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1. Introduction

This paper is a continuation of the results presented in two earlier papers
[20], [21] and may be read as the sequel. A brief account of their results will,
however, be given here in order to make this paper selfcontained. The subject
under study is the distribution of the integrals of the form

(1.1) Y(t) = rff(X(r), r) dz,

where X(t), t > 0, is a continuous time parameter stochastic process defined on
a probability space (Q, a?, ^), with X as its state space, and f is a nonnegative
(measurable) function defined on X x [0, oc). Here it is assumed that the
integral Y(t) exists and is finite almost surely for every t > 0.
The integrals Y(t) arise in several domains of application such as in the theory

of inventories and storage (see Moran [13], Naddor [14]), and in the study of
the cost of the flow stopping incident involved in the automobile traffic jams
(see Gaver [9], Daley [4], and Daley and Jacbos [5]). Such integrals are also
encountered in certain stochastic models suitable for the study of response time
distributions arising in various live situations (see Puri [16], [18], [19]). In fact
in [18], it was shown that such a distribution is equivalent to the study of an
integral of the type (1.1).

In [20], the work done by several authors in the past on the integral functionals
of stochastic processes was briefly surveyed. But more importantly a method was
introduced for obtaining the distribution of Y(t). This method is based on a
"quantal response process" Z(t) defined for a hypothetical animal. By definition
Z(t) equals one if the animal is alive at time t and is equal to zero otherwise. In
particular, it is assumed that

(1.2) P(Z(t + At = OIZ(t) = 1, X(t) = x) = 6f(x, t)At + o(At),
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with Z(0) = 1 and 6 a nonnegative constant. Here the state "zero" is an
absorption state for the process Z (t). It is easy to establish by using a standard
argument that

(1.3) P(Z(t) = 1) = E(exp {- j f(X(T), dr})d

which in turn gives the Laplace transform (L.t.) of the integral Y(t). Thus, the
study of the distribution of the integral Y(t) can be carried out equivalently by
studying the process Z (t). Note that the quantal response process Z(t) does not
influence the process X (t) in any way, rather, as is clear from (1.2), it is influenced
itself by the growth of the process X (t). Again, as was pointed out in [20],f is
assumed to be nonnegative without loss of generality. Finally, in [20] and [21],
this method was applied to the case of Markov chains. The results obtained there
are summarized in the next section for later use.

2. The case of Markov chains

Considera time homogeneous Markov chain (M.c.) X(t) withXT = {1, 2, *}
constructively defined as follows. If X(t1) = i at some epoch t1, the value of
X (t) will remain constant for an interval t1 _ t < t1 + r, whose random
duration c is exponentially distributed with density function cj exp {-x},
c>_ 0; the probability that X(t1 + r) = j is pi, where the matrix p = (pij),
is a stochastic transition matrix. By assumption, the quantities c1 and pij are
independent of time. Also, we assume that c1 < m for all i so that all the states
of X are stable. The sample paths of the process are assumed to be right con-
tinuous. Since the process is defined constructively, it is separable. Also, it is
evident from the construction that the process (X (t), Z (t)) is a Markov process
with state space X = {(i, r); i = 1, 2, 3, *.* ; r = 0, 1}. In [20] and [21], the
above method was applied to Markov chains under the assumption that f
depends only on X(t) and not explicitly on t, in which case, in order to specifyf,
we are given a sequence of numbers f(i) = fi, with 0 < fi < oo, i = 1, 2, .
Let

Pij(t) = P(X(t) =jiX(0) = i),
(2.1) P0 (t) = P(X(t) = j, Z(t) = 1 IX(0) = i, Z(0) = 1);

jj(a) = O exp {-t}Pij(t) dt,
(2.2) i.ij(a() = o

exp { -t}Pij(t) dt,
n(a) = (7ij(r()), R() = (xi(a));
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(2.3) C = ici), I= (ij)
(2.3) 1 = (1, 1,1, ), f=(=ijfi);
where i, j = 1, 2, **; a > 0, and bij is the Kronecker delta.

It is known that the probabilities Pij in terms of their L.t. nij(a) satisfy the
backward Kolmogorov system of equations (see Feller [7])

(2.4) (aI + C)g (a) = I + Cp (a).

Ifthe solution of (2.4) satisfies as(a) 1 = 1 for a > 0, then it is the unique solution
of (2.4) and is also the unique solution ofthe forward system ofequations given by

(2.5) gx(a)(aI + C) = I + g (a)Cp.
Analogous to (2.4) X satisfies the backward system

(2.6) (a1 + C + 6f) (a) = I + Cpi (a).

In [20], it was shown that there always exists a solution of (2.6), which is minimal
among all its solutions and which also is the minimal solution of the forward
system, analogue of (2.5)

(2.7) iE(a)(aI + C + 6f) = I + i (a))Cp.

Let Ij(t) denote the indicator function of the set [X(t) = j]. Since

(2.8) Pjj(t) = E(exp {- Jf(X (,)) dr} Ij(t) X(0) = i

it is evident that knowledge of the Pi,j is equivalent to that of the joint distribu-
tion of X (t) and Y(t). With this in mind, in [20] the problem of existence and
uniqueness of the solution of (2.6) and (2.7) was studied in some detail. In
particular, if the chain is finite with X = {1, 2, ... , N}, N < co, then it can be
easily seen that for all a > 0, the matrix (aI + C + 6f - Cp) has an inverse,
so that from (2.6) and (2.7) we have the explicit solution for g(a) as

(2.9) ic(a) = (aI + C + of -Cp)-

valid for a > 0 and 5 . 0. Let Ill' = (f1, I2, O**7N) where

(2.10) i =f0 exp { -at} E(exp - | f(X(T)) dt} X(0) = i) dt.

We then have

(2.11) 4k(a) = fi(a)1 = (aCI + C + 6f - Cp)V1.
The L.t. Oi(a) is in general a rational function of a and can therefore be easily
inverted to yield E(exp { lof(X (i)) dz} |X (0) = i).
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Again in [20] and [21], under certain assumptions, we proved the identity

(2.12) ii- = 3ufir

which connects iX and n, allowing us to obtain the desired iE (ac) in terms of l (o),
which may be known. The identity (2.12) is found very useful in applications
particularly because of the manner in which f appears. In particular in [21], we
used this identity to obtain the joint distribution of times spent by the Markov
chain in various states of a given finite set before the process hits a given taboo
set.
REMARK. A formulation alternative to the consideration of the M.c.

{X(t), Z(t)} would be to consider a modified time homogeneous M.c. Xt (t) with
state space {a. 1. 2, 3, * } with new exponential parameters, say Ki, given by

(2.13) c = (c i + 6fi) (1 - a). i a. 1, 2, 3,

and the new transition matrix Pij given by

cipij(ci + bfi)-1 forij = 1, 2,
(2.14) Pij = bfi(ci + bfi)- forj = a, i = 1, 2,

Iv/Naj for i = a,

so that the state a is an absorption state. However, since for each formulation,
the relevant information concerning the distribution ofX(t) and Y(t) is contained
in the equations (2.6) and (2.7), we find no essential gain in considering this
alternative formulation.

In [20], it was pointed out that in the past most of the researchers in the area
touched by this paper have exploited the backward system such as (2.6) (see
for instance, Gaver [9], Daley [4], Daley and Jacobs [5], and McNeil [12]).
Forward equations (2.7) were not used possibly because of lack of probabilistic
interpretation. The present method via the quantal response process Z(t) has
the advantage over the past ones in that it provides the needed probabilistic
interpretation. In the present paper, we shall exploit the forward system a great
deal, by applying it to the case of certain well-known processes arising in several
live situations. In [20], [21] and also in the applications of the method exhibited
in the present paper, we have restricted outselves mostly to Markov chains with
countable state space. However, it is evident that the method is applicable to
almost all types of continuous time stochastic processes. The application to
certain processes such as semi-Markov processes will be dealt with elsewhere.

Finally, it may be remarked that the above method has some resemblance
with the work of Kemperman [11] and also with the method of collective marks
due to van Dantzig [6]; in the present case, however, the approach was moti-
vated by the author's work on the response time distribution arising in certain
biological situations (see Puri [16], [18], and [19]).
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3. Birth processes

This section will be devoted to the case where the M.c. X(t) is a birth process.
Section 3.1 deals with the time homogeneous case, while Section 3.2 deals with
linear nonhomogeneous birth processes.

3.1. Time homogeneous birth processes. We shall use here the notation of
Section 2. Let X(t) be a time homogeneous birth process with pjk = + 1, k and
X(0) = i. Also let

(3.1) N = min {j;j _ i, cj = 0};
if cj > 0 for all j > i. then N = co. If N < ox, the M.c. is a finite one (with
cj > 0,j= i, i + 1, ,N- 1, and CN = 0), a case which was already con-
sidered in Section 2 with an explicit answer given by (2.9). However, if N = 0o,
we assume that E f' = oo, so that with probability one only a finite number
ofjumps of the chain are allowed in any finite time interval. For the present case,
the systems of equations (2.6) and (2.7) are given by

(3.2) (a + ci + bfi)tiik(OC) - cifti+lk(O) = bik

and

(3.3) (a + Ck + bfk)ftik(O) - Ck-ltik-1(a) = 6bke

respectively, with fij(a) = 0 forj < i and forj > N. Each of these systems can
be uniquely solved for fiik(c) recursively. yielding

(ri for k = i,

(3.4) Tik(a) =r PiPi+ X Pk-lrk for k > i.

0O for k < i and for k > N,

where rj = (a + cj + bfjV) and pj = cjrj. Because of the condition Ex7 iCj1 =
x. it is now easily seen that for a > 0,

(3.5) {exp{-at} E(exp {- 6 f(X(T)) dT} X(0) = i) dt

N n

= E 7ik(O) = lim E 7tik(a)
k=i n-N k=i

1F ~~~~~~~~~~~n
= iim [1 PiPi+i1 pn AZfkPiPi+1 Pk-lr]

aC nuN k = i

[ kEEfkPiPi+1 Pk-lrk].

where ifN < I, the limit of a sum as n N is taken to be the appropriate finite
sum. Here in (3.5), we have used the fact that a k Tik(a) _ 1, for all a > 0.
which is known from the general theory of Markov chains. The fact that
limfl+N (PiPi 1 Pn ) = 0 follows from the condition E>;N Cj- 1 = xo.
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Expressions (3.4) can easily be inverted to yield expressions for Pik(t). For
instance, if cj + bfj are all distinct forj = i, i + 1, * , N, it can be easily shown
that

k-1 \k -k-

(3.6) Pik(t) (f Cj l [i (Ct + bft - cj - b5f) exp {- (cj + bfj)t},
j=1 j=i _=i,e*j_

where by convention ( cl~jCj) = j (ct + 6ft-cj - 6fjV1 = 1 for k =
j = i. Summing (3.6) over k, we finally obtain

(3.7) E(exp {- |ff(X(,)) dr} X(0) = i

- N~k-Cjc)[ i(e+ f-c -cf]exp{ (cj + bfj)t}.N~ ~~(c,k -kj f
k=i j=i j=i _=i,e*i

Note that for the case when N = co, an interchange of the two summation signs
on the right side of (3.7) is not always valid. Also, one could instead invert the
L.t. given in (3.5) and obtain a different yet equivalent expression for (3.7).

Again, since Y(t) is a monotone nondecreasing function of t, it almost surely
converges to a random variable, say Y, as t -- oo. By using a Tauberian argument
it follows from (3.5) that

N

(3.8) E(exp {-6Y}IX(O) = i) = lim a Z fik((a)
a-0O k-i

= 1 - lim 6 2 fkP P'+ 1 ... p-1r*
n-N k=i

where rr = (ci + fi) -1 and pi* = c r*. Now after some manipulation with the
right side of (3.8), it can be shown that

(3.9) E(exp {-6Y}IX(O) = i) = lim (Pi" ... P*) = fi[ +

If N < oo, this is zero (keeping in mind that CN = 0) unless fN = 0. Thus, if
N < co and fN > 0, Y = co a.s. Again if N = o, (3.9) is equal to zero if
and only if (fjl/cj) = co, in which case also Y = co a.s. Let EX j (fj/cj) <
co. This means that fN = 0 whenever N < o. Then (3.9) is positive for all
6 > 0, and in particular is equal to one when 6 = 0, and hence Y is finite a.s.

Furthermore, it is clear from (3.9) that Y has a density. In fact, ifwe assume that

fj/cj, j = i, i + 1, . .. , N, are all distinct, then, at least when N < oo, one easily
obtains the density function of Y as

(3.10) g(y) = --[1 ) ]exp } y > 0,
j=i Ai =i,e*j fjce fj
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by inverting the L.t. (3.9). As expected, it follows from (3.9) that Y can be
expressed as the sum E7= jfjrj, where Ti, i+1, ..* , are independently negative
exponentially distributed with parameters ci, c +1, . . . . Here zj, j = i, i + 1,

, are essentially the random lengths of times that the process spends in
various states.

In the following subsections, we consider certain special cases ofhomogeneous
birth processes that arise in practice.

3.1.1. Case of a simple epidemic. Jerwood [10] has recently considered the
case ofa simple epidemic which starts with X (0) = i infectives and S (0) = N -i
susceptibles at time t = 0, where N < oo. If X (t) denotes the number of infec-
tives at time t, then X(t) is a birth process as considered by Bailey [1] with the
finite state space (i, i + 1, * *, N), N being the absorption state and

(3.11) cj = fj(N -j), j = i,i + 1,*,N.

Jerwood [10] considers the distribution of the cost of the epidemic exhibited by

(3.12) C1= aWi + bTi, a > 0, b > 0,
where

(3.13) i= XX(T) d, Ti = inf {t: X(t) = NIX(0) = i},

a is the cost per unit time per infective, and b is the cost per unit time both over
the period Ti. Perhaps a more realistic situation is where the rate of the first cost
varies with the number of infectives at time t, so that one would like to obtain the
distribution of

(3.14) Ci = aWi' + bTi, a > 0, b > 0,

where

(3.15) Wi= JX- h(X(r)) dz,

with 0 _ h(j) < co, j = i, i + 1, * , N - 1. Since we are concerned with the
epidemic only until the first passage time Ti to state N, without loss of generality,
we may take h(N) = 0. In order to fit this into our situation above, all we need to
take is

(3.16) i ah(j) + b, j = i, i + 1, * *, i-,
O.0, otherwise.

Now since the passage to the absorption state N occurs with probability one, it
is easy to see that

(3.17) E(exp {-6Cj}) = lim E(exp {- X f(X(,))dz} X(0) = i)

= E(exp {-6Y}jX(0) = i) = [l [1 + 6 (fi)]
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The last equality follows from (3.9). If the fj/cj are all distinct, then the density
function of Ci is given by

{N-1 Cj} -1L N-1 ( c )j- 1 c ye(3.18) g(y) = {Yi-11}1i[Jj ( . - 1exp {- J} y >O0,
i= l fi j= 1 tifuj A fi fi

the expected cost being E(Ci) = X1JY (fj/cj). Incidentally using (3.16) in (3.17),
we have, with at = ab and 02 = bb,

(3.19) E(exp {-al W.' + a2Ti}) = F, [1 + ah(j) + 'X2 1 >0,2>

which, by treating al and 02 as the dummy variables, is the joint L.t. of the
random variables W/ and Ti.

3.1.2. Poisson process. This process is a special case of the birth process of
Section 3.1, with c; = A > 0 for all j. In this case, iffp j = i, i + 1,*, are
all distinct, then it follows from (3.6) that

(3.20) E(exp 6 f(X(T)) dT} Ik(t) X(0) = i) = Pik(t)

nk -i k k
= Q)k iexp{At} E1 - fj-']exp {-bfit},

k = i, i + 1,.**.
A special case withf = j has been considered elsewhere by the author (see [18]).
It was shown there that for Is _ 1 and 6 _ 0 and with X(0) = 0,

(3.21) E(sX() exp {- 6J X(T) dr} X(0) = O) = exp {- At + (1 - e)}

With s = 1, this can be easily inverted to yield the distribution function of Y(t)
given by

(3.22) H,(y) = exp {-it} E F* )(Y)'

where Fp(n) stands for the n fold convolution of Ft the distribution function of
a random variable uniformly distributed over (0, t).

3.2. Nonhomogeneous birth processes. For the case of nonhomogeneous
Markov processes, in general, one finds it more convenient to use the forward
Kolmogorov system of equations than the backward. Consider a birth process
X(t) with X(0) = i, such that forj = i, i + 1, ,

(3.23) P(X(t + At) =j + I X(t) =j) = cj(t)At + o(At),
P(X(t + At) = jIX(t) = j) = 1 - cj(t)At + o(At).

Also for the function f of the integral (1.1), let

(3.24) f(j, t) = fj(t), j = ii + 1,
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Here the functions cj(t) and fj(t) are assumed to be nonnegative, continuous
and integrable over (0, t) for every finite t. Furthermore, let the functions cj(t)
be such that the process X (t) has, with probability one, a finite number ofjumps
in any finite time interval. Then using (1.2) and (3.23), one obtains in a standard
manner the forward differential equations for the probabilities PAj(t) as given by

(3.25) ) (c.(t) +)J± It))PiJ(t) + cj 1 (t)Pi,1(t), j = i, i + 1, ,

where Pij(t) 0 for allj < i. Recursively, these equations can be solved subject
to Pij(0) = bij to yield

(3.26) P11(t) = exp { (ci(r) + bfi(z)) dT}

and

(3.27) Pi(t) i exp{ j (cj(u) + bfj(u)) du} cj- 1 (T)Pi j-1 (z) dT,

j = i + 1, i + 2,

Unfortunately, in general, there appears to be no way of obtaining the expression
for Pij(t) in a closed form. Instead, in the rest of this section, we restrict ourselves
to the case of linear birth processes with

(3.28) cj(t) = OC(t) + jv(t), j = i, i + 1,

and with fj(t) = jfl(t). Thus, here we are interested in the integral of the form

(3.29) Y(t) = { /(z)X(-) dz
For this case, the equations (3.25) take the form

dIgj(t)
(3.30) d~ t)

= - [(t) + j(Mfl(t) + v(t))]Rij(t) + [a(t) + (j - 1)v(t)]Jpi,j. 1 (t),

forj = i, i + 1, Let

(3.31) G(s. t) = Z skPij(t), |s . 1.
j=i

Then multiplying both sides of (3.30) by si and adding over j we obtain, after
some simplification, the equation

(3.32) G.- [v(t)s -v(t)- 3B(t)isGs = -a(t)(l -s)G,
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where here and elsewhere G0 and Gs denote the respective partial derivatives
of G. Equation (3.32) is subject to the initial condition G(s, 0) = si and can be
solved by standard methods yielding

(3.33) G(s, t) = [0(s; 0, t)il exp {- J a(t)[1 - 4>(s; T, t)] dz},

where, for 0 < T < t,

(3.34) [0(s; r, t)]' = _exp (v (u) + B (u)) du}

vV(u) exp {| (v(v) + bp3(v)) dv} du.

Since in the present case of (3.28), it is known that in any finite time interval,
with probability one, there are only a finite number ofjumps of the process X (t),
(3.33) with s = 1 yields

(3.35) E(exp { 6f f(z)X(,) dT} X(0) = i= G(1,t).

In the next subsection, we specialize the above results to P6lya process which
arises very often in various live situations such as the theory of accident prone-
ness (see Bates and Neyman [2]).

3.2.1. P6lyaprocess. This is a special case ofthe linear birth process discussed
above with

(3.36) a(t) = A(1 + pAt)', v(t) = Ap(l + pAt)-', A > 0, p > 0.

Also, we consider the special case where fi(t) 1, so that we are interested in
the integral Y(t) = f' X(r) d*. For this case, expression (3.33) simplifies to

(3.37) G(s, t) = szexp {-ibt} [(1 + Apt) - (1 - e-t)s]

This then gives the joint distribution ofX (t) and Y(t). In particular, from this one
easily obtains, for n = 0; 1, 2, * * ,

(3.38) Pi,"+,(t) = (1 + Apt)(i+P l)e-iat[(z + n- 1 + + ]

( Apt " 1 - e- n

1 + Apt) V t J
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Again, one can easily invert (3.37) with s = 1 to yield the distribution function
H,(y) of the integral Y(t), given by

(3.39) H,(y) = (1 + Apt)-(+P-'
a, (i + n - 1 + p-,) ..(i + P-,) ( Apt ) ~)
n0o n ~1~+Apt,

for y > it, and for y _ it, H,(y) = 0. Here the operation * denotes the convolu-
tion between two distribution functions, U, is the distribution function corres-
ponding to a degenerate random variable taking value as (ti), and F,*(") is as
defined in Section 3.1.2. Finally, if we let i = 0 and p -+ 0 in (3.37), we obtain
the expression (3.21) for the Poisson process as expected.

4. Birth and death processes

We now consider the case of a time homogeneous birth and death process
(b-d process) X(t) where, in notation of Section 2, Ck = (Ak + Pk),

( Ak( + 9k) ifj = k + 1,
(4.1) Pkj = MkG(k + Mk)1 ifj = k - 1,

O elsewhere,

and Ok and Jik are nonnegative constants with 1o = 0. Let X (0) = i. The back-
ward and forward equations, analogues of (2.6) and (2.7) but converted into
differential equations, are given by

(4.2) dt = (-i + Pi + bfi)Pik(t) + AiPF+lk(t) + iPi-ilk(t)

and

(4.3) dp =(t) -(4k + 9k + 6fM)Ak(t) + Ak-lPik-1(t) + Pk+ lPi,k+1(t),dt

respectively. Unfortunately, we shall not consider these here in this generality.
Instead, we shall consider certain special cases which arise in several practical
situations. For this, we shall particularly be making use of the forward system
(4.3). Since X(0) = i will be kept fixed, we shall write for brevity Pik(t) = Pk(t).

4.1. Linear birth and death processes with immigration. Consider a b-d
process with Ak = k, + v and 9k = kg for k =0, 1, 2,.. , where i, v, and A
are positive constants. Such processes arise in the study of population dynamics
and also with A = 0 in the queueing theory of M/M/%o queues. Here we wish
to obtain the joint distribution of X(t), 50 X(T) dz, and T(t), the last one being
the length of time during (0, t) the process remains in nonzero states. In M/M/ciO
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queue, T(t) represents the time for which at least one channel remains busy
during (0, t): S' X (T) d* represents the cumulative time the customers spend
during (0, t) while they are being served. In the study of response of host to
injection of virulent bacteria, 1' X(Tc) d* could be regarded as a measure of the
total amount of toxins produced by the live bacteria during (0, t), assuming a
constant toxin excretion rate per bacterium (see Puri [16], [17], and [18]).

In order to accomplish our purpose, it is sufficient to take

(4.4) 6fk = f1(1 6k0) + kP2. k = O. 1, 2,

so that

(4.5) Pk(t) = E(exp 6i f(X(T)) dZ}Ik(t))

= E (exp - f31T(t) -2 X (T) dr Ik(t)

Furthermore, for the present case, the system (4.3) takes the form

- [v + fil + k(m + i + fl2)]Pk
'4.6' d-P(dPt) + (k + 1)IPk+1 + [v + (k - 1)A]Pk-l k > 1,

dt t-VA. + pP-P =0

Let G(s, t) be as defined in (3.31). Then from (4.6) we have

(4.7) G, - A(s - rl)(s - r2)Gf = -[v(' - s) + fi1] + p1PO,

where r1 and r2 denote with plus and minus signs, respectively,

(4.8) 2[(i + A + fi2) ± {(p + A + f2)2 - 4MA}1/2].22

The problem now is to solve (4.7) for G subject to the side condition G (s, 0) = s;.
This can be accomplished by standard methods. We give here only the final
answer in terms of its L.t. Let

(4.9) f1 (s, t) = [h1 (s, t)][h2 (s, t)] V/A exp {-(v + f 1 vr2) t}

and

(4.10) 022(8' t) = [h2(s, t)] v'1 exp {-(v + fl, - vr2)t},
where

(4.11) h (s, t) = {r2(rl - s) + r1(s - r2) exp {-A(r1 -r2)t}l
(r - s) + (s - r2) exp {-2(r1 -r2jt} J

and

(4.12) h2(8, t) = {(s - r2) exp {-2(r1 - r2)t} + (r1 -s)(rl -r)



INTEGRAL FUNCTIONALS 493

Also, let /*(s, a), i*/(s, ac), G*(s, a), and PO*(a) be the Laplace transforms over
time t of 01,12, G, and P0, respectively, defined for at > 0. From (4.7), it is
easy to show that

(4.13) G(s, t) = l(s, t) + Pif Po(t - z) /i2(9, z) dz,

from which it follows that

(4.14) G*(s, a) = i*(s, a) + flPO*(OC)* (8, OC).
With s = 0, (4.14) yields

(4.15) PO*(aC) = if (0, C) [1 - fi0*2 (0, ac)] -
Finally, by using this in (4.14), we obtain

(4.16) G*(s, a) = 1*(s, a) + P,i*2(s, ot)l/* (0, oc)[1 - fil1/*(0, oc)]

We now consider briefly a special case with no immigration, that is, with
v = 0, where we explicitly obtain

(4.17) PO(t) = (A)i{exp {-fit}[J(t)]i + , {exp {-1r}[J(z)] dt},

and

(4.18) G(s, t) = exp {-fl1t} {1, | exp {P/1 }Po (,) dz + [h1 (s, t&
with

(4.19) J(t) = [1 - exp {-A(r1 - r2)t}] [r1 - r2 exp {-2(r1 -r2) 0]
The case without the random variable T(t) has previously been considered
elsewhere by the author [15]. For the present case (v = 0), it is known that
P(X(t) O* 0 or oo) = 1 and that P(X(t) -- 0) = min (1, /IA). Also, T(t) being
a nondecreasing function of t tends almost surely to a random variable T as
t -- oo. Here T is the first passage time of the process to the state zero. Also
P(T < oo) = min (1, pI/). Thus by using (4.17), we have

(4.20) lim G(s, t) = lim PO(t)
t-00) t-oo

= E(exp{-P,1T - 12 X(T) d})

2rt riif 3 = 0,

j exp {-Ilt}[J(t)]'dt if fil > 0.
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On the other hand, in the presence of immigration (v > 0), if we wish to find
the joint distribution of T and IT X(l) dz, we first modify our process (see also
[21]) by taking AO = 0, Ak = kA + v for k _ 1, so that zero is an absorption
state of the process. Here we allow immigration only as long as the process has
not touched the state zero. The analogue of equation (4.7) for the modified
process is then given by

(4.21) G, - A(s - rj)(8 - r2)GS = -[f1l + v(' -s)](G-P0).

The solution of (4.21) subject to G(s, 0) = s', i _ 1, is given by (4.13) through
(4.16) with /2 replaced by

(4.22) if2 (S, t)

1 02(8s t) (v + fi - vrl) + v(r - r2) (rl s)]t)Fiv(rl - s) ± (8- r2)exp{-(rl-r) r2)r2(1 s

and 0* by '2/. Wethus have from thenew (4.16), while using aTauberian argument,

(4.23) E(exp {-pfT - 132 X(r) dz} X(0) = i

= lim G(1, t) = lim aG*(1, a)
t-c 1-o

Flim 0( ) + 2-(1, *l (0, a) ]--01i1[l41~~ 3 - fl 1'/24(0, 0c)J
On the other hand, it can be easily shown that

lim a * (1, c) = lim fr1 (1, t) = 0,
(4.24) a-0 t-

lim ,I, (1, a) = cx2(/1, t) dt,

and

(4.25) lim OCO* (0, 1) [1 - f3* (0, C)] -
1-o

= lim P0 (t) = P0(CxO)
t-oo

Lo exp {-(v + p1 - vr2)t}[h,(0, t)]'[h2(0, t)]- dt

{0 exp {(v + f 1 - vr2) t} [h2 (0, t)] -v/I dt

Thus, we finally have from (4.23),

(4.26) E(exp{-fT - fl2 XX(,) dT} X(0) = i = IlPo(, )f i 2(1, t) dt.
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4.2. MIM/I queue. This corresponds to the case with Ak = A for k _ 0 and
,gk = p for k _ 1 with po = 0. This is the case which has recently been explored
by Gaver [9], Daley [4], Daley and Jacobs [5], and McNeil [12]. Most of these
authors have used the backward system analogues, while we, based on our
method, shall use the forward system. Also, this section will apparently have
some relevance to the paper presented by Professor Gani at this Symposium.
In the case of MIM/I queue, T(t) as defined in the previous section represents
the period for which the channel remains busy during (0, t) and [J1 X(r) d? -
T(t)] represents the total time wasted by the customers during (0, t) while
standing in the queue and waiting for their turn for service. Although these
random variables are of some practical importance, to the best of author's
knowledge, their distributions have not been considered before. The integrals
studied by Gaver, Daley, and others were restricted only to a busy period of
the queue, where "zero" acts as an absorption state. We shall touch this case
briefly later.
As before, we are interested in obtaining the joint distribution of X(t),

go X(lr) dr, and T(t). The analogue of equation (4.7) for the present case is
given by

(4.27) 8GS + f2S GS = (S- 1)(s - 2)G + [(1 + Pl)s - A-PO,

which is to be solved subject to C(s, 0) = s'. Here i1 and r2, with positive and
negative signs, respectively, are given by

(4.28) 1 [(,1 + A + 1) ± {(U + A + 01)2 - 4p2}1/2].2A

Unfortunately, the solution of (4.27) appears quite complex and involves Bessel
functions. The author did not succeed in obtaining an explicit solution of (4.27).
However, one can easily solve it when 02 = 0, giving only the joint distribution
ofX (t) and T(t). Taking L.t. of (4.27) (with fl2 = 0) with respect to t, we obtain
for at > 0,

(4.29) a*(s, ) = [{p - (p + 0l1)s}PO' (a) - si+ 1] [(s -r*) (s -r*)]

where r4 and r*, with positive and negative signs, respectively, are

(4.30) 2[(.U + A +f1 +C)± {(,U + A +f1 + a)2-4 42}12],
and they satisfy the relation 0 < r* < 1 < r4. Since 0* is analytic for
IsI < 1, the first of the two expressions on the right side of (4.29) must vanish
at s = r4. This fact yields

(4.31) P*(a) = (r*)'+1[1- (M + 1 )r*]-1.
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On substitution of this in (4.29), we obtain

(4.32) G*(s (r2*)2+l[ +- (m + (p+ P1)r*]
*(s - rl)(s - r*)[p-([ + fl,)r*]

Finally, on putting s = 1 in (4.32) and inverting the resultant L.t. by lengthy
yet standard methods (see Saaty [22]), we obtain

(4.33) C(1, t) = E(exp {-/31T(t)}IX(0) = i) = E (t)
n 0

where

(4.34) P,.(t)
=exp {-2+ p + l tB,

+ (i-n- 1)/2

(ip -2 n)))/2kB2)
+ (A ( gi(IA + :))E[ + pl)(A,4) 11]kBn+i+k(4)}

and Bn(u) denotes the Bessel function of the first kind and = 2(Am)1/2t.
We now consider only the busy period of the M/M/I queue started with

X(O) = i. For this we take Ak = A for k > 1, and AO = 0. so that "zero" is an
absorption state of the process X(t). As before T(t)TT a.s. as t -. C, where T
is the length of the busy period. If p _ A, it is known that X(t) -+ 0 with
probability one, so that P (T < cc) = 1. On the other hand if 1A < A, P (T < o) =
P(X(t) -+0) = p/A, and P(T = ox) = P(X(t) -cc) = 1 -(p/I). The ana-

logue of (4.27) now takes the form

(4.35) sG, + /32 2 (G = [2s2 - (2 + pI + f3)s ±+ ](G -

to be solved subject to G(s, 0) = si. Unfortunately, the solution of this presents
similar difficulties as of equation (4.27). However, once it is solved we have the
desired result given by

(4.36) lim G(1, t) = E(exp {-f1T - f2 X(T)XdT X(0) =i

This result has been studied through other methods by Daley [4] and Daley and
Jacobs [5]. Again, the equation (4.35) can be easily solved like (4.27) when
/32 = 0. However, since the distribution of the length of the busy period T is
already known (see Saaty [22]), we shall not pursue this further here.
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5. Illness-death processes

These processes have been extensively studied by Fix and Neyman [8] and
more recently by Chiang [3]. Briefly, these are finite Markov chains with two
sets of states; Si, i = 1, 2, s. are the illness states and Rg. 0 = 1. 2. , r,
are the death states. (In this section, symbols i,j. and k will stand for Si, Sj, and
Sk, and 0 for Rq.) Here all the death states are absorption states. Also, in terms
of the notation of Section 2, for the transitions among the various states we have
on adopting Chiang's notation.

cipij = vip. i ji.j = 1. 2.'.8..
(5.1) Cipio = Pio, i = 1. 2. s 0 = 1. 2. . r.

-Ci = Vii. = 1. 2 . , .

Consider a typical person moving from one state to another according to the
above M.c. until he is absorbed into one of the death states. Chiang ([3],
pp. 81 and 160) has considered the lengths of this person's stay in various states
within a period of length t, and has given expressions for their expected values
only; while our method leads easily to their joint distribution. For this, take

(5.2) ft fcoo if{ is the state SX.
U0 if(t is the state R,,

Analogous to Chiang's notation (see [3], p. 152). let

(5.3) Pij(t) = P(Z(t) = 1. X(t) = sjlX(0) = Si. Z(0) = 1)
and

(5.4) Qio(t) = P(Z(t) = 1. X(t) = RjX(0) = S, Z(0) = 1).

where Z(t) represents the "quantal response process" as defined in Section 1.
Then the forward system of equations for P are given by

(5.5) dPj(t) = -(E V+k+ Ej + 6i)Pij(t) + E_ Pik (t) Vkjdt kj 0 k~j

for i,j = 1, 2, , s. Similarly, one could write down the backward system.
Either of these systems can be uniquely solved for Pij(t). which then can be used
to obtain Qi6(t) by noticing that

(5.6) Qu(it) = E j Pij(T) exp {-a,,(t - T)} dT, 0 = 1, 2, r.j=1 0
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Here the factor exp { - a0 (t - r)} under the integral sign denotes the probability
that our hypothetical animal of the "quantal response process" Z(t) does not
die during (r, t), once the process has touched the state R0 at moment T. Let
X (0) = Si, and

Tij(t) = length of stay in Sj during (0, t), j = 1, 2, ...**,
(5*7) Tio(t) = length of stay in R0 during (0, t), 0 = 1, 2, * * ,r.

Having obtained Pij and Qio in the above manner, the L.t. of the joint distribu-
tion of Tij(t) and Tie(t) is then given by

(5.8) E(exp j-E biT (t)- Ey aotio(t)}) = E Pi(t) + E_ Qi0(t),
j=1 0=1 j=1 0=1

where 65 and ae act as the dummy variables for the L.t. The L.t. (5.8), in
general, is a rational function of 6's and a's and can be inverted by standard
methods to yield the desired distribution. We shall illustrate the above approach
through an example, where we take s = 2, r = 1, and X(0) = S,. Since

(5.9) Tl 1 (t) + T12(t) + T1 (t) = t a.s.,

it is sufficient to study the joint distribution of T11 (t) and T12(t) only, in which
case we may take a1 = 0. The equations (5.5) are now given by

dP11 = -(v12 + M 1 + 61)Pl1 + V221?12dt
(5.10) d

= _(v21 + i21 + 62)P12 + V12PAl.
Let

(5.11) A = (61 + V12 + 81l), B = (62 + V21 + M21)'
and a1 and a2, with positive and negative signs, respectively, be given by

(5.12) 2[-(A + B) ± {(A - B)2 + 4v12v21}1/2].
The solution of (5.10) is given by

513 )
P1 1 (t) = [(a1 + B) exp {a1 t} - (B + a2) exp {a2t}] (a1 -a2)
P12(t) = v12[exp {a1t} - exp {a2t}](a1 -a2)

Now using (5.6) with a0 = 0, we can obtain Q11(t). Finally, omitting details,
we have by using (5.8),

(5.14) E(exp {-61Tl1(t) -2T12(0})
= P11(t) + P12(t) + Q11(t)
- {[(a1 + B + v12 + 1All) + (tulB + 921v12)a-1] exp {a1t}

-[(B + a2 + V12 + til) + (p11B + p21V12)a-1]
*exp {a2t}}(al - a2)1 + {(M11B + v12p21 )}(AB -V12V21)
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Since T1, (t) and T12(t) are monotone nondecreasing functions of t, T1 1(t) T 1
and T12 (t) T T1 2 almost surely as t x-+ c. Here the random variables T1 1 and T12
represent the lengths of time the person spends in S1 and S2, respectively, before
he finally dies. Letting t -- oc and using the fact that a, and a2 are negative, we
obtain from (5.14)

(5.15) E(exp 6T, 1 - 62T12}) JUu1 1(V21 + p21 + 62.) + V12p21
((1 + V12 + M11)(62 + V21 + P21) -V2V21

One can easily invert this transform to give explicitly the joint distribution of
T1 1 and T12. However, we shall not venture into this here. Instead, we refer the
reader to [21] for further details concerning the sojourn times of the type
T, 1, T1 2, and so forth, and close with the remark that T1 1 and T1 2, in the present
case, are positively correlated. Furthermore, marginally each one of them is
(negative) exponentially distributed with a positive probability mass at zero
only in the case of T12.
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