

Telemetry Group

DOCUMENT 127-17

DATA DISPLAY MARKUP LANGUAGE (DDML) HANDBOOK

DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE,
DISTRIBUTION IS UNLIMITED

ABERDEEN TEST CENTER
DUGWAY PROVING GROUND

REAGAN TEST SITE
REDSTONE TEST CENTER

WHITE SANDS MISSILE RANGE
YUMA PROVING GROUND

NAVAL AIR WARFARE CENTER AIRCRAFT DIVISION
NAVAL AIR WARFARE CENTER WEAPONS DIVISION

NAVAL UNDERSEA WARFARE CENTER DIVISION, KEYPORT
NAVAL UNDERSEA WARFARE CENTER DIVISION, NEWPORT

PACIFIC MISSILE RANGE FACILITY

30TH SPACE WING
45TH SPACE WING
96TH TEST WING

412TH TEST WING
ARNOLD ENGINEERING DEVELOPMENT COMPLEX

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

This page intentionally left blank

DOCUMENT 127-17

DATA DISPLAY MARKUP LANGUAGE (DDML) HANDBOOK

January 2017

Prepared by

Telemetry Group

Published by

Secretariat
Range Commanders Council
White Sands Missile Range

New Mexico 88002-5110

This page intentionally left blank.

Data Display Markup Language (DDML) Handbook, RCC Document 127-17, January 2017

iii

Table of Contents

Preface .. v

Acronyms ... vii

Chapter 1. Introduction .. 1-1
1.1 The Range Commanders Council (RCC) and DDML ... 1-1
1.2 eXtensible Markup Language .. 1-5
1.3 DDML Schema .. 1-7

Chapter 2. Getting Started with a Simple Example... 2-1
2.1 A Simple Data Display Example ... 2-1
2.2 A Description of the Simple Example ... 2-1
2.3 The “Look and Feel” of DDML ... 2-2
2.4 Display Object Containers ... 2-2
2.5 Display Object Common Components .. 2-3
2.6 Parameters .. 2-6
2.7 Data Display Container Custom Parameters .. 2-7
2.8 Data Source Pool Definitions... 2-7
2.9 Data Variable Pool Definitions .. 2-8

Chapter 3. General Structure, Semantics, and the Display Object Group 3-1
3.1 Layered Structure ... 3-1
3.2 Display Object Group .. 3-2

Chapter 4. DDML Translation .. 4-1
4.1 Translator Development Methodology .. 4-1
4.2 Development of External Translators .. 4-3
4.3 Development of Internal Translators ... 4-4

Appendix A. Citations ... A-1

List of Figures
Figure 1-1. A Sample Data Display System ... 1-2
Figure 1-2. Code Development Effort for Translators Needed for Current System: O(n2) ... 1-3
Figure 1-3: Code Development Effort for Translators to and from DDML: O(n). 1-4
Figure 1-4. XML Snippet ... 1-5
Figure 1-5. Components of an XML Element .. 1-6
Figure 1-6. Example Schema Diagram ... 1-7
Figure 1-7. High-Level DDML Schema Diagram .. 1-8
Figure 2-1. Simple Example Illustration .. 2-1
Figure 2-2. Look and Feel Example ... 2-2
Figure 2-3. Container Definitions ... 2-3
Figure 2-4. Common Display Object Schema .. 2-4
Figure 2-5. Common Name and Location Definitions ... 2-4

Data Display Markup Language (DDML) Handbook, RCC Document 127-17, January 2017

iv

Figure 2-6. Common Title Definitions ... 2-4
Figure 2-7. Common Rule XML Schema... 2-5
Figure 2-8. IF/THEN Rule Definition .. 2-5
Figure 2-9. Specific Type Definitions .. 2-6
Figure 2-10. Miscellaneous Common XML Schema ... 2-6
Figure 2-11. Custom Parameter Schema .. 2-7
Figure 2-12. Data Display Container Custom Parameter Example XML 2-7
Figure 2-13. Data Display Container Custom Parameter Example XML Schema 2-7
Figure 2-14. Data Source Pool Example XML .. 2-8
Figure 2-15. Data Source Pool Example XML Schema ... 2-8
Figure 2-16. Data Variable Pool Example XML .. 2-9
Figure 2-17. Data Variable Pool Example XML Schema .. 2-9
Figure 3-1. DDML Layered Structure .. 3-1

List of Tables
Table 3-1. The Display Object Group ... 3-2
Table 4-2. DDML Data Dictionary Sample .. 4-1

Data Display Markup Language (DDML) Handbook, RCC Document 127-17, January 2017

v

Preface
This standard was prepared by the Data Multiplex Committee of the Telemetry Group

(TG), Range Commanders Council (RCC). The DDML Handbook is a common reference for
use by organizations that produce DDML files, by ranges that receive DDML files, and by
vendors who incorporate DDML files into their telemetry processing systems. The use of this
handbook will eliminate inconsistencies and differing interpretations of DDML files so that all
parties will benefit from its usage.

The RCC gives special acknowledgement for production of this document to the TG Data
Multiplex Committee. Please direct any questions to the committee point of contact or to the
RCC Secretariat as shown below.

Telemetry Group Chairman: Mr. Jon Morgan
412 TW, Edwards AFB
Bldg 1408 Room 5
301 East Yeager
Edwards AFB, CA 93524
Phone: DSN 527-8942 Com (661) 277-8942
Fax: DSN 527-8933 Com (661) 277 8933
email jon.morgan.2.ctr@us.af.mil

Secretariat, Range Commanders Council
ATTN: CSTE-WS-RCC
1510 Headquarters Avenue
White Sands Missile Range, New Mexico 88002-5110
Phone: DSN 258-1107 Com (575) 678-1107
Fax: DSN 258-7519 Com (575) 678-7519
email usarmy.wsmr.atec.list.rcc@mail.mil

mailto:jon.morgan.2.ctr@us.af.mil
mailto:usarmy.wsmr.atec.list.rcc@mail.mil

Data Display Markup Language (DDML) Handbook, RCC Document 127-17, January 2017

vi

This page intentionally left blank.

Data Display Markup Language (DDML) Handbook, RCC Document 127-17, January 2017

vii

Acronyms

API application programming interface
DDML Data Display Markup Language
DOM document object model
DTD document type definition
IRIG Inter-range Instrumentation Group
MathML Mathematical Markup Language
RCC Range Commanders Council
SAX simple API for XML
SVG Scalable Vector Graphics
T&E test and evaluation
TG Telemetry Group
TM telemetry
TMATS Telemetry Attributes Transfer Standard
W3C Worldwide Web Consortium
XML eXtensible Markup Language

Data Display Markup Language (DDML) Handbook, RCC Document 127-17, January 2017

viii

This page intentionally left blank.

Data Display Markup Language (DDML) Handbook, RCC Document 127-17, January 2017

1-1

CHAPTER 1

Introduction
This Data Display Markup Language (DDML) Handbook is intended to supplement

Chapter 9 of RCC IRIG 106 Telemetry Standards.1 Practical guidance for properly generating
and using DDML files is provided and examples of some of the more commonly used DDML
features are given. Since there may be multiple ways of describing these features in DDML, the
examples are intended to illustrate “best practices.” The overall purpose of this handbook is to
improve the use of DDML as a standard by presenting clear guidelines and thereby eliminating
any misinterpretations that may exist.

The RCC IRIG 106 sets forth standards for various aspects of telemetry (TM) data
transmission, recording, and processing. These standards constitute a guide for the orderly
implementation of TM systems and provide the necessary criteria on which to base equipment
design and modification. Their purpose is to ensure efficient spectrum utilization, interference-
free operation, interoperability between ranges, and compatibility of range user equipment at the
ranges.

The RCC IRIG 106 is the master source of all information for TM data
transmission, recording, and processing. Therefore, the RCC IRIG 106 is
assumed to be correct if a discrepancy is found between it and this
handbook. If a discrepancy is found, it should be immediately reported to
the RCC Secretariat or to the Telemetry Group (TG). The RCC IRIG 106
can be viewed or downloaded from the RCC public web site,
http://www.wsmr.army.mil/RCCsite/Pages/default.aspx.

1.1 The Range Commanders Council (RCC) and DDML
The RCC held its first meeting in August 1951. In March 1952, the RCC Commanders

established the Inter-Range Instrumentation Group (IRIG) to make recommendations for
improvement of range instrumentation and conservation of the resources of the ranges. After a
few meetings, the IRIG recognized the need to expand and specialize, and the IRIG Steering
Committee was created to oversee several IRIG technical working groups. In 1971, the IRIG
Steering Committee was disbanded, and the IRIG working groups became known as the RCC
working groups. To this day, the RCC standards documents are still commonly referred to as
IRIG standards.

Data display is a critical component for test and evaluation (T&E) environments in
aircraft, space, and energy systems under test. The TM functions associated with these systems
produce too much data for a single person to comprehend as alphanumeric information.
Displays ease the task of interpreting raw measurands faster than the eye can fathom. Moreover,
they depict when measurands are within safe and meaningful limits, show relationships between
measurands, and spot trends. To assist with these efforts, data display systems provide a wide

1 Range Commanders Council. . “Telemetry Attributes Transfer Standard,” in Telemetry Standards. IRIG 106-15.
July 2015. May be superseded by update. Retrieved 1 July 2015. Available at
http://www.wsmr.army.mil/RCCsite/Documents/106-15_Telemetry_Standards/Chapter9.pdf.

http://www.wsmr.army.mil/RCCsite/Pages/default.aspx
http://www.wsmr.army.mil/RCCsite/Documents/106-15_Telemetry_Standards/Chapter9.pdf

Data Display Markup Language (DDML) Handbook, RCC Document 127-17, January 2017

1-2

variety of customizable display objects, including strip charts, bar charts, vertical meters, round
gauges, cross plots, tabular displays, orientation displays, and bit maps. Each display type can be
tailored with respect to size, foreground and background colors, fonts, grids, time, and data
format to name a few.

Each data display object has peculiarities of its own. Not only is there a wide range of
parameters and attributes, but also these values are often a function of the state of the data that
they display. For example, the attributes of an object can change as the color of a curve or
numeric value changes when a measurand approaches a limit or is out of a limit. In addition to
processing algorithms that detect changes, large time scales make it easier to visualize trends.
Dynamic 3-D models of objects under testing can be used to show orientation, as opposed to
interpreting a table of numeric orientation values. Multiple objects can be grouped into a single
window to form instrument panels. Windows can be created for a test plan that is used over and
over either with the same measurands and processed parameters or with new ones as required.
Measurands and parameters can be changed in real time. Similarly, attributes such as data limits
can also be changed. Standard drawing and graphics tools may be used in creating process
diagrams and embellishing control panels. Snapshots of events can be sent to color printers or
saved to disk for inclusion in reports. Features such as local disk and ring buffers that are
associated with video displays and are independent of system archiving give operators the ability
to recreate data leading to an event of interest.

This description illustrates how complex a singular data display system can be. To
compound this situation, there is a variety of vendors offering software packages for data
acquisition and display with such features, each requiring its own data display specification.
Figure 1-1 shows a snapshot of a data display.

Figure 1-1. A Sample Data Display System

Data Display Markup Language (DDML) Handbook, RCC Document 127-17, January 2017

1-3

Use of Telemetry Attributes Transfer Standard (TMATS) (Range Commanders Council
2015) is an increasingly popular method for transferring files between non-compatible systems.
Because each system uses a different internal format, translators are required to convert data to
and from the TMATS intermediate format. The purpose of TMATS is to provide a common
format for the transfer of information between the user and a test range or between different
ranges. This format will minimize the activities unique to stations that are necessary to support
any test item. In addition, the format is intended to eliminate the labor-intensive process
currently required to reformat the information by providing the information on computer-
compatible media, thus reducing errors and requiring less preparation time for test support.

Even though TMATS provides a powerful means for transferring TM information, it does
not provide any support for capturing display objects and their layout for systems that require
common data displays. Moreover, the tendency of T&E is towards a plug-and-play-like data
acquisition system that requires standard languages and modules for data displays. Currently,
the only way to transfer data displays between display applications is to manually recreate
displays using an experienced programmer. Absence of a neutral format also requires the
programmer to manually craft the display transfers between each system pair in the application
domain.

For example, a T&E system of six data display systems requires 30 unidirectional data
display transfers, as shown in Figure 1-2. This can be formulated as n(n-1) transfers, where n is
the number of applications. Also, since there are no automatic translators between display
systems, a small change in one of the systems requires manual changes in the other related
transfers.

Figure 1-2. Code Development Effort for Translators Needed for Current

System: O(n2)

Vendor 1

Vendor 2

Vendor 6

Vendor 3

Vendor 4

Vendor 5

Data Display Markup Language (DDML) Handbook, RCC Document 127-17, January 2017

1-4

The DDML standard is a specification of an eXtensible Markup Language (XML)-based
neutral format that is intended to be the inter-lingua of data displays. The DDML format has the
requirement of being generic enough to encompass various vendor-specific data display formats
and at the same time being unified (not a loose grouping of XML-ized vendor formats). In
addition, it is required to support reusable concepts (such as variables and data sources), be
robust (e.g., use of cross-references), and support future objects without warranting a change of
the DDML format.

Availability of DDML as the inter-lingua drastically reduces the number of unidirectional
translators to two per vendor-specific format. Returning to the T&E system of six data display
systems, we would require 12 unidirectional display transfers, as shown in Figure 1-3. In
general, for a system of n formats, the translator development effort is O(n). Also, the task of
developing translators would be highly simplified because of two reasons. First, because DDML
is an XML format, there is ample support by way of free software to parse and generate DDML.
Second, there is a high degree of reuse of a number of translator components because of the new
hub-and-spoke translator framework. Our proposed solution, therefore, includes the
development of highly reusable, customizable, well-documented translator components along
with well-documented end-to-end processes for rapid translator development. This translator
framework will then be used to develop the bi-directional translators between DDML and the
vendor formats. As a result, DDML along with the system of translators is a practical and cost-
effective solution to the current manual method of recreating displays in the target format.

Figure 1-3 Code Development Effort for Translators to and from DDML:

O(n).

Changes in one of the vendor formats would require re-coding only in the translators
between that format and the neutral format. While the effort to accommodate the changes is

Data Display Markup Language (DDML) Handbook, RCC Document 127-17, January 2017

1-5

mitigated by the design of modular components, we can also automatically generate key
components of the translator code that can be easily compiled, tested, and deployed. This
capability will significantly mitigate the effort to keep up with “moving targets” or evolution of
source/target vendor languages because now the focus of the effort will be on modeling the data
display specification and not on the translator code development. In that sense, it will be similar
to using Computer-Assisted Software Engineering tools to develop object-oriented software and
automatically generate the target code for compiling.

Files in the DDML format are usually produced and read by software. Automating this
process reduces the time needed to prepare a data display configuration and eliminates errors that
inevitably result from entering this information manually.

1.2 eXtensible Markup Language
The XML specification is produced by the World Wide Web Consortium (W3C)2 whose

original intent was to provide a standard, machine-readable format for describing documents.
Because of its popularity, wide adoption, and prevalence on the Internet, its use has expanded to
describe arbitrary data structures such as web services and T&E metadata. Here we provide a
brief overview of XML. More detail can be found in the RCC Style Guide.3

The example in Figure 1-4 shows a portion of an XML document (an XML snippet).

Figure 1-4. XML Snippet

2 http://www.w3.org/
3 Range Commanders Council. XML Style Guide. RCC 125-15. July 2015. Retrieved 13 January 2017. Available
at http://www.wsmr.army.mil/RCCsite/Documents/125-15_XML_Style_Guide/.

http://www.w3.org/
http://www.wsmr.army.mil/RCCsite/Documents/125-15_XML_Style_Guide/

Data Display Markup Language (DDML) Handbook, RCC Document 127-17, January 2017

1-6

In XML, each piece of data, or element, is surrounded by a “tag” such as
<ddmlbarchart:barchart> and <ddmlcommon:point>. The structure of an XML file is such
that tags can be enclosed in other tags to an arbitrary depth (<ddmlcommon:x> is a sub-element
of <ddmlcommon:point>, <ddmlcommon:title> is a sub-element of
<ddmlbarchart:barchart>, etc.). This is the basic idea behind the structure of an XML
document.

The component parts of an XML element are identified in Figure 1-5. Each of these
components is defined below the figure.

Figure 1-5. Components of an XML Element

• Element: “Element” is the term used to define a complete unit of XML information. It
begins with a start tag and ends with an end tag. The value of an element can be a simple
value or one or more sub-elements (children).

• Start Tag: The start tag identifies the beginning of the element and consists of the
element’s name (and possibly a namespace and attributes) included between a “<” and a
“>” symbol.

• End Tag: The end tag identifies the end of the element and looks identical to the start
tag, except it includes a “/” (forward-slash) after the “<” symbol. An end tag does not
contain attributes.

Data Display Markup Language (DDML) Handbook, RCC Document 127-17, January 2017

1-7

• Namespace: The namespace is optional in XML, but can be used to define the scope
within which the element is defined. In our TMATS example, we define a
“ddmlbarchart” namespace (for bar chart display objects) and make all of the elements
for describing bar charts members of it.

• Element name: The name of the element is what appears in the start and end tags and is
what actually identifies the piece of information being defined.

• Attribute: Attributes are another method of associating information with an XML
element. An attribute consists of a name followed by a “=” sign followed by a value
enclosed in quotes.

• Element value: The value of the element is everything that lies between the start tag and
the end tag. The value can either be a single value (e.g. 7, “John”, true, etc.) or a
collection of one or more sub-elements (children).
An XML schema is a design document used to describe a specific language that is based

on XML. The rules for formatting proper XML are very simple and unrestricted. A schema
defines which element names are valid, which elements can have which children, and which
values are valid for each element. Types organize XML documents by defining the allowed
structure for specific groupings of elements.

Even though an XML schema is itself a document, it is usually more useful to view the
schema as a diagram. In this representation, boxes represent XML schema complex types (types
that have structure). The bold title in the box is the name of the type. Inside the box, attributes
are shown under the Attributes heading and simple types (types that do not have structure) are
shown under the Elements heading. Elements that are complex types are represented by a line
that connects the element with its type. The line is labeled with the name of the element. Figure
1-6 contains an example schema diagram.

Figure 1-6. Example Schema Diagram

1.3 DDML Schema
Figure 1-7 shows a diagram of the DDML schema at a high level. The diagram shows

the core items of DDML including projects, models, pools, graphics resources, and generic
parameters (the “param” element).

Data Display Markup Language (DDML) Handbook, RCC Document 127-17, January 2017

1-8

Figure 1-7. High-Level DDML Schema Diagram

A DDML document consists of a project description (element ddml:project of type
ddml:ProjectType), a list of variables (element ddmlpool:variable_pool of type
ddmlpool:VariablePoolType), and a list of data sources (element
ddmlpool:data_source_pool of type ddmlpool:DataSourcePoolType). Each project
can have one or more custom parameters (element ddmlcommon:param of type
ddmlcommon:ParamType) and a model description (element ddmlcontainer:model of type
ddmlcontainer:ModelType). Each model contains a description of the specific display
objects.

Data Display Markup Language (DDML) Handbook, RCC Document 127-17, January 2017

2-1

CHAPTER 2

Getting Started with a Simple Example

2.1 A Simple Data Display Example
In order to demonstrate the use of DDML, a notional data display is shown in Figure 2-1.

In the following sections, all the DDML constructs that could be utilized to store information on
this data display will be described.

Figure 2-1. Simple Example Illustration

2.2 A Description of the Simple Example
The display is extremely basic with just a single bar chart object; however, the notional

example requires all the fundamental building blocks of
DDML: projects, models, and graphic resources. The display
contains a horizontally oriented bar chart object stored inside
a model that is located on the screen. These display
attributes will all need to be stored in DDML. Additionally,
the orientation and location for the model and bar chart will
need to be captured. It is important to note that all graphic
resource locations must be contained within the bounds of their parent model.

A note about DDML Graphics
Resources: Since graphics
resources are stored inside
models, graphic resource
locations are restricted to the
bounds of their parent model.

Data Display Markup Language (DDML) Handbook, RCC Document 127-17, January 2017

2-2

2.3 The “Look and Feel” of DDML
An example XML instance document that implements the bar chart data display example

is shown in Figure 2-2 to demonstrate the look and feel of DDML. This shows a DDML
instance that contains all the minimal constructs needed to validate a DDML file: a project, a
model, a display object container, and a display object (bar chart). Some of the elements are
minimized for clarity. In the following sections, the instance document will be broken down and
explained.

Figure 2-2. Look and Feel Example

2.4 Display Object Containers
All display objects in DDML must be stored within a set of containers. In particular,

each object must minimally have a model parent with a corresponding project parent.
Additionally, grid and map containers can be utilized inside models to add more storing features

Data Display Markup Language (DDML) Handbook, RCC Document 127-17, January 2017

2-3

to the models. Essentially, grids and maps act as containers inside a container. The following
describes the display object containers available in DDML.

• Project. For each DDML instance, a project definition is needed to contain all display
object information. A project is basically a simple grouping mechanism so that all
related data display information can be stored together.

• Model. A model is the starting point for storing data display information. Models
contain one or more data display objects or containers and constrain the location and
direction of those objects. A model is required under the project element of a DDML
instance document.

• Grid. Grids are used within a model to add additional features for arranging display
objects. Grid rows and columns can be defined and display objects can be placed within
specific rows or columns to space them evenly.

• Map. Maps are display object containers than have an image, typically of a map, as the
background. This allows display objects to be shown on top of a map.

For the bar chart example, the project “PROJ1” is defined with the name “Schema
Validation Task.” A model”MOD1” is then placed inside the project with the name “SELMAP”
and location and orientation are defined. Figure 2-3 shows the XML snippet where these
definitions are stored.

Figure 2-3. Container Definitions

2.5 Display Object Common Components
In general, display objects all have common properties and features such as titles, fonts,

and color. For this reason, the DDML common schema can be utilized for all display objects.
Figure 2-4 shows the common schema for display objects

Data Display Markup Language (DDML) Handbook, RCC Document 127-17, January 2017

2-4

Figure 2-4. Common Display Object Schema

In the example DDML, common parameters are defined in order to place the bar chart in
a specific location on the screen as well as define the name of the bar chart (see Figure 2-5).
Additionally, a title name, text color, font, and font size are defined (see Figure 2-6).

Figure 2-5. Common Name and Location Definitions

Figure 2-6. Common Title Definitions.

Figure 2-7 shows the common schema for if/then/else rules.

Data Display Markup Language (DDML) Handbook, RCC Document 127-17, January 2017

2-5

Figure 2-7. Common Rule XML Schema

In the example DDML, a rule is introduced to set the value of a specific variable to 0
whenever the value of that variable is negative (see Figure 2-8). In addition, this rule sets the
color of the variable value in the display.

Figure 2-8. IF/THEN Rule Definition

Type-specific elements must be stored for specific graphics resources. Type-specific
elements are used when specific graphics resources have unique attributes such as formatting of

Data Display Markup Language (DDML) Handbook, RCC Document 127-17, January 2017

2-6

a text object or axis for different types of graphics. In Figure 2-9, the type-specific elements of
“xAxis” and “yAxis” are defined for the bar chart as well as the common elements for each of
the axes.

Figure 2-9. Specific Type Definitions

Figure 2-10 shows common schema elements for parameters, axes, and XY coordinates.

Figure 2-10. Miscellaneous Common XML Schema

2.6 Parameters
There are two types of parameter elements available for all DDML elements: DDML

sub-elements and custom parameters. The DDML sub-elements describe common and required
pieces of information for each DDML element. These parameters are stored as named sub-
elements in the DDML schemas. Custom parameters, however, are utilized when vendor-
specific information that is not explicitly defined as a DDML sub-element needs to be stored.
These parameters are stored in generic DDML param elements. Figure 2-11 shows the schema
for the param element.

Data Display Markup Language (DDML) Handbook, RCC Document 127-17, January 2017

2-7

Figure 2-11. Custom Parameter Schema

2.7 Data Display Container Custom Parameters
In DDML, custom parameters can be utilized for all graphics resources. These generic

parameters allow for unsupported or context-specific information elements to be managed in
DDML. In Figure 2-12, a custom parameter called “Screen” is defined for the model (MOD1)
and stores the value of “GRIDS.” This indicates that the model should be placed on the
“GRIDS” screen in a multiple-monitor configuration.

Figure 2-12. Data Display Container Custom Parameter Example XML

Figure 2-13 shows the schema diagram for custom parameters.

Figure 2-13. Data Display Container Custom Parameter Example XML

Schema

2.8 Data Source Pool Definitions
Since all data displays depend on

sources of data, a data source pool must be
defined for all instances of DDML. Figure
2-14 demonstrates a notional data source

A note about DDML Pools: Since most
graphics resources require data to display, a
data source and data variable pool are required
for all DDML instance documents. It is
recommended that these items be completed
prior to defining display objects in DDML.

Data Display Markup Language (DDML) Handbook, RCC Document 127-17, January 2017

2-8

stored in the DDML source pool. As shown, custom parameters are utilized for each of the data
sources to store specific information, such type, scale, and symbol.

Figure 2-14. Data Source Pool Example XML

Figure 2-15 shows the schema diagram for data sources.

Figure 2-15. Data Source Pool Example XML Schema

2.9 Data Variable Pool Definitions
Similar to the data source pool, each instance of DDML must contain a data variable

pool. This pool allows DDML to manage the links between data sources and data variables. As
shown in Figure 2-16, each data variable must have a name and data source pool reference.

Data Display Markup Language (DDML) Handbook, RCC Document 127-17, January 2017

2-9

Figure 2-16. Data Variable Pool Example XML

Figure 2-17 shows the schema diagram for variable pools.

Figure 2-17. Data Variable Pool Example XML Schema

Data Display Markup Language (DDML) Handbook, RCC Document 127-17, January 2017

2-10

This page intentionally left blank.

Data Display Markup Language (DDML) Handbook, RCC Document 127-17, January 2017

3-1

CHAPTER 3

General Structure, Semantics, and the Display Object Group
Now that we’ve looked at a complete example, let’s back up and look at the overall

structure of DDML.

3.1 Layered Structure
The DDML format is built off of a layered structure with layers to support everything

from data sources to the visualization of data coming from the data sources on data displays.
This structure is similar to a typical software layered architecture composed of graphics
resources, visualization and user interfaces, information management, and persistence modules.
The DDML layer structure, alongside a typical software structure, is shown in Figure 3-1.

Figure 3-1. DDML Layered Structure

Similar to software modules, DDML is also composed of layers as depicted in Figure 3-1.
The first layer in the structure is graphics resources. This layer is similar to graphics resources
utilized in software systems. In DDML, this layer is composed of visual components used in
data display systems such as charts, buttons, and sliders as well as low-level graphic elements
such text, lines, and rectangles. Simple graphical shapes are modeled using Scalable Vector
Graphics, which is recommended by W3C. The second layer of DDML is dynamics. The

Data Display Markup Language (DDML) Handbook, RCC Document 127-17, January 2017

3-2

dynamics layer models behaviors of display objects. It manages the variable and data source use
as well as rules associated with data displays. The data variables and derived data layer handle
the links between the display objects and data sources. Data variables can be atomic or derived
using mathematical expressions in MathML (also recommended by W3C). The last layer of the
DDML architecture is the data sources layer. This layer handles various data sources such as
text files, Open Database Connectivity, network ports, and ports on data acquisition cards.

3.2 Display Object Group
Table 3-1 shows the various common

display object classes that are available in
DDML. These classes have display object
type specific elements that are unique to each
object.

Table 3-1. The Display Object Group
Element Name Description

Bar Chart A display object that shows data as vertical or horizontal bars whose
values correspond to the lengths of the bars.

Button A display object used to assign a variable when clicked.
Dial A circular display object that displays a data value as a needle point on a

circular axis.
Custom A custom display object.
Frequency Plot A display object that displays frequency domain data.
Frequency
Response Plot

A display object that contains frequency and magnitude axes to plot
frequency data.

Heads-Up Display A display object that is typically used to display velocity, pitch, and
altitude as well as heading.

Pie Chart A display object that shows percentage data values as slices of a circle.
Radial Chart A circular display object that represents data values as line-connected

points with distance outward from the center point based on the
magnitude of the values.

Slider A display object that displays a single data value with a marker on a
vertical or horizontal axis.

Strip Chart A display object that displays values vs. time on a scrolling grid.
Textual A display object that shows text such as a label.
XY Chart A display object showing x and y data points.

A note about Display Objects: If a class for a
specific display object is not available in DDML,
a custom or “generic” display object can be
stored. This allows uncommon display objects
to be managed in DDML.

Data Display Markup Language (DDML) Handbook, RCC Document 127-17, January 2017

4-1

CHAPTER 4

DDML Translation

4.1 Translator Development Methodology
The overall development methodology of a bidirectional DDML translator can be broken

into four main steps: mapping DDML objects to vendor objects in a data dictionary; choosing an
XML parser; writing the translator code; and testing. These four steps apply to the development
of both external and internal translators.

The first step in developing a DDML translator for a specific vendor’s format is to list
that vendor’s display objects in a data dictionary. This process involves using the vendor’s tool,
any available documentation, and source code (when available) to form a comprehensive list of
the attributes, their definitions, and their possible values for each display object in the vendor
format. These attribute lists are then stored in the data dictionary.

Once these lists have been created, each vendor display object can be matched with a
corresponding DDML display object. For example, a vendor format may have a display object
called ‘meter’ that is similar in appearance and functionality to a DDML dial. Thus, the vendor’s
meter will be matched with DDML’s dial.

For each display object, this matching process must then be repeated at the attribute level.
The DDML definition contains certain basic attributes for each DDML element. These attributes
comprise the most common and most necessary information needed to describe that element.
Some of these attributes are required, while others are left optional. For example, a DDML strip
chart must have coordinates and may have a title. When an object from a vendor’s format is
added to the data dictionary, all of the required DDML attributes and as many of the optional
DDML attributes as possible are matched to equivalent vendor attributes. Any vendor attributes
that are not matched to DDML attributes will become custom parameter elements in generated
DDML files.

Table 4-1 shows a section of a data dictionary that compares DDML attributes to
DataViews attributes for strip charts. Not all DDML attributes correspond to DataViews
attributes, and some DDML attributes must be calculated from one or more DataViews
attributes.

Table 4-1. DDML Data Dictionary Sample
Strip Chart Attributes

DDML DataViews
ScrollDirection Derived from graph type
Title Title
TitleColor TitleColor
TitleFont TitleFont
TitleFontSize TitleFontSize / 10
BackgroundColor BackgroundColor
DataAreaColor DataAreaColor

Data Display Markup Language (DDML) Handbook, RCC Document 127-17, January 2017

4-2

FrameScrollDuration
ValueAxisMin YlowRange
ValueAxisMax YhighRange
TimeAxisMin TimeStart / 60
TimeAxisMax (TimeStart + numSlots) / 60
TimeAxisUnit Seconds
ValueGrid1Color GridColor (DV only has 1 grid)
ValueGrid2Color
ValueGrid3Color

The mappings detailed in the data dictionary are used for both directions of the translator:
vendor format to DDML, and DDML to vendor format; however, in some cases, the relationship
between an item in the vendor format and an item in DDML is one-to-many. In this situation,
special rules must be established for determining which DDML item should be created when
performing a translation in the vendor format to DDML direction. Similarly, if the relationship
is many-to-one, rules need to be created for the DDML to vendor format direction. These rules
should be stored in the data dictionary along with the mappings.

Once the vendor format has been added to the data dictionary, an XML parser must be
chosen before development of the DDML translator can begin. The XML parser will be used
both to read the DDML file when translating from DDML to the vendor format, and to build the
DDML file when translating from the vendor format to DDML. There is a number of XML
parsers freely available, and they come in two types: Simple API for XML (SAX)4 and
Document Object Model (DOM)5. The first parser decision to be made is whether to use a SAX
or a DOM parser. This decision is influenced by any memory or performance constraints and the
developers’ own preferences. Once a parser type has been selected, a parser must be chosen
from those available for that type. This decision is most influenced by the language and
development environment used in creating the translator. For example, if a DOM parser is to be
chosen, Microsoft® provides its MSXML DOM parser for nonmanaged applications or the
System.Xml DOM parser for applications that make use of managed classes and the .NET
framework.

With the parser chosen, the next step in the development process is to write the translator
code. The development of the translator code can be made easier and more flexible with the
creation of a DDML helper module that contains constants and functions useful for performing
common translations, conversions, and other often-repeated functions. For example, in DDML,
colors are always stored as 24-bit integers, with the red, green, and blue components encoded as
0xRRGGBB. By adding functions to the helper module that converts between the DDML color
format and the format used by the vendor’s tool, the amount of code written for the translator
will be reduced. Additionally, if future versions of the vendor tool use a different color format,
the change will only have to be made in the helper module. Similarly, this module can contain
functions that convert coordinates from the incoming DDML coordinate system to the vendor
tool’s coordinate system. In addition, the helper module can contain functions for performing
common XML-related tasks such as finding a node, adding a subnode, and getting the value of

4 Official website of the Simple API for XML (SAX), http://www.saxproject.org/.
5 “Document Object Model (DOM) Level 3 Core Specification,” W3C Recommendation
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/, April 2004.

http://www.saxproject.org/
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/

Data Display Markup Language (DDML) Handbook, RCC Document 127-17, January 2017

4-3

an attribute. Having all of these XML-related tasks in one module also makes it easier to switch
to a different XML parser in the future if needed.

By using the DDML helper module and following the mappings defined in the data
dictionary, writing the translator code is just a matter of detecting the objects in the source
format and saving them as the appropriate objects in the destination format. It is best to write the
translator code for the highest-level objects first, starting with the DDML project element,
working down to DDML model level and, finally, to the individual charts, graphs, and other
display objects. When writing the translator code for a given object, both directions of the
translator should be written before moving on to another object, starting with the vendor format
to DDML direction. Once this direction is completed for an object, it is easy to take that code
and simply reverse it for the DDML to vendor format direction. Some additional code may need
to be added to the reverse direction, such as default values for certain vendor format parameters,
to ensure that DDML files that were translated from a different vendor format are translated to
this vendor format correctly.

When the translator code is written for each direction and each object, the mappings and
attribute lists for each object created in the data dictionary are used to translate each item in the
vendor format to and from the correct item in DDML. Each attribute that maps to a DDML
attribute is translated to or from the attribute list for the current object. Each remaining attribute
in the vendor format is loaded or saved as a custom parameter element in the custom parameters
section associated with the current object. During this development process, it is sometimes
necessary to modify the mappings in the data dictionary as more information about each attribute
is obtained.

Some additional details of the code-writing step are different depending on whether the
translator is internal or external. These differences are described in later sections for each
translator type.

During translator development and after completion, it is important to test the translation
of each object type for both the forward (vendor format to DDML) and the reverse (DDML to
vendor format) directions. The DDML files generated by the translator must be tested, using a
program such as XMLSpy6 by Altova®, to validate the files against the DDML Document Type
Definition.7 In addition, the translators must be tested for completeness by performing round-
trip translations from the vendor tool to DDML and back. The data display should be identical
before and after the translations. Finally, the correctness of the object and attribute mappings
should be tested by translating displays from the vendor tool to several other vendor tools and
vice versa. This can be accomplished by making use of the external translators or by using an
internal translator in that vendor’s tool.

4.2 Development of External Translators
If the vendor tool uses a text-based or well-documented binary format or if the vendor

tool has an application programming interface (API) for accessing data display information, the
translator can be developed as an external translator without requiring access to the vendor’s

6 Altova’s XMLSPY web page, https://www.altova.com/xmlspy.html.
7 “Guide to the W3C XML Specification ("XMLspec") DTD, Version 2.1,”
http://www.w3.org/XML/1998/06/xmlspec-report, June 1998. Retrieved 31 January 2017.

https://www.altova.com/xmlspy.html
http://www.w3.org/XML/1998/06/xmlspec-report

Data Display Markup Language (DDML) Handbook, RCC Document 127-17, January 2017

4-4

source code. If the translator is being developed as an external translator, some additional steps
and considerations must be taken that do not apply to internal translators.

For external translators, a way to access and create data display information in the vendor
format must be created. This can be done by accessing an available API for the vendor tool or
by writing a parser for the vendor format. Since the translator is bidirectional, the parser must be
capable of not only reading and interpreting the vendor format, but of building new files in the
vendor format as well. Functions that read and write basic elements in the vendor format should
be created and added to the DDML support module previously described. Separating this format
parser code from the actual translator code as much as possible makes it easier to modify the
translator if the vendor syntax changes.

The code that performs the translations in each direction should be organized according
to the DDML object being translated. This makes it easier to modify the mappings of one
particular object without affecting the translations of other objects. For each DDML object, the
code should be further split into code for DDML attribute translation and code for custom
parameter translation. This makes it easy for the developer to look at the code and see which
vendor parameters are mapped to DDML attributes and which parameters are not.

4.3 Development of Internal Translators
If the vendor tool uses an undocumented binary format and does not have an API, the

translator will have to be integrated into the tool itself as an internal translator. The process of
writing the translator code is slightly different for internal translators than for external
translators. Like external translators, special considerations must be accounted for internal
translators as well.

Since internal translators are developed as part of the vendor tool, they have access to all
of the information stored in a data display through calls to class members and functions.
Consequently, it is not necessary to develop a format parser for the vendor’s format.

To ensure that an internal translator is comprehensive, it is best to model the translator’s
code on the existing save and load functions for the vendor’s native format. Every class that
contains a function to save to or load from the vendor format should also have a function to
perform the same task in DDML. Any information that is saved to or loaded from the native
format should also be saved to or loaded from DDML. This will ensure that no information is
lost when performing a round-trip translation from the vendor tool to DDML and back. Using
the same structure as the existing save and load functionality also prevents problems with trying
to access private variables from an external class.

Data Display Markup Language (DDML) Handbook, RCC Document 127-17, January 2017

A-1

Appendix A

Citations

Altova’s XMLSPY web page, https://www.altova.com/xmlspy.html.

“Document Object Model (DOM) Level 3 Core Specification,” W3C Recommendation
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/, April 2004.

“Guide to the W3C XML Specification ("XMLspec") DTD, Version 2.1,”
http://www.w3.org/XML/1998/06/xmlspec-report, June 1998. Retrieved 31 January
2017.

Official website of the Simple API for XML (SAX), http://www.saxproject.org/.

Range Commanders Council. “Telemetry Attributes Transfer Standard,” in Telemetry
Standards. IRIG 106-15. July 2015. May be superseded by update. Retrieved 1 July
2015. Available at http://www.wsmr.army.mil/RCCsite/Documents/106-
15_Telemetry_Standards/Chapter9.pdf.

———. XML Style Guide. RCC 125-15. July 2015. Retrieved 13 January 2017. Available at
http://www.wsmr.army.mil/RCCsite/Documents/125-15_XML_Style_Guide/.

http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/
http://www.w3.org/XML/1998/06/xmlspec-report
http://www.saxproject.org/
http://www.wsmr.army.mil/RCCsite/Documents/106-15_Telemetry_Standards/Chapter9.pdf
http://www.wsmr.army.mil/RCCsite/Documents/106-15_Telemetry_Standards/Chapter9.pdf

Data Display Markup Language (DDML) Handbook, RCC Document 127-17, January 2017

A-2

******** END OF DDML HANDBOOK ********

	CHAPTER 1
	1.1 The Range Commanders Council (RCC) and DDML
	1.2 eXtensible Markup Language
	1.3 DDML Schema

	CHAPTER 2
	2.1 A Simple Data Display Example
	2.2 A Description of the Simple Example
	2.3 The “Look and Feel” of DDML
	2.4 Display Object Containers
	2.5 Display Object Common Components
	2.6 Parameters
	2.7 Data Display Container Custom Parameters
	2.8 Data Source Pool Definitions
	2.9 Data Variable Pool Definitions

	CHAPTER 3
	3.1 Layered Structure
	3.2 Display Object Group

	CHAPTER 4
	4.1 Translator Development Methodology
	4.2 Development of External Translators
	4.3 Development of Internal Translators
	Appendix A

