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ABSTRACT 

We propose a novel network interdiction model that reconciles many operational 

realities identified by military literature. Specifically, we conduct network interdiction 

within a dynamic network under partial information, using incomplete feedback and 

allowing two-sided adaptive play. Combining these aspects in an evolving game, we use 

optimization, simulation, and stochastic models to achieve a hybrid model. Modeling 

some currently underrepresented martial problems in this way makes it possible to 

highlight otherwise obscure relationships between policy and outcome, and to discover 

emergent effects, such as deterrence. As an example of this class of problems, we 

consider the struggle between a smuggler and interdictor. The smuggler seeks to 

maximize the amount of forces and materiel infiltrated from an origin to destination. The 

interdictor seeks to minimize this smuggler flow. Using two simple examples of an illicit-

trafficking network, we demonstrate how to use these quantitative models within such an 

interdictor-smuggler context to (1) evaluate the value of seizures as a proxy for smuggled 

materiel, (2) assess the value of exploration, and (3) provide decision makers with 

practical ways to better allocate resources and increase effectiveness. 
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EXECUTIVE SUMMARY 

With the rise of war by proxy and growing transnational terrorism and organized 

crime; smuggling and infiltration, and efforts to disrupt these activities through 

interdiction have become central to many nations’ security. Failure by a government to 

guard against both infiltration and smuggling leads to direct threats to these governments’ 

sovereignty. To help tactical decision makers better address these threats, we consider a 

resource allocation problem faced by the interdictor, specifically, where to position 

limited combat power along suspected infiltration routes within the operating area over 

time.  

The interdictor must make these decisions using incomplete information on the 

location of in-transit smuggler goods and the cost and capacity of the smuggler routes. 

Further compounding the problem, we assume the smuggler is both intelligent and 

adaptive. The interdictor’s objective is to best-disrupt the smuggler’s lines of 

communication by minimizing the amount of forces and materiel travelling from the 

smuggler’s safe haven to a destination. Opposing this aim, the smuggler’s goal is to 

maximize the flow of forces and materiel to the destination. 

Previous research into martial contests, such as this interdictor-smuggler context, 

has made various strong assumptions in the name of tractability. These persistent 

assumptions include perfect information, an unchanging environment, and non-

adaptability. We believe these assumptions do not adequately represent problems within 

this interdictor-smuggler context and many other tactical scenarios. 

Our approach  is bottom up. We merge strong aspects of traditional game theory, 

optimization, stochastics, and simulation. First, we design a game with simple rules to 

examine patterns of interest and search for recognizable emergent behaviors. This game 

is instantiated in a terminating discrete event simulation. By repeating this simulation in a 

variety of configurations, each continued over a finite number of time steps, we study the 

time dynamics of our problem in a spectrum of situations. Through this evolution of play, 
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we examine the robustness of interdictor resource allocation policies and smuggling 

tactics. Lastly, we search for emergent relationships during play. 

Our computational study begins with traditional relaxations that include perfect 

information for the interdictor and smuggler. We then demonstrate the effect of private 

information for each player. Private information requires the interdictor and smuggler to 

make estimations of their antagonist’s current state and designs. These estimations 

combined with resource allocation decisions introduce adaptive play under uncertainty. 

We show that adaptive play under uncertainty causes a massive perturbation to both 

game play and outcome.  

Next, we simulate games configured with several specific interdictor and 

smuggler policies using design of experiments. We consider a spectrum of interdictor 

policies that vary both the total resource budget and blend of resource types. The type of 

interdictor resource varies across a spectrum describing its visibility to the smuggler. The 

spectrum ranges from overt (highly visible) to covert (less visible). We also vary the 

scheme by which the smuggler allocates forces and materiel for infiltration across 

shipments. During analysis, we examine each game’s time dynamics and end-results 

through the lens described above. 

We demonstrate our model using two interdictor-smuggler problem instances, 

exposing a number of practical insights useful to decision makers selecting resource 

allocation policies within a counterinsurgency or counter-illicit trafficking setting. The 

first problem instance portrays a smuggling network with a large number of possible 

parallel routes, the second a network with fewer alternative paths but significant depth. 

We find that when allotted a small number of interdiction resources relative to 

the number of available smuggling routes, the interdictor should employ these resources 

in a manner highly visible to the smuggler. Overt deployment will disrupt smuggled 

forces and materiel primarily through deterrence. Using our model, we are able to assess 

the value of deterrence, given other policy options. 

As the interdictor’s resource budget increases, deploying forces less visible to the 

smuggler alongside those highly visible to the smuggler becomes more effective. These 
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highly visible forces should then be used to herd smugglers into waiting ambushes of less 

visible interdiction forces. In contrast to overt policies, pure covert policies primarily 

achieve their effect by actually seizing the smuggled flow. Deterrence is far less 

important under pure covert schemes. For these policies, information is key. Pure covert 

policies encourage the interdictor to target arcs deeper within the smuggling network 

more precisely. 

Intuitively, one might expect that the more the interdictor discovers the network, 

the more he disrupts smuggling, but we find that this is not the case. Even so, if discovery 

of the physical structure of the network is important, interdictor policies with heavy 

allocations to less-visible forces are best suited to the task.  

Finally, we show that the amount of seized materiel is a poor proxy for the total 

amount of smuggled flow. The relationship between these factors is very inconsistent. In 

policies where deterrence is high, the amount of seized materiel provides almost no 

information on the actual amount of unseen materiel successfully smuggled. 

Beyond the direct findings listed above, we reach two deeper conclusions that 

have implications for research into martial contests, such as this interdictor-smuggler 

context: 

(1) A range of realistic, complex behaviors can emerge from the interaction of 

two hostile, intelligent agents acting under simple rules within a dynamic environment of 

uncertainty and danger.  

(2) We can gain insight into these complex situations through heuristics that 

combine complementary optimization, stochastic, and game-theoretic models under an 

umbrella of simulation.  

This study is meant to be a prototype, demonstrating the power of a hybrid model. 

As a prototype, it is not without limitations. We make several assumptions on the method 

and speed by which hostile agents might evolve in a martial context. Additionally, we do 

not include the advantage obtained by interrogation and exploitation after the capture of 

enemy forces and materiel. Lastly, the duration of our computational cases is necessarily 

finite. 



 xx 

Future research could address these assumptions or admit real-world data to craft 

a wider array of smuggling networks or specific instances of interest. Under a broader set 

of configurations, models similar to ours could prove to be a great aid to training inter-

agency decision makers and their staff. That training could encourage unique 

perspectives and seed important questions that might expose highly non-intuitive and 

indirect ways of influencing the outcome and assessing performance during real 

interdiction or counter-trafficking missions. 
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I. INTRODUCTION 

This thesis describes, develops, and exercises a mathematical model of a contest 

between a smuggler and an interdictor in an effort to study the allocation of interdiction 

resources and choice of smuggling tactics. We use this model to develop insights into 

different structures of such conflicts.  

A. BACKGROUND 

In the wake of two world wars, few modern nation states now choose to face one-

another directly. The last 50 years have instead revealed a distinct rise in war by proxy. 

Malign non-state groups have also gained trans-national influence, threatening the 

strategic goals of many established nations. In response, these nations have increasingly 

turned elements of national power against such antagonists. Infiltration or smuggling and 

efforts to counter them are important features of these contests. 

The U.S. DOD defines infiltration as the movement of small groups or individuals 

into a contested area by avoiding enemy contact (Marine Corps Combat Development 

Command 2001). Similarly, smuggling is defined as the “clandestine transportation of 

goods or persons past a point where prohibited…in violation of the law or other rules” 

(Lehman et al. 2004). Therefore, infiltration and smuggling are closely related. Each 

action is characterized by the contested movement of people, materiel, and information 

from a safe haven to a target operating area where these items find payoff. In armed 

conflict, the payoff is the focused application of force in time and space to create local 

advantage. The force might manifest as an improvised explosive device, kidnapping, 

ambush, or outright assault. In both war and peace, trafficked illicit goods are shepherded 

to areas of low supply and high demand. The payoff in such areas might be the sale of 

controlled narcotics, arrival of illegal migrants, or distribution of counterfeit currencies. 

The taxation of consumer goods smuggled from Dubai to Pakistan through Afghanistan 

provided an enormous portion of the Taliban’s funding stream in the late 1990s and early 

2000s (Rubin 2000). It is apparent that a government must guard against both smuggling 

and infiltration to maintain sovereignty.  
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In a failed or failing state, the government lacks sufficient influence to enforce 

control over some or all of its territory. Malign actors can further destabilize the weak 

government by fomenting an insurgency. Counterinsurgency operations are one method 

the host government can employ to resist the destabilizing agents. Counterinsurgency 

operations consist of offensive, defensive, and stability activities (United States 

Department of the Army 2008). Both the insurgent and counterinsurgent use 

unconventional warfare in pursuit of their respective aims.  

Smuggling and infiltration are important features of unconventional warfare. 

Faced with a more numerous and better-equipped opponent, the insurgent’s challenge is 

to create a temporary advantage through asymmetric means. The asymmetry involves a 

brief concentration of forces and materiel. Because the insurgent must maintain a low 

signature, maintaining a large, local stock of resources is risky. The insurgent must 

instead keep his primary sources of supply at a distance and disperse in the face of 

massed counterinsurgent forces. The high dispersion of both insurgent forces and 

materiel requires active and consistent lines of communication with a supporting 

organization for the insurgent to maintain any tactically significant level of activity. 

These lines of communication usually connect a safe haven (source) and target 

operating environment (target). Within the source, sanctuary can be provided by political 

or military sponsors or even exceptionally difficult terrain. In either case, the source lies 

beyond the operational reach of the counterinsurgent. An intermediate area (a network of 

routes) connects the source and target. In the intermediate area, the insurgent can 

infiltrate forces and supplies. Of equal importance, intelligence and casualties can be 

transported away from the target or exfiltrated. Both the aforementioned infiltration and 

exfiltration are accomplished with the aid of a smuggler. For the smuggler, the 

intermediate area comprises his trade routes (Figure 1).  

In the intermediate area, threat and opportunity meet. Here also, the 

counterinsurgent can act as interdictor, executing tactical action to disrupt the smuggler’s 

activities, and thus the insurgent’s lines of communication. Often of limited tactical 

interest, the intermediate area is strategically vital to both the insurgent and 

counterinsurgent. The success of interdiction or smuggling in the intermediate area can 
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isolate or relieve a contested area elsewhere, proving decisive. Because of the close 

relationship between smuggling and infiltration in the tactical context we describe, this 

thesis treats these terms as tacitly equivalent and we use the terms interchangeably. 

Figure 1. The Source, Target, and Intermediate Area. 

 

Lines of communication connect a safe haven (source) and target operating area (target) 

via a contested intermediate area (network of routes). Smugglers facilitate the movement 

of forces and materiel to forward insurgents through the network of routes. 

Smuggling routes composing the insurgent’s lines of communication are often 

small in number and change only after proving untenable. Operational experience ranging 

from the Vietnam War to more modern conflicts in the Middle East supports this point. 

The Ho Chi Minh trail was an essential lifeline for both the North Vietnamese Army and 

their proxies in the south, the Viet Cong (Prados 1999). Significant interdiction efforts by 

allied forces failed to alter this route despite practical alternatives (Prados 1999). In 
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Operation Iraqi Freedom, infiltration routes, or “ratlines,” also tended to be highly 

consistent despite vast expanses of traversable desert. The constancy of insurgent lines of 

communication across the Durand Line, a line that separates Afghanistan and Pakistan, is 

similarly long-observed. Fighters, weapons, minerals, raw ores, and a vast spectrum of 

consumer goods still flow unabated over the same ground used to illicitly cross the 

Durand Line since the 1890s (Omrani 2009).  

The above consistency makes lines of communication ripe for interdiction 

operations but poses a new issue. The sheer length and number of routes prevents would-

be interdictors from maintaining persistent coverage of their entirety. Temporary outposts 

may be constructed, but smugglers quickly adjust routes around these obvious obstacles. 

Therefore, mobility is key and requires a large commitment of resources to even produce 

episodic concentrations of effectual combat power. The tactical problem is one highly 

sensitive to information and timing.  

The smuggler and interdictor are thus locked in an asymmetric struggle 

characterized by extremely transient actions. A highly aggregate view of these actions 

might provoke a perspective that the interdictor-smuggler struggle is relatively stationary, 

each contest a repetition of the last with only some variance in the outcome. However, at 

the tactical level no combat is stationary; similar actions evoke wholly new responses 

when repeated. The new responses then generate new circumstances under which the 

interdictor and smuggler meet. A highly aggregate view that discounts the path-

dependence of combat is seldom informative to problems of directing tactical action.  

Tactical actions are focused and do not occur with consistent tempo. Preparation 

for some interdiction missions requires days, weeks, or even months. In execution, the 

resulting engagement between smuggler and interdictor is often resolved in seconds or 

minutes. The statistical average level of combat activity does not exist in the above 

reality. Each interdiction and smuggled shipment is unique but related to those that came 

before it. Both the interdictor and smuggler face a series of linked tactical problems, not 

one problem repeated in time. 
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Interdictors can employ combat power in various forms to address these tactical 

problems. Random patrolling, outposts, aerial reconnaissance, harassing fires, and 

ambushes are past examples of combat power employed in support of interdiction. No 

matter the specific form, these actions lie on a spectrum from overt to covert. The level of 

observability depends on the interdiction effort. A patrol conducted in the desert by 

armored vehicle would be highly overt. Dust clouds of approaching vehicles are visible 

for tens of miles. Conversely, high-altitude reconnaissance assets would be nearly 

invisible to a smuggler, and thus covert. Some activities, such as small ambush patrols, 

might lie somewhere in between these extremes. 

Smugglers have their own spectrum of methods to maintain freedom of maneuver 

on their critical lifelines. They often use camouflage and concealment in non-traditional 

ways by disguising their activities as the movement of licit goods. Sophisticated 

observation networks warn smugglers of impending threats and offer direction to safer 

passage. The size of smuggled shipments also varies greatly, ranging from entire 

truckloads of weapons to information passed on a single flash memory card. 

Both the interdictor and smuggler confront a situation full of complexity and 

ambiguity. A difference between orientation and reality is assured. The individual ability 

of the interdictor and smuggler to reconcile the difference between perception and reality 

by adapting assumptions and evaluating information within an evolving context is a 

significant factor in the conduct and result of the interdictor-smuggler struggle. Any 

analysis of an interdictor-smuggler problem must then consider the scenario’s history as 

context. If adjusting perception to reality is paramount to success in the interdictor-

smuggler context, it also suggests that the uncertainty level of the interdictor or smuggler 

may only have meaning in view of the other’s relative information level. 

Recent events show the importance of this interdictor-smuggler problem in stark 

relief. Within the last two years, criminal networks aided the infiltration of over 36,000 

foreign fighters into Syria and Iraq (see Figure 2), swelling the Islamic State’s ranks 

(Dilanian 2016). As of 17 August 2015, over 250,000 people died and 13,500,000 fled as 

a direct result of the fighting, creating a global humanitarian crisis (United Nations 

Officer for the Coordination of Humanitarian Affairs 2016). The impact of infiltration 
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was also apparent in Paris (2015) and Belgium (2016), when terrorists, trained in Syria, 

murdered more than 200 civilians in areas otherwise thought secure and gained the 

Islamic State of Iraq and the Levant (ISIL) a strategic information victory (Almasy 2015, 

Shoichet 2016). 

Figure 2. Foreign Fighter Flow into Syria. Adapted from Sharma 

(2015). 

 

 

While it is unlikely that the flow of fighters, materiel, or terrorists can be 

completely stopped, more well-coordinated interdiction efforts can significantly influence 

smuggling behaviors and potentially seize key shipments. These behavioral changes and 

the threat of interdiction could help drive criminal smuggling organizations from 

cooperating with terror groups, further limiting the scope and impact of either’s activities. 
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The study of this interdictor-smuggler contest is important, yet difficult. There is 

no single, natural methodology to address this scenario with the features we have 

suggested, and it does not gracefully decompose into sub-processes that submit to 

isolated analysis and produce meaningful results. As a result, making robust statements of 

cause and effect is problematic in these circumstances. However, by using a family of 

analytical techniques, it is possible to comment on emergent patterns that reflect the 

situation’s time dynamics and eventual rest points.    

B. PROBLEM STATEMENT AND SCOPE 

In this thesis we consider a resource allocation problem faced by the interdictor, 

specifically, where to position limited combat power along suspected infiltration routes 

over time. This must be done using incomplete information against an adaptive smuggler. 

The desired objective is to best-disrupt the smuggler’s lines of communication by 

minimizing the amount of materiel or goods travelling from source to target. 

Our approach is bottom up. We merge strong aspects of traditional game theory, 

optimization, stochastics, and simulation. First, we design a game with simple rules to 

examine patterns of interest and search for recognizable emergent behaviors. This game 

is instantiated in a terminating discrete event simulation. By repeating this simulation in a 

variety of configurations, each continued over a finite number of time steps, we study the 

time dynamics of our problem in a spectrum of situations. Through this evolution of play, 

we examine the robustness of interdictor resource allocation policies and smuggling 

tactics. Lastly, we search for emergent relationships during play. 

Our computational study begins with traditional relaxations that include perfect 

information for the interdictor and smuggler. We then demonstrate the effect of private 

information for each player. Both the interdictor and smuggler must make estimations 

and decisions because of the partial information on their antagonist’s current state and 

designs. Private information and estimation introduces adaptive play under uncertainty. 

We assess the value of this feature. Next, we simulate games configured with several 

specific interdictor and smuggler policies. Finally, we examine each game’s time 

dynamics and end-results through the lens described above. 
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We have several goals. First, we aim to expose practical insights for decision 

makers within a counterinsurgency or counter-illicit trafficking setting. Our study should 

highlight otherwise-obscure relationships between interdiction policy and outcome while 

identifying realistic ways to increase the effectiveness by which resources are allocated. 

We expect the results could bring attention to scenarios that military decision makers 

might neither be able nor want to explore, due to a lack of information and human bias, 

respectively. Our formulation and results might suggest the importance of many features 

otherwise absent from current models. Some implications of our model may conflict with 

prior beliefs, provoking new questions and lines of research inquiry. Lastly, we strive to 

demonstrate an analytic way to investigate an important, realistic, and yet intensely 

complex problem by rigorously blending several complimentary stochastic, game-

theoretic, and optimization models. 
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II. LITERATURE REVIEW 

The key features underlying the interdictor-smuggler problem have been given 

significant treatment in both United States military doctrine and Operations Research. 

First, we explain the nature of war as defined in modern U.S. warfare philosophy. Then, 

we examine the attributes describing the essence of conflict: uncertainty, fluidity, and 

adaptation. Next, we review the analytical models that address interdictor-smuggler 

problems. In the survey of analytical techniques, we relate each model’s assumptions to 

the attributes of war as described in U.S. military doctrine. Lastly, we outline the 

contribution of this thesis.  

A. MODERN UNITED STATES WARFARE PHILOSOPHY 

Modern United States military doctrine begins by defining the essence of war. 

The agreed upon definition is: “a violent struggle between two hostile, independent, and 

irreconcilable wills, each trying to impose itself on the other” (Marine Corps Combat 

Development Command 1997). A common view of conflict helps aid interoperability and 

sets the foundation for all further service-level discussions of operations and tactics. The 

Joint Operating Environment leverages the agreed essence of war and “provides a 

perspective on future trends, shocks, contexts, and implications” for the near and far term 

security environment facing the United States (U.S. Joint Forces Command 2010). Its key 

points expound on the essence of war and how its precipitates—uncertainty, fluidity, and 

adaptation—will continue to govern the course of events in conflict. Each military 

service devotes extensive discussion throughout their respective capstone doctrine and 

tactical publications to defining and addressing the importance of uncertainty, fluidity, 

and adaptation (e.g., United States Air Force 2003, Department of the Army 2012, 

Marine Corps Combat Development Command 1997, U.S. Navy Doctrine Command 

1995).  

Uncertainty is the prime attribute of war in all U.S. Military doctrine. The U.S. 

Air Force explains that the incompleteness of information is so pervasive on the 

battlefield that it permeates combatants’ views of the enemy, environment, and even their 
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own forces (United States Air Force 2003). Elder (2006), in a study by the Central 

Intelligence Agency, concludes that the accuracy of assimilated information was a 

decisive factor in five strategically significant battles: the First Battle of Bull Run (1861), 

Tannenberg (1914), Midway (1942), Inchon (1950), and the Israeli air strike initiating the 

Six-Day War in 1967. Each Service argues that uncertainty can never be eliminated (e.g., 

Department of the Army 2012). Because of this intractability, the “fog of war” relates 

directly to another concept, fluidity. 

Fluidity communicates the tension of two competing phenomenon, uniqueness 

and dependence. U.S. Marine Corps doctrine establishes that while each combat 

engagement is a unique composition of circumstances, it is also dependent on the myriad 

events before it and determines those engagements that follow it (Marine Corps Combat 

Development Command 1997). The U.S. Army (2012) agrees with the importance of 

examining the path-dependency of each combat, citing that no combat episode can be 

viewed in isolation. They also sustain that no combat episode repeats itself exactly 

(Department of the Army 2012). Each engagement thus requires an original solution 

according to the U.S. Naval Doctrine Command (1995). U.S. Military doctrine concludes 

that because of uncertainty and fluidity, combatants must adapt. 

Adaptation is recognized by U.S. military doctrine as an imperative to success in 

war. Colonel John Boyd, the inventor of the Observe-Orient-Decide-Act decision 

framework, describes adaptation in combat through the lens of orientation (Boyd 1976). 

A combatant’s current awareness and experiences define their orientation, full of 

uncertainty and prejudice. Events not anticipated by this orientation generate surprise. 

Colonel Boyd explains that success in conflict is based primarily on each belligerent’s 

ability to anticipate or recognize these anomalies and then reconcile them quickly and 

accurately (Boyd 1976). The proliferation of Colonel Boyd’s theories during the 1980s 

brought adaptation back into the center of modern military doctrine. His influence is 

readily apparent in Marine Corps Doctrinal Publication 1 (1997), the Marine Corps’ 

capstone doctrinal publication. It defines adaptation and reinforces the context of 

uncertainty in conflict: 
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War is thus a process of continuous mutual adaptation, of give and take, 

move and countermove…The very nature of war makes certainty 

impossible; all actions in war will be based on incomplete, inaccurate, or 

even contradictory information. (3-4) 

The doctrine and tactics manuals from the other Services also give extensive 

treatment to the importance of adaptation (e.g., U.S. Department of the Army 2008). 

Even today, adaptation remains a centerpiece of martial discussions.    

The authors of U.S. military doctrine, in reviewing the recorded history of human 

conflict and leveraging decades of combat experience, communicate the supreme 

importance uncertainty, fluidity, adaptation, and complexity play in determining the 

outcome of the activities surrounding war. This closely aligns with the author’s own 

combat experience as a counterinsurgent.    

B. OPERATIONS RESEARCH 

The field of Operations Research arose in World War II to provide quantitative 

decision support to both U.S. and UK commanders within the wartime context of 

uncertainty and complexity described above. Its analytical methods were successfully 

applied to a spectrum of problems including convoy protection, amphibious assault, and 

aerial bombardment (Kirby 2003). Project Research ANd Development (RAND) was 

created during this time by General Henry H. Arnold, then commander of the United 

States Army Air Forces (RAND 2016). It was one of the major efforts by the U.S. to 

leverage quantitative analysis for decision support in World War II. The genesis of 

modern interdiction studies occurred within Project RAND.       

1. Cold War Origins   

On 21 May 1999, the United States Air Force declassified a study originally 

commissioned under Project RAND in 1955 (Harris and Ross 1955). It revealed the first 

modern mathematical model that we would recognize as network interdiction. The study 

describes a mathematical problem to identify a set of most vital routes within a 

transportation system whose removal would completely stop all movement. This problem 

has been extended in a number of directions, now commonly describing a contest 
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between two completely opposed and intelligent adversaries seeking, respectively, to 

inhibit or enhance the flow from one or more source nodes to one or more target nodes 

within a network. An explosion of additional interest since the 1990s has resulted in 

myriad techniques that now attempt to treat both a variety of contexts and assumptions 

through several related general formulations. (For further information, see Alderson et al. 

[2013] for a detailed treatment of this problem and references to subsequent work.) 

Harris and Ross advocated a basic model now referred to as k-most vital arcs. In 

the context of a potential Soviet invasion of Western Europe, they sought to stop the flow 

of reinforcements within the Soviet railway network. These forces and materiel would 

transit from sources within the Eastern Soviet Union to destinations in the western 

reaches of the Soviet Union and her satellite states in Eastern Europe. Recognizing that 

contemporary methods were inadequate, they instead postulated a holistic view that 

considered both primary and alternate routes and aggregated railway-operating divisions. 

Their solution identifies a “bottleneck,” a set of arcs that, if cut by aerial strikes, would 

completely interdict all western flow (Figure 3). 

Figure 3. The Contemporary Railway System of the U.S.S.R. with 

Identified “Bottleneck” as depicted by Harris and Ross. Source: Harris 

and Ross (1955). 

 

Nodes represent aggregate railway operating divisions and arc information represents the 

capacity in thousands of tons that can be moved between divisions in one day. 
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Importantly, Harris and Ross (1955) comment on two aspects of the problem that 

must be considered: 

As in many military operations, however, the success of interdiction 

depends largely on how complete, accurate, and timely is the 

commander’s information, particularly concerning the effect of his 

interdiction-program efforts on the enemy’s capability to move men and 

supplies. (iii) 

…it is fully recognized that the difficulties inherent in obtaining, 

evaluating, and disseminating intelligence would limit the usefulness of 

the method in direct proportion to the information placed at the disposal of 

the particular specialist concerned. (2) 

We argue that in many martial circumstances, such as the interdictor-smuggler 

scenario we posit, Harris and Ross have identified an intractable factor of these problems, 

not an inconvenience that can be overcome in assumptions. A number of interdiction 

models have addressed this issue directly or made strong assumptions concerning it for 

tractability. 

2. Basic Models 

There are several basic types of interdiction models. First, Harris and Ross (1955) 

propose to estimate the maximum railway network flow by identifying and then 

calculating the capacity of limiting bottlenecks, as described above. In 1963, Wollmer 

followed the work of Harris and Ross, describing a model that maximally reduces flow 

through a rail system by finding and cutting the most vital arc. Corely and Sha (1982) 

extended this model to consider weighted arcs and nodes but proposed only binary 

interdiction of identified arcs to minimize the maximum possible flow. In this sense, arcs 

are either completely cut or left uninhibited. Fulkerson and Harding (1977) adopt another 

model, shortest path interdiction, seeking to maximize the minimum source-target (s-t) 

path subject to a budget constraint. These basic ideas have been merged by Malik et al. 

(1989), where the k-most vital arcs are interdicted with the goal of maximally increasing 

the length of the shortest s-t path. Israeli and Wood (2002) formulate this method as a bi-

level program, introducing “supervalid inequalities” and greatly decreasing 

computational time. The third basic model is called maximum flow interdiction. Under 
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this perspective, arc costs or capacities are degraded to minimize the maximum possible 

flow (Wollmer 1964). In the shadow of the Vietnam War, these models were applied 

most directly to attacking enemy logistics systems (Ghare 1971, Ratliff et al. 1975). 

Importantly, these basic models assume that both interdictor and evader have perfect 

knowledge of both the environment and one another’s range of potential actions. 

Competing, intelligent adversaries have been an implicit feature of all of these 

models. Typically cast as two-person zero-sum games, network interdiction problems 

closely align with game theory. Danskin (1966) establishes the foundation of a 

generalized theory and solution method for these max-min problems. For exposition, he 

proposes a situation in which a defender installs fortifications and then an attacker plans a 

strategy with full knowledge of the location of these installations. This kind of sequential 

gaming format is closely related to a Stackelberg game and commonly referred to as such 

within modern network interdiction literature (von Stackelberg 1952). See Wood (2011) 

and references therein for a thorough discussion. Simultaneous gaming constructs have 

also been applied to network interdiction models, but this is less common. Washburn and 

Wood (1995) addressed the interdiction of illicit drugs by method of maximum flow 

interdiction and simultaneous gaming. While these models describe a complex problem, 

they still describe one in which the possible state space is known with certainty. 

3. Introduction of Uncertainty 

Natural extensions of these models include the introduction of uncertainty. 

Stochastic network interdiction models were first introduced by Cormican et al. (1998). 

Here the success of an interdictor’s attacks is binary but uncertain. Extensions are 

described that include uncertainty in arc capacities but require certainty in attack outcome 

(Cormican et al. 1998). Several efforts in support of counter-nuclear smuggling have 

formulated and solved stochastic network interdiction problems (Morton et al. 2007). In 

these problems, arc costs represent detection probabilities. The interdictor’s goal is thus 

to maximize this probability across all possible infiltration paths given an unknown 

smuggler origin. Using a logarithmic transformation, the model then becomes 

deterministic. Even so, the model is stochastic in the whole because the smuggler’s origin 
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is described by a probability distribution. Nehme (2009) extends this model by examining 

sequential, simultaneous, and then hybrid games where only a portion of the radiation 

sensors are made visible to the smuggler. Further relaxations are often noted as 

intractable under the above formulations. 

These stochastic programming models indirectly include asymmetric information. 

Several recent studies have explicitly made this inclusion but maintained static network 

character and do not consider time dynamics. Uniquely, Salmeron (2012) explores 

deception tactics under network interdiction. He formulates a multi-objective bi-level 

program that optimally locates a number of covert sensors, overt sensors, and decoys. As 

in the counter-nuclear smuggling models above, the focus of this interdictor is to 

maximize the probability of detection for a single evader. He notes that the computational 

time to reach solutions within this model is extensive. 

Asymmetry of information has been treated extensively in game theory literature. 

The literature centers on a problem of exploration and exploitation, commonly now 

referred to as the multi-armed bandit problem (Robbins 1952). Within this problem, a 

gambler is faced with a number of slot machines, each of which produces outcomes 

drawn from a unique distribution. The gambler must then decide how to balance 

exploration by playing various machines to forecast which will provide the highest 

reward and actually exploiting this information by playing this subset of machines. The 

aim is to maximize the sum of rewards. More nefarious versions have been proposed that 

pit the player against a malicious casino that controls the game payoffs (Auer 1995).  

These multi-armed bandit problems attempt to confront directly the military 

intelligence problem described by Harris and Ross and implicitly linked to practical 

network interdiction. Coping with initially incomplete information that can be uncovered 

in time requires feedback mechanisms. This presents problems with dynamic instead of 

static data.  
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4. Dynamic Data 

Zinkevich (2003) introduces online optimization for repeated games by convex 

programming in an attempt to address the challenge of dynamic data. This method can be 

described by a procedure that is performed in every time step:  

1. Choose an action.  

2. Simultaneously an adversary selects an action. 

3. Suffer loss that is a function of both selected actions. 

4. Observe the adversary’s action.  

The objective is to minimize the cumulative loss over time (Bubeck 2011). In this 

protocol, feedback is perfect, or transparent; the player is informed of the adversary’s 

complete actions without error. Awerbuch (2004) addresses a minimum delay routing 

shortest path optimization problem with opaque feedback. Here a malicious and adaptive 

adversary’s actions only partially reveal the underlying network structure. True arc costs 

are made visible just on selected paths. Similar formulations also provide the forecaster 

with a subset of the true loss vector (Cesa-Bianchi et al. 2012). It is apparent that these 

models attempt to confront more directly exploration-exploitation issues that emerge in 

dynamic optimization problems. 

Online stochastic optimization convolutes the problem by further limiting 

feedback. One of the goals of the limited feedback models is to explore the strategies 

required to cope with partial information scenarios. Bubeck (2011) defines bandit 

feedback as feedback wherein the player observes the adversary’s moves only indirectly, 

confounded with other factors. The semi-bandit version allows perfect loss information, 

but only in areas explored by that turn’s active strategy (Bubeck 2011). 

A most recent effort executes network interdiction across time with feedback. 

Borrero et al. (2015) address sequential shortest path interdiction with partial 

information. The interdictor has incomplete knowledge, but the evader has complete 

knowledge. As the evader traverses the network turn-by-turn, additional arcs and accurate 

costs are revealed to the interdictor through semi-bandit feedback. The authors suggest 

assessing interdictor policies by time stability and efficiency. This time stability is the 
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number of time steps required before chosen strategies match those of a player with 

perfect knowledge called the oracle (Borrero et al. 2015). In this case, the adversary is 

myopic and non-adaptive. 

With the rise in computational power and development of newer decomposition 

methods, modern network interdiction studies are now able to handle what would have 

been prohibitively large problem instances in the time of Harris and Ross. However, 

reflecting again on their admonitions concerning imperfect information and time 

sensitivity, we can see that modern techniques still require a multitude of strong 

assumptions that ignore the important effects of two-sided asymmetric information, path-

dependency, and adaptation. We argue that these assumptions have played a role in 

limiting both the scope of current network interdiction research and practical utility of 

some results. 

C. OUR CONTRIBUTION IN CONTEXT 

We propose a novel network interdiction model that reconciles many operational 

realities identified by military literature. We believe that significant insight can be gained 

into heretofore underrepresented or excluded problems within these operational realities. 

We pursue this insight by simultaneously relaxing many of the previous network 

interdiction modelling assumptions listed above. The local counterinsurgent-smuggler 

contest described in Chapter 1 is one example in this class of problems. For this problem, 

we conduct network interdiction within a dynamic network, under partial information, 

using incomplete feedback, and allowing two-sided adaptive play. We combine these 

aspects in an evolutionary game, leveraging optimization, simulation, and stochastics to 

achieve a hybrid model. 
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III. MODEL FORMULATION 

In this chapter, we describe a game and corresponding mathematical model 

formulation for gaining insights into realistic smuggling and interdiction scenarios. First, 

we define the objectives, rules, interactions, and challenges that form the game. Next, we 

explore a series of constructive modelling cases to demonstrate the effect of each major 

modelling assumption. We then explain the mathematical formulation of our game. 

A. THE GAME 

We design a game in which two players with opposing goals make decisions that 

govern the movement of materiel across a network. The game is played in discrete 

periods called rounds. The goal of the first player, named the smuggler, is to move as 

much of this materiel as possible from one or more sources to a single target. Opposing 

the smuggler is the second player, called the interdictor, who attempts to stop this 

materiel from reaching the appointed target. Each round of the game produces a score 

that represents the total materiel delivered to the target in that round of play. Playing the 

game under different scenarios allows for the relative evaluation of various tactics and 

provides insights into phenomena modelled by the game. 

The game proceeds over a finite number of rounds. Neither player knows the total 

number of rounds within a game. Each round involves several decisions by both the 

smuggler and interdictor. While these two players make some decisions in turn, they also 

make some decisions simultaneously. The outcome of a player’s decisions is stochastic. 

Each player updates the information used to make their decisions based on these results. 

Score is recorded. The game then proceeds to the next round.  

The smuggler and interdictor play this game on a network described by a directed 

graph consisting of nodes and arcs. Nodes represent an origin, destination, or 

intermediate location for materiel flow. Thus, both the source and target are nodes. There 

can be multiple sources within a game and even within a single round of play but only 

one target. Nodes have unbounded storage capacity. Arcs represent potential movement 

of flow from one node to another node. There is only one arc between any pair of nodes, 
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and the underlying graph is acyclic. These two characteristics make the network a feed 

forward network. Each arc has a unique cost and capacity. The cost represents the 

amount of work required to move one unit of materiel from the node at the tail of the arc 

to the node at the head of the arc within a single round of play. Similarly, the capacity 

describes the maximum amount of materiel that can be moved within a round of play 

across the respective arc. 

Materiel moves in discrete units called packets. Each packet has two attributes: a 

source and a size. The size of the packet describes the amount of materiel contained 

within the packet. Different packets can have different sizes, but the size of each packet is 

fixed. A packet’s source and the target determine the node in which the packet enters the 

game and the node from which the packet can exit the game, respectively. Packets 

reaching the assigned target node within a round count toward the score. The round’s 

score is tallied by summing the sizes of these packets. 

Both the smuggler and interdictor play the game by making different decisions in 

the context of individual budgets. The smuggler decides how to use a finite budget to 

move the packets through the network. This budget, the movement budget, can change by 

game round. Each packet moves as a unit. Within a round, the length of movement may 

be limited to one arc or extend to the entire set of arcs connecting the source and target 

nodes. Alternatively, the smuggler may decide not to move some packets at all within a 

game round.  

The interdictor decides where to place a limited number of sensors to discover the 

packets and prevent them from reaching the target. A sensor budget limits the number of 

sensors the smuggler may place in a game round. As with the smuggler, this budget can 

change by round. Once placed, we assume a sensor lasts only one round. Sensors are 

either overt or covert. Overt sensors are visible to the smuggler while covert sensors are 

not. Both types of sensors are placed upon arcs. The interdictor may place only one 

sensor of any type upon any one arc in any one round of the game. Packets passing over 

an arc on which a sensor is placed are candidates for detection. This detection is random 

and the probability of detection is a function of the packet’s size and the number of past 

detections on the arc. Even so, the interdictor does not know the probability of detection. 
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The interdictor automatically attacks detected packets, destroying them. We remove 

destroyed packets from the game. 

The information of both the smuggler and interdictor is always incomplete. Even 

so, the information is incomplete in fundamentally different ways. The smuggler lacks 

complete awareness of all available arcs, and the interdictor is uncertain of all arc and 

node attributes. Both players formulate estimates to augment this partial information. The 

smuggler’s estimates of arc costs and capacities are equal to the ground truth arc costs 

and capacities. However, the set of arcs visible to the smuggler is a subset of the ground 

truth arcs. The visibility of an arc is controlled by a clock that reveals the arc to the 

smuggler in a predefined round. After an arc becomes visible, it is always visible.  

The interdictor also has an estimate of network information and smuggler 

decisions. A limited feedback loop informs the interdictor’s sensor placements by 

formulating a private view of arc capacity, arc cost, and the location of the packets. 

Because the estimated locations and target of the packets—the estimated node supplies 

and demands—shifts round-to-round, and the interdictor is attempting to prevent the 

smuggler’s flow, the interdictor considers different arcs in each round. Through feedback 

loops, “learning,” and “forgetting” occurs. Each player then adapts to better inform their 

play and commit resources.  

We apply a transformation function to all the arcs within the game at the end of 

each round. This function reduces each arc’s cost by a fractional amount every round for 

three purposes. First, the transformation function implements the count-down timer to 

reveal non-visible arcs to the smuggler. Second, the transformation function simulates 

smuggler learning by decreasing the cost to transport materiel in successive rounds. 

Third, the transformation function attenuates the smuggler’s cost increase resultant from 

any loss of materiel incurred during previous game rounds. The combination of the 

transformation function and evolving player’s estimates gives the network a dynamic 

character. 

We consider numerous scenarios under which the interdictor and smuggler play 

the game, in order to evaluate a spectrum of smuggler and interdictor policies. Modifying 

the sensor budget, movement budget, or other parameters can cause each player to use 
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different tactics and allow one to study the effectiveness of a number of styles of play. It 

is then possible to examine the relative value of each tactic and make observations on the 

progression of play within the game in order to draw more general conclusions on 

phenomena that might be well-represented by this game. 

B. THE I-I/S SIMULATION ALGORITHM 

We develop an heuristic algorithm to simulate the time-ordered decisions made 

by the interdictor and smuggler in the game described in Section A (Figure 4). Within the 

algorithm, we formulate the game as two-stage sequential: Interdictor – 

Interdictor/Smuggler (I-I/S). In the second step of the round, “Interdictor/Smuggler,” 

play is simultaneous. The interdictor and smuggler play the game over a finite number of 

rounds.    

The algorithm allows us to explore the performance of both the interdictor and 

smuggler under various individual resource allocation policies. We instantiate the 

algorithm in a terminating discrete event simulation. Evaluation of the output provides 

feasible, face valid solutions to various interdictor-smuggler problem instances. 
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Figure 4. The I-I/S Simulation Algorithm. 

 

The time-ordered steps of the I-I/S game algorithm. Nine initial inputs set the specific 

scenario. At each step in the algorithm, one or both players makes decisions based upon 

or adjusts a prescriptive model that represents their current state of knowledge about the 

system and the actions (so far) of their opponent, and explicitly models any limitations of 

this information and any uncertainty in the outcome of their actions. After a pre-

determined number of game rounds T, the algorithm generates both time-series and finite 

time horizon aggregate outputs. 

C. CONSTRUCTIVE CASES 

We explore a series of constructive cases to demonstrate the effect of each major 

modelling constraint (Table 1). Each constructive case considers the same problem 

instance involving six nodes, two of which are sources and one of which is the target for 

the smuggler (Table 2 and Figure 5). We use these cases as illustrative examples to 

further explain game play and to argue that the admixture of the constraints found in our 

full model is necessary to properly explore the interdictor-smuggler resource allocation 

problem. 
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Table 1.  List of Constructive Cases. 

 

Table 2.  Parameters and Values for the Problem Instance Simulated in 

Cases 1–5. 

Interdictor Budget (sensor budget) 1 Overt Sensor and 1 Covert Sensor / round 

Smuggler Budget (movement budget) 25 / round 

Packets 3 packets / round 

Number of round played 3 rounds / Case 

Figure 5. Network Configuration and Packet Schedule for 

Constructive Cases. 

 

Left: The network configuration for all constructive cases. Nodes N1 and N2 act as 

sources, node N6 acts as the target. Right: The schedule of packets for all computational 

cases. The schedule introduces seven total packets, all of size 1, throughout the game. 

Note that in round three, the schedule introduces two packets at node N1. 

 
Case 1 Case 2 Case 3 Case 4 Case 5 

Multi-period X X X X X 

Asymmetric cost and capacity information   X   X X 

Limited cost and capacity feedback   X   X X 

Packet locations unknown to interdictor     X X X 

New arcs revealed by timer         X 
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1. Case 1: Multi-period, Symmetric Information 

In Case 1, we assume both the smuggler and interdictor observe the same arc 

costs and capacities. The interdictor has perfect information of the system state. All 

packet locations are transparent. The smuggler can see overt sensors but is not able to see 

covert sensors. Because the smuggler can neither observe nor predict the placement of 

covert sensors, he moves packets in a greedy, myopic fashion along budget feasible 

paths. The entire set of arcs is visible to the smuggler throughout the game. Figure 6 

displays the time-ordered steps of the game algorithm for constructive case 1. Figures 7–

9 display the decisions, information, and outcomes of three rounds played under Case 1. 

Figure 6. The I-I/S Game Algorithm, Case 1. 

 

The time-ordered steps of the game algorithm for constructive Case 1. In Case 1, the 

interdictor has perfect information of the system state, requiring neither estimation nor 

learning on his part. The smuggler is able to view all arcs within the network during all 

rounds of play. Detection success is stochastic. The Case 1 configuration requires only 

three of the I-I/S game algorithm’s seven steps to instantiate (unnecessary steps in dashed 

gray). 
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Figure 7. Case 1, Round 1 Decisions and Information. 

  
 

The smuggler has two packets at node N2, and the interdictor is aware of all packet 

locations. Left (Interdictor): The interdictor optimally places two sensors to maximize the 

smuggler’s minimum cost of flow. Right (Smuggler): The smuggler is aware of the 

interdictor’s overt sensor on arc (N2, N3), but unaware of the covert sensor on arc (N2, 

N4). He moves two packets to the target at minimum cost based on his partial information 

(dashed). The stochastic result from the two packets passing the covert sensor on arc (N2, 

N4) yields “no detection” for packet 1 but “detection” for packet 2. The interdictor 

destroys the detected packet. Packet 1 reaches the target and records a score of 1. 
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Figure 8. Case 1, Round 2 Decisions and Information. 

 

 

Packet 2 is at node N4 from the previous round, and there are two new packets at source 

node N2. The transformation function updates all arc costs, reducing them. Left 

(Interdictor): Using the same arc attributes as the smuggler in Case 1, the interdictor 

again places sensors optimally. Right (Smuggler): The smuggler attempts to move 

packets 2 and 3 to the target. The stochastic result from these packets passing the covert 

sensor on arc (N4, N6) yields “no detection,” and a score of 2 is recorded.  

Figure 9. Case 1, Round 3 Decisions and Information. 

  

Packet 4 remains from the previous round, and there are three new packets at source 

nodes. The transformation function reduces all arc costs. Left (Interdictor): Aware of all 

supplies and arc costs, the interdictor optimally places sensors to maximize the smugglers 

minimum cost. Right (Smuggler): The smuggler attempts to move two packets to the 

target. Because of the overt sensor on arc (N3, N6), the smuggler does not send packets 6 

and 7, and instead sends packets 4 and 5. The stochastic result from packet 4 and 5 

passing the covert sensor on arc (N2, N4) yields “no detection.” Both packets reach the 

target giving a score of 2. 
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Discussion 

In Case 1, we assume the interdictor is aware of all packet locations. He, 

therefore, places sensors as closely as possible to these known supplies of flow in each 

round. Additionally, because the smuggler and interdictor use the same cost and capacity 

information, the interdictor has a perfect prediction of the smuggler’s packet routing. 

Sensor detection probability is less than 1.0, so even with the completeness of 

information available, five packets still reach the target. The model in Case 1 is very 

similar to previous stochastic network interdiction models where perfect information 

exists, but attack success is uncertain (e.g., Cormican et al. 1998). The assumption of 

perfect information made in Case 1 does not comport well with the key features of the 

interdictor-smuggler problem as posed in Chapters 1 and 2. 

2. Case 2: Multi-period, Asymmetric Cost and Capacity Information, Limited 

Feedback 

In Case 2, we assume the smuggler and interdictor have private arc cost and 

capacity information. Additionally, we suppose that the private cost information is 

substantially different for illustrative purposes. All packet locations are still transparent. 

The interdictor must make a prediction on the smuggler’s movements by forming 

estimates of the arc costs and capacities. Indirect, limited feedback updates the 

information of both the smuggler and interdictor. The smuggler is aware of overt sensors, 

but is never made directly aware of the location of covert sensors. Instead, the smuggler 

is aware of packets destroyed by the interdictor. The smuggler uses these losses to 

estimate heightened detection risk (or threat locations) by increasing his estimate of arc 

cost on the arcs where the interdictor destroyed packets. In similar fashion, successful 

detections reduce the interdictor’s estimate of arc cost and tune his estimate of arc 

capacity. Arc capacity must be at least equal to the amount of materiel detected in a 

single round on the arc. However, the interdictor knows the smuggler’s supply nodes 

because the packet locations are transparent in this case. Lastly, the entire set of arcs is 

visible to the smuggler throughout the game. Figure 10 displays the time-ordered steps of 

the game algorithm for constructive Case 2. Figures 11–13 display the decisions, 

information, and outcomes of three rounds played under Case 2. 



 29 

Figure 10. The I-I/S Game Algorithm, Case 2. 

 

The time-ordered steps of the game algorithm for constructive Case 2. In Case 2, we 

introduce asymmetric information. The information asymmetry requires the interdictor to 

estimate the arc attributes. Even so, the interdictor is aware of all packet locations. Only 

part of the “Interdictor (Prediction)” step is thus required. Both the smuggler and 

interdictor update their incomplete information by limited feedback. However, only one 

of two feedback mechanisms is in place for the interdictor.  
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Figure 11. Case 2, Round 1 Decisions and Information. 

 

This case follows the same packet schedule as before, starting with two packets at source 

node N2. Left (Interdictor): In Case 2, the interdictor must make his own estimate of arc 

attributes. For illustrative purpose, we suppose that these estimates are initially 

substantially different from the smuggler’s information. Even with perfect information on 

the location of all packets in play, the inaccuracy of the interdictor’s initial estimate 

causes the him to sub-optimally place a covert sensor on arc (N3, N6) instead of arc (N2, 

N4). Right (Smuggler): As in Case 1, the smuggler is unable to see covert sensors. He 

moves two packets optimally given his partial information. Packet 1 reaches the target 

and records a score of 1. 

Figure 12. Case 2, Round 2 Decisions and Information. 

 

Left (Interdictor): Through a feedback loop, the interdictor quickly refines his estimate of 

arc attributes, and, in spite of partial information, places two sensors in a worst-case 

manner for the smuggler. Right (Smuggler): In Case 2 the transformation function only 

updates the smuggler’s private arc information. He attempts to move two packets to the 

target, but again only has sufficient budget to move one packet, packet 4, all the way to 

the target, recording a score of 1. 
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Figure 13. Case 2, Round 3 Decisions and Information. 

 

Left (Interdictor): The interdictor has updated his estimates again. However, in spite of 

perfect information of the packet locations, places sensors sub-optimally, as he did in 

round 1. Right (Smuggler): The transformation function again updates the smuggler’s 

information. Limited by budget, the smuggler moves two of three packets with seemingly 

unobstructed paths to the target, recording a score of 2. 

Discussion 

In Case 2, we assume the interdictor is aware of all packet locations. However, he 

must form his own estimate of the arc costs and capacities. The now-inaccurate arc 

information causes the interdictor to place a covert sensor inappropriately in Round 1 

(Figure 11). Were the interdictor aware of the smuggler’s arc information, he would have 

placed the covert sensor more appropriately on arc (N2, N4) as in Case 1, Round 1 

(Figure 7). The consequences of the miscalculation allow the smuggler to take advantage 

of an unimpeded path by moving packet 1 to the target for score. Even so, the interdictor 

is able to rapidly adjust his estimate and more-appropriately place sensors in the next 

round. The introduction of asymmetric arc cost and capacity information immediately 

shows a difference in the accuracy of decisions made by the interdictor and smuggler. 

The model in Case 2 bears similarity to previous work using limited feedback (e.g., 

Bubeck 2011). We argue that a model of the interdictor-smuggler problem must include 

asymmetric information; however, assuming that the interdictor knows the location of all 

smuggled materiel as it moves is problematic. We examine this further in Case 3.  
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3. Case 3: Multi-period, Symmetric Cost and Capacity Information, Packet 

Locations Unknown to Interdictor, Limited Feedback 

In Case 3, we assume the smuggler and interdictor have access to the same arc 

costs and capacities. However, packet locations are private, known only to the smuggler. 

The interdictor uses the size and location of destroyed packets as feedback to estimate the 

smuggler’s supply nodes. The smuggler can observe overt sensor locations, but cannot 

see covert sensor locations. The smuggler uses the same cost and capacity feedback loop 

found in Case 2 to update his estimates of arc costs. The interdictor has access to these 

estimates of arc cost and capacity. The entire set of arcs is visible to the smuggler 

throughout the game. Figure 14 displays the time-ordered steps of the game algorithm for 

constructive Case 3. Figures 15–17 display the decisions, information, and outcomes of 

three rounds played under Case 3. 
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Figure 14. The I-I/S Game Algorithm, Case 3. 

 

The time-ordered steps of the game algorithm for constructive Case 3. In Case 3, the 

information asymmetry is of a different type than that found in Case 2. The interdictor 

and smuggler share the same estimate of the arc attributes, but the location of the packets 

is private, known only to the smuggler. The interdictor uses a limited feedback 

mechanism to attempt to compensate for the incomplete information.  
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Figure 15. Case 3, Round 1 Decisions and Information. 

 

This case follows the same packet schedule as the previous ones. Left (Interdictor): As in 

Case 2, the interdictor is aware of the smuggler’s information on arc attributes. However, 

the interdictor can no longer see the packet locations and must estimate them. We 

suppose his initial guess is inaccurate, estimating 1 unit of supply each at nodes N4 and 

N5. Right (Smuggler): The smuggler is unable to see covert sensors. He attempts to move 

packet 2 to the target based on his partial information. Of note, the chosen s-t path (N2-

N4-N5-N6), is not the shortest path. However, it moves the same amount of materiel 

forward as the shortest path (N2-N3-N6). We see some diversity among budget-feasible 

paths because the smuggler is attempting to move as much flow as far forward as 

possible within a budget that does not roll-over round-to-round. With a budget of 25 

units, both paths (N2-N3-N6) and (N2-N4-N5-N6) fall within the smuggler’s indifference 

threshold. He treats them equally. The stochastic result from packet 2 passing the covert 

sensor on arc (N5, N6) yields “no detection.” Packet 2 reaches the target giving a score of 

1. 
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Figure 16. Case 3, Round 2 Decisions and Information. 

 

Left (Interdictor): The interdictor estimates two packets each at nodes N3, N4, and N5. 

However, without perfect knowledge of packet locations, the interdictor keeps sensors 

close to the target, sub-optimally placing them based on updated supply estimates at 

nodes N4 and N5. Right (Smuggler): The transformation function updates the smuggler’s 

private estimate of arc attributes. He attempts to move packet 3 to the target, while 

moving packet 1 toward the target. The stochastic result from packet 3 passing the covert 

sensor on arc (N4, N6) yields “no detection.” Packet 3 reaches the target, increasing the 

total score by 1. 

Figure 17. Case 3, Round 3 Decisions and Information. 

 
 

Left (Interdictor): Using feedback from round 2, the interdictor refines his estimate of 

packet locations. Because of persistent imperfections in this estimate, the interdictor 

again places sensors poorly, even with perfect information of the smuggler’s arc 

attributes. Right (Smuggler): After the transformation function updates the smuggler’s 

information, the smuggler attempts to move two packets to the target. The stochastic 

result from packet 4 passing the covert sensor on arc (N4, N6) yields “no detection.” 

Packets 4 and 7 reach the target, increasing the total score by 2. 
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Discussion 

In Case 3, we assume the interdictor is now unaware of all packet locations, but 

sees the same arc costs and capacities as the smuggler. The now-hidden packets 

dramatically affect both the interdictor’s and smuggler’s decisions. Throughout Case 3, 

the interdictor places his sensors much closer to the target than in Cases 1 and 2. 

Uncertainty on the origin of smuggler packets greatly complicates the interdictor’s 

problem because any of the five nodes could act as a source of flow. While the sensors 

are optimally placed given the interdictor’s estimates of supply, their location is sub-

optimal every round when compared to what could be achieved with the ground truth. 

Case 3 demonstrates the significant impact on both the decisions and outcome of the 

game when the interdictor has incomplete information of the packet’s locations.  

Additionally, Case 3 illustrates smuggler selection diversity amongst several 

budget-feasible paths. Given that the smuggler is unable to roll-over any excess 

movement budget round-to-round, two paths that move an equal amount of materiel 

forward in a game round both lie within the smuggler’s indifference threshold. The 

smuggler may then equally choose either path (Figure 15). (For further information, see 

Stewart et al. [2013] for a detailed treatment of indifference thresholds and other 

multicriteria decision-making.)  

The model in Case 3 is similar to previous models that assume the interdictor and 

smuggler both know the probability of detection on each arc but that the smuggler’s 

origins are unknown to the interdictor (e.g., Morton et al. 2007). The obscurity of packet 

locations assumed in Case 3 aligns well with the author’s own observations in combat 

during counter-trafficking and counter-infiltration operations. However, the assumption 

of perfect cost and capacity information is difficult to reconcile with the same operational 

experiences. We relax both assumptions in Case 4.   

4. Case 4: Multi-Period, Asymmetric Cost and Capacity Information, Packet 

Locations Unknown to Interdictor, Limited Feedback 

In Case 4, we combine the restrictions from Case 2 and Case 3. We assume the 

smuggler and interdictor make decisions with private arc cost and capacity information. 

They both use limited feedback from packets destroyed in each round to update their 
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information. The packet locations are not known to the interdictor and must be estimated. 

As in previous cases, the entire set of arcs is visible to the smuggler throughout the game. 

Figure 18 displays the time-ordered steps of the game algorithm for constructive Case 4. 

Figures 19–21 display the decisions, information, and outcomes of three rounds played 

under Case 4. 

Figure 18. The I-I/S Game Algorithm, Case 4. 

 

The time-ordered steps of the game algorithm for constructive Case 4. In Case 4, we 

combine the restrictions from Cases 2 and 3. The interdictor must now estimate both the 

arc attributes and packet locations. The interdictor uses two limited feedback mechanisms 

to update his projections of the smuggler’s capabilities and intentions.  

  



 38 

Figure 19. Case 4, Round 1 Decisions and Information. 

 

Left (Interdictor): The interdictor must estimate both the packet locations and arc 

attributes in Case 4. He places two sensors inaccurately because of the lack of 

information. Right (Smuggler): The smuggler attempts to move packet 1 to target, 

without awareness to the covert sensor. The stochastic result from packet 1 passing the 

covert sensor on arc (N5, N6) yields “no detection.” Packet 1 reaches the target, 

increasing the total score by 1. 

Figure 20. Case 4, Round 2 Decisions and Information. 

 

Left (Interdictor): Now employing two feedback mechanisms, the interdictor more 

accurately estimates the smuggler’s intentions and well-places two sensors on arcs (N3, 

N6) and (N4, N6). Right (Smuggler): The smuggler attempts to move two packets to 

target, without awareness of the covert sensor on arc (N4, N6). The stochastic result is 

that the interdictor detects and destroys packet 2 on arc (N4, N6). 
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Figure 21. Case 4, Round 3 Decisions and Information. 

 

Left (Interdictor): Based on previous two rounds of play, the interdictor orients on node 

N2 as the source of supply. He is surprised by flow originating instead from nodes N1 

and N5 and fails to guard against it. Right (Smuggler): The smuggler updates his 

information based on the packet lost in round 2 and the transformation function. He then 

attempts to move two packets to the target. The stochastic result is that the interdictor 

does not detect packet 2 on arc (N2, N3). Note that packets initially frustrated in the 

network, such as packet 3, may become a threat later. In this case, packet 3 reaches the 

target after the interdictor places sensors further forward.  

Discussion 

In Case 4, the total asymmetry of information again changes the decisions and 

outcomes during game play. Most notably, the interdictor benefits from imperfect 

information on arc cost and capacity. Without direct access to the smuggler’s 

information, the interdictor must use an additional feedback mechanism to form an 

estimate of these parameters based on game play. One feedback mechanism is already in 

use to discern the location of the packets. When the two are combined, the interdictor is 

able to make better projections by using complimentary information. Estimated changes 

in cost resultant from observed packets enable the interdictor to refine the estimates of 

flow sources and lead to better-placed sensors. The interdictor makes decisions based on 

where the smuggler did go, not just where he could go. There were no models found 

during the literature review that included the level of information asymmetry discussed 

above.  
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5. Case 5 (Full Model): Multi-period, Asymmetric Cost and Capacity 

Information, Packet Locations Unknown to Interdictor, Limited Feedback, 

Arcs Revealed by Timer 

Case 5, the full model, includes all of the attributes of Case 4. However, unlike 

Case 4, we assume a count-down timer makes some previously-hidden arcs visible to the 

smuggler as the game progresses. Once visible, arcs are always visible. Figure 22 

displays the time-ordered steps of the game algorithm for constructive case 5. Figures 

23–25 display the decisions, information, and outcomes of three rounds played under 

Case 5. 

Figure 22. The I-I/S Game Algorithm, Case 5. 

 

The time-ordered steps of the game algorithm for constructive Case 5 (the full model). In 

Case 5, we include all of the attributes of Case 4 but now use a countdown timer to hide 

some arcs from the smuggler until round 3. 
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Figure 23. Case 5, Round 1 Decisions and Information. 

 

Left (Interdictor): As in Case 4, the interdictor must estimate both the packet locations 

and arc attributes. He places an overt sensor on (N4, N6) and covert sensor on (N5, N6). 

While these arcs are optimal sensor locations given the interdictor’s current information 

and estimate, they are sub-optimal locations in view of the actual position of the two 

packets. Right (Smuggler): In Case 5, a clock will reveal arcs (N2, N3) and (N3, N6) to 

the smuggler by countdown timer in round 3. These arcs are not yet visible in round 1. 

The smuggler is thus far more limited in available routes. By chance, the interdictor’s 

initial estimate aligns well with the limited routes available to the smuggler. The 

stochastic result from packet 2 passing the covert sensor on arc (N5, N6) yields 

“detection.” The interdictor destroys the detected packet. 

Figure 24. Case 5, Round 2 Decisions and Information. 

 

Left (Interdictor): With one detection in the previous round, the interdictor widens his 

estimate of supply nodes to include N3. The interdictor is unaware that arc (N3, N6) is not 

yet visible to the smuggler and treats it as a threat. The interdictor adjusts his estimates of 

arc capacities based on detected flow. The interdictor places two sensors using his current 

information. The placement is again sub-optimal, given the ground truth. Right 

(Smuggler): The smuggler successfully moves packet 1 to the target. 
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Figure 25. Case 5, Round 3 Decisions and Information. 

 

Left (Interdictor): Even with no detections in the previous round, the interdictor is able to 

use his estimate of arc attributes, arc supplies, and score from the previous round to 

improve the accuracy of his information. He correctly identifies node N2 as a source of 

supply and nodes N3 and N5 as threatening. However, the limited smuggling routes that 

allowed the interdictor to gain a detection also created feedback that causes him to orient 

his defense without regard for node N1 as a possible source. Right (Smuggler): The 

countdown timer reveals arcs (N2, N3) and (N3, N6) to the smuggler. The smuggler is 

able to capitalize on the uninhibited s-t path (N1-N3-N6) created by the interdictor’s now-

obsolete sensor orientation to move packet 6 to the target6. The stochastic result of 

packet 3 passing the covert sensor on arc (N4-N6) is “no detection.” 

Discussion 

The time-revelation of new arcs in Case 5 again changes game play. The 

introduction of previously unknown arcs is analogous to opening a new cross-border 

smuggling tunnel. There are other real world examples of new smuggling routes coming 

into use (e.g., Banco 2015). The addition of arcs revealed by timer most affects the 

smuggler’s decisions. By constricting the available set of arcs, the smuggler becomes 

more predictable. In time, the increased predictability would make the interdictor more 

successful. However, once the interdictor is oriented on a specific set of arcs, the 

smuggler’s use of new routes could prove a surprise to the interdictor’s established sensor 

layout. The inclusion of time-delayed arc visibility allows for the investigation of this 

phenomenon and aligns with real world events. 
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Based on discussion in the above constructive examples, we argue that the 

assumptions found in Case 5, the full model, are each significant and well represent the 

key features underlying the interdictor-smuggler problem we describe.  

D. MATHEMATICAL FORMULATION OF THE I-I/S ALGORITHM 

In this section, we describe the detailed mathematical formulation of each step of the I-

I/S Simulation Algorithm (Figure 26). 

Figure 26. The Steps of the I-I/S Simulation Algorithm. 

 

The numbered steps of the simulation algorithm. Each number corresponds with the 

subsection describing its detailed mathematical formulation. 
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1. (Interdictor) Estimate Network Attributes and Packet Locations 

a.   Introduce New Flow to the Source(s) 

A predefined master schedule controls flow input. We define the master schedule 

a priori and all basic packet attributes within it. It is in table form. Table 3 provides an 

illustrative sample. The smuggler has no foreknowledge of the master schedule. 

Table 3.  Illustrative Sample of Master Packet Flow. 

Round Packet Source Target Size 

1 P1 N1 N6 1 

1 P2 N1 N6 2 

2 P3 N2 N6 3 

3 P4 N1 N6 3 

      All packet attributes are assigned in the master packet flow table. 

 In the above example, there are two sources of flow, nodes N1 and N2, and one 

target, node N6. The algorithm will place two packets, P1 and P2, in the network on 

round 1 at node N1. These packets are sizes 1 and 2, respectively. The algorithm will add 

one packet to the network in each rounds 2 and 3. P3 will be added at node N2 and packet 

P4 will be added at node N1. Once the flow has been added to the network, it is no longer 

directly influenced by the master schedule. Lastly, the algorithm assigns both the 

interdictor and smuggler their round-to-round budgets in Step 1.  

b.  (Interdictor) Estimate Node Supplies (Algorithm 

ESTIMATE_SUPPLIES) 

 The following sub-algorithm calculates the interdictor’s estimated node supplies 

and demands: 

 Algorithm ESTIMATE_SUPPLIES 

(1) Solve Balance of Flow Equation for Supply 

Sets and Indices 

 i N   node (alias j, nodes) 

 ( , )i j A  arc directed from node i to node j 
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 t T   game round in ordered set of total rounds, T. Under control of  

   algorithm I-I/S 

  Data [units] 

 
( , ),t 1i jflow 

  flow detected in previous round on arc (i, j) [flow/round] 

 Formulation 

 
, , , 1 , , 1

( , ) ( , )

i t i j t j i t

i j A i j A

supply flow flow 

 

        (1.1) 

(2) If Sensor Emplaced on Arc, Update Network Supply Estimates 

  For node i in reverse adjacency list of node with sensor in forward star (FS) 

   
, , 1max( ) |i t j tsupply supply j N j adj i     (1.2)  

(3) Remove Old Supply Estimate. 

  For node ( )i G N  

   If ∃ sensor in iFS   ∄ sensor in Reverse Stari (RSi) Then 

    
, 0i tsupply         (1.3) 

 Discussion 

The algorithm calculates the interdictor’s estimate of each node’s supplies and 

demands from the total materiel sensed along each arc in the previous round (1.1). This is 

a simple balance of flow equation where the left hand side, 
,i tsupply , is the only 

unknown. Using these supplies and demands, the algorithm now extrapolates the 

interdictor’s estimate to potential “upstream” flow origins. In the I-I/S model, we assume 

that the interdictor is aware of arcs in the reverse star of any node with a sensor in the 

forward star (1.2) (Figure 27).  
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Figure 27. Arcs Visible to the Interdictor.  

A sensor placed on arc (N5, N6) makes the interdictor aware of the arcs in the reverse star 

of node N5, arcs (N1, N5) and (N2, N5). The interdictor is unaware of the remaining arcs. 

Lastly, the algorithm reconciles the interdictor’s new estimates of supplies and 

demands to avoid duplication of these supplies and demands among neighbors (1.3). 

Figure 28 illustrates algorithm ESTIMATE_SUPPLIES by example. 

Figure 28. Example of Algorithm ESTIMATE_SUPPLIES. 

 

Algorithm ESTIMATE_SUPPLIES proceeds left to right. Values that change are 

highlighted in red italics. Step a: At left, the algorithm calculates node N5 and N6 

supplies as 2 and -2 based on 2 units of flow being observed on arc (N5, N6). Step b: 

Center, the algorithm uses this estimate to extrapolate supplies at nodes N1 and N2. Step 

c: Right, the algorithm reconciles all node supplies, setting node N5 supply to 0.   
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2. (Interdictor) Place Sensors 

In Step 2, the interdictor places both overt and then covert sensors subject to a 

sensor budget. 

a.  (Interdictor) Set Covert Sensors Subject to Budget 

The interdictor places covert sensors optimally, given his available partial 

information, by solving a minimum cost flow interdiction problem as below. The 

minimum cost flow interdiction sub-problem places sensors upon arcs instead of 

performing attacks against them as in traditional minimum cost flow interdiction 

formulations. Solving the SENSOR_PLACEMENT Dual Integer-Linear Program (ILP) 

yields the sensor placement plan with the maximum estimated minimum-cost of flow. 

The master I-I/S algorithm controls round indices, t T .  

 Sets and Indices 

  i N    node (alias j, nodes) 

  ( , )i j A   arc directed from node i to node j 

 t T    game round in ordered set of total rounds, T. Under control  

    of algorithm I-I/S 

  Data [units] 

  
( , ),

ˆ
i j tc  interdictor’s estimate of smuggler’s cost to move packet of  

  size 1 across arc ( , )i j  in round t [cost/flow-round] 

  
( , ),

ˆ
i j tu  interdictor’s estimate of smuggler’s capacity on arc ( , )i j   

  in round t [flow/round] 

  
,

ˆ
i tb  interdictor’s estimate of supply at node i, >0 supply at node 

  i, <0 demand at node i, = 0 transshipment [flow/round] 

  penalty penalty for flow across arc (i, BFN)  or (BFN, j) | ,i j N   

  covert.budgett maximum number of covert sensors the interdictor can  

  place in round t [cardinality/round] 

  
( , ),i j tq  penalty for traversing an arc with sensor [cost/flow-round] 
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  Decision Variables [units] 

  
( , ),i j tX  flow from node i to node j in round t [flow/round] 

  
( , ),i BFN tA  flow from node i to “Big Fake Node”  (BFN) in round t  

  [flow/round] 

  
( , ),BFN j tE  flow from “Big Fake Node” to node j in round t   

  [flow/round] 

  
, ,. i j tCovert Sensor  =1 if place sensor on arc ( , )i j A  during round t, = 0  

  otherwise [binary] 

 Maximin Formulation to increase arc flow costs [Dual Variables]    

 , , , , , , , , , , , ,
( , )

, , , , , , , , , ,

( , ) ( , )

, , , , ,

, ,

ˆmin . ( )

ˆ. . [ ]max

ˆ0 ( , ) [ ]

,

i j t i j t i j t i j t i BFN t BFN i t
i j A

i N

i j t j i t i BFN t BFN i t i t i t

i j A j i AY

i j t i j t i t

i BFN t B

c q Covert Sensor X penalty E A

s t X X E A b i N

X u i j A

E A








 

 
    

 

     

   



 

, , 0FN i t

 
 
 
 
 
 
 
 

 

   (1.4) 

    
, ,

( , )

, ,

. .

. {0,1} ( , )

i j t t

i j A

i j t

Covert Sensor covert budget

Covert Sensor i j A



 
 

   
    


   (1.5) 

  SENSOR_PLACEMENT Dual ILP Formulation [Primal Variables] 

 , , , , , ,
, ,

( , )

ˆ ˆmax i t i t i j t i j t
Y

i N i j A

b u
 

 
 

          (1.6) 

 
, , , , , , , , , , , ,

ˆ. . . ( , ) [ ]i t j t i j t i j t i j t i j t i j ts t q Covert Sensor c i j A X           (1.7) 

 
, ,

( , )

. .i j t t

i j A

Covert Sensor covert budget


       (1.8) 

 , , 0 ( , )i j t i j A         (1.9) 

 , ,. {0,1} ( , )i j tCovert Sensor i j A        (1.10) 

  ,i tpenalty penalty     i N       (1.11) 
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 Discussion 

We base the interdictor’s maximin formulation on the interdictor’s estimated 

supplies and demands, 
,

ˆ
i tb , costs, 

, ,î j tc , and capacities, 
, ,

ˆ
i j tu (1.4). Using these estimated 

parameters, the interdictor places covert sensors to maximally penalize various potential 

interdictor flows subject to a budget (1.5). Examining the dual formulation reveals an ILP 

that is more easily solved optimally. We leverage elastic programming through variables 

,i BFNE  and 
,BFN iA . Each represents flow through an artificial sink node, BFN. The cost of 

this flow along arcs ( , ) |BFN i i N is tn C , where n is the order of the network and Ct 

the maximum of all arc costs during round t. This bounds the dual variables ensuring 

feasibility within the primal problem. The master I-I/S algorithm utilizes the resultant 

solution. 

b. (Interdictor) Set Overt Sensors Subject to Budget 

The interdictor reduces the penalty on arcs with covert sensors set from Step 2.a 

(above) to zero. This prevents the interdictor from selecting the same arc for both covert 

and overt sensors. The interdictor then finds overt sensor locations by solving another 

minimum cost flow interdiction problem with updated arc penalties.  

 

 Algorithm SET_OVERT_SENSORS 

  For ( , )i j A  

        If 
, ,. 1i j tCovert Sensor   Then 

              
( , ) 0i jq   

  . .t tcovert budget overt budget  

  Solve SENSOR_PLACEMENT Dual ILP 

 

 Discussion 

The SENSOR_PLACEMENT Dual ILP formulation is the same, except, 

,. i tCovert Sensor  is replaced by ,. i tOvert Sensor  in (1.4), (1.5), (1.7), (1.8), and (1.10); and 
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,. i tcovert budget  is replaced by 
,. i tovert budget  in (1.8). As in Step 2.a of the I-I/S master 

algorithm above, these binary variables indicate the placement of overt sensors on arc (i, 

j) in round t if , ,. i j tOvert Sensor = 1. Similarly, the parameter ,. i tovert budget  limits the 

number of available overt sensors in round t. 

3. (Smuggler) Estimate Network Attributes 

A modified depth-first search (DFS) algorithm computes all simple paths from 

each current packet location to the packet’s assigned target node. The master I-I/S 

algorithm uses the resultant path as an input to Step 4. Next, the smuggler increases his 

arc cost estimates for those arcs with overt sensors placed upon them. Covert sensors are 

not visible to the smuggler so the smuggler does not adjust his estimated arc costs in this 

case. 

a. (Smuggler) For each Packet in Play, Compute all Simple Paths to the 

Target Node 

 Data [units] 

 , ,p i tlocation  =1 if packet p located at node i during round t, = 0 otherwise  

   [binary] 

 Algorithm PACKET_PATHS 

  For p Packets  

   ,| ( 1)p ik i location   

   list ={ }; paths = { } 

   SimplePaths (i, target, list, paths) 

    list = list  i 

    If i == “target” Then 

     paths = paths   list 

    Else 

     For j adjacent to i and  paths 

       Call SimplePaths (j, target, list, paths) 

   list = list \ { i }  



 51 

b.  Increase Smuggler Arc Costs. 

 For ( , )i j A  

  If ,. 1i tOvert Sensor  Then 

   ( , ), ( , ), 1 ( , )i j t i j t i jc c q         (1.12) 

 Discussion 

The simple recursive algorithm above continues a DFS from the packet’s current 

location, node i, through each node j adjacent to node i until reaching the target. Next, the 

algorithm examines candidate paths and retains them if they are unique and lead to the 

target, discarding all other paths. The remaining data container paths enumerate the set of 

simple paths. The PACKET_PATHS algorithm begins by increasing the smuggler’s cost 

over arcs upon which the interdictor has placed an overt sensor (1.12). This provides 

awareness of these emplacements to the smuggler. 

4. (Smuggler) Move Packets  

Next, the smuggler moves packets optimally in the network given his incomplete 

information. The smuggler determines these movements by solving the following 

optimization problem. Note that within the objective function, material moved to the 

target is rewarded more so than that moved only toward the target. 

 

Solve PACKET_MOVES 

  

 Sets and Indices 

 i N   node (alias j, nodes) 

 ( , )i j A   arc directed from node i to node j 

 p Packets   packet 

 ,( , ), .p i j t tshort Short paths  arc in simple path for packet p from current location 

  to target 

 ( , )i targettouchdown A   arc in reverse star of target node 
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t T     game round in ordered set of total rounds, T. Under  

    control of algorithm I-I/S 

 Data [units] 

 psize   size of packet p [flow] 

 , ,p i tlocation   =1 if packet p located at node i during round t, = 0  

  otherwise [binary] 

 ( , ),i j tc   smuggler’s cost to move packet of size 1 across arc  

  ( , )i j  during round t [cost/flow-round] 

 ( , ),i j tu   smuggler’s capacity on arc ( , )i j during round t   

  [flow/round] 

 tbudget   smuggler’s movement budget during round t 

 Decision Variables [units] 

 ,( , ),p i j tMove   =1 if move packet p on arc (i, j), =0 otherwise  

  [binary] 

 PACKET_MOVES Formulation

,( , ), ( , ),

,( , )| ,( , ) .

,( , ), |( , )

min [ (1 )

]

p p i j t i j t
Move

p i j p i j Short paths

t p i j t i j touchdown p

size Move c

budget Move size





  

  


     (1.13)

,( , ), , , , ,. . 0 , ( , )p i j t p i t p i ts t Move location p i j location      (1.14) 

,( , ), ,( , ), ,( , ),

|( , )

0; , ,p j nodes t p i j t p i j t

nodes j nodes A

Move Move p i j short


       (1.15) 

,( , ), ( , ),

,( , )|( , )

p p i j t i j t t

p i j i j A

size Move c budget


         (1.16) 

,( , ), ( , ), ( , )p p i j t i j t

p

size Move u i j A        (1.17) 

,( , ), 1 ,p i j t

j

Move p i        (1.18) 
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 Discussion 

The first term of the objective function, ,( , ), ( , ),(1 )p p i j t i j tsize Move c   ,  calculates 

the smuggler’s “work remaining” for each packet to reach its target (1.13). By summing 

over the all packets along the allowable paths, the cumulative work remaining is 

calculated. The second term, ,( , ), |( , )t p i j t i j touchdown pbudget Move size   , provides extra 

reward for the interdictor moving any packets fully to their assigned target. Binary 

decision variables with value 1, ,( , ),p i j tMove = 1, reduce the amount of total remaining 

work and achieve the additional incentive of moving a packet to its target. 

The first constraint ensures each packet begins movement from its present 

location (1.14). The second constraint mandates packet movement across consecutive 

arcs (1.15). Next, total packet movements are restricted by the smuggler’s movement 

budget (1.16) and each arc’s capacity (1.17). The last constraint prevents packets from 

taking multiple paths within any solution (1.18). 

As illustrated in the constructive cases, the above formulation does not always 

cause the smuggler to utilize the lowest-cost paths. That is not the smuggler’s objective. 

Several budget feasible paths yielding the same work remaining will all lie within the 

smuggler’s indifference threshold. The smuggler is equally likely to choose any of these 

paths, creating path diversity in some instances. Path diversity within multicriteria 

decision-making problems well-aligns with the author’s experience in tactical situations. 

5. (Combat) Arbitrate Detections and Attacks 

In Step 5, the I-I/S algorithm arbitrates any interactions between the smuggler’s 

packets and the interdictor’s sensors. 

a. For those Packets that Moved Across a Sensor, Arbitrate Detections 

First, the interdictor updates his current estimated cost for each arc ( , )i j A . 

Then, for each packet, the algorithm evaluates the path assigned from Step 4 and sensor 

placements from Step 2. If there is a sensor on the path, the algorithm draws an outcome 

from the unique distribution describing the probability of detection for the packet on the 
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arc. A Tausworthe generator sets pseudo-random seeds (Tausworthe 1965). Begun with 

the aforementioned seeds, the algorithm draws pseudo-random variates from a Uniform 

distribution using a Mersenne Twister algorithm (Matsumoto 1998). 

(1) Arbitrate Detections 

  ( , ),
ˆ

i j tc :    interdictor’s estimate of arc ( , )i j  cost during round t  

     [cost/flow-round] 

  ( , ),i j tdetections :  total amount of material detected on arc ( , )i j  during round 

     t [non-negative integer] 

  packet.signature: level of stealth for packets [non-negative integer] 

   ~ [0,1]x Uniform  

   ,p tsize :   size of packet p during round t [positive integer] 

   

  For packet p in current packets 

       For arc ( , )i j  in simple path assigned to packet p 

           If ( , ), 1i j tSensor   Then 

      If x   
 ( , ), ,ˆ0.1 .

,( , ),

i j t p tc packet signature sizedetect

p i j tP e
  

  Then   (1.19) 

           Packet p is detected on arc ( , )i j  in round t 

(2) Tally Game Round Detections 

   For ( , )i j A   

       
( , ),

( , ),

| . i j t

i j t p

p p detected packets

detections size


        (1.20) 

 Discussion 

The distribution describing the interdictor’s probability of detection is a function 

of several variables. Equation (1.19) shows the probability of detecting a particular 

packet p in a specific round t on arc (i, j). As above, this probability is individually 

computed for each packet that is a candidate for detection (Figure 21). As described in 

Section A, different packets can have different sizes, but the size of each packet is fixed. 
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The parameter,  thus allows the probability of detection to increase with increasing 

packet size. The parameter, packet.signature can further magnify the effect of size on the 

probability of detection. The magnification is important to isolate the influence that the 

ease of packet detectability plays in the interdictor-smuggler problem. The interdictor’s 

estimate of arc (i, j) cost, ( , ),
ˆ

i j tc , changes round-to-round as a result of the number of 

previous detections. We detail the method of estimating cost change in Step 6. We 

mandate that ( , ),
ˆ. p i j tpacket signature size c   in equation (1.19) to ensure 

,( , ), 1detect

p i j tP  . 

Figure 29. Sample Probabilities of Detection. 

 
 

The plot above displays sample probabilities of detection for packets size 1, 3, and 5 by 

interdictor cost estimates. As size increases, the probability of detection increases. As 

estimated cost decreases, the probability of detection also increases.    

  

psize
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b. (Interdictor) Attack and Remove Detected Packets 

The interdictor “attacks” all detected packets. These attacks destroy the material 

within the packet, removing it from the game. Both the interdictor and smuggler tally the 

attacked materiel, affecting each of their estimated network information in Step 6. 

Attacks occur free of budget and are always successful. 

 For packet p 

      If packet p has been detected Then 

           Remove packet p from network 

c. Tally Packets that Reach the Target Node and Remove Them from the 

Network 

The algorithm removes packets from the network that have reached the target 

without destruction in the current round. The sum of these packet sizes, the total materiel, 

is the round’s score. This ground truth score is available only to the smuggler. Feedback 

is limited, so the interdictor makes an estimate of the score in Step 6. 

 
|

.
p

t p

p location target

total flow size


   [flow/round]      (1.21) 

6.  (Smuggler/Interdictor) Adjust Prediction Mechanisms by Feedback 

The interdictor and smuggler update their private network information based on 

the results of play. First, the interdictor performs one final estimation of flow leaving the 

game through the target. Reconciliation of the remaining estimated network flow 

prevents a “death spiral” where the interdictor places fewer sensors by round and thus 

detects less flow by round until the flow estimate is zero and no sensors are placed. This 

occurs in spite of the actual non-zero flow reaching the target. Next, the smuggler’s 

estimates of cost and capacity are influenced by both materiel lost and materiel 

successfully moved. Finally, the interdictor adjusts his estimated arc costs and capacities, 

completing the game round. 
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a. Calculate Interdictor’s Estimate of Hits

.p detected Packets : set of packets detected when reaching target 

and exiting the network in round t  

[cardinality] 

. ttotal hits : interdictor’s estimate of material  

successfully reaching target in round t  

[flow/round].   . . ttotal hits total flow

~ [0,1]x Uniform  

For packet p: 

If , ,p i tlocation target  Then 

 If x 
 0.1 10

, , 1 psizedetect

p target tP e
 

   Then   (1.22) 

Packet p is detected on exiting game through target 

in round t 

 
.. |

.
p detected

t p

p detected location target

total hits size


    (1.23) 

Discussion 

Equation (1.22) expresses the interdictor’s probability of detecting packets that 

successfully hit the target and exit the game. As with the sensors’ probability of detection, 

the probability of detection upon exit is a function of the packet’s size; however, there is 

no direct effect of the detection history in this case (Figure 30). The uncertainty is 

necessary to mirror realistic smuggling scenarios. In this context an interdictor rarely has 

perfect information about the smuggler at any point—even at scenario’s conclusion. 

Additionally, it treats situations where the interdictor is part of a layered defense and 

provided an estimate of materiel flow from the next line of defense. It requires the 

interdictor to learn and adapt under uncertainty, also facilitating miscalculation. These are 

important model facets to maintain realism.  
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Figure 30. Interdictor’s Probability of Detecting a Packet Reaching the 

Target. 

The plot represents only the probability of detecting packets that have otherwise eluded 

detection by sensors and exited the game by reaching the target. Packet sizes are integral, 

so the probability is a discrete random variable.  

b. Calculate Interdictor’s Estimate of Flow on ( , ) targeti j RS

( , ),i j tflow : amount of material detected by a sensor on arc (i, j) during 

round t [flow/round] 

( , ),i j tdestroyed : total amount of material successfully destroyed on (i, j) by 

attack during round t  [flow/round]

         For " "( , ) basei j RS

( , ),( , ), ( , ),

( , ) ( , )

.
target

t i j ti j t k j t

i j A k j RS k i

flow total hits destroyed flow
   

     (1.24) 

Discussion 

In (1.24), the interdictor forms an estimate of flow on each arc within the RS of 

the target. This estimate is based on the estimate of materiel exiting through the target in 

round t, . ttotal hits , the amount destroyed in the arc (i, j) in round t,
( , ),

( , )

i j t

i j A

destroyed


 , 
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and the total detected materiel on the arc (i, j) in round t, 
( , ),

( , ) target

k j t

k j RS k i

flow
  

 . 

Uncertain of the actual path of undetected packets that have struck the target, the 

interdictor conservatively estimates that these packets travelled along every arc within the

targetRS . This allows the interdictor to place sensors more reactively in the next round and 

mirrors realistic tactical decisions. Figure 31 provides an illustrative example of step 5.b. 

Figure 31. Interdictor’s Estimate of Flow Reaching the Target. 

The observed flow on arc (N5, N6) is 3. The amount of destroyed flow on this arc is also 

3. All other flows on the arcs in the RS of N6, the target, are 0. Each flow estimate is then

updated by adding the amount of material striking the target and subtracting the amount 

of material destroyed on that arc. Values that change are highlighted in red italics. 

Sensor 

N4 N5 N3 

N1 

N6 

N2 

N4 N5 N3 

N1 

N6 

N2 

{1} 

(3) (3)-|3|+{1}=(1) 

{  } Detected strikes 

(  ) Detected flow 

(1) (1) 

|   | Destroyed flow 

(0) (0) 

|3| 
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c. Update Interdictor’s Estimate of Arc Capacity and Cost Based on

Detected Flow 

 : scaling parameter (0.0 – 1.0) that attenuates the interdictor’s 

capacity estimate from the previous round, ( , ), 1
ˆ

i j tu  .

For ( , )i j A  

 ( , ), ( , ), 1 ( , ),
ˆ ˆmax , ,1i j t i j t i j tu u detections 

      (1.25)  

 ( , ), ( , ), 1 ( , ), ( , ), 0
ˆ ˆ ˆmin max 1, 1 ,i j t i j t i j t i j tc c detections c 

   
 

   (1.26) 

If ( , ), ( , ),
ˆ ˆ

i j t i j tu flow  Then   (1.27) 

( , ), ( , ),
ˆ ˆ

i j t i j tu flow

Discussion 

In Step 6.c., the interdictor learns, refining his estimate of arc capacities by 

utilizing the maximum of the amount of observed flow in round t, ( , ),i j tdetections , a 

scaled estimate of capacity from the previous round, ( , ), 1
ˆ

i j tu  , and 1 (1.25). We apply 

the mathematical floor function to ensure this value remains an integer. The actual arc 

capacity must be at least the observed flow in round t. However, the interdictor reasons 

that detections might have been low or the smuggler could have utilized an alternative 

path. The interdictor retains some memory by considering the previous round’s capacity, 

scaled by a factor,  , between 0.0 and 1.0. Lastly, the interdictor always assumes each 

arc under consideration has capacity of at least 1. Even so, if the capacity estimate on arcs 

within targetRS is less than the flow estimated in Step 6.b (1.24), the interdictor  

conservatively increases the capacity estimate to the flow estimate (1.25). 

By similar feedback, the interdictor updates arc cost estimates (1.26). The 

interdictor subtracts the number of detections in round t, ( , ),i j tdetections , from  his cost 

estimate in the previous round, ( , ), 1
ˆ

i j tc  . As with similar estimates, the interdictor adds 1 

to the estimated arc cost so that decreasing detections on a particular arc cause the 

interdictor to look elsewhere for smuggled flow. Lastly, the interdictor places a lower 

bound on his current estimate of 1 and an upper bound equal to his initial round 0 

estimate. This guarantees that the estimate of cost will become neither 0 nor excessively 
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large if the interdictor plays multiple rounds with a great many or no detections, 

respectively. 

d. Update Smuggler’s Arc Capacity and Cost Based on Game Round

Results 

        attenuate: rate of cost attenuation [{ | (0,1]}attenuate attenuate  ] 

        For ( , )i j A   

 ( , ), ( , ), 1 ( , ),. 0.5i j t i j t i j tc attenuate c loss multiple destroyed
     
 

  (1.28) 

Discussion 

Equation (1.28) instantiates a feedback loop that facilitates smuggler learning and 

resource loss. The smuggler adds the amount of material destroyed on an arc to the cost 

under the assumption that the loss of a packet increases the expense or risk of moving 

additional packets on the same arc. A loss.multiple magnifies this degradation to facilitate 

the exploration of various scenarios. The remaining elements of equation (1.28) 

instantiate the transformation function. We described them in the next section. 

7. (Environment) Transformation Function

The transformation function first reduces the smuggler’s arc cost by a constant 

factor, attenuate, and then rounds down to the nearest integer (1.28). For example, setting 

attenuate to 0.9 would reduce the cost on each arc ( , )i j  by 10 percent before further 

rounding. The reduction in cost provides for repair of the network capability or “calming 

of risk” after the shock of a seizure by the interdictor. The reduction in cost also provides 

a mechanism to increase smuggler efficiency through time in accordance with traditional 

learning theory (e.g., Cesa-Bianchi et al. 2006). 

E. DISCUSSION OF I-I/S MODEL FORMULATION 

The preceding I-I/S mathematical model formulation displays both the family of 

realistic features and suite of complimentary stochastic and optimization models we bring 

to bear in order to study the interdictor-smuggler problem. Our modelling assumptions—

asymmetric, incomplete information between two players receiving limited feedback over 

multiple rounds of play—would make finding optimal solutions computationally 
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prohibitive if not entirely intractable for even many of the most modern models reviewed 

within Chapter 2 of this thesis. However, by rigorously blending a number of well-

established analytic tools within our simulation algorithm, we provide a tractable 

heuristic to explore a rich, complex problem under limited assumptions.  

In the next chapter, we continue the exploration by applying the I-I/S simulation 

algorithm to realistically configured test cases. 
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IV. RESULTS AND ANALYSIS

In this chapter, we present the results from two interdictor-smuggler problem 

instances. The first instance portrays a smuggling network with a large number of 

possible parallel routes, the second a network with fewer alternative paths but significant 

depth. Our goal is to assess the performance of various interdictor resource allocation 

policies and illustrate the types of insights that our model can provide. 

A. COMPUTATIONAL CASES 

1. Implementation Details

We code the I-I/S algorithm in a combination of Python 2.7 (Van Rossum 2007) 

and GAMS 24.4.1 (GAMS Development Corporation 2013). Within Python 2.7, we 

utilize the NetworkX package (Hagberg et al. 2008). We use GAMS with CPLEX 

12.6.1.0 to solve the SENSOR_PLACEMENT Dual Integer-Linear Program (ILP) and 

MOVE_PACKETS ILP formulated in Chapter 3. Sanchez’s NOLHdesigns spreadsheet 

was used to construct the two Orthogonal Latin Hypercube designs of experiments 

(Sanchez 2015). We perform all experiments on a Windows PC with 2.6 GHz CPU and 8 

GB RAM. Lastly, we use a combination of R 3.3.0 (R Core Team 2016) and JMP Pro 

12.0.1 (JMP Pro 2015) to construct the statistical models herein.   

2. Case 1

Case 1 involves a smuggling network over 27 arcs and 16 nodes (Figure 32). The 

designed network provides 25 paths from the smuggler’s source of materiel, node HB 

(Hostile Base), to the intended target, node N13. We place arc (N13, N15) within the 

network to deliberately explore instances of miscalculation by the interdictor. As it is not 

possible for the smuggler to ever move materiel across arc (N13, N15), the interdictor 

would be wrong to place sensors there. Table 4 displays the initial network data. The 

smuggler’s estimates of arc capacities begin as set uniformly to 10 units in order to 

reduce the confounding of dynamic cost and capacity effects under analysis. At the 

initiation of the game, the interdictor considers each route as equally likely. Therefore, 
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similar to the smuggler’s estimates of arc capacity, the interdictor’s estimates of arc costs 

and capacities are originally uniform. We then design the network topology and initial 

smuggler cost estimates to create a realistic range of total route costs and facilitate the 

introduction of new routes over successive game rounds.  

Figure 32. Case 1 Designed Network. 

There are 25 s-t paths in the above network. Initial smuggler estimates of arc cost are 

indicated in parenthesis. Smuggler arc capacity estimates are uniformly 10. 

We consider a time horizon of 20 game rounds for all scenarios in Case 1. 

Prototype simulation runs within the Case 1 problem instances demonstrated that within 

20 game rounds we observe several cycles of adaptive play without incurring excessive 

computational expense. Dynamic topology motivates both the smuggler and interdictor to 

adapt. In Case 1, all arcs with cost above 8 units are initially invisible to the smuggler. 

The selected value, 8, allows the transformation function to reveal 15 new arcs to the 

smuggler within the 20 game rounds. These new arcs progressively introduce 11 of the 

25 total paths throughout each 20-round game (Figure 33). Given our selected network 
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data, we find that both the smuggler and interdictor will adjust to a new path within 

approximately three to four rounds of play. 

Table 4. Initial Interdictor and Smuggler Estimates. 

The Case 1 initial network data. In order to reduce the confounding of dynamic cost and 

capacity effects under analysis, the smuggler’s estimates of arc capacities begin as set 

uniformly to 10 units. The interdictor considers each route as equally likely at the 

initiation of the game. Therefore, similar to the smuggler’s estimates of arc capacity, the 

interdictor’s estimates of arc costs and capacities are originally uniform. We then design 

the network topology and initial smuggler cost estimates to create a realistic range of total 

route costs and facilitate the introduction of new routes over successive game rounds. 
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Figure 33. Initial Arcs Visible to the Smuggler and Interdictor 

Left: Arcs visible to the smuggler in round 1 (heavy blue). The remaining arcs are 

revealed by the transformation functions action as a timer. Right: Arcs visible to the 

interdictor in round 1 (dashed green). Only arcs adjacent to the interdictor’s placed 

sensors are visible. The interdictor remembers all arcs seen in previous rounds. In Case 1, 

we observe the two subgraphs seldom match.  

The smuggler’s budget, 350 cost/round, is just adequate to allow the smuggler to 

transport any materiel introduced at node HB in a single round through the network 

within the two following rounds. Requiring a minimum of two rounds to traverse the 

network allows us to investigate interdiction decisions that must consider both time and 

space. Larger budgets that provide sufficient resources for the smuggler to move flow 

across the entire network within only one round create a problem only in space, not time, 

for the interdictor. Without interdiction in the Case 1 network, the maximum flow per 

round is limited by budget, not arc capacity. The smuggler could transport 20 units of 

flow through the entire network within one round, given a sufficiently large movement 

budget. Therefore, representing a situation where the smuggler’s budget is just sufficient 

to accomplish his immediate aim of moving a packet from source to target in two rounds 

also allows a more transparent quantification of the impact of the interdictor’s resource 

allocation decisions.  
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In Case 1, the master scheduling table introduces 240 total units of materiel at 

node HB across the 20 rounds. The materiel is divided into packets either uniformly-sized 

at size 1, 2 or 3 or randomly-sized between 1 and 3 units. A Mersenne Twister algorithm 

generated the sequence of pseudo-random packet sizes (Matsumoto 1998). We partition 

the resultant sequence of packet sizes into 20 groups so that each partition includes 

approximately 12 units of flow (Table 5). There are approximately 12 units of flow in 

each round whether the packets are all 1, 2, 3, or randomly-sized. The smuggler’s supply 

is thus consistent in each round.    

Table 5. Example of Master Packet Schedule. 

In some scenarios, packet sizes are randomly drawn between one and three using the 

Mersenne Twister algorithm. The sequence of random packet sizes is partitioned to 

introduce approximately 12 units of flow to each round. However, the table continues to 

round 20; only rounds 1–3 are displayed in the above example. 

a. Design of Experiments

We combine an Orthogonal Latin Hypercube (OLH), crossed design, and star 

points to consider 71 equally likely scenarios in Case 1. These scenarios program two 

decision variables and five noise variables through a realistic range of values (Table 6).  
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Table 6. Case 1 Range of Factors in Experimental Design. 

Decision Variables Definition from Chapter 3 Range of values 

covert.budgett maximum number of covert sensors the interdictor can 

place in round t [cardinality/round] 

[0, Sensor Budget] 

overt.budgett maximum number of overt sensors the interdictor can 

place in round t [cardinality/round] 

[0, Sensor Budget] 

Noise Factors Definition from Chapter 3 Range of values 

( , ),i j tq
smuggler penalty for traversing an arc with sensor 

[cost/flow-round] 
[10, 50] 

psize size of packet p [flow] [1, 2, 3, random 

integer [1,3]] 

packet.signature level of stealth for packets [non-negative integer] [1, 2, 3] 

  scaling parameter (0.0 – 1.0) that attenuates the 

interdictor’s capacity estimate from the previous round, 

( , ), 1
ˆ

i j tu 

[0.6, 1.0] 

attenuate rate of cost attenuation 

[{ | (0,1]}attenuate attenuate  ] 

[0.88, 0.95] 

The decision variables represent choices the interdictor makes to allocate his 

sensor budget between covert and overt sensors, grossly described by three general 

policies: pure overt, pure covert, and hybrid policy. Under pure overt and pure covert 

policies, the interdictor devotes the entire sensor budget to overt or covert sensors, 

respectively. The hybrid policy includes each possible combination of overt and covert 

sensor allocation within the overall sensor budget. For example, hybrid policies within 

sensor budget 3 include both (a) 1 overt and 2 covert sensors, and (b) 2 overt and 1 covert 

sensors. The range of values assumed by the noise variables in Table 6 acts as a surrogate 

for different levels of smuggler and interdictor technological sophistication and tactical 

acumen. We use a two-stage statistical sampling procedure as developed by Dudewicz 
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and Dalal (1975) to determine the number of required replications. Under the procedure, 

we repeat each scenario a minimum of 10 times to establish at least a 90 percent 

confidence level that the error in an estimate of the expected value of smuggled flow is 

less than 10 percent. 

b. Results

(1) Interdictor Policy Performance: Aggregate Metrics

We consider any smuggled flow reaching the target as loss. Figure 34 shows the 

total smuggled flow (loss) versus the interdictor’s sensor budget. The plot clearly shows a 

face-valid trend: with additional sensors, the interdictor can cause greater disruption to 

smuggler routes, reducing smuggler flow. We seek to understand this relationship in 

more detail. (For further information on robust design and loss functions see Kleijnen et 

al. [2005], Sanchez [2000].)  

Figure 34. Total Smuggled Flow versus Interdictor Sensor Budget. 

The total smuggled flow per game decreases as the interdictor’s sensor budget increases. 

The lack of data at sensor budgets 6, 9 and 10 is an artifact of the OLH design. Because 

the results from each policy show unequal variance, we use a loss function to calculate 

the total smuggled flow and then compare policy performance. 
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Within the range of scenarios described in Case 1, we further focus our 

investigation on instances where the interdictor has a sensor budget between two and 

five. Given a budget of six or more sensors, the interdictor can proceed with a naïve 

strategy, placing sensors along a majority of the always-visible s-t cut across the reverse 

star of node N13 (Figure 35). Such a strategy requires neither estimation nor adaptation 

from the interdictor to execute successfully. Within our model, the smuggler’s private 

and incomplete information provides a subtle nuance for the interdictor’s strategic 

decisions. Given that the smuggler plays on a subset of the available arcs that changes in 

time, the minimum s-t cut of the subgraph created by these arcs also changes in time. 

Restricting the interdictor to less than six sensors thus allows us to investigate problem 

instances where there is no obvious sensor allocation strategy that is robust to an adapting 

and malicious smuggler.  

Figure 35. A Naïve s-t Cut in Case 1. 

Six sensors are sufficient to make an s-t cut (dashed red) with no exploration from the 

interdictor. Because they are part of the target’s reverse star, these arcs are always visible 

to the interdictor. We limit our further investigations to interdictor sensor budgets below 

six to examine the value of less obvious interdictor strategies.  
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We supplement our original OLH design with 53 new design points. Using an 

augmented crossed design, the experiments consider the same range of noise factors for 

sensor budgets restricted between two and five, inclusive (Table 7). The additional 53 

design points create a much higher degree of space filling and allow verification of the 

statistical model predictions we generate using the original OLH design. Because the 

variance of each studied instance is unequal and variance is generally undesirable in 

tactical situations, we use a loss function to compare policy effectiveness. Figure 36 

displays the loss by policy. Figure 37 displays the percentage of flow degradation by 

policy for each sensor budget. 

Table 7. Case 1 Range of Factors in Crossed Design with Star Points. 

Decision Variables Range of values 

covert.budgett [2, 5] | covert.budgett + overt.budgett = [2,5] 

overt.budgett [2, 5] | covert.budgett + overt.budgett = [2,5] 

Noise Factors Range of values 

( , ),i j tq [20, 40] 

psize random integer [1,3] 

packet.signature [1, 3] 

The interdictor desires to minimize the smuggled flow. Given two or three 

sensors, allocating them all as overt sensors, a pure overt policy, minimizes flow. These 

policies are 8 percent and 3 percent better than the hybrid policies with one covert sensor, 

the next best performing policies (Table 8). However, as the sensor budget increases to 

four and five, the hybrid policy becomes more effective and eventually superior to the 

pure overt policy (Figure 36, Table 8).  

We apply 10 additional design points across each sensor budget. The added 

design points allow finer resolution of the near equal loss resultant from several policies. 

We note that at sensor budget four, the hybrid policy and pure overt policy with one 



72 

covert sensor produce almost the same degradation of flow, 49 and 50 percent, 

respectively (Table 8). However, when we consider total materiel destroyed, there is a 

significant difference in policy performance (Figure 37). At sensor budget five, the 

amount of seized materiel is also significantly different between the two policies with 

maximum degradation of smuggled flow, hybrid (3 covert) and hybrid (4 covert). 

Figure 36. Contour Profile of Loss versus Number of Overt and 

Number of Covert Sensors. 

The graphic shows loss contours projected from our statistical model (Appendix A). The 

contours indicate pure overt sensor policies produce the minimum loss for sensor budgets 

equal to two or three. However, the hybrid policy is a superior allocation of either four or 

five total sensors. 

Table 8. Policy Performance: Percentage of Degradation of Smuggler Flow. 

At sensor budgets equal to two and three, pure overt policies maximally degrade the 

smuggler’s flow. However, hybrid policies become more effective at with a budget of 

four sensors, and clearly superior with five total sensors available. 
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Figure 37. Policy Performance by Sensor Budget. 

(a) With a sensor budget equal to two, the pure overt strategy maximally degrades the 

smuggled flow. It offers 8% more degradation than the hybrid policy. 

Figure 37. Policy Performance by Sensor Budget (Cont.). 

(b) The pure overt policy still offers maximum degradation of smuggled flow with three 

sensors available. The degradation is 3% greater than the hybrid (1 covert) policy. 
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Pure Covert

Percent Degradation of Smuggled Flow 
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Pure Covert

Percent Degradation to Smuggled Flow
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Figure 37. Policy Performance by Sensor Budget (Cont.). 

(c) While the pure overt and hybrid (1 covert) policy showed the almost the same 

degradation of smuggled flow, 49%, there is significant difference in the percentage of 

total materiel destroyed. The hybrid (1 covert) policy destroys over 6% more flow (darker 

in blue). 

Figure 37. Policy Performance by Sensor Budget (Cont.). 

(d) The hybrid (3 covert) policy maximally degrades the smuggler’s flow, given five 

available sensors. Under the hybrid policy, the degradation is 2% greater than the next 

highest option, a hybrid (4 covert) policy. Even so, the amount of materiel destroyed 

increases by 10% when the interdictor follows a hybrid (4 covert) policy. 
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Within the detail provided by the expanded experimental design, we also note a 

significant improvement in flow degradation as sensor sensitivity improves. Figure 38 

shows the effect on the percent of smuggled flow degraded versus the number of covert 

sensors as sensor probability of detection increases by approximately 8 percent. An 8 

percent change encompasses the full range we examine in our experimental design. The 

improved degradation of flow was consistent across all Case 1 policies. As the number of 

covert sensors increase, the improvement ranged from approximately 7 percent to 24 

percent degradation of flow. Even so, the improvement did not significantly change until 

the interdictor employed more than two covert sensors. 

Figure 38. Effect of Sensor Sensitivity on the Percent Degradation of 

Smuggled Materiel. 

Improving each sensor’s probability of detection by approximately 8% yields consistent 

improvement in all Case 1 scenarios. Left: Boxplots illustrate the general distribution of 

the percent of degradation of smuggled materiel versus the number of covert sensors by 

probability of detection scenario (Baseline Pd or +8% Pd). Right: To ease interpretability 

and comparison, we plot two statistical models (piecewise splines with 0.05  ), one fit 

to the Baseline Pd and one fit to the +8% Pd. The 8% increase to probability of detection 

causes approximately 7% greater degradation of flow with low numbers of covert 

sensors. As the number of covert sensors increases, so does the effect of increased Pd. 

With four covert sensors, there is a 24% increase to smuggler flow degradation when the 

probability of detection is raised approximately 8%. 
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(2) Interdictor Policy Performance: Time Dynamics 

Having considered the aggregate performance of each policy, we turn our 

attention to the detailed time dynamics of game play under each policy. We use the 710 

time series generated from our DOE to construct a meta-game for each policy, 

representing the 0.9 quantile of per-round smuggled flow of all games in the policy. That 

is, only 10 percent of the games had higher per-round smuggled flow than the meta-

game. Figure 40 depicts the family of meta-games within each sensor budget. In that 

figure as a reference, we highlight the policy generating the greatest overall degradation 

to the total smuggled flow, as analyzed in Case 1, Section A.2.b.(1). It is immediately 

apparent that the games are highly dynamic. Round-to-round flow oscillates significantly. 

Further analysis of smuggler packet movement and interdictor sensor placement shows 

the oscillation is a result of the action-counteraction cycle between the interdictor and 

smuggler aggravated by the revelation of new arcs through the countdown timer. We also 

note that certain policies tend to reduce more consistently the maximum per-round 

smuggler flow within a game. We focus on round 8, when by the action of the countdown 

timer, the simulation makes an entirely new smuggling path visible (Figure 39). 

Figure 39. Newly Visible Smuggling Path in Round 8. 

The countdown timer reveals the N2—N5—N8—N11—N13 path in round 8 (dashed red), 

almost an entire s-t path. Arcs (N5, N12), (N12, N11), and (N14, N13) are not yet visible 

(dotted). 
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Figure 40. Meta-Games, the 0.9 Quantile of Smuggled Flow by Game 

Round. 

(a) Sensor Budget 2. The smuggled flow dramatically oscillates round-to-round by 

almost an order of magnitude. No single policy shows significantly different performance 

than the pure overt policy (dashed red). Flow peaks at 20 to 24 units in round 8 when the 

algorithm introduces a new s-t path, but the interdictor rapidly adjusts by round 10 

dropping flow to 4 units. Heavy red dashes indicate the policy maximally degrading the 

total smuggled flow per game in Case 1. 

(b) Sensor Budget 3. As with a budget of two sensors, given three sensors, we observe 

no significant difference between each policy’s round-to-round play. The peak flow in 

round 8 is slightly attenuated, reducing from 20–24 to 20–22. Heavy red dashes indicate 

the policy maximally degrading the total smuggled flow per game in Case 1. 
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(c) Sensor Budget 4. We begin to observe significant differences in policy round-to-

round performance. Of note, the hybrid (2 covet) policy, depicted in green, shows a 10–

20% reduction in the round 8 peak flow. Red dashes indicate the policy maximally 

degrading the total smuggled flow per game in Case 1. 

(d) Sensor Budget 5. There is now a substantial difference in round-to-round policy 

performance. The hybrid (4 covert) policy demonstrates a reduction in round 8 peak 

smuggled flow of over 50 percent. A 20–30% reduction in the peak flow of later rounds 

is also apparent. Red dashes indicate the policy maximally degrading total smuggled flow 

in per game Case 1. 
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As sensor budgets increase, we observe significant differences by policy in peak 

round-to-round smuggled flow. The 0.9 quantile of smuggled flow reduces by up to 50 

percent in round 8 when the interdictor employs a hybrid policy over pure overt policy. 

(3) Evaluation of Seizures as Proxy for Smuggled Flow 

Figure 41 shows the total smuggled flow versus the total amount of materiel 

destroyed over all Case 1 scenarios. A naïve regression indicates a moderately strong 

relationship between the total amount of materiel seized and the total amount of 

smuggled materiel (R2 = 0.605).  

Figure 41. Linear Regression of Total Smuggled Materiel versus Total 

Materiel Detected. 

The best linear model explains only 60 percent of the observed variance in the total 

smuggled materiel. We observed no improved explanatory power under a variety of 

variable transformations. 

However, within the naïve regression, we note an inconsistent level of variability 

indicating heteroscedasticity, bringing doubt on any inference from the regression results 

(Figure 42). Further exploration indicates a significant change in the strength of the 

relationship between seizures and flow when total sensor budget is considered (Figure 

43). With a budget of three sensors, the amount of seized materiel explains only 23 
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percent of the variability in the amount of unseen smuggled materiel. Even so, models 

considering sensor budget still suffer from some inequality of variance at different 

simulation configurations representing the different interdictor policies.  

Figure 42. Residuals for the Naïve Regression Model. 

The plot of residuals indicates unequal variance among estimates. The heteroscedasticity 

makes any inference problematic. 

Figure 43. Total Smuggled Materiel versus Total Materiel Detected. 

The relationship between total materiel detected and total materiel smuggled is 

inconsistent. Left: With a budget of two sensors, the amount of detected materiel explains 

only 50 percent of the variance in the total smuggled flow. Center: With a budget of three 

sensors, the relationship between detected flow and actual total flow is extremely weak. 

Right: The largest R2 occurs with a budget of four sensors, yielding 62 percent of the 

variance explained. The shaded region represents a 95 percent confidence interval. 
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When we also consider individual policies, variance stabilizes, providing a much 

stronger case for accurate inference (Figure 44, Figure 45). 

Figure 44. Model of Total Smuggled Materiel versus Total Materiel 

Detected by Policy with a Budget of Three Sensors.  

The relationship between the total materiel detected and the total smuggled materiel is 

highly inconsistent. For the pure overt policy (blue), the total materiel detected conveys 

no information on the total smuggled flow, R2 = 0.00. The shaded regions represent a 95 

percent confidence interval. 
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Figure 45. Model of Total Smuggled Materiel versus Total Materiel 

Detected by Policy with a Budget of Four Sensors.  

With a budget of four sensors, the relationship between the total materiel detected and the 

total smuggled materiel is again highly inconsistent. It varies from high explanatory 

power for pure covert policy (dashed orange) to very low explanatory power for hybrid (2 

covert) (green). The shaded regions represent a 95 percent confidence interval. 

As shown in Figure 44 and Figure 45, there is wide variation in the power of the 

amount of detected materiel to explain the amount of smuggled flow varies considerably. 

With pure covert policies, the relationship is extremely strong. However, for three 

policies featuring more overt sensors, the amount of detected materiel is weakly related to 

the total smuggled materiel. Generally, these same more overt policies are also the 

policies we found most effective at minimizing the total smuggled materiel.  

(4) The Relationship between Discovered Network and Flow 

In this section, we explore the relationship between the information gained by the 

interdictor through exploration of the smuggling network and the total amount of 
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smuggled flow. First, to quantify the information gained by exploration, we measure the 

percentage of arcs within the smuggling network discovered by the interdictor under each 

sensor allocation policy. Displayed in Figure 46, policies with higher percentages of 

covert sensors tend to discover more of the smuggling network but do not explain a large 

portion of the variance for the network discovered.  

We continue assessing the value of information by now quantifying it by the total 

amount of materiel smuggled. Figure 47 shows the total smuggled materiel versus the 

percentage of all arcs discovered by the interdictor within each of the 47 Case 1 

scenarios. Using a generalized linear model, the percentage of arcs discovered only 

explains 10 percent of the variance in the total amount of materiel smuggled. Further 

investigation by specific interdictor policy also reveals weak relationships between these 

two factors. 

Figure 46. Percent Arcs Discovered versus Percent of Sensor Budget 

Dedicated to Covert Sensors. 

The above data results from measuring with a loss function the percent of total arcs 

discovered. The policies have heterogeneous variance. The loss function allows us to 

compare different policies despite the heterogeneity. Interdictor policies with higher 

percent of covert sensors generally discover more of the smuggler network. Even so, the 

relationship is weak, accounting for just over 40 percent of the variance in the 

nonparametric kernel density smoother using local weights (blue line). We draw attention 

to this face-valid trend to support observations focused on less-obvious emergent 
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relationships in the following sections. (piecewise splines with 0.05  ), 

Figure 47. Percentage of Arcs Discovered versus Total Loss. 

The relationship between the percentage of arcs discovered by the interdictor and the 

total smuggled materiel is very weak. The linear fit accounts for only 10 percent of the 

variance in smuggled materiel. The shaded region indicates the 95 percent confidence 

level. 

(5) The Effect of Miscalculation 

We examine the potential for the interdictor to miscalculate and the relationship 

of these miscalculations to performance. Owing to myriad indirect effects within this 

model, it is difficult to determine definitively if the interdictor has made a poor choice. 

To reduce confounded effects and test for miscalculation specifically, we add an 

experimental artifact to the network. As described in Section A.2, we design an arc, (N13, 

N15), into the Case 1 network that the interdictor must consider, but the smuggler can 

never use (Figure 48). The arc is an arc to nowhere. Even so, the interdictor is never 

made explicitly aware that smuggler transit is impossible on the arc. The interdictor must 

therefore consider the arc in his decision calculus and either address it as a threat or pay 

the arc little attention. If the interdictor expends resources against the arc, the expenditure 

would be a pure miscalculation of the smuggling threat. We find that the interdictor 
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miscalculates and places approximately 11 percent of the available sensors on arc (N15, 

N13) during 540 simulated games (Figure 49).   

Figure 48. Arc to Nowhere. 

Arc (N15, N13) is part of no path available to the smuggler. Any placement of sensors on 

the arc by the interdictor would be a mistake, representing a miscalculation. 

Figure 49. Percent of Sensor Budget Placed Inappropriately. 

The distribution shows the percentages of the interdictor’s available budget that he placed 

inappropriately on arc (N15, N13) during 540 simulated games. The mean percentage is 

11% and the 95% Confidence Interval is [9.8%, 12.6%]. Note the non-symmetric shape 

and left-skewness. 
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Figure 50 shows the relationship between the total smuggled materiel and the 

percent of the interdictor’s sensor budget placed inappropriately on arc (N15, N13). We 

partition the results by total sensor budget. At sensor budgets two and five, there appears 

to be a strong relationship between the amount of materiel smuggled and miscalculation. 

Both the total smuggled materiel and rate of miscalculation increase together. However, 

for sensor budgets three and four, there is a very weak relationship between the total 

materiel smuggled and percent of the interdictor’s sensor budget placed inappropriately. 

Figure 50. Total Smuggled Materiel versus Percent of Sensor Budget 

Misplaced by Sensor Budget. 

Upper Left and Lower Right: The relationship between the total smuggled materiel and 

rate of miscalculation is strongest for sensor budgets two and five, respectively. Lower 

rates of miscalculation correspond with lower total smuggled flow. However, the policy 

that results in the lowest rates changes from pure overt to pure covert (circled in orange). 

The shaded region indicates the 95 percent confidence interval for total smuggled 

materiel (loss).  
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We also find that as sensor budget increases, increasing the allocation to covert 

sensors decreases the miscalculation rate. With a budget of two sensors, a pure overt 

policy shows the lowest misclassification rates and total smuggler flow. However, as the 

sensor budget increases, policies with a higher proportion of covert sensors display 

superior performance in both misclassification rate and amount of smuggler network 

discovered. Thus, in spite of increased exploration, the miscalculation rate still falls 

significantly to very low rates. It is apparent that the interdictor develops a better “sense” 

of the network’s topology with more covert sensors. We emphasize that the converse is 

not true; as shown above in Section (4), better knowledge of the topology does not 

always yield better performance in terms of minimizing the smuggled materiel. 

Figure 51. Percent of Sensor Budget Misplaced versus Percent of 

Sensor Budget Allocated to Covert Sensors. 

At sensor budgets two and three, policies that devote more budget to covert sensors 

miscalculate more often. With sensor budgets of four and five, the trend reverses. More 

covert sensors yields lower rates of miscalculation. 
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Figure 52. Percent of Arcs Discovered versus Percent of Sensor 

Budget Misplaced by Sensor Budget. 

With increasing budget, increased allocation to covert sensors yields both more 

exploration and less miscalculation. Left: Budget with two sensors, hybrid and pure 

covert policies explore more but miscalculate more. Middle Left: Budget with three 

sensors, the trend line flattens, but hybrid and pure covert policies still miscalculate more. 

Middle Right: The trend reverses; pure covert and hybrid policies now explore more and 

miscalculate less. Right: The relationship is strong; covert-heavy policies explore 

significantly more and miscalculate significantly less. 

3. Case 2

In Case 2, we consider a deeper and less wide smuggling network than that 

constructed in Case 1. There are 21 arcs connecting 14 nodes (Figure 53). The designed 

network of Case 2 provides 20 unique s-t paths from the node HB (Hostile Base) to node 

N13. Table 9 displays the initial network data. As in Case 1, the smuggler’s estimates of 

arc capacities and the interdictor’s estimates of arc costs and capacities all begin as 10, 

10, and 1, respectively. We design the remaining network topology and data with the 

same motivation found in Case 1, to create a practical range of total route costs and 

reveal new routes over successive game rounds.  
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Figure 53. The Network for Case 2. 

The network for Case 2 includes 14 nodes and 21 arcs. Arcs with cost above 10 are not 

visible. The interdictor could use four or more sensors to naively make an s-t cut across 

the reverse star of the target (dotted red).  

In Case 2, we shorten the time horizon to 15 game rounds for all scenarios. Arcs 

with cost above 10 are not visible to the smuggler. The timer only introduces two arcs 

through the course of a game. We thus create a significantly different topology that is less 

fluid than that found in Case 1 to test further the extensibility of our observations.  
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Table 9. Case 2 Initial Interdictor and Smuggler Estimates. 

In Case 2, we assume the smuggler’s budget is 500 cost/round, just adequate to 

allow the smuggler to transport any materiel introduced at node HB in a single round 

through the network within the following two to three rounds. Some larger packets now 

require three rounds to traverse the network, owing to the greater network depth in Case 

2. The master scheduling table introduces 186 total units of materiel at node NB. Under

the same portioning scheme found in Case 1, the master scheduling table allots packets to 

each of the 15 rounds of play. 

a. Design of Experiments

Similar to Case 1, we combine an Orthogonal Latin Hypercube (OLH), crossed 

design, and star points to consider 53 equally likely scenarios in Case 2. These scenarios 

also program two decision variables and five noise variables through a realistic range of 

values (Table 10). The 36 points of the augmented crossed design expand our analysis of 

scenarios with sensor budget between one and three. As in Case 1, in Case 2 we are 
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focused on situations where the interdictor cannot make a naïve s-t cut in the reverse star 

of the target (Figure 53). Four or more sensors would allow such a strategy. We use the 

experimental design to investigate the same three general policies found in Case 1: pure 

overt, hybrid, and pure covert. The design replicates each scenario at least 10 times to 

establish the minimum of 90 percent confidence of less than 10 percent error in the 

estimate of the expected value of total smuggled flow. 

Table 10.  Case 2 Range of Factors in Experimental Design. 

Decision 

Variables 

Definition from Chapter 3 Range of values 

covert.budgett maximum number of covert sensors the interdictor can place 

in round t [cardinality/round] 

[0, Sensor Budget] 

overt.budgett maximum number of overt sensors the interdictor can place 

in round t [cardinality/round] 

[0, Sensor Budget] 

Noise Factors Definition from Chapter 3 Range of values 

( , ),i j tq
smuggler penalty for traversing an arc with sensor 

[cost/flow-round] 
[5, 50] 

psize size of packet p [flow] [1, 2, 3, random 

integer [1,3]] 

packet.signature level of stealth for packets [non-negative integer] [1, 2, 3] 

attenuate rate of cost attenuation    

[{ | (0,1]}attenuate attenuate  ] 

[0.88, 0.95] 

  scaling parameter (0.0 – 1.0) that attenuates the interdictor’s 

capacity estimate from the previous round, 
( , ), 1

ˆ
i j tu 

[0.6, 1.0] 

b. Results

(1) Interdictor Policy Performance: Aggregate Metrics
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Figure 54 shows the total smuggled flow versus the interdictor’s sensor budget. 

As in Case 1, the plot for Case 2 clearly shows a face-valid trend of decreasing total flow 

with increasing sensor budget. 

Figure 54. Total Smuggled Materiel versus Sensor Budget. 

As in Case 1, the total smuggled flow per game in Case 2 decreases as the interdictor’s 

sensor budget increases. 

Figure 55 and Table 11 display the total degradation to smuggled flow and loss by 

policy. Figure 56 shows each individual policy’s performance by sensor budget. 

Table 11.  Policy Performance: Percentage of Degradation of Smuggler Flow. 

With a budget of one or two sensors, pure overt policies maximally degrade the smuggler 

flow. However, hybrid policies become more effective with a budget of three sensors, 

offering 70% degradation of the smuggler flow. 
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Figure 55. Policy Performance by Sensor Budget. 

The projected loss contours show pure overt sensor policies as producing the minimum 

loss with a budget of two (blue line) and three sensors (red dashed). However, the hybrid 

policy is a superior allocation of three total sensors (green broken line). Model details are 

displayed in Appendix A. 

Figure 56. Policy Performance by Sensor Budget. 

(a) With a sensor budget equal to one, the pure overt strategy maximally degrades the 

smuggled flow. It offers 9% more degradation than the pure covert policy. 

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

Pure Overt

Pure Covert

Percent Degradation of Smuggled Flow 

Sensor Budget 1
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Figure 56. Policy Performance by Sensor Budget (Cont.). 

(b) The pure overt policy still offers the greatest degradation of smuggled flow with two 

sensors available. The degradation is 4% higher than the hybrid (1 covert) policy. 

Figure 56. Policy Performance by Sensor Budget (Cont.). 

(c) With a budget of three sensors, we observe the hybrid (1 covert) policy cause 

maximum degradation of the smuggled flow. 

0% 10% 20% 30% 40% 50% 60% 70%

Pure Overt

Hybrid (1 Covert)

Pure Covert

Percent Degradation to Smuggled Flow

Sensor Budget 2

0% 10% 20% 30% 40% 50% 60% 70% 80%

Pure Overt

Hybrid (1 Covert)

Hybrid (2 Covert)

Pure Covert

Sensor Budget 3
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As found in Case 1, increasing the probability of detection by an average of 8 

percent yields increased degradation of the smuggled flow (Figure 57).  

Figure 57. Effect of Sensor Sensitivity on the Percent Degradation of 

Smuggled Materiel. 

Similar to Case 1, improving each sensor’s probability of detection by approximately 8% 

yields consistent improvement in all Case 2 scenarios. Left: Using a nonparametric 

permutation test, we can only distinguish between the two Pd scenarios with 80% 

confidence when the number of covert sensors is either one, two, or three. When there are 

three covert sensors, we can distinguish between the two Pd scenarios with over 99% 

confidence. Right: The average flow degradation increases from 5% to 11% as the 

number of covert sensors also increases. However, the largest increase in flow 

degradation, 15%, occurs at the hybrid (1 covert) policy. We produce the curves with 

piecewise splines, 0.05  . 

The degradation generally increases as the interdictor enlists additional covert 

sensors, with a maximum 15 percent degradation of smuggled flow resultant from the 

hybrid (1 covert) policy.   

(2) Interdictor Policy Performance: Time Dynamics 

We continue our method of analysis established in Case 1 by proceeding to explore 

the time dynamics of each policy within Case 2. Using 530 individual time series, we 

construct the 0.9 quantile meta-game for each policy within each sensor budget (Figure 58). 
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In Case 2, we design a game that introduces only 2 arcs introduced by timer. The greater 

network stability manifests slightly more stable game play. While still oscillating, the 

smuggled flow does not change round-to-round by almost an order of magnitude as 

observed in Round 8 of Case 1. Even so, at sensor budget 3, the hybrid policy (2 covert) 

offers the same buffering of peak round-to-round flow we saw in Case 1. 

Figure 58. Meta-Games, the 0.9 Quantile of Smuggled Flow by Game 

Round. 

(a) Sensor Budget 1. Both the peaks and troughs of round-to-round flow are more 

extreme under the pure overt policy.  
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(b) Sensor Budget 2. There is no significant difference between each policies’ round-to-

round performance with only two sensors available. Policies performing well in some 

rounds perform poorly elsewhere. 

(c) Sensor Budget 3. The policies now distinguish themselves. We note the hybrid (2 

covert) policy permits approximately 30–40 percent less round-to-round peak smuggled 

flow than the hybrid (1 covert) policy.  
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(3) Evaluation of Seizures as Proxy for Smuggled Flow 

In Case 2, the value of inference achieved when comparing the total materiel 

detected to the total smuggled is highly inconsistent. Even with a variety of 

transformations of the independent variable, the total materiel seized by the interdictor, 

linear regression models continue to indicate both heteroscedasticity and weak 

explanatory power (Figure 59). Consistent inference is only available once we partition 

the results by individual policy (Figure 60). At sensor budget 1 and 2, the variation in the 

total materiel detected explains between 72 and 91 percent of the variation in total 

smuggled flow. As in Case 1, the strongest relationships occur when the interdictor 

assigns a large proportion of his sensor budget to covert sensors. The amount of detected 

materiel is very weakly related to the total smuggled flow for pure overt and hybrid (2 

covert) (Figure 61). The R2 for the best corresponding linear models is 0.07 and 0.50, 

respectively.  

Figure 59. Linear Regression of Total Smuggled Materiel versus Total 

Materiel Detected. 

A linear model between total smuggled materiel and total materiel destroyed suffers from 

both heteroscedasticity and moderate explanatory power. 
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Figure 60. Total Smuggled Materiel versus Total Materiel Detected. 

Naïve linear models show extremely weak relationships between the total smuggled 

materiel and total materiel detected by the interdictor. 

Figure 61. Model of Total Smuggled Materiel versus Total Materiel 

Detected by Policy at Sensor Budget 2. 

As with Case 1, with a budget of four sensors, the relationship between the total materiel 

detected and the total smuggled materiel is highly inconsistent. It varies from high 

explanatory power for pure covert policy to very low explanatory power for pure overt 

and hybrid (2 covert). The shaded regions represent a 95 percent confidence interval. 
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(4) The Relationship between Discovered Network and Flow 

We again explore the relationship between the interdictor’s success at degrading 

the smuggled flow and the scope of the smuggling network the interdictor discovers. Our 

Case 2 results are consistent with those from Case 1; there is a very weak relationship 

between the total smuggled flow and the percentage of the network the interdictor 

discovers. The relationship between the proportion of covert sensors within the 

interdictor’s policy and the percent of the network he discovers is also non-monotonic 

and does not fully capture the variance in the smuggled flow (Figure 62). Using a non-

parametric scaled Kruskal-Wallis H test, there is strong evidence that as the allocation of 

covert sensors increases, so does the percent of arcs discovered change (p-value ~ 10–6). 

We continue assessing the value of information by now quantifying it with the 

total amount of materiel smuggled. Figure 63 shows the total smuggled materiel versus 

the percentage of all arcs discovered by the interdictor within each of the 47 Case 2 

scenarios. 

Figure 62. Percent Arcs Discovered versus Percent of Sensor Budget 

dedicated to Covert Sensors. 

After one covert sensor is included, policies with more covert sensors offer increasing 

percentages of discovered network. The results of the policies are statistically 

distinguishable (p-value: 10–6). The curve represents a nonparametric kernel density 

smoother model using local weights (blue line). 
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As in Case 1, we fit a number of statistical models in an attempt to explain the 

amount of smuggled flow by the percent of arcs discovered. However, the best fit shows 

an extremely weak relationship, accounting for only 16 percent of the variation in total 

smuggled flow (R2 = 0.161). 

Figure 63. Percentage of Arcs Discovered versus Total Loss. 

The relationship between the percentage of arcs discovered by the interdictor and the 

total smuggled materiel is very weak. The best of a variety of model fits only explains 16 

percent of the variance in smuggled materiel. The shaded region indicates the 95 percent 

confidence level. 

Using a linear model, the percentage of arcs discovered only explains 10 percent 

of the variance in the total amount of materiel smuggled. Further investigation by specific 

interdictor policy also revealed weak relationships between these two factors.  

B. OBSERVATIONS AND DISCUSSION 

Our two computational cases provide consistent results and expose several 

important unanticipated insights. Based on the data provided by these two cases, we now 

draw important inference and expose several relationships.  
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When the budget for sensors is small, relative to the number of smuggling routes, 

the interdictor should allocate his entire budget to overt sensors. Overt policies tend to 

capture fewer smuggled packets, but raise the smuggler’s perceived risk significantly. 

Observing the placement of multiple overt obstacles, the smuggler shows risk aversion 

and smuggled flow rapidly becomes frustrated within the route structure. The emergent 

risk-averse behavior is analogous to deterrence. Using our model, we are able to assess 

the value of the deterrence, given other policy options.  

As the budget for sensors increases, it becomes more effective for the interdictor 

to employ a hybrid policy involving a mix of overt and covert sensors. In effect, the 

interdictor uses the smuggler’s perception of overt sensors to increase the effectiveness of 

covert sensors. The interdictor can employ hybrid policies in an ambush pattern, herding 

smuggled flow with overt sensors into covert sensors that lay in wait. That is, addressing 

a large front, the risk of the overt sensors substantially increases the attractiveness of the 

route on which the interdictor placed a covert sensor, often making the route the 

smuggler’s new primary choice. Generally, the interdictor has to be less accurate in his 

estimations to employ hybrid policies effectively. 

In contrast to overt policies, pure covert policies primarily achieve their effect by 

actually seizing the smuggled flow. Deterrence is far less important under pure covert 

schemes. For these policies, information is key. Pure covert policies encourage the 

interdictor to target arcs deeper within the smuggling network more precisely. The degree 

of exploration is highest under these policies. Unfortunately, the increased degree of 

exploration does not also increase the interdictor’s effectiveness. With a dynamic 

topology and extremely agile smuggler, the interdictor is often precisely wrong. 

Orienting on a specific set of paths, the interdictor is drawn further into the smuggling 

network, only to be quickly out-flanked by the smuggler’s reaction. The interdictor thus 

fairs poorly in instances of low sensor budgets and pure covert policies, unable to form 

consistently accurate estimates of the smuggler’s intentions. 

Counter to our intuition, our examination of each policy’s time dynamics reveals 

that policies that most-reduce the total smuggler flow are not always the same policies 

that perform best round-to-round. We expect policies generating the highest degradation 
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to total smuggled flow to have also the smallest maximum value of flow in any single 

game round. Our expectation is confirmed in instances of low interdictor sensor budgets. 

However, in both Case 1 and Case 2, instances of higher sensor budgets reveal that 

hybrid policies with more covert sensors reduce the peak round-to-round flow 

considerably.  

Hybrid policies appear to prevent surprise to a substantially greater degree. Case 

1, round 8 provides the tactical analogy of smuggler deception and well illustrates the 

improved round-to-round performance of hybrid policies described above. As a new 

route is withheld until round 8, the interdictor is seduced to varying degree by the 

smuggler’s—albeit unconscious—deceptive actions in rounds 1 to 7. The interdictor 

policies that are least deceived in rounds 1 to 7 are not always those that most reduce the 

total smuggled flow. However, in almost all cases we explored they are a close second.   

It appears that while adaptability is important in the interdictor-smuggler 

problem, under situations that consider two-sided uncertainty, being too agile and too 

aggressive in exploration can significantly reduce effectiveness. Under several pure 

covert policies, the interdictor’s feedback loops appeared overly sensitive, causing 

frequent and inappropriate changes to sensor locations round-to-round. Smuggler flow 

was distinctly higher when this happened. It appears that the adventurous, under-

informed, and hyper-agile interdictor fluctuates wildly. Hybrid policies appear to calm 

the fluctuation, and appear to leverage the smuggler’s own risk calculus against him. 

Presented with the opportunity to increase or develop his resources, the 

interdictor must prioritize his goals. With minimal budgets, the interdictor should focus 

on maximizing deterrence. Gaining an additional sensor is more helpful in these cases 

than increasing sensor sensitivity. With greater budgets, establishing a hybrid policy 

should be the interdictor’s priority. Once established, increasing covert sensor sensitivity 

provides significant rewards in reduced total smuggled flow, higher seizure rates, and 

greater resilience to surprise. We have not modelled the effect of intelligence gained by 

exploiting seized materiel. The knowledge from these exploits can prove tactically 

decisive. More heavily covert hybrid policies offer substantial increases in materiel 

capture rates and should be selected if materiel exploitation is a priority. 
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We expect that as the interdictor discovers more of the smuggler’s network, the 

interdictor would be able to better influence the smuggler flow, but this is not the case. 

The observation reinforces our earlier warning on the dangers of interdictor adventurism 

under limited information. Even so, if discovery of the physical structure of the network 

is important, policies with heavy covert sensor allocations are best suited to the task. 

Our limited excursion to study the effect of miscalculation demonstrates that the 

policies that best reduce total smuggled flow and are more resilient to surprise also 

result in the least miscalculation by the interdictor. This finding corroborates the policy 

performance assessments thus far. As before, the reduced miscalculation is generally not 

related only to the type of policy, but instead related to the type of policy in light of the 

sensor budget. 

Lastly, we show that the amount of seized materiel is a poor proxy for the total 

amount of smuggled flow. The relationship between these factors is very inconsistent. In 

policies where deterrence is high, the amount of seized materiel provides almost no 

information on the actual amount of unseen materiel successfully smuggled. Now 

presented with the results, the finding agrees with our intuition. A policy that relies on 

deterrence, an intangible emergent effect, should not use seizures as a performance 

measure. In contrast, the amount of materiel seized can be used to very accurately 

estimate the total smuggled flow for heavily covert policies. We believe it is impractical 

to distinguish these situations in real world interdictor-smuggler contests. Estimates that 

naïvely measure overall interdiction performance by seizure rate should be carefully 

examined.    
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V. CONCLUSION 

The main points of this thesis are twofold: 

(1) A range of realistic, complex behaviors can emerge from the interaction of 

two hostile, intelligent agents acting under simple rules within a dynamic environment of 

uncertainty and danger.  

(2) We can gain insight into these complex situations through heuristics that 

combine complimentary optimization, stochastic, and game-theoretic models under an 

umbrella of simulation. 

Previous research into martial contests, such as this interdictor-smuggler context, 

has made various strong assumptions in the name of tractability. These persistent 

assumptions include perfect information, an unchanging environment, and non-

adaptability. Our constructive cases from Chapter 3 and full model results in Chapter 4, 

demonstrate massive perturbations in both the conduct of play and game results as we 

deliberately and cumulatively relax these assumptions. Each of these relaxations admits 

an essential feature of the problem—features unambiguously identified by the breadth of 

military doctrine as the essence of conflict. The significant effect of these essential 

features, demonstrated in this thesis, should draw sharp focus on the results of many 

models that attempt to study combat otherwise. Specifically, is it sensible to study 

situations in a martial context and ignore uncertainty or adaptation? Assigning 

omnipotence to one or both combatants in this type of context for tractability is deeply 

dissatisfying. It conflicts at a philosophical level with both historical and contemporary 

military thought. Solving problems under a philosophically different paradigm than that 

in martial practice endangers the real utility and accuracy of any insights gained. Solving 

problems by artificially striping away essential complexity so that it fits more cleanly into 

only optimization, game theory, or stochastics is equally limiting.  

We have shown that constructing an interdisciplinary model can unite the 

strengths of these fields in a complimentary fashion. It can generate feasible face-valid 

solutions to our problem at very limited computational expense. By also considering time 
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dynamics, many new insights present themselves, such as the emergence of deterrence, 

giving light to new types of research questions.  

Our study is meant to be a prototype, demonstrating the power of a hybrid model. 

It is not without its limitations. We have made assumptions on the method and speed by 

which hostile agents might evolve in a martial context. While these provide a direct 

analogue to contemporary military methods, there are other ways. We did not include the 

advantage obtained by interrogation and exploitation after the capture of enemy forces 

and materiel. In many military campaigns, intelligence gained through such exploitation 

has been decisive. The duration of our cases considered was necessarily finite. Even so, 

the basis of our time horizon is subject to debate; so is the design and programmed 

evolution of our network topologies. 

The degree of validation for this type of research may be significantly bounded by 

the limits of knowability inherent to these problems. These limits have to do with the 

observability and measurability of important performance data within the high 

uncertainty and mortal danger of real-world combat. In many ways, refinements of 

computational simulation using a blend of optimization, stochastics, and game theory 

may be the best way to continue investigation. Even so, future research could admit real 

world data to craft a wider array of smuggling networks or specific instances of interest. 

Under a broader set of configurations, models similar to ours could prove a great aid to 

training both inter-agency decision makers and their staffs. That training could encourage 

unique perspectives and seed important questions that might expose highly non-intuitive 

and indirect ways of influencing the outcome and assessing performance during real 

interdiction or counter-trafficking missions. 

Further investigation should also more deeply consider the coupling of an 

interactive environment and intelligent agents. By allowing this interaction, we admit a 

difficult yet realistic miasma of uncertainty, risk, estimation, prediction, miscalculation, 

success, failure, deception, and deterrence. Within such a challenging scene, unreconciled 

differences between orientation and reality can bring catastrophe, despite adequate 

resources. Policies that encourage deliberate and beneficial adjustments of orientation 

while allowing timely action in spite of uncertainty beg greater study. The value of 
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relative information superiority is likely involved. Indeed, on a deeper level, there may be 

far stronger links between perception, performance, adaptation, innovation, and the rules 

by which we both consciously and unconsciously choose to operate. 
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APPENDIX. STATISTICAL MODELS 

Case 1: General Additive Regression Model 

Dependent Variable: Total Smuggled Materiel (Loss) 

Term Coefficient Std Error Prob>|t| 

Intercept 2229.8197 70.56683 <0.0001 

Covert  -152.1365 13.06025 <0.0001 

Overt  -206.9444 13.52863 <0.0001 

Q  -0.654293 1.119532 0.5614 

Size{2&3&1-4}  -113.0372 23.80764 <0.0001 

Size{2-3&1} 18.667449 29.5781 0.5306 

Size{3-1}  -0.589296 37.26125 0.9874 

Signature  -125.62 12.49998 <0.0001 

(Covert-1.98611)*(Overt-1.98611)  -22.24899 8.598785 0.0124 

(Covert-1.98611)*Size{2&3&1-4} 105.55112 17.07788 <0.0001 

(Covert-1.98611)*(Signature-2.09722)  -20.83159 8.214892 0.0141 

(Overt-1.98611)*Size{2&3&1-4} 30.366644 14.54132 0.0415 

(Overt-1.98611)*Size{3-1}  -123.7667 27.57538 <0.0001 

(Q-30.0556)*Size{2-3&1}  -21.87887 3.4043 <0.0001 

(Q-30.0556)*Size{3-1}  -7.854226 3.561776 0.0317 

Size{2-3&1}*(Signature-2.09722) 419.73442 71.7034 <0.0001 

(Covert-1.98611)*(Covert-1.98611)  -36.33692 8.211495 <0.0001 

(Overt-1.98611)*(Overt-1.98611) 36.884488 5.599369 <0.0001 

R2 0.96 

Adjusted R2 0.95 
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Case 2: General Additive Regression Model 

Dependent Variable: Total Smuggled Materiel (Loss) 

Term Estimate Std Error Prob>|t| 

Intercept 1315.2894 39.21573 <0.0001 

Covert  -125.6307 11.74715 <0.0001 

Overt  -252.6989 12.73089 <0.0001 

Signature  -62.22282 14.45549 <0.0001 

(Overt-1.43396)*(Overt-1.43396) 60.392199 9.516845 <0.0001 

R2 0.90 

Adjusted R2 0.90 
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