
Scalable, Flexible and Active
Learning on Distributions

Dougal J. Sutherland

CMU-CS-16-128

September 2016

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Jeff Schneider, Chair
Maria-Florina Balcan
Barnabás Póczos

Arthur Gretton, University College London

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2016 Dougal J. Sutherland

This research was sponsored by the National Science Foundation under grant number IIS0911032; the Chicago
Department of Energy under grant number DESC0002607; Science Applications International Corp under grants
P010127116T0003, P010132891T0005, and P01032981T0006; Sandia National Laboratories under grant number
PO1486778; and the US Air Force Research Laboratory under grants FA875010C0210, FA87501220324, and
FA87501420244.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or
any other entity.

Keywords: kernel methods, approximate embeddings, statistical machine learning, nonpara-
metric statistics, two-sample testing, active learning.

To my parents.

Abstract
A wide range of machine learning problems, including astronomical inference

about galaxy clusters, natural image scene classification, parametric statistical infer-
ence, and detection of potentially harmful sources of radiation, can be well-modeled
as learning a function on (samples from) distributions. This thesis explores problems
in learning such functions via kernel methods, and applies the framework to yield
state-of-the-art results in several novel settings.

One major challenge with this approach is one of computational efficiency when
learning from large numbers of distributions: the computation of typical methods
scales between quadratically and cubically, and so they are not amenable to large
datasets. As a solution, we investigate approximate embeddings into Euclidean
spaces such that inner products in the embedding space approximate kernel values
between the source distributions. We provide a greater understanding of the standard
existing tool for doing so on Euclidean inputs, random Fourier features. We also
present a new embedding for a class of information-theoretic distribution distances,
and evaluate it and existing embeddings on several real-world applications.

The next challenge is that the choice of distance is important for getting good
practical performance, but how to choose a good distance for a given problem is
not obvious. We study this problem in the setting of two-sample testing, where
we attempt to distinguish two distributions via the maximum mean divergence, and
provide a new technique for kernel choice in these settings, including the use of
kernels defined by deep learning-type models.

In a related problem setting, common to physical observations, autonomous
sensing, and electoral polling, we have the following challenge: when observing
samples is expensive, but we can choose where we would like to do so, how do we
pick where to observe? We give a method for a closely related problem where we
search for instances of patterns by making point observations.

Throughout, we combine theoretical results with extensive empirical evaluations
to increase our understanding of the methods.

Acknowledgements
To start with, I want to thank my advisor, Jeff Schneider, for so ably guiding me through this

long process. When I began my PhD, I didn’t have a particular research agenda or project in
mind. After talking to Jeff a few times, we settled on my joining an existing project: applying this
crazy idea of distribution kernels to computer vision problems. Obviously, the hunch that this
project would turn into something I’d be interested in working on more worked out. Throughout
that project and the ones I’ve worked on, Jeff has been instrumental in asking the right questions
to help me realize when I’ve gone off in a bad direction, in suggesting better alternatives, and
in thinking pragmatically about problems, using the best tools for the job and finding the right
balance between empirical and theoretical results.

Barnabás Póczos also basically would have been an advisor had he not still been a postdoc
when I started my degree. His style is a great complement to Jeff’s, caring about many of the
same things but coming at them from a somewhat different direction. Nina Balcan knew the right
connections from the theoretical community, which I haven’t fully explored enough yet. I began
working in more depth with Arthur Gretton over the past six months or so, and it’s been both very
productive and great fun, which is great news since I’m now very excited to move on to a postdoc
with him.

Several of my labmates have also been key to everything I’ve done here. Liang Xiong helped
me get up and running when I started my degree, spending hours in my office showing me how
things worked and how to make sense of the results we got. Yifei Ma’s enthusiasm about widely
varying research ideas was inspiring. Junier Oliva always knew the right way to think about
something when I got stuck. Tzu-Kuo Huang spent an entire summer thinking about distribution
learning with me and eating many, many plates of chicken over rice. Roman Garnett is a master
of Gaussian processes and appreciated my disappointment in Pittsburgh pizza. I never formally
collaborated much with Ben, María, Matt, Samy, Sibi, or Xuezhi, but they were always fun to talk
about ideas with. The rest of the Auton Lab, especially Artur Dubrawski, made brainstorming
meetings something to look forward to whenever they happened.

Outside the lab,MichelleNtampakawas a joy to collaboratewith on applications to cosmology
problems, even when she was too embarrassed to show me her code for the experiments. The
rest of the regular Astro/Stat/ML group also helped fulfill, or at least feel like I was fulfilling,
my high school dreams of learning about the universe. Fish Tung made crazy things work. The
xdata crew made perhaps-too-frequent drives to DC and long summer days packed in a small
back room worth it, especially frequent Phronesis collaborators Ben Johnson, who always had an
interesting problem to think about, and Casey King, who always knew an interesting person to
talk to.

Karen Widmaier, Deb Cavlovich, and Catherine Copetas made everything run smoothly:
without them, not only would nothing ever actually happen, but the things that did happen would
be far less pleasant. Jarod Wang and Predrag Punosevac kept the lab machines going, despite my
best efforts to crash, overload, or otherwise destroy them.

Other, non-research friends also made this whole endeavor worthwhile. Alejandro Carbonara
always had jelly beans, Ameya Velingker made multiple spontaneous trips across state lines,
Aram Ebtekar single-handedly and possibly permanently destroyed my sleep schedule, Dave
Kurokawa was a good friend (there’s no time to explain why), Shayak Sen received beratement

with grace, and Sid Jain gave me lots of practice for maybe having a teenager of my own one day.
Listing friends in general a futile effort, but here’s a few more of the Pittsburgh people without
whom my life would have been worse: Alex, Ashique, Brendan, Charlie, Danny, the Davids,
Goran, Jay-Yoon, Jenny, Jesse, John, Jon, Junxing, Karim, Kelvin, Laxman, Nic, Nico, Preeti,
Richard, Ryan, Sarah, Shriphani, Vagelis, and Zack, as well as the regular groups for various
board/tabletop games, everyone else who actually participated in departmental social events, and
machine learning conference buddies. Of course, friendship is less constrained by geography
than it once was: Alex Burka, James Smith, and Tom Eisenberg were subjected to frequent
all-day conversations, the Board of Shadowy Figures and the PTV Mafia group provided much
pleasant distraction, and I spent more time on video chats with Jamie McClintock, Luke Collin,
Matt McLaughlin, and Tom McClintock than was probably reasonable.

My parents got me here and helped keep me here, and even if my dad thinks I didn’t want him
at my defense, I fully acknowledge that all of it is only because of them. My brother Ian and an
array of relatives (grandparents, aunts, uncles, cousins, and the more exotic ones like first cousins
once removed and great-uncles) are also a regular source of joy, whether I see them several times
a year or a handful of times a decade. Thank you.

Contents

1 Introduction 1
1.1 Summary of contributions . 2

2 Learning on distributions 5
2.1 Distances on distributions . 5

2.1.1 Distance frameworks . 5
2.1.2 Specific distributional distances . 7

2.2 Estimators of distributional distances . 10
2.3 Kernels on distributions . 13
2.4 Kernels on sample sets . 14

2.4.1 Handling indefinite kernel matrices . 15
2.4.2 Nyström approximation . 16

3 Approximate kernel embeddings via random Fourier features 19
3.1 Setup . 19
3.2 Reconstruction variance . 20
3.3 Convergence bounds . 23

3.3.1 L2 bound . 23
3.3.2 High-probability uniform bound . 24
3.3.3 Expected max error . 26
3.3.4 Concentration about the mean . 27
3.3.5 Other bounds . 29

3.4 Downstream error . 29
3.4.1 Kernel ridge regression . 30
3.4.2 Support vector machines . 31

3.5 Numerical evaluation on an interval . 33

4 Scalable distribution learning with approximate kernel embeddings 37
4.1 Mean map kernels . 37

4.1.1 Convergence bounds . 38
4.2 L2 distances . 43

4.2.1 Connection to mmd embedding . 44
4.3 Information-theoretic distances . 45

4.3.1 Convergence bound . 48

i

4.3.2 Generalization to α-hdds . 49
4.3.3 Connection to mmd . 49

5 Applications of distribution learning 51
5.1 Dark matter halo mass prediction . 51
5.2 Mixture estimation . 54
5.3 Scene recognition . 56

5.3.1 sift features . 56
5.3.2 Deep features . 57

5.4 Small-sensor detection of radiation sources . 58

6 Choosing kernels for hypothesis tests 61
6.1 Estimators of mmd . 62
6.2 Estimators of the variance of �mmd2 . 63
6.3 mmd kernel choice criteria . 65

6.3.1 Median heuristic . 65
6.3.2 Marginal likelihood maximization . 66
6.3.3 Maximizing mmd . 66
6.3.4 Cross-validation of loss . 66
6.3.5 Cross-validation of power . 67
6.3.6 Embedding-based Hotelling stastistic 67
6.3.7 Streaming t-statistic . 67
6.3.8 Pairwise t-statistic . 68

6.4 Experiments . 69
6.4.1 Same Gaussian . 70
6.4.2 Gaussian variance difference . 70
6.4.3 Blobs . 72

7 Active search for patterns 75
7.1 Related work . 75
7.2 Problem formulation . 76
7.3 Method . 78

7.3.1 Analytic expected utility for functional probit models 79
7.3.2 Analysis for independent regions . 80

7.4 Empirical evaluation . 81
7.4.1 Environmental monitoring (linear classifier) 81
7.4.2 Predicting election results (linear classifier) 83
7.4.3 Finding vortices (black-box classifier) 85

8 Conclusions and future directions 89
8.1 Deep learning of kernels for two-sample testing 90
8.2 Deep learning of kernels for distribution learning 90

8.2.1 Integration with deep computer vision models 91
8.2.2 Other paramaterizations for kernel learning 91

ii

8.3 Word and document embeddings as distributions 92
8.4 Active learning on distributions . 93

A The skl-groups package 95

B Proofs for Chapter 3 97
B.1 Proof of Proposition 3.4 . 97
B.2 Proof of Proposition 3.5 . 98
B.3 Proof of Proposition 3.6 . 99

B.3.1 Regularity Condition . 99
B.3.2 Lipschitz Constant . 100
B.3.3 Anchor Points . 101
B.3.4 Optimizing Over r . 101

B.4 Proof of Proposition 3.7 . 102
B.4.1 Regularity Condition . 102
B.4.2 Lipschitz Constant . 102
B.4.3 Anchor Points . 103
B.4.4 Optimizing Over r . 104

B.5 Proof of Proposition 3.8 . 104
B.6 Proof of Proposition 3.9 . 106

C Proofs for Chapter 4 109
C.1 Proof of Proposition 4.10 . 109

Bibliography 113

iii

iv

Chapter 1

Introduction

Traditional machine learning approaches focus on learning problems defined on vectors, mapping
whatever kind of object we wish to model to a fixed number of real-valued attributes. Though
this approach has been very successful in a variety of application areas, choosing natural and
effective representations can be quite difficult.

In many settings, we wish to perform machine learning tasks on objects that can be viewed as
a collection of lower-level objects or more directly as samples from a distribution. For example:

• Images can be thought of as a collection of local patches (Section 5.3); similarly, videos
are collections of frames.

• The total mass of a galaxy cluster can be predicted based on the positions and velocities of
individual galaxies (Section 5.1).

• The photons recieved by a small radiation sensor can be used to classify the presence of
harmful radioactive material (Section 5.4).

• Support for a political candidate among various demographic groups can be estimated by
learning a regression model from electoral districts of individual voters to district-level
support for political candidates (Flaxman, Y.-X. Wang, et al. 2015).

• Documents are made of sentences, which are themselves composed of words, which them-
selves can be seen as being represented by sets of the contexts in which they appear
(Section 8.3).

• Parametric statistical inference problems learn a function from sample sets to model pa-
rameters (Section 5.2).

• Expectation propagation techniques relay on maps from sample sets to messages normally
computed via expensive numerical integration (Jitkrittum, Gretton, et al. 2015).

• Causal arrows between distributions can be estimated from samples (Lopez-Paz et al. 2015).
In order to use traditional techniques on these collective objects, we must create a single

vector that represents the entire set. Though there are various ways to summarize a set as a vector,
we can often discard less information and require less effort in feature engineering by operating
directly on sets of feature vectors.

One method for machine learning on sets is to consider them as samples from some unknown
underlying probability distribution over feature vectors. Each example then has its own distribu-

1

tion: if we are classifying images as sets of patches, each image is defined as a distribution over
patch features, and each class of clusters is a set of patch-level feature distributions. We can then
define a kernel based on statistical estimates of a distance between probability distributions. Let-
ting X ⊆ Rd denote the set of possible feature vectors, we thus define a kernel k : 2X × 2X → R.
This lets us perform classification, regression, anomaly detection, clustering, low-dimensional
embedding, and any of many other applications with the well-developed suite of kernel methods.
Chapter 2 discusses various such kernels and their estimators; Chapter 5 gives empirical results
on several problems.

When used for a learning problem with N training items, however, typical kernel methods
require operating on an N ×N kernel matrix, which requires far too much computation to scale to
datasets with a large number of instances. One way to avoid this problem is through approximate
embeddings z : X → RD, à la Rahimi and Recht (2007), such that z(x)Tz(y) ≈ k(x, y). Chapter 3
gives some new results in the theory of random Fourier embeddings, while Chapter 4 uses them
as a tool in developing embeddings for several distributional kernels, which are also evaluated
empirically in Chapter 5.

Chapter 6 moves to the related problem of two-sample testing. Here, we are given two sample
sets X and Y , and we wish to test the hypothesis that X and Y were generated from the same
distribution. This problem, closely related to classification, has many practical applications;
one primary method for doing so is based on the maximum mean discrepancy (mmd) between
the distributions. This method relies on a base kernel; Chapter 6 develops and evaluates a new
method for selecting these kernels, including complex kernels based on deep learning.

Chapter 7 addresses the application of this type of complex functional classifier to an active
search problem. Consider finding polluted areas in a body of water, based on point measure-
ments. We wish to, given an observation budget, adaptively choose where we should make these
observations in order to maximize the number of regions we can be confident are polluted. If
our notion of “pollution” is defined simply by a threshold on the mean value of a univariate
measurement, Y. Ma, Garnett, et al. (2014) give a natural selection algorithm based on Gaussian
process inference. If, instead, our sensors measure the concentrations of several chemicals, the
vector flow of water current, or other suchmore complicated data, we can instead apply a classifier
to a region and consider the problem of finding regions that the classifier marks as relevant.

1.1 Summary of contributions
• Chapter 2 mostly establishes the framework with which we will discuss learning on distri-
butions. Section 2.4.2 includes a mildly novel analysis not yet published.1

• Chapter 3 improves the theoretical understanding of the random Fourier features of Rahimi
and Recht (2007). (Based on Sutherland and Schneider 2015.)

• Section 4.3 gives an approximate embedding for a new class of distributional distances.
(Based on Sutherland, J. B. Oliva, et al. 2016.)

• Chapter 5 provides empirical studies for the application of distributional distances to
practical problems. (Based on Póczos, Xiong, Sutherland, et al. 2012; Sutherland, Xiong,

1This was developed with Tzu-Kuo (TK) Huang.

2

et al. 2012; Ntampaka, Trac, Sutherland, Battaglia, et al. 2015; Jin 2016; Jin et al. 2016;
Sutherland, J. B. Oliva, et al. 2016; Ntampaka, Trac, Sutherland, Fromenteau, et al. in
press.)

• Chapter 6 develops and evaluates a new method for kernel selection in two-sample testing
based on the mmd distributional distance. (Work not yet published.2)

• Chapter 7 presents and analyzes amethod for the novel problem setting of active pointillistic
pattern search, using point observations to observe regional patterns. (Based on Y. Ma,
Sutherland, et al. 2015.)

• The skl-groups package, overviewed in Appendix A, provides efficient implementations
of several of the methods for learning on distributions discussed in this thesis.

2Done in collaboration with Fish Tung, Aaditya Ramdas, Heiko Strathmann, Alex Smola, and Arthur Gretton.

3

4

Chapter 2

Learning on distributions

As discussed in Chapter 1, we consider the problem of learning on probability distributions.
Specifically: let X ⊆ Rd be the set of observable feature vectors, S the set of possible sample
sets (all finite subsets of X), and P the set of probability distributions under consideration. We
then perform machine learning on samples from distributions by:

1. Choosing a distance on distributions ρ : P × P → R.
2. Defining a Mercer kernel k : P × P → R based on ρ.
3. Estimating k based on the observed samples as k̂ : S × S → R, which should itself be a

kernel on S.
4. Using k̂ in a standard kernel method, such as an svm or a Gaussian Process, to perform

classification, regression, collective anomaly detection, or other machine learning tasks.
Certainly, this is not the only approach to learning on distributions. Some distributional

learning methods do not directly compare sample sets to one another, but rather compare their
elements to a class-level distribution (Boiman et al. 2008). Given a distance ρ, one can naturally
use k-nearest neighbor models (Póczos, Xiong, and Schneider 2011; Kusner et al. 2015), or
Nadaraya-Watson–type local regression models (J. B. Oliva, Póczos, et al. 2013; Póczos, Rinaldo,
et al. 2013) with respect to that distance. In this thesis, however, we focus on kernel methods as a
well-studied, flexible, and empirically effective approach to a broad variety of learning problems.

We typically assume that every distribution in P has a density with respect to the Lebesgue
measure, and slightly abuse notation by using distributions P,Q and their densities p, q inter-
changeably.

2.1 Distances on distributions

We will define kernels on distributions by first defining distances ρ between them.

2.1.1 Distance frameworks
We first present four general frameworks for distances on distributions. These are each broad
categories of distances containing (or related to) several of the concrete distance families we

5

employ.

Lr metrics One natural way to compute distances between distributions is the Lr metric between
their densities, for order r ≥ 1:

Lr(p, q) B
(∫
X
|p(x) − q(x)|r dx

)1/r
.

Note that the limit r = ∞ yields the distance L∞(p, q) = supx∈X |p(x) − q(x)|.

f -divergences For any convex function f with f (1) = 0, the f -divergence of P to Q is

D f (P‖Q) B
∫
X

f
(

p(x)
q(x)

)
q(x) dx.

This class is sometimes called “Csiszár f -divergences”, after Csiszár (1963). Sometimes the
requirement of convexity or that f (1) = 0 is dropped. Note that these functions are not in general
symmetric or respecting of the triangle inequality. They do, however, satisfy D f (P‖P) = 0, when
f is strictly convex at 1 D f (P‖Q) ≥ 0, and are jointly convex:

D f (λP + (1 − λ)P′‖λQ + (1 − λ)Q′) ≤ λD f (P‖Q) + (1 − λ)D f (P′‖Q′).

In fact, the only metric f -divergences are multiples of the total variation distance, discussed
shortly (Khosravifard et al. 2007) — though e.g. the Hellinger distance is the square of a metric.
For an overview, see e.g. Liese and Vajda (2006).

α-β divergences The following somewhat less-standard divergence family, defined e.g. by
Póczos, Xiong, Sutherland, et al. (2012) generalizing the α-divergence of Amari (1985), is also
useful. Given two real parameters α, β, Dα,β is defined as

Dα,β(P‖Q) B
∫

pα(x) qβ(x) p(x) dx.

Dα,β(P‖Q) ≥ 0 for any α, β; Dα,−α(P‖P) = 1. Note also that Dα,−α has the form of an f -
divergence with t 7→ tα+1, though this does not satisfy f (1) = 0 and is convex only if α < (−1, 0).

Integral probability metrics Many useful metrics can be expressed as integral probability
metrics (ipms, Müller 1997):

ρF(P,Q) B sup
f ∈F

����∫ f dP −
∫

f dQ
���� ,

whereF is some family of functions f : X → R. Note that ρF satisfies ρF(P, P) = 0, ρF(P,Q) =
ρF(Q, P), and ρF(P,Q) ≤ ρF(P, R) + ρF(R,Q) for any F, and is thus always a pseudometric; the
remaining metric property of distinguishability, (ρF(P,Q) = 0) =⇒ (P = Q), depends on F.
Sriperumbudur et al. (2009) give an overview.

6

2.1.2 Specific distributional distances
The various distributional distances below can often be represented in one or more of these
frameworks. Many more such distances exist; here we mainly discuss the ones used in this thesis,
along with a few others of interest. Figure 2.1 gives a visual illustration of several of the distances
considered here.

L2 distance The L2 distance is one of the most common metrics used on distributions. It can
also be represented as D1,0 − 2D0,1 + D−1,2.

Total variation distance The total variation distance (tv) is such an important distance that it
is sometimes referred to simply as “the statistical distance.” It can be defined as

tv(P,Q) = sup
A
|P(A) −Q(A)|,

where A ranges over every event in the underlying σ-algebra. It can also be represented as
1
2 L1(P,Q), as an f -divergence with t 7→ |t − 1|, and as an ipm with (among other classes)
F = { f : supx∈X f (x) − infx∈X f (x) ≤ 1} (Müller 1997). Note that tv is a metric, and
0 ≤ tv(P,Q) ≤ 1.

The total variation distance is closely related to the “intersection distance”, most commonly
used on histograms (Cha and Srihari 2002):∫

X
min(p(x), q(x)) dx =

∫
X

1
2 (p(x) + q(x) − |p(x) − q(x)|) dx = 1 − tv(P,Q).

Kullback-Leibler divergence The Kullback-Leibler (kl) divergence is defined as

kl(P‖Q) B
∫
X

p(x) log
p(x)
q(x) dx.

For discrete distributions, the kl divergence bears a natural information theoretic interpretation
as the expected excess code length required to send a message for P via the optimal code for Q. It
is nonnegative, and zero iff P = Q almost everywhere; however, kl(P‖Q) , kl(Q‖P) in general.
Note also that if there is any point with p(x) > 0 and q(x) = 0, kl(P‖Q) = ∞.

Applications often use a symmetrization by averaging with the dual:

skl(P,Q) B 1
2 (kl(P‖Q) + kl(Q‖P)) .

This is also sometimes called Jeffrey’s divergence, though that name is also sometimes used to
refer to the Jensen-Shannon divergence (below), so we avoid it. skl does not satisfy the triangle
inequality.

kl can be viewed as a f divergence, with one direction corresponding to t 7→ t log t and the
other to t 7→ − log t; skl is thus an f divergence with t 7→ 1

2 (t − 1) log t.

7

Jensen-Shannon divergence The Jensen-Shannon divergence is based on kl:

js(P,Q) B 1
2 kl

(
P

P +Q

2

)
+ 1

2 kl
(
Q

P +Q

2

)
,

where P+Q
2 denotes an equal mixture between P and Q. js is clearly symmetric, and in fact

√
js

satisfies the triangle inequality. Note also that 0 ≤ js(P,Q) ≤ log 2. It gets its name from the fact
that it can be written as the Jensen difference of the Shannon entropy:

js(P,Q) = H
[

P +Q
2

]
− H[P] + H[Q]

2
,

a view which allows a natural generalization to more than two distributions. Non-equal mixtures
are also natural, but of course asymmetric. For more details, see e.g. Martins et al. (2009).

Rényi-α divergence The Rényi-α divergence (Rényi 1961) generalizes kl as

rα(P‖Q) B
1

α − 1
log

∫
p(x)αq(x)1−α dx;

note that limα→1 rα(P‖Q) = kl(P‖Q), though α = 1 is not defined. rα is typically used for
α ∈ (0, 1) ∪ (1,∞); for α < 0, it can be negative. Like kl, rα is asymmetric; we similarly define
a symmetrization

srα(P,Q) B 1
2 (rα(P‖Q) + rα(Q‖P)) .

srα does not satisfy the triangle inequality.
rα can be represented based on an α-β divergence: r(P‖Q) = 1

α−1 log Dα−1,1−α(P‖Q).
A Jensen-Rényi divergence, defined by replacing kl with rα in the definition of js, has also

been studied (Martins et al. 2009), but we will not consider it here.

Tsallis-α divergence The Tsallis-α divergence, named after Tsallis (1988) but previously stud-
ied by Havrda and Charvát (1967) and Daróczy (1970), provides a different generalization of
kl:

tα(P‖Q) B
1

α − 1

(∫
p(x)αq(x)1−α dx − 1

)
.

Again, limα→1 tα(P‖Q) = kl(P‖Q), and of course tα = 1
α−1

(
Dα−1,1−α(P‖Q) − 1

)
. Because of

its close relation to rα, we will not use it further.

Hellinger distance The square of the Hellinger distance h is defined as

h2(P,Q) B 1
2

∫ (√
p(x) −

√
q(x)

)2
dx = 1 −

∫ √
p(x) q(x) dx.

h2 can be expressed as an f -divergence with either t 7→ 1
2 (
√

t − 1)2 or t 7→ 1 −
√

t; it is also
closely related to an α-β divergence as h2(P,Q) = 1 − D−1/2,1/2. h is a metric, and is bounded
in [0, 1]. It is proportional to the L2 difference between √p and √q, which yields the bounds
h2(P,Q) ≤ tv(P,Q) ≤

√
2 h(P,Q).

8

χ2 divergence There are many distinct definitions of the χ2 divergence. We do not directly use
any in this thesis, but the most common versions are:

χ2
P(P‖Q) :=

∫ (
p(x)
q(x) − 1

)2
q(x) dx =

∫ (p(x) − q(x))2
q(x) dx =

∫
p(x)2
q(x) dx − 1

χ2
N (P‖Q) :=

∫ (p(x) − q(x))2
p(x) dx =

∫
q(x)2
p(x) dx − 1

χ2
S(P,Q) :=

1
2

∫ (p(x) − q(x))2
p(x) + q(x) dx

χ2
A(P,Q) := 2

(
1 −

∫
p(x) q(x)

p(x) + q(x) dx
)
.

χ2
P(P‖Q) is an f -divergence using either t 7→ (t − 1)2 or t 7→ t2 − 1, used e.g. by Liese and Vajda

(2006); it is sometimes called the Pearson divergence or similar, and is often used in hypothesis
testing of multinomial data. χ2

N (P‖Q), termed the Neyman divergence e.g. by Cressie and Read
(1984), is its dual: χ2

N (P‖Q) = χ2
P(Q‖P). Neither is commonly used in learning on distributions.

χ2
S(P,Q) is a symmetric variant of these distances; its use on discrete distributions, especially

histograms, is common in computer vision (Puzicha et al. 1997; Zhang et al. 2006).
Vedaldi and Zisserman (2012) use the kernel kχ2(P,Q) := 2

∫ p(x) q(x)
p(x)+q(x) dx, sometimes called

the additive χ2 kernel (e.g. by Grisel et al. 2016), which corresponds to the distance χ2
A. Despite

a claim to the contrary by Vedaldi and Zisserman (2012), it is not equal to χ2
S .

Earth mover’s distance The earth mover’s distance (emdρ) is defined for a metric ρ as

emdρ(P,Q) B inf
R∈Γ(P,Q)

E(X,Y)∼R [ρ(X,Y)] , (2.1)

where Γ(P,Q) is the set of joint distributions with marginals P and Q. It is also called the first
Wasserstein distance, or the Mallows distance. When (X, ρ) is separable (in the topological
sense), it is also equal to the Kantorovich metric, which is the ipm with F = { f : ‖ f ‖L ≤ 1},
where ‖ f ‖L B sup {| f (x) − f (y)|/ρ(x, y) | x , y ∈ X} is the Lipschitz semi-norm. Edwards
(2011) gives some historical details and proves the equality in a more general setting.

For discrete distributions, emd can be computed via linear programming, and is popular in
the computer vision community (e.g. Rubner et al. 2000; Zhang et al. 2006).

Cuturi (2013) proposes a distance called the Sinkhorn distance, which replaces Γ(P,Q) in
(2.1) with a constraint that the kl divergence of the distribution from the independent be less
than some parameter α. This both allows for much faster computation of the distance on discrete
distributions and, in certain problems, yields learning models that outperform those based on the
full emd.

Maximum mean discrepancy The maximum mean discrepancy, called the mmd (Sriperum-
budur, Gretton, et al. 2010; Gretton, Borgwardt, et al. 2012) is defined by embedding distributions
into a reproducing kernel Hilbert space (rkhs; for a detailed overview see Berlinet and Thomas-
Agnan 2004). Let κ be the kernel associated with some rkhs H with feature map ϕ : X → H,

9

also denoted ϕ(x) = κ(x, ·), such that 〈ϕ(x), ϕ(y)〉H = κ(x, y). We can then map a distribution P
to its mean embedding µH(P) B EX∼P [ϕ(X)], and define the distance between distributions as
the distance between their mean embeddings:

mmdκ(P,Q) B ‖µH(P) − µH(Q)‖H .

mmdκ can also be viewed as an ipm with F = { f ∈ H | ‖ f ‖H ≤ 1}, where ‖ f ‖H is the
norm in H. (If f ∈ H, f (·) = ∑∞

i=1 αiκ(xi, ·) for some points xi ∈ X and weights αi ∈ R;
‖ f ‖2H =

∑
i, j αiα j k(xi, x j).) In fact, the function f achieving the supremum is known as the

witness function, and is achieved by f = µP − µQ.
The mean embedding always exists when the base kernel κ is bounded, in which case mmdκ

is a pseudometric; full metricity requires a characteristic κ. See Sriperumbudur, Gretton, et al.
(2010) and Gretton, Borgwardt, et al. (2012) for details.

Szabó et al. (2015) proved learning-theoretic bounds on the use of ridge regression with mmd.

2.2 Estimators of distributional distances
We now discuss methods for estimating different distributional distances ρ.

The most obvious estimator of most distributional distances is perhaps the plug-in approach:
first perform density estimation, and then compute distances between the density estimates. These
approaches suffer from the problem that the density is in some sense a nuisance parameter for
the problem of distance estimation, and density estimation is quite difficult, particularly in higher
dimensions.

Some of the methods below are plug-in methods; others correct a plug-in estimate, or use
inconsistent density estimates in such a way that the overall divergence estimate is consistent.

Parametric models Closed forms of some distances are available for certain distributions:
• For members of the same exponential family, closed forms of the Bhattacharyya kernel
(corresponding to Hellinger distance) and certain other kernels of the form Dα−1,α were
computed by Jebara et al. (2004). Nielsen and Nock (2011) give closed forms for all
Dα−1,1−α, allowing the computation of rα, tα, and related divergences, as well as the kl
divergence via limα→1 Dα−1,1−α.

• For Gaussian distributions, Muandet, Schölkopf, et al. (2012) compute the closed form of
mmd for a few base kernels. Sutherland (2015) also conjectures a form for the Euclidean
emd and gives bounds.

• Formixture distributions, L2 andmmd can be computed based on the inner products between
the components by simple linearity arguments. For mixtures specifically of Gaussians, F.
Wang et al. (2009) obtain the quadratic (r2) entropy, which allows the computation of
Jensen-Rényi divergences for α = 2.

For cases when a closed form does not exist, numerical integration may be necessary, often
obviating the computational advantages of this approach.

It is thus possible to fit a parametric model to each distribution and compute distances between
the fits; this is done for machine learning applications e.g. by Jebara et al. (2004) and Moreno

10

0.00 0.25 0.50 0.75 1.00
0

1

2

3

4

p(x)

q(x)

(a) The example densities being considered.

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

TV

0.0 0.2 0.4 0.6 0.8 1.0
0
2
4
6
8
10

L2

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

H

0.0 0.2 0.4 0.6 0.8 1.0
0
2
4
6
8
10
12
14
16

SKL

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

JS

0.0 0.2 0.4 0.6 0.8 1.0

−400
−200

0
200
400

MMD (Gaussian kernel; bandwidth¾)

¾=0: 1

¾=0: 25

¾=1

(b) The functions being integrated for someof the distances. For example, the tv image shows 1
2 |p(x)−q(x)|.

Figure 2.1: An illustration of some of the distributional distances considered here.

11

et al. (2004). In practice, however, we rarely know that a given parametric family is appropriate,
and so the use of parametric models introduces unavoidable approximation error and bias.

Histograms One common method for representing distributions is the use of histograms; many
distances ρ are then simple to compute, typically in O(m) time for m-bin histograms. The
prominent exception to that is emd, which requires O(m3 log m) time for exact computation (e.g.
Rubner et al. 2000), though in some settings O(m) approximations are available (Shirdhonkar
and Jacobs 2008) and as previously mentioned, the related Sinkhorn distance can be computed
quite quickly (Cuturi 2013). mmd also requires approximately O(m2) computation for typical
histograms.

The main disadvantages of histograms are their poor performance in even moderate dimen-
sions, and the fact that (for most ρs) choosing the right bin size is both quite important and quite
difficult, since nearby bins do not affect one another. Histogram density estimators also give
non-optimal rates for density estimation (Wasserman 2006), and provide technical difficulties in
establishing consistent estimation as bin sizes decrease (Gretton and Györfi 2010).

Vector quantization An improvement over standard histograms, popular in computer vision,
is to instead quantize distributions to group points by their nearest codeword from a dictionary,
often learned via k-means or a similar algorithm. This method is known as the bag of words (bow)
approach and was popularized by Leung and Malik (2001). This method empirically scales to
much higher dimensions than the histogram approach, but suffers from similar problems related
to the hard assignment of sample points to bins.

Grauman and Darrell (2007) use multiple resolutions of histograms to compute distances,
helping somewhat with the issue of choosing bin sizes.

Kernel density estimation Perhaps the most popular form of general-purpose nonparametric
density estimation is kernel density estimation (kde). kde results in a mixture distribution, which
allow O(n2) exact computation of plug-in mmd and L2 for certain density kernels. Selection of
the proper bandwidth, however, is a significant issue.

Singh and Póczos (2014) show exponential concentration for a particular plug-in estimator
for a broad class of functionals including Lp, Dα,β, and f -divergences as well as js, though
they do not discuss computational issues of the estimator, which in general requires numerical
integration.

Krishnamurthy et al. (2014) correct a plug-in estimator for L2 and rα divergences by estimating
higher order terms in the vonMises expansion; one of their estimators is computationally attractive
and optimal for smooth distributions, while another is optimal for a broader range of distributions
but requires numerical integration.

k-nn density estimator The k-nn density estimator provides the basis for another family of
estimators. These estimators require k-nearest neighbor distances within and between the sample
sets. Much research has been put into data structures for efficient approximate nearest neighbor
computation (e.g. Beygelzimer et al. 2006; Muja and Lowe 2009; Andoni and Razenshteyn 2015;
Naidan et al. 2015), though in high dimensions the problem is quite difficult and brute-force

12

pairwise computation may be the most efficient method. Plug-in methods require k to grow
with sample size for consistency, typically at a rate around

√
n, which makes computation more

difficult.
Q. Wang et al. (2009) give a simple, consistent k-nn kl divergence estimator. Póczos and

Schneider (2011) give a similar estimator for Dα−1,1−α and show consistency; Póczos, Xiong,
Sutherland, et al. (2012) generalize to Dα,β. This family of estimators is consistent with a fixed
k, though convergence rates are not known.

Moon and Hero (2014a,b) propose an f -divergence estimator based on ensembles of plug-
in estimators, and show the distribution is asymptotically Gaussian. (Their estimator requires
neither convex f nor f (1) = 0.)

Mean map estimators A natural estimator of 〈µH(P), µH(Q)〉H is simply the mean of the
pairwise kernel evaluations between the two sets, 1

nm
∑n

i=1
∑m

j=1 κ(Xi,Yj); this is the inner prod-
uct between embeddings of the empirical distributions of the two samples. The estimator
1
n
∑n

i=1 κ(Xi,Yi) allows use in the streaming setting. We can then estimate mmd via ‖x − y‖2 =
〈x, x〉 + 〈y, y〉 − 2〈x, y〉 (Gretton, Borgwardt, et al. 2012). Section 6.1 gives much more detailed
on variations of these estimators of mmd.

Muandet, Fukumizu, et al. (2014) proposed biasing the estimator of mmd to obtain smaller
variance via the idea of Stein shrinkage (1956). Ramdas and Wehbe (2015) showed the efficacy
of this approach for independence testing.

Other approaches Nguyen et al. (2010) provide an estimator for f -divergences (requiring
convex f but not f (1) = 0) by solving a convex program. When an rkhs structure is imposed, it
requires solving a general convex program with dimensionality equal to the number of samples,
so the estimator is quite computationally expensive.

Sriperumbudur et al. (2012) estimate the L1-emd via a linear program.
K. Yang et al. (2014) estimate f - and rα divergences by adaptively partitioning both distribu-

tions simultaneously. Their Bayesian approach requires mcmc and is computationally expensive,
though it does provide a posterior over the divergence value which can be useful in some settings.

2.3 Kernels on distributions

Weconsider twomethods for defining kernels based on distributional distances ρ. Proposition 1 of
Haasdonk and Bahlmann (2004) shows that both methods always create positive definite kernels
iff ρ is isometric to an L2 norm, i.e. there exist a Hilbert space H and a mapping Φ : X → H
such that ρ(P,Q) = ‖Φ(P) − Φ(Q)‖. Such metrics are also called Hilbertian.1

For distances that do not satisfy this property, we will instead construct an indefinite kernel
as below and then “correct” it, as discussed in Section 2.4.1.

1Note that if ρ is Hilbertian, Proposition 1 (ii) of Haasdonk and Bahlmann (2004) shows that−ρ2β is conditionally
positive definite for any 0 ≤ β ≤ 1; by a classic result of Schoenberg (1938), this implies that ρβ is also Hilbertian.
We will use this fact later.

13

The first method is to create a “linear kernel” k such that ρ2(P,Q) = k(P, P) + k(Q,Q) −
2k(P,Q), so that the rkhs with inner product k has metric ρ. Note that, while distances are
translation-invariant, inner products are not; we must thus first choose some origin B. Then

k(B)lin (P,Q) B
1
2

(
ρ2(P, B) + ρ2(Q, B) − ρ2(P,Q)

)
(2.2)

is a valid kernel for any B iff ρ is Hilbertian. If ρ is defined for the zero measure, it is often most
natural to use that as the origin; in the cases it is used below, it is easy to verify that k0

lin is a valid
kernel inducing the relevant distance despite issues of whether ρ(P, 0) is defined.

We can also use ρ in a generalized rbf kernel: for a bandwidth parameter σ > 0,

k(σ)rbf(x, y) B exp
(
− 1

2σ2 ρ
2(p, q)

)
. (2.3)

The L2 distance is clearly Hilbertian; k(0)lin (P,Q) =
∫

p(x)q(x) dx.
Fuglede (2005) shows that

√
tv, h, and

√
js are Hilbertian.2

• For
√

tv, k(0)lin (P,Q) =
1
2 (1 − tv(P,Q)) since tv(P, 0) = 1

2 ‖P‖1 =
1
2 .

• For h, k(0)lin (P,Q) = 1 − 1
2 h2(P,Q) = 1

2 +
∫ √

p(x) q(x)dx, but the halved Bhattacharyya
affinity k(P,Q) = 1

2

∫ √
p(x) q(x)dx is more natural.

• For
√

js, k(O)lin (P,Q) =
1
2

(
H

[P+O
2

]
+ H

[
Q+O

2

]
− H

[
P+Q

2

]
− H[O]

)
.

Topsøe (2000) shows that χS is Hilbertian; k(0)lin (P,Q) = 1 − 1
2 χ

2
S(P,Q). The computer vision

community sometimes uses as a kernel simply −χ2
S(P,Q), which is only conditionally positive

definite Zhang et al. (2006). χA is also Hilbertian, as shown by Vedaldi and Zisserman (2012)
using the result of Fuglede (2005).

Gardner et al. (2015) show that emd is Hilbertian for the unusual choice of ground metric
ρ(x, y) = 1(x , y). emd is probably not Hilbertian in most cases for Euclidean base distance:
Naor and Schechtman (2007) prove that Euclidean emd on distributions supported on a grid in
R2 does not embed in L1, which since L2 embeds into L1 (Bretagnolle et al. 1966) means that
emd on that grid does not embed in L2. It is thus extremely likely that this also implies L2-emd
on continuous distributions over Rd for d ≥ 2 is not Hilbertian. The most common kernel based
on emd, however, is actually exp (−γ emd(P,Q)). Whether that kernel is positive definite seems
to remain an open question, defined by whether

√
emd is Hilbertian; studies that have used it in

practice have not reported finding any instance of an indefinite kernel matrix (Zhang et al. 2006).
The mmd is Hilbertian by definition. The natural associated linear kernel is k(0)lin (P,Q) =

〈µH(P), µH(Q)〉H , which we term the mean map kernel (mmk).

2.4 Kernels on sample sets
As discussed previously, in practice we rarely directly observe a probability distribution; rather,
we observe samples from those distributions. We will instead construct a kernel on sample sets,

2See his Theorem 2. For
√

tv, use K∞,1; for h, use K
1, 1

2
. For

√
js, differentiate Kp,1 around p = 1, following the

note after the theorem.

14

based on an estimate of a kernel on distributions using an estimate of the base distance ρ.
We wish to estimate a kernel on N distributions {P(i)}Ni=1 based on an iid sample from each

distribution {X (i)}Ni=1, where X (i) = {X (i)j }
ni
j=1, X (i)j ∈ R

d . Given an estimator ρ̂(X (i), X (j)) of
ρ(P(i), P(j)), we estimate k(Pi, Pj) with k̂(X (i), X (j)) by substituting ρ̂(X (i), X (j)) for ρ(P(i), P(j)) in
(2.2) or (2.3). We thus obtain an estimate K̂ of the true kernel matrix K , where K̂i, j = k̂(X (i), X (j)).

2.4.1 Handling indefinite kernel matrices
Section 2.3 established that K is positive semidefinite for many distributional distances ρ, but for
some, particularly skl and srα, K is indefinite. Even if K is psd, however, depending on the form
of the estimator K̂ is likely to be indefinite.

In this case, formany downstream learning taskswemustmodify K̂ to be positive semidefinite.
Chen et al. (2009) study this setting, presenting four methods to make K̂ psd:

• Spectrum clip: Set any negative eigenvalues in the spectrum of K̂ to zero. This yields the
nearest psd matrix to K̂ in Frobenius norm, and corresponds to the view where negative
eigenvalues are simply noise.

• Spectrum flip: Replace any negative eigenvalues in the spectrum with their absolute value.
• Spectrum shift: Increase each eigenvalue in the spectrum by the magnitude of the smallest
eigenvalue, by taking K̂ + |λmin |I. When |λmin | is small, this is computationally simpler – it
is easier to find λmin than to find all negative eigenvalues, and requires modifying only the
diagonal elements — but can change K̂ more drastically.

• Spectrum square: Square the eigenvalues, by using K̂K̂T . This is equivalent to using the
kernel estimates as features.

We denote this operation by Π.
When test values are available at training time, i.e. in a transductive setting, it is best to

perform these operations on the full kernel matrix containing both training and test points: that

is, to use Π
([

K̂train K̂train,test
K̂test,train K̂test

])
. (Note that K̂test is not actually used by e.g. an svm.) If the

changes are performed only on the training matrix, i.e. using

[
Π

(
K̂train

)
K̂train,test

K̂test,train K̂test

]
, which is

necessary in the typical inductive setting, the resulting full kernel matrix may not be psd, and the
kernel estimates may be treated inconsistently between training and test points. This is more of
an issue for a truly-indefinite kernel, e.g. one based on kl or rα, where the changes due to Π may
be larger.

When the test values are not available, Chen et al. (2009) propose a heuristic to account for
the effect of Π: for spectrum clip and flip, they find the linear transformation which maps K̂train
to Π(K̂train), based on the eigendecomposition of K̂train, and apply it to K̂test,train. That is, they
find the P such that Π(K̂train) = PK̂train as follows: let the eigendecomposition of K̂train be UΛUT,
with eigenvalues denoted λ1, . . . , λN . Then P is UMUT, with M defined as:

Mflip := diag(sign(λ1), . . . , sign(λN)) (2.4)
Mclip := diag(1(λ1 ≥ 0), . . . , 1(λN ≥ 0)).

15

For spectrum shift, no such linear transform is available, but it is easy to account for the effect of
Π: simply add |λmin |I to K̂test as well.

In general, we find that the transductive method is better than the heuristic approach, which
is better than ignoring the problem, but the size of these gaps is problem-specific: for some
problems, the gap is substantial, but for others it matters little.

When performing bandwidth selection for a generalized Gaussian rbf kernel, this approach
requires separately eigendecomposing each K̂train. Xiong (2013, Chapter 6) considers a differ-
ent solution: rank-penalized metric multidimensional scaling according to ρ̂, so that standard
Gaussian rbf kernels may be applied to the embedded points. That work does not consider
the inductive setting, though an approach similar to that of Bengio et al. (2004) is likely to be
applicable.

2.4.2 Nyström approximation

When N is large, computing and operating on the full N×N kernel matrix can be quite expensive:
many kernel entries must be computed and stored (or else re-computed, at significant cost per
entry), and many learning techniques as well as the techniques to account for indefiniteness in
the kernel estimate require O(N3) work.

One method for approaching this problem is the Nyström extension (Williams and Seeger
2000). In this method, we somehow pick m < N anchor points, perhaps by uniform random
sampling or by approximate leverage scores (El Alaoui and Mahoney 2015). Reordering the

kernel matrix so that these m points come first, let the kernel matrix be
[

A B
BT C

]
, where A is the

m × m kernel matrix of the anchor points, B is the m × (N − m) matrix of kernel values from the
anchor points to all other points, and C is the (N − m) × (N − m) matrix of kernel values among
the other points. We fully evaluate A and B, but leave C unevaluated; our goal is to approximate
it assuming that the matrix is low-rank.

Standard Nyström The Nyström method does so by assuming that K is of rank m, and usingΛ
as the eigenvalues for K , while approximating the N −m unknown eigenvectors by BTUΛ†, where
Λ† denotes the Moore-Penrose pseudoinverse of Λ. (Here, Λ is diagonal, so the pseudoinverse
coincides with the standard inverse except if any eigenvalues are zero.) Thus our approximation
of K is

Ū :=
[

U
BTUΛ†

]
K̃ := ŪΛŪT

=

[
UΛUT UΛΛ†UTB

BTUΛ†ΛUT BTUΛ†ΛΛ†UTB

]
=

[
A AA†B

BT A†A BT A†B

]
.

16

When A is nonsingular, AA† = I and so the m × (N − m) portions of the kernel matrix are
unchanged. Otherwise,

AA† = UΛUTUΛ†UT = U diag(1(λ1 , 0), . . . , 1(λm , 0))UT

and so B is projected onto the image of A.

Explicit m-dimensional embeddings for the training points are then available as ŪΛ
1
2 , which

can then be used in training models; new points can be embedded in the same m-dimensional
space comparably. For a recent theoretical analysis of the effect of this approximation on kernel
ridge regression, see Rudi et al. (2015).

Indefinite Nyström via svd When A is indefinite, we need to combine the Nyström approach
with some type of projection to the psd cone, as in Section 2.4.1. Belongie et al. (2002) give an
analagous method for doing so, which we present here:

Let the singular value decomposition of A be UsvdΛsvdVT
svd. Let Ūsvd :=

[
Usvd

BTUsvdΛ
†
svd

]
, and

the Nyström reconstruction be

K̃svd := ŪsvdΛsvdŪT
svd

=

[
UsvdΛsvdUT

svd UsvdΛsvdΛ
†
svdUT

svdB
BTUsvdΛ

†
svdΛsvdUT BTUsvdΛ

†
svdΛsvdΛ

†
svdUT

svdB

]
To understand this approximation, define Aflip := U abs(Λ)UT, where abs denotes taking the
elementwise absolute value: this is the “spectrum flip” method of Chen et al. (2009). Then,
we have that UsvdΛsvdUT

svd = Aflip. First, AAT = UsvdΛ
2
svdUT

svd, so (as singular values are
nonnegative) its matrix square root is just UsvdΛsvdUT

svd. We also have that AAT = UΛ2UT, so
its matrix square root can also be written U abs(Λ)UT = Aflip. Because the principal square root
of the psd matrix AAT is unique, UsvdΛsvdUT

svd = Aflip. Thus

K̃svd =

[
Aflip Aflip A†flipB

BT A†flip Aflip BT A†flipB

]
. (2.5)

Explicit m-dimensional features are again available as ŪsvdΛ
1
2
svd.

As long as A is nonsingular, Aflip is positive definite, and the m × (N − m) evaluations are
unaffected. Again, if A is singular then B is projected onto the image of Aflip.

Consistent indefinite Nyström The last approach corresponds to, given A and B, taking the
Nyström approximation with Aflip and an unmodified B. But not modifying B to account for the
psd transformation means that, if a point from the m inducing points were repeated in the N − m
other points, it would be treated inconsistently. We could assuage this problem with the heuristic
linear transform of Chen et al. (2009) by performing the Nyström approximation based on Aflip
and PflipB = UMflipUTB, where Mflip was defined in (2.4), rather than Aflip and an unmodified B.

17

This gives a reconstruction of

Ūflip :=

[
U

(PflipB)TUΛ†flip

]
=

[
U

BTUMflipUTUΛ†flip

]
=

[
U

BTUΛ†

]
K̃flip := ŪflipΛflipŪT

flip

=

[
UΛflipUT UΛflipΛ

†UTB
BTUΛ†ΛflipU BTUΛ†ΛflipΛ

†UTB

]
=

[
Aflip P′flipB

BTP′flip BT A†flipB

]
,

where P′flip = U diag (sign(λ1), . . . , sign(λm))UT, which is the same as Pflip except with directions
corresponding to zero eigenvalues zeroed out. Compared to the Aflip AT

flip used in the equivalent
place in (2.5), this flips directions corresponding to negative eigenvalues in A. The m×m known
kernel values and (N − m) × (N − m) unknown kernel values are the same as in (2.5).

We can also use Aclip and PclipB to produce a similar K̃clip.
A full experimental evaluation of these approaches to Nyström extension of indefinite kernels

is an area for future work.

18

Chapter 3

Approximate kernel embeddings via ran-
dom Fourier features

As discussed in Section 2.4.2, the kernel methods of Chapter 2 share a common drawback:
solving learning problems with N distributions typically requires computing all or most of the
N×N kernel matrix. Further, many of the methods of Section 2.4.1 to deal with indefinite kernels
require eigendecompositions, often requiring O(N3) work. For large N , this quickly becomes
impractical.

Section 2.4.2 gave one approach for countering this problem. Rahimi and Recht (2007)
spurred recent interest in another method: approximate embeddings z : X → RD such that
k(x, y) ≈ z(x)Tz(y). Learning primal models in RD using the z features can then usually be
accomplished in time linear in n, with the models on z approximating the models on k.

This chapter reviews the method of Rahimi and Recht (2007), providing some additional
theoretical understanding to the original analyses. Chapter 4 will apply these techniques to the
distributional setting.

3.1 Setup

Rahimi and Recht (2007) considered continuous shift-invariant kernels on Rd , i.e. those that can
be written k(x, y) = k(∆), where we will use ∆ B x − y throughout. In this case, Bochner’s
theorem (1959) guarantees that the Fourier transform of k will be a nonnegative finite measure
on Rd , which can be easily normalized to a probability distribution. Thus if we define

z̃(x) :=
√

2
D

[
sin(ωT

1 x) cos(ωT
1 x) . . . sin(ωT

D/2x) cos(ωT
D/2x)

]T
, {ωi}D/2i=1 ∼ Ω

D/2 (3.1)

and let s̃(x, y) B z̃(x)T z̃(y), we have that

s̃(x, y) = 2
D

D/2∑
i=1

sin(ωT
i x) sin(ωT

i y) + cos(ωT
i x) cos(ωT

i y) =
1

D/2

D/2∑
i=1

cos(ωT
i ∆).

Noting that E cos(ωT∆) =
∫
<eω

T∆idΩ(ω) = <k(∆), where< denotes the real part, we therefore
have E s̃(x, y) = k(x, y).

19

k is the characteristic function ofΩ, and s̃ the empirical characteristic function corresponding
to the samples {ωi}.

Rahimi and Recht (2007) also alternatively proposed

z̆(x) :=
√

2
D

[
cos(ωT

1 x + b1) . . . cos(ωT
D x + bD)

]T (3.2)

{ωi}Di=1 ∼ Ω
D, {bi}Di=1

iid∼ UnifD
[0,2π] .

Letting s̆(x, y) B z̆(x)T z̆(y), we have

s̆(x, y) = 1
D

D∑
i=1

cos(ωT
i x + bi) cos(ωT

i y + bi) =
1
D

D∑
i=1

cos(ωT
i (x − y)) + cos(ωT

i (x + y) + 2bi).

Let t B x + y throughout. Since E cos(ωTt + 2b) = Eω
[
Eb cos(ωTt + 2b)

]
= 0, we also have

E s̆(x, y) = k(x, y).
Thus, in expectation, both z̃ and z̆ work; they are each the average of bounded, independent

terms with the correct mean. For a given embedding dimension D, z̃ is the average of D
2 terms

and z̆ is of D, but each component of z̃ has lower variance; which embedding is superior is,
therefore, not immediately obvious.

The academic literature seems split on the issue. In Sutherland and Schneider (2015), we
examined the first 100 papers citing Rahimi and Recht (2007) in a Google Scholar search: 15 used
either z̃ or the equivalent complex formulation, 14 used z̆, 28 did not specify, and the remainder
merely cited the paper without using the embedding. (None discussed that there was a choice
between the two.) Not included in that count are Rahimi and Recht’s later work (2008a,b), which
used z̆; indeed, post-publication revisions of the original paper discuss only z̆. Practically, the
three implementations of which we are aware each use z̆: scikit-learn (Grisel et al. 2016), Shogun
(Sonnenburg et al. 2010), and JSAT (Raff 2011-16).

We will show that z̃ is strictly superior for the popular Gaussian kernel, among others. We
will also improve the uniform convergence bounds of Rahimi and Recht (2007).

3.2 Reconstruction variance
We can in fact directly find the covariance of the reconstructions:

Cov
(
s̃(∆), s̃(∆′)

)
=

2
D

Cov
(
cos(ωT

∆), cos(ωT
∆
′)
)

=
1
D

[
E

[
cos

(
ωT(∆ − ∆′)

)
+ cos

(
ωT(∆ + ∆′)

)]
− 2E

[
cos

(
ωT
∆

)]
E

[
cos

(
ωT
∆
′
)]]

=
1
D

[
k(∆ − ∆′) + k(∆ + ∆′) − 2k(∆)k(∆′)

]
, (3.3)

so that
Var s̃(∆) = 1

D
[
1 + k(2∆) − 2k(∆)2

]
. (3.4)

20

Similarly,

Cov (s̆(x, y), s̆(x′, y′)) = 1
D

Cov
(
cos(ωT

∆) + cos(ωTt + 2b), cos(ωT
∆
′) + cos(ωTt′ + 2b)

)
=

1
D

[
Cov

(
cos(ωT

∆), cos(ωT
∆
′)
)
+ Cov

(
cos(ωTt + 2b), cos(ωTt′ + 2b)

)
+Cov

(
cos(ωT

∆), cos(ωTt′ + 2b)
)

︸ ︷︷ ︸
0

+Cov
(
cos(ωTt + 2b), cos(ωT

∆
′)
)

︸ ︷︷ ︸
0


=

1
D

[1
2 k(∆ − ∆′) + 1

2 k(∆ + ∆′) − k(∆)k(∆′)

+1
2 E cos(ωT(t + t′) + 4b) + 1

2 E cos(ωT(t − t′))
]

=
1
D

[1
2 k(∆ − ∆′) + 1

2 k(∆ + ∆′) − k(∆)k(∆′) + 1
2 k(t − t′)

]
, (3.5)

and so
Var s̆(x, y) = 1

D
[
1 + 1

2 k(2∆) − k(∆)2
]
. (3.6)

Thus s̃ has lower variance than s̆ when k(2∆) < 2k(∆)2.
Definition 3.1. A continuous, shift-invariant positive-definite kernel function k(x, y) = k(∆) with
k(0) = 1 is pixie when k(2∆) ≤ 2k(∆)2 for all ∆.

Note that the condition always holds when k(∆) ≥ 1√
2
, since positive-definiteness and k(0) = 1

require k(·) ≤ 1. It also trivially holds for k(2∆) ≤ 0. Once k reaches 1√
2
in a particular direction,

it then essentially must decay at least exponentially.1
Proposition 3.2 (Exponentiated norms). Kernels of the form k(∆) = exp(−γ‖∆‖β) for any norm
‖·‖ and scalars γ > 0, β ≥ 1 are pixie.

Proof. Following a simple calculation:

2k(∆)2 − k(2∆) = 2 exp
(
−γ‖∆‖β

)2
− exp

(
−γ‖2∆‖β

)
= 2 exp

(
−2γ‖∆‖β

)
− exp

(
−2βγ‖∆‖β

)
≥ 2 exp

(
−2γ‖∆‖β

)
− exp

(
−2γ‖∆‖β

)
= exp

(
−2γ‖∆‖β

)
> 0. �

For example, the Gaussian kernel uses ‖·‖2 and β = 2, and the Laplacian kernel uses ‖·‖1
and β = 1. The variance per dimension of embeddings for the Gaussian kernel are illustrated in
Figure 3.1.
Proposition 3.3 (Matérn kernels). Define the Matérn kernel with parameters ν > 0 and ` > 0 as

kν,`(∆) :=
21−ν

Γ(ν)

(√
2ν‖∆‖
`

)ν
Kν

(√
2ν‖∆‖
`

)
,

1This leads to the obscure name: such functions can have a “decreasing base” to their exponent, which might
remind one of the song “Debaser” by the Pixies.

21

DVars
˜
(Δ)

DVars
˘
(Δ)

k(Δ)

0.5 1.0 1.5 2.0 2.5 3.0
||Δ || /σ

0.2

0.4

0.6

0.8

1.0

Figure 3.1: The variance per dimension of s̃ (blue) and s̆ (orange) for the Gaussian kernel (green).

where Kν is a modified Bessel function of the second kind. kν,` is pixie for all ν ≥ 1
2 .

Proof. This proof is due to SKBMoore (2016). First, note that it is trivially true for ∆ = 0. Then
define x :=

√
2ν‖∆‖/`. We will actually show the stricter inequality k(2∆) < k(∆)2, which is

equivalent to saying that for all x > 0:

21−ν

Γ(ν) (2x)ν Kν (2x) ≤ 22−2ν

Γ2(ν)
x2νK2

ν (x) ,

i.e.
Kν (2x) ≤ 21−2ν

Γ(ν) xνK2
ν (x) .

We will need several identities about Bessel functions. These all hold for any x > 0:

K2
ν (x) =

1
2

∫ ∞

0

1
t

e−
t
2−

x2
t Kν

(
x2

t

)
dt all ν; (DLMF, (10.32.18) with z = ξ = x) (3.7)

Kν(x) > 2ν−1
Γ(ν)e−x x−ν ν ≥ 1

2 ; (Ismail 1990, (1.4)) (3.8)

Kν(2x) = 1
2

xν
∫ ∞

0

1
tν+1 e−t− x2

t dt all ν; (DLMF, (10.32.10) with z = 2x) (3.9)

K−ν(x) = Kν(x) all ν; (DLMF, (10.27.3)) (3.10)

Note that Ismail (1990) shows (3.8) only for ν > 1
2 , but it holds for ν =

1
2 as well by a trivial

calculation, since K1/2(x) =
√

π
2x e−x (DLMF, (10.39.2)).

We have:

21−2ν

Γ(ν) xνK 2
ν (x) =

21−2ν

Γ(ν) xν
1
2

∫ ∞

0

1
t

e−
t
2−

x2
t Kν

(
x2

t

)
dt︸ ︷︷ ︸

(3.7)

22

>
21−2ν

Γ(ν) xν
1
2

∫ ∞

0

1
t

e−
t
2−

x2
t 2ν−1

Γ(ν)e− x2
t

(
x2

t

)−ν
︸ ︷︷ ︸

(3.8)

dt

= 2−ν
1
2

x−ν
∫ ∞

0

1
t−ν+1 e−

t
2−

2x2
t dt

=
1
2

x−ν
∫ ∞

0

1
u−ν+1 e−u− x2

u du︸ ︷︷ ︸
changing variables to u := 1

2 t

= K−ν(2x)︸ ︷︷ ︸
(3.9)

= Kν(2x)︸ ︷︷ ︸
(3.10)

.

Note that (3.8) does not hold for ν < 1
2 , and in fact the Matérn kernel is not pixie for such ν. �

3.3 Convergence bounds

Let f̃ (x, y) B s̃(x, y) − k(x, y), and f̆ (x, y) B s̆(x, y) − k(x, y). We know that E f (x, y) = 0 and
have a closed form for Var f (x, y), but to better understand the error behavior across inputs, we
wish to bound ‖ f ‖ for various norms.

3.3.1 L2 bound

If µ is a finite measure on X × X (µ(X2) < ∞), the L2(X2, µ) norm of f is

‖ f ‖2µ B
∫
X2

f (x, y)2 dµ(x, y). (3.11)

Proposition 3.4. Let k be a continuous shift-invariant positive-definite function k(x, y) = k(∆)
defined on X ⊆ Rd , with k(0) = 1. Let µ be a finite measure on X2, and define ‖·‖2µ as in (3.11).
Define z̃ as in (3.1) and let f̃ (x, y) := z̃(x)T z̃(y) − k(x, y). Then

(i) The expected squared L2 norm of the error is

E‖ f̃ ‖2µ =
1
D

∫
X2

[
1 + k(2x, 2y) − 2k(x, y)2

]
dµ(x, y).

(ii) The L2 norm of the error concentrates around its expectation at least exponentially:

Pr
(��‖ f̃ ‖2µ − E‖ f̃ ‖2µ

�� ≥ ε) ≤ 2 exp
(

−D3ε2

32(2D + 1)2µ(X2)2

)
≤ 2 exp

(
−Dε2

288µ(X2)2

)
.

Proposition 3.5. Let k, µ, and ‖·‖µ be as in Proposition 3.4. Define z̆ as in (3.2) and let
f̆ (x, y) = z̆(x)T z̆(y) − k(x, y). Then

23

(i) The expected squared L2 norm of the error is

E‖ f̆ ‖2µ =
1
D

∫
X2

[
1 +

1
2

k(2x, 2y) − k(x, y)2
]

dµ(x, y).

(ii) The L2 norm of the error concentrates around its expectation at least exponentially:

Pr
(��‖ f̆ ‖2µ − E‖ f̆ ‖2µ

�� ≥ ε) ≤ 2 exp
(

−D3ε2

128(3D + 2)2µ(X2)2

)
≤ 2 exp

(
−Dε2

3200µ(X2)2

)
.

The proofs for these propositions are simple applications of Tonelli’s theorem andMcDiarmid
bounds; full details are given in Appendices B.1 and B.2.

Thus for the kernels considered above, the expected L2(µ) error for z̃ is less than that of z̆; the
comparable concentration bound is also tighter. The second inequality is simpler, but somewhat
looser for D � 1; asymptotically, the coefficient of the denominator would be 128 for f̃ (instead
of 288) and 1152 for f̆ (instead of 3200).

Note that if µ = µX × µY is a joint distribution of independent random variables, then

E‖ f̃ ‖2µ =
1
D

[
1 + mmkk(µ2X, µ2Y) − 2 mmkk2(µX, µy)

]
E‖ f̆ ‖2µ =

1
D

[
1 + 1

2 mmkk(µ2X, µ2Y) − mmkk2(µX, µy)
]
.

Sriperumbudur and Szabó (2015, Corollary 2 and Theorem 3) subsequently bounded the
deviation of f in the Lr norm for any r ∈ [1,∞), but only for µ the Lebesgue measure. Let `
be the diameter of X and C be some (unspecified) universal constant. Then their bound for L2
amounts to, for ε large enough such that the term inside the parentheses is nonnegative,

Pr
(
‖ f̃ ‖L2(X) ≥ ε

)
≤ exp

©­­­«−
1
2

©­­«
2dΓ

(
d
2 + 1

)
πd/2`d

√
D
2
ε − C

ª®®¬
2ª®®®¬ .

This has the same asymptotic rate in terms of D and ε as our bound but, since µ(X2) = O(`2d),
has better dependence on `.

3.3.2 High-probability uniform bound

Claim 1 of Rahimi and Recht (2007) is that if X ⊂ Rd is compact with diameter `,2

Pr (‖ f ‖∞ ≥ ε) ≤ 256
(
σp`

ε

)2
exp

(
− Dε2

8(d + 2)

)
,

where σ2
p = E[ωTω] = tr∇2k(0) depends on the kernel.

It was not necessarily clear in that paper that the bound applies only to s̃ and not s̆; we can
also tighten some constants. We first state the tightened bound for z̃.

2Note our D is half that in Rahimi andRecht (2007), sincewewant to compare embeddings of the same dimension.

24

Proposition 3.6. Let k be a continuous shift-invariant positive-definite function k(x, y) = k(∆)
defined on X ⊂ Rd , with k(0) = 1 and such that ∇2k(0) exists. Suppose X is compact, with
diameter `. Denote k’s Fourier transform asΩ(ω), which will be a probability distribution due to
Bochner’s theorem; letσ2

p = Ep‖ω‖2. Let z̃ be as in (3.1), and define f̃ (x, y) := z̃(x)T z̃(y)−k(x, y).
For any ε > 0, let

αε := min

(
1, sup

x,y∈X

1
2
+

1
2

k(2x, 2y) − k(x, y)2 + 1
6ε

)
, βd :=

((
d
2

) −d
d+2
+

(
d
2

) 2
d+2

)
2

6d+2
d+2 .

Then

Pr
(
‖ f̃ ‖∞ ≥ ε

)
≤ βd

(
σp`

ε

) 2
1+ 2

d exp
(
− Dε2

8(d + 2)αε

)
≤ 66

(
σp`

ε

)2
exp

(
− Dε2

8(d + 2)

)
if ε ≤ σp`.

Thus, we can achieve an embedding with pointwise error no more than ε with probability at least
1 − δ as long as

D ≥ 8(d + 2)αε
ε2

[
2

1 + 2
d

log
σp`

ε
+ log

βd

δ

]
.

The proof strategy is very similar to that of Rahimi and Recht (2007): place an ε-net with
radius r over X∆ := {x − y : x, y ∈ X}, bound the error f̃ by ε/2 at the centers of the net by
Hoeffding’s inequality (1963), and bound the Lipschitz constant of f̃ , which is at most that of s̃,
by ε/(2r)withMarkov’s inequality. The introduction of αε is by replacing Hoeffding’s inequality
with that of S. Bernstein (1924) when it is tighter, using the variance from (3.4). The constant
βd is obtained by exactly optimizing the value of r , rather than the algebraically simpler value
originally used; β64 = 66 is its maximum, and limd→∞ βd = 64, though it is lower for small d, as
shown in Figure 3.2. The additional hypothesis, that ∇2k(0) exists, is equivalent to the existence
of the first two moments of P(ω); a finite first moment is used in the proof, and of course without
a finite second moment the bound is vacuous. The full proof is given in Appendix B.3.

For any pixie kernel, αε ≤ 1
2 +

1
6ε; the Bernstein bound is tighter at least when ε < 3. (Recall

that the maximal possible error is ε = 2, so it is essentially always preferable.) For the Gaussian
kernel of bandwidth σ, σ2

p = d/σ2.
For z̆, since the embedding s̆ is not shift-invariant, we must instead place the ε-net on X2.

The additional noise in s̆ also increases the expected Lipschitz constant and gives looser bounds
on each term in the sum, though there are twice as many such terms. The corresponding bound
is as follows:
Proposition 3.7. Let k, X, `, Ω(ω), and σp be as in Proposition 3.6. Define z̆ by (3.2), and
f̆ (x, y) := z̆(x)T z̆(y) − k(x, y). For any ε > 0, define

α′ε := min

(
1, sup

x,y∈X
1
4 +

1
8 k(2x, 2y) − 1

4 k(x, y)2 + 1
12ε

)
, β′d :=

(
d
−d
d+1 + d

1
d+1

)
2

5d+1
d+1 3

d
d+1 .

25

1 10 100 1000 104 105
d

20

40

60

80

100

Figure 3.2: The coefficient βd of Proposition 3.6 (blue, for z̃) and β′d of Proposition 3.7 (orange,
for z̆). Rahimi and Recht (2007) used a constant of 256 for z̃.

Then

Pr
(
‖ f̆ ‖∞ ≥ ε

)
≤ β′d

(
σp`

ε

) 2
1+ 1

d exp
(
− Dε2

32(d + 1)α′ε

)
≤ 98

(
σp`

ε

)2
exp

(
− Dε2

32(d + 1)

)
when ε ≤ σp`.

Thus, we can achieve an embedding with pointwise error no more than ε with probability at least
1 − δ as long as

D ≥ 32(d + 1)α′ε
ε2

[
2

1 + 1
d

log
σp`

ε
+ log

β′d
δ

]
.

β′48 = 98, and limd→∞ β′d = 96, also shown in Figure 3.2. The full proof is given in
Appendix B.4.

For any kernel, pixie or not, the Bernstein bound is superior for any ε < 7.5.
Note that when the Bernstein bound is being used for a typical pixie kernel, αε ≈ 2α′ε.
Although we cannot use these bounds to conclude that ‖ f̃ ‖∞ < ‖ f̆ ‖∞, the fact that f̃ yields

smaller bounds using the same techniques certainly suggests that it might be usually true.

3.3.3 Expected max error

Noting that E‖ f ‖∞ =
∫ ∞

0 Pr (‖ f ‖∞ ≥ ε) dε, one could consider bounding E‖ f ‖∞ via Proposi-
tions 3.6 and 3.7. Unfortunately, that integral diverges on (0, γ) for any γ > 0. If we instead
integrate the minimum of that bound and 1, the result depends on a solution to a transcendental
equation, so analytical manipulation is difficult.

We can, however, use a slight generalization of Dudley’s entropy integral (1967) to obtain the
following bound:
Proposition 3.8. Let k, X, `, and Ω(ω) be as in Proposition 3.6. Define z̃ by (3.1), and
f̃ (x, y) := z̃(x)T z̃(y) − k(x, y). Let X∆ := {x − y | x, y ∈ X}; suppose k is L-Lipschitz on X∆. Let

26

R := Emaxi=1,...,D2
‖ωi‖. Then

E
[
‖ f̃ ‖∞

]
≤ 24γ

√
d`

√
D
(R + L)

where γ ≈ 0.964.
The proof is given in Appendix B.5. In order to apply the method of Dudley (1967), we

must work around ‖ωi‖ (which appears in the covariance of the error process) being potentially
unbounded. To do so, we bound a process with truncated ‖ωi‖, and then relate that bound to f̃ .

For the Gaussian kernel, L = 1/(σ
√

e) and3

R ≤
(√

2
Γ ((d + 1)/2)
Γ (d/2) +

√
2 log (D/2)

)
/σ ≤

(√
d +

√
2 log (D/2)

)
/σ.

Thus

E‖ f̃ ‖∞ <
24γ
√

d `
√

Dσ

(
e−1/2 +

√
d +

√
2 log(D/2)

)
. (3.12)

Analagously, for the z̆ features:
Proposition 3.9. Let k,X, `, and Ω(ω) be as in Proposition 3.6. Define z̆ by (3.2), and f̆ (x, y) :=
z̆(x)T z̆(y) − k(x, y). Suppose k(∆) is L-Lipschitz. Let R′ := Emaxi=1,...,D‖ωi‖. Then, for X and
D not extremely small,

E
[
‖ f̆ ‖∞

]
≤

48γ′X`
√

d
√

D
(R′ + L)

where 0.803 < γ′X < 1.542. See Appendix B.6 for details on γ′X and the “not extremely small”
assumption.

The proof is given in Appendix B.6. It is similar to that for Proposition 3.8, but the lack of
shift invariance increases some constants and otherwise slightly complicates matters. Note also
that the R′ of Proposition 3.9 is slightly larger than the R of Proposition 3.8.

These two bounds are both quite loose in practice.

3.3.4 Concentration about the mean

Bousquet’s inequality (2002) can be used to show exponential concentration of sup f about its
mean.

We consider f̃ first. Let

f̃ω(∆) :=
2
D

(
cos(ωT

∆) − k(∆)
)
,

3By the Gaussian concentration inequality (Boucheron et al. 2013, Theorem 5.6), each ‖ω‖ − E‖ω‖ is sub-
Gaussian with variance factor σ−2; the claim follows from their Section 2.5.

27

so f̃ (∆) = ∑D/2
i=1 f̃ωi (∆). Define the “wimpy variance” of f̃ /2 (which we use so that | f̃ /2| ≤ 1) as

σ2
f̃ /2 := sup

∆∈X∆

D/2∑
i=1

Var
[1

2 f̃ωi (∆)
]

= sup
∆∈X∆

1
2D

Var
[
cos(ωT

∆)
]

=
1

4D
sup
∆∈X∆

[
1 + k(2∆) − 2k(∆)2

]
=:

1
4D

σ2
w .

Clearly 0 ≤ σ2
w ≤ 2; for pixie kernels, σ2

w ≤ 1, with it approaching unity for typical kernels on
domains large relative to the lengthscale.
Proposition 3.10. Let k, X, and Ω(ω) be as in Proposition 3.6, and z̃ be defined by (3.1). Let
f̃ (∆) = z̃(x)T z̃(y) − k(∆) for ∆ = x − y, and σ2

w := sup∆∈X∆ 1 + k(2∆) − 2k(∆)2. Then

Pr
(
‖ f̃ ‖∞ − E‖ f̃ ‖∞ ≥ ε

)
≤ 2 exp

(
− Dε2

8D E‖ f̃ ‖∞ + 2σ2
w +

4
3 Dε

)
.

Proof. We use the Bernstein-style form of Theorem 12.5 of Boucheron et al. (2013) on f̃ (∆)/2
to obtain that

Pr
(
sup

f̃
2
− E sup

f̃
2
≥ t

)
≤ exp

©­­«−
t2

4E sup f̃
2 + 2σ2

f̃ /2 +
2
3 t

ª®®¬
Pr

(
sup f̃ − E sup f̃ ≥ ε

)
≤ exp

(
−

1
4ε

2

2E sup f̃ + 1
2Dσ

2
w +

1
3ε

)
= exp

(
− Dε2

8D E sup f̃ + 2σ2
w +

4
3 Dε

)
.

The same holds for − f̃ , and E sup f̃ ≤ E‖ f ‖∞, E sup(− f̃) ≤ E‖ f ‖∞. The claim follows by a
union bound. �

A bound on the lower tail, unfortunately, is not available in the same form.
For f̆ , note | f̆ | ≤ 3, so we use f̆ /3. Letting f̆ω,b(x, y) := 1

D (cos(ωT(x − y))+ cos(ωT(x + y)+
2b) − k(x, y)), we have

σ2
f̆ /3 : = sup

x,y∈X

D∑
i=1

Var
[1

3 f̆ωi,bi (∆)
]

= sup
x,y∈X

1
9D

[
1 + 1

2 k(2∆) − k(∆)2
]

=
1

18D
(1 + σ2

w),

28

Thus the same argument gives us:
Proposition 3.11. Let k, X, and Ω(ω) be as in Proposition 3.6. Let z̆ be as in (3.2), f̃ (x, y) :=
z̃(x)T z̃(y) − k(x, y), and define σw as in Proposition 3.10. Then

Pr
(
‖ f̆ ‖∞ − E‖ f̆ ‖∞ ≥ ε

)
≤ 2 exp

(
− Dε2

12D E‖ f̆ ‖∞ + 1
2 (1 + σ2

w) + 2Dε

)
.

Note that the bound for f̃ strictly dominates the bound for f̆ only in the unlikely case of
σ2
w <

1
3 .

3.3.5 Other bounds

Sriperumbudur and Szabó (2015) later proved a rate-optimalOP(D−1/2) bound on ‖ f̃ ‖∞. Phrased
in the terminology we use here, it amounts to:

Pr
(
‖ f̃ ‖∞ ≥ ε

)
=


1 ε < h√

D/2

exp

(
−1

2

(√
D
2 ε − h

)2
)

otherwise

where h := 32
√

2d log(` + 1) + 32
√

2d log(σp + 1) + 16

√
2d

log(` + 1)

In practice, for moderately-sized inputs, the constants can be much worse than the non-optimal
bound of Proposition 3.6. For example, the regime of Figure 3.5 is d = 1, ` = 6, σp = 1. In
that setting, the smallest D for which even Pr

(
‖ f̃ ‖∞ ≥ 1

)
can be shown to be less than unity is a

staggering D = 27 392, compared to the 500 plotted for the other bounds.

3.4 Downstream error
When we use random Fourier features, the final output of our analysis is not simply estimates of
the values of the kernel function; rather, we wish to use this kernel within some machine learning
framework. A natural question, then, is: how much does the use of a random Fourier features
approximation change the outcome of the prediction compared to if we had used the exact kernel?

One approach to answering this question is to study the difference between functions in the
original kernel rkhs versus functions in the rkhs corresponding to the approximation. This is
the approach taken by Rahimi and Recht (2008a,b), as well as the later work of Bach (2015) and
Rudi et al. (2016). Rudi et al. (2016), in particular, provide an invaluable theoretical study of the
effect of using random features in regression models.

In some contexts, however, we would prefer to consider not the learning-theoretic convergence
of hypotheses to the assumed “true” function, but rather directly consider the difference in
predictions due to using the z embedding instead of the exact kernel k. We give a few such
bounds here. We stress, however, that combining these results with standard learning rates for
the models yields worse bounds compared to those of Bach (2015) and Rudi et al. (2016).

29

3.4.1 Kernel ridge regression
We first consider kernel ridge regression (krr; Saunders et al. 1998). Suppose we are given n
training pairs (xi, yi) ∈ Rd × R as well as a regularization parameter λ = nλ0 > 0. We construct
the training Gram matrix K by Ki j = k(xi, x j). krr gives predictions h(x) = αTkx , where
α = (K + λI)−1y and kx is the vector with ith component k(xi, x).4 When using Fourier features,
one would not use α, but instead a primal weight vector w; still, it will be useful for us to analyze
the situation in the dual.

Proposition 1 of Cortes et al. (2010) bounds the change in krr predictions from approximating
the kernel matrix K by K̂ , in terms of ‖K̂−K ‖2. They assume, however, that the kernel evaluations
at test time kx are unapproximated, which is certainly not the case when using Fourier features.
We therefore extend their result to Proposition 3.12 before using it to analyze the performance of
Fourier features.
Proposition 3.12. Given a training set {(xi, yi)}ni=1, with xi ∈ Rd and yi ∈ R, let h(x) denote the
result of kernel ridge regression using the psd training kernel matrix K and test kernel values
kx . Let ĥ(x) be the same using a psd approximation to the training kernel matrix K̂ and test
kernel values k̂x . Further assume that the training labels are centered,

∑n
i=1 yi = 0, and let

σ2
y := 1

n
∑n

i=1 y
2
i . Also suppose ‖kx ‖∞ ≤ κ. Then:

|h′(x) − h(x)| ≤
σy√
nλ0
‖ k̂x − kx ‖ +

κσy

nλ2
0
‖K̂ − K ‖2.

Proof. Let α = (K + λI)−1y, α̂ = (K̂ + λI)−1y. Thus, using M̂−1 − M−1 = −M̂−1(M̂ − M)M−1,
we have

α̂ − α = −(K̂ + λI)−1(K̂ − K)(K + λI)−1y

‖α̂ − α‖ ≤ ‖(K̂ + λI)−1‖2 ‖K̂ − K ‖2 ‖(K + λI)−1‖2 ‖y‖

≤ 1
λ2 ‖K̂ − K ‖2 ‖y‖

since the smallest eigenvalues of K + λI and K̂ + λI are at least λ. Since ‖kx ‖ ≤
√

nκ and
‖α̂‖ ≤ ‖y‖/λ:

| ĥ(x) − h(x)| = |α̂T k̂x − αTkx |
= |α̂T(k̂x − kx) + (α̂ − α)Tkx |
≤ ‖α̂‖‖ k̂x − kx ‖ + ‖α̂ − α‖‖kx ‖

≤ ‖y‖
λ
‖ k̂x − kx ‖ +

√
nκ‖y‖
λ2 ‖K̂ − K ‖2.

The claim follows from λ = nλ0, ‖y‖ =
√

nσy. �

4If a bias term is desired, we can use k ′(x, x ′) = k(x, x ′)+1 by appending a constant feature 1 to the embedding z.
Because this change is accounted for exactly, it affects the error analysis here only in that wemust use sup|k(x, y)| ≤ 2,
in which case the first factor of (3.13) becomes (λ0 + 2)/λ2

0.

30

Suppose that, per the uniform error bounds of Section 3.3.2, sup |k(x, y) − s(x, y)| ≤ ε. Then
‖ k̂x − kx ‖ ≤

√
nε and ‖K̂ − K ‖2 ≤ ‖K̂ − K ‖F ≤ nε, and Proposition 3.12 gives��ĥ(x) − h(x)

�� ≤ σy√
nλ0

√
nε +

σy

nλ2
0

nε ≤ λ0 + 1
λ2

0
σyε. (3.13)

Thus

Pr (|h′(x) − h(x)| ≥ ε) ≤ Pr

(
‖ f ‖∞ ≥

λ2
0ε

(λ0 + 1)σy

)
.

which we can bound with Proposition 3.6 or 3.7. We can therefore guarantee |h(x) − h′(x)| ≤ ε
with probability at least δ if

D = Ω ©­«d

(
(λ0 + 1)σy

λ2
0 ε

)2 [
log

1
δ
+ log

(λ0 + 1)σy

λ2
0ε

+ logσp`

]ª®¬ .
Note that this rate does not depend on n.

If we want |h′(x) − h(x)| = O
(

1√
n

)
in order to match h(x)’s convergence rate (Bousquet and

Elisseeff 2001), ignoring the logarithmic terms, we thus need D = Ω(n), matching the conclusion
of Rahimi and Recht (2008a). It is worth saying again, however, that Bach (2015) and Rudi et al.
(2016) obtained better rates depending on the form of the particular learning problem.

3.4.2 Support vector machines
We will now give a similar bound for svm classifiers. We will see that this method gives much
worse results than in the ridge regression case; rkhs analyses should be used here instead.

Consider an svm classifier with no offset, such that h(x) = wTΦ(x) for a kernel embedding
Φ(x) : X → H and w is found by

argmin
w∈H

1
2
‖w‖2 + C0

n

n∑
i=1

max (0, 1 − yi 〈w,Φ(xi)〉)

where {(xi, yi)}ni=1 is our training set with yi ∈ {−1, 1}, and the decision function is h(x) =
〈w,Φ(x)〉.5 For a given x, Cortes et al. (2010) consider an embedding in H = Rn+1 which is
equivalent on the given set of points. They bound

��ĥ(x) − h(x)
�� in terms of ‖K̂ − K ‖2 in their

Proposition 2, but again assume that the test-time kernel values kx are exact. We will again extend
their result in Proposition 3.13:
Proposition 3.13. Given a training set {(xi, yi)}ni=1, with xi ∈ Rd and yi ∈ {−1, 1}, let h(x) denote
the decision function of an svm classifier using the psd training matrix K and test kernel values
kx . Let ĥ(x) be the same using a psd approximation to the training kernel matrix K̂ and test kernel
values k̂x . Suppose supx k(x, x) ≤ κ. Define δx := ‖K̂ − K ‖2 + ‖ k̂x − kx ‖ + | k̂(x, x) − k(x, x)|.
Then:

| ĥ(x) − h(x)| ≤
√

2 κ
3
4 C0 δ

1/4
x +

√
κC0 δ

1/2
x .

5We again assume there is no bias term for simplicity; adding a constant feature again changes the analysis only
in that it makes the κ of Proposition 3.13 2 instead of 1.

31

Proof. Use the setup of Section 2.2 of Cortes et al. (2010). In particular, we will use ‖w‖ ≤
√
κC0

and their (16-17):

Φ(xi) = K1/2
x ei

‖ŵ − w‖2 ≤ 2C2
0
√
κ‖K̂1/2

x − K1/2
x ‖,

where Kx :=
[

K kx
kT

x k(x, x)

]
and ei is the ith standard basis. Also let fx := k̂(x, x) − k(x, x).

Further, Lemma 1 of Cortes et al. (2010) says that ‖K̂1/2
x − K1/2

x ‖2 ≤ ‖K̂x − Kx ‖1/22 . Let
fx := k̂(x, x) − k(x, x); then, by Weyl’s inequality for singular values,

[K̂ − K k̂x − kx

k̂T
x − kT

x fx

]

2
≤ ‖K̂ − K ‖2 + ‖ k̂x − kx ‖ + | fx | .

Thus

| ĥ(x) − h(x)|
=

��(ŵ − w)TΦ̂(x) + wT(Φ̂(x) − Φ(x))
��

≤ ‖ŵ − w‖‖Φ̂(x)‖ + ‖w‖‖Φ̂(x) − Φ(x)‖
≤
√

2κ
1
4 C0‖K̂1/2

x − K1/2
x ‖1/22

√
κ +
√
κC0‖(K̂1/2

x − K1/2
x)en+1‖

≤
√

2κ
3
4 C0‖K̂x − Kx ‖1/42 +

√
κC0‖K̂x − Kx ‖1/2

≤
√

2κ
3
4 C0

(
‖K̂ − K ‖2 + ‖ k̂x − kx ‖ + | fx |

)1/4
+
√
κC0

(
‖K̂ − K ‖2 + ‖ k̂x − kx ‖ + | fx |

)1/2

as claimed. �

Suppose that sup|k(x, y) − s(x, y)| ≤ ε. Then, as in the last section, ‖ k̂x − kx ‖ ≤
√

nε and
‖K̂ − K ‖2 ≤ nε. Then, letting γ be 0 for z̃ and 1 for z̆, Proposition 3.13 gives

| ĥ(x) − h(x)| ≤
√

2C0

(
n +
√

n + γ
)1/4

ε1/4 + C0

(
n +
√

n + γ
)1/2

ε1/2.

Then | ĥ(x) − h(x)| ≥ u only if

ε ≤
2C2

0 + 4C0u + u2 − 2(C0 + u)
√

C0(C0 + 2u)
C2

0 (n +
√

n + γ)
.

This bound has the unfortunate property of requiring the approximation to be more accurate
as the training set size increases, and thus can prove only a very loose upper bound on the
number of features needed to achieve a given approximation accuracy, due to the looseness of
Proposition 3.13. Analyses of generalization error in the induced rkhs, such as Rahimi and Recht
(2008a), T. Yang et al. (2012), and Bach (2015), are more useful in this case.

32

3.5 Numerical evaluation on an interval
We will conduct a detailed study of the approximations on the interval X = [−b, b]. Specifically,
we evenly spaced 1 000 points on [−5, 5] and approximated the kernel matrix using both embed-
dings at D ∈ {50, 100, 200, . . . , 900, 1 000, 2 000, . . . , 9 000, 10 000}, repeating each trial 1 000
times, estimating ‖ f ‖∞ and ‖ f ‖µ at those points. We do not consider d > 1, because obtaining
a reliable estimate of sup| f | becomes very computationally expensive even for d = 2.

Figure 3.3 shows the behavior of E‖ f ‖∞ as b increases for various values of D. As expected,
the z̃ embeddings have almost no error near 0. The error increases out to one or two bandwidths,
after which the curve appears approximately linear in `/σ, as predicted by Propositions 3.8
and 3.9.

0 1 2 3 4 5
`=(2¾)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35


jjf
jj 1

z̧, D=50
~z, D=50
z̧, D=100
~z, D=100
z̧, D=500
~z, D=500
z̧, D=1000
~z, D=1000

Figure 3.3: The maximum error within a given radius in R, averaged over 1 000 evaluations.

Figure 3.4 fixes b = 3 and shows the expected maximal error as a function of D. It also plots
the expected error obtained by numerically integrating the bounds of Propositions 3.6 and 3.7
(using the minimum of 1 and the stated bound). We can see that all of the bounds are fairly loose,
but that the first version of the bound in the propositions (with βd , the exponent depending on d,
and αε) is substantially tighter than the second version when d = 1.

The bounds on E‖ f ‖∞ of Propositions 3.8 and 3.9 are unfortunately too loose to show on the
same plot. However, one important property does hold. For a fixed X and k, (3.12) predicts that
E‖ f ‖∞ = O(1/

√
D). This holds empirically: performing linear regression of logE‖ f̃ ‖∞ against

log D yields amodel ofE‖ f̃ ‖∞ = ecDm, with a 95%confidence interval form of [−0.502,−0.496];
‖ f̆ ‖∞ gives [−0.503,−0.497]. The integrated bounds of Propositions 3.6 and 3.7 do not fit the
scaling as a function of D nearly as well.

33

102 103 104

D

0.0

0.5

1.0

1.5

2.0

2.5

3.0

jjf
jj 1

~z

~z, tight
~z, loose
~z, old
z̧

z̧, tight
z̧, loose

Figure 3.4: E‖ f ‖∞ for the Gaussian kernel on [−3, 3] with σ = 1, based on the mean of 1 000
evaluations and on numerical integration of the bounds from Propositions 3.6 and 3.7. (“Tight”
refers to the bound with constants depending on d, and “loose” the second version; “old” is the
version from Rahimi and Recht (2007).)

Figure 3.5 shows the empirical survival function of the max error for D = 500, along with the
bounds of Propositions 3.6 and 3.7 and those of Propositions 3.10 and 3.11 using the empirical
mean. The latter bounds are tighter than the former for low ε, especially for low D, but have a
lower slope.

The mean of the mean squared error, on the other hand, exactly follows the expectation of
Propositions 3.4 and 3.5 using µ as the uniform distribution onX2: in this case, E‖ f̃ ‖µ ≈ 0.66/D,
E‖ f̆ ‖µ ≈ 0.83/D. (This is natural, as the expectation is exact.) Convergence to that mean,
however, is substantially faster than guaranteed by the McDiarmid bounds.

34

0.0 0.2 0.4 0.6 0.8 1.0 1.2
"

0.0

0.2

0.4

0.6

0.8

1.0

P
r(
kk
fk
k 1
>
")

tight ~z
tight z̧
loose ~z
loose z̧
old bound
new ~z with empirical mean
new z̧ with empirical mean
empirical ~z
empirical z̧

Figure 3.5: Pr (E‖ f ‖∞ > ε) for the Gaussian kernel on [−3, 3] with σ = 1 and D = 500, based
on 1 000 evaluations (black), numerical integration of the bounds from Propositions 3.6 and 3.7
(same colors as Figure 3.4), and the bounds of Propositions 3.10 and 3.11 using the empirical
mean (yellow).

35

36

Chapter 4

Scalable distribution learning with approx-
imate kernel embeddings

We now return to the distributional setting, developing embeddings for distributions in the style
of — and employing — the random Fourier features studied in Chapter 3.

4.1 Mean map kernels

Armed with an approximate embedding for shift-invariant kernels on Rd , we now need only a
simple step to develop our first embedding for a distributional kernel, mmk. Recall that, given
samples {Xi}ni=1 ∼ Pn and {Yj}mj=1 ∼ Qm, mmk(P,Q) can be estimated as

mmk(X,Y) = 1
nm

n∑
i=1

m∑
j=1

k(Xi,Yj). (4.1)

Simply plugging in an approximate embedding z(x)Tz(y) ≈ k(x, y) yields

mmk(X,Y) ≈ 1
nm

n∑
i=1

m∑
j=1

z(Xi)Tz(Yj) =
[
1
n

n∑
i=1

z(Xi)
]T 

1
m

m∑
j=1

z(Yj)
 = z̄(X)T z̄(Y), (4.2)

where we defined z̄ : S → RD by z̄(X) B 1
n
∑n

i=1 z(Xi). This additionally has a natural
interpretation as the direct estimate of mmk in the Hilbert space induced by the feature map z,
which approximates the Hilbert space associated with k.

Thus mmd(P,Q) ≈ ‖ z̄(X) − z̄(Y)‖. Since this is simply a Euclidean distance, the generalized
rbf kernel based on that distance e−γ mmd2 can be approximately embedded with z(z̄(·)).

This natural approximation has been considered many times quite recently (Mehta and Gray
2010; S. Li and Tsang 2011; Zhao and Meng 2014; Chwialkowski et al. 2015; Flaxman, Y.-X.
Wang, et al. 2015; Jitkrittum, Gretton, et al. 2015; Lopez-Paz et al. 2015; Sutherland and
Schneider 2015; Sutherland, J. B. Oliva, et al. 2016).

37

4.1.1 Convergence bounds
We will consider two approaches to proving bounds on this mmd embedding.

Applying uniform bounds

The following trivial bound allows the application of uniform convergence bounds to mmk
estimators. Theorems 3 and 4 of Zhao and Meng (2014) appear to reduce to it.
Proposition 4.1 (Uniform convergence of z̄(X)T z̄(Y)). Let z : X → RD be a random approximate
embedding for a kernel k on some set X such that for some ε > 0, 0 < δ ≤ 1:

Pr

(
sup

x,y∈X

��z(x)Tz(y) − k(x, y)
�� ≥ ε) ≤ δ. (4.3)

Define �mmk : S × S → R as the inner product between the mean maps under kernel k between
the empirical distributions of the two inputs, as in (4.1). Let z̄ : S → RD be given by z̄(X) :=
1
n
∑n

i=1 z(Xi). Then

Pr

(
sup

X,Y∈S

��z̄(X)T z̄(Y) −�mmk(X,Y)
�� ≥ ε) ≤ δ.

Proof. For any X,Y ⊆ X, we have

��z̄(X)T z̄(Y) − mmk(X,Y)
�� = ������ 1

nm

n∑
i=1

m∑
j=1

(
z(Xi)Tz(Yj) − k(Xi,Yj)

)������
≤ 1

nm

n∑
i=1

m∑
j=1

��z(Xi)Tz(Yj) − k(Xi,Yj)
�� .

If (4.3) holds, clearly this quantity is at most ε for all X,Y . �

Corollary 4.2 (Uniform convergence of ‖ z̄(X) − z̄(Y)‖2 to the pairwise estimator). Let z, k,
ε, δ, and �mmk be as in Proposition 4.1. Define �mmdb : S × S → R as �mmdb(X,Y)2 :=�mmk(X, X) +�mmk(Y,Y) − 2�mmk(X,Y). Then

Pr

(
sup

X,Y∈S

��‖ z̄(X) − z̄(Y)‖2 −�mmd2
b(X,Y)

�� ≥ 4ε

)
≤ δ.

Proof. With probability at least δ, each of
��z̄(X)T z̄(X) −�mmk(X, X)

��, ��z̄(Y)T z̄(Y) −�mmk(Y,Y)
��,

and
��z̄(X)T z̄(Y) −�mmk(X,Y)

�� are at most ε by Proposition 4.1, �

Proposition 4.3 (Convergence of ‖ z̄(X) − z̄(Y)‖ to the mmd). Let z, k, εz̄, δ, and �mmk be as in
Proposition 4.1, but additionally requiring that k(x, y) ≥ 0 for all x, y ∈ X. Fix a pair of input
distributions P, Q over X. Take X ∼ Pn, Y ∼ Qm; then for any εmmd > 0 we have

Pr
X,Y,z̄

(�� ‖ z̄(X) − z̄(Y)‖ − mmd(P,Q)
�� > 2
√

m
+

2
√

n
+ εmmd + 32εz̄

)
≤ 2 exp

(
−m n ε2

mmd
2(m + n)

)
+ δ.

38

Proof. For the sake of brevity, let ηz̄ := ‖ z̄(X) − z̄(Y)‖, ηXY :=�mmdb(X,Y), ηPQ := mmd(P,Q),
cmn := 2√

m
+ 2√

n
. Thus we wish to bound

Pr
X,Y,z̄

(��ηz̄ − ηPQ
�� > cmn + εmmd + 32εz̄

)
≤ Pr

X,Y,z̄

(��ηz̄ − ηXY
�� + ��ηXY − ηPQ

�� > cmn + εmmd + 32εz̄
)

≤ Pr
X,Y,z̄

(��ηz̄ − ηXY
�� > 32εz̄

)
+ Pr

X,Y

(��ηXY − ηPQ
�� > cmn + εmmd

)
.

Theorem 7 of Gretton, Borgwardt, et al. (2012) bounds the latter term:

Pr
X,Y

(��ηXY − ηPQ
�� > cmn + εmmd

)
≤ 2 exp

(
−m n ε2

mmd
2(m + n)

)
.

For the former, note that η2
z̄ and η

2
XY are each in [0, 4], so��η2

z̄ − η2
XY

�� = ��ηz̄ − ηXY
�� ��ηz̄ + ηXY

�� ≤ 8
��ηz̄ − ηXY

��.
Thus by Corollary 4.2,

Pr
X,Y,z̄

(��ηz̄ − ηXY
�� > 32εz̄

)
≤ Pr

X,Y,z̄

(��η2
z̄ − η2

XY

�� > 4εz̄

)
= EX,Y Pr

z̄

(��η2
z̄ − η2

XY

�� > 4εz̄

)
≤ EX,Yδ = δ. �

Proposition 4.4 (Convergence of kernel approximation for a given P, Q). Let z, z̄, k, εz̄, δ,�mmk, P, Q, X , Y , n, and m be as in Proposition 4.3, with the z embedding into dimension D1.
Define a kernel on distributions K(P,Q) := exp

(
− 1

2σ2 mmd2(P,Q)
)
for some bandwidth σ > 0.

Let kσ(x, y) := exp
(
− 1

2σ2 ‖x − y‖2
)
be the Gaussian rbf kernel of bandwidth σ, and zσ its

embedding using either z̃ or z̆ with embedding dimension D2. Estimate the kernel K(P,Q) as
zσ(z̄(X))Tzσ(z̄(Y)). Then for any εmmd > 0, εzσ :

Pr
X,Y,z̄,zσ

(��zσ(z̄(X))Tzσ(z̄(Y)) − K(P,Q)
�� > 1

σ
√

e

(
2
√

m
+

2
√

n
+ εmmd + 32εz̄

)
+ εzσ

)
≤ 2 exp

(
−m n ε2

mmd
2(m + n)

)
+ δ + 2 exp

(
−

D2ε
2
zσ

8 + 8
3εzσ

)
.

Proof. Define rσ : R → R by rσ(x) := exp
(
−x2/(2σ2)

)
. Let ηz̄ := ‖ z̄(X) − z̄(Y)‖, ηPQ :=

mmd(P,Q). Then the error in question is��rσ(ηPQ) − zσ(z̄(X))Tzσ(z̄(Y))
�� ≤ ��rσ(ηPQ) − rσ(ηz̄)

�� + ��rσ(ηz̄) − zσ(z̄(X))Tzσ(z̄(Y))
�� .

The first term, because rσ is 1
σ
√

e
-Lipschitz, is at most 1

σ
√

e

��ηPQ − ηz̄
��. Using Proposition 4.3:

Pr
X,Y,z̄

(��ηPQ − ηz̄
�� > 2
√

m
+

2
√

n
+ εmmd + 32εz̄

)
≤ 2 exp

(
−m n ε2

mmd
2(m + n)

)
+ δ.

39

The latter term is just the error of the zσ embedding on the inputs z̄(X), z̄(Y). We can use the
Bernstein bound of (B.3) and (B.6), simplifying it a bit because Var[cos(ωT∆)] ≤ 1

2 for pixie
kernels:

Pr
X,Y,z̄,zσ

(��rσ(ηz̄) − zσ(z̄(X))Tzσ(z̄(Y))
�� > εzσ

)
= EX,Y,z̄ Pr

zσ

(��rσ(ηz̄) − zσ(z̄(X))Tzσ(z̄(Y))
�� > εzσ

)
≤ EX,Y,z̄ 2 exp

(
−

D2ε
2
zσ

8 + 8
3εzσ

)
= 2 exp

(
−

D2ε
2
zσ

8 + 8
3εzσ

)
. �

It is worth re-emphasizing two points: first, that the δ of these bounds will depend on the
diameter of X, and so they are not directly applicable to distributions on unbounded domains.
Secondly, extension of Proposition 4.4 to a bound uniform over input distributions would require
a uniform version of Proposition 4.3, presumably based on a uniform extension of Theorem 7 of
Gretton, Borgwardt, et al. (2012). This could be done e.g. by bounding the Lipschitz constant
of the error of the mmd estimator over some smoothness class of distributions, as in the proof of
Proposition 3.6.

For fixed inputs

We can also show bounds more directly for a fixed pair of inputs (fixed sample sets X , Y at first;
later, for fixed distributions P, Q). This approach will allow us to consider unbounded domains,
but does not allow for direct uniform results as in Proposition 4.1 and Corollary 4.2.
Proposition 4.5 (Convergence of z̄(X)T z̄(Y) for fixed X , Y). Let z : X → RD be either z̃ of
(3.1) or z̆ of (3.2), corresponding to a continuous, shift-invariant, positive definite kernel function
k(x, y) = k(x − y) with k(0) = 1. Let z̄(X) := 1

n
∑n

i=1 z(Xi). Then, considering X ⊆ X of size n
and Y ⊆ X of size m fixed:

(i) The variance of the mmk embedding is:

Var
[
z̄(X)T z̄(Y)

]
=

1
n2m2

∑
i, j

∑
i′, j ′

Cov(z(Xi)Tz(Yj), z(Xi′)Tz(Yj ′)),

which for z̃ is

ṼX,Y :=
1
D
ν̃X,Y :=

1
D

1
n2m2

∑
i, j

∑
i′, j ′

[
k(Xi − Xi′ − Yj + Yj ′) + k(Xi + Xi′ − Yj − Yj ′)

−2k(Xi − Yj)k(Xi′ − Yj ′)
]

(4.4)

and for z̆ is

V̆X,Y :=
1
D
ν̆X,Y :=

1
D

1
n2m2

∑
i, j

∑
i′, j ′

[1
2 k(Xi − Xi′ − Yj + Yj ′) + 1

2 k(Xi + Xi′ − Yj − Yj ′)

−k(Xi − Yj)k(Xi′ − Yj ′) + 1
2 k(Xi − Xi′ + Yj − Yj ′)

]
. (4.5)

40

Note that

ν̆X,Y =
1
2

(
ν̃X,Y +

1
n2m2

∑
i, j

∑
i′, j ′

k(Xi − Xi′ + Yj − Yj ′)
)
.

(ii) Let α̃(ε)X,Y := min
(
4, 2ν̃X,Y +

4
3ε

)
, using the variance factor ν̃X,Y of (4.4). Similarly use (4.5)

to define ᾰ(ε)X,Y := min
(
8, 2ν̆X,Y +

4
3ε

)
. Then, letting α(ε)X,Y denote α̃(ε)X,Y for the z̃ embedding

and ᾰ(ε)X,Y for the z̆ embedding:

Pr
(��z̄(X)T z̄(Y) −�mmk(X,Y)

�� ≥ ε) ≤ 2 exp ©­«−Dε2

α
(ε)
X,Y

ª®¬ .
(iii) Let α(∞) be 4 for the z̃ embedding and 8 for z̆. Then

E
��z̄(X)T z̄(Y) −�mmk(X,Y)

�� ≤ √
α(∞)π

D
.

Proof.

(i) Simply expand z̄(X)T z̄(Y) into a sum, as in (4.2), and use (3.3) and (3.5).
(ii) For z̃, we can think of z̄(X)T z̄(Y) as an average of D

2 terms like

1
nm

n∑
i=1

m∑
j=1

cos
(
ωT(Xi − Yj)

)
,

each of which has mean �mmk(X,Y), variance 1
2 ν̃X,Y , and is bounded by [−1, 1]. The

claim gives the better of Hoeffding’s and Bernstein’s inequalities; the latter is tighter when
ε < 3 − 3

2 ν̃X,Y .
Similarly, z̆ gives an average of D terms like

1
nm

n∑
i=1

m∑
j=1

[
cos

(
ωT(Xi − Yj)

)
+ cos

(
ωT(Xi + Yj) + 2b

)]
,

each of which has mean �mmk(X,Y), variance ν̆X,Y , and is bounded by [−2, 2]. Here
Bernstein’s is tighter for ε < 6 − 3

2 ν̆X,Y .
(iii) Integrate the Hoeffding-form bound of (ii), using E|X | =

∫ ∞
0 Pr (|X | ≥ ε) dε. �

Note that Proposition 4.5(i) gives that the variance in terms of D is exactly νX,Y
D (with νX,Y

depending only on k, X , and Y), whereas Proposition 4.1 does not allow for an easy form for the
variance when used with Propositions 3.6 and 3.7.

We can easily extend this to a convergence bound on the mmd embedding. The variance is
also available via the same technique as Proposition 4.5(i), and is still O(1/D).

41

Corollary 4.6 (Convergence of ‖ z̄(X) − z̄(Y)‖2 for fixed X , Y). Let z, z̄, k, X , Y , m, n, and α(∞)
be as in Proposition 4.5. Define �mmdb as in Corollary 4.2. Then:

Pr
(�� ‖ z̄(X) − z̄(Y)‖2 −�mmd2

b(X,Y)
�� > ε

)
≤ 6 exp

(
− Dε2

16α(∞)

)
.

Proof. We can upper-bound
�� ‖ z̄(X) − z̄(Y)‖2 −�mmdb(X,Y)2

�� by��z̄(X)T z̄(X) −�mmk(X, X)
�� + ��z̄(Y)T z̄(Y) −�mmk(Y,Y)

�� + 2
��z̄(X)T z̄(Y) −�mmk(X,Y)

��.
Use the Hoeffding version of Proposition 4.5(ii) with 1

4ε for each term, then a union bound. �

We can also allow X ∼ P, Y ∼ Q to be random:
Corollary 4.7 (Variance of z̄(X)T z̄(Y) for random X , Y). Let z, z̄, k be as in Proposition 4.5. Let
mmk denote the inner product between mean embeddings with the kernel k. Fix distributions P,
Q overX. Letting X, X′ iid∼ P, denote the distribution of X − X′ as ∆P and X + X′ as TP. Similarly
define ∆Q and TQ. Then the expected variance of the embedding-based mmk estimator for z̃ is:

ṼP,Q := EX∼P,Y∼Q Var
[
z̄(X)T z̄(Y)

]
=

1
D

[
mmk

(
∆P,∆Q

)
+ mmk

(
TP,TQ

)
− 2 mmk (P,Q)2

]
,

and for z̆ is:

V̆P,Q := EX∼P,Y∼Q Var
[
z̄(X)T z̄(Y)

]
=

1
D

[
mmk

(
∆P,∆Q

)
+ 1

2 mmk
(
TP,TQ

)
− mmk (P,Q)2

]
.

Note that VP,Q is not the “full” variance of the estimator, which is

VarX,Y,z̄
[
z̄(X)T z̄(Y)

]
= VP,Q + VarX,Y �mmk(X,Y).

Proof. For the values of VP,Q, take expectations of Proposition 4.5(i). The final statement is just
the law of total variance, noting that Ez̄

[
z̄(X)T z̄(Y)

]
=�mmk(X,Y). �

Corollary 4.8 (Convergence of ‖ z̄(X) − z̄(Y)‖ for random X , Y). Let z, z̄, k be as in Proposi-
tion 4.5, but additionally require that k(x, y) ≥ 0 for all x, y. Let mmd denote the maximum mean
discrepancy with kernel k. Fix distributions P, Q over X, and let X ∼ Pn and Y ∼ Qm. Let α(∞)
be 4 for z̃ and 8 for z̆. Then for any εmmd, εz̄ > 0,

Pr
X,Y,z̄

(�� ‖ z̄(X) − z̄(Y)‖ − mmd(P,Q)
�� > 2
√

m
+

2
√

n
+ εmmd + εz̄

)
≤ 2 exp

(
− ε

2
mmdmn

8(m + n)

)
+ 6 exp

(
−

Dε2
z̄

1024α(∞)

)
.

Proof. The argument is as for Proposition 4.3, replacing Corollary 4.2 with Corollary 4.6. �

42

Corollary 4.9 (Convergence of kernel approximation for a given P, Q). Let z, z̄, k, X , Y ,
and α(∞) be as in Corollary 4.8, with z having embedding dimension D1. Define a kernel
K(P,Q) := exp

(
− 1

2σ2 mmd2(P,Q)
)
for some bandwidth σ > 0. Let zσ be the embedding for the

Gaussian rbf kernel of bandwidth σ, using either z̃ or z̆ of embedding dimension D2; define the
estimator of K(P,Q) as K̂(X,Y) := zσ(z̄(X))Tzσ(z̄(Y)). Then for any εmmd, εz̄, εzσ > 0:

Pr
X,Y,z̄

(��zσ(z̄(X))Tzσ(z̄(Y)) − K(P,Q)
�� > 1

σ
√

e

(
2
√

m
+

2
√

n
+ εmmd + εz̄

)
+ εrbf

)
≤ 2 exp

(
− mnε2

mmd
32(m + n)

)
+ 6 exp

(
−

D1ε
2
z̄

1024α(∞)

)
+ 2 exp

(
−

D2ε
2
zσ

8 + 8
3εzσ

)
.

Proof. As for Proposition 4.4, using Corollary 4.8 rather than Proposition 4.3. �

Converting Corollary 4.9 to a bound uniform over distributions would have similar challenges
to those of Proposition 4.4, except that the εz̄ term would similarly need to be treated over a
smoothness class of distributions, whereas Proposition 4.4 gets that “for free” via Corollary 4.2.

4.2 L2 distances

J. B. Oliva, Neiswanger, et al. (2014) gave an embedding for e−γL2
2 , by first embedding L2 with

orthonormal projections and then applying random Fourier features.
Suppose that X ⊆ [0, 1]d . Let {ϕα}α∈Zd be an orthonormal basis for L2([0, 1]d), perhaps

constructed as the d-fold tensor product of an orthonormal basis for L2([0, 1]). Then any function
f ∈ L2([0, 1]d) can be represented as f (x) = ∑

α∈Zd aα(f)ϕα(x), where

aα(f) := 〈ϕα, f 〉 =
∫
[0,1]d

ϕα(t) f (t) dt,

and for any f , g ∈ L2([0, 1]d),

〈 f , g〉 =
〈 ∑
α∈Zd

aα(f)ϕα,
∑
β∈Zd

aβ(g)ϕβ

〉
=

∑
α∈Zd

∑
β∈Zd

aα(f)aβ(g)〈ϕα, ϕβ〉

=
∑
α∈Zd

aα(f)aα(g).

Let V ⊂ Zd be an appropriately chosen finite set of indices {α1, . . . , α|V |}. Define ®a(f) =
(aα1(f), . . . , aα |V | (f))T ∈ R|V |. If f and g are smooth with respect to V , i.e. they have only small
contributions from basis functions not in V , we have

〈 f , g〉 =
∑
α∈Zd

aα(f) aα(g) ≈
∑
α∈V

aα(f) aα(g) = ®a(f)T ®a(g).

43

Now, given a sample X = {X1, . . . , Xn} ∼ Pn, let P̂(x) = 1
n
∑n

i=1 δ(Xi − x) be the empirical
distribution of X . J. B. Oliva, Neiswanger, et al. (2014) estimate the density p as

p̂(x) =
∑
α∈V

aα(P̂) ϕα(x) where aα(P̂) =
∫
[0,1]d

ϕα(t) dP̂(t) = 1
n

n∑
i=1

ϕα(Xi). (4.6)

Note that technically this is an extension of aα to a broader domain than L2([0, 1]d). Assuming
that the distribution functions are smooth with respect to V , i.e. they lie in the Sobolev ellipsoid
corresponding to the basis functions of V , we thus have that

〈p, q〉 ≈ 〈p̂, q̂〉 ≈ ®a(P̂)T ®a(Q̂)

and so
z(®a(P̂))Tz(®a(Q̂)) ≈ exp

(
− 1

2σ2 ‖P −Q‖22
)
.

For the Sobolev assumption to hold on a fairly general class of distributions, however, we
need |V | to be Ω(T d) for some constant T . Since the embedding is of dimension |V |, this method
is limited in practice to fairly low dimensions d.

J. B. Oliva, Neiswanger, et al. (2014) proved learning theoretic bounds on the use of this
estimator with ridge regression. Because the L2 embedding is deterministic, the convergence
portion of the bound is not especially interesting: the Sobolev assumption on the densities is
essentially that the embedding error is bounded by a certain amount.

4.2.1 Connection to mmd embedding
The components of the embedding (4.6) are of the form

aα(X) =
1
n

n∑
i=1

ϕα(Xi),

whereas the embedding z̄ of Section 4.1 has components of the form

z̄(X) j =
1
n

n∑
i=1

z j(Xi).

This similarity in form is tantalizing, but how similar are the z j and ϕα functions?
Taking a more general view of the mmd embedding than solely one based on random Fourier

features, the L2 embedding can be viewed as proportional to a meanmap embedding in the Hilbert
space defined by the basis functions {ϕα}α∈V , with a kernel given by k(x, y) = ∑

α∈V ϕα(x)ϕα(y).
As V expands to Zd , this space converges to L2([0, 1]d), with a shift-invariant kernel of the Dirac
delta function.

In practice, we often use the tensor product of the cosine, Fourier, or trigonometric bases for
L2([0, 1]). However, the following orthonormal basis1 for L2([0, 1]d) more closely resembles a
mean map embedding with the z̃ random Fourier features:

ϕ0(x) = 1 ϕk(x) =
√

2 cos(2πkTx), k ∈ Kd ϕ′k(x) =
√

2 sin(2πkTx), k ∈ Kd

1This is not in standard use, but we can see that its span is dense in L2 via the Stone-Weierstrass theorem.

44

where Kd is the set of d-vectors with integral entries with at least one nonzero coordinate,
the first of which is positive: K1 = {1, 2, . . . }, Kd = ({1, 2, . . . } × Zd−1) ∪ ({0} × Kd−1).
This restriction is needed for orthogonality because ϕk = ϕ−k , and ϕ′k = −ϕ

′
−k . We can

obtain an almost exactly equivalent L2 embedding, however, by using K′d = Z
d \ 0: inner

products are then effectively doubled, except for the constant term 1. Consider the index set
VT = {0} ∪ {k ∈ K′d : max j |k j | ≤ T}. Now, note that for kernels whose Fourier transforms
are discrete distributions, sampling without replacement in the z̃ embedding still works: tighter
versions of many of the same bounds even hold, replacing the Hoeffding or Bernstein bounds
with their Serfling-style analogues (Serfling 1974; Bardenet and Maillard 2015). Thus the z̃
embedding for a kernel corresponding to the Fourier transform of a uniform distribution over
[−T,T]d has the exact same arguments to the sine and cosine terms, except for adding a useless
constant 0 dimension. This z̃ embedding is of dimension D = 2(2T + 1)d , and is scaled by 1√

D
relative to the L2 embedding. The kernel being embedded is the tensor product of a normalized
Dirichlet kernel on each dimension, namely

k(∆) =
d∏

j=1

1
2T + 1

(
1 + 2

T∑
k=1

cos(2πk∆ j)
)
=

d∏
j=1

sin
(
(2T + 1) π∆ j

)
(2T + 1) sin(π∆ j)

.

The Dirichlet kernel is well-known in the theory of Fourier transforms, and is an approximation
to the Dirac δ function. Note also that Corollary 4(ii) of Sriperumbudur, Gretton, et al. (2010)
shows that as T →∞, the mmd based on k converges to the appropriate rescaling constant times
the L2 distance, independently confirming that the L2 embedding asymptotically works.

4.3 Information-theoretic distances
Wewill now show how to extend this general approach to a class of information theoretic distances
that includes tv, js, and squared Hellinger (Sutherland, J. B. Oliva, et al. 2016). We consider a
class of metrics that we term homogeneous density distances (hdds):

ρ2(p, q) =
∫
[0,1]d

κ(p(x), q(x)) dx (4.7)

where κ : R+ × R+ → R+ is a 1-homogenous negative-definite function2. That is, κ(t x, ty) =
tκ(x, y) for all t > 0, and there exists some Hilbert space where ‖x − y‖2 = κ(x, y). This class
was studied by Fuglede (2005); Table 4.1 shows some important instances.

Our embedding will take three steps:
Embedding hdds into L2 We define a random function ψ such that ρ(p, q) ≈ ‖ψ(p) − ψ(q)‖,

where ψ(p) is a function from [0, 1]d to R2M . Thus the metric space of densities with dis-
tance ρ is approximately embedded into the metric space of 2M-dimensional L2 functions.

Finite Embeddings of L2 We use the approach of Section 4.2 to approximately embed smooth
L2 functions into finite vectors inR|V |. Combined with the previous step, we obtain features
A(p) ∈ R2M |V | such that ρ is approximated by Euclidean distances between the A(·) features.

2Sometimes referred to as a negative-definite kernel.

45

Name κ(p(x), q(x)) dµ(λ)
Jensen-Shannon (js) p(x)

2 log
(

2p(x)
p(x)+q(x)

)
+

q(x)
2 log

(
2q(x)

p(x)+q(x)

)
dλ

cosh(πλ)(1+λ2)

Squared Hellinger (h2) 1
2

(√
p(x) −

√
q(x)

)2 1
2δ(λ = 1)dλ

Total Variation (tv) |p(x) − q(x)| 2
π

dλ
1+4λ2

Table 4.1: Various squared hdds; dµ will be defined shortly.

Embedding rbf Kernels into RD We use random Fourier features z(·) so that inner products
between z(A(·)) features, in RD, approximate K(p, q).

Vedaldi and Zisserman (2012) studied embeddings of a similar class of kernels, but only for
discrete distributions (e.g. histograms). Their approach was basically analogous to ours, but uses
a fixed sampling scheme rather than the random one we employ to approximate κ, and the L2
embedding step is trivial in their setting since they operate componentwise. We compare to their
approaches in Section 5.2, a case in which the histogram assumption harms the convergence of
the estimator significantly with low sample sizes, but allows for faster computation.

Our embedding proceeds as follows. Fuglede (2005) shows that κ corresponds to a unique
bounded measure µ(λ), shown in Table 4.1, by

κ(x, y) =
∫
R≥0

|x
1
2+iλ − y

1
2+iλ |2 dµ(λ).

The following is equivalent, but makes it easier to find µ:

κ(x, 1/x) = Z x + Z
1
x
− 2

∫
R≥0

cos(2λ log x) dµ(λ). (4.8)

Let Z B µ(R≥0) so that µ/Z is a distribution; also define cλ B (−1
2 + iλ)/(12 + iλ). Then

κ(x, y) = Eλ∼ µZ |gλ(x) − gλ(y)|
2 where gλ(x) B

√
Zcλ

(
x

1
2+iλ − 1

)
.

We approximate the expectation with an empirical mean. Let λ j
iid∼ µ

Z for j ∈ {1, . . . , M}; then

κ(x, y) ≈ 1
M

M∑
j=1
|gλj (x) − gλj (y)|2.

Hence, the squared hdd is, letting R,I denote the real and imaginary parts:

ρ2(p, q) =
∫
[0,1]d

κ(p(x), q(x)) dx

=

∫
[0,1]d
Eλ∼ µZ |gλ(p(x)) − gλ(q(x))|

2 dx

≈ 1
M

M∑
j=1

∫
[0,1]d

((
R(gλj (p(x))) − R(gλj (q(x)))

)2
+

(
I(gλj (p(x))) − I(gλj (q(x)))

)2
)

dx

46

=
1
M

M∑
j=1
‖pR

λj
− qR

λj
‖2 + ‖pI

λj
− qI

λj
‖2, (4.9)

where
pR
λ (x) B R(gλ(p(x))), pI

λ(x) B I(gλ(p(x))).

Each pλ function is in L2([0, 1]d), so we can approximate the Gaussian rbf kernel based on ρ,
exp(−γρ2(p, q)), as in Section 4.2: let

A(P) B 1
√

M

(
®a(pR

λ1
)T, ®a(pI

λ1
)T, . . . , ®a(pR

λM
)T, ®a(pI

λM
)T

)T

so that the kernel is estimated by z(A(P)).
However, the projection coefficients of the pλ functions do not have simple forms as before;

instead, we must directly estimate the density as p̂ using a technique such as kernel density
estimation (kde) and then estimate ®a(p̂λ) for each λ with numerical integration. Recall that the
elements of A(p̂) are of the form

aα
(
p̂S
λj

)
=

∫
[0,1]d

ϕα(t) p̂S
λj
(t) dt

where j ∈ {1, . . . , M}, S ∈ {R, I}, α ∈ V . For small d, simple Monte Carlo integration is
sufficient. Choosing {ui}nei=1

iid∼ Unif
(
[0, 1]`

)
:

âα
(
p̂S
λj

)
=

1
ne

ne∑
i=1

ϕα(ui) p̂S
λj
(ui), (4.10)

giving us an estimate of A(p̂) which we call Â(p̂).
In higher dimensions, three problems arise: (i) density estimation becomes statistically diffi-

cult, (ii) accurate numerical integration becomes expensive, and (iii) the embedding dimension
increases exponentially. We can attempt to address (i) with sparse nonparametric graphical
models (Lafferty et al. 2012) or other high-dimensional density estimation techniques (Sripe-
rumbudur, Fukumizu, Kumar, et al. 2013). Point (ii) could be handled with mcmc integration;
high-dimensional multimodal integrals remain particularly challenging to current mcmc tech-
niques, but some progress is being made (e.g. Betancourt 2015; Lan et al. 2014 give a heuristic
algorithm). Challenge (iii) requires some changes to the algorithm to address, as it does for
Section 4.2.

Summary and Complexity The algorithm for computing random features {z(A(pi))}Ni=1 for the
generalized rbf kernel based on an hdd ρ among a set of distributions {Pi}Ni=1, given sample sets
{Xi}Ni=1 where Xi = {X (i)j ∈ [0, 1]

d}nij=1
iid∼ Pi, is thus:

1. Draw M scalars λ j
iid∼ µ

Z and D/2 vectors ωr
iid∼ N(0, σ−2I2M |V |), in O(M |V | D) time.

2. For each of the N input distributions i:

47

(a) Compute a kde from Xi, p̂i(u j) for each u j in (4.10), in O(nine) time.
(b) Compute Â(p̂i) using a numerical integration estimate as in (4.10), in O(M |V | ne)

time.
(c) Get the random Fourier features, z(Â(p̂i)), in O(M |V | D) time.

Supposing each ni � n, this process takes a total of O (Nnne + N M |V | ne + N M |V | D) time.
Taking |V | to be asymptotically O(n), ne = O(D), and M = O(1) for simplicity, this is O(NnD)
time, compared to about O(N2n log n + N3) for using the k-nn estimator for divergences with
corrections for indefiniteness, or O(N2n2) for using the quadratic-time mmd estimator (as in
Muandet, Schölkopf, et al. 2012).

4.3.1 Convergence bound
We bound the finite-sample error of our estimator for fixed densities p and q by considering each
source of error: kernel density estimation (εKDE); approximating µ(λ) with M samples (ελ);
truncating the tails of the projection coefficients (εtail); Monte Carlo integration (εint); and the
rks embedding (εRKS).
Proposition 4.10. Fix p and q as two densities supported on [0, 1]d satisfying some smoothness
assumptions: that they are members of a periodic Hölder class Σper(β, Lβ) for some β, Lβ > 0,
that they are bounded below by ρ∗ and above by ρ∗, and that their kernel density estimates are in
Σper(γ̂, L̂) for some γ̂, L̂ > 0 with probability at least 1 − δ. Suppose we observe n samples from
each.

We will use the estimator of Section 4.3 with a suitable form of kernel density estimation to
obtain a uniform error bound with a rate based on a function C−1 (Giné and Guillou 2002). We
use the Fourier basis and chooseV = {α ∈ Z` | ∑`

j=1 |α j |2s ≤ t} for parameters 0 < s < γ̂, t > 0.
Then, for any εRKS + 1

σk
√

e
(εKDE + ελ + εtail + εint) ≤ ε:

Pr
(��K(p, q) − z(Â(p̂))Tz(Â(q̂))

�� ≥ ε) ≤ 2 exp
(
−Dε2

RKS

)
+ 2 exp

(
−Mε4

λ/(8Z2)
)
+ δ

+ 2C−1

(
ε4
KDEn2β/(2β+d)

4 log n

)
+ 2M

(
1 − µ

(
[0, utail)

))
+ 8M |V | exp

©­­­«−
1
2ne

©­­«
√

1 + ε2
int/(8 |V | Z) − 1
√
ρ∗ + 1

ª®®¬
2ª®®®¬

where utail :=
√

max
(
0, ρ∗t

8MdL̂2
4γ̂−4s

4γ̂ ε2
tail −

1
4

)
.

For a more detailed statement and the proof, see Appendix C.1.
The bound decreases when the function is smoother (larger β, γ̂; smaller L̂) or lower-

dimensional (d), or when we observe more samples (n). Using more projection coefficients
(higher t or smaller s, giving higher |V |) improves the approximation but makes numerical
integration more difficult. Likewise, taking more samples from µ (higher M) improves that

48

approximation, but increases the number of functions to be approximated and numerically inte-
grated.

4.3.2 Generalization to α-hdds
Corollary 1 of Fuglede (2005), the core of our previous embedding, actually applies to a broader
class of functions. Let an α-hdd be an hdd whose κ is α-homogeneous, in the sense that
κ(t x, ty) = tακ(x, y). Thus the hdds discussed previously are 1-hdds. The embedding is just as
before, except that

g
(α)
λ (x) :=

√
Z
−1

2α + iλ

1
2α + iλ

(
x

1
2α+iλ − 1

)
, (4.11)

and so of course the pλ functions are altered accordingly as well. The equivalent of (4.8) is

κ(x, 1/x) = Z xα + Z x−α − 2
∫
R≥0

cos(2λ log x) dµ(λ). (4.12)

For example, L2 is a 2-hdd defined by κ(x, y) = (x − y)2; of course, κ is negative-definite.
Note that, using (4.12), κ(x, 1/x) = (x − 1/x)2 = x2 + x−2 − 2 so that µ(λ) = δ(λ = 0), and

g
(2)
0 (x) := 1 − x,

so (using M = 1) the embedding (4.9) becomes simply

ρ2(p, q) = ‖(1 − p) − (1 − q)‖2 + ‖0 − 0‖2 = ‖p − q‖2.

Proposition 4.10 could be extended to α-hdds without too much difficulty.

4.3.3 Connection to mmd
2-hdds are defined by, combining (4.7) and (4.11):

ρ2(p, q) =
∫
X

[∫
R≥0

��p(x)1+iλ − q(x)1+iλ
��2 dµ(λ)

]
dx

=

∫
R≥0

∫
X

��p(x)1+iλ − q(x)1+iλ
��2 dx dµ(λ)

=

∫
R≥0

∫
X

���p(x)eiλ log p(x) − q(x)eiλ log q(x)
���2 dx dµ(λ).

Meanwhile, Corollary 4(i) of Sriperumbudur, Gretton, et al. (2010) establishes that when k is a
continuous shift-invariant kernel on X ⊆ Rd and Ω the Fourier transform of k:

mmd(P,Q)2 =
∫
Rd

���EX∼P[eiωT X] − EY∼Q[eiωTY]
���2 dΩ(ω)

=

∫
Rd

����∫
X

p(x)eiωT xdx −
∫
X

q(x)eiωT xdx
����2 dΩ(ω).

This similarity in form is appealing, but a deeper connection between the two is elusive.

49

50

Chapter 5

Applications of distribution learning

We now turn to case studies in applying distributional kernels to real machine learning tasks:
• Section 5.1 employs distribution regression to predict the total mass of galaxy clusters
in observationally realistic settings. (Results previously published in Ntampaka, Trac,
Sutherland, Battaglia, et al. 2015; Ntampaka, Trac, Sutherland, Fromenteau, et al. in
press.)

• Section 5.2 examines the scalability of distribution embeddings on a synthetic problem of
predicting the number of components in a Gaussian mixture (Sutherland, J. B. Oliva, et al.
2016).

• Section 5.3 studies scene recognition in natural images. Section 5.3.1 uses full-Gram
matrix techniques with sift features (Póczos, Xiong, Sutherland, et al. 2012; Sutherland,
Xiong, et al. 2012); Section 5.3.2 uses distribution embeddings with deep learning-derived
features (Sutherland, J. B. Oliva, et al. 2016).

• Section 5.4 applies distribution regression to the photons observed by a small backpack-
sized sensor to identify potentially harmful sources of radiation (Jin et al. 2016).

5.1 Dark matter halo mass prediction

Galaxy clusters are the most massive gravitationally bound system in the universe, containing
up to hundreds of galaxies embedded in dark matter halos. Their properties, especially total
mass, are extremely useful for making inferences about fundamental cosmological parameters,
but because they are composed largely of dark matter, measuring that mass is difficult.

One classical method is that of Zwicky (1933). The virial theorem implies that the dispersion
of velocities in a stable system should be approximately related to the halo mass as a power law; by
measuring the Doppler shift of spectra from objects in the cluster, we can estimate the dispersion
of velocities in the direction along our line of sight, and thus predict the total mass. Zwicky’s
estimate famously led him to the first formal inference about the presence of dark matter.

Experimental evidence, however, points towards various complicating factors that disturb
this idealized relationship, and indeed results based on numerical simulation have shown that
the predictions from this power law relationship are not as accurate as we would hope. We

51

14.6 14.8 15.0 15.2 15.4
true log mass

14.0

14.2

14.4

14.6

14.8

15.0

15.2

15.4
pr

ed
ic

te
d

lo
g

m
as

s

(a) Power law results.

14.6 14.8 15.0 15.2 15.4
true log mass

14.0

14.2

14.4

14.6

14.8

15.0

15.2

15.4

pr
ed

ic
te

d
lo

g
m

as
s

(b) skl results on |vlos | features.

Figure 5.1: Performance for halo mass prediction, for power law (left) and distribution regression
(right) approaches. Each test projection is plotted with its true log mass on the horizontal axis
and prediction on the vertical axis. The black line shows perfect predictions; the yellow line gives
the median of the predicted points, the darker red region shows 68% scatter, and the lighter red
95% scatter.

can therefore consider using all information available in the line-of-sight velocity distribution by
directly learning a regression function from that distribution to total masses, based on data from
simulation.

We assembled a catalog of massive halos from the MultiDark mdpl simulation (Klypin et al.
2014). The catalog contains 5 028 unique halos. Since we use only line-of-sight velocities,
however, we can view each halo from multiple directions. For hyperparameter selection and
testing, we use lines of sight corresponding to three perpendicular directions; for training, we
additionally use projections sampled randomly from the unit sphere so as to oversample the rare
high-mass halos. Different projections of the same halo are always assigned to the same fold for
cross-validation. Ntampaka, Trac, Sutherland, Battaglia, et al. (2015) give a precise description
of the details.

We then use the skl estimator of Q.Wang et al. (2009) in a generalized rbf kernel on a simple
one-dimensional feature set containing only themagnitude of the line-of-sight velocity. Figure 5.1
shows results, establishing that the distribution regression technique greatly outperforms the power
law. The power law achieves a root mean squared error (rmse) of 0.180, whereas the distribution

52

learning method gets 0.118. Ntampaka, Trac, Sutherland, Battaglia, et al. (2015) also considered
other featurizations, which performed similarly or sometimes slightly better, and has a muchmore
thorough analysis of the results.

14.6 14.8 15.0 15.2 15.4
true log mass

14.0

14.2

14.4

14.6

14.8

15.0

15.2

15.4

pr
ed

ic
te

d
lo

g
m

as
s

(a) Power law results.

14.6 14.8 15.0 15.2 15.4
true log mass

14.0

14.2

14.4

14.6

14.8

15.0

15.2

15.4

pr
ed

ic
te

d
lo

g
m

as
s

(b) skl results on |vlos | features.

Figure 5.2: Performance for halo mass prediction with interlopers. Same format as Figure 5.1.

These results, however, differed from the true observational setting in one important way: we
assumed perfect knowledge of cluster memberships. In actual observations, we would not know
which objects belong to the cluster at hand, and which merely happen to appear nearby from
our Earth-bound observation point. Standard practice for application of the power law-based
approach is to employ complex systems for estimating which objects are gravitationally bound
and which are not. Distribution regression with the skl estimator, however, is far more robust to
the presence of these interlopers than the power law approach. In Ntampaka, Trac, Sutherland,
Fromenteau, et al. (in press), we modified the catalog to use a very simple heuristic for choosing
the members of a cluster and then applied the same prediction techniques. The results are shown
in Figure 5.2; the rmse of the power law is now an enormous 0.434, where distribution regression
is 0.177 — matching the performance of the power law predictions based on perfect knowledge
about cluster membership.

53

5.2 Mixture estimation
Statistical inference procedures can be viewed as functions from distributions to the reals; we can
therefore consider learning such procedures. Jitkrittum, Gretton, et al. (2015) trained mmd-based
gp regression for the messages computed by numerical integration in an expectation propagation
system, and saw substantial speedups by doing so. We, inspired by J. B. Oliva, Neiswanger, et al.
(2014), consider a problem where we not only obtain speedups over traditional algorithms, but
actually see superior results.

Specifically, we consider predicting the number of components in a Gaussian mixture. We
generate mixtures as follows:

1. Draw the number of components Yi for the ith distribution as Yi ∼ Unif{1, . . . , 10}.
2. For each component, select a mean µ(i)k ∼ Unif[−5, 5]2 and covariance Σ(i)k = a(i)k A(i)k A(i)Tk +

B(i)k , where a ∼ Unif[1, 4], A(i)k (u, v) ∼ Unif[−1, 1], and B(i)k is a diagonal 2 × 2 matrix with
B(i)k (u, u) ∼ Unif[0, 1].

3. Draw a sample X (i) from the equally-weighted mixture of these components.
An example distribution and sample from it is shown in Figure 5.3; predicting the number of
components is difficult even for humans.

Density with 9 Components

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Sample with 9 Components

Figure 5.3: Example of a mixture with 9 components and a sample from it of size n = 200.

We compare generalized rbf kernels based on themmd, L2, and hdd embeddings of Chapter 4
as well as the js embedding of Vedaldi and Zisserman (2012) and the full Grammatrix techniques
of Section 2.4 applied to the skl estimator of Q. Wang et al. (2009).

Figure 5.4 presents results for predicting with ridge regression the number of mixture com-
ponents Yi, given a varying number of sample sets Xi, with |Xi | ∈ {200, 800}; we use D = 5 000.
The hdd-based kernels achieve substantially lower error than the L2 and mmd kernels in both
cases. They also outperform the histogram kernels, especially with |Xi | = 200, and the kl kernel.
Note that fitting mixtures with em and selecting a number of components using aic (Akiake
1973) or bic (Schwarz 1978) performed much worse than regression; only aic with |Xi | = 800
outperformed a constant predictor of 5.5. Linear versions of the L2 and mmd kernels, based on
(2.2) instead of the (2.3) results shown, were also no better than the constant predictor.

54

RMSE
1.35 1.4 1.45 1.5 1.55

T
im

e
 (

c
p
u
-h

o
u
rs

)

10
0

10
1

10
2

10
3

HellingerJS

TV

L2
MMD

KL with kNN

Hist JS

(a) Samples of size 200.

RMSE
1.35 1.4 1.45 1.5 1.55

T
im

e
 (

c
p
u
-h

o
u
rs

)

10
0

10
1

10
2

10
3

Hellinger
JS

TV

L2
MMD

KL with kNN

Hist JS

(b) Samples of size 800.

Figure 5.4: Error and computation time for estimating the number of mixture components. The
three points on each line correspond to training set sizes of 4k, 8k, and 16k; error is on the fixed
test set of size 2k. Note the logarithmic scale on the time axis. The kl kernel for sets of size 800
and 16k training sets was too slow to run. aic-based predictions achieved rmses of 2.7 (for 200
samples) and 2.3 (for 800); bic errors were 3.8 and 2.7; a constant predictor of 5.5 had rmse of
2.8.

55

The hdd embeddings were more computationally expensive than the other embeddings, but
much less expensive than the kl kernel, which grows at least quadratically in the number of distri-
butions. Note that the histogram embeddings used an optimized C implementation by the paper’s
authors (Vedaldi and Fulkerson 2008), and the kl kernel used the optimized implementation of
skl-groups, whereas the hdd embeddings used a simple Matlab implementation.

5.3 Scene recognition
Representing images as a collection of local patches has a long and successful history in computer
vision.

5.3.1 sift features
The traditional approach selects a grid of patches, computes a hand-designed feature vector such
as sift (Lowe 2004) for each patch, possibly appends information about the location of the patch,
and then uses the bow representation for this set of features. We will first consider the use of
distributional distance kernels for this feature representation.

We present here results on the 8-class ot scene recognition dataset (A. Oliva and Torralba
2001); the original papers show results on additional image datasets. This dataset contains 8
outdoor scene categories, illustrated in Figure 5.5. There are 2 688 total images, each about
256 × 256 pixels.

Figure 5.5: The 8 ot categories: coast, forest, highway, inside city, mountain, open country,
street, tall building.

We extracted dense color sift features (Bosch et al. 2008) at six different bin sizes using
VLfeat (Vedaldi and Fulkerson 2008), resulting in about 1 815 feature vectors per image, each of
dimension 384. We used pca to reduce these to 53 dimensions, preserving 70% of the variance,
appended relative y coordinates, and standardized each dimension. (The paper contains precise
details.)

The results of 10 repeats of 10-fold cross-validation are shown in Figure 5.6. Each approach
uses a generalized rbf kernel. Here bow refers to vector quantization with k-means (k = 1 000),
plsa to the approach of Bosch et al. (2006), g-kl and g-ppk to the kl and Hellinger divergences
between Gaussians fit to the data, gmm-kl to the kl between Gaussian mixtures fit to the data
with expectation maximization (computing via Monte Carlo), pmk to the pyramid matching
kernel of Grauman and Darrell (2007), mmk to the mmk with a Gaussian base kernel, nph to the
nonparametric Hellinger estimate of Póczos, Xiong, Sutherland, et al. (2012), and npr- to the rα
estimates. The horizontal line shows the best previously reported result (Qin and Yung 2010),
though others have since slightly surpassed our results here.

56

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

B
oW

P
LS

A

G
−

K
L

G
−

P
P

K

G
M

M
−

K
L

P
M

K

M
M

K

N
P

H

N
P

R
−

0.
5

N
P

R
−

0.
7

N
P

R
−

0.
9

N
P

R
−

0.
99

A
cc

ur
ac

y

Figure 5.6: Accuracies on the ot dataset.

5.3.2 Deep features
For the last several years, however, modern computer vision has become overwhelmingly based
on deep neural networks. Image classification networks typically broadly follow the architecture
of Krizhevsky et al. (2012), i.e. several convolutional and pooling layers to extract complex
features of input images followed by one or two fully-connected layers to classify the images.

The activations are of shape n× h×w, where n is the number of filters; each unit corresponds
to an overlapping patch of the original image. We can therefore treat the activations as a sample
of size hw from an n-dimensional distribution. Wu et al. (2016) set accuracy records on several
scene classification datasets with a particular method of extracting features from distributions.
That method, however, resorts to ad-hoc statistics; we compare to our more principled alternatives
here.

We consider here the Scene-15 dataset (Lazebnik et al. 2006), which contains 4 485 natural
images in 15 categories based on location. (It is a superset of the ot dataset previously considered,
but is available only in grayscale.) We follow Wu et al. (2016) in extracting features from the
last convolutional layer of the imagenet-vgg-verydeep-16 model (Simonyan and Zisserman
2015). We replace that layer’s rectified linear activations with sigmoid squashing to [0, 1].1 After
resizing the images as did Wu et al. (2016), hw ranges from 400 to 1 000. There are 512 filter
dimensions; we concatenate features Â(p̂i) extracted from each independently.

We select 100 images from each class for training, and test on the remainder; Figure 5.7
shows the results of 10 random splits. We do not add any spatial information to the model, unlike

1 We used piecewise-linear weights such that 0 maps to 0.5, the 90th percentile of the positive observations maps
to 0.9, and the 10th percentile of the negative observations to 0.1, for each filter.

57

87%

88%

89%

90%

91%

92%

93%

D3 L2 HDDs
JS TV Hel

MMD

1
2
σ σ 2σ

Hist JS

10 25 50

Figure 5.7: Mean and standard deviation accuracies on the Scene-15 dataset. The left, black lines
show performance with linear features; the right, blue lines show generalized rbf embedding
features. D3 refers to the method of Wu et al. (2016). mmd bandwidths are relative to σ, the
median of pairwise distances; histogram methods use varying numbers of bins.

Wu et al. (2016); still, we match the best prior published performance of 91.59 ± 0.48, using a
deep network trained on a large scene classification dataset (Zhou et al. 2014). Adding spatial
information brought the D3 method of Wu et al. (2016) slightly above 92% accuracy; their best
hybrid method obtained 92.9%. Using these features, however, our methods match or beat mmd
and substantially outperform D3, L2, and the histogram embeddings.

5.4 Small-sensor detection of radiation sources

Preventing the proliferation of nuclear weapons and stopping nuclear terrorist attacks is one of the
prime responsibilities of security agencies. Tactical nuclear weapons are very portable and pose
great risks to urban environments. Radioactive isotopes stolen from medical uses pose another
threat. Although certain border check points can afford to require potential threats to go through
large and expensive detectors, mobile radiation detectors are vital for finding radiation sources
which either successfully passed through those choke points or managed to avoid them. In certain
situations, sensors carried by pedestrians in a backpack are a promising tactic for seeking out
these sources. Much of the time, however, the targets are relatively weak, potentially shielded,
and masked by highly-variable patterns of background radiation, especially in the cluttered urban
environments where dirty bombs or improperly stored radioactive material can cause the most
harm. We need, therefore, sophisticated systems which can detect radioactive sources in real time
while also maintaining a low false alarm rate.

With small sensors such as those considered here, the strong Compton effect makes observa-
tions of a photon’s energy very noisy: high-energy photons are often measured as if they were

58

much lower-energy. Combined with the fewer total photons received by the smaller sensor, this
means that existing detection algorithms are typically outperformed in this setting by a simple
threshold on the total number of photons observed, regardless of energy.

Instead, we can invert a probabilistic sensor responsemodel to obtain a distribution of possible
energies corresponding to each photon we observe. Given such a model, we use a simple Monte
Carlo technique: replace each of the n observed photon energies with 1 000 samples from the
distribution of possible true energies corresponding to the observed photon. We then model the
background distribution of radiation: for a given source of radiation, say Cs137, we pick certain
ranges of energy corresponding to that source (based on the signal-to-noise ratio compared to
typical background distributions). Then we model the expected behavior within those energies
by performing distribution regression from the other energy levels to the total number of photons
received in the high-snr energy levels. That is, we predict a total count ŷ of photons in the
high-snr energy levels based on the distribution of photon energies observed at all other energy
levels. The likelihood of source presence is then determined by the departure from the prediction:
y−ŷ√
ŷ
, where y is the observed number of photons in those regions and ŷ the prediction.
We simulated this process by taking background data from the RadMAP dataset (Quiter

et al. 2015), which comprises four hours of observations of the misti mobile detection vehicle
(Mitchell et al. 2009) in the Berkeley, CA area. We also obtained characterizations of source
spectra from collaborators Simon Labov and Karl Nelson at Lawrence Livermore. We generated
background data from the observations made in the relatively large-sensor RadMAP data by
simulating small-sensor measurements of it; we trained on background data, then evaluated on
both distinct background samples and samples where observations corresponding to the source
were injected. Details are given by Jin (2016).

Figure 5.8 shows results for detecting Cs137 sources at various classification thresholds. At
low false alarm rates, the most relevant regime since true sources are hopefully quite rare in
practice, the distribution regression method substantially outperforms the total counts algorithm;
as the false alarm rate is allowed to increase, total counts catches up but never outperforms
distribution regression.

Figure 5.9 shows the improvement in probability of detection over total counts at the 10−3 false
alarm rate across 40 different sources. The majority of sources are better-detected by distribution
regression than by total counts, some of them substantially so. Jin (2016) shows that distribution
regression performs better in cases where the source’s energy output is more concentrated in
certain energy levels, as might be expected. He also shows that the improvement is consistent
across different experimental setups, corresponding to varying the strength of the source and the
size of the sensor.

59

Figure 5.8: Receiver operating characteristic for different detection methods, with log-scale for
the false alarm rate. lmr refers to list mode regression, the distributional regression technique;
cew is censored energy windowing; pca to background subtraction via principal components
analysis; random shows the hypothetical performance of a random classifier.

Figure 5.9: Pairwise improvement in probability of detection at false alarm rate 0.001 for 40
different sources, sorted by the improvement.

60

Chapter 6

Choosing kernels for hypothesis tests

So far, we have assumed a particular kernel k : P × P → R and used it to learn a classification
function f : P → {−1, 1} or a regression function f : P → R. Although several of the kernels
we have studied give good empirical performance on a variety of problems, with complex forms
of data we must first choose an appropriate feature extraction pipeline (such as the sift or deep
network features for the images in Section 5.3). Even in simple situations, we often have a family
of kernels we expect to workwell but must pick an element of that family, e.g. bandwidth selection
in Gaussian rbf kernels. The field of kernel learning is an extensively studied but challenging
approach to this form of problem (Gönen and Alpaydın 2011; Z. Yang et al. 2015; J. B. Oliva,
Dubey, et al. 2016; Wilson et al. 2016). Though we could adapt those methods to distributional
settings, we will instead study here the related problem of two-sample testing.

Specifically, we observe samples X = {x1, . . . , xm} ∼ Pm and Y = {y1, . . . , ym} ∼ Qm.1 We
wish to test the null hypothesis H0 : P = Q versus the alternative H1 : P , Q. This problem
has many important applications including independence testing (Gretton, Bousquet, et al. 2005),
feature selection (Song et al. 2012), modeling of neuroimaging results (Tao and Feng 2016), data
integration and automated attribute matching (Gretton, Borgwardt, et al. 2012), and guiding the
training of generative models (Dziugaite et al. 2015; Y. Li et al. 2015).The problem is connected
to but in some senses easier than training a classifier to distinguish P from Q (Sriperumbudur,
Fukumizu, Gretton, Lanckriet, et al. 2009).

One standard approach to performing these tests is to choose a kernel k : X×X → R and then
use a test statistic based on an estimate of mmdk between the samples. In the standard hypothesis
testing framework, we choose a threshold cα as the (1 − α)th quantile of the distribution of the
test statistic under H0, and reject H0 if the statistic exceeds the threshold.

Many kernels, including the Gaussian rbf, are characteristic (Fukumizu et al. 2008), implying
that these tests are consistent: as m → ∞, the power (that is, the probability that we reject H0
when H1 holds) converges to 1. Thus, given unlimited data and computational budget, we can
choose k as an arbitrary characteristic kernel. In practice, however, the power of the test depends
greatly on the choice of kernel. For example, if we select k from the family of Gaussian rbf
kernels, a bandwidth too different from the scale on which P and Q differ will be unable to
efficiently detect those differences. We thus need a criterion with which to select a kernel from

1For simplicity, we assume here that the sample sizes are equal. The unequal case would not be fundamentally
more difficult.

61

some family.
Moreover, in high dimensions, even detecting shifts in themeans of distributions becomes very

difficult with general-purpose kernels (Ramdas, Reddi, et al. 2015). In structured domains like
images, simple kernels like the Gaussian rbf also approximate natural notions of similarity quite
poorly except when complex featurizations are first applied; this was the problem encountered by,
for example, Dziugaite et al. (2015). Thus, we would like to be able to choose complex kernels
capable of examining the distributions in ways particular to the domain at hand.

In this chapter, we develop a criterion for estimating the power of a kernel k on a particular
two-sample test. This criterion is differentiable, so that we can optimize it even when we use
complex structures such as deep networks within the kernel.

6.1 Estimators of mmd

Before discussing the kernel choice criterion and its antecedents, we need to briefly discuss some
different choices of estimators for mmd.

Pairwise estimators Perhaps the simplest estimator for mmd is as follows:

�mmd2
b(X,Y) :=

1
m2

m∑
i=1

m∑
j=1

k(Xi, X j) +
1

m2

m∑
i=1

m∑
j=1

k(Yi,Yj) −
2

m2

m∑
i=1

m∑
j=1

k(Xi,Yj).

This is the exact mmd between the empirical distributions of the samples X and Y . Note,
however, that the first two sums include terms of the form k(Xi, Xi); it turns out these bias
the estimator upwards. If we remove them, we get the minimum variance unbiased estimator
(Gretton, Borgwardt, et al. 2012):

�mmd2
u(X,Y) :=

1(m
2
) m∑

i=1

∑
j>i

k(Xi, X j) +
1(m
2
) m∑

i=1

∑
j>i

k(Yi,Yj) −
2

m2

m∑
i=1

m∑
j=1

k(Xi,Yj).

The following estimator is very similar: it has slightly higher variance, by ignoring terms of the
form k(Xi,Yi), but allows us to apply the theory of U-statistics (Serfling 1980, Chapter 5) more
directly to the estimator. Let Wi := (Xi,Yi). Then:

h(w,w′) := k(x, x′) + k(y, y′) − k(x, y′) − k(y′, x) (6.1)�mmd2
U(X,Y) :=

1(m
2
) ∑

i, j

h(Wi,W j).

These estimators are sometimes referred to as the “quadratic-time” estimators, because they
take O(m2) time to evaluate. It takes O(m) memory, because all samples must be stored in
memory.

62

Streaming estimators When we have a very large, perhaps unbounded, number of samples
available and wish to perform the best test available with a given computational budget, or perhaps
when performing the test under strict memory restrictions, the following streaming estimator is
useful. Assume for the sake of convenience that m is even.�mmd2

s (X,Y) :=
2
m

∑
i=1,3,5,...,m−1

h(Wi,Wi+1)

where we again use the h function from (6.1). Thus, we examine pairs of inputs at a time, and
once we have evaluated one pair we can forget it and move onto the next.

This estimator is useful in the streaming setting, and convenient to analyze because its terms
are independent. It takes O(m) time to compute, and O(1)memory. They are sometimes referred
to as the “linear-time estimators”; we avoid that term, however, because the embedding-based
estimators also take linear time.

When m is limited, however, the streaming estimator is far less efficient than the pairwise
estimators. Ramdas, Reddi, et al. (2015) show that even for testing against mean-shift alternatives,
the asymptotic power in the low-signal-to-noise, high-dimensional regime behaves likeΦ(αm) for
the pairwise estimator andΦ(α

√
m) for the streaming estimator, so that approximately m2 samples

are needed for the streaming estimator to have equivalent power to the quadratic estimator.

Embedding-based estimators This is the approach of Section 4.1: assuming we have an
approximate embedding k(x, y) ≈ z(x)Tz(y), and letting z̄(X) = 1

m
∑m

i=1 z(Xi), we simply have�mmd2
b(X,Y) ≈ ‖ z̄(X) − z̄(Y)‖2 .

We can also approximate the unbiased estimator, though it is not nearly as nice:

�mmk2
u(X, X) ≈ m2

m(m − 1)

(
‖ z̄(X)‖2 − 1

m2

m∑
i=1
‖z(Xi)‖2

)
�mmd2

u(X,Y) ≈ �mmk2
u(X, X) + �mmk2

u(Y,Y) − 2z̄(X)T z̄(Y).

When ‖z(x)‖ = 1, as with the shift-invariant embedding z̃ of (3.1), �mmk2
u(X, X) simplifies to

m
m−1 ‖ z̄(X)‖2−

1
m−1 . For the non-shift-invariant embedding z̆ (3.2), this is true only in expectation.

We could similarly approximate �mmd2
U if we wished, by subtracting off the terms correspond-

ing to z(Xi)Tz(Yi).
Chwialkowski et al. (2015) studied the performance of two-sample tests using these estimators,

and found that although their performance can be surprisingly poor in certain situations (their
Proposition 1), a related class of tests using similar embeddings performs well.

6.2 Estimators of the variance of �mmd2

Some of the kernel choice criteria we will develop shortly will require estimates of the variance
of �mmd2.

63

Streaming estimator The asymptotic distribution for �mmd2
s is simple: because it is an average

of independent random variables the central limit theorem tells us that under either the null or
the alternative, �mmd2

s − mmd2√
V (m)s

D→ N(0, 1) (6.2)

where
V (m)s :=

m
2

(
Ew,w′ h2(w,w′) −

[
Ew,w′ h(w,w′)

]2
)
. (6.3)

This can be estimated in a streaming fashion as:

V̂ (m)s :=
4
m

∑
i=1,5,9,...,m−3

(h(Wi,Wi+1) − h(Wi+2,Wi+3))2 . (6.4)

U-estimator The asymptotic distribution for �mmd2
U is complex under H0, and we will resort to

permutation tests to determine the test threshold. Under H1, however, �mmd2
U is asymptotically

normal (Gretton, Borgwardt, et al. 2012):

1√
V (m)U

(�mmd2
U − mmd2

)
D→ N(0, 1), (6.5)

with

V (m)U :=
4(m − 2)
m(m − 1) ζ1 +

2
m(m − 1) ζ2, (6.6)

where ζ1 := Varv[Ev′[h(v, v′)]] and ζ2 := Varv,v′[h(v, v′)]. This is established for U-statistics
in general by Serfling (1980, Chapter 5); the analysis here was partially carried out for mmd in
particular in Appendix A of Bounliphone et al. (2015). Using ϕ to denote the feature map of the
kernel k and µx = Ex ϕ(x), µy = Ey ϕ(y), we have that:

ζ1 = Ev
[
Ev′[h(v, v′)]2

]
− mmd2

= Ex,y

[(
〈ϕ(x), µx〉 + 〈ϕ(y), µy〉 − 〈ϕ(x), µy〉 − 〈µx, ϕ(y)〉

)2
]
− mmd2 .

Expanding the square, we get an (unpleasant) expression in terms of expectations. ζ2 can be
calculated similarly.

We can estimate these terms based on a sample as follows. Let KX X :=
[
k(Xi, X j)

]
i j ,

KYY :=
[
k(Yi,Yj)

]
i j , KXY :=

[
k(Xi,Yj)

]
i j , and 1 refer to the all-ones vector of length m. Let K̃X X ,

K̃YY , K̃XY be the kernel matrices with diagonal elements set to 0. Let ‖·‖F denote the Frobenius

64

norm. Then:

ζ̂1 =
1

m(m − 1)(m − 2)

(
1TK̃X X K̃X X1 − ‖K̃X X ‖2F

)
−

(
1

m(m − 1)1
TK̃X X1

)2

− 2
m2(m − 1)

1TK̃X X KXY 1 +
2

m3(m − 1)
1TK̃X X11TKXY 1

+
1

m(m − 1)(m − 2)

(
1TK̃YY K̃YY 1 − ‖K̃YY ‖2F

)
−

(
1

m(m − 1)1
TK̃YY 1

)2

− 2
m2(m − 1)

1TK̃YY KT
XY 1 +

2
m3(m − 1)

1TK̃YY 11TKXY 1

+
1

m2(m − 1)

(
1TKT

XY KXY 1 − ‖KXY ‖2F
)
−2

(
1

m2 1TKXY 1
)2
+

1
m2(m − 1)

(
1TKXY KT

XY 1 − ‖KXY ‖2F
)
,

and

ζ̂2 =
1

m(m − 1)

K̃X X + K̃YY − K̃XY − K̃T

XY

2
F .

We then define

V̂ (m)U :=

{ 4(m−2)
m(m−1) ζ̂1 +

2
m(m−1) ζ̂2 when 4(m−2)

m(m−1) ζ̂1 +
2

m(m−1) ζ̂2 > 0
2

m(m−1) ζ̂2 otherwise
. (6.7)

6.3 mmd kernel choice criteria

We now suppose that we have some class of kernels K, and would like to choose an element
k ∈ K with which to conduct our test.

In general, we will divide the observed data X andY into two partitions: one “training sample”
to choose the kernel, and one “testing sample” to evaluate the test. Doing so loses some statistical
power, but the test statistic distribution becomes quite complicated when the kernel can depend
on the data.

6.3.1 Median heuristic

Perhaps the most common criterion for choosing k applies only to the case whereK is the family
of Gaussian rbf kernels with different bandwidths. This heuristic proposes to set σ to the median
pairwise distance in the joint sample X ∪ Y ; despite its simplicity, it performs well on many
problems.

Reddi et al. (2014) studied its theoretical performance in high-dimensional problems; Ramdas,
Reddi, et al. (2015) provide some theoretical justification in the particular case of testing for mean-
difference alternatives in the high-dimensional regime.

65

6.3.2 Marginal likelihood maximization

Flaxman, Sejdinovic, et al. (2016) propose a Bayesian model for learning kernel embeddings,
effectively adding a Gaussian Process prior to the estimator of the mean embedding. Doing
so allows for a fully-Bayesian treatment of learning the corresponding kernel, and they give an
example of using learned kernels on testing problems. The kernel selection criterion, however,
is fully unsupervised: it can only give the kernel choice that best describes the joint data, not
one that best distinguishes between the two datasets. In this respect, it is somewhat similar to the
median heuristic, though it has some ability to recognize when the data vary on multiple scales.

6.3.3 Maximizing mmd

Sriperumbudur, Fukumizu, Gretton, Lanckriet, et al. (2009) proposed choosing the kernel k
which maximizes mmdk(X,Y). They showed that, for certain classes of kernels K, the resulting
test is consistent; additionally, it performs well empirically on many problems.

It does not directly optimize the test power, however: increasing the mmd estimate often also
increases its variance and thus the required test threshold to exceed.

6.3.4 Cross-validation of loss

Gretton, Sriperumbudur, et al. (2012) propose as a method of comparison to choose kernel values
via cross-validation, following Sugiyama et al. (2011), from the “classifier” perspective.

First, Sriperumbudur, Fukumizu, Gretton, Lanckriet, et al. (2009) establishes the following
interpretation of mmd as a classifier: first, define the witness function as f := µP − µQ, i.e.

f (t) :=
1
m

m∑
i=1

k(xi, t) −
1
m

m∑
i=1

k(yi, t).

Note that f := arg sup f ′∈Hk
EX∼P f ′(X) − EY∼Q f ′(Y), using the definiton of mmd as an integral

probability metric. Then, we can view sign(f) as a Parzen window classifier trained with the
points from X as positives and from Y as negatives. The mmd is then the negation of the linear
loss function for that classifier.

Following this view of mmd, one can choose a kernel k by choosing the best Parzen window
classifier via cross-validation. That is, divide the data into K folds, and then for each fold, learn
a witness function f on the other K − 1 folds and evaluate its linear loss on the remaining fold.
Optionally, repeat this process for several splits. Choose the kernel with the lowest linear loss.

This process requires evaluating each training set against the validation set, so that even when
the streaming estimator is used, quadratically many comparisons must be made.

This method is actually quite similar to choosing the kernel via maximizing the mmd, but
with a cross-validated estimate of mmd rather than evaluating on only one set. Strathmann (2012)
found that, in certain problems, this approach outperformed maximizing the mmd.

66

6.3.5 Cross-validation of power
Strathmann (2012) proposes another method for applying cross-validation to kernel choice:
directly estimate the power via cross-validation. Split the data into K folds, repeatedly performing
a two-sample test on K − 1 of the folds (and ignoring the other fold). Repeat the data-splitting
process. Then, choose the kernel which rejected the null distribution most often.

This approach can be performed in linear timewhen using �mmd2
s , andwas found by Strathmann

(2012) to outperform cross-validation based on the loss, and sometimes the t-statistic approach
discussed shortly, in the streaming setting.

6.3.6 Embedding-based Hotelling stastistic
Jitkrittum, Szabó, et al. (2016) showed that one can perform kernel selection in the tests of
Chwialkowski et al. (2015) simply by maximizing the test statistic.

6.3.7 Streaming t-statistic

Gretton, Sriperumbudur, et al. (2012) analyzed the problem of choosing a kernel for �mmd2
s . Recall

from (6.2) that
1

V (m)s

(�mmd2
s − mmd2

)
D→ N(0, 1),

using the variance V (m)s from (6.3), which is the same under the null and the alternative. Thus,
the asymptotic test threshold for the streaming estimator is simply

cα :=
√

V (m)s Φ
−1(1 − α),

where Φ is the cdf of a standard normal random variable. Since V (m)s is unknown in practice, we
instead use the estimator of (6.4):

ĉα :=
√

V̂ (m)s Φ
−1(1 − α).

The asympotic power of such a test is, using PrH1 to denote probability under the alternative H1,

PrH1

(�mmd2
s > ĉα

)
= PrH1

©­­«
�mmd2

s − mmd2√
V (m)s

>
ĉα − mmd2√

V (m)s

ª®®¬
= PrH1

©­­«
�mmd2

s − mmd2√
V (m)s

>

√√
V̂ (m)s

V (m)s

Φ
−1(1 − α) − mmd2√

V (m)s

ª®®¬
→ 1 − Φ

©­­«Φ−1(1 − α) − mmd2√
V (m)s

ª®®¬ .
67

The power is thus asymptotically maximized when mmd2/
√

V (m)s is maximal. In practice, we

optimize �mmd2
s/

√
V̂ (m)s .

We will call this quantity ts := mmd2/
√

V (m)s , and its estimator t̂s := �mmd2
s/

√
V̂ (m)s , as it

follows the form of a t-statistic for mmd2
s .

Gretton, Sriperumbudur, et al. (2012, Theorem 1) proved that, when considering nonnegative
combinations of a fixed set of base kernels, the maximum of the ratio estimate approaches the

maximum of the ratio at a rate OP

(
m−

1
3

)
, and that the kernel achieving the maximum ratio

estimate converges in probability to the kernel achieving the maximum ratio.

6.3.8 Pairwise t-statistic

We can in fact make a similar argument for �mmd2
U .

Under H0, m �mmd2
U converges in distribution to an infinite mixture of χ2 random variables,

with weights depending on the (unknown) distributions P andQ as well as k (Gretton, Borgwardt,
et al. 2012); cα is thus difficult to evaluate in closed form. We can, however, estimate a data-
dependent threshold ĉα according to a permutation test: randomly partition the data points X ∪Y
into X′ and Y ′ many times, evaluate �mmd2

U(X
′,Y ′) to approximate the null distribution, and then

estimate the (1 − α)th quantile cα from these samples.2
Under the alternative H1, however, recall from (6.5) that the distribution is asymptotically

normal: �mmd2
U − mmd2√

V (m)U

D→ N(0, 1)

using V (m)U from (6.6). We can thus compute the test power as:

PrH1

(
m �mmd2

U > ĉα
)
= PrH1

©­­«
�mmd2

U − mmd2√
V (m)U

>
ĉα

m
√

V (m)U

− mmd2√
V (m)U

ª®®¬
→ 1 − Φ

©­­«
cα

m
√

V (m)U

− mmd2√
V (m)U

ª®®¬ .
Defining

τU :=
mmd2√

V (m)U

− cα

m
√

V (m)U

and τ̂U :=
�mmd2

U√
V̂ (m)U

− cα

m
√

V̂ (m)U

,

2Gretton, Fukumizu, et al. (2009) proposed a way to estimate cα without permutation tests by examining the
eigenvalues of the data Gram matrix, but a recent cache-efficent implementation of permutation tests in the Shogun
toolbox (Sonnenburg et al. 2010) is actually significantly quicker to compute than this estimate. We thus only
consider permutation tests here.

68

we see that the power is maximal when τU is maximal. In practice, we maximize its estimator τ̂U .
But note that cα and mmd are constant as the sample size m increases, and V (m)U is O

(
1
m

)
. For

large m, therefore, the first term dominates the second, and it suffices to maximize just the first
term

tU :=
mmd2√

V (m)U

or its estimator t̂U :=
�mmd2

U√
V̂ (m)U

,

which (appealingly) is of the same form as the t-statistic in the streaming setting. When the test is
on the cusp of rejection, however, ĉα ≈ m �mmd2, and thus the two terms are of similar magnitude;
additionally, using tU can lead to asymptotic power predictions no smaller than 1

2 . We will see
in the experiments section that for simple problems, while tU gives inaccurate estimates of the
asymptotic power but τU’s are reasonable, the maximum of t̂U often coincides with that of τ̂U .

Gradients As mentioned previously, complex kernel functions are far more powerful in some
domains than simple families such as Gaussian rbfs. We would like to be able to choose
kernels by, for example, passing inputs through a deep network to learn a representation, and
then comparing those learned representations with a standard kernel. It is far easier to optimize
over such complex kernel classes, however, when gradient information is available. It is thus
important to note that t̂U is differentiable in k: �mmd2

U is an average of applications of k, and V̂ (m)U
(6.7) is based on terms of a similar form.3

In fact, we can also obtain stochastic gradients of ĉα with respect to k. Let Π = {π1, . . . , πN }
denote the set of permutations applied to the data, and X′π,Y

′
π the result of applying one of those per-

mutations, so that our approximate sample from the null distribution is {ηπi :=�mmd2
U(X

′
πi,Y

′
πi)}

N
i=1.

Let J be the nearest integer to (1 − α)N , and j be the index of the permutation achieving the Jth
largest ηπ value. Then ĉ(Π)α = ηπj is the test threshold corresponding to the set of permutations
Π. The gradient of ĉ(Π)α by k is simply the gradient by k of ηπj . But, assuming that �mmdU is
Lipschitz in the parameterization of k, the Leibniz rule tells us that

EΠ

[
∇k ĉ(Π)α

]
= ∇k

[
EΠ ĉ(Π)α

]
= ∇k ĉα.

6.4 Experiments

We will now study the effectiveness of maximizing τ̂U and t̂U versus that of maximizing the mmd
on synthetic problems. Further experiments on more realistic problems are left to future work.

We do simple bandwidth selection for Gaussian rbf kernels. For each pair of distributions,
we draw 100 samples (X,Y) and compute the criteria and run a permutation test for each of 30
logarithmically-spaced values for σ from 10−1.7 to 101.7. We use 1 000 permutations in the tests,
which are implemented in the feature/bigtest branch of Shogun (Sonnenburg et al. 2010).

3The gradient is quite long to write out, but it is amenable to automatic differentiation e.g. in Theano (The Theano
Development Team et al. 2016).

69

All tests use an allowed false positive rate of 10%. In the results, “best choice” refers to the
bandwidth with the maximal empirical power.

6.4.1 Same Gaussian
In this situation, the null distribution holds: P = Q = N(0, I). Figure 6.1 verifies that the stated
false positive level is adhered to by each proposed method.

Note that “best choice” here gives a test slightly larger than desired, because it is chosen to
maximize the rejection rate on the same datasets as it is plotted on.

0 10 20 30 40 50
d

0.00

0.05

0.10

0.15

0.20

R
ej

ec
tio

n
ra

te

best choice
MMD

t̂U

τ̂U

(a) m = 100

0 10 20 30 40 50
d

0.00

0.05

0.10

0.15

0.20

R
ej

ec
tio

n
ra

te

best choice
MMD

t̂U

τ̂U

(b) m = 500

Figure 6.1: Same Gaussian problem: mean and standard deviation of test powers for increasing
dimension.

6.4.2 Gaussian variance difference

Here we test P = N(0, I) versus Q = N(0, I + e1eT
1). (In Q, the variance of the first dimension

is twice that in the other dimensions.) Figure 6.2 shows results; maximizing the mmd actually
slightly outperforms maximizing t̂U or τ̂U .

Figure 6.3 breaks down the difference in the case d = 2, m = 100. We can see that
maximizing the mmd usually picked banwdiths near the peak power, whereas t̂U and τ̂U often
picked bandwidths either somewhat larger than the peak or occasionally much smaller. Figure 6.4
shows the criteria used to select those bandwidths, including their asymptotic values based on
the true mmd and the asymptotic variance of the �mmd2

U estimator of normal distributions. (For
τU , we used the mean value of the permutation-based ĉα across repeated draws from the dataset
for the asymptotic value of cα.)

We can see here that the difference in performance is not just a poor variance estimate, but
that the asymptotic values of τU and especially tU are less suited to bandwidth selection here
than simply maximizing the mmd. Given the lack of theory about the power of tests based on
maximizing the mmd, this difference is somewhat difficult to explain further.

70

0 10 20 30 40 50
d

0.0

0.2

0.4

0.6

0.8

1.0
R

ej
ec

tio
n

ra
te

best choice
MMD

t̂U

τ̂U

(a) m = 100

0 10 20 30 40 50
d

0.0

0.2

0.4

0.6

0.8

1.0

R
ej

ec
tio

n
ra

te

best choice
MMD

t̂U

τ̂U

(b) m = 500

Figure 6.2: Gaussian variance difference problem: mean and standard deviation of test powers
for increasing dimension.

10­1 100 101

MMD

10­1 100 101

t̂U

10­1 100 101

τ̂U

Figure 6.3: Chosen bandwidths for the three methods for Gaussian variance difference for d = 2,
m = 100. Vertical gray lines represent the candidate bandwidths, in log scale; bars show the
number of times each bandwidth was chosen. The gray dashed line shows the empirical power
of each bandwidth, so that e.g. the central bandwidth 1 achieved power about 0.7.

10­1 100 101

σ

0.01

0.00

0.01

0.02

0.03

0.04

(a) mmd2
U

10­1 100 101

σ

2

1

0

1

2

3

(b) tU

10­1 100 101

σ

4

3

2

1

0

1

2

(c) τU

Figure 6.4: The various critera for the Gaussian variance difference problem. In each figure,
the blue line shows the median of the estimator, darker blue region 68% scatter, and lighter
blue region 95% scatter; thick red lines show the asymptotic value of the quantity in question.
On a separate vertical scale (not labeled), gray dashed lines show the empirical power of each
bandwidth, so that e.g. the central bandwidth 1 achieved power about 0.7.

71

6.4.3 Blobs
We now consider the blobs problem of Gretton, Sriperumbudur, et al. (2012): P is a 5 × 5 grid
of two-dimensional standard normal components, with spacing 10 between the centers. Q is laid

out identically, but each mixture component isN
(
µ,

[
1 ε−1

ε+1
ε−1
ε+1 1

])
, so that the ratio of eigenvalues

in its variance is ε. Note that at ε = 1, P = Q. An example grid is shown in Figure 6.5.

Figure 6.5: A sample from the Blobs problem, with m = 500, ε = 6.

Figure 6.6 shows results; here, t̂U and τ̂U each outperform mmd, especially when m = 500,
and are nearly optimal.

We again take a closer look at the criteria, here where ε = 6,m = 500. Figure 6.7 shows
the selected bandwidths; we can see that in this case, maximizing the mmd usually either picked
bandwidths slightly too large or sometimes much too large, whereas t̂U and τ̂U both consistently
selected bandwidths around the peak power.

Figure 6.8 shows the criteria used to select those bandwidths. Here, although asymptotic
values of the variance are available, 500 samples (on expectation, only 20 per blob) is not enough
for it to converge well to its asymptotic value. Thus we use the empirical variance of the mmd
estimator across our repeated dataset samples instead. We can see that in this case, although the
true mmd peak is not too bad (it is only a little large), for large bandwidths the mmd estimator has
a very high variance, and thus maximizing the mmd often picks a very largue bandwidth value.
tU and τU , by contrast, both asymptotically peak in the correct location and their estimates do
not vary too widely other than in the cases where the mmd blows up, in which case its variance
increases even more and so an already-bad location only seems worse than it really is.

72

0 2 4 6 8 10
ε

0.0

0.2

0.4

0.6

0.8

1.0
R

ej
ec

tio
n

ra
te

best choice
MMD

t̂U

τ̂U

(a) m = 100

0 2 4 6 8 10
ε

0.0

0.2

0.4

0.6

0.8

1.0

R
ej

ec
tio

n
ra

te

best choice
MMD

t̂U

τ̂U

(b) m = 500

Figure 6.6: Blobs problem: mean and standard deviation of test powers for increasing eigenvalue
ratio.

10­1 100 101

MMD

10­1 100 101

t̂U

10­1 100 101

τ̂U

Figure 6.7: Chosen bandwidths for the three methods for the Blobs problem with ε = 6, m = 500.
Figures as in Figure 6.3.

10­1 100 101

σ

0.002

0.001

0.000

0.001

0.002

0.003

0.004

(a) mmd2
U

10­1 100 101

σ

4

3

2

1

0

1

2

3

4

(b) tU

10­1 100 101

σ

10

8

6

4

2

0

2

4

(c) τU

Figure 6.8: The various critera for the blobs problem. Figures as in Figure 6.4, except that red
lines use empirical variance across the samples rather than asymptotics.

73

74

Chapter 7

Active search for patterns

We will now change focus slightly, and consider another problem setting in which collections of
data play a key role.

Consider a function containing interesting patterns that are defined only over a region of
space. For example, if you view the direction of wind as a function of geographical location,
it defines fronts, vortices, and other weather patterns, but those patterns are defined only in the
aggregate. If we can only measure the direction and strength of the wind at point locations, we
then need to infer the presence of patterns over broader spatial regions.

Many other real applications also share this feature. For example, an autonomous environ-
mental monitoring vehicle with limited onboard sensors needs to strategically plan routes around
an area to detect harmful plume patterns on a global scale (Valada et al. 2012). In astronomy,
projects like the Sloan Digital Sky Survey (Eisenstein et al. 2011) search the sky for large-scale
objects such as galaxy clusters. Biologists investigating rare species of animals must find the
ranges where they are located and their migration patterns (Brown et al. 2014). We aim to use
active learning to search for such global patterns using as few local measurements as possible.

This bears some resemblance to the artistic technique known as pointillism, where the painter
creates small and distinct dots each of a single color, but when viewed as a whole they reveal
a scene. Pointillist paintings typically use a denser covering of the canvas, but in our setting,
“observing a dot” is expensive. Where should we make these observations in order to uncover
interesting regions as quickly as possible?

We propose a probabilistic solution to this problem, known as active pointillistic pattern
search (apps). We assume we are given a predefined list of candidate regions and a classifier
that estimates the probability that a given region fits the desired pattern. Our goal is then to
find as many regions that are highly likely to match the pattern as we can. We accomplish this
by sequentially selecting point locations to observe so as to approximately maximize expected
reward.

7.1 Related work

Our concept of active pattern search falls under the broad category of active learning (Settles
2012), where we seek to sequentially build a training set to achieve some goal as fast as possible.

75

Our focus solely on finding positive (“interesting”) regions, rather than attempting to learn to
discriminate accurately between positives and negatives, is similar to the problem previously
described as active search (Garnett et al. 2012). In previous work on active search, however, it
has been assumed that the labels of interest can be revealed directly. In active pattern search, on
the other hand, the labels are never revealed but must be inferred via a provided classifier. This
indirection increases the difficulty of the search task considerably.

In Bayesian optimization (Osborne et al. 2009; Brochu et al. 2010), we seek to find the global
optimum of an expensive black-box function. Bayesian optimization provides a model-based
approach where a Gaussian process (gp) prior is placed on the objective function, from which a
simpler acquisition function is derived and optimized to drive the selection procedure. Tesch et al.
(2013) extend this idea to optimizing a latent function from binary observations. Our proposed
active pattern search also uses a Gaussian process prior tomodel the unknown underlying function
and derives an acquisition function from it, but differs in that we seek to identify entire regions
of interest, rather than finding a single optimal value.

Another intimately related problem setup is that of multi-arm bandits (Auer et al. 2002), with
more focus on analysis of the cumulative reward over all function evaluations. Originally, the
goal was to maximize the expectation of a random function on a discrete set; a variant considers
the optimization in continuous domains (Kroemer et al. 2010; Niranjan et al. 2010). However,
like Bayesian optimization, multi-arm bandit problems usually do not consider discriminating a
regional pattern.

Level set estimation (Low et al. 2012; Gotovos et al. 2013), rather than finding optima of a
function, seeks to select observations so as to best discriminate the portions of a function above
and below a given threshold. This goal, though related to ours, aims to directly map a portion of
the function on the input space rather than seeking out instances of patterns. lse algorithms can
be used to attempt to find some simple types of patterns, e.g. areas with high mean.

apps can be viewed as a generalization of active area search (aas) (Y. Ma, Garnett, et al.
2014), which is a considerably simpler version of active search for region-based labels. In aas,
the label of a region is only determined by whether its mean value exceeds some threshold.
apps allows for arbitrary classifiers rather than simple thresholds, and in some cases its expected
reward can still be computed analytically. This extends the usefulness of this class of algorithms
considerably.

7.2 Problem formulation

There are three key components of the apps framework: a function f which maps input covariates
to data observations, a predetermined set of regions wherein instances of function patterns are
expected, and a classifier that evaluates the salience of the pattern of function values in each
region. We define f : Rm → R to be the function of interest,1 which can be observed at any
location x ∈ Rm to reveal a noisy observation z. We assume the observation model z = f (x)+ ε,
where ε iid∼ N(0, σ2). We suppose that a set of regions where matching patterns might be found is

1For clarity, in this and the next sectionswewill focus on scalar-valued functions f . The extension to vector-valued
functions is straightforward; we consider such a case in the experiments.

76

predefined, and will denote these {g1, . . . , gk}; gi ⊂ Rm. Finally, for each region g, we assume a
classifier hg which evaluates f on g and returns the probability that it matches the target pattern,
which we call salience: hg(f) = h(f ; g) ∈ [0, 1], where the mathematical interpretation of hg is
similar to a functional of f . Classifier forms are typically the same for all regions with different
parameters.

Unfortunately, in general, we will have little knowledge about f other than the limited
observations made at our selected set of points. Classifiers which take functional inputs (such as
our assumed hg) generally do not account for uncertainty in their inputs, which should be inversely
related to the number of observed data points. We thus consider the probability that hg(f) is
high enough, marginalized across the range of functions f that might match our observations.
As is common in nonparametric Bayesian modeling, we model f with a Gaussian process (gp)
prior; we assume that hyperparameters, including prior mean and covariance functions, are set
by domain experts. Given a dataset D = (X, z), we define

f ∼ GP(µ, κ); f | D ∼ GP(µ f |D, κ f |D),

to be a given gp prior and its posterior conditioned onD, respectively. Thus, since f is a random
variable, we can obtain the marginal probability that g is salient,

Tg(D) = E f
[
hg(f) | D

]
. (7.1)

We then define a matching region as one whose marginal probability passes a given threshold θ.
Unit reward is assigned to each matching region g:

rg(D) B 1
{
Tg(D) > θ

}
.

We make two assumptions regarding the interactive procedure. The first is that once a region
is flagged as potentially matching (i.e., its marginal probability exceeds θ), it will be immediately
flagged for further review and no longer considered during the run. The second is that the data
resulting from this investigation will not be made immediately available during the course of the
algorithm; rather the classifiers hg will be trained offline. We consider both of these assumptions
to be reasonable when the cost of investigation is relatively high and the investigation collects
different types of data. For example, if the algorithm is being used to run autonomous sensors
and scientists collect separate data to follow up on a matching region, these assumptions allow the
autonomous sensors to continue in parallel with the human intervention, and avoid the substantial
complexity of incorporating a completely different modality of data into the modeling process.

Garnett et al. (2012) attempt to maximize their reward at the end of a fixed number of queries.
Directly optimizing that goal involves an exponential lookahead process. However, this can
be approximated by a greedy search like the one we perform. Similarly, one could attempt to
maximize the area under the recall curve through the search process. This also requires an
intractable amount of computation which is often replaced with a greedy search.

We now write down the greedy criterion our algorithm seeks to optimize. DefineDt to be the
already collected (noisy) observations of f before time step t and Gt = {g : Tg(Dτ) ≤ θ, ∀τ ≤ t}
to be the set of remaining search subjects, those regions which are not yet confidently salient; we

77

aim to greedily maximize the sum of rewards over all the regions in Gt in expectation,

max
x∗
E


∑
g∈Gt

rg(D∗)

������ x∗,Dt

 , (7.2)

where D∗ is the (random) dataset augmented with x∗.
This criterion satisfies a desirable property: when the regions are uncoupled and the classifier

hg is probit-linear, the point that maximizes (7.2) in each region also minimizes the variance of
that region’s label (Section 7.3.2).

7.3 Method
For the aim of maximizing the greedy expected reward of finding matching patterns (7.2), a more
careful examination of the gp model can yield a straightforward sampling method. This method,
in the following, turns out to be quite useful in apps problems with rather complex classifiers.
Section 7.3.1 introduces an analytical solution in an important special case.

At each step, given Dt = (X, z) as the set of any already collected (noisy) observations of f
and x∗ as any potential input location, we can assume the distribution of possible observations
z∗ = f (x∗) + ε as

z∗ | x∗,Dt ∼ N
(
µ f |Dt

(x∗), κ f |Dt
(x∗, x∗) + σ2) . (7.3)

Conditioned on an observation value z∗, we can update our gp model to include the new observa-
tion (x∗, z∗), which further affects the marginal distribution of region classifier outputs and thus
the probability this region is matching. WithD∗ = Dt ∪

{
(x∗, z∗)

}
as the updated dataset, we use

rg(D∗) to be the updated reward of region g. The utility of this proposed location x∗ for region
g is thus measured by the expected reward function, marginalizing out the unknown observation
value z∗:

ug(x∗,Dt) B Ez∗
[
rg(D∗) | x∗,Dt

]
(7.4)

= Pr
{
Tg(D∗) > θ | x∗,Dt

}
. (7.5)

Finally, in active pointillistic pattern search, we select the next observation location x∗ by consid-
ering its expected reward over the remaining regions:

x∗ = argmax
x

u(x,Dt) = argmax
x

∑
g∈Gt

ug(x,Dt). (7.6)

For the most general definition of the region classifier hg, the basic algorithm is to compute
(7.4) and thus (7.6) via sampling at two stages:

1. Sample the outer variable z∗ in (7.4) according to (7.3).
2. For every draw of z∗, sample enough of (f | D∗) to compute the marginal reward Tg(D∗)

in (7.1), in order to obtain one draw for the expectation in (7.4).
To speed up the process, we can evaluate (7.6) for a subset of possible x∗ values, as long as a

good action is likely to be contained in the set.

78

7.3.1 Analytic expected utility for functional probit models
For a broad family of classifiers, those formed by a probit link function of any affine functional
of f (7.7), we can compute both (7.1) and (7.5) analytically. Thus, we can efficiently perform
exact searches for potentially complex patterns defined by probit-linear classifiers.

Suppose we have observed dataD, yielding the posterior p(f | D) = GP(f ; µ f |D, κ f |D). Let
Lg be a linear functional, Lg : f 7→ Lg f ∈ R, associated with region g. The family of classifiers
is:

hg(f) = Φ(Lg f + bg), (7.7)

where Φ is the cumulative distribution function of the standard normal and b ∈ R is an offset.
Two examples of such functionals are:

• Lg f : f 7→ c
|g |

∫
g

f (x) dx, where |g | is the volume of region g ⊂ Rm. Here Lg f is the mean
value of f on g, scaled by an arbitrary c ∈ R. When |c | → ∞ the model becomes quite
similar to that of Y. Ma, Garnett, et al. (2014).

• Lg f : f 7→ wT f (Ξ), where Ξ is a finite set of fixed points {ξi} |Ξ|i=1, and w ∈ R|Ξ| is an
arbitrary vector. This mapping applies a linear classifier to a fixed, discrete set of values
from f .

As Gaussian processes are closed under linear transformations, L f + b has a normal distri-
bution:

L f + b ∼ N(Lµ f |D + b, L2κ f |D),

where L2 is the bilinear form defined by L2κ := L
[
Lκ(x, ·)

]
= L

[
Lκ(·, x′)

]
. For the specific

cases above, we can explicitly calculate the mean and variance of L f + b: for L f = wT f (Ξ)

E f [L f | D] = wTµ f |D(Ξ) Var f [L f | D] = wTκ f |D(Ξ,Ξ)w

and for L f = c
|g |

∫
g

f (x) dx

E f [L f | D] = c
|g |

∫
g

µ f |D(x) dx Var f [L f | D] = c2

|g |2

∬
g2
κ f |D(x, x′) dx dx′.

For certain classes of covariance functions κ, the above integrals are tractable; they occur when
estimating integrals via Bayesian quadrature, also known as Bayesian Monte Carlo (Rasmussen
and Ghahramani 2003).

Then we have the marginal probability that g is salient (7.1) in closed form:

Tg(D) = E f
[
hg(f) | D

]
= E f

[
Φ(L f + b) | D

]
= Φ

©­­«
Lµ f |D + b√
1 + L2κ f |D

ª®®¬ ,
using the fact that if A ∼ N(µ, σ2), then E[Φ(A)] = Φ

(
µ/
√

1 + σ2
)
.

79

Now we turn to the expected utility of a new observation (7.5). Consider a potential observa-
tion location x∗, and again define D∗ := D ∪

{
(x∗, z∗)

}
. Then ug(x∗,D) is:

ug(x∗,D) = Pr

Φ
©­­«

Lµ f |D∗ + b√
1 + L2κ f |D∗

ª®®¬ > θ

������� x∗,D


= Pr


Lµ f |D∗ + b√
1 + L2κ f |D∗

> Φ−1(θ)

������� x∗,D
 , (7.8)

where Φ−1 is the inverse of the normal cdf.
Letting the variance of the new point x∗ given the dataset D be denoted by

V∗|D B Var[z∗ | D] = κ f |D(x∗, x∗) + σ2,

we have

L2κ f |D∗ = L2
[
κ f |D(x, x′) − κ f |D(x, x∗)V−1

∗|D κ f |D(x∗, x′)
]

= L2κ f |D − L
[
κ f |D(·, x∗)

]
V−1
∗|D L

[
κ f |D(x∗, ·)

]
, (7.9)

which does not depend on z∗.
Next, consider the distribution of Lµ f |D∗ . If we knew the observation value z∗, we could

compute the updated posterior mean as

µ f |D∗(x) = µ f |D(x) + κ f |D(x, x∗)V−1
∗|D

(
z∗ − µ f |D(x∗)

)
.

But, thanks to the linearity of L and the known Gaussian distribution on z∗, the updated posterior
mean of L f is also normally distributed with

Lµ f |D∗ | x∗,D ∼ N
(
Lµ f |D,V−1

∗|D L
[
κ f |D(·, x∗)

]2
)

(7.10)

and so, using (7.10) in (7.8), we can finally compute the desired expected reward ug(x∗,D) in
closed form:

ug(x∗,D) = Φ
©­­«

Lgµ f |D + b −
√

1 + L2
gκ f |D∗ Φ

−1(θ)√
V−1
∗|DLg

[
κ f |D(·, x∗)

]2

ª®®¬ . (7.11)

7.3.2 Analysis for independent regions
The analytical solution to (7.5) by (7.11) enables us to further study the theory behind the explo-
ration/exploitation tradeoff of apps in one nontrivial case: when all regions are approximately
independent. This assumption allows us to ignore the effect a data point has on regions other
than its own. We will answer two questions in this case: which region will apps explore next,
and what location will be queried for that region.

80

Define

ρg(x∗)2 B
V−1
∗|DLg

[
κ f |D(·, x∗)

]2

1 + L2
gκ f |D

=
Var

[
Lgµ f |D∗ | x∗,D

]
1 + Var

[
Lg f + b | D

] , (7.12)

which in some sense denotes how informative the observation z∗ is expected to be to the label of
its region g. With this notation, (7.9) becomes

1 + L2
gκ f |D∗ = (1 − ρg(x∗)2)(1 + L2

gκ f |D).

Assume for now that θ > 0.5. (Our conclusions remain true for any θ, but for simplicity we
consider only the common case here.) Then we can define how close g is to receiving a reward
by

Rg B
Φ−1(Tg(D))
Φ−1(θ)

=
Lgµ f |D + b

Φ−1(θ)
√

1 + L2
gκ f |D

. (7.13)

Thus the utility (7.11) becomes, using (7.12) and (7.13):

ug(x∗,D) = Φ
©­­«Φ−1(θ)

Rg −
√

1 − ρg(x∗)2

ρg(x∗)
ª®®¬ .

We can now see by taking partial derivatives that for any region not currently carrying a reward:
1. For any region g, ug(x,D) is maximized by choosing an x that yields ρ∗g := maxx ρg(x).
2. If two regions g and g′ can be equally explored (ρ∗g = ρ∗g′), then the region with higher

probability of matching (higher R) will be selected.
3. If two regions are equally likely tomatch the desired pattern (Rg = Rg′), themore explorable

region (that with a larger ρ∗) will be selected.

4. In general, apps will trade off the two factors by maximizing
(
Rg −

√
1 − (ρ∗g)2

)
/ρ∗g.

7.4 Empirical evaluation
We now turn to an empirical evaluation of our framework, in three different settings and with
three different classifiers. Code and data for these experiments is available online.2

Precision plots are available in the appendix of Y. Ma, Sutherland, et al. (2015) for complete-
ness. Precision is determined primarily by the classifier and θ, and thus does not vary much
across methods.

7.4.1 Environmental monitoring (linear classifier)
In order to analyze the performance of apps with the mean threshold classifier, we ran it on a
real environmental monitoring dataset and compared to baseline algorithms. Valada et al. (2012)

2https://github.com/AutonlabCMU/ActivePatternSearch/

81

https://github.com/AutonlabCMU/ActivePatternSearch/

used small (60 cm) autonomous fan-powered boats to collect dissolved oxygen (do) readings in a
pond, with the goal of finding regions that are low in dissolved oxygen, an indicator of poor water
quality. The data used in our experiment comes from a pond approximately 150 meters wide and
50 meters long. The mobile robots have a cell-phone module that records the time and location of
every measurement. Because of physical limitations, the measurement reading does not stabilize
for about one minute. Therefore, in data collection, the boat was moved back and forth in a single
location, in the hope that the noise would cancel by averaging these measurements.

(a) Data and true matching regions (black). (b) apps collected data and posterior region probability.

Figure 7.1: Illustration of dataset and apps selections for one run. A point marks the location
of a measurement whose value is also reflected in its color. Every grid box is a region whose
possibility of matching is reflected in grayscale.

In order to verify our methods, we borrowed data fromValada et al. (2012), comprising 16 960
location/do value pairs, and fit a gp model by maximizing the likelihood of the prior parameters
on 500 random samples seven times, taking the median of the learned hyperparameter values. We
used a squared-exponential kernel with a learned length scale. We defined regions by covering
the map with many windows of size comparable to the gp length scale, and used parameters
b = −9, c = −100. Data points and classifier probability outputs for the ground truth are shown
in Figure 7.1a, which also shows the learned length scale (roughly 3 meters).

We then repeated the following experiment: we randomly sampled 6 000 points at a time
from data points not used for gp parameter training, and randomly selected 10 of these 6 000
points to form an initial training set D. We then used several competing methods to sequentially
make further queries until 300 total observations were obtained. The considered algorithms
were: apps with analytical solutions, apps with one draw of z∗ at each candidate location, aas
(Y. Ma, Garnett, et al. 2014) with analytical solutions, aas with sampling, the level set estimation
(lse) algorithm of Gotovos et al. (2013) with parameters βt = 6.25 and ε = 0.1, uncertainty
sampling (unc), and random selection (rand). Each algorithm chose queries based on its own
criterion; the quality of queried points was evaluated by the mean threshold classifier with the
above parameters and was then compared with true region labels that were computed by the mean
threshold classifier using all 6 000 data points. A 70% marginal probability was chosen to be
required for a region to be classified as matching (θ = 0.7).

Figure 7.2a reports the mean and standard error of the recall of matching regions over
15 repetitions of this experiment. apps and aas with both analytical solutions and sampling

82

performed equally well here. The similarity between apps and aas is also expected because in
linear problems, the choice of c (the only difference between the algorithms here) is relatively
minor. Notice that aas is not able to handle any other classifier-based setting; this is the core
contribution of apps. To understand why analytical solutions were similar to sampling, notice
that the data collection locations have to be constrained to those actually recorded, which makes
it easier to obtain a near-optimal decision.

(a) Recall curves. (b) Precision curves.

Figure 7.2: Results for the pond monitoring experiment. Color bands show standard errors after
15 runs.

The second group in performance ranking is the lse method. We attempted to boost its
performance by selecting its parameters to directly optimize the area under its recall curve, which
was, in a sense, cheating. On further analysis of its query decisions, we saw lse making, for
the most part, qualitatively similar selection decisions to apps. lse will stop collecting data in
a region if there is enough confidence, but does not specifically try to push regions over the
threshold, and so its performance on this objective is inferior.

Last in the comparison are rand and unc. It is interesting to observe that rand was initially
better than, but later crossed by unc. In the beginning, since unc is purely explorative, its
reward uniformly remained low across multiple runs, whereas in some runs rand queries can be
lucky enough to concentrate around matching regions. At a later phase, rand faces the coupon
collector’s problem and may select redundant boring observations, whereas unc keeps making
progress at a constant rate.

Figure 7.2b shows results for precision. Sampling-based methods for apps and aas had
lower precision than analytical ones, because the noise of sampling makes it more likely for an
“accidental” flag of a region which then persists.

7.4.2 Predicting election results (linear classifier)

Consider the problem of a state-level political party official who wishes to determine which races
will be won, lost, or might go either way. As surveying likely voters is relatively expensive, we
would like to do so with as few surveys as possible.

83

In a simple model of this problem, the problem of finding races which will be won is a natural
fit to a classifier of the form hg(f) = Φ

(
wT f (Ξg) + bg

)
. Our function f maps from the voting

precincts in the state to the vote share of a given party in that district, with a covariance kernel
defined by demographic similarity and geographic proximity. To account for multiple races taking
place in each district (e.g., state and national legislators), we duplicate each precinct with a flag
for the type of election. If Ξg is the set of all precincts participating in a particular race and wg

is some constant c times the voting population of each precinct, then wT f (Ξg) gives c times the
total vote portion for the given party in that election. In a simple model which ignores turnout
effects, the probability of winning a race is essentially 1 if the underlying proportion is greater
than 0.5 and 0 otherwise; this can be accomplished by setting c to some fairly large constant,
say 100, and b = −1

2 c. (An equally simple model that nonetheless more thoroughly accounts for
unmodeled effects would just use a smaller value of c.)

We ran experiments based on this model on 2010 Pennsylvania election returns (Ansolabehere
and Rodden 2011). For each voting precinct in the dataset, we used the 2010 Decennial Census
(United States Census Bureau 2010) to obtain a total population count and percentages of the
population for gender, race, age, and housing type categories; we also added an (x, y) location
based on a Lambert conformal conic projection of a point in the precinct, and used these features
in a squared-exponential kernel. The data for each precinct was then replicated three times
and associated with Democratic vote shares for its U.S. House of Representatives, Pennsylvania
House of Representatives, and Pennsylvania State Senate races; the demographic/geographic
kernel was multiplied by a positive-definite covariance matrix amongst the races. We learned the
hyperparameters for this kernel by maximizing the likelihood of the model on full 2008 election
data.

Given the kernel, we set up experiments to predict 2010 races based on surveying an individual
voting precinct at a time. For simplicity, we assume that a given voting precinct can be thoroughly
surveyed (and ignore turnout effects, voters changing their minds over time, and so on); thus
observations were made with the true vote share. We seeded the experiment with a random 10
(out of 16 226) districts observed; apps selected from a random subset of 100 proposals at each
step. We again used θ = 0.7.

(a) Recall curves. (b) Precision curves.

Figure 7.3: Results for election prediction. Color bands show standard errors over 15 runs.

84

Figure 7.3a shows the mean and standard errors of recalls over 15 runs for apps, unc, and
rand. lse and aas are not applicable to this problem, as they have no notion of weighting points
(by population). apps outperforms both random and uncertainty sampling here, though in this
case the margin over random sampling is much narrower. This is probably because the portion
of regions which are positive in this problem is much higher, so more points are informative.
Uncertainty sampling is in fact worse than random here, which is not too surprising because
the purely explorative nature of unc is even worse on the high dimensional input space of this
problem.

7.4.3 Finding vortices (black-box classifier)
The problem we consider here requires more complex pattern classifiers. We study the task
of identifying vortices in a vector field based on limited observations of flow vectors. Linear
classifiers are insufficient for this problem,3 so we will demonstrate the flexibility of our approach
with a black-box classifier.

To illustrate this setting, we consider the results of a large-scale simulation of a turbulent fluid
in three dimensions over time in the Johns Hopkins Turbulence Databases4 (Perlman et al. 2007).
Following Sutherland, Xiong, et al. (2012), we aim to recognize vortices in two-dimensional
slices of the data at a single timestep, based on the same small training set of 11 vortices and 20
non-vortices, partially shown in Figure 7.4.

Recall that hg assigns probability estimates to the entire function class F confined to region g.
Unlike the previous examples, it is insufficient to consider only a weighted integral of f . We can
consider the average flow across sectors (angular slices from the center) of our region as building
blocks in detecting vortices. We count howmany sectors have clockwise/counter-clockwise flows
to give a classification result, in three steps:

1. First, we divide a region into K sectors. In each sector, we take the integral of the inner
product between the actual flow vectors and a template. The template is an “ideal” vortex,
but with larger weights in the center than the periphery. This produces a K-dimensional
summary statistic Lg(f) for each region.

2. Next, we improve robustness against different flow speeds in the data by scaling Lg(f) to
have maximum entry 1, and flip its sign if its mean is negative. Call the result L̃g(f).

3. Finally, we feed the normalized L̃g(f) vector through a 2-layer neural network of the form

hg(f) = σ
(
wout

K∑
i=1

σ
(
win L̃g(f)i + bin

)
+ bout

)
,

where σ is the logistic sigmoid function.
Because Lg, which is effectively taking the L2 inner product with K fixed template functions,

is a linear operator, Lg(f) | D obeys a K-dimensional multivariate normal distribution. We
sample many possible Lg(f) from that distribution, which we then normalize and pass through

3The set of vortices is not convex: consider the midpoint between a clockwise vortex and its identical counter-
clockwise case.

4http://turbulence.pha.jhu.edu

85

http://turbulence.pha.jhu.edu

the neural network as described above. This gives samples of probabilities hg, whose mean is a
Monte Carlo estimate of (7.1).

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 7.4: (a): Positive (top) and negative (bottom) training examples for the vortex classifier.
(b): The velocity field used; each arrow is the average of a 2 × 2 square of actual data points.
Background color shows the probability obtained by each region classifier on the 200 circled
points; red circles mark points selected by one run of apps initialized at the green circles.

We used K = 4 sectors, and the weights in the template were fixed such that the length scale
matches the distance from the center to an edge. The network was optimized for classification
accuracy on the training set. We then identified a 50× 50-pixel slice of the data that contains two
vortices, some other “interesting” regions, and some “boring” regions, mostly overlapping with
Figure 11 of Sutherland, Xiong, et al. (2012); the region, along with the output of the classifier
when given all of the input points, is shown in Figure 7.4a. We then ran apps, initialized with 10
uniformly random points, for 200 steps. We defined the regions to be squares of size 11× 11 and
spaced them every 2 points along the grid, for 400 total regions. We again thresholded at θ = 0.7.
We evaluate (7.1) via a Monte Carlo approximation, as in the general form of the algorithm in
Section 7.3: First, we pick 80 random candidate locations x∗. For each x∗, we took 4 samples of
z∗. For each z∗, we obtained the posterior of f over the evaluation window, and evaluated hg on
15 different samples from that posterior.

Figure 7.5a shows recall curves of apps, uncertainty sampling (unc), and random selection
(rand), where for the purpose of these curves we call the true label the output of the classifier
when all data is known, and the proposed label is true if Tg > θ at that point of the search
(evaluated using more Monte Carlo samples than in the search process, to gain assurance in our
evaluation but without increasing the time required for the search). We can see that active pattern
search substantially outperforms uncertainty sampling and random selection. It is interesting to
observe that rand was initially better than, but later crossed by unc. In the beginning, since
unc is purely explorative, its reward uniformly remained low across multiple runs, whereas in
some runs rand queries can be lucky enough to concentrate around matching regions. At a later

86

(a) Recall curves. (b) Precision curves.

Figure 7.5: Results for the vortex experiment. Color bands show standard errors over 15 runs.

phase, rand faces the coupon collector’s problem and may select redundant boring observations,
whereas unc keeps making progress at a constant rate.

87

88

Chapter 8

Conclusions and future directions

If there is but a single take-away message from this thesis, it is perhaps that: in any machine
learning problem, it is vital to consider how to model your data. Sets and distributions are a
flexible choice that cover many use cases, and can be applied to many different problem areas, as
seen in Chapters 1 and 5.

Random feature embeddings are also an important tool for scalable learning, but when using
random Fourier features make sure to use the right choice (Chapter 3). They have important
advantages over the Nyström approach in ease of distributing across multiple machines and of
integration into deep learning settings; their relative performance depends on the problem setting,
but Nyström embeddings with approximate leverage scores seem promising (T. Yang et al. 2012;
El Alaoui and Mahoney 2015; Rudi et al. 2016). For distribution learning, the mmd embedding
based on random Fourier features for the Gaussian rbf kernel (Section 4.1) is very simple and
typically performs well, though in some cases the hdd embedding of Section 4.3 may be better.

For hard problems, learning more complex kernels is extremely important. We have proposed
a promising new method for doing so in the setting of two-sample testing in Chapter 6, and its
integration with deep learning to learn very powerful kernels is quite promising. For general
learning on distributions, integration with deep networks as proposed in Section 8.2 is a promising
way forward that still needs more study.

Active learning is also an important problem with many real-world applications. Chapter 7
gave an algorithm for the particular problem of active pointillistic pattern search, which is of a
similar flavor to learning on distributions. Section 8.4 discusses some approaches to true active
learning on distributions.

How to solve a new distribution learning problem Given a new problem that can reasonably
be phrased as a distribution learning problem, the “default” choice should probably be with mmd
based on the Gaussian rbf kernel, which is the simplest approach that has shown empirical
success in a variety of areas and is supported by theory (Szabó et al. 2015); either the pairwise
estimator or the random Fourier feature embedding is fine, though for either large numbers of
distributions or for many samples from each distribution the embedding is quite helpful. Tuning
the kernel bandwidth is important, and should probably be done by cross-validation on the final
learning performance.

If performance there is not satisfactory, for moderate sample sizes pairwise estimators of

89

other distributional distances (as in Chapter 2) may work better; for larger sample sizes with
low-dimensional distributions, the embedding of Section 4.3 is sometimes preferable. With
high-dimensional distributions and large sample sizes, perhaps the dimensions can be treated
independently (as in Section 5.3.2), but otherwise these basic choices are exhausted.

If better performance is still required, the best choice is probably to explore integration of the
mmd embedding with deep learning, as in Section 8.2.

The remainder of this chapter discusses future areas to explore.

8.1 Deep learning of kernels for two-sample testing

The tU and τU statistics of Chapter 6 are quite naturally suited to performing two-sample testing
problems with deep learning. Thorough evaluations of this approach to difficult two-sample
testing problems are underway now.

One prominent potential application is to the very popular framework of generative adversarial
networks (Goodfellow et al. 2014), in which a generator network attempts to create samples
that look like training samples by tricking an adversary network, which attempts to distinguish
generated samples from training. As simultaneously noted by Y. Li et al. (2015) and Dziugaite
et al. (2015), the adversary network can be thought of as performing a two-sample test between
a batch of generated samples and the training set, and so the adversary can be simply replaced
by an mmd test. Dziugaite et al. (2015) attempted to do so with a fixed Gaussian rbf kernel,
which performed poorly on generating images, because the kernel has a very poor understanding
of images. Y. Li et al. (2015) worked around this by (essentially) using mmd with the Gaussian
rbf kernel on the latent codes learned by a fixed autoencoder instead, and got much better results.
We may be able to do better, however, by using an adversary based on an mmd test with a kernel
learned (via the tU or τU criteria of Chapter 6) for the particular comparison at hand. This method
will be fully adaptive to whatever the generator network chooses to create, rather than relying on
the fixed autoencoder-based kernel as in Y. Li et al. (2015).

8.2 Deep learning of kernels for distribution learning

Manually specifying featurizations and kernels can be an arduous task, especially for those
inexperienced with the precise methods in use. In certain problems in computer vision, even years
of extremely active development on different human-designed featurizations have not matched
the performance of learned features. The further adoption of distribution learning would benefit
greatly from integration with representation learning techniques.

In Chapter 6, we explored the automated learning of complex kernels for two-sample testing
problems, primarily using pairwise kernel estimators. Though similar techniques could be
applicable to regression and classification tasks — and indeed Yoshikawa et al. (2014, 2015) use
techniques that could be viewed as being along these lines — when there are many distributions
to compare, rather than just the two of a two-sample testing problem, that task is more difficult.

90

The embeddings discussed in Chapter 4, however, provide a naturalmeans to use deep learning
techniques in distribution learning, and vice versa: given inputs {x1, . . . , xn}, simply compute a
deep representation { f (x1), . . . , f (xn)} convolutionally, then pass through z ({ f (x1), . . . , f (xn)})
before performing the learning task. The mmd embedding of Section 4.1 and the L2 embedding
of Section 4.2 are both easily differentiable (depending on the choice of kernel or basis functions),
and simple to implement within deep learning frameworks. The hdd embeddings of Section 4.3
would be more complex, though possible, to use in this manner.

8.2.1 Integration with deep computer vision models
In Section 5.3.2, we considered using the features learned by a standard convolutional deep
network as samples from an image-level distribution of local features, and classified images
based on those sets of features. Here features are trained using fully-connected final layers as the
learning model, but then used in a separate distributional kernel model. We can instead make a
coherent model which combines feature extraction with a learningmodel based on a distributional
kernel, by making a distributional embedding layer in the network.

In fact, the “network in network” architecture of M. Lin et al. (2014) popularized the idea of
replacing the late-layer fully-connected layers of AlexNet-type models (Krizhevsky et al. 2012)
with global average pooling, treating each convolutional filter as providing a score for a given
class label and aggregating with the mean. Szegedy et al. (2014) later adopted this idea, though
they added a layer after the average pooling in an attempt to ease cross-task adaptation. In the
distributional framework, we can think of this now as a classifier based on a linear-kernel mmd
embedding.

Linear-kernel mmd, however, compares distributions based only on their mean. By using e.g.
random Fourier features for a Gaussian rbf kernel, we can derive a richer classifier structure.
We conducted an initial exploration of this approach in J. B. Oliva, Sutherland, et al. (2015),
taking networks initially trained on ImageNet (Russakovsky et al. 2014) and adapting them to
other classification tasks: Flickr Style (Karayev et al. 2013), Wikipaintings (Karayev et al. 2013),
and Places (Zhou et al. 2014). We used both AlexNet and GoogLeNet architectures, either
replacing or augmenting the final classification layers with random Fourier feature Gaussian rbf
embeddings, and found small but consistent improvements in classification accuracies compared
to adapting the original model. For details, see J. B. Oliva, Sutherland, et al. (2015).

It seems plausible that the reason the improvements here were not as large as we might have
hoped is that we were fine-tuning features initially found to work for the existing architecture,
whereas the optimal features to use when making full distributional comparisons are probably
somewhat different. Thus, training the distributional variants of the network from scratch and
perhaps varying the earlier architecture of the network as well would be required to fully realize
the potential of this work. We leave this time-consuming process to future work.

8.2.2 Other paramaterizations for kernel learning
In addition to learning the mapping f (x) used before the kernel, one can also consider learning
the kernel itself. When using a random Fourier feature-based approach, learning the bandwidth
of the kernel is simple: sample ωi ∼ N(0, Id) and then scale the inputs by σωi, perhaps with σ

91

parameterized as σ = exp(s). However, one can also consider learning the values ωi themselves,
learning the kernel via its Fourier transform. This was evaluated in J. B. Oliva, Sutherland, et al.
(2015).

This parameterization, however, might not be the best way to learn the kernel. Z. Yang et al.
(2015) use the Fastfood approximation (Le et al. 2013) to random Fourier features and learn only
certain parts of the spectral representation, rather than directly adjusting the frequencies. This
may result in a nicer optimization surface.

8.3 Word and document embeddings as distributions

Until recently, much work in natural language processing treated words as unique symbols, e.g.
with “one-hot” vectors, where the ith word from a vocabulary of size V is represented as a
vector with ith component 1 and all other components 0. It has recently become widely accepted
that applications can benefit from richer word embeddings which take into account the similarity
between distinct words, andmuchwork has been done on denseword embeddings so that distances
or inner products betweenword embeddings represent word similarity in someway (e.g. Collobert
and Weston 2008; Turian et al. 2010; Mikolov et al. 2013). These embeddings can be learned in
various ways, but often involve optimizing the representation’s performance in some supervised
learning task.

Document representations First, it is worth noting that although this breaks the traditional
“bag of words” text model (where documents can be represented simply by the sum of the words’
one-hot encodings), we can represent documents by viewing them as sample sets of word vectors.

Kusner et al. (2015) recently adopted this model, using kNN classifiers based on the Earth
Mover’s Distance (emd) between documents, and obtained excellent empirical results. emd,
however, is expensive to compute even for each pair of documents when the vocabulary is large,
and additionally must be computed pairwise between documents; an approximate embedding in
the style of Chapter 4 is not known.

Yoshikawa et al. (2014), in their empirical results, considered this model with mmd-based
kernels (but computing pairwise kernel values rather than approximate embeddings). Their
main contribution, however, is to optimize the word embedding vectors for final classification
performance; by doing so with random initializations, they saw mild performance improvements
over mmd kernels using substantially less training data for the embeddings but at much higher
computational cost. Yoshikawa et al. (2015) extend the approach to Gaussian process regression
models, but do not compare to separately-learned word embeddings.

Because of the limited empirical evaluation, particularly on larger datasets, it is currently
unclear how these methods compare to one another or to other approaches for document rep-
resentation. Additionally, perhaps fine-tuning existing word embeddings learned on a standard
dataset simultaneously with learning the regression or classification model for a particular ap-
plication, as is common in deep learning models for computer vision, would provide additional
power.

92

Richer word representation Embedding words as a single vector does not allow for as rich
a word representation as we might wish. Vilnis and McCallum (2015) embed words instead as
Gaussian distributions, and use the kl divergence between word embeddings to measure asym-
metric hypernym relationships: for example, their embedding for the word Bach is “included” in
their embeddings for famous and man, and mostly included in composer. Gaussian distributions,
of course, are still fairly limiting; for example, a multimodal embedding might be able to capture
word sense ambiguity, whereas a Gaussian embedding would be forced to attempt to combine
both senses in a single broad embedding.

We can thus consider richer, nonparametric classes of word embeddings: perhaps by rep-
resenting a word as a (possibly weighted) set of latent vectors. Comparisons could then be
performed either with an mmd-based kernel, when symmetry is desired, or with kl estimators (or
similar) when not.

One approach would be to choose these vectors arbitrarily, optimizing them for the output of
some learning problem: this would be implemantionally similar to the approach of Yoshikawa
et al. (2014, 2015) for mmd distances, or somewhat like that of Vilnis and McCallum (2015) but
with greater computational cost, and greater flexibility, for kl distances.

Another approach is inspired by the classic distributional hypothesis of Harris (1954), that the
semantics of words are characterized by the contexts in which it appears. Many word embedding
approaches can be viewed as matrix factorizations of a matrix M with rows corresponding to
words, columns to some notion of context, and entries containing some measure of association
between the two; the factorization M = WCT then typically discards the matrix C and uses
the rows of W as word vectors. This approach is sometimes taken explicitly; interestingly, the
popular method of Mikolov et al. (2013) can be seen as approximating this form as well (Levy
and Goldberg 2014). This view inspires a natural alternative: treat each word as the sample
set of contexts in which it appears, representing each context via the learned context vectors.
This is perhaps the most direct instantiation of the distributional hypothesis: compare words by
comparing the distribution of contexts in which they appear.

8.4 Active learning on distributions
Suppose we have a collection of distributions, but initially we have very few samples from
each distribution. We can choose to take additional iid observations, but doing so is relatively
expensive; perhaps it requires real-world expenditure of time or resources to collect samples,
or perhaps these distributions are available only through computationally intensive numerical
simulations. We may wish to learn a classification or regression function mapping from these
distributions to some label (similar to traditional active learning settings), to locate distributions
which follow some prespecified pattern (similar to the setting of Chapter 7 with independent
regions), or to find the distribution which is “best” in some sense (as in pure-exploration bandit
problems, Bubeck et al. 2010). In any of these cases, we need to choose some selection criterion
that will appropriately consider the utility of selecting points from distributions, a problem that
is related to but certainly distinct from typical fully-observed active learning models.

In the dark matter prediction experiments of Section 5.1, we assumed that each observed
galaxy has a well-known line-of-sight velocity estimated via redshift. In practice, good velocity

93

estimates are available only through relatively-expensive spectroscopic imaging; cheaper few-
color imaging techniques give extremely uncertain velocity estimates. We could simply ignore
the imaging estimates and apply the previous model, selecting a random galaxy from each halo
to perform spectroscopy upon. It would probably be more effective, however, to consider active
learning methods that begin with visual imaging, and then identify which objects will be useful
for spectroscopy in order to best identify the masses of their dark matter halos. One modeling
option would be to take a probability distribution over the sample set, and then identify the
resulting distribution of the mean map embedding and therefore its predicted label under a
learned predictor; we would then identify objects to observe that most reduce uncertainty in the
predicted label. This could be conducted either for a single halo, where the objective is to best
learn its mass, or across multiple halos, where the objective is either to find themost massive halos
(active search) or to reduce some form of overall uncertainty in all of the halo mass predictions
(active learning).

94

Appendix A

The skl-groups package

Efficient implementations of several of the methods for learning on distributions discussed in
this thesis are available in the Python package skl-groups1. This package integrates with the
standard Python numerical ecosystem and presents an api compatible with that of scikit-learn
(Grisel et al. 2016).

The package is designed around the Transformer interface of scikit-learn, and as much
as possible toworkwith its pipelines. But the scikit-learnapi, whichworks almost exclusively
with Euclidean feature vectors, it is assumed in most places that features are represented as an
array of shape (n, d), where each row represents a feature vector. In skl-groups, each object
is a set of vectors. This is represented as a Python list (or numpy object array) of numeric
arrays, where each array is of shape (ni, d): ni can vary from element to element. Internally, most
methods convert these leasts into Features objects, which provide convenient helpers to access
the data in a consistent way, and can optionally store any metadata associated with each element.

The class supports data storage either as a collection of separate numeric arrays, or as a
single stacked array of shape (∑i ni, d), with views into the array for each feature set. This form
is convenient for more efficient memory access or for operations which operate pointwise (like
standardization).

The skl-groups api can be divided into several sections:

Features The Features class discussed above.

Preprocessing A collection of utilities to normalize, scale, standardize, or run principal com-
ponents analysis on each set in a collection of features. These are wrappers around a class
BagPreprocesser, which helps apply transformers to each set, and the relevant scikit-learn
transformers.

Summaries Methods that convert sets into single feature vectors:
• BagMean: Represents each set by itsmean. Especially useful in conjunctionwithscikit-learn’s
RBFSampler to perform the mmd embedding of Section 4.1.

• BagOfWords: Quantizes each set into the bag of words representation.

1https://github.com/dougalsutherland/skl-groups

95

https://github.com/dougalsutherland/skl-groups

• L2DensityTransformer: The L2 embedding of Section 4.2.

Set kernels Currently contains only MeanMapKernel, which computes the pairwise mmd esti-
mator.

Divergences KNNDivergenceEstimator, which can estimate Dα,β divergences based on Póc-
zos and Schneider (2011) and Póczos, Xiong, Sutherland, et al. (2012), the kl divergence based
on Q. Wang et al. (2009), and an estimator for the Jensen-Shannon divergence based on Hino and
Murata (2013).

Kernel utilities Utilities to turn a divergence into an rbf kernel, as well as the psd corrections
of Section 2.4.1.

Miscellaneous utilities Utilities to show a progress bar for long-running operations like the
k-nn divergence estimator.

96

Appendix B

Proofs for Chapter 3

B.1 Proof of Proposition 3.4
Part (i) is particularly simple:

E‖ f̃ ‖2µ = E
∫
X2

f̃ (x, y)2 dµ(x, y)

=

∫
X2
E f̃ (x, y)2 dµ(x, y) (B.1)

=

∫
X2

1
D

[
1 + k(2x, 2y) − 2k(x, y)2

]
dµ(x, y)

where (B.1) is justified by Tonelli’s theorem.
For part (ii), view ‖ f̃ ‖µ as a function of ω1, . . . , ωD/2; then changing ωi to a different ω̂i

changes the value of ‖ f̃ ‖µ by at most 82D+1
D2 µ(X2) (as will be shown shortly). The first inequality

is thus a direct application of McDiarmid (1989); the second simply notes that D2

32(2D+1)2 ≥
1

288 .
To show the claimed bounded deviation property, assume without loss of generality that we

replace ω1 by ω̂1:���‖ f̃ ‖2µ(ω1, ω2, . . . , ωD/2) − ‖ f̃ ‖2µ(ω̂1, ω2, . . . , ωD/2)
���

=

������
∫
X2

(
2
D

cos(ωT
1 (x − y)) + 2

D

D/2∑
i=2

cos(ωT
i (x − y)) − k(x, y)

)2

dµ(x, y)

−
∫
X2

(
2
D

cos(ω̂T
1 (x − y)) + 2

D

D/2∑
i=2

cos(ωT
i (x − y)) − k(x, y)

)2

dµ(x, y)

������
=

������ 4
D2

∫
X2

cos2(ωT
1 (x − y))dµ(x, y) +

∫
X2

(
2
D

D/2∑
i=2

cos(ωT
i (x − y)) − k(x, y)

)2

dµ(x, y)

+2
∫
X2

2
D

cos(ωT
1 (x − y))

(
2
D

D/2∑
i=2

cos(ωT
i (x − y)) − k(x, y)

)
dµ(x, y)

97

− 4
D2

∫
X2

cos2(ω̂T
1 (x − y))dµ(x, y) −

∫
X2

(
2
D

D/2∑
i=2

cos(ωT
i (x − y)) − k(x, y)

)2

dµ(x, y)

−2
∫
X2

2
D

cos(ω̂T
1 (x − y))

(
2
D

D/2∑
i=2

cos(ωT
i (x − y)) − k(x, y)

)
dµ(x, y)

�����
=

���� 4
D2

∫
X2

(
cos2(ωT

1 (x − y)) − cos2(ω̂T
1 (x − y))

)
dµ(x, y)

+
4
D

∫
X2

(
cos(ωT

1 (x − y)) − cos(ω̂T
1 (x − y))

) (
2
D

D/2∑
i=2

cos(ωT
i (x − y)) − k(x, y)

)
dµ(x, y)

�����
≤ 4

D2

∫
X2

2dµ(x, y) + 4
D

∫
X2

4dµ(x, y)

=

(
8

D2 +
16
D

)
µ(X2) = 16D + 8

D2 µ(X2).

B.2 Proof of Proposition 3.5

Part (i) is exactly analagous to that for f̃ . Part (ii) is also quite similar:���‖ f̆ ‖2µ(ω1, ω2, . . . , ωD/2) − ‖ f̆ ‖2µ(ω̂1, ω2, . . . , ωD/2)
���

=

����∫
X2

(
2
D

(
cos(ωT

1 (x − y)) + cos(ωT
1 (x + y) + 2b1)

)
+

2
D

D/2∑
i=2

[
cos(ωT

i (x − y)) + cos(ωT
i (x + y) + 2bi)

]
− k(x, y)

)2

dµ(x, y)

−
∫
X2

(
2
D

(
cos(ω̂T

1 (x − y)) + cos(ω̂T
1 (x + y) + 2b1)

)
+

2
D

D/2∑
i=2

[
cos(ωT

i (x − y)) + cos(ωT
i (x − y) + 2bi)

]
− k(x, y)

)2

dµ(x, y)

������
=

���� 4
D2

∫
X2

((
cos(ωT

1 (x − y)) + cos(ωT
1 (x + y) + 2bi)

)2
−

(
cos(ω̂T

1 (x − y)) + cos(ω̂T
1 (x + y) + 2bi)

)2
)

dµ(x, y)

+
4
D

∫
X2

(
cos(ωT

1 (x − y)) + cos(ωT
1 (x + y) + 2bi) − cos(ω̂T

1 (x − y)) − cos(ω̂T
1 (x + y) + 2bi)

)
(

2
D

D/2∑
i=2

[
cos(ωT

i (x − y)) + cos(ωT
i (x + y) + 2bi)

]
− k(x, y)

)
dµ(x, y)

�����
≤ 4

D2

∫
X2

8 dµ(x, y) + 4
D

∫
X2

4 × 3 dµ(x, y)

98

=
32
D2 µ(X

2) + 48
D
µ(X2)

= 16
3D + 2

D2 µ(X2).

B.3 Proof of Proposition 3.6
The proof strategy closely follows that of Rahimi and Recht (2007); we fill in some (important)
details, tightening some parts of the proof as we go.

Let X∆ = {x − y | x, y ∈ X}. It’s compact, with diameter at most 2`, so we can find an ε-net
covering X∆ with at most T = (4`/r)d balls of radius r (Cucker and Smale 2001, Proposition 5).
Let {∆i}Ti=1 denote their centers, and L f̃ be the Lipschitz constant of f̃ . If | f̃ (∆i)| < ε/2 for all i
and L f̃ < ε/(2r), then | f̃ (∆)| < ε for all ∆ ∈ X∆.

Let z̃i(x) :=
[
sin(ωT

i x) cos(ωT
i x)

]T, so that z̃(x)T z̃(y) = 1
D/2

D/2∑
i=1

z̃i(x)T z̃i(y).

B.3.1 Regularity Condition
We will first need to establish that E∇s̃(∆) = ∇E s̃(∆) = ∇k(∆). This can be proved via the
following form of the Leibniz rule, quoted verbatim from Cheng (2013):
Theorem (Cheng 2013, Theorem 2). Let X be an open subset of R, and Ω be a measure space.
Suppose f : X ×Ω→ R satisfies the following conditions:

1. f (x, ω) is a Lebesgue-integrable function of ω for each x ∈ X .
2. For almost all ω ∈ Ω, the derivative ∂ f (x,ω)

∂x exists for all x ∈ X .

3. There is an integrable function Θ : Ω→ R such that
��� ∂ f (x,ω)

∂x

��� ≤ Θ(ω) for all x ∈ X .

Then for all x ∈ X ,
d

dx

∫
Ω

f (x, ω) dω =
∫
Ω

∂

∂x
f (x, ω) dω.

Define the function g̃i
x,y : R×Ω→ R by g̃i

x,y(t, ω) = s̃ω(x+ tei, y), where ei is the ith standard
basis vector, and ®ω is the tuple of all the ωi used in z̃. g̃i

x,y(t, ·) is Lebesgue integrable in ω, since∫
g̃i

x,y(t, ω) dω = E s̃(x + tei, y) = k(x + tei, y) < ∞.

For any ω ∈ Ω, ∂
∂t g̃

i
x,y(t, ω) exists, and satisfies:

Eω

���� ∂∂t
gi

x,y(t, ω)
���� = Eω

������ 2
D

D/2∑
j=1

sin(ωT
j y)

∂

∂t
sin(ωT

j x + tω ji) + cos(ωT
j y)

∂

∂t
cos(ωT

j x + tω ji)

������
= Eω

������ 2
D

D/2∑
j=1

ω ji sin(ωT
j y) cos(ωT

j x + tω ji) − ω ji cos(ωT
j y) sin(ωT

j x + tω ji)

������
99

≤ Eω


2
D

D/2∑
j=1

���ω ji sin(ωT
j y) cos(ωT

j x + tω ji)
��� + ���ω ji cos(ωT

j y) sin(ωT
j x + tω ji)

���
≤ Eω


2
D

D/2∑
j=1

2
��ω ji

��
≤ 2Eω |ω1 | ,

which is finite since the first moment of ω1 is assumed to exist.
Thus we have ∂

∂xi
E s̃(x, y) = E ∂

∂xi
s̃(x, y). The same holds for y by symmetry. Combining the

results for each component, we get as desired that E∇∆s(x, y) = ∇∆ E s(x, y).

B.3.2 Lipschitz Constant

Since f̃ is differentiable, L f̃ =

∇ f̃ (∆∗)

, where ∆∗ = argmax∆∈X∆

∇ f̃ (∆)

.
Via Jensen’s inequality, E ‖∇s̃(∆)‖ ≥ ‖E∇s̃(∆)‖. Now, letting ∆∗ = x∗ − y∗:

E[L2
f̃
] = E

[
‖∇s̃(∆∗) − ∇k(∆∗)‖2

]
= E∆∗

[
E

[
‖∇s̃(∆∗)‖2

]
− 2 ‖∇k(∆∗)‖ E

[
‖∇s̃(∆∗)‖

]
+ ‖∇k(∆∗)‖2

]
≤ E∆∗

[
E

[
‖∇s̃(∆∗)‖2

]
− 2 ‖∇k(∆∗)‖2 + ‖∇k(∆∗)‖2

]
= E

[
‖∇s̃(∆∗)‖2

]
− E∆∗

[
‖∇k(∆∗)‖2

]
≤ E ‖∇s̃(∆∗)‖2

= E

∇z̃(x∗)T z̃(y∗)

2

= E

∇ 1
D/2

D/2∑
i=1

z̃i(x∗)T z̃i(y∗)

2

= E

∇z̃i(x∗)T z̃i(y∗)

2 (B.2)

= E

∇ cos(ωT

∆
∗)

2

= E

− sin(ωT

∆
∗)ω

2

= E
[
sin2(ωT

∆
∗) ‖ω‖2

]
≤ E

[
‖ω‖2

]
= σ2

p .

We can thus use Markov’s inequality:

Pr
(
L f̃ ≥

ε

2r

)
= Pr

(
L2

f̃
≥

(ε
2r

)2
)
≤ σ2

p

(
2r
ε

)2
.

100

B.3.3 Anchor Points

For any fixed ∆ = x − y, f̃ (∆) is a mean of D/2 terms with mean 0 and bounded by ±1. Applying
Hoeffding’s inequality and a union bound:

Pr

(
T⋃

i=1
| f̃ (∆i)| ≥ 1

2ε

)
≤ T Pr

(
| f̃ (∆)| ≥ 1

2ε
)
≤ 2T exp

(
−

2 D
2

(
ε
2
)2

(1 − (−1))2

)
= 2T exp

(
−Dε2

16

)
.

Alternatively, since we know from (3.4) that the variance of each term is Var[cos(ωT∆)] =
1
2 +

1
2 k(2∆) − k(∆)2, we could use Bernstein’s inequality:

T Pr
(�� f̃ (∆)�� > 1

2ε
)
≤ 2T exp

(
−

D
2
ε2

4

2 Var[cos(ωT∆)] + 2
3
ε
2

)
= 2T exp

(
− Dε2

16 Var[cos(ωT∆)] + 8
3ε

)
. (B.3)

This is a better bound when Var[cos(ωT∆)] + 1
6ε < 1. For pixie kernels, Var[cos(ωT∆)] ≤ 1

2 ,
so the Bernstein bound is better for any ε < 3. Since the maximal possible error is ε = 2, it is
essentially always better for pixie kernels.

To unify the two bounds, let αε := min
(
1,max∆∈X∆ 1

2 +
1
2 k(2∆) − k(∆2) + 1

6ε
)
. Then

Pr

(
T⋃

i=1
| f̃ (∆i)| ≥ 1

2ε

)
≤ 2T exp

(
− Dε2

16αε

)
.

B.3.4 Optimizing Over r

Combining these two bounds, we have a bound in terms of r:

Pr

(
sup
∆∈X∆

�� f̃ (∆)�� ≤ ε) ≥ 1 − κ1r−d − κ2r2,

letting κ1 = 2(4`)d exp
(
− Dε2

16αε

)
, κ2 = 4σ2

pε
−2.

If we choose r = (κ1/κ2)1/(d+2), as did Rahimi and Recht (2007), the bound again becomes
1−2κ

2
d+2
1 κ

d
d+2
2 . Butwe could insteadmaximize the bound by choosing r such that dκ1r−d−1−2κ2r =

0, i.e. r =
(

dκ1
2κ2

) 1
d+2 . Then the bound becomes 1 −

((
d
2

) −d
d+2
+

(
d
2

) 2
d+2

)
κ

2
d+2
1 κ

d
d+2
2 :

Pr

(
sup
∆∈X∆

�� f̃ (∆)�� > ε

)
≤

((
d
2

) −d
d+2
+

(
d
2

) 2
d+2

) (
2(4`)d exp

(
− Dε2

16αε

)) 2
d+2 (

4σ2
pε
−2

) d
d+2

=

((
d
2

) −d
d+2
+

(
d
2

) 2
d+2

)
2

2+4d+2d
d+2

(
σp`

ε

) 2d
d+2

exp
(
− Dε2

8(d + 2)αε

)
(B.4)

101

=

((
d
2

) −d
d+2
+

(
d
2

) 2
d+2

)
2

6d+2
d+2

(
σp`

ε

) 2
1+2/d

exp
(
− Dε2

8(d + 2)αε

)
. (B.5)

For ε ≤ σp`, we can loosen the exponent on the middle term to 2, though in low dimensions
we have a somewhat sharper bound. We no longer need the ` > 1 assumption of the original
proof.

To prove the final statement of Proposition 3.6, simply set (B.4) to be at most δ and solve for
D.

B.4 Proof of Proposition 3.7
We will follow the proof strategy of Proposition 3.6 as closely as possible.

Our approximation is now s̆(x, y) = z̆(x)T z̆(y), and the error is f̆ (x, y) = s̆(x, y)−k(y, x). Note
that s̆ and f̆ are not shift-invariant: for example, with D = 1, s̆(x, y) = cos(ωT∆) + cos(ωT(x +
y) + 2b) but s̆(∆, 0) = cos(ωT∆) + cos(ωT∆ + 2b).

Let q =
[
x
y

]
∈ X2 denote the argument to these functions. X2 is a compact set in R2d with

diameter
√

2`, so we can cover it with an ε-net using at most T =
(
2
√

2`/r
)2d

balls of radius r .
Let {qi}Ti=1 denote their centers, and L f be the Lipschitz constant of f : R2d → R.

B.4.1 Regularity Condition

To show E∇s̆(q) = ∇E s̆(q), we can define ği
x,y(t, ω) analogously to in Appendix B.3.1, where

here ω contains all the ωi and bi variables used in z̆. We then have:

Eω

�����∂ği
x,y(t, ω)
∂t

����� = Eω
������ 1
D

D∑
j=1
−ω ji cos(ωT

j y + b j) sin(ωT
j x + tω ji + b j)

������
≤ Eω


1
D

D∑
j=1

��ω ji
�� ≤ Eω |ω| ,

which we have assumed to be finite.

B.4.2 Lipschitz Constant
The argument follows that of Appendix B.3.2 up to (B.2), using q∗ in place of ∆∗. Then:

E[L2
f̆
] ≤ E ‖∇s̆(q∗)‖2

= E

∇q

(
2 cos(ωTx + b) cos(ωTy + b)

)

2

= E

[

∇x

(
2 cos(ωTx + b) cos(ωTy + b)

)

2
+

∇y (
2 cos(ωTx + b) cos(ωTy + b)

)

2
]

102

= E
[

−2 sin(ωTx∗ + b) cos(ωTy∗ + b)ω

2
+

−2 cos(ωTx∗ + b) sin(ωTy∗ + b)ω

2]

= E
[
4
(
sin2(ωTx∗ + b) cos2(ωTy∗ + b) + cos2(ωTx∗ + b) sin2(ωTy∗ + b)

)
‖ω‖2

]
= Eω

[
Eb

[
2 − cos(2ωT(x∗ − y∗)) − cos(2ωT(x∗ + y∗) + 4b)

]
‖ω‖2

]
= Eω

[(
2 − cos(2ωT(x∗ − y∗))

)
‖ω‖2

]
≤ 3E ‖ω‖2 = 3σ2

p .

Following through with Markov’s inequality:

Pr
(
L f̆ ≥ ε/(2r)

)
≤ 3σ2

p (2r/ε)2 = 12(σpr/ε)2.

B.4.3 Anchor Points
For any fixed x, y, s̆ takes a mean of D terms with expectation k(x, y) bounded by ±2. Using
Hoeffding’s inequality:

Pr

(
T⋃

i=1
| f̆ (qi)| ≥ 1

2ε

)
≤ T Pr

(
| f̆ (q)| ≥ 1

2ε
)
≤ 2T exp

(
−

2D
(
ε
2
)2

(2 − (−2))2

)
= 2T exp

(
−Dε2

32

)
.

Since the variance of each term is given by (3.6) as Var[cos(ωT∆)] + 1
2 , we can instead use

Bernstein’s inequality:

T Pr
(�� f̆ (∆)�� > 1

2ε
)
≤ 2T exp

©­­«−
D ε2

4

2
(
Var[cos(ωT∆)] + 1

2

)
+ 2

32 ε2

ª®®¬
= 2T exp

(
− Dε2

4 + 8 Var[cos(ωT∆)] + 8
3ε

)
. (B.6)

Thus Bernstein’s gives us a tighter bound if

4 + 8 Var[cos(ωT
∆)] + 8

3
ε < 32 i.e. 2 Var[cos(ωT

∆)] + 2
3
ε < 7,

which since Var[cos(ωT∆)] ≤ 1, means the Bernstein bound is better for any ε < 7.5 no matter
the kernel.

Still, it can be preferable to have a bound independent of ε, so to unify the bounds define
α′ε = min

(
1,max∆ 1

8 +
1
4 Var[cos(ωT∆)] + 1

12ε
)
; then

Pr

(
T⋃

i=1
| f̆ (qi)| ≥ 1

2ε

)
≤ 2T exp

(
− Dε2

32α′ε

)
.

103

B.4.4 Optimizing Over r

Our bound is now of the form

Pr

(
sup
q∈X2

�� f̆ (q)�� ≤ ε) ≥ 1 − κ1r−2d − κ2r2,

with κ1 = 2
(
2
√

2`
)2d

exp
(
− Dε2

32α′ε

)
and κ2 = 12σ2

pε
−2.

This is maximized by r when 2dκ1r−2d−1 − 2κ2r = 0, i.e. r =
(

dκ1
κ2

) 1
2d+2 . Substituting that

value of r into the bound yields 1 −
(
d
−d
d+1 + d

1
d+1

)
κ

1
d+1
1 κ

d
d+1
2 , and thus:

Pr

(
sup
q∈X2

�� f̆ (q)�� > ε

)
≤

(
d
−d
d+1 + d

1
d+1

) (
2
(
2
√

2`
)2d

exp
(
− Dε2

32α′ε

)) 1
d+1 (

12σ2
pε
−2

) d
d+1

=
(
d
−d
d+1 + d

1
d+1

)
2

1+2d+d+2d
d+1 3

d
d+1

(
σp`

ε

) 2d
d+1

exp
(
− Dε2

32(d + 1)α′ε

)
(B.7)

=
(
d
−d
d+1 + d

1
d+1

)
2

5d+1
d+1 3

d
d+1

(
σp`

ε

) 2
1+1/d

exp
(
− Dε2

32(d + 1)α′ε

)
.

As before, when ε ≤ σp` we can loosen the exponent on the middle term to 2; it is slightly
worse than the corresponding exponent of (B.5) for small d.

To prove the final statement of Proposition 3.7, set (B.7) to be at most δ and solve for D.

B.5 Proof of Proposition 3.8

Consider the z̃ features, and recall that we supposed k is L-Lipschitz overX∆ := {x−y | x, y ∈ X}.
Our primary tool will be the following slight generalization of Dudley’s entropy integral,

which is a special case of Lemma 13.1 of Boucheron et al. (2013). (The only difference from
their Corollary 13.2 is that we maintain the variance factor v.)
Theorem (Boucheron et al. 2013). Let T be a finite pseudometric space and let (Xt)t∈T be a
collection of random variables such that for some constant v > 0,

logE eλ(Xt−Xt ′) ≤ 1
2
vλ2d2(t, t′)

for all t, t′ ∈ T and all λ > 0. For any t0 ∈ T, let δ = supt∈T d(t, t0); then

E

[
sup
t∈T

Xt − Xt0

]
≤ 12
√
v

∫ δ/2

0

√
H(u,T) du

where H(u,T) is themetric entropy of T, that is, the logarithm of the δ-packing number N(u,T).

104

Note that, although stated for finite pseudometric spaces, the result is extensible to seperable
pseudometric spaces (such as X∆) by standard arguments.

The δ-packing number is at most the δ
2 -covering number, which Proposition 5 of Cucker and

Smale (2001) bounds. Thus, picking ∆0 = 0 gives δ = `, H(δ,X∆) ≤ d log (8`/δ), and∫ `/2

0

√
H(u,X∆) du ≤

∫ `/2

0

√
d log(8`/u) du = γ`

√
d,

where γ := 4
√
π erfc(2

√
log 2) +

√
log 2 ≈ 0.964.

Now, 2
D

(
cos(ωT

i ∆) − k(∆) − cos(ωT
i ∆
′) + k(∆′)

)
has mean zero, and absolute value at most���� 2

D

(
cos(ωT

i ∆) − k(∆) − cos(ωT
i ∆
′) + k(∆′)

)���� ≤ 2
D

(��cos(ωT
i ∆) − cos(ωT

i ∆
′)
�� + |k(∆) − k(∆′)|

)
≤ 2

D

(��ωT
i ∆ − ωT

i ∆
′�� + L ‖∆ − ∆′‖

)
≤ 2

D
(‖ωi‖ + L) ‖∆ − ∆′‖. (B.8)

Thus, via Hoeffding’s lemma (Boucheron et al. 2013, Lemma 2.2), each such term has log
moment generating function at most 2

D2 (‖ωi‖ + L)2λ2‖∆ − ∆′‖2.
This is almost in the form required by Dudley’s entropy integral, except that ωi is a random

variable. Thus, for any r > 0, define the random process g̃r which is distributed as f̃ except we
require that ‖ω1‖ = r and ‖ωi‖ ≤ r for all i > 1. Since log mgfs of independent variables are
additive, we thus have

logE eλ(g̃r (∆)−g̃r (∆
′)) ≤ 1

D

(
2
D

D/2∑
i=1
(‖ωi‖ + L)2

)
λ2‖∆ − ∆′‖2 ≤ 1

D
(r + L)2λ2‖∆ − ∆′‖2.

g̃r satisfies the conditions of the theorem with v = 1
D (r + L)2. Now, g̃r(0) = 0, so we have

E

[
sup
∆∈X∆

g̃r(∆)
]
≤ 12γ

√
d`

√
D
(r + L).

But the distribution of f̃ conditioned on the event maxi‖ωi‖ = r is the same as the distribution
of g̃r . Thus

E sup f̃ = Er [E[sup g̃r]] ≤ Er

[
12γ
√

d`
√

D
(r + L)

]
=

12γ
√

d`
√

D
(R + L)

where R := EmaxD/2
i=1 ‖ωi‖.

The same holds for E sup(− f̃). Since we have sup f̃ ≥ 0, sup(− f̃) ≥ 0, the claim follows
from E

[
max(sup f̃ , sup(− f̃))

]
≤ E

[
sup f̃ + sup(− f̃)

]
.

105

B.6 Proof of Proposition 3.9

For the z̆ features,the error process again must be defined over X2 due to the non-shift invariant
noise. We still assume that k is L-Lipschitz over X∆, however.

Compared to the argument of Appendix B.5, we have H(u,X2) ≤ 2d log
(
4
√

2`/u
)
. Unlike

X∆, however, X2 does not necessarily contain an obvious point q0 to minimize supq∈X2 d(q, q0),
nor an obvious minimal value. We rather consider the “radius” ρ := supx∈X d(x, x0), achieved
by any convenient point x0; then supq∈X2 d (q, (x0, x0)) =

√
2ρ. Note that 1

2` ≤ ρ ≤ `, where the
lower bound is achieved by X a ball, and the upper bound by X a sphere. The integral in the
bound is then∫ ρ/

√
2

0

√
H(u,X2) ≤

∫ ρ/
√

2

0

√
2d log(4

√
2`/u)

= 4
√
πd` erfc

(√
1
2 log 2 + log 4

√
2 `
ρ

)
+ ρ
√

d
√

5
2 log 2 + log `

ρ

=

(
4
√
π erfc

(√
1
2 log 2 + log 4

√
2 `
ρ

)
+

ρ
`

√
5
2 log 2 + log `

ρ

)
`
√

d. (B.9)

Calling the term in parentheses γ′
`/ρ, we have that γ′1 ≈ 1.541, γ′2 ≈ 0.803, and it decreases

monotonically in between, as shown in Figure B.1.

1.2 1.4 1.6 1.8 2.0

ℓ

ρ

1.0

1.2

1.4

γ′

Figure B.1: The coefficient of (B.9) as a function of `/ρ.

We will again use the notation of q = (x, y) ∈ X2, ∆ = x − y, t = x + y. Each term in the sum
of f̆ (q) − f̆ (q′) has mean zero and absolute value at most

1
D
|cos(ωT

i ∆) + cos(ωT
i t + 2bi) − k(∆) − cos(ωT

i ∆
′) + cos(ωT

i t′ + 2bi) + k(∆′)|

≤ 1
D

(��cos(ωT
i ∆) − cos(ωT

i ∆
′)
�� + ��cos(ωT

i t + 2bi) − cos(ωT
i t′ + 2bi)

�� + |k(∆) − k(∆′)|
)

106

≤ 1
D
(‖ωi‖‖∆ − ∆′‖ + ‖ωi‖‖t − t′‖ + L‖∆ − ∆′‖) .

Now, in order to cast this in terms of distance on X2, let δx = x − x′, δy = y − y′. Then

‖q − q′‖2 = ‖δx ‖2 + ‖δy‖2

(‖∆ − ∆′‖ + ‖t − t′‖)2 =
(√
‖δx ‖2 + ‖δy‖2 − 2δT

xδy +

√
‖δx ‖2 + ‖δy‖2 + 2δT

xδy

)2

= 2‖δx ‖2 + 2‖δy‖2 + 2
√(
‖δx ‖2 + ‖δy‖2

)2 − 4(δT
xδy)2

≤ 4
(
‖δx ‖2 + ‖δy‖2

)
‖∆ − ∆′‖ + ‖t − t′‖ ≤ 2‖q − q′‖

‖∆ − ∆′‖ ≤ 2‖q − q′‖

and so each term in the sum of f̆ (q) − f̆ (q′) has absolute value at most 2
D (‖ωi‖ + L) ‖q − q′‖.

Note that this agrees exactly with (B.8), but the sum in f̆ (q) − f̆ (q′) has D terms rather than D/2.
Defining ğr analogously to g̃r , we thus get that

logE eλ(ğr (q)−ğr (q
′)) ≤ 2

D

(
1
D

D∑
i=1
(‖ωi‖ + L)2

)
λ2‖q − q′‖2 ≤ 2

D
(r + L)2λ2‖q − q′‖2,

and the conditions of the theorem hold with v = 4
D (r + L)2. Note that E ğr(q0) = 0. Carrying out

the rest of the argument, we get that

E sup f̆ = Er[E[sup ğr]] ≤ Er

[
24β`/ρ`

√
d

√
D

(r + L)
]
=

24β`/ρ`
√

d
√

D
(R + L),

and similarly for E sup f̆ . We do not have a guarantee that f̆ (q) does not have a consistent sign,
and so our bound becomes

E‖ f̆ ‖∞ ≤ E
[
‖ f̆ ‖∞ | f̆ crosses 0

]
Pr

(
f̆ crosses 0

)
+ 3 Pr

(
f̆ does not cross 0

)
≤

48β`/ρ`
√

d
√

D
(R′ + L)Pr

(
f̆ crosses 0

)
+ 3 Pr

(
f̆ does not cross 0

)
.

Pr
(

f̆ crosses 0
)
is extremely close to 1 in “usual” situations.

107

108

Appendix C

Proofs for Chapter 4

C.1 Proof of Proposition 4.10
We will now prove the bound on the error probability of our embedding

Pr
(��K(p, q) − z(Â(p̂))Tz(Â(q̂))

�� ≥ ε)
for fixed densities p and q.

Setup We will need a few assumptions on the densities:
1. p and q are bounded above and below: for x ∈ [0, 1]d , 0 < ρ∗ ≤ p(x), q(x) ≤ ρ∗ < ∞.
2. p, q ∈ Σ(β, Lβ) for some β, Lβ > 0. Σ(β, L) refers to the Hölder class of functions f whose

partial derivatives up to order bβc are continuous and whose rth partial derivatives, where
r is a multi-index of order bβc, satisfy |Dr f (x) − Dr f (y)| ≤ L‖x − y‖β. Here bβc is the
greatest integer strictly less than β.

3. p, q are periodic.
These are fairly standard smoothness assumptions in the nonparametric estimation literature.

Let γ = min(β, 1). If β > 1, then p, q ∈ Σ(1, Lγ) for some Lγ; otherwise, clearly p, q ∈
Σ(β, Lβ). Then, from assumption 3, p, q ∈ Σper(γ, Lγ), the periodic Hölder class. We’ll need this
to establish the Sobolev ellipsoid containing p and q.

We will use kernel density estimation with a bounded, continuous kernel so that the bound
of Giné and Guillou (2002) applies, with bandwidth h � n−1/(2β+d) log n, and truncating density
estimates to [ρ∗, ρ∗].

We also use the Fourier basis ϕα = exp
(
2iπαTx

)
, and define V as the set of indices α s.t.∑d

j=1 |α j |2s ≤ t for parameters 0 < s ≤ 1, t > 0 to be discussed later.

Decomposition Let rσ(∆) = exp
(
−∆2/(2σ2)

)
. Then��K(p, q) − z(Â(p̂))T z(Â(q̂))

�� ≤���K(p, q) − rσk

(
‖ Â(p̂) − Â(q̂)‖

)��� + ���rσk

(
‖ Â(p̂) − Â(q̂)‖

)
− z(Â(p̂))T z(Â(q̂))

��� .
109

The latter term was bounded by Chapter 3. For the former, note that rσ is 1
σ
√

e
-Lipschitz, so the

first term is at most 1
σk
√

e

��ρ(p, q) − ‖ Â(p̂) − Â(q̂)‖
��. Breaking this up with the triangle inequality:��ρ(p, q) − ‖ Â(p̂) − Â(q̂)‖

�� ≤ |ρ(p, q) − ρ(p̂, q̂)| + |ρ(p̂, q̂) − ‖ψ(p̂) − ψ(q̂)‖ |
+ |‖ψ(p̂) − ψ(q̂)‖ − ‖A(p̂) − A(q̂)‖ | +

��‖A(p̂) − A(q̂)‖ − ‖ Â(p̂) − Â(q̂)‖
�� . (C.1)

Estimation error Recall that ρ is a metric, so the reverse triangle inequality allows us to address
the first term with

|ρ(p, q) − ρ(p̂, q̂)| ≤ ρ(p, p̂) + ρ(q, q̂).
For ρ2 the total variation, squared Hellinger, or Jensen-Shannon hdds, we have that ρ2(p, q̂) ≤
tv(p, p̂) (J. Lin 1991). Moreover, as the distributions are supported on [0, 1]d , tv(p, p̂) =
1
2 ‖p − p̂‖1 ≤ 1

2 ‖p − p̂‖∞.
It is a consequence of Giné and Guillou (2002) that, for any δ > 0,

Pr

(
‖p − p̂‖∞ >

√
Cδ log n

nβ/(2β+d)

)
< δ

for some Cδ depending on the kernel. Thus

Pr (|ρ(p, q) − ρ(p̂, q̂)| ≥ ε) < 2C−1
(
ε4n2β/(2β+d)

4 log n

)
, where CC−1(x) = x.

λ approximation The second term of (C.1), the approximation error due to sampling λs,
admits a simple Hoeffding bound. Note that

p̂R
λ − q̂R

λ

2
+

p̂I
λ − q̂I

λ

2, viewed as a random
variable in λ only, has expectation ρ2(p̂, q̂) and is bounded by [0, 4Z] (where Z =

∫
R≥0

dµ(λ)):

write it as Z
∫
| p̂(x)

1
2+iλ − q̂(x)

1
2+iλ |2 dx, expand the square, and use

∫ √
p̂(x)q̂(x)dx ≤ 1 (via

Cauchy-Schwarz).
For nonnegative random variables X and Y , Pr (|X − Y | ≥ ε) ≤ Pr

(��X2 − Y2
�� ≥ ε2) , so we

have that Pr (|‖ψ(p̂) − ψ(q̂)‖ − ρ(p̂, q̂)| ≥ ε) is at most 2 exp(−Mε4/(8Z2)).

Tail truncation error The third term of (C.1), the error due to truncating the tail pro-
jection coefficients of the pS

λ functions, requires a little more machinery. First note that���‖ψ(p̂) − ψ(q̂)‖2 − ‖A(p̂) − A(q̂)‖2
��� is at most

M∑
j=1

∑
S=R,I

∑
α<V

��aα(p̂S
λ − q̂S

λ)
��2 .

LetW(s, L) be the Sobolev ellipsoid of functions∑α∈Zd aαϕα such that
∑
α∈Zd

(∑d
j=1 |α j |2s

)
|aα |2 ≤

L, where ϕ is still the Fourier basis. Then Lemma 14 of Krishnamurthy et al. (2014) shows that
Σper(γ, Lγ) ⊆ W(s, L′) for any 0 < s < γ and L′ = dL2

γ(2π)−2bγc 4γ
4γ−4s .

110

So, suppose that p̂, q̂ ∈ Σper(γ̂, L̂) with probability at least 1 − δ. Since x 7→ x
1
2+iλ is

√
1+4λ2

2√ρ∗ -

Lipschitz on [ρ∗,∞), p̂S
λ ∈ Σper

(
γ̂, 1

2

√
1 + 4λ2 L̂ ρ

−1
2
∗

)
and so p̂S

λ − q̂S
λ is inW(s, (1 + 4λ2)L̂′) for

s < γ̂ and L̂′ = dL̂2ρ−1
∗ /(1 − 4s−γ̂).

Recall that we chose V to be the set of α ∈ Zd such that
∑d

j=1 |α j |2s ≤ t. Thus

∑
α<V

|aα(p̂S
λ − q̂S

λ)|
2 ≤

∑
α<V

|aα(p̂S
λ − q̂S

λ)|
2 ©­«

d∑
j=1
|α j |2sª®¬ /t

≤ (1 + 4λ2)L̂′/t.

The tail error term is therefore at least ε with probability no more than

δ + 2
M∑

j=1
Pr

(
(1 + 4λ2

j)L̂′/t ≥ ε2/(2M)
)
.

The latter probability, of course, depends on the choice of hdd ρ. Letting ζ = tε2/(8ML̂′) − 1
4 , it

is 1 if ζ < 0 and 1 − µ
(
[0,
√
ζ]

)
/Z otherwise. If ζ ≥ 0, squared Hellinger’s probability is 0, and

total variation’s is 2
π arctan(

√
ζ). A closed form for the cumulative distribution function for the

Jensen-Shannon measure is unfortunately unknown.

Numerical integration error The final term of (C.1) also bears a Hoeffding bound. Define the
projection coefficient difference ∆S

λ,α(p, q) = aα,λ(pS
λ) − aα(qS

λ), and ∆̂ similarly but with â. Then

���‖A(p̂) − A(q̂)‖2 −

Â(p̂) − Â(q̂)

2
��� ≤ M∑

j=1

∑
S=R,I

∑
α∈V

�������∆S
α,λj
(p̂, q̂)

���2 − ���∆̂S
α,λj
(p̂, q̂)

���2���� . (C.2)

Letting ε̂(p) = aα(p̂S
λ)−âα(p̂S

λ), each summand is at most (ε̂(p)+ε̂(q))2+2
���∆S
λ,α(p̂, q̂)

��� (ε̂(p)+ε̂(q)).
Also,

���∆S
α,λ(p̂, q̂)

��� ≤ 2
√

Z , using Cauchy-Schwarz on the integral and ‖ϕα‖2 = 1. Thus each

summand in (C.2) can be more than ε only if one of the ε̂s is more than
√

Z + ε/4 −
√

Z .
Now, using (4.10), âα(p̂S

λ) is an empirical mean of ne independent terms, each with absolute
value bounded by (

√
ρ∗+1)maxx |ϕα(x)| =

√
ρ∗+1. Thus, using a Hoeffding bound on the ε̂s, we

get thatPr
(��‖A(p̂) − A(q̂)‖2 − ‖ Â(p̂) − Â(q̂)‖2

�� ≥ ε) is nomore than8MS exp

(
−

ne
(√

Z+ε2/(8S)−
√

Z
)2

2Z(
√
ρ∗+1)2

)
.

Final bound Combining the bounds for the decomposition (C.1) with the pointwise rate for
rks features, we get:

Pr
(��K(p, q) − z(Â(p̂)Tz(Â(q̂))

�� ≥ ε) ≤
111

2 exp
(
−Dε2

RKS

)
+ 2C−1

(
ε4
KDEn2β/(2β+d)

4 log n

)
+ 2 exp

(
−Mε4

λ/(8Z2)
)

+ δ + 2M ©­«1 − µ
0,

√√√
max

(
0,
ρ∗tε2

tail

8MdL̂2

4γ̂ − 4s

4γ̂
− 1

4

)ª®¬ª®¬
+ 8M |V | exp

©­­­«−
1
2ne

©­­«
√

1 + ε2
int/(8 |V | Z) − 1
√
ρ∗ + 1

ª®®¬
2ª®®®¬

for any εRKS + 1
σk
√

e
(εKDE + ελ + εtail + εint) ≤ ε.

112

Bibliography

Akiake, Hirotugu (1973). “Information theory and an extension of the maximum likelihood principle”. In:
2nd International Symposium on Information Theory (page 54).

Amari, Shun-ichi (1985). Differential-Geometrical Methods in Statistics. Lecture Notes in Statistics 28.
Springer (page 6).

Andoni, Alexandr and Ilya Razenshteyn (2015). “Optimal Data-Dependent Hashing for Approximate Near
Neighbors”. In: ACM Symposium on Theory of Computing. arXiv: 1501.01062 (page 12).

Ansolabehere, Stephen and Jonathan Rodden (2011). Pennsylvania Data Files. url: http://hdl.
handle.net/1902.1/16389 (page 84).

Auer, Peter, Nicoló Cesa-Bianchi, and Paul Fischer (2002). “Finite-time Analysis of theMultiarmed Bandit
Problem”. In: Machine Learning 47, pages 235–256 (page 76).

Bach, Francis (2015). “On the Equivalence between Quadrature Rules and Random Features”. In: arXiv:
arXiv:1502.06800 (pages 29, 31, 32).

Bardenet, Rémi and Odalric-Ambrym Maillard (2015). “Concentration inequalities for sampling without
replacement”. In: Bernoulli 21.3, pages 1361–1385. arXiv: 1309.4029 (page 45).

Belongie, Serge, Charless Fowlkes, Fan Chung, and Jitendra Malik (2002). “Spectral partitioning with
indefinite kernels using the Nyström extension”. In: ECCV. Springer, pages 531–542 (page 17).

Bengio, Yoshua, Jean-François Paiement, Pascal Vincent, Olivier Delalleau, Nicolas Le Roux, and Marie
Ouimet (2004). “Out-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clus-
tering”. In: Advances in Neural Information Processing Systems. NIPS (page 16).

Berlinet, Alain and Christine Thomas-Agnan (2004). Reproducing kernel Hilbert spaces in Probability
and Statistics. Kluwer Academic Publishers (page 9).

Bernstein, Sergei (1924). “On a modification of Chebyshev’s inequality and of the error formula of
Laplace”. Russian. In: Ann. Sci. Inst. Savantes Ukraine, Sect. Math. 1, pages 38–49 (page 25).

Betancourt, Michael (2015). “Adiabatic Monte Carlo”. Version 5. In: arXiv: 1405.3489v5 (page 47).
Beygelzimer, Alina, Sham Kakade, and John Langford (2006). “Cover trees for nearest neighbor”. In:

International Conference on Machine Learning, pages 97–104 (page 12).
Bochner, Salomon (1959). Lectures on Fourier integrals. Princeton University Press (page 19).
Boiman, Oren, Eli Shechtman, and Michal Irani (2008). “In defense of nearest-neighbor based image

classification”. In: Computer Vision and Pattern Recognition (page 5).
Bosch, Anna, Andrew Zisserman, and Xavier Muñoz (2006). “Scene classification via pLSA”. In: ECCV

(page 56).
— (2008). “Scene Classification Using a Hybrid Generative/Discriminative Approach”. In: IEEE Trans.

PAMI 30.4 (page 56).
Boucheron, Stéphane, Gábor Lugosi, and PascalMassart (2013).Concentration Inequalities: A Nonasymp-

totic Theory of Independence. Oxford, UK: Oxford University Press (pages 27, 28, 104, 105).

113

http://arxiv.org/abs/1501.01062
http://hdl.handle.net/1902.1/16389
http://hdl.handle.net/1902.1/16389
http://arxiv.org/abs/arXiv:1502.06800
http://arxiv.org/abs/1309.4029
http://arxiv.org/abs/1405.3489v5

Bounliphone, Wacha, Eugene Belilovsky, Matthew B. Blaschko, Ioannis Antonoglou, and Arthur Gretton
(2015). “A Test of Relative Similarity For Model Selection in Generative Models”. In: arXiv: 1511.
04581 (page 64).

Bousquet, Olivier (2002). “A Bennett concentration inequality and its application to suprema of empirical
processes”. In: Comptes Rendus Mathematique 334, pages 495–500 (page 27).

Bousquet, Olivier and André Elisseeff (2001). “Algorithmic Stability and Generalization Performance”.
In: Advances in Neural Information Processing Systems, pages 196–202 (page 31).

Bretagnolle, Jean, Didier Dacunha Castelle, and Jean-Louis Krivine (1966). “Lois stables et espaces LP”.
French. In: Annales de l’institut Henri Poincaré (B) Probabilités et Statistiques 2 (3), pages 231–259
(page 14).

Brochu, Eric, Vlad M Cora, and Nando de Freitas (2010). A tutorial on Bayesian optimization of expensive
cost functions, with application to active usermodeling and hierarchical reinforcement learning. arXiv:
1012.2599 (page 76).

Brown, JasonL,AlisonCameron,AnneDYoder, andMiguelVences (2014). “Anecessarily complexmodel
to explain the biogeography of the amphibians and reptiles ofMadagascar.” In:Nature communications
5, page 5046 (page 75).

Bubeck, Sébastien, Rémi Munos, and Gilles Stoltz (2010). “Pure exploration in multi-armed bandits
problems”. In: Algorithmic Learning Theory, pages 23–37. arXiv: 0802.2655 (page 93).

Cha, Sung Hyuk and Sargur N. Srihari (2002). “On measuring the distance between histograms”. In:
Pattern Recognition 35.6, pages 1355–1370 (page 7).

Chen, Yihua, Eric K Garcia, Maya R Gupta, Ali Rahimi, and Luca Cazzanti (2009). “Similarity-based
classification: Concepts and algorithms”. In: Journal of Machine Learning Research 10, pages 747–
776 (pages 15, 17).

Cheng, Steve (2013). Differentiation under the integral sign. Version 16. url: http://planetmath.
org/differentiationundertheintegralsign (page 99).

Chwialkowski, Kacper, Aaditya Ramdas, Dino Sejdinovic, and Arthur Gretton (2015). “Fast Two-Sample
Testing with Analytic Representations of Probability Measures”. In: arXiv: 1506.04725 (pages 37,
63, 67).

Collobert, Ronan and Jason Weston (2008). “A Unified Architecture for Natural Language Processing:
Deep Neural Networks with Multitask Learning”. In: ICML (page 92).

Cortes, Corinna, M Mohri, and A Talwalkar (2010). “On the impact of kernel approximation on learn-
ing accuracy”. In: International Conference on Artificial Intelligence and Statistics, pages 113–120
(pages 30–32).

Cressie, Noel and Timothy R.C. Read (1984). “Multinomial Goodness-of-fit Tests”. In: Journal of the
Royal Statistical Society, Series B 46.3, pages 440–464 (page 9).

Csiszár, I. (1963). “Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der
Ergodizitat von Markoffschen Ketten”. German. In: Magyar. Tud. Akad. Mat. Kutato Int. Kozl 8,
pages 85–108 (page 6).

Cucker, Felipe and Steve Smale (2001). “On the mathematical foundations of learning”. In: Bulletin of the
American Mathematical Society 39.1, pages 1–49 (pages 99, 105).

Cuturi, Marco (2013). “Sinkhorn distances: Lightspeed computation of optimal transport”. In: Advances
in Neural Information Processing Systems. arXiv: arXiv:1306.0895v1 (pages 9, 12).

Daróczy, Zoltán (1970). “Generalized information functions”. In: Information and Control 16.1, pages 36–
51 (page 8).

DLMF: NIST Digital Library of Mathematical Functions. Online companion to Olver, Lozier, Boisvert,
and Clark 2010. url: http://dlmf.nist.gov/ (pages 22, 119).

114

http://arxiv.org/abs/1511.04581
http://arxiv.org/abs/1511.04581
http://arxiv.org/abs/1012.2599
http://arxiv.org/abs/0802.2655
http://planetmath.org/differentiationundertheintegralsign
http://planetmath.org/differentiationundertheintegralsign
http://arxiv.org/abs/1506.04725
http://arxiv.org/abs/arXiv:1306.0895v1
http://dlmf.nist.gov/

Dudley, Richard M (1967). “The sizes of compact subsets of Hilbert space and continuity of Gaussian
processes”. In: Journal of Functional Analysis 1.3, pages 290–330 (pages 26, 27).

Dziugaite, Gintare Karolina, Daniel M. Roy, and Zoubin Ghahramani (2015). “Training generative neural
networks via Maximum Mean Discrepancy optimization”. In: Uncertainty in Artificial Intelligence.
arXiv: 1505.03906 (pages 61, 62, 90).

Edwards, D. A. (2011). “On the Kantorovich-Rubinstein theorem”. In: Expositiones Mathematicae 29.4,
pages 387–398 (page 9).

Eisenstein, Daniel J., David H. Weinberg, Eric Agol, et al. (2011). “SDSS-III: Massive Spectroscopic Sur-
veys of the Distant Universe, theMilkyWay, and Extra-Solar Planetary Systems”. In: The Astronomical
Journal 142, 72, page 72. arXiv: 1101.1529 (page 75).

El Alaoui, Ahmed and Michael W. Mahoney (2015). “Fast Randomized Kernel Ridge Regression With
Statistical Guarantees”. In: Advances in Neural Information Processing Systems. arXiv: 1411.0306
(pages 16, 89).

Flaxman, Seth R., Dino Sejdinovic, John P. Cunningham, and Sarah Filippi (2016). “Bayesian Learning
of Kernel Embeddings”. In: Uncertainty in Artificial Intelligence. arXiv: 1603.02160 (page 66).

Flaxman, Seth R., Yu-Xiang Wang, and Alexander J. Smola (2015). “Who Supported Obama in 2012?
Ecological Inference through Distribution Regression”. In: Proceedings of the 21th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining - KDD ’15. ACM Press, pages 289–
298 (pages 1, 37).

Fuglede,Bent (2005). “Spirals inHilbert space:With an application in information theory”. In:Expositiones
Mathematicae 23.1, pages 23–45 (pages 14, 45, 46, 49).

Fukumizu, Kenji, Arthur Gretton, Xiaohai Sun, and Bernhard Schölkopf (2008). “KernelMeasures of Con-
ditional Dependence”. In: Advances in Neural Information Processing Systems. Volume 20 (page 61).

Gardner, Andrew,Christian a.Duncan, JinkoKanno, andRastkoR. Selmic (2015). “EarthMover’sDistance
Yields Positive Definite Kernels For Certain Ground Distances”. In: arXiv: 1510.02833 (page 14).

Garnett, Roman, Yamuna Krishnamurthy, Xuehan Xiong, Jeff Schneider, and Richard P Mann (2012).
“BayesianOptimalActive Search and Surveying”. In:Proceedings of the 29th International Conference
on Machine Learning (ICML 2012) (pages 76, 77).

Giné, Evarist and Armelle Guillou (2002). “Rates of strong uniform consistency for multivariate kernel
density estimators”. In: Ann. Inst. H. Poincaré Probab. Statist. 38.6, pages 907–921 (pages 48, 109,
110).

Gönen, Mehmet and Ethem Alpaydın (2011). “Multiple Kernel Learning Algorithms”. In: Journal of
Machine Learning Research 12, pages 2211–2268 (page 61).

Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, et al. (2014). “Generative Adversarial Nets”. In:
Advances in Neural Information Processing Systems 27, pages 2672–2680. arXiv: arXiv:1406.
2661v1 (page 90).

Gotovos, Alkis, Nathalie Casati, Gregory Hitz, and Andreas Krause (2013). “Active Learning for Level
Set Estimation”. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence
(IJCAI 2013) (pages 76, 82).

Grauman, Kristen and Trevor Darrell (2007). “The Pyramid Match Kernel: Efficient Learning with Sets of
Features”. In: JMLR 8, pages 725–760 (pages 12, 56).

Gretton, Arthur, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alex J Smola (2012). “A
Kernel Two-Sample Test”. In: The Journal of Machine Learning Research 13 (pages 9, 10, 13, 39, 40,
61, 62, 64, 68).

Gretton, Arthur, Olivier Bousquet, Alex Smola, and Bernhard Schölkopf (2005). “Measuring statistical
dependence with Hilbert-Schmidt norms”. In: Algorithmic Learning Theory (page 61).

115

http://arxiv.org/abs/1505.03906
http://arxiv.org/abs/1101.1529
http://arxiv.org/abs/1411.0306
http://arxiv.org/abs/1603.02160
http://arxiv.org/abs/1510.02833
http://arxiv.org/abs/arXiv:1406.2661v1
http://arxiv.org/abs/arXiv:1406.2661v1

Gretton, Arthur, Kenji Fukumizu, Zaid Harchaoui, and Bharath K. Sriperumbudur (2009). “A fast, con-
sistent kernel two-sample test”. In: Advances in Neural Information Processing Systems. MIT Press
(page 68).

Gretton, Arthur and László Györfi (2010). “Consistent Nonparametric Tests of Independence”. In: Journal
of Machine Learning Research 11.172, pages 1391–1423 (page 12).

Gretton, Arthur, Bharath K. Sriperumbudur, Dino Sejdinovic, Heiko Strathmann, and Massimiliano Pontil
(2012). “Optimal kernel choice for large-scale two-sample tests”. In: Advances in Neural Information
Processing Systems. Volume 25, pages 1214–1222 (pages 66–68, 72).

Grisel, Olivier, Andreas Mueller, Fabian Pedregosa, et al. (2016). scikit-learn: 0.17.1 release tag for DOI.
doi: 10.5281/zenodo.49911 (pages 9, 20, 95).

Haasdonk, Bernard and Claus Bahlmann (2004). “Learning with Distance Substitution Kernels”. In:
Pattern Recognition: 26th DAGM Symposium, pages 220–227 (page 13).

Harris, Z. (1954). “Distributional structure”. In: Word 10.23, pages 146–162 (page 93).
Havrda, Jan and František Charvát (1967). “Quantification method of classification processes”. Czech. In:

Kybernetika (Prague) 3, pages 30–35 (page 8).
Hino, Hideitsu and Noboru Murata (2013). “Information estimators for weighted observations”. In: Neural

Networks 46, pages 260–275 (page 96).
Hoeffding, Wassily (1963). “Probability inequalities for sums of bounded random variables”. In: Journal

of the American Statistical Association 58.301, pages 13–30 (page 25).
Ismail, Mourad E. H. (1990). “Complete monotonicity of modified Bessel functions”. In: Proceedings of

the American Mathematical Society 108.2, pages 353–361 (page 22).
Jebara, T., R. Kondor, A. Howard, K. Bennett, and N. Cesa-bianchi (2004). “Probability product kernels”.

In: JMLR 5, pages 819–844 (page 10).
Jin, Jay (2016). “Detection of Sources of Harmful Radiation using Portable Sensors”. M.Sc. Carnegie

Mellon University. Technical Report CMU-CS-16-115 (pages 3, 59).
Jin, Jay, Kyle Miller, Dougal J. Sutherland, Simon Labov, Karl Nelson, and Artur Dubrawski (2016). “List

Mode Regression for Low Count Detection”. To be presented as a poster at the 2016 IEEE Nuclear
Science Symposium. url: https://event.crowdcompass.com/2016-nss-mic/activity/
8Jh9tYvmAt (pages 3, 51).

Jitkrittum, Wittawat, Arthur Gretton, Nicolas Heess, S M Ali Eslami, Balaji Lakshminarayanan, Dino
Sejdinovic, and Zoltán Szabó (2015). “Kernel-Based Just-In-Time Learning for Passing Expectation
Propagation Messages”. In: Uncertainty in Artificial Intelligence (pages 1, 37, 54).

Jitkrittum, Wittawat, Zoltán Szabó, Kacper Chwialkowski, and Arthur Gretton (2016). “Interpretable Dis-
tribution Features with Maximum Testing Power”. In: International Conference on Machine Learning.
arXiv: 1605.06796 (page 67).

Karayev, Sergey, Matthew Trentacoste, Helen Han, Aseem Agarwala, Trevor Darrell, Aaron Hertzmann,
andHolgerWinnemoeller (2013). “Recognizing Image Style”. In: arXiv:1311.3715. arXiv: 1311.3715
(page 91).

Khosravifard, Mohammadali, Dariush Fooladivanda, and T. Aaron Gulliver (2007). “Confliction of the
Convexity and Metric Properties in f-Divergences”. In: IEICE Transactions on Fundamentals of
Electronics, Communications, and Computer Sciences E90-A.9, pages 1848–1853 (page 6).

Klypin, Anatoly, Gustavo Yepes, Stefan Gottlober, Francisco Prada, and Steffen Hess (2014). “MultiDark
simulations: the story of dark matter halo concentrations and density profiles”. In: arXiv: 1411.4001
(page 52).

116

http://dx.doi.org/10.5281/zenodo.49911
http://reports-archive.adm.cs.cmu.edu/anon/2016/CMU-CS-16-115.pdf
https://event.crowdcompass.com/2016-nss-mic/activity/8Jh9tYvmAt
https://event.crowdcompass.com/2016-nss-mic/activity/8Jh9tYvmAt
http://arxiv.org/abs/1605.06796
http://arxiv.org/abs/1311.3715
http://arxiv.org/abs/1411.4001

Krishnamurthy, Akshay, Kirthevasan Kandasamy, Barnabás Póczos, and Larry Wasserman (2014). “Non-
parametric Estimation of Rényi Divergence and Friends”. In: International Conference on Machine
Learning. arXiv: 1402.2966 (pages 12, 110).

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “ImageNet Classification with Deep
Convolutional Neural Networks”. In: Advances In Neural Information Processing Systems. arXiv:
1102.0183 (pages 57, 91).

Kroemer, O. B., R. Detry, J. Piater, and J. Peters (2010). “Combining active learning and reactive control
for robot grasping”. In: Robotics and Autonomous Systems 58.9, pages 1105–1116 (page 76).

Kusner, Matt, Yu Sun, Nicholas Kolkin, and Kilian Weinberger (2015). “From Word Embeddings To
Document Distances”. In: Proceedings of The 32nd International Conference on Machine Learning,
pages 957–966 (pages 5, 92).

Lafferty, John, Han Liu, and Larry Wasserman (2012). “Sparse Nonparametric Graphical Models”. In:
Statistical Science 27.4, pages 519–537. arXiv: 1201.0794 (page 47).

Lan, Shiwei, Jeffrey Streets, and Babak Shahbaba (2014). “Wormhole Hamiltonian Monte Carlo”. In:
AAAI Conference on Artificial Intelligence. arXiv: 1306.0063 (page 47).

Lazebnik, Svetlana, Cordelia Schmid, and Jean Ponce (2006). “Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories”. In: CVPR (page 57).

Le, Quoc, Tamás Sarlós, and Alex J Smola (2013). “Fastfood — Approximating Kernel Expansions in
Loglinear Time”. In: International Conference on Machine Learning. arXiv: 1408.3060 (page 92).

Leung, Thomas and Jitendra Malik (2001). “Representing and Recognizing the Visual Appearance of
Materials using Three-dimensional Textons”. In: IJCV 43, pages 29–44 (page 12).

Levy, Omer and Yoav Goldberg (2014). “Neural Word Embedding as Implicit Matrix Factorization”. In:
Advances in Neural Information Processing Systems, pages 2177–2185 (page 93).

Li, Shukai and Ivor W Tsang (2011). “Learning to Locate Relative Outliers”. In: Asian Conference on
Machine Learning. Volume 20. JMLR:Workshop andConference Proceedings, pages 47–62 (page 37).

Li, Yujia, Kevin Swersky, and Richard Zemel (2015). “Generative Moment Matching Networks”. In:
Uncertainty in Artificial Intelligence. arXiv: 1502.02761 (pages 61, 90).

Liese, Friedrich and Igor Vajda (2006). “On divergences and informations in statistics and information
theory”. In: IEEE Transactions on Information Theory 52.10, pages 4394–4412 (pages 6, 9).

Lin, Jianhua (1991). “Divergence measures based on the Shannon entropy”. In: IEEE Transactions on
Information Theory 37.1, pages 145–151 (page 110).

Lin, Min, Qiang Chen, and Shuicheng Yan (2014). “Network in network”. In: ICLR. arXiv: 1312.4400
(page 91).

Lopez-Paz, David, Krikamol Muandet, Bernhard Schölkopf, and Ilya Tolstikhin (2015). “Towards a Learn-
ing Theory of Cause-Effect Inference”. In: ICML. arXiv: 1502.02398 (pages 1, 37).

Low, Kian Hsiang, Jie Chen, John M. Dolan, Steve Chien, and David R. Thompson (2012). “Decentral-
ized Active Robotic Exploration and Mapping for Probabilistic Field Classification in Environmental
Sensing”. In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent
Systems - Volume 1. AAMAS ’12. Valencia, Spain, pages 105–112 (page 76).

Lowe, David G. (2004). “Distinctive Image Features from Scale-Invariant Keypoints”. In: International
Journal of Computer Vision 60.2, pages 91–110 (page 56).

Ma, Yifei, Roman Garnett, and Jeff Schneider (2014). “Active Area Search via Bayesian Quadrature”. In:
Seventeenth International Conference on Artificial Intelligence and Statistics. AISTATS (pages 2, 76,
79, 82).

117

http://arxiv.org/abs/1402.2966
http://arxiv.org/abs/1102.0183
http://arxiv.org/abs/1201.0794
http://arxiv.org/abs/1306.0063
http://arxiv.org/abs/1408.3060
http://arxiv.org/abs/1502.02761
http://arxiv.org/abs/1312.4400
http://arxiv.org/abs/1502.02398

Ma, Yifei, Dougal J. Sutherland, Roman Garnett, and Jeff Schneider (2015). “Active Pointillistic Pattern
Search”. In: Eighteenth International Conference on Artificial Intelligence and Statistics. AISTATS
(pages 3, 81).

Martins, André F. T., Noah A. Smith, Eric P. Xing, PedroM. Q. Aguiar, andMário A. T. Figueiredo (2009).
“Nonextensive Information Theoretic Kernels on Measures”. In: The Journal of Machine Learning
Research 10 (page 8).

McDiarmid, Colin (1989). “On the method of bounded differences”. In: Surveys in combinatorics 141.1,
pages 148–188 (page 97).

Mehta, Nishant A. and Alexander G. Gray (2010). “Generative and Latent Mean Map Kernels”. In: arXiv:
1005.0188 (page 37).

Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean (2013). “Distributed Rep-
resentations of Words and Phrases and their Compositionality”. In: Advances in Neural Information
Processing Systems (pages 92, 93).

Mitchell, Lee J., Bernard F. Phlips, W. Neil Johnson, et al. (2009). “Mobile Imaging and Spectroscopic
Threat Identification (MISTI): System overview”. In: IEEE Nuclear Science Symposium Conference
Record, pages 110–118 (page 59).

Moon, Kevin R. and Alfred O. Hero (2014a). “Ensemble estimation of multivariate f-divergence”. In: 2014
IEEE International Symposium on Information Theory. IEEE, pages 356–360. arXiv: 1404.6230
(page 13).

— (2014b). “Multivariate f-divergence EstimationWith Confidence”. In: Advances in Neural Information
Processing Systems, pages 2420–2428 (page 13).

Moreno, Pedro J., Purdy P. Ho, and Nuno Vasconcelos (2004). “A Kullback-Leibler Divergence Based
Kernel for SVM Classification in Multimedia Applications”. In: NIPS (page 10).

Muandet, Krikamol, Kenji Fukumizu, Bharath K. Sriperumbudur, Arthur Gretton, and Bernhard Schölkopf
(2014). “Kernel Mean Estimation and Stein’s Effect”. In: International Conference on Machine Learn-
ing. arXiv: arXiv:1306.0842v2 (page 13).

Muandet, Krikamol, Bernhard Schölkopf, Kenji Fukumizu, and Francesco Dinuzzo (2012). “Learning
from Distributions via Support Measure Machines”. In: Advances in Neural Information Processing
Systems. arXiv: arXiv:1202.6504v2 (pages 10, 48).

Muja,Marius andDavidG. Lowe (2009). “Fast Approximate Nearest Neighbors with Automatic Algorithm
Configuration”. In: International Conference on Computer Vision Theory and Applications (VISAPP
’09) (page 12).

Müller, Alfred (1997). “Integral Probability Metrics and their Generating Classes of Functions”. In:
Advances in Applied Probability 29.2, pages 429–443 (pages 6, 7).

Naidan, Bilegsaikhan, Leonid Boytsov, and Eric Nyberg (2015). “Permutation Search Methods are Ef-
ficient, Yet Faster Search is Possible”. In: Proceedings of the 41st International Conference on Very
Large Data Bases, pages 1618–1629. arXiv: 1506.03163 (page 12).

Naor, Assaf and Gideon Schechtman (2007). “Planar Earthmover is not in L1”. In: SIAM Journal on
Computing 37.3, pages 804–826 (page 14).

Nguyen,Xuanlong,Martin J.Wainwright, andMichael I. Jordan (2010). “Estimating divergence functionals
and the likelihood ratio by convex risk minimization”. In: IEEE Transactions on Information Theory
56.11, pages 5847–5861. arXiv: 0809.0853 (page 13).

Nielsen, Frank and Richard Nock (2011). “On Rényi and Tsallis entropies and divergences for exponential
families”. In: arXiv: 1105.3259 (page 10).

118

http://arxiv.org/abs/1005.0188
http://arxiv.org/abs/1404.6230
http://arxiv.org/abs/arXiv:1306.0842v2
http://arxiv.org/abs/arXiv:1202.6504v2
http://arxiv.org/abs/1506.03163
http://arxiv.org/abs/0809.0853
http://arxiv.org/abs/1105.3259

Niranjan, Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger (2010). “Gaussian Process Op-
timization in the Bandit Setting: No Regret and Experimental Design”. In: Proceedings of the 27th
International Conference on Machine Learning (ICML 2010) (page 76).

Ntampaka,Michelle, Hy Trac, Dougal J. Sutherland, Nicholas Battaglia, Barnabás Póczos, and Jeff Schnei-
der (2015). “A Machine Learning Approach for Dynamical Mass Measurements of Galaxy Clusters”.
In: The Astrophysical Journal 803.2, page 50. arXiv: 1410.0686 (pages 3, 51–53).

Ntampaka, Michelle, Hy Trac, Dougal J. Sutherland, Sebastian Fromenteau, Barnabás Póczos, and Jeff
Schneider (in press). “Dynamical Mass Measurements of Contaminated Galaxy Clusters Using Ma-
chine Learning”. In: The Astrophysical Journal. arXiv: 1509.05409. In press (pages 3, 51, 53).

Oliva, Aude and Antonio Torralba (2001). “Modeling the shape of the scene: a holistic representation of
the spatial envelope”. In: International Journal of Computer Vision 42.3 (page 56).

Oliva, Junier B., Avinava Dubey, Barnabas Poczos, Jeff Schneider, and Eric P Xing (2016). “Bayesian
Nonparametric Kernel-Learning”. In: AISTATS. arXiv: 1506.08776 (page 61).

Oliva, Junier B., Willie Neiswanger, Barnabás Póczos, Jeff Schneider, and Eric Xing (2014). “Fast Dis-
tribution To Real Regression”. In: Proceedings of the 17th International Conference on Artificial
Intelligence and Statistics (AISTATS). arXiv: 1311.2236 (pages 43, 44, 54).

Oliva, Junier B., Barnabás Póczos, and Jeff Schneider (2013). “Distribution to distribution regression”. In:
Proceedings of The 30th International Conference on Machine Learning (page 5).

Oliva, Junier B., Dougal J. Sutherland, Barnabás Póczos, and Jeff Schneider (2015). “Deep Mean Maps”.
In: arXiv: 1511.04150 (pages 91, 92).

Olver, F. W. J., D.W. Lozier, R. F. Boisvert, and C.W. Clark, editors (2010).NIST Handbook of Mathemat-
ical Functions. Print companion to DLMF. New York, NY: Cambridge University Press (page 114).

Osborne, Michael A., Roman Garnett, and Stephen J. Roberts (2009). “Gaussian Processes for Global
Optimization”. In: Proceedings of the 3rd Learning and Intelligent Optimization Conference (LION 3)
(page 76).

Perlman, Eric, Randal Burns, Yi Li, and Charles Meneveau (2007). “Data Exploration of Turbulence
Simulations using a Database Cluster”. In: Proceedings of the 2007 ACM/IEEE Conference on Super-
comupting (page 85).

Póczos, Barnabás, Alessandro Rinaldo, Aarti Singh, and Larry Wasserman (2013). “Distribution-Free
Distribution Regression”. In: Artificial Intelligence and Statistics. AISTATS. arXiv: 1302 . 0082
(page 5).

Póczos, Barnabás and Jeff Schneider (2011). “On the Estimation of α-Divergences”. In: International
Conference on Artificial Intelligence and Statistics (pages 13, 96).

Póczos, Barnabás, Liang Xiong, and Jeff Schneider (2011). “Nonparametric Divergence Estimation with
Applications to Machine Learning on Distributions”. In:Uncertainty in Artificial Intelligence (page 5).

Póczos, Barnabás, Liang Xiong, Dougal J. Sutherland, and Jeff Schneider (2012). “Nonparametric kernel
estimators for image classification”. In: Computer Vision and Pattern Recognition (CVPR), 2012 IEEE
Conference on, pages 2989–2996 (pages 2, 6, 13, 51, 56, 96).

Puzicha, J., T. Hofmann, and J.M. Buhmann (1997). “Non-parametric similarity measures for unsupervised
texture segmentation and image retrieval”. In: Proceedings of IEEE Computer Society Conference on
Computer Vision and Pattern RecognitionMarch 2016, pages 267–272 (page 9).

Qin, Jianzhao and Nelson H.C. Yung (2010). “SIFT and color feature fusion using localized maximum-
margin learning for scene classfication”. In: International Conference on Machine Vision (page 56).

Quiter, Brian J., Lavanya Ramakrishnan, andMark S. Bandstra (2015).GRDC: ACollaborative Framework
for Radiological Background and Contextual Data Analysis. Technical report. Berkeley, CA (United

119

http://arxiv.org/abs/1410.0686
http://arxiv.org/abs/1509.05409
http://arxiv.org/abs/1506.08776
http://arxiv.org/abs/1311.2236
http://arxiv.org/abs/1511.04150
http://arxiv.org/abs/1302.0082

States): Lawrence Berkeley National Laboratory (LBNL). url: http://www.osti.gov/servlets/
purl/1235086/ (page 59).

Raff, Edward (2011-16). JSAT: Java Statistical Analysis Tool. https://github.com/EdwardRaff/
JSAT/ (page 20).

Rahimi, Ali and Benjamin Recht (2007). “Random Features for Large-Scale Kernel Machines”. In: Ad-
vances in Neural Information Processing Systems. MIT Press (pages 2, 19, 20, 24–26, 34, 99, 101).

— (2008a). “Weighted sums of random kitchen sinks: Replacing minimization with randomization in
learning”. In: Advances in Neural Information Processing Systems. MIT Press, pages 1313–1320
(pages 20, 29, 31, 32).

— (2008b). “Uniform approximation of functions with random bases”. In: 46th Annual Allerton Confer-
ence on Communication, Control, and Computing, pages 555–561 (pages 20, 29).

Ramdas, Aaditya, Sashank J. Reddi, Barnabas Poczos, Aarti Singh, and Larry Wasserman (2015). “Adap-
tivity and Computation-Statistics Tradeoffs for Kernel and Distance based High Dimensional Two
Sample Testing”. In: arXiv: 1508.00655 (pages 62, 63, 65).

Ramdas, Aaditya and LeilaWehbe (2015). “Nonparametric Independence Testing for Small Sample Sizes”.
In: arXiv: 1406.1922 (page 13).

Rasmussen, Carl Edward and Zoubin Ghahramani (2003). “BayesianMonte Carlo”. In:Advances in Neural
Information Processing Systems 15 (NIPS 2002) (page 79).

Reddi, Sashank J., Aaditya Ramdas, Barnabás Póczos, Aarti Singh, and Larry Wasserman (2014). “On the
Decreasing Power ofKernel andDistance basedNonparametric Hypothesis Tests inHighDimensions”.
In: AAAI Conference on Artificial Intelligence. arXiv: 1406.2083 (page 65).

Rényi, Alfréd (1961). “On measures of entropy and information”. In: Proceedings of the Fourth Berkeley
Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of
Statistics, pages 547–561 (page 8).

Rubner, Yossi, Carlo Tomasi, and Leonidas J. Guibas (2000). “Earth mover’s distance as a metric for image
retrieval”. In: International Journal of Computer Vision 40.2, pages 99–121 (pages 9, 12).

Rudi, Alessandro, Raffaello Camoriano, and Lorenzo Rosasco (2015). “Less is More: Nyström Computa-
tional Regularization”. In: Advances in Neural Information Processing Systems. arXiv: 1507.04717
(page 17).

— (2016). “Generalization Properties of Learning with Random Features”. In: arXiv: 1602.04474
(pages 29, 31, 89).

Russakovsky, Olga, Jia Deng, Hao Su, et al. (2014). “Imagenet large scale visual recognition challenge”.
In: International Journal of Computer Vision, pages 1–42 (page 91).

Saunders, C., A. Gammerman, and V. Vovk (1998). “Ridge Regression Learning Algorithm in Dual
Variables”. In: Proceedings of the 15th International Conference on Machine Learning, pages 515–
521 (page 30).

Schoenberg, I. J. (1938). “Metric spaces and positive definite functions”. In: Transactions of the American
Mathematical Society 44.3, pages 522–536 (page 13).

Schwarz, Gideon (1978). “Estimating the Dimension of a Model”. In: Ann. Statist. 6.2, pages 461–464
(page 54).

Serfling, Robert J. (1974). “Probability Inequalities for the Sum in Sampling without Replacement”. In:
The Annals of Statistics 2.1, pages 39–48 (page 45).

— (1980). Approximation Theorems of Mathematical Statistics. John Wiley & Sons (pages 62, 64).
Settles, Burr (2012). Active Learning. Morgan & Claypool (page 75).
Shirdhonkar, Sameer and David W. Jacobs (2008). “Approximate earth mover’s distance in linear time”.

In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8 (page 12).

120

http://www.osti.gov/servlets/purl/1235086/
http://www.osti.gov/servlets/purl/1235086/
https://github.com/EdwardRaff/JSAT/
https://github.com/EdwardRaff/JSAT/
http://arxiv.org/abs/1508.00655
http://arxiv.org/abs/1406.1922
http://arxiv.org/abs/1406.2083
http://arxiv.org/abs/1507.04717
http://arxiv.org/abs/1602.04474

Simonyan, Karen and Andrew Zisserman (2015). “Very Deep Convolutional Networks for Large-Scale
Image Recognition”. In: ICLR. arXiv: 1409.1556 (page 57).

Singh, Shashank and Barnabás Póczos (2014). “Exponential Concentration of a Density Functional Esti-
mator”. In: Advances in Neural Information Processing Systems, pages 3032–3040 (page 12).

SKBMoore (2016). Decay relationship with modified Bessel functions of the second kind. Version 2016-
08-29. MathOverflow: a/248510 (page 22).

Song, Le, Alex Smola, Arthur Gretton, Justin Bedo, and Karsten Borgwardt (2012). “Feature Selection
via Dependence Maximization”. In: Journal of Machine Learning Research 13, pages 1393–1434
(page 61).

Sonnenburg, Sören, Gunnar Raetsch, Sebastian Henschel, et al. (2010). “The SHOGUNMachine Learning
Toolbox”. In: Journal of Machine Learning Research 11, pages 1799–1802 (pages 20, 68, 69).

Sriperumbudur, Bharath K., Kenji Fukumizu, Arthur Gretton, Gert R. G. Lanckriet, and Bernhard
Schölkopf (2009). “Kernel choice and classifiability for RKHS embeddings of probability distribu-
tions”. In: Advances in Neural Information Processing Systems. Volume 22. MIT Press, pages 1750–
1758 (pages 61, 66).

Sriperumbudur, Bharath K., Kenji Fukumizu, Arthur Gretton, Bernhard Schölkopf, and Gert R. G. Lanck-
riet (2009). “On integral probability metrics, φ-divergences and binary classification”. In: arXiv:
0901.2698 (page 6).

— (2012). “On the empirical estimation of integral probabilitymetrics”. In:Electronic Journal of Statistics
6, pages 1550–1599 (page 13).

Sriperumbudur, Bharath K., Kenji Fukumizu, Revant Kumar, Arthur Gretton, and Aapo Hyvärinen (2013).
“Density Estimation in Infinite Dimensional Exponential Families”. In: arXiv: 1312.3516 (page 47).

Sriperumbudur, Bharath K., Arthur Gretton, Kenji Fukumizu, Bernhard Schölkopf, and Gert R. G. Lanck-
riet (2010). “Hilbert space embeddings and metrics on probability measures”. In: Journal of Machine
Learning Research 11, pages 1517–1561. arXiv: 0907.5309 (pages 9, 10, 45, 49).

Sriperumbudur, Bharath K. and Zoltán Szabó (2015). “Optimal Rates for Random Fourier Features”. In:
arXiv: 1506.02155 (pages 24, 29).

Stein, Charles (1956). “Inadmissibility of the Usual Estimator for the Mean of a Multi-Variate Normal
Distribution”. In: Proc. Third Berkeley Symp. Math. Statist. Prob 1.4, pages 197–206 (page 13).

Strathmann, Heiko (2012). “Adaptive Large-Scale Kernel Two-Sample Testing”. M.Sc. University Col-
lege London. url: http://herrstrathmann.de/wp- content/uploads/2012/09/2012_
Strathmann_MSc.pdf (pages 66, 67).

Sugiyama, Masashi, Taiji Suzuki, Yuta Itoh, Takafumi Kanamori, and Manabu Kimura (2011). “Least-
squares two-sample test”. In: Neural Networks 24.7, pages 735–751 (page 66).

Sutherland, Dougal J. (2015).EarthMover’s Distance (EMD) between twoGaussians. Version 2015-04-23.
CrossValidated: a/144896 (page 10).

Sutherland, Dougal J., Junier B. Oliva, Barnabás Póczos, and Jeff Schneider (2016). “Linear-Time Learning
on Distributions with Approximate Kernel Embeddings”. In: AAAI Conference on Artificial Intelli-
gence. arXiv: 1509.07553 (pages 2, 3, 37, 45, 51).

Sutherland, Dougal J. and Jeff Schneider (2015). “On the Error of Random Fourier Features”. In: Uncer-
tainty in Artificial Intelligence. arXiv: 1506.02785 (pages 2, 20, 37).

Sutherland, Dougal J., Liang Xiong, Barnabás Póczos, and Jeff Schneider (2012). “Kernels on Sample
Sets via Nonparametric Divergence Estimates”. In: arXiv: 1202.0302 (pages 2, 51, 85, 86).

Szabó, Zoltán, Bharath K. Sriperumbudur, Barnabás Póczos, andArthur Gretton (2015). “Learning Theory
for Distribution Regression”. In: Artificial Intelligence and Statistics. AISTATS. arXiv: 1411.2066
(pages 10, 89).

121

http://arxiv.org/abs/1409.1556
http://mathoverflow.net/a/248510
http://arxiv.org/abs/0901.2698
http://arxiv.org/abs/1312.3516
http://arxiv.org/abs/0907.5309
http://arxiv.org/abs/1506.02155
http://herrstrathmann.de/wp-content/uploads/2012/09/2012_Strathmann_MSc.pdf
http://herrstrathmann.de/wp-content/uploads/2012/09/2012_Strathmann_MSc.pdf
http://stats.stackexchange.com/a/144896
http://arxiv.org/abs/1509.07553
http://arxiv.org/abs/1506.02785
http://arxiv.org/abs/1202.0302
http://arxiv.org/abs/1411.2066

Szegedy, Christian, Wei Liu, Yangqing Jia, et al. (2014). “Going Deeper with Convolutions”. In: arXiv:
1409.4842 (page 91).

Tao, Chenyang and Jianfeng Feng (2016). “Nonlinear association criterion, nonlinear Granger causality
and related issues with applications to neuroimage studies”. In: Journal of Neuroscience Methods 262,
pages 110–132 (page 61).

Tesch, Matthew, Jeff Schneider, and Howie Choset (2013). “Expensive function optimization with stochas-
tic binary outcomes”. In: Proceedings of the 30th International Conference on Machine Learning
(ICML 2013) (page 76).

The Theano Development Team, Rami Al-Rfou, Guillaume Alain, et al. (2016). Theano: A Python frame-
work for fast computation of mathematical expressions. arXiv: 1605.02688 (page 69).

Topsøe, Flemming (2000). “Some inequalities for information divergence and related measures of discrim-
ination”. In: IEEE Transactions on Information Theory 46.4, pages 1602–1609 (page 14).

Tsallis, Constantino (1988). “Possible generalization of Boltzmann-Gibbs statistics”. In: Journal of Statis-
tical Physics 52.1-2, pages 479–487 (page 8).

Turian, Joseph, Lev Ratinov, and Yoshua Bengio (2010). “Word representations: A simple and general
method for semi-supervised learning”. In: Proceedings of the 48th Annual Meeting of the Association
for Computational Linguistics (page 92).

United States Census Bureau (2010). 2010Census. url: http://www.census.gov/2010census/data/
(page 84).

Valada, Abhinav, Christopher Tomaszewski, Balajee Kannan, Prasanna Velagapudi, George Kantor, and
Paul Scerri (2012). “An Intelligent Approach to Hysteresis Compensation while Sampling Using a
Fleet of Autonomous Watercraft”. In: Intelligent Robotics and Applications. Volume 7507. Lecture
Notes in Computer Science (pages 75, 81, 82).

Vedaldi, Andrea and Brian Fulkerson (2008). VLFeat: An Open and Portable Library of Computer Vision
Algorithms. http://www.vlfeat.org/ (page 56).

Vedaldi, Andrea and Andrew Zisserman (2012). “Efficient additive kernels via explicit feature maps”. In:
IEEE transactions on pattern analysis and machine intelligence 34.3, pages 480–92 (pages 9, 14, 46,
54).

Vilnis, Luke and Andrew McCallum (2015). “Word Representations via Gaussian Embedding”. In: Inter-
national Conference on Learning Representations. arXiv: 1412.6623 (page 93).

Wang, Fei, Tanveer Syeda-Mahmood, Baba C. Vemuri, David Beymer, and Anand Rangarajan (2009).
“Closed-Form Jensen-Renyi Divergence for Mixture of Gaussians and Applications to Group-Wise
Shape Registration”. In: Med Image Comput Comput Assist Interv. 12.1, pages 648–655 (page 10).

Wang, Qing, Sanjeev R Kulkarni, and Sergio Verdú (2009). “Divergence Estimation for Multidimensional
Densities Via k-Nearest-Neighbor Distances”. In: IEEE Transactions on Information Theory 55.5,
pages 2392–2405 (pages 13, 52, 54, 96).

Wasserman, Larry (2006). All of Nonparametric Statistics, page 268 (page 12).
Williams, Christopher K I and Matthias Seeger (2000). “Using the Nyström method to speed up ker-

nel machines”. In: Advances in Neural Information Processing Systems. MIT Press, pages 682–688
(page 16).

Wilson, Andrew Gordon, Zhiting Hu, Ruslan Salakhutdinov, and Eric P. Xing (2016). “Deep Kernel
Learning”. In: AISTATS. arXiv: 1511.02222 (page 61).

Wu, Jianxin, Bin-Bin Gao, and Guoqing Liu (2016). “Visual Recognition Using Directional Distribution
Distance”. In: AAAI Conference on Artificial Intelligence. arXiv: 1504.04792 (pages 57, 58).

Xiong, Liang (2013). “On Learning from Collective Data”. PhD thesis. Carnegie Mellon University
(page 16).

122

http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1605.02688
http://www.census.gov/2010census/data/
http://www.vlfeat.org/
http://arxiv.org/abs/1412.6623
http://arxiv.org/abs/1511.02222
http://arxiv.org/abs/1504.04792

Yang, Kun, Hao Su, andWing HungWong (2014). “co-BPM: a BayesianModel for Estimating Divergence
and Distance of Distributions”. In: arXiv: 1410.0726 (page 13).

Yang, Tianbao, Yu-Feng Li, Mehrdad Mahdavi, Rong Jin, and Zhi-Hua Zhou (2012). “Nyström Method
vs Random Fourier Features: A Theoretical and Empirical Comparison”. In: Advances in Neural
Information Processing Systems. MIT Press (pages 32, 89).

Yang, Zichao, Alexander J Smola, and Andrew Gordon Wilson (2015). “A la Carte — Learning Fast
Kernels”. In: AISTATS. arXiv: 1412.6493 (pages 61, 92).

Yoshikawa, Yuya, Tomoharu Iwata, and Hiroshi Sawada (2014). “Latent Support Measure Machines
for Bag-of-Words Data Classification”. In: Advances in Neural Information Processing Systems,
pages 1961–1969 (pages 90, 92, 93).

— (2015). “Non-Linear Regression for Bag-of-Words Data via Gaussian Process Latent Variable Set
Model”. In: AAAI Conference on Artificial Intelligence, pages 3129–3135 (pages 90, 92, 93).

Zhang, J, M Marszałek, S Lazebnik, and C Schmid (2006). “Local Features and Kernels for Classification
of Texture and Object Categories: A Comprehensive Study”. In: International Journal of Computer
Vision 73.2, pages 213–238 (pages 9, 14).

Zhao, Ji and Deyu Meng (2014). “FastMMD: Ensemble of Circular Discrepancy for Efficient Two-Sample
Test”. In: arXiv: 1405.2664 (pages 37, 38).

Zhou, Bolei, Agata Lapedriza, Jianxiong Xiao, Antonio Torralba, and Aude Oliva (2014). “Learning Deep
Features for Scene Recognition using Places Database”. In: NIPS (pages 58, 91).

Zwicky, Fritz (1933). “Die Rotverschiebung von extragalaktischenNebeln”. German. In:Helvetica Physica
Acta 6, pages 110–127 (page 51).

123

http://arxiv.org/abs/1410.0726
http://arxiv.org/abs/1412.6493
http://arxiv.org/abs/1405.2664

	1 Introduction
	1.1 Summary of contributions

	2 Learning on distributions
	2.1 Distances on distributions
	2.1.1 Distance frameworks
	2.1.2 Specific distributional distances

	2.2 Estimators of distributional distances
	2.3 Kernels on distributions
	2.4 Kernels on sample sets
	2.4.1 Handling indefinite kernel matrices
	2.4.2 Nyström approximation

	3 Approximate kernel embeddings via random Fourier features
	3.1 Setup
	3.2 Reconstruction variance
	3.3 Convergence bounds
	3.3.1 L2 bound
	3.3.2 High-probability uniform bound
	3.3.3 Expected max error
	3.3.4 Concentration about the mean
	3.3.5 Other bounds

	3.4 Downstream error
	3.4.1 Kernel ridge regression
	3.4.2 Support vector machines

	3.5 Numerical evaluation on an interval

	4 Scalable distribution learning with approximate kernel embeddings
	4.1 Mean map kernels
	4.1.1 Convergence bounds

	4.2 L2 distances
	4.2.1 Connection to MMD embedding

	4.3 Information-theoretic distances
	4.3.1 Convergence bound
	4.3.2 Generalization to alpha-HDDs
	4.3.3 Connection to mmd

	5 Applications of distribution learning
	5.1 Dark matter halo mass prediction
	5.2 Mixture estimation
	5.3 Scene recognition
	5.3.1 SIFT features
	5.3.2 Deep features

	5.4 Small-sensor detection of radiation sources

	6 Choosing kernels for hypothesis tests
	6.1 Estimators of mmd
	6.2 Estimators of the variance of MMD estimators
	6.3 mmd kernel choice criteria
	6.3.1 Median heuristic
	6.3.2 Marginal likelihood maximization
	6.3.3 Maximizing mmd
	6.3.4 Cross-validation of loss
	6.3.5 Cross-validation of power
	6.3.6 Embedding-based Hotelling stastistic
	6.3.7 Streaming t-statistic
	6.3.8 Pairwise t-statistic

	6.4 Experiments
	6.4.1 Same Gaussian
	6.4.2 Gaussian variance difference
	6.4.3 Blobs

	7 Active search for patterns
	7.1 Related work
	7.2 Problem formulation
	7.3 Method
	7.3.1 Analytic expected utility for functional probit models
	7.3.2 Analysis for independent regions

	7.4 Empirical evaluation
	7.4.1 Environmental monitoring (linear classifier)
	7.4.2 Predicting election results (linear classifier)
	7.4.3 Finding vortices (black-box classifier)

	8 Conclusions and future directions
	8.1 Deep learning of kernels for two-sample testing
	8.2 Deep learning of kernels for distribution learning
	8.2.1 Integration with deep computer vision models
	8.2.2 Other paramaterizations for kernel learning

	8.3 Word and document embeddings as distributions
	8.4 Active learning on distributions

	A The skl-groups package
	B Proofs for Chapter 3
	B.1 Proof of Proposition 3.4
	B.2 Proof of Proposition 3.5
	B.3 Proof of Proposition 3.6
	B.3.1 Regularity Condition
	B.3.2 Lipschitz Constant
	B.3.3 Anchor Points
	B.3.4 Optimizing Over r

	B.4 Proof of Proposition 3.7
	B.4.1 Regularity Condition
	B.4.2 Lipschitz Constant
	B.4.3 Anchor Points
	B.4.4 Optimizing Over

	B.5 Proof of Proposition 3.8
	B.6 Proof of Proposition 3.9

	C Proofs for Chapter 4
	C.1 Proof of Proposition 4.10

	Bibliography

