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1. Introduction

Recently the problem of selecting the best one of several binomial populations
has been studied from the point of view of different sampling rules. In this paper,
we compare some sequential procedures with and without early elimination. The
main breakdown is between those using the cyclic play the winner (PWC) sam-
pling rule and those using the vector at a time (VT) sampling rule.
The PWC rule orders the k given populations at random at the outset and

-uses this ordering in a cyclic manner. After each success, we sample from the
same population; after each failure, we switch to the next population in the
ordering scheme. After the kth population, we complete the cycle by going back
to the first population.
The VT rule consists of taking k tuple observations, one component from each

population. In a variation of this, the cyclic (VTC) rule, we start as in the PWC
rule by randomizing the order of the populations and then take one observation
from each population using the fixed cyclic order; thus, we need not complete
the last vector in the VTC rule.

Both of the above rules can be modified as follows. Let the order of the
populations sampled be irl, 72, ... , 7rk. From the beginning of sampling 7rI to
the end of sampling 7rk, we have gone through one complete sampling cycle.
Our new modification is to reorder the k populations after each complete sam-
pling cycle; this reordering can depend, on the observed results. We denote such
a modification of the PWC and VTC rules by PWO and VTO, respectively.

Several papers dealing with the PW and VT sampling rules [6], [9], [12], and
[13] consider termination rules based on a fixed sample size or on inverse sam-
pling, that is, we sample until at least one population reaches a fixed number of
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54 SIXTH BERKELEY SYMPOSIUM: HOEL AND SOBEL

successes. In [10], k = 2 and the termination rule is based on the difference of
the numbers of successes. The monograph [1] deals mainly with VT sampling
and a stopping rule based on likelihood ratios. (A summary of the above work
can be found in [11].) Paulson [7], [8] has brought in early elimination tech-
niques, which (except for [1]) is not a feature of the above references; some
discussion of elimination procedures does appear in Chapter 9 of [1].

In this paper, we introduce a new procedure that combines the likelihood
approach to the stopping rule with the PWC sampling rule. In Section 4, we
derive an extension of the rule in [10] to the case of k populations, which con-
tains the feature of early elimination. Empirical results for the PWO sampling
rules are obtained and analyzed for the inverse sampling rule in Section 6. Sec-
tions 3 and 4 deal with the PW sampling while Sections 5 and 7 are partly
concerned with VT sampling. In Section 5 sequential techniques developed in
[3] are applied to Wald's sequential double dichotomy formulation [14], pro-
ducing a binomial selection procedure with VT sampling and early elimination
features.
In Section 7, we briefly describe two other VT rules, originally given in [1]

and [7]. Finally, we present empirical results for all of the above procedures in
Sections 6 and 7 and make appropriate comparisons.

2. Notation, definition, and requirement

Let pi denote the single trial success for population 7r and let qi = 1 -p,
i = 1, 2, * * *, k. The ordered p values are denoted by p[i] p[2] < `- P*- [k]-
For P[k] > P[k-l], a correct selection (CS) is defined as the selection of the popu-
lation associated with p[k]; for equality, either selection is correct. Let A denote
the value of p[k - P[k-i]- A procedure R is said to satisfy the (A*, P*) probability
(of a correct selection) requirement if

(2.1) P{CSjR} > P* whenever A 2 A*;

here A* (with 0 < A* < 1) and P* (with 1/k < P* < 1) are preassigned con~
stants. All the procedures discussed in this paper satisfy this common require-
ment (2.1).

Let N; denote the sample size taken from 7r, and let N denote the sum over i
of these sample sizes, i = 1, 2, * * *, k. Let N(j) denote the sample size from the
population associated with p[il, i = 1, 2, * , k. Then we define our loss func-
tion by

k
(2.2) L = Pk(Pi - p[i)N(

and the corresponding risk function by

(2.3) risk = E (p[kj -p[j)E{N(j)j.
i=1
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.In the applications that we have in mind, the one dealing with clinical trials
is uppermost, where pi denotes the probability of a cure using treatment i. In
this application, the primary concern is to reduce the use of poorer treatments.
The risk function (2.3) represents the expected number of failures that could
have been avoided if we had known beforehand which treatment (or population)
is best.

In addition to the above risk function, we are also interested in reducing the
expected total number of observations E{NIR} for the procedure R.

3. Likelihood procedure for play the winner sampling

In this section, we consider the likelihood procedure that is appropriate for
play the winner sampling. The case of general k is considered in Section 3.1 and
this is specialized to k = 2 in Section 3.2.

3.1. Likelihood rule for PW samplinig with general k. A likelihood rule based
on PW sampling and without early elimination can be developed in a manner
similar to that given in [1]. We describe this procedure for k = 3 and specialize
to k = 2 in Section 3.2; the generalization to arbitrary k is a straightforward
extension of the case k = 3.
Let S1 . S2 . Ss denote the current number of successes from the three popu-

lations and let Fi represent the current number of failures from the population
associated with Si, i = 1, 2, 3. If S8 = S2 (> SI), we associate Ss with the smaller
of the two corresponding F values; similarly for SI = S2 = Ss, we assign Ss to
the one with the smallest F value. If it is still not determined, then we use
randomization. However, it is shown below that for P* Y2 our rule never ter-
minates sampling when randomization is used. Let pjij pp[21 < p[3] be the
ordered (unknown) probabilities of success on a single trial.
The method, based on the techniques in [1], is to write the most likely of the

three possible assignments of the pair (Ss, Fs) with the ordered p values and to
stop sampling when the minimum (over that part of the parameter space for
which p[8- P[2] A*) of the corresponding likelihood ratio is at least P*. More
specifically, let the likelihood L(a, fl, 'y) be defined by

(3.1) L(a, ,,y) = pft](1 - p[1]) p[13(1 - p[2])Pp[3S](1p[8l)',
where (a, j#, 'y) is a permutation of (1, 2, 3). Let the likelihood ratio 2(3) be
defined by
(3.2) S2(3) =L(1,2,3) + L(2, 1, 3)

ZL(a, j,7
where the sum is over all 3! = 6 possible permutations. This likelihood ratio
2(3) associates S3 with PE3] and £(j) is defined similarly to (3.2) and associates
Sj with p[3], j = 1, 2. It is a basic result in [1] (pp. 17 and 18) that if any proce-
dure R!has the property at stopping time that
(3.3) max min 2(j) P*,

j
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where the minimum is over all points in the parameter space for which
Pra]- P[21 2 A*, then R must satisfy the P* condition (2.1). It is believed, also
shown in [1] (part 1 of Theorem 6.1.1), that this minimum in (3.3) is generally
attained at some generalized favorable configuration (GLF) in which

(3.4) p[l = P[21= p-P
where we now use p to designate p[s (this has not been demonstrated). Assuming
that 2(3) yields the maximum in (3.3) at termination (which is also not yet
shown), it follows by straightforward algebra that we can write (3.3) in the form

(3.5) max fL(3, 2, 1) + L(2, 3, 1) + l(1, 3, 2) + l(3, 1, 2)l < 1 -P*.
,&*SP:51 I L(1, 2,3) + L(2, 1,3) J= P*

Using (3.1), we obtain for (3.5) the explicit form

(3.6) max {(P A*)T1 ( 1 )p (p _*)T2 ( 1.-p)U2}
<1 - P*1P*

where Ti = S8 - Si and Ui = Fi - F3, i = 1, 2. For the case of VT sampling,
we note that F, - Fa = Sa - Si, j = 1, 2 and the stopping rule (3.6) reduces to
that given in [1] and in Section 7 below. For PW sampling the above does not
hold and we note that F, - Fs can only take the values -1, 0, and + 1. If
F, - Fs = -1 for either j = 1 or j = 2, then the left side of (3.6) clearly tends
to xo, and hence the inequality cannot be satisfied. Thus, we can state the fol-
lowing stopping rule.

Stopping rule for procedure RLPW: stop sampling as soon as Fs ' min (Fl, F2)
and (3.6) holds.
The terminal decision rule is to select the population associated with S3. If

S = S2 and Fs = F2 at stopping time, then we randomize between these two
populations with probability Y2 for each. Since P* > Ys, we cannot terminate
with both S, = S2 = Si and Fs = F2 = F1. Moreover, for P* 2 2 the value of
(1 - P*)/P* < 1 and the inequality. (3.6) cannot hold if Ss = S2 and Fs = F2.
Hence, we will never have to randomize in our termination rule when P* 2 Y2.

It should be noted that the procedure RLPW is carried out by computing the
maximum in (3.6) after every single observation and this can be tedious. How-
ever, it is possible to use (3.6) to construct a set of stopping points for any given
P*. This set turns out to be fairly small and thus becomes a convenient method
of describing the entire stopping rule. Illustrations of such stopping sets are
given in Table I for A* - 0.1, 0.2 and P* = 0.75, 0.90, 0.95, 0.99. For example.
for the pair (A* = 0.2, P* = 0.90) there are 11 pairs of stopping points given in
Table I. If F1 = F2 = Fs, then sampling terminates as soon as T2 = S - S2 2 10
and T1 = S - SI 26 or as soon as T2 2 11 and T, 2 17 or, and so forth.
A conservative variation of the above rule replaces (1 - p)/(l - p + A*) in

(3.6) by its upper bound 1 when Fa . min (F1, F2) and we obtain the following
stopping rule.



TABLE I

STOPPING POINTS FOR THE SEQUENTIAL LIKELIHOOD PROCEDURE
RLPW WITH k = 3 POPULATIONS

T, = S8 - SI, T2 = S -S2 as defined in the text.
Note: some numerical results for these procedures are given in Tables V, VI, and VII.

A*= 0.1
F,=F2=Ft F,=F,=Fs+1 F2=F.=F1-1 Fi=FA=F2-1

P* T, T, T1 T, T, T2 T1 T,
0.75 18 17 11 10 13 13 13 13

19 16 13 9 15 12 14 11
20 15 14 8 20 11 15 10
22 14 17 7 16 9
25 13 23 6 18 8
29 12 20 7
38 11 26 6

0.90 28 27 20 19 23 23 23 21
30 26 21 18 24 22 24 20
31 25 22 17 30 21 25 19
33 24 24 16 26 18
37 23 28 15 27 17
42 22 36 14 29 16
61 21 32 15

40 14

0.95 35 35 26 25 30 29 30 27
36 34 27 24 37 28 31 26
37 33 29 23 32 25
38 32 31 22 33 24
41 31 34 21 34 23
44 30 42 20 36 22
50 29 39 21
78 28 47 20

0.99 51 50 40 39 45 44 45 42
52 49 41 38 46 40
54 48 42 37 47 39
56 47 44 36 48 38
58 46 47 35 49 37
63 45 53 34 51 36
75 44 54 35

59 34
= 0.2

F, = F2= F F= F2 =F + 1 F2 =F=F-1 F.=F F2-1
P* T, T2 T, T2 Ti T2 T, T2

0.75 9 8 4 4 6 6 6 5
10 7 6 3 9 5 7 4
12 6 10 2 8 3
24 5 11 2

0.90 13 13 8 8 11 10 11 8
15 12 9 7 12 7
17 11 11 6 14 6
26 10

0.95 17 16 11 10 14 14 14 11
19 15 13 9 15 10
22 14 20 8 17 9

23 8

0.99 '24 24 17 17 21 21 21 18
25 23 18 16 22 17
27 22 -20 15 23 16
32 21 24 15

S7
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Stopping rule for the conservative likelihood procedure RLPW: stop sampling as
soon as Fs < min (F1, F2) and

(3.7) (1 - A*)T1 + (1 - A*)T<1 p

It will be seen in Section 7 that when P* = 0.95 and A* = 0.2, this conserva-
tive rule roughly causes a 20 per cent increase in the total expected number of
observations, E{N} above that for the procedure RLPW.

3.2. Likelihood rule for PW sampling with k = 2. The special case k v 2 is
of particular interest because we can make the procedure more explicit and be-
cause we can make comparisons with other procedures already studied, for exam-
ple, the procedure Rpw in [10]. The derivation in Section 3.1 above gives for
k = 2 the following stopping rule.

Stopping rule for RLPw(k = 2): stop as soon as F2-< F1 (that is, F1- F2 = 0
or 1) and

rp - A*S2-Si 1\F -F2~ 1 - F
(3.8) max {( 11 P*)F 1 }<1p*.

After randomization, let I denote the population that we sample from first
and II the other population. Then F1 = F2 in (3.8) when we are sampling from
I and F1 = F2 + 1 in (3.8) when we are sampling from II and II has; more
successes. Hence, we stop and select I as soon as S2 - SI = t (if this happens
before another equality below), where t > 0 is the smallest integer equal to or
greater than the solution of

(1 -P*)
(3.9) t log (1 - A*)

We stop and select II as soon as S2 -Sl = s (if this happens first), where s > 0
is the smallest integer for which

(3.10) ^*s1 {(~ p ) (1-p +A*)}-+1 -P*

It is easily seen that t 2 s and that we will only select a population after getting
a success from that same population. This differs from the procedure Rpw in [10]
only in that we allow t 2 s and in [10] only t = s is considered (see Table II).
Using the recursion formula method given in [10], we can now derive an exact

expression for the P{CS}, E{N}, and the expected number of observations
E{NB} on the poorer treatment. This will be done for arbitrary positive s and t
and, as a special case, we can then set s and t equal to the values obtained above
by the likelihood approach. Let p (respectively, p') be associated with popula-
tion I (respectively, II), let NT = I mean that the next trial is on population I,
let (s, t) denote the stopping points, and define

311) Pn = Pn(s, t) = P {I is selectediSr - Sir = n, NT = I, (s, t)},
(3.11) ,Qn = Qn(s, t) = P {I is selectedS - Sri = n, NT = II, (s, t)}.
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TABLE II

STOPPING POINTS FOR THE SEQUENTIAL LIKELIHOOD PROCEDURE
RLPW WITH kC 2 POPULATIONS
A*0.1 A*=0.2

* F= F2 F1= F2 + 1 F= F2 F1 = F2 + 1
PS- SI S2 - Si S2 - S, S2 - S

0.75 11 6 5 2
0.90 21 14 10 6
0.95 28 20 14 8
0.99 44 34 21 15

THE COMMON VALUES OF r REQUIRED BY THE PROCEDURE
RPw OF [10]

Use 7 and 8 with probability (weight) 0.679 and 0.321, respec-
tively, in order to obtain a PCS of exactly P* = 0.75

with A* = 0.1.

P* A* = 0.1 A* 0.2

0.75 7.32 3.19
0.90 16.45 7.38
0.95 22.96 10.44
0.99 37.82 17.56

Then the PW sampling scheme, conditional on I being the better population
leads to the recursion

Pn= pPPnl + qQn,
(3.12) Q = p'Q.-1 + q'PJ,
with boundary conditions Pt = 1 and Q-- = 0.
From (3.12), we find that

qt- qX84t Q(s I)=q(1- X,+-n)(3.13) PI(S, t) =
- q'

s t) = t'
where X = p'/p _ 1. Setting n = 0, we obtain the conditional PCS = Po(s, t)
given that I is the better population. For the same problem, we define the dual
expressions

314 P' = P'(S, t) = P {II is selectedlSii-S = n, NT = II, (S, t)},
(3.14) Q' = Q'(s, t) = P {II is selectedlSir - Sr n, NT = I, (s, t)},
and let p (respectively, p') be associated with II (respectively, I). Then we find
that the recursive scheme is exactly as in (3.12) with the new boundary condi-
tions P' = 1 and Q'_I = 0, which differ from the above only in that s and t are

interchanged. It follows that the conditional PCS given that II is the better
population is Q0(s, t) and this is obtained from (3.13) by merely interchanging
s and t, that is, Q0(s, t) = Qo(t, s). Hence, from these two conditional PCS re-

sults, we obtain



60 SIXTH BERKELEY SYMPOSIUM: HOEL AND SOBEL

(3-)P{CSIRLPW} - Po(s, ) + Qo(t, s) = q- 2(qX + q'Xt)(3.15) ~~~~~~2q'- qXa+t

It is easily seen that for the three extreme cases p'- 0, p' -- p > 0, and p -+ 1
we obtain from (3.15), P(CS) = 1, Y2, and 1 - (p')t/2, respectively.

Using an analogous method to obtain E{NB}, the number of observations on
the poorer population, we define

(3.16) U. = U.(s, t) = E{Nl1jS1 - Sir = n, NT = I, (s, t)},(3.6) V = Vn(s, t) = E{NIIISI- Si = n, NT = II, (s, t)},
and associate p with population I. Then the PW sampling scheme leads to
the recursion

(3.17) Un = pUn+1 + qVn,
Vn = p'V.-1 + q'Un + 1,

with boundary conditions U, = 0 = V-8. It can be shown (and it is sufficient to
verify) that

Un(s, t) q( - n) _ q[p + q(s + t)]X,(Xn - Xt)

(3.18) p(l - X) p(l - X)(q - qX^A+t)
Vn(S, = p + q(t - n) _ [p + q(s + t)]X,(q'Xn qXt)

p(l - X) p(l - X)(q' - qXa+l)
The conditional E{NB} given that I is the better population is Vo(s, t). We again
define new quantities dual to (3.16) by writing

U' = U'(s, t) = E{NrjS11 - Sr = n, NT = II, (s, t)},(3.9) = Vn(s, t) = E{NIISIl- Sr = n, NT = I, (s, t},
and letting p be associated with population II. Then we get the same recursion
scheme as in (3.17) with the new boundary conditions U' = 0 = V' ,, so that we
need only interchange s and t in (3.18) to solve for (3.19). Hence, the conditional
E{NB} given that II is the better population is Vo(s, t) = Vo(t, S). Hence, from
(3.18),

(3.20) E{NBIRLPW} = Uo(s, t) + Vo(t, a) = [p + q( + t)](1 - X)(q - qxB)
2 2p(l - X)(q' - .qXa+t)

Similarly, to find E{NA}, we replace NIl by NI in (3.16) and obtain, in place
of (3.17),
(3.21) Un = PU.+1 + qVf + 1,

(v. = pT-i + q'UC,
with boundary conditions Ct = 0 = V-,. The solution of this set is

Cn(, t) _q(t - n) _ q[p' + q'(s + t)]X8(Xn -Xt)
(3.22) t)=p(1 X) p(' - X)(q' - qX+)
V3(2 t) p' + q'(t - n) _ [p' + q'(s + t)]X8(q'Xn- qX)Vn(S, t) =

p(l - X) p' - Xq' - qx+t)
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Again, we set up the dual quantities

(3.23) t G U.(s, t) = E{N11ISr -S1 = n, NT = II, (s, t)},.
.=' s, t) = E{NIrjSrr - Sr n, NT = I, (s, t)},

and let p be associated with population II. Then the recursion is the same as
in (3.21) with the boundary conditions G, = 0 = ' t, so that we need only
interchange s and t in (3.22). Hence, the conditional E{NA} given that II is the
better population is Vo(s, t) = V(t, s). It follows from (3.22) that

(3.24) E{NAIRLPW} = Uo(8, t) + Vo(t, s) [p' + q'(s + t)](q'- qX8)(1 - Xt)2 2p(1 - X) (q' - qX8+1)
Adding E{NA} and E{NB}, gives

(3.25) E{NIRLPw} = (ii + q(s + t))G - ? _)Iq_-___
where p = (p + p')/2 and q = 1 -.
For the case p = p', we take the limits in (3.20), (3.24), and (3.25) as p'-4 p

and obtain

(3.26) E{NBIRLPW} = E{NAIRLPW} = iE{N RLPW} = (P + q),

which is comparable with r(p + qr)/2p obtained in (2.11) in [11] for the pro-
cedure Rpw with s = t (= r). If, as is usually the case, we have t > r > 8 and
8t < r2, then each of these three expectations is smaller under Rpw for q close to
zero and each is smaller under RLPW for p close to zero. Thus, neither of these
procedures can be uniformly better than the other, that is, throughout the
parameter space. Since t in (3.9) is asymptotically (A* -- 0) like r in (2.13) of
[11], it follows that the same lack of a uniform result holds in comparing RLPW
and the vector at a time procedure RVT, that is, E{NIRvT} is smaller for p -+ 0
and E{NIRLpw} is smaller for p -. 1.
To illustrate the results of procedure RLPW and compare them with the pro-

cedure RPW in [10], we consider the pair (P* = 0.95, A* = 0.2) and put the
results in tabular form. For the procedure RPW, we need to randomize between
r = 10 (with probability 0.555) and r = 11 (with probability 0.445); this
achieves the P* value 0.555(0.945) + 0.445(0.956) = 0.950 in the LF configu-
ration. For the procedure RLPW, we randomize between the pair (s = 7, t = 11)
with probability 0.434 and the pair (s = 8, t = 12) with probability 0.566; this
achieves the P* value 0.434(0.943) + 0.566(0.955) = 0.950 in the LF configu-
ration. In randomizing between these two particular pairs (7, 11) and (8, 12),
for procedure RLPW, rather than other pairs, such as (7, 12) and (8, 12), our
criterion was to minimize the maximum of E{NB}, which generally occurs at
p = A*/2. This also seems to minimize the maximum for E{N} and E{NA},
which also generally occur at p = A*/2.
The comparison of Rpw and RLPW in Table III shows that the latter has a

smaller E{NB} and E{N} in 17 out of the 18 entries. Thus, we have effected a
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TABLE III

A COMPARISON OF PROCEDURES RPW AND RLPW FOR k = 2, P* = 0.95, AND
A* = 0.2 IN TEe GLF CONFIGURATION A = 0.2

Note that randomization was used to make P* = 0.95 exactly in both cases;
see text for details.

P +p' EfNBI EiNA) E{N}
2 Rpw RLPW Rpw RLPW RPW RLPW

0.1 42.28 38.76 52.22 47.83 94.50 86.59
0.2 37.31 34.22 47.25 43.29 84.55 77.51
0.3 32.29 29.56 42.22 38.59 74.51 68.15
0.4 27.13 24.71 36.99 33.61 64.12 58.33
0.5 21.85 19.80 31.55 28.51 53.40 48.31
0.6 16.60 15.04 26.08 23.50 42.68 38.54
0.7 11.55 10.54 20.77 18.80 32.32 29.33
0.8 6.77 6.33 15.79 14.50 22.56 20.83
0.9 2.26 2.31 11.23 10.69 13.49 13.00

fairly uniform improvement, with emphasis on the maximum value at */2,
although (as was expected) the improvement is not substantial anywhere. How-
ever, in the context of clinical trials even slight decreases in E{NB} are important.

4. An elimination procedure REPW
For k > 2, we define an elimination procedure which is an extension of the

procedure Rpw defined for k = 2 and studied in [10]. Under Rpw, we stop sam-
pling when Isi- s.l = r, where si is the number of successes from 7ri, i $ j,
i = 1, 2, j = 1, 2. Assuming si > Sj, we then select 7ri as the better population.
The approximate value of r required to satisfy (2.1) is the smallest integer equal
to or greater than r2, where
(4.1) r2 = llog 2(1- P*)

log (1 - A*)
We extend this procedure as follows. Population 7rJ is eliminated if for some 7r

(not yet eliminated) si- = r. Let Wk be the best population. Since
(4.2) 1 - P{CS} < ZP {7ri eliminates 7rk} < (k - 1)(1 -P*),
it follows that

(4.3) P{CS} > 1 - (k - 1)(1 -P*).
If we now set the right side of (4.3) equal to P*, solve for P*, and substitute
the result in (4.1), then it is clear that the resulting procedure which uses
throughout for r the smallest integer equal to or greater than

log{ 2 }(4.4) = log (1 -A*)
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satisfies
(4.5) P{CSIREpw} 2 P* whenever A 2 A*.
Monte Carlo results for REPW and comparisons with other procedures can be
found in Tables V, VI, and VII (below).

5. Elimination with Wald's double dichotomy

For k _ 2, we investigate the numerical results of an elimination procedure
which is derived in [5] and based on general methods from [3] applied to the
double dichotomy problem as formulated by Wald [14].
This procedure REVT uses the VT sampling rule and eliminates population 7r

if for some 7r (not yet eliminated),
(5.1) si- s c+dnf*,
where c > 0 and d < 0 are predetermined constants and n* is the number of
unlike pairs from 7ri and 7ri (that is, observations in the same vector of the form
S, F or F, S).
We now give the values of c and d that satisfy the requirement (2.1). Define

roby

(5.2) (1+=/v*)2
and let ri denote any value such that

(5.3) ro < r1 _
'o

It is shown in [5] that by taking

_ _ _ _ _- 1 + r2 log ( _ p* 2 log 1+ TO)r(5.4) c d 1
log- log10

ro To

the requirement (2.1) will be satisfied. We select ri = /Tro for our Monte
Carlo studies and this implies that d = 0, the reason being that asymptotically
(P* 1) at the generalized least favorable configuration (that is, when p[ii =
P[2] = * * *= P[k-l1 = p[k- A*), the risk defined in (2.3) is minimized for this
value of ri (see [5]).
The use- of d = 0 above also provides us with the analogous elimination pro-

cedure for extending the procedure RVT in [10] to k > 2 in the same way that
we extended Rpw in Section 4.

6. Comparisons of several play the winner procedures for k = 2

In this section, our aim is to make a comparison for k = 2 of the likelihood
procedure developed in Section 3.2 with some other procedures that satisfy the
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TABLE IV

EXPECTED SAMPLIE SIZES FOR k = 2 UNDER FIVE PW PROCEDURES (P* = 0.95, A* = 0.2)
The table gives E{Ng}, E{N} for A = 0.2 and Eo{N} for A = 0 in each cell.
For RI and R1o, use r = 20 and 21 with weights 0.958 and 0.042, respectively.

For RH, use r = 33 and 34 with weights 0.6 and 0.4, respectively.
For RIT, use r = 20 and 21 with weights 0.761 and 0.239, respectively.

p + p'
2 RLPW R1 Rio RH RIT

0 Eo{Nj x x o 65.8 40.5
E{NB) 38.8 80.7 80.2 26.8 20.2

0.1 E{N} 86.6 180.9 180.4 59.7 45.5
Eo{N} 801.2 348.4 348.0 64.2 45.0

EBNB) 34.2 52.5 52.0 26.1 22.5
0.2 E{N) 77.5 119.3 118.8 59.0 51.4

EBoN} 362.6 173.0 172.5 63.2 50.6
EINB} 29.6 38.2 37.5 25.2 24.9

0.3 E{N} 68.2 88.3 87.6 58.0 58.0
Eo0N} 216.4 114.4 113.7 62.2 57.8
NB) 24.7 29.2 28.5 24.1 25.7

0.4 EIN) 58.3 69.1 68.4 56.9 61.1
Eo{N} 143.2 84.8 84.2 61.4 65.3
E{NB} 19.8 22.9 22.1 22.6 22.7

0.5 E{N} 48.3 56.0 55.2 55.3 55.7
Eo{N} 99A 67.0 66.2 60.2 64.8
Ef NB) 15.0 17.7 17.0 20.5 18.0

0.6 E{N} 38.5 46.0 45.2 53.2 46.6
Eo{N} 70.0 54.8 53.9 59.0 55.3
E{NB} 10.5 13.5 12.5 17.5 13.6

0.7 E{N} 29.3 38.2 37.1 50.2 38.5
EojN) 49.2 45.8 44.7 57.6 46.3

E{NB} 6.3 8.9 7.8 12.5 8.9
0.8 E{N} 20.8 30.8 29.7 45.3 31.1

Eo{N} 33.6 38.4 37.1 55.2 38.9
E{NB} 2.3 2.5 2.5 2.5 2.5

0.9 E{N) 13.0 22.4 22.4 35.4 22.6
EofN} 21.4 31.4 30.0 51.0 31.8

1.0 Eo{N} 11.6 20.0 20.0 33.4 20.2

same probability requirement (2.1) with A* = 0.2 and P* = 0.95. All of our
numerical entries for k = 2 (in Table IV) are based on exact formulas. In Table
:IV, we have included in each cell E{NB} for the LF configuration (A = 0.2) and
E{N} for the LF (A = 0.2) and equal parameter (EP) configuration (A = 0).
The procedures RI and RIO are inverse sampling procedures using PW sampling
without and with reordering after each complete cycle, respectively.
The modified procedure R,, due to Hoel [3] uses PW sampling and scores,

where the score WA (for drug A, say) is defined by adding the successes of drug
A and the failures of drug B and the termination rule is inverse sampling, that
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is, stop when max (WA, WB) = r. It has a bounded E{N} value for p = p' = 0
and is therefore an improvement on R, for small values of p.
Another procedure RIT, due to Berry and Sobel [2], modifies the inverse sam-

pling scheme by terminating the procedure either after a fixed number c of
complete cycles or after one population reaches r successes, whichever occurs
sooner. This procedure appears to have two preassigned constants (r, c) to spec-
ify, but both constants are used (with r = c) to satisfy (2.1).

Table IV (for k = 2) shows that for p5 = (p + p')/2 > Y2 the likelihood pro-
cedure is preferable using either the risk criterion or E {N}. However, for p < y
the value of E {N} becomes infinite for all three" of the procedures, RLPW, RI, and
RIO when p = p'. Procedures RH and RIT, on the other hand, have a bounded
E{N} function even for p = p' and the numerical improvement for small p in
Table IV, especially for p = p', is very striking. It follows, as in the case of
k = 3 in the next section, that if we had some a priori knowledge about the
value of p, we could more easily decide which of these procedures to use.

Procedure RIO shows only a small improvement over procedure R1, but it is
uniform over the entire parameter space.

7. Monte Carlo simulation studies for k = 3

In this section, we bring together several procedures appropriate for k = 3
populations and make some Monte Carlo studies to compare them. The criteria
for comparison are the risk function (2.3) and the expected total number of obser-
vations E {N}. The same formulation (2.1) applies to all these procedures with
the common values P* - 0.95 and ,* = 0.2. Each entry in Table V corresponds
to the average of the results of 1,000 experiments.
The main breakdown is between the procedures that use PW sampling and

those that use VT sampling. We have included three previously published pro-
cedures. In the PW group, we include the inverse sampling procedure RI studied
in [13]. In the VT group, we include the procedure RBKs which was developed
in [1], by Bechhofer, Kiefer, and Sobel, for general k, but details of which are
given in ([1], p. 270) only for k = 2. We also'"include in the VT group the pro-
cedure RP due to Paulson [7]. A brief description of these procedures now follows.
Under procedure RI, we sample cyclically from three populations with PW

sampling until any one of them has r successes; it is then selected to be the best
population. The Monte Carlo results for R1 given in Tables V, VI, and VII are
very close to approximate values based on (3.35) and (3.37) in [13]. A table of
these approximate values, not included here, gives values consistently smaller
than the observed values in Table IV.
Under procedure RBKS, we use vector sampling and stop as soon as

A*-*_2T_ < 1 - p*
(7.1) 1 +*)2T, + (1 + P*)- P*
and select the population associated with Ss. For P* > 12, we will not stop
when Sa = S2, and hence, randomization will not be required at termination. It
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should be noted that the form of this procedure in (7.1) is similar to that of the
conservative procedure in (3.7), but since the latter uses PW sampling there is
no direct comparability.
Under procedure Rp, we take Ni, observations from population 7ri, i = 1, 2, 3,

where Ni, is a Poisson random variable with mean. J. Let si, (respectively, fi,)
denote the total number of successes (respectively, failures) from 7r, up to and
including the rth stage. Then population irr is eliminated at stage r if for some 7r;
(not yet eliminated), we have

(7.2) Sir - fr< 8,ir-fir + log a + TA(X),
where a = (1 - P*)/(k - 1),

(7.3) A(X.) - J[A (X2 -1)-(X 1)2]X log X

and X is any value between 1 and (1 + A*)/(1-A*). For our Monte Carlo
studies, we use the same values for J and X that 'were used in [7], namely,
J = 1 and X = (1 + 0.75A*)/(1 -0.75A*), which equals 23/17 = 1.353 in our
case. It should perhaps be remarked that the Poisson observations are not
counted in computing E{N} or the risk function.
Table V giyes the empirical risk function, Table VI gives the empirical E{N}

TABLE V

RISK FOR VARnOUs PROEDUR;ES k = 3, A* = 0.2, AND P* = 0.95
GLF configurations with 1,000 experiments per point.

Play the winner sampling Vector sampling
REPW R RW RLPW RBK8 Rp REVT
Sobel- Wald's
Weiss Likelihood Paulson double
(elimi- Inverse conserva- Likeli- (elimi- dichotomy

max pi nation) sampling tive hood (see [1]) nation) (elimination)

.20 22.82 45.47 27.57 22.83 9.95 10.14 9.95

.25 21.35 35.73 25.84 21.03 10.28 10.12 9.80

.30 19.67 29.08 23.99 20.05 10.29 10.01 9.61

.35 18.25 24.78 22.85 18.90 10.35 10.17 9.49

.40 17.25 21.34 21.58 17.60 10.25 9.95 9.44

.45 15.73 18.33 19.39 16.06 10.38 9.90 9.33

.50 14.72 16.26 18.18 14.95 10.40 10.14 9.21

.55 '13.08 14.44 16.62 13.51 10.20 9.97 9.24

.60 12.02 12.63 14.61 11.89 10.23 1-0.01 9.32

.65 10.41 11.25 13.20 10.73 10.32 10.21 916

.70 8.71 9.85 11.40 9.22 10.44 10.07 9.18

.75 7.42 8.77 9.74 8.13 10.84 10.07 9.45

.80 6.13 7.41 7.85 6.36 10.70 9.95 9.52

.85 4.88 6.08 6.04 5.01 10.88 10.14 9.70

.90 3.62 4.71 4.36 3.48 10.79 10.19 9.72

.95 2.27 3.00 2.65 2.32 10.73 10.17 9.73
1.00 1.02 1.09 0.95 1.00 10.68 10.20 9.91
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TABLE VI

EXPECTED TOTAL NUMBER OF OBSERVATIONS FOR VAROUS PROCEDURES
k = 3, A* = 0.2, AND P* = 0.95

GLF configurations with 1,000 experiments per point.

Play the winner sampling Vector sampling
REPW RI R

I

RLiW RBK8 Rp REvT
Sobel- Wald's
Weiss Likelihood Paulson double
(elimi- Inverse conserva- Likeli- (elimi- dichotomy

max pi nation) sampling tive hood (see [1]) nation) (elimination)

.20 184.7 368.5 223.3 184.8 74.6 81.1 74.6

.25 177.9 291.1 210.3 171.2 77.1 81.0 76.0

.30 166.5 238.4 196.6 164.1 77.2 80.6 75.8

.35 156.4 204.1 188.2 155.5 77.6 81.7 75.8

.40 149.6 176.9 178.8 145.9 76.9 79.8 75.8

.45 138.8 153.6 162.5 134.5 77.9 79.4 75.4

.50 131.6 137.3 153.5 126.1 78.0 81.2 74.6

.55 118.3 123.1 141.8 115.1 76.5 80.0 74.8

.60 109.2 109.6 126.8 103.0 76.7 80.2 75.2

.65 97.2 99.2 116.3 94.5 77.4 82.0 74.6

.70 84.5 89.0 102.9 83.0 78.3 80.8 74.8

.75 73.4 80.9 90.3 74.7 81.3 80.6 76.9

.80 62.3 71.8 75.9 61.4 80.2 80.2 77.4

.85 52.1 63.1 62.4 51.0 81.6 81.0 79.1

.90 42.9 54.3 49.6 39.3 80.9 81.5 78.9

.95 31.4 44.3 36.5 30.2 80.4 81.7 78.8
1.00 21.2 33.4 23.7 20.2 80.1 81.3 79.7

function, and Table VII gives the estimated PCS function (or observed fre-
quency of success).
As a group, the PW sampling procedures are different from the group of VT

sampling procedures. The latter procedures have remarkably constant risk and
E{N} for varying values of max pi, i = 1, 2, 3 while the former procedures ap-
pear to be monotonically decreasing with max pi; the cross over point is about
0.65 in Table V and about 0.75 in Table VI. It follows that if we had some prior
knowledge about max pi (only), we might be better able to decide which type
of sampling to use.
Among the PW sampling rules, the procedures REPW and RLPW are quite

similar and uniformly better than both the procedures R1 and the conservative
likelihood procedure. However, from Table VI, it appears that the procedure
RLPW is slightly better than REPW.
For the VT sampling procedures, the procedure REVT is preferable to both

RBKs and RP using either the risk or the E{N} criterion; the differences between
the latter two procedures appear to be small.

In Table VII we note, as expected, that all procedures satisfied the require-
ment (2.1) in all the experiments that were carried out. The PW procedures,
except for conservative likelihood, came closer to the nominal value P* = 0.95
than the VT procedures, and hence, were slightly more efficient in the sense that



68 SIXTH BERKELEY SYMPOSIUM: HOEL AND SOBEL

TABLE VII

PROBABILM OF CORRECT SELECTION FOR VAIUOUS PROCEDURES
k = 3, A* = 0.2, AND P* = 0.95

GLF configurations with 1,000 experiments per point.

Play the winner sampling Vector sampling
REPw Ri RI RLPW RBKs Rp REVT
Sobel- Wald's
Weiss Likelihood Paulson double
(elimi- Inverse conserva- Likeli- (elimi- dichotomy

max pi nation) sampling tive hood (see [1]) nation) (elimination)

.20 1.000 1.000 1.000 1.000 1.000 .968 1.000

.25 1.000 1.000 1.000 1.000 1.000 .968 1.000

.30 1.000 1.000 1.000 1.000 .998 .966 .999

.35 1.000 1.000 1.000 1.000 .993 .973 .993

.40 1.000 .998 1.000 1.000 .984 .971 .993

.45 1.000 .991 1.000 .997 .984 .960 .989

.50 1.000 .984 1.000 .999 .980 .970 .982

.5.5 .996 .983 .997 .990 .957 .971 .974

.60 .991 .967 .997 .987 .961 .961 .970

.65 .994 .970 .997 .987 .964 .972 .977

.70 .991 .963 .995 .981 .973 .976 .969

.75 .972 .952 .990 .976 .983 .974 .981

.80 .970 .957 .985 .977 .983 .969 .989

.85 .967 .965 .987 .968 .994 .970 .997

.90 .968 .969 .981 .962 .999 .965 .997

.95 .952 .986 .978 .955 1.000 .966 1.000
1.00 .957 .996 .989 .969 1.000 .964 1.000

they have less "excess over the boundary". In addition, the columns of Table
VII give some indication of where the least favorable configuration is for the
pair (A* _. 0.2, P* _ 0.95).
We wish to point out that we have not observed the expected number of stages

required for termination since (1) it is not clearly defined for all procedures,
and (2) it is not crucial for the application to clinical trials. It should also be
pointed out that our Monte Carlo results 'are only for GLF configurations, where
P1l] = P[21 = p[]- 0.2. In other configurations, the elimination procedures are
even more preferable, because noncompeting populations can be eliminated early.

The authors wish to thank Professor, R. E. Bechhofer of Cornell Utniversity
for his helpful comments.
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