting initial conditions, then by designating a

target area, and in between minehunting and mine neutralization by conducting post

mission analysis. Minehunting and Mine Neutralization are implemented for both

 233

airborne and surface assets. Following the general convention presented in the body of

the dissertation, it is possible to decompose the Minehunting function (both in

architecture products and in the simulation model) into Mine Detection and Mine

Classification to visualize the mapping from the architecture models to the external

simulation model. Figure 95 presents an annotated Activity Diagram for Mine Detection

and Figure 96 presents an annotated screenshot of the Mine Detection events within the

simulation model. Note that the SysML Activity diagram begins with a choice of either

the MCM-1 Avenger Configuration or the LCS Configuration. Only the MCM-1 Avenger

portion is annotated and Figure 96 only shows the ExtendSim implementation of the

MCM-1 Avenger configuration.

Figure 95 Annotated Activity Diagram: Detect Mines

 234

Figure 96 Annotated Implementation of Detect Mines in ExtendSim

Notice that three major phases comprise both the SysML Activity Diagram and

the ExtendSim screenshot: Begin Track, Detect Mines, and Loop for Number of Tracks.

ExtendSim implements the activities associated with each phase as discrete events. A

distribution is assigned to each event and varied between simulation runs. A similar

visualization is possible for Mine Classification. Figure 97 presents a SysML Activity

Diagram for Mine Classification and Figure 98 presents an ExtendSim implementation of

Mine Classification. Note once again that only the MCM-1 Avenger configuration

implementation is presented and annotated.

 235

Figure 97 Annotated Activity Diagram: Classify Mines

Figure 98 Annotated Implementation of Classify Mines in ExtendSim

 236

As with Mine Detection, three major phases define Mine Classification, both

within the SysML Activity Diagram and the ExtendSim implementation. The three major

phases shown are: Accept MILEC List (which is an output from Mine Detection, as

shown in Figure 95 and Figure 96 and highlighted during the discussion of Sequence

Diagrams in Chapter III), Classify Mines, and Loop and Record Data. Once again,

ExtendSim implements each of the activities associated with each phase as a discrete

event and varies the characteristics of that event between simulation runs.

 237

APPENDIX E. SUPPORTING ANALYSIS AND FIGURES

This section provides supporting analysis and figures not deemed necessary for

presentation in the body of the dissertation but may be of interest for review of the details

of some analysis presented previously. Figure 99–Figure 101 provides initial analysis

results for MCM-1 configurations while Figure 102–Figure 105 provides initial analysis

results for LCS configurations.

A. SUPPORTING ANALYSIS PRODUCTS (MCM-1 CONFIGURATIONS)

This section presents the regression analysis referenced in Chapter IV. This

regression analysis is the basis for the surrogate models used in the tradespace

visualizations in Chapter IV.

 238

Figure 99 Regression Analysis: Percent Clearance (MCM-1

Configurations)

 239

Figure 100 Regression Analysis: Probability of 90% Detection (MCM-

1 Configurations)

Figure 101 Regression Analysis: Area Coverage Rate Sustained

(MCM-1 Configurations)

 240

B. SUPPORTING ANALYSIS PRODUCTS (LCS CONFIGURATIONS)

This section presents the regression analysis for the LCS MCM Configurations

referenced in Chapter IV. This regression analysis is the basis for the surrogate models

used in the tradespace visualizations in Chapter IV. Note that the regression model for the

Probability of 90% Detection suggested two distinct groupings in the data; therefore a

Partition Tree analysis is used as an alternative to regression analysis.

Figure 102 Regression Analysis: Percent Clearance (LCS

Configurations)

 241

Figure 103 Regression Analysis: Probability of 90% Detection (LCS

Configurations)

 242

Figure 104 Regression Analysis: Area Coverage Rate Sustained (LCS

Configurations)

 243

Figure 105 Regression Analysis: Area Coverage Rate Sustained (LCS

Configurations)

 244

THIS PAGE INTENTIONALLY LEFT BLANK

 245

LIST OF REFERENCES

Acheson, Paulette, Cihan Dagli, and Nil Kilicay-Ergin. 2013. “Model Based Systems

Engineering for System of Systems Using Agent-Based Modeling.” In Procedia

Computer Sciences: Vol. 16, edited by Christiaan J.J. Paredis, Carlee Bishop, and

Douglas Bodner, 11–19. Atlanta, GA: Elsevier.

Amador, Brian. 2011. “U.S. Navy Funding Goals for Future Mine Warfare Capability.”

Lecture at the 16th Annual Expeditionary Warfare Conference, Panama City, FL.

Ashpari, Mohammad J. 2012. “A Capability-Based Approach to Analyzing the

Effectiveness and Robustness of an Offshore Patrol Vessel in the Search and

Rescue Mission.” Master’s Thesis. Naval Postgraduate School.

Balestrini-Robinson, Santiago, Dane F. Freeman, and Daniel C. Browne. 2015. “An

Object-Oriented and Executable SysML Framework for Rapid Model

Development.” In Procedia Computer Sciences: Vol. 44, edited by Jon Wade and

Robert Cloutier, 423–432. Hoboken, NJ: Elsevier.

Becker, Nicole, Timothy Byram, David Frank, Kevin Hogan, Richard Kim, Glenna

Miller, Shane Schonhoff, Scott Myers, and Heather Whitehouse. 2014.

“Application of Model-Based Systems Engineering (MBSE) to Compare Legacy

and Future Forces in Mine Warfare (MIW) Missions.” Capstone Report. Naval

Postgraduate School.

Behdani, Behzad. 2012. “Evaluation of Paradigms for Modeling Supply Chains as

Complex Socio-Technical Systems.” In Simulation Conference (WSC),

Proceedings of the 2012 Winter Simulation Conference, edited by Christoph

Laroque, Jan Himmelspach, Raghu Pasupathy, Oliver Rose, and Adelinde

Uhrmacher, 1–15. Berlin: IEEE.

Bjorkman, Eileen A., Shahram Sarkani, and Thomas A. Mazzuchi. 2013. “Using Model-

Based Systems Engineering as a Framework for Improving Test and Evaluation

Activities.” Systems Engineering 16 (3): 346–362.

Blanchard, Benjamin S., and Wolter J. Fabrycky. 2010. Systems Engineering and

Analysis, 5th ed. Upper Saddle River, NJ: Pearson Prentice Hall

Boehm, Barry. 1986. “A Spiral Model of Software Development and Enhancement.”

ACM SIGSOFT Software Engineering Notes 11(4): 14–24.

Buede, Dennis, M. 2009. The Engineering Design of Systems, Models and Method, 2nd

Edition. New York, NY: John Wiley & Sons

 246

Carpenter, Wendi B. 2010. Navy Warfare Publication: Naval Mine Warfare. Vol. 1.

NWP 3–15. Norfolk, VA: Navy Warfare Development Command.

Carson, Ronald S., and Barbara J. Sheeley. 2013. “Functional Architecture as the Core of

Model-Based Systems Engineering.” In INCOSE International Symposium 23,

29–45. Philadelphia, PA: INCOSE.

Department of Defense. 1974. Engineering Management. MIL-STD-499A. Washington,

DC: Department of Defense.

Department of Defense. 1993. Systems Engineering. MIL-STD-499B. Washington, DC:

Department of Defense.

Department of Defense Chief Information Officer. 2015. “DoDAF: DOD Architecture

Framework Version 2.02 DOD Deputy Chief Information Officer.” August 11.

http://dodcio.defense.gov/Library/DoDArchitectureFramework.aspx

Dori, Dov. 2002. Object Process Methodology: A Holistic Systems Paradigm. New York:

Springer.

Dori, Dov, Iris Reinhartz-Berger, and Arnon Sturm. 2003. “Developing Complex

Systems with Object-Process Methodology using OPCAT.” In Proceedings of the

22
nd

 International Conference on Conceptual Modeling, edited by Il-Yeol Song,

Stephen W. Liddle, Tok-Wang Ling, and Peter Scheurmann ,570-572. Chicago,

IL: Springer-Verlag.

Ellman, Jesse E. 2009. “The Role of Evolutionary Acquisition and Spiral Development in

the Failure of the Army’s Future Combat System.” Master’s Thesis. Georgetown

University.

Emes, Michael, Peter Bryant, Mike Wilkinson, Paul King, Ady James, and Stuart Arnold.

2012. “Interpreting ‘Systems Architecting.’” Systems Engineering 15(4): 369–

395.

Estefan, Jeff A. 2008. Survey of Model-Based Systems Engineering (MBSE)

Methodologies, Rev B. Pasadena, CA: California Institute of Technology.

Farr, John V. 2011. Systems Life Cycle Costing: Economic Analysis, Estimation, and

Management. Boca Raton, FL: CRC Press.

Fisher, Amit. 2013. “IBM System and Software Solutions: Design and Model

Management across the Product Development Life cycle.” Presentation at the

INCOSE 2013 MBSE Workshop, Jacksonville, FL, January 26–27.

FHWA Operations. 2013. “Systems Engineering for ITS Handbook - Section 3 What Is

Systems Engineering.” Dec 9. http://ops.fhwa.dot.gov/publications/seitsguide/

section3.htm

 247

Florida Department of Transportation. 2003. A Process Review and Appraisal of the

Systems Engineering Capability for the Florida Department of Transportation

(FDOT). Technical Memorandum No. 1. Tallahassee, FL: Florida Department of

Transportation.

Foorsberg, Kevin, Hal Mooz, and Howard Cotterman, 2005. Visualizing Project

Management: Models and Frameworks for Mastering Complex Systems. New

York, NY: John Wiley & Sons.

Friedenthal, Sanford., Regina Griego, and Mark Sampson. 2007. “INCOSE Model-based

Systems Engineering (MBSE) Initiative.” Presented at the INCOSE 2007

Symposium, San Diego, CA, June 24–28.

Friedenthal, Sanford., Alan Moore, and Rick Steiner. 2009. A Practical Guide to SysML

The Systems Modeling Language. San Francisco, CA: Morgan Kaufmann.

Garrett, Robert K., Steve Anderson, Neil T. Baron, and James D. Moreland, Jr. 2011.

“Managing the Interstitials, a System of Systems Framework Suited for the

Ballistic Missile Defense System.” Systems Engineering 14(1): 87–109.

Ge, Bingfeng, Keith W. Hipel, Kewei Yang, and Yingwu Chen. 2013. “A Data-Centric

Capability-Focused Approach for System-of-Systems Architecture Modeling and

Analysis.” Systems Engineering 16(3): 363–377.

Giammarco, Kristin, and Mikhail Auguston. 2013. “Well, You Didn’t Say Not to! A

Formal Systems Engineering Approach to Teaching an Unruly Architecture Good

Behavior.” In Procedia Computer Sciences: Vol. 20, edited by Cihan Dagli, 277–

282. Rolla, MO: Elsevier.

Hagel, Charles T. 2013. “Speech Delivered to National Defense University.” Speech.

Washington, DC, April 3.

Haveman, Steven P., and G. Maarten Bonnema. 2015. “Communication of simulation

and modelling activities in early systems engineering.” In Procedia Computer

Sciences: Vol. 44, edited by Jon Wade and Robert Cloutier, 305–314. Hoboken,

NJ: Elsevier.

Hoffman, Hans-Peter. 2011. Model-Based Systems Engineering with Rational Rhapsody

and Rational Harmony for Systems Engineering, Release 3.1.2. Somers, NY: IBM

Corporation.

Humman, James, and Azad M. Madni. 2014. “Integrated Agent-Based Modeling and

Optimization in Complex Systems Analysis.” In Procedia Computer Sciences:

Vol. 28, edited by Azad M. Madni and Barry Boehm, 818–827. Malvern, PA:

Elsevier.

INCOSE. 2011. INCOSE OOSEM Working Group Charter. San Diego, CA: INCOSE.

 248

Kaymal, Turgut. 2013. “Assessing the Operational Effectiveness of a Small Surface

Combat Ship in an Anti-Surface Warfare Environment.” Master’s Thesis. Naval

Postgraduate School.

Kleijnen, Jack P.C., Susan M. Sanchez, Thomas W. Lucas, and Thomas M. Cioppa.

2005. “A User’s Guide to the Brave New World of Designing Simulation

Experiments.” INFORMS Journal on Computing, 17(3): 263–289.

Law, Averill M. 2014. Simulation Modeling and Analysis, 5
th

 Edition. New York, NY:

McGraw Hill.

Law, Averill M. 2009. “How to Build Valid and Credible Simulation Models.” In

Simulation Conference (WSC), In Proceedings of the 2009 Winter Simulation

Conference, edited by Ann Dunkin, Ricki Ingalls, Enver Yucesan, Manuel

Rossetti, Ray Hill, and Bjorn Johansson, 24–33. Austin, TX: IEEE.

Liston, Paul, Kamil Erkan Kabak, Peter Dungan, James Byrne, Paul Young, and Cathal

Heavey. 2011. “An Evaluation of SysML to Support Simulation Modeling.” In

Conceptual Modeling for Discrete-Event Simulation, edited by Stewart Robinson,

Roger Brooks, Kathy Kotiadis, and Durk-Jouke van der Zee, 279–309. Boca

Raton, FL: CRC Press.

Lucas, Thomas W., W. David Kelton, Paul J. Sanchez, Susan M. Sanchez, Ben L.

Anderson. 2015. “Changing the Paradigm: Simulation, Now a Method of First

Resort.” Naval Research Logistics 62(4): 293–303.

MacCalman, Alexander D. 2013. “Flexible Space-Filling Designs for Complex System

Simulations.” Ph.D. Dissertation, Naval Postgraduate School.

MacCalman, Alex, Hyangshim Kwak, Mary McDonald, and Stephen Upton. 2015.

“Capturing experimental design insights in support of the model-based systems

engineering approach.” In Procedia Computer Sciences: Vol. 44, edited by Jon

Wade and Robert Cloutier, 315–324. Hoboken, NJ: Elsevier.

MacCalman, Alex, Hyangshim Kwak, Mary McDonald, Steve Upton, Coleman Grider,

Robert Hill, Hunter Wood, and Paul Evangelista. 2015. Illuminating Tradespace

Decisions Using Efficient Experimental Space-Filling Designs for the

Engineering Resilient Systems Architecture. West Point, NY: Operations

Research Center United States Military Academy.

MacCalman, Alexander D., Paul T. Beery, and Eugene P. Paulo. (working paper). A

Systems Design Exploration Approach that Illuminates Tradespaces using

Statistical Experimental Designs. Systems Engineering.

Maier, Mark W. and Eberhardt Rechtin. 2009. The Art of Systems Architecting, Third

Edition. Boca Raton, FL: CRC Press.

 249

McKeown, Jason L. 2012. “Analyzing the Surface Warfare Operational Effectiveness of

an Offshore Patrol Vessel Using Agent Based Modeling.” Master’s Thesis. Naval

Postgraduate School.

Montgomery, Douglas C. 2012. Design and Analysis of Experiments, 8th edition. New

York, NY: Wiley.

Myers, Raymond H., Douglas C. Montgomery, and Christine M. Anderson-Cook. 2009.

Response Surface Methodology: Process and Product Optimization Using

Designed Experiments, Third Edition. New York, NY: Wiley.

Neches, Robert, and Azad M. Madni. 2013. “Towards Affordably Adaptable and

Effective Systems.” Systems Engineering 16(2): 224–234.

National Institute of Standards and Technology. 1993. Integration Definition for

Functional Modeling (IDEF0). Technical Report, Federal Information Processing

Standards Publication 183. Springfield, VA: U.S. Department of Commerce.

Object Management Group. 2012. OMG Systems Modeling Language (OMG SysML)

Version 1.3. OMG Document: ptc/2012-04-07. Needham, MA: Object

Management Group.

Object Management Group. 2006. “OMG Systems Modeling Language (OMG SysML)

Tutorial.” Presented at the INCOSE 2006 Symposium, Orlando, FL, July 9–13.

Object Management Group. 2003. UML for Systems Engineering. OMG Document:

ad/03-03-41. Needham, MA: Object Management Group.

Parker, Jeffrey D. 2015. “An Innovative Approach for the Development of Future Marine

Corps Amphibious Capability.” Master’s Thesis. Naval Postgraduate School.

Piaszczyk, Chris. 2011. “Model Based Systems Engineering with Department of Defense

Architectural Framework.” Systems Engineering 14(3): 305–326.

Program Executive Office Littoral and Mine Warfare. 2008. Standard Mine Warfare

Measures of Effectiveness. PEO LMW Instruction 3370.1A. Washington, DC:

Department of the Navy.

Qamar, Ahsan, Carl During, and Jan Wikander. 2009. “Designing Mechatronic Systems,

A Model-Based Perspective, an Attempt to Achieve SysML-Matlab/Simulink

Model Integration.” In IEEE/ASME International Conference on Advanced

Intelligent Mechatronics 2009 , 1306–1311. Berlin: IEEE.

Royce, Winston W. 1970. “Managing the Development of Large Software Systems.” In

Proceedings of IEEE Western Electronic Shown and Convention 26(8), 328–338,

Los Angeles, CA: IEEE.

 250

Ross, Adam M. 2003. “Multi-Attribute Tradespace Exploration with Concurrent Design

as a Value-Centric Framework for Space System Architecture and Design.”

Master’s Thesis, Massachusetts Institute of Technology.

Ross, Adam M., David B. Stein, and Daniel E. Hastings. 2014. “Multi-Attribute

Tradespace Exploration for Survivability.” Journal of Spacecraft and Rockets

51.5, 1735–1752.

Russell, Mike. 2012. “Using MBSE to Enhance System Design Decision Making.” In

Procedia Computer Sciences: Vol. 8, edited by Cihan H. Dagli, 188–193. Rolla,

MO: Elsevier.

Ryan, Jessica, Shahram Sarkani, and Thomas Mazzuchi. 2013. “Leveraging Variability

Modeling Techniques for Architecture Trade Studies and Analysis.” Systems

Engineering 17(1): 10–25.

Sage, Andrew P., and James E. Armstrong, Jr. 2000. Introduction to Systems

Engineering. New York, NY: John Wiley & Sons

Sanchez, Susan M., and Hong Wan. 2012. “Work Smarter, Not Harder: A Tutorial on

Designing and Constructing Simulation Experiments.” In Simulation Conference

(WSC), Proceedings of the 2012 Winter Simulation Conference, edited by

Christoph Laroque, Jan Himmelspach, Raghu Pasupathy, Oliver Rose, and

Adelinde Uhrmacher, 1–15. Berlin: IEEE.

Sanchez, Susan M., Thomas W. Lucas, Paul J. Sanchez, Christopher J Nannini, and Hong

Wan. 2012. “Designs for Large-Scale Simulation Experiments, with Applications

to Defense and Homeland Security.” In Design and Analysis of Experiments:

Special Designs and Applications, Volume 3 edited by Klaus Hinkelmann, 1–26.

Hoboken, NJ: John Wiley & Sons.

Sanchez, Susan M. 2000. “Robust Design: Seeking the Best of All Possible Worlds.” In

Simulation Conference (WSC), In Proceedings of the 2000 Winter Simulation

Conference, edited by Jeffrey A. Joines, Russell R. Barton, Keebom Kang, and

Paul A. Fishwick, 69–76. Berlin: IEEE.

Santner, Thomas J., Brian J. Williams, and William I. Notz. 2003. The Design and

Analysis of Computer Experiments. Springer Series in Statistics.

Sargent, Robert G. 2013. “An Introduction to Verification and Validation of Simulation

Models.” In Simulation Conference (WSC), In Proceedings of the 2013 Winter

Simulation Conference, edited by Ray Hill, Michael Kuhl, Raghu Pasupathy,

Seong-He Kim, and Andreas Tolk, 231–327. Washington, DC: IEEE.

 251

SE Handbook Working Group. 2011. Systems Engineering Handbook: A Guide for

System Life Cycle Processes and Activities, Version 3.2.2, edited by Cecilia

Haskins. San Diego, CA: International Council on Systems Engineering

(INCOSE)

Siebers, Peer-Olaf, Charles M. Macal, Jeremy Garnett, David Buxton, Michael Pidd.

2010. “Discrete Event Simulation is Dead, Long Live Agent-Based Simulation!”

Journal of Simulation 4 (3): 204–210.

Sitterle, Valerie B., Dane F. Freeman, Simon R. Goerger, and Tommer R. Ender. 2015.

“Systems Engineering Resiliency: Guiding Tradespace Exploration within an

Engineering Resilient Systems Context.” In Procedia Computer Sciences: Vol.

44, edited by Jon Wade and Robert Cloutier, 649–658. Hoboken, NJ: Elsevier.

Spero, Eric., Michael P Avera, Pierre E. Valdez, and Simon R Goerger. 2014.

“Tradespace Exploration for the Engineering of Resilient Systems.” In Procedia

Computer Sciences: Vol. 28, edited by Azad M. Madni and Barry Boehm, 591–

600. Malvern, PA: Elsevier.

Summers, Joshua D., Claudia Eckert, and Ashok Goel. 2013. “Function in Engineering

Benchmarking Representations and Models.” In Proceedings of the 19
th

International Conference on Engineering Design (ICED13), Design for

Harmonies, Vol. 2: Design Theory and Research Methodology, edited by Udo

Lindemann, Srinivasan Venkataraman, Yong Se Kim, Sang Won Lee, Yoram

Reich, and Amaresh Chakrabarti, 1–16, Seoul: ICED.

Technical Operations, INCOSE. 2007. Systems Engineering Vision 2020. TP-2004-004-

02. San Diego, CA: INCOSE

Thompson, Andrew R. 2015. “Evaluating the Combined UUV Efforts in a Large-Scale

Mine Warfare Environment.” Master’s Thesis. Naval Postgraduate School.

Tolk, Andreas, and Taylor K. Hughes. 2014. “Systems Engineering, Architecture, and

Simulation.” In Modeling and Simulation-Based Systems Engineering Handbook,

edited by Daniele Gianni, Andrea D’Amborgio, and Andreas Tolk, 11–41. Boca

Raton, FL: CRC Press.

Trainor, Timothy, and Gregory S. Parnell. 2011. “Problem Definition.” In Decision

Making in Systems Engineering and Management, edited by Gregory S. Parnell,

Patrick J. Driscoll, and Dale L. Henderson, 297–353. Hoboken, NJ: John Wiley &

Sons.

Treml, Tobias. 2013. “A Revolutionary Approach for the Development of Future Ground

Combat System Specifications.” Master’s Thesis. Naval Postgraduate School.

 252

Vieira, Jr. Helcio. 2012. “NOB_Mixed_512DP_template_v1.xls design spreadsheet.”

October 9. http://harvest.nps.edu

Vieira, Jr, Helcio, Susan M. Sanchez, Karl Heinz Kienitz, and Mischel Carmen Neyra

Belderrain. 2013. “Efficient, nearly orthogonal-and-balanced, mixed designs: an

effective way to conduct trade-off analysis via simulation.” Journal of Simulation

7(4): 264–275.

Vieira, Jr, Helcio, Susan M. Sanchez, Karl Heinz Kienitz, and Mischel Carmen Neyra

Belderrain. 2011. “Generating and Improving Orthogonal Designs by Using

Mixed Integer Programming.” European Journal of Operations Research 215:

629–638.

Vitech Corporation. 2011. A Primer for Model-Based Systems Engineering. Blacksburg,

VA: Vitech Corporation.

Vitech Corporation. 2010. CORE 7 System Definition Guide. Blacksburg, VA: Vitech

Corporation.

Wagner, David A., Matthew B. Bennett, Robert Karban, Nicolas Rouquette, Steven

Jenkins, Michel Ingham. 2012. “An Ontology for State Analysis: Formalizing the

Mapping to SysML.” In 2012 IEEE Aerospace Conference, 1–16, Piscataway, NJ:

IEEE

Wakeman, Clifford C. 2012. “Discrete Event Simulation Modeling and Analysis of Key

Leader Engagements.” Master’s Thesis. Naval Postgraduate School.

Wang, Renzhong, and Cihan H. Dagli. 2011. “Executable System Architecting Using

Systems Modeling Language in Conjunction with Colored Petri Nets in a Model-

Driven Systems Development Process.” Systems Engineering 14(4): 383–409.

Weilkiens, Tim. 2008. Systems Engineering with SysML/UML: Modeling, Analysis,

Design. San Francisco, CA: Morgan Kaufmann Publishers.

Wu, Chunlong, Benjamin Ciavola, and John Gershenson. 2013. “A Comparison of

Function and Affordance Based Design.” In Proceedings of the ASME 2013

International Design Engineering Technical Conferences and Computers and

Information Engineering Conference, 1–9, Portland, OR: ASME.

 253

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

 Ft. Belvoir, Virginia

2. Dudley Knox Library

 Naval Postgraduate School

 Monterey, California

