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1. Introduction

Let a: [0, oo) x Rd _~ Sd and b: [0, oo) x Rd-~ Rd be bounded continuous
functions, where Sd denotes the class of symmetric, nonnegative definite d x d
matrices. From a and b form the operator

(1.1~ ~ L -

2 ias1 (t, X) -za + E bi(t, x) -32i,j=1 ai ___ixi,
A strong maximal principle for the operator (a/st) + L, is a statement of the
form: "for each open 1 c [0, oo) x Rd and each (to, x0) e 9 there is a set
Y(to, x0) 91 with the property that (af/lt) + LJf _ 0 on !(to, x0) and
f(to, x0) = supg(toXO)f(t, x) imply f _ f(to, xO) on 9(to, x0)." Of course, in
order for a strong maximum principle to be very interesting it must describe the
set 9(to, x0). Further, it should be possible to show that 9(to, x0) is maximal.
That is, one wants to know that if (t1, x1) e 9 - W(to, x0), then there is an f
satisfying (af/lt) + Ltf _ 0 on C (perhaps in a generalized sense) such that
f(to, x0) = supf(t, x), andf(t1, x1) < f(to, x0)-

In the case when a(t, x) is positive definite for all (t, x), L. Nirenberg [6] has
shown that T(to, x0) can be taken as the closure in C of the set of (t1, x1) e 1 n

([to, oo) x Rd) such that there exists a continuous map 4: [to, tl] ~ Rd with
the properties that 4(to) = x0, 4(t1) = xl, and (t, 0(t)) e W for all t e (to, ti).
We will give a probabilistic proof of the Nirenberg maximum principle in
Section 3. Moreover, we will also prove there that Nirenberg's x(toxO) is
maximal in the desired sense.

If a is only nonnegative definite, the problem of finding a suitable maximum
principle is more difficult. Results in this direction have been proved by J.-M.
Bony [1] and C. D. Hill [3]. Both of these authors employ a modification
of the technique originally introduced by E. Hopf for elliptic operators and
later adapted by Nirenberg for parabolic ones. The major drawback to Bony's

Results obtained at the Courant Institute of Mathematical Sciences, New York University,
this research was sponsored by the U.S. Air Force Office of Scientific Research. Contract
AF-49(638)-1719.

333
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work is his restrictive assumptions on the coefficients of L. As we will point out
later, our own approach has not removed all his restrictions.

Before going into the details, we will conclude this section with an outline of
our method. Suppose P,._,. is a probability measure on C([to, cc), 1d) with the
properties that Pt0,,0(x(to) = x0) = 1 and

(1.2) | + L.)f(u x(u))du
Jtou

is a martingale for all f E C' ([to, co) x Rd) (here and in what follows C' (S)
denotes the space of infinitely differentiable functions having compact support
in 5). Given an open c [0, o) x Rd, let T = inf{t _ to:(to,x(t))¢w}.
Then it is easy to see that f(t A 1, x(t A T)) is a submartingale iffe C1,2(w) and
(af/lt) + L, > 0. (We use Cb'2(S) to denote the class of boundedf having one
bounded continuous t derivative and two bounded continuous x derivatives on
S.) Hence,

(1.3) f(to, x0) _ EPtoxa[f(t A T, x(t A Tffl.
In particular, iff(to, x0) = supgf(t, x), thenf(t1, x1) = f(to, x0) at all (t1, x1)
for which there exists a path 0 e supp (P0,xo) such that 0(t1) = x1 and
(t, ¢>(t)) e W for t E [to, t1]. Thus, for example, if

(1.4) supp (P,.,..) = {4 e C([0, o), Rd): 4(to) = x0},
then (D/lt) + L, satisfies the Nirenberg maximum principle. What we are going
to do is study the measure P,0,0 and try to describe its support.

2. Background material

In this section, we discuss diffusions from the point of view introduced in
[9]. Our notation throughout is the same as it was in that paper. Namely,

Q = C([0, xo), Rd),
(2.1) x(t, cl) = x,(co) is the position of co at time t,

#ts 9[x.: s < U < f], 'O' = 9[x.: U _ s].
In order to discuss the weak convergence of measures on <Q.AS>, we will
sometimes think of a measure on <Q, As> as defined on C([s, coo), Rd). A useful
criterion for the relative compactness of a set I` of probability measures P on

<Q, AS> is the following:

(2.2) lim sup P(Ix(s)I _ R) = 0,
R-oo Per

(2.3) sup Ep[Ix(t2) - X(ti)14] _ CT(t - tj)2, S < tl _ t2 _ T, T > 0.
Per

A proof of this fact may be found in [7].
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A function tn on [s, o) x Q into a measurable space is said to be s nonanti-
cipating if q1 is 4s, 0 x A measurable and 11(t) is As, measurable for each t > s.
If P is a probability measure on <Q.#X>, then Y1 is a P martingale if 11 is complex
valued, s nonanticipating, and

(2.4) EP[ll(t2) IJ1] = t1(t1) a.s.P

fors _ t1 < t2.
Let a: [0, oo) x Rd ~ Sd and b: [0, oo) x Rd -s Rd be bounded and measur-

able. Define

1 d d
(2.5) Lt =2 E a'j(t, x) + E bi(t, x).

ij=1 i=1

A probability measure P on <Q, .Ato> is said to solve the martingale problemfor
Lt starting at (to, xo) if P(x(to) = xo) = 1 and f(x(t)) - J, Ljf(x(u)) du is a P
martingale for all f E Co (Rd). In [9] it was shown that if a is continuous and
a(t, x) is positive definite for all (t, x), then there is exactly one solution P,, to
the martingale problem for L, starting at (t, x). Moreover, we proved there that
the family {Pt,X: (t, x) E [0, ao) x Rd} forms a strong Feller, strong Markov
process. The purpose of the present section is to extend this result to the case
when a and b are smooth in x and a(t, x) is only nonnegative definite. The idea is
to reduce the martingale problem to a stochastic differential equation which can
be solved by the techniques introduced by K. 1t6 in [4]. For purposes of easy
reference, we state here the following theorem, whose proof may be found
in [10].
THEOREM 2.1. Leta: [to, 0o) x Q Sdandb: [to, oo) x Q ~ Rd be bounded

to nonanticipating functions and define

1 d a2 d
(2.6) L 2=-1 a r(t) + 1 bi(t)

Suppose a: [to, oo) x Q ~ Rd is a continuous (in time) to nonanticipating
function and that P is a probability measure on <Q, At0>. Then the following are
equivalent:

(i) f(at(t))-ft0 L~f(ac(u)) du is a P martingale for allf E C' (Rd);
(ii) f (t, c(t)) -to [(a/au) + L"]f(u, c(u)) du is a P martingale

for allfEc C2([to, 0o) x Rd);
(iii) exp {<O, ot(t) - c(to) - J b(u) du>- Ito <0, a(u) 6> du} is a P mar-

tingale for all 0 E Rd.
Moreover, if P satisfies one of these and if a(t) - f b(u) du, then da(t) stochastic
integrals J% <0(u), da(u)> can be defined when the integrand 0: [to, co) x Q so
Rd is to nonanticipating and satisfies

(2.7) EP[J <0(u), a(u)6(u)> dul < °, t > to.
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The process Jto (6(u), da(u)> is a continuous P martingale; and if <((u), a(u)6(u)>
is bounded, then

(t
(2.8) exp <0(u), da(u)> <0(u), a(u)6(u)> du

0 ~~~2 .t u
is a P martingale. Finally, for fe C"'2([to, oe) x Rd), one has

(2.9) f(t, o(t)) - f(to, a(to)) = { (Vxf(u, c(u)), dai(u)>
+ + Lu) f(u at(u)) du,

where V. f (t, x) = [(af/axl) (t, x), * **, (W/&Xd) (t, x)].
In [9], we showed that if the a in Theorem 2.1 is uniformly positive definite,

then 13(t) = Ito a- 112(u) da(u) is a P Brownian motion (that is, P(fi(to) = 0) = 1
and exp {<O, ,8(t)> i1012(t - to)} is a P martingale for all 0 E Rd), where a1/2
is the positive definite, symmetric square root of a. Hence,

(2.10) a(t) - c(to) = a112(u) d1(u) + 3' b(u) du a.s. P

for some P Brownian motion 13. We will now extend this result to nonnegative
definite a. As we will see, this entails enlarging the sample space.
THEOREM 2.2. Let a, b, and a be as in Theorem 2.1 and suppose P is a prob-

ability measure of <Q, tO> satisfying one of the conditions (i), (ii), or (iii) of that
theorem. Assume a: [to, m) x fI ~ Rd x Rd is to nonanticipating and satisfies
a(u) = a(u)a*(u). Then there is an extension P ofP to <(1 x Q, #to X 0to> and
a P Brownian motion , such that

(2.11) a~(t) - c(t0) = 3' a(u) dp(u) + 3' b(u) du a.s. P.
PROOF. It suffices to treat the case when a = a'/2. Indeed, if a = aa* and

U = (a + I) -112a, then U, -+ UO as e1 0, where UO is an orthogonal trans-
formation such that a1/2 = Uoa. Hence, if

(2.12) a*(t) - (to) = 3' a1/2(u) df(u) + ,f b(u) du a.s.P,

then

(2.13) a(t) - ci(t0) = 3I a(u) dfl(u) + 3' b(u) du a.s.P,(213 0) at
to to

where /3(t) = Jtco U*(u) dol(u) is again a P Brownian motion.
Toprovetheassertionwhena = a'"2, defineai(u) = lim 0 a'12 (u) (a(u) + &I) 1.

Then 2(u)a1/2(u) = a'/2(u)d(u) = ER(U), where ER(U) is the orthogonal projec-
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tion onto the range of a(u). Let fi(t) be a W Brownian motion on <Q, ,tO> and
define P = P x W. Then, by Theorem 2.1,

(2.14) t(t) = I d(u) da(u) + ft EN(u)d13(u)

is a P Brownian motion, where EN(U) = I - ER(U). Moreover,

(2.15) al/2 (u) dp(u) = I ER(u) dai(u) + {o a12 (u)EN(u) dl(u)

= fJER(u) da(u),
and

(2.16) EK[|i(t) - (to)- ER(u) d 2(u)

= E, EN(u) d(u)) 2

= EP[ I tr (EN(u)a(u)EN(u)) du] = 0,

where tr means trace. Q.E.D.
Theorem 2.2 is the multidimensional analogue of Theorem 5.3 in J. L. Doob's

book [2].
THEOREM 2.3. Let a: [0, ox) x Rd Sd and b: [0, oo) x Rd~ Rd be bounded

measurable functions. Assume that there is a bounded measurable a: [0, cA) X Rd
~ Sd such that a = ag* and

(2.17) sup (11 a(t, x) - a(t, y)II + Ib(t, x) - b(t, y)I)
0_ t . T, | x + y l < R

< C(T, R)lx-yl
for all T, R > 0. Then for each (to, xo) there is exactly one solution PtO x to the
martingale problem for

1 d ~ 2 d
(2.18) Lt = 2 aii(t, x) aZ + X bi(t, x)

2i,j= 1 xa i1
e

starting at (to, xo). Moreover, the family {Pt0,x: (to, xo) e [0, c ) x Rd} forms
a Feller continuous, strong Markov process.

PROOF. We will only prove the first assertion, since the second one follows
by standard methods used in [9]. Moreover, we will restrict ourselves to the
case when C(T, R) is independent of T and R, because the general case can then
be handled by the techniques employed in Theorem 5.6 of [9].
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To prove existence, let /3 be a W Brownian motion on (<a, woo0. Define
Xo t)-xo and

(2.19) X+1(t) = Xo + J a(u.Xn(u))d/3(u) + fb (u ,,n(u))du.
to to

Following H. P. McKean [5], it is easy to show that

(2.20) W( sup ljn(t) - 4(t)|> )- 0
to _t _T

for all T > to, where

(2.21) 4(t) = XO+±f u(u, c(u))dp(u) + J' b(u, c(u))du.
to to

Letting P be the distribution of 4(t) (that is, P is defined on <Q2, '°40> by

(2.22) P(x(t1) e rj, , x(tn) e rn) = W( (t1) e rF, (t.) E r.),
and using Theorem 2.1, one sees that P solves the martingale problem for L,
starting at (to, xo).

Turning to uniqueness, suppose that P is a solution. Choose P and /1(t) as in
Theorem 2.2. Using the technique of the preceding paragraph, we can find X"(t)
such that

(2.23) Xn+l(t) = XO + fb a1/2 (u. X(u))dfi(u) + f{ b(u, X(u))du,

and Xn(t) -- x(t) in probability uniformly on finite intervals. Because the distri-
bution of each Xn(t) is uniquely determined, P is unique. Q.E.D.
We next state another theorem for reference purposes. Its proof can be found

in [9].
THEOREM 2.4 (Cameron-Martin). Let fi(t) be a W Brownian motion on

<Q., A'0> and suppose c: [to, x)) x Q Rd is bounded and to nonanticipating.
Then

(2.24) R(t) = exp {J Kc(u), df3(u)>- 1Pc(u)j du}

is a W martingale. In particular, there is a unique probability measure Q on

<Q. 'o> such that

(2.25) d_ = R(t) on A,' t _ to.(2.25) ~dW
Moreover, 11(t) = /3(t) - ft0 c(u) du is a Brownian motion.
COROLLARY 2.1. Let a, b,L,, and abeasin Theorem2.3,andletc: [0,O o) x Rd
Rd be bounded and measurable. Suppose PI,o is the solution to the martingale

problem for L, starting at (to, xo), and choose -POxO and P3(t) as in Theorem 2.2 so
that
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(2.26) x(t) = + a(u, xd(u))d(u) + (ux(u))du a.s.
to u t

Define

(2.27) R(t) = EPto.xo[exp{ <c(u, x(u)), dp(u)> fC(U)2du} A'.o]0

and determine Q,0, 0 by the relations

(2.28) dQ°,° = R(t) on At', t > to.

Then Qto,,x is the only solution to the martingale problem for
i 2 d a

(2.29) A= E a tx)a a + E (b + ac)i(t, x)2ijj=1 aix = x

starting at (to, xo). Moreover, the family {Qt,: (t, x) E [0, co) x Rd} forms a
strong Markov process which is Feller continuous when c is continuous in x.

REMARK 2.1. If a: [0, oo) x Rd so 8d is bounded and measurable, then

(2.30) sup 1|a1/2(t, x) - al/ (t, y)II < C(T, R)lx - yJ,
t<T,Ixl+IyIR

if a(t, x) is twice continuous differentiable in x and

a2a
(2.31) max sup (t,x) < C(T, R).

1_i~j~d tST,Ixi+lylSR DXiaxi
This fact is proved by R. S. Philips and L. Sarason [8].
REMARK 2.2. Unfortunately there is no nice criterion on a: [0, so) x Rd-d

which guarantees the existence of a smooth a: [0, oo) x Rd RdM)Rd such
that a = aa*. Nonetheless, we will often assume in what follows that Lt can be
written in the form

(2.32) Lt= a*Vx a*Vx + b V,
where

d/

(2.33) a*VX-*VX = E aT 1.
i,j=i1 xj aXj

(Here, and in what follows, repeated indices are summed.) Notice that (2.32)
can be written as

1 d a2 d / \
(2.34) Lt= 2 a' + b( 2aa a

i,j=1 axaj iL - aii
where a = qa* and the vector a'a is defined by
(2.35) (a' )j = aej.
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(We have used here, and will continue to use, the notation ft to stand for
af/axe.) What specific assumptions are made about the smoothness a will depend
on our immediate needs. But in any case, it will be necessary to assume that a
is once differentiable in x in order to even define a*V -* *Vx.

3. The nondegenerate case

Throughout this section a: [0, oo) x Rd Sd will be bounded, continuous,
positive definite valued function and b: [0, oo) x Rd Rd will be bounded and
measurable. We will use Pto XO to denote the unique solution to the martingale
problem for

(3.1) Lt = ag (t, x) aa + bi(t, x)

starting at (to, x0), and P,°O will denote the unique solution for

1 d a2
(3.2) L= 1 aiJ(tx) aa

2 ,j=1 axiJ
starting at (to, xo). Our aim is to prove that

(3.3) supp (Pto,xo) = Q(to, X0),

where Q(to, x0) is the set of cw e Q such that x(to, co) = xo.
Before proceeding, we make two simplifying observations. First, since PtO xo

and Pt,.,. are equivalent (that is, mutually absolutely continuous) on A(to for
all t > to, it suffices to work with P~Ox Second, by an obvious transformation,
we can always assume that to = 0 and xo = 0. Thus, what we need to show is
that

(3.4) supp (PO) = Q0,
where PO = PO°% and QO = Q(0, 0).
LEMMA 3.1. Let 0: [0, oc) ) Rd be once continuously differentiable such that

4(0) = 0. Then for all T > 0 and e > 0, Po(HiX(t) - 0(t)I < e) > 0, where
11. ls. denotes the sup norm on the interval [s, T].
PROOF. Let f(t) = Xto,T](t)r(t) and define QO by

dQ0 (('t
u ~),~()d~(3.5) dP0 = R(t) = exp jJ <a1(u x(u)) *(u) dx(u)>

-1 <q(u), a-1(u, x(u)), qi(u)> du}

on A,4 t > 0. Then QO is the unique solution to the martingale problem for

(3.6) dt= 2i x a2 d a(3.6) - E~at3(t, X) + Z_ oi (t)



STRONG MAXIMUM PRINCIPLE 341

starting at (0, 0). In particular, there is a Q0 Brownian motion f3(t) such that

(3.7) x(t) = fX a 2(u, x(u)) dp(u),

where x(t) = x(t) - o *(u) du = x(t) -(t A T). Hence, by Theorem 1 in
[11], Q0(|Ik(t)I..:< ) > 0 for all E > 0. Since Q0 and P0 are equivalent on
A'°, this implies Po(Jix(t) - 0(t)II°. < e) > 0 for all e > 0. QE.D.
Using Lemma 3.1, we see that supp(P0) contains all differentiable paths

which start at 0. Because these are dense in Q0, equation (3.4) is now proved.
We have therefore proved the following theorem.
THEOREM 3.1. If Pox is the solution to the martingale problem for L,

starting at (to, xo), then equation (3.3) holds.
As we saw in Section 1, equation (3.3) implies Nirenberg's strong maximum

principle. In fact, it implies more. Let T be an open set in [0, ox) x Rd and let
(to, xo) e . Define 7-*' (to, xo, T) to be the set off: - Ru {-o} which
are upper semicontinuous, bounded above, and have the property that
f(t A r, x(t A r)) is a Ptx0 submartingale, that is,

(3.8) f(t1 A T, x(t1 A z)) _ EPtoxo[f(t2 A t, X(t2 A
to _ tl - t2,

where z = inf {t > to: (t, x(t)) j T}. Note that Xe~t (to, xo, 9) is closed under
nonincreasing limits, multiplication by nonnegative constants, and maximums
(that is, iffl,f2 E A)j,(to, x0, C), then so isf1 v f2). Next define (to, x0) to be
the closure in T of the set of (tl, xl) e W n ([to, xo) x Rd) such that x0 = 0(10)
and xl = 0(t1) for some 0 Ec C([to, tl], Rd) satisfying (t, +(t)) e C, t E [to, tl].
Observe that if fE C1,2(W) and ((8/8t) + L,)f > 0 on 9(to, x0), then fE

7,j (to, x0). Finally, define

(3.9) i'7( #) = f (to, xo, a).
THEOREM 3.2. If f c- .a, (t0, xo, T) and f(to, xo) = sup f(t, x), then f

f(to, x0) on T(to, x0). Moreover, if (tl, xl) e - !.(to, xo), then there is an
f E- jel (5) such that f(to, xo) = sup f(t, x) and f(t1, x1) < f(to, xo).

PROOF. The first assertion follows from the argument given in Section 1.
To prove the second assertion, let (tl, xl) E W - 6(to, x0). If t, < to, take
f (t, x) = t A to. If t1 > to, choose an open neighborhood N of (tl, xl) such
that N ' 9 and Nn (to, x0) = 4. Let h E Co'(N) such that -1 _ h .0
and h(tl, xl) = -1. Define

(3.10) f (t, x) = EPt.x eu~h(u, x(u)) duJ|
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where Tt = inf {u _ t: (u, x(u)) JZ}. Since {P,,: (t, x) E [O, ocr) x Rd} is strongly
Feller continuous, f is continuous. Moreover,

(3.11) EPS.4f[(t A Ts, X(t A

= EPsx[x, > e-uh(u, x(u)) du] _ f(s,x),
for (s, x) e W and t > s; and therefore

(3.12) EPSx[f(t2 A TzX(t2 A

= EPt1 ATsX(t1\ ts)[f(t2 A ,1, X(t2 A Ttl ))

_ f(tl A T3, X(tl A T,))
for s . t, . t2. This proves that f E 'j7 (W). Clearly, f _ 0, f (to, xO) = 0, and
f(tl, x1) < 0. Q.E.D.
REMARK 3.1. It is important to know in what sense arj(T) is an extension

of the class off E C1,2(w) satisfying (af/8t) + Ltf _ 0 on W. Using the estimates
obtained in [9], one can show that JeI (w) contains the class ofpfE W 2(w) (see
[9] for the definition of W1'2) satisfying (Df/at) + Ltf _ 0 whenp > (d + 2)/2.
To give a complete analytic description of Xj7 (C), consider the transition
function P1(t, (s, x), .) defined by

(3.13) P(t, (s, x), A x r) = XA(S + t)P8,,(x(s + t) A T,) c r)
for A E Ago it,) and r E [g], where ;, = inf {t _ 8: (t, x(t)) J C}. It is easy to
see that

(3.14) P(tl + t2, (s, x), * ) = J'f _p(t1, (s, x), du x dy)P(t2, (U, y), *)

Thus, we can define a Markov semigroup {Tf},,0 on X(w) by setting

(3.15) Tlf(s, x) = fO Jf P(t, (s, x), du x dy)f(u, y).

Furthermore, {Tf}tk_ is the only Markov semigroup having the property that

(3.16) Tf(s x) -f(s, x) = f ( (Ef + L. )1) (u, x) du

for all f E Cb 2(w). Finally, .L (9) coincides with the class off on i such that
f is bounded above and Ttf(s, x) I f(s, x) for (s, x) E C. When L, = 2 A, it is
easy to see that A*j- (p) is just the class of subparabolic functions on W.

4. The degenerate case, part I

Let a: [0, (o) x Rd Rd (® Rd and b: [0, oo) x Rd -~ Rd be bounded measur-

able functions. In this section, we will assume that b and the first spatial
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derivatives of a are uniformly Lipschitz continuous in x. From a and b, we
form the operator

(4.1) L, = *Vx. a*Vx + b * VX.

by the prescription given in Remark 2.2. Under the above assumptions, we
know from Theorem 2.3 that there is exactly one solution P,. ,. to the martin-
gale problem for L, starting at (t0, xo). The purpose of this section is to prove
that

(4.2) supp (Plo,-o) _ Yab(tO0 XO),

where SJab(tO, X0) is the class of 4 e C([O, so), Rd) for which there exists a
piecewise constant /: [to, so) Rd such that

(4.3) +(t) = XO + {b a(u, 0(u))0(u) du + f b(u, 0(u)) du, tI to.

Clearly, it suffices to treat the case when to = 0 and xo = 0.
Let /3(t) be a W Brownian motion on <Q, #o>. Given n > 0 define t,, =

[2't]/(2'), t+ = ([2't] + 1)/2', and
(4.4) 4(n) (t) = 2n(p (tn ) - (t))

Next, let 4(n)(t) be the stochastic process determined by the ordinary integral
equation

(4.5) 4)( = j' a(u, :(")(u))f(r)(u) du +
{ b(u, 4(n)(u)) du;

and denote by P,, the distribution of 4 Clearly, supp (Pn) _ 'Y9"b(0, 0) for
all n _ 0. Hence, if we show that Pn tends weakly to PO0 as n cc, then it will

follow that supp (P0 o) Ya,b(O, 0). Thus, we must prove that Pn => Po0o.
Results of this sort are familiar in various branches of applied mathematics
when d = 1 (see E. Wong and M. Zakai [12]). However, to the best of our
knowledge, the proof which follows is the first complete one for d > 1.
The procedure which we will use consists of two steps. The first of these is to

prove that {Pn}n>1 is relatively weakly compact. Once this is done, we will then
show that every convergent subsequence of {P.} , 1 converges to a solution of
the martingale problem for L, starting at (0, 0). For convenience in writing, we
will use the following notation:

(4.6) C(n)(t) = U(tu,c(n)(U))f3(n)(U) du,

(4.7) ~~~~~~~ot(n)(t) = Uit ~(n)( 2t])):(n)(t)
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(4.8) (o ')f'(t, x) = ( 'ait(t, x)) 04,'(t, x),

(4.9) -~n) (+ 1

LEMMA 4.1. The set {P.},> 1 is relatively weakly compact.
PROOF. It suffices to prove that

(4.10) sup EP,[Ix(t) - x(s)14] . CTjt2 - 812, 0 < s < t < T. T > 0.
n

To do this, first observe that

(4.11) EP,,x(t) - x(s)|4

_ 8( w q(()(t)-1)(8)14] + EW[ j b(u, 4(")(u)) du 4])-
Hence, it suffices to examine

(4.12) EW[jq(n)(t) -_(n)(S)14].
But

(4 .1 3) l(") ( t) ti(n) (s )

- ot(")(u) du + 3t du 3' dv(a<oa)j?'(u, )

and

(4.14) EW[ (")(u) du ] = EW[ {a(u, /(")(u.))$( )(u) du ]

= Ew[ | a(")(u) d3(u) 4] _ C1(t -

where

(4.15) a(nu) - 2n fU, A t (v, ((")(u")) dv.
UnS

Finally,

(4.16) EW[L du |dv(a'a)t -(,4"(),("()t()v

_ (t s)3Ew[{ du fdv(a'Y).(, 4]

[21t] rk+1/2" k \4
< C2( _-s)3 y 28n | du u - Ew[JA(n)18]

k = [2s] Jk2. /

. C3(t -)3.
Q.E.D.
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We now have to show that if P is the limit of a convergent subsequence of
{P,}, then

(4.17) EP[F. (f(x(t)) - f(x(s)))] = EPLEF. L~f(x(u)) duj
for allfe C' (Rd), 0 . s < t, and bounded A5measurable F: Q -~ R. Clearly,
it will suffice to do this when s and t have the form k/2N and F is continuous as
well as bounded and A0° measurable. For the sake of convenience, we will use
{P.}.> , to denote the subsequence which converges to P. Observe that

(4.18) Epn[F - (f(x(t)) -f(x(s)))]

= E[P.- f KVff(x(u)), b(u, x(u))> du]

+ Ew[F. f' KVff(4(nl(u)), apn)(u)> dul

+ Ew[F { V.f (4(n)(u)), 6(n)(u) - aCn)(u)> dul
= I(n) + I~n) + I0).

Obviously, In) - EP[F.JS <VKf(x(u)), b(u, x(u))> du]. Before examining the
limiting behavior of the other two terms, we need the following simple lemma.
LEMMA 4.2. If 0 and / are bounded measurable functions on [s, t], then

(4.19) 2"X duo(u)Ldv/(v) -X+(u)f(u) du.
PROOF. Let 0fr(u) = 2" f'Un(v) dv. Then {lOn}n>1 is obviously relatively

compact in the weak topology on L1([s, t]) induced by L'([s, t]). Hence, it
suffices to prove the result when 0 is continuous. Next observe that

(4.20) 2" f duo(u) f dvf(v) = 2" du/(u) dvo(v).
s Un fS E'

Thus, by the argument just used, we may assume that both 0 and 4 are con-
tinuous. But the result is obvious for continuous 4 and f. and so we are done.
Q.E.D.
LEMMA 4.3. Let L2 = 2 (a.*)ij(t, x) (a2/axiaxj). Then

(4.21) I"n) -. EP[F. J Lff(x(u)) dul
PROOF. We will use H(x) to denote the Hessian matrix of f. Note that

(4.22) EW[ca(n)(u)1 Au.] = 0,

and therefore
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(4.23) I"') EW[P f < -
( V(U)(u)>d,]

= Ew [P r du { dv<4(i)(v), H(4(")(v)),(f")(u)>]

+ EW[Pw f du { dv<b(v, 4(")(v)), H(I(n)(v))c(n)(u)>]
- J(n) + J2)

Clearly, 0J(")lO and

(4.24) J(n) = Ew[P-{ du { dv<c(")(v), H(4(n)(v)c(n)(u)>

+ EW[F -1 du dv dw<('u)" t'(v, t(")(w))$~n)f

H[()(v)]c()(u)>]
_ J(n) + j(n)

-3 4V.
Again, it is obvious that IJ) -+ 0 and that

(4.25) J(n) = EW[P { du { dv<(o()(v), H(4(")(u"))t("1(u)>

+ EW[F. | du | dv<a(n)(v), (H(4(")(v))-

= j('n) + J(n)

Since J() -- 0, it remains to examine An). Clearly,

(4.26) J(n) = EW[21F. J du { dv tr [**(v, (")(vn))H(4(n)(un))a(u, C)(u)
= EP{2nF L du dv tr [a*(v, x(vn))H(x(un))]U(u, x(uJ)

Hence, by Lemma 4.2 and the fact that P1,, n P, we have that

(4.27) Jn) 2.! EP[P- { tr [2*(u, v(u))H(x(u))a(u, x(u))] du].

Q.E.D.
LEMMA 4.4. Let a'j(tx) = (a'a)(t, x). Then

(4.28) .I3-+ 2 EPF r Vff(x(u)), (a'a)(u, x(u))d
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PROOF. Note that

(4.29) In) = EW[P | du dv V~f(4(u)(u)), (ua')e'(u, (n)(v))g(v)o.,,(v)

= Ew[F* Vf(({): (oaa)(u, C())(u))(u - u,) du]

+ EW[P f du | dv Vf

+ Ew[P | du | dv<V~f(4(")(u))-

=~~~~~~~~~~~(a'fcT)'t'(u, (()s)iVv, (v)>]
= J10) + J0n) + J(n).

Clearly, IJ2)l and IJ3)i tend to zero. Moreover,

(4.30) J1n) = EP{,. J <Vff(x(u,)), (af'))(u, x(u,))> (u - un) du]

- EP[P.j V~f(x(u)), (aa')(u, x(u)) du].

Q.E.D.
THEOREM 4.1. Let Pn be the distribution of the process ()(t) defined in (4.5).

Then P,, converges weakly to PO,0 as n oo. In particular, equation (4.2) is valid
for all (to, xo).
COROLLARY 4.1. If c: [0, oo) x Rd S Rd is bounded and measurable, then for

each (to, xO) the unique solution Ptc¶ xo to the martingale problem for

(4.31) L, = V. V*. + (b + ac) * V.
starting at (to, xo) satisfies

(4.32) SUPP (Pt~,OX) C- Y~abtO, XO)-
PROOF. According to Corollary 2.1, PJto and P,0,,o are equivalent on #,'0

for all t > to. Hence, supp (Pt'os.0) = supp (P0,.0). Q.E.D.
REMARK 4.1. Let a,: [0, oo) x Rd ~Sd, i = 1, 2, and b: [0, oo) x Rd R'

be bounded measurable functions which are uniformly Lipschitz continuous in
x. Define YAb(tO, xO) to be the class of e CO([0, oo), Rd) for which there exists
a piecewise constant I: [0, oo) x Rd ~ Rd such that

(4.33) 4(t) = xO + ft ai(u, 0(u))/(u) du + J b(u, 4(u))du, t > to.
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Then Range (a,(t, x)) C Range (a2(t, x)), (t, x) e [to, o) x Rd, implies

(4.3) Yal,b(tO, XO) C- Y.,.,b(tO, XO).

REMARK 4.2. Suppose a: [0, oo) x Rd ~ Sd satisfies the conditions stated
in Remark 2.1. Then for each (to, xo) there is exactly one solution P0,,,. to the
martingale problem for L, = 2 V.,. (aV,) + b * V, where

(4.35) V.. (aV.) = E az (aij(t, x) 1)

and b: [0, o ) x Rd so Rd is bounded, measurable, and uniformly Lipschitz
continuous in s. Moreover, if a1/2(t, x) possesses first spatial derivatives which
are uniformly Lipschitz continuous in x, then L, can be written in the form

(4.36) L = 1a112Va112Vx + (b + a112c) V.;
and therefore

(4.37) supp (PL.0x) C_ Y.1l,2,b(to, XO).

By Remark 4.1, 91a/2,b(tO, XO) = S.Ab(tO, xo), and so we have

(4.38) supp (Plo,0o) _ SYab(tO, XO).

Using a localization procedure, it is possible to prove (4.38) under the
assumptions on a stated in Remark 2.1, without any further conditions on

11/2a.
REMARK4.3. Suppose C: [0, oo) x Rd Rd x Rdandb: [0, o) xRd RRd

are bounded infinitely differentiable functions. Define vector fields
d a

(4.39) X, = E i"(t, x) a 1 _ _ d,
i=1~~xi

and
da

(4.40) Y = E bi(t, x)

Then
d

(4.41) ia*V.a*V, + b.V. X= +Y
e= 1

Using the techniques of Bony [1], one can show that YOb(tO, xO) contains all
e C([0, so), Rd) such that

(4.42) ¢>(t) = x0 + j' Z(u, +(u)) du + I Y(u, +(u)) du, t _ to,

where Zis anelement ofthe Liealgebra (Xl,"*, Xd) generated byX1, ... , Xd.
In particular, if 2(X1, * * *, Xd) has rank d at every point, then Y",Ab(to, XO)
coincides with the set of 4 e C([O, o), Rd) such that 4¢(to) = xo.
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5. The degenerate case, part II

Throughout this section v: [0, cc) x Rd Rd ® 1d will satisfy a"iE
Cb 2([, cX) x Rd), 1 < i,j _ d, and b: [0, xo) x R Rd will be a bounded
measurable function which is uniformly Lipschitz continuous in x. For each
(t0, xo), Pto 0N will denote the unique solution to the martingale problem for
Lt = 2 U*V.- c*V, + b. V., starting at (to, x0). Our aim is to prove that

(5.1) supp (Pl.,.o) = Y',b(tO, XO),

where fb(tO, XO) is defined as in Section 4. In view of Theorem 4.1, equation
(5.1) will be proved once we have shown that for all T > to, a > 0, and 0 in a
dense subset of Yab(to, x0),

(5.2) Pto0,0(I1x(t) - 0(t)1Tt < 8) > 0
and xo = 0.

Using Theorem 2.2, one sees that the desired result is equivalent to proving
that, for a dense set of 4 E Y"',b(O, 0),

(5.3) W(||q(t) - 0(t)0IT < 8) > 0, T > 0, c > 0,

where

(5.4) i1(t) = go o(u, q (u)) dfi(u) + f (u, il (u)) du a.s. W,

fi(t) being a W Brownian motion and & standing for b + 2 'u (see equation
(2.35) for the definition of a'a). Actually, what we will show is more; namely,
we will prove that if i E C02([0, CC) x Rd), i/(0) = 0, and

(5.5) +(t) = x0 + Jf a(u, +(u))+(u) du + f b(u, 0(u)) du,

then, for all c > 0 and T > 0,

(5.6) W0|5(t) - wt)|TO < c6||||:f(t) -0(011|| < a) 1

as 60, where Il|a(t)Ill = maxl<i d 1ai(t)1To. We will first prove (5.6) when
ii 0.
After some easy manipulations involving It6's formula (see McKean [5]), one

can show that (5.4) is equivalent to

(5.7) 71(t) = { b(u, ii(u)) du + a(t, q (t))fl(t)

-j' [(e+±L)] (u, Cj(u))f:(u) du -A(t)
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where

(5.8) Ai(t) (aij(' k)(u, (u))flj(u)dIk(u)
j*k t

+ E r (afj)(u, i(u)) d3j2(u).
Thus, in order to prove that

(5.9) Mile1() ¢0(0|TO < E| |||,B (t)|||TO < 6)1
as 6 1 0, where 4(t) = 1' b(u, 45(u)) du, it suffices to show that

(5.10) Wl(tlT< |||t)| T< 1

as 610.
LEMMA 5.1. Let l(t) be given by (5.4) and suppose f: [0, oo) x Rd' R is

bounded and uniformly continuous. Then for all a > 0

(5.11 ) W(|| { f~u, tl(u)) df~i2(u)|| < EI|I|fi(t)f° < 6) 1
T

as 610, and

(5.12)W(|| |f'u, i(u))"i(u) dBj(u) < E ||(t) < )

as 610, where1 . i . dandj ¢ i.
PROOF. We will first prove (5.11) under the assumption thatfe C' ([0, 0) x

Rd). Applying It6's formula, we have

(5.13) f'f(u, ii(u)) d.pi (u)

=f(t, i(t))fli(t) -fB3(u) (f + L~f )(u, q (u)) du

-2 Jf Pi (u) (a* Vxf )i(u, il(u)) du

- f fi2(U)<(a*Vxf)(u, q(u)), d13(u)>.

Clearly, the first three terms on the right tend to 0 as ||fi(t)|i|| -. 0. Moreover,
by standard estimates,

/(t 0
(5.14) W(| | i2(u)<(*Vxf)(U q(u)) dB(u)>| > a, |||,B(t)||T < 6)

< AB1 2
<.Aexl)~1
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and

(5.15) W(|fl|(t)||° < 6) _ A2 exp { B2T}
Hence, (5.11) is proved in the case whenf E C-([O, oo) x Rd). Now supposef is
uniformly continuous and choose {f4o z C ([O, oo) x Rd) so that f,, -- f
uniformly. Then

(5.16) ' f(u, tl(u)) dpf3(u) - Jf(u, d1(u))fdf2(u)

= 2 f (f - f.)(y i1(u))Pi (u) dfi3(u) + f (f - f.)(u, il(u)) du.

Given £ > 0, and T > 0, it is clear that for large n,
/ (t (t 0

(5.17) W(| jf(u, ti(u)) dfl2(u) - Jfo(u, t(u)) df2(u) | > 8, || fi(t)i| < 6)

_ 77. | (f - fn)(, t)(u))ji(u) df3i(u) | > 2s, IIIP\t)IIIT < 6)

. A exp {Ilf-lItII2T}

Hence, for all s > 0 and a > 0, there is an n(s, a) such that
ft ~~~~~0

convenience, Wewl le f)(uu)=Jduf3l(u) dfUing 1 f

- f~t, t~(t))~(t) - c~(u)(f~a+Lif)(t, ti(u<)d-|j'f (f)(d, )i3(u) u>|| |< <

Nexte,forall prove> under> ther ansumn(pxtf)sucthatfu)) ([O.
(5.19) W M, l(u))pi8dji

-rOuqf*x~(u,())dl (u) > dia )0

convenience,~ ~~we willt4t)=1 (u)dfl(u. Usin) t' forua we)) have>
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Applying Theorem A.1 of the Appendix, we see that only the last term on the
right need be examined. Let 0 = (a*Vxf)e. Then

(5.20) J' (u)(a*Vxf)(u, q(u)) dfle(u)

= j k(u, q (u)) d(c (u)P,(u))

-j' (u, q(u))fii(u)fl(u) dfIj(u) - bj. f' 4(u, ri(u))fi(u) du.
The third term on the right gives no trouble. Moreover, the second term can be
handled by the estimates used to prove (5.11). Thus, we need only worry about
the first term. But

(5.21) f' 0(u, ij(u))d(c(u)fle(u))

= k(t, 6(t))4(t)f3{(t) -8f(u )(4u + Lu )(u, il(u)) du

-fJ (u)(u*V()V(u, i(u))du

- { fie(u)Pi(u) (a*V.0)j(u, i (u)) du
t

-j' K(u)fle(u) (a*Vx4)(u, ti(u)), dfl(u)>.

Again, only the final term need be examined. Using y(t) to denote this term, we
have

(5.22) V(I|y(t)IIT _ 8, |I|,B(t)j|| < )
W(|y(t)||° > 8, |||,B(t)|||° < 5, C|(t)||° < M6)

+W(||y(t)||° > 8 |||,B(t)|||° < 6, R|(O1|| > M4)
By the standard estimates,

(5.23) W(|iy(t)||° , I|,i(t)i|| 6, iI4(t)li < M6) . A exp -
M2B4}

By Theorem A.1,

(5.24) lim sup w(I|y(t)II' > iI|p(t)||i| < 6, liI(t)|)l > M6) = 0.
M-C0o <S1 W(|||p(t)ii||T < 6)

Combining these, we see that

(5.25) W(I Y(t)IIT_0 | fi(t) Ill < 6) - 0

as 6 J 0. Q.E.D.
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Clearly, (5.10) is an immediate consequence of Lemma 5.1. Hence, we have
proved (5.6) when 0 0.
THEOREM 5.1. Let tq(t) be given by

(5.26) q(t) = xo + j o(u, tn(u)) d/3(u) + f b(u, ti(u)) du a.s. W, t _ to,

where /3(t) is a W Brownian motion. Given / e C2([0, oo), Rd) satisfying f(to) =
0, define 0(t) by

(5.27) 4(t) = XO + f a(u, 4(u))/(u) du + r b(u, 4(u)) du, t . to.
to to

Then for all c > 0

(5.28) Wfi|let) - 0(t)||T < 8 | I|| fi(t) (0)||TO < 5)
as 6°0.

PROOF. We may assume that to = 0 and xo = 0. The case when 0 has
just been proved. To handle the general case, define W so that

(5.29) d = R(t) = exp {f <(u), d/(u)> 2 J u du}
on A'0, t _ 0. Then, by Theorem 2.4, /3(t) = /(t) - (t) is a W Brownian
motion and

(5.30) t(t) =
t

o(u, n (u)) dP(u) + f'I c(u, n(u)) du a.s. W. t > 0O

where c = b + a/ and c = c + ja'a. Hence,

(5.31) W(||?n(t) - 0(0)|| < ei||||f(t)l|||T<1
as 640, where 4(t) = fto c(u, 4(u)) du. But this means that

(5.32) laimW(||=(t) - ((t)110 < 4|l|(t)i - (t)-|t< <6)
limW016(t) - 0(t)|TO < £ |||(t) - 0(t)|||TO < 3)

610 Ew[R(T)X[Obe)(IIn(t) - 0(t)IIT)X[O,8)((liip(t) - 0(t)I|TI)]

EW[R(T)X[O,,)(lIl/3(t) - 0(t)IIlT)1
W(|||fl(t) - 0(t)i||To < 6)

= 1,

since

(5.33) R(t) = exp {I(t)p(t) - <j/(u), V(u)> du-2 f qi(u)|2 du},
is a continuous functional of /3. Q.E.D.
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THEOREM 5.2. Let c: [0, cc) x Rd S- Rd be bounded and measurable, and set

(5.34) Lt = 2a*V * *VX+ (b + ac).Vx
(as before). If Pt.,. is the solution to the martingale problem for (5.34) starting at
(to, xo), then equation (5.1) obtains.

PROOF. By Corollary 2.1, we may take c _ 0. Choose P1 and P(t) as in
Theorem 2.2. Then

(5.35) x(t) + I a(u, x(u)) dp(u) +- j g(u, x(u))du a s Pto xo, t _ to
to .to

Hence, by Theorem 5.1, for all T _ to and c > 0,

(5.36) -PtO xo(||X(t) (1)11,T°< 1||pk) 0(t)|||T°< 6) 1

as 6410, where f E C2([to, oo), Rd) satisfies /(to) = 0 and (5.27). By Theorem
3.1, -,0(t)-(t)l||to < 6) > 0 for all T > to and 6 > 0. In particular,
supp (Pto x0) contains a dense subset of Yab(tO, XO).
REMARK 5.1. Let <X, p> be a metric space and suppose that p is a prob-

ability measure on X. Given a pu measurable transformation T: X - X, we say
that x e X is a continuity point of the transformation T if for all E > 0,

()0 it(B(x, 6))
where B(y, ac) = {z E X: p(y, z) < ac}. In the terminology of continuity points,
Theorem 5.1 says the following. Define T: C2([0, oo), Rd) - Q so that T(O) =
', where

(5.38) 0(t) = Ju(u, (u))If(u) du + jt b(u, (u)) du, t _ 0,

and let W be Wiener measure on £ (that is, x(t) is a W Brownian motion). Then
the transformation T such that T(co) (t) = t1(t, co), where

(5.39) t1(t) = fa'(u, ti(u)) dx(u) + j{ b(u, ?l(u)) du a.s. W,

is a W measurable extension of T of Q with the property that all elements in
c2([0, cc), Rd) are continuity points of T.
REMARK 5.2. It seems likely that the hypotheses under which Theorem 5.1

was proved are close to the best possible. However, the authors believe that
Theorem 5.2 is valid under weaker assumptions. In particular, it seems likely
that if a: [0, oo) x Rd _~ Sd satisfies a0- E C1'2([0, 00) x Rd), 1 _ i,j_ d and
b: [0, xo) x Rd -~ Rd is a bounded, measurable function which is uniformly
Lipschitz continuous in x, then

(5.40) SUPP (Plo xo) = Ya,b(tO, XO),
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where PI, , is the solution to the martingale problem for L, = 2 V* (aV.) +
b * V, starting at (to, x0).

6. Applications

Let ar and b be as in Section 5 and define Ia,b(to, X0), (to, X0) E [0, Xo) x Rd.
accordingly. Given an open W c [0, xo) x Rd, take Wa,b(to, xo) to be the closure
in T of {(t, /(t)): t _ to, 'k c Ya,b(tO, xo), and (s, +(s)) E W for to < s _ t}. Let
c: [0, oo) x Rd ~ Rd be bounded, measurable, and continuous in x. Denote
by Pt.,.0 the solution to the martingale problem for Lt = 'a*V. *v*V +
(b + aoc) Vx, starting at (to, xo). We will use .*t (to, xo, W) to denote the class
of upper semicontinuous functions f on W into Ru { -oo} which are bounded
above and have the property thatf(t A T, X(t A r)), t _ to, is a P,,XO submartin-
gale, where z = inf {t _ to: (t, x(t)) 0 C}. We use XL,(§) to denote the class
fln M,'j(to, x0, C), Observe that AL-3(to, xo, W) and AL-,(W) have the same
closure properties as the analogously defined classes in Section 3. Further, note
that iffE CCl 2(W), then fE j (tox,I,) if and only if (af/lt) + Ljf _ 0 on
W (to, x0).
THEOREM 6.1. If f cE .- (to, xo, W) and f (to, xo) = supy f(t, x), then f

f(to, xo) on W(to, xo). Moreover, if (t1, x1) ecW - W(to, xo), then there is an
f -X.j (W) such that f(to, xo) = sups f (t, x) and f (t1, x1) < f(to, Xo).

PROOF. The proof is exactly the same as that of Theorem 3.2. The only
difference lies in the fact that the P,, are no longer strongly Feller continuous
and therefore EP'x[ tr e-uh(u, x(u)) du] will not, in general, be continuous.
Nonetheless, if h < 0, then it will still be upper semicontinuous, by virtue of
the Feller continuity of the P,.. Q.E.D.
REMARK 6.1. The class .-,j(W) admits the same semigroup interpretation

as we gave in Remark 3. 1, only it is no longer true that every measurable function
f which is bounded above and satisfies Ttf l f is upper semicontinuous in the
ordinary sense. However, it will be upper semicontinuous in the "intrinsic
topology" of the time-space process; and one can still show that such an f will
be constant on the intrinsic closure of {(t, (/(t)): t _ to, 4 E 5,9eb(tO, xo), and
(8, (/(s)) e W for to . s _ t} iff(to, xo) = supqgf(t, X).

APPENDIX

Let /3(t) be a W Brownian motion and set ,(t) = fl1i(u) df3j(u), where i 7 j.
The purpose of this section is to prove that for all T > 0,

(A.1) lim inf W(I1c(t)IIT < MA II|||p(t)IIIO < 6) 1M- ayo<&2.
It is clear that we may assume that d = 2, i = 1, and j = 2.
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For each (s, x) e [0, oo) x R2, let Ws be Wiener measure starting at (s, x)
(that is, W, is the measure on <Q, #S> such that x(t) - x is a W,., Brownian
motion). Define

(A.2) Is = inf {t _ s: IXi(t)I V 1x2(t)i _ },

and let

(A.3) Qs,x(A) = Ws,x(A | {rs > T}), A e #s.

LEMMA A.1. Let g(s, x) = W_ (rc, > T)andh(s, a) = Ws,(aO)(iIXl(t)IllS < 6).
Then g(s, x) = h(s, xl) h(s, X2), and he Cj[(0, T) x (-6,6)]. Next, let b(s, a) =
ha(s, a)/h(s, a) in (0, T) x (-6, b). Then b(s, * ) is nonincreasing and b(s, -a) =

-b(s, a). Finally, define B(s, x) = (b(s, xl), b(s, x2)). Then for all s e [0, r) and
x such that 1X1j V 1X21 < 6,

(A.4) ff(t) = x(t) X -x-{ B(u, x(u)) du

is a Q5 x Brownian motion.
PROOF. The first assertion is trivial. To prove the second assertion, note

that h, + ahaa = 0 and that hs > 0. Hence,

_hh., -h2
(A.5) ba(s, a) - h2h0

and so b(s, ) is nonincreasing. Also, note that h(s, -a) = h(s, a), and therefore
ha(s, -a) = -ha(s, a). Hence, b(s, -a) = -b(s, a).

Finally, to prove the last assertion, let {6n} _ (0, 6) such that 6i T6 and
define

(A.6) T(n) = (inf {t _ s: ixl(t)l V 1X2(t)1 _ 6n}) A T.

Then, by 1t6's formula,

(A.7) g(t A Tsn) x(t A r(n))) - g(s, x)
(A.7)~~~~~~~~~~

= S g(u, x(u)) <B(u, x(u)), dx(u)> a.s. Ws,.,
Hence,

(A.8) g(t A 15n), x(t A T( )))g(s, x)
= R(n)(t)

( ~~~~~~~~ ~ ~~~~~~~~tAr() r ^r()
exp { <B(u, x(u)), dx(u)> -2 J B(u, x(U))2dua

a.s. WGAw w
Given A e XbTs) we now have
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( TW.,.(A r {,c > T}) EWS-x[UAg(t A T("), x(t A T(")]

(A.9) g(s, x) g(s, x)

= Ews[YR(")(t)xA].
Thus, by Theorem 2.1,

(A.10) X(")(t)

= exp {<, X(t A T ) - X - B(u, x(u)) du>

- :|0| (t A -S}

is a Q,., martingale for all 0 e R2. Since rs")t T as n -. oo and

(A.11) EQS-[EIX(n)(t)12] = EQs-[X2)(t) exp {1012(t A 1") - S)}]
< exp {102(T-s)}

it follows that

(A.12) exp{<0,x(t A T) -x- B(u, x(u))du> _ 11012(t A T -s)

is a Q,., martingale for all 0 e R2. Combining these, we have that

(A.13) x(t) - X - f B(u,x(u))du

is a Q,., Brownian motion. Q.E.D.
LEMMA A.2. Let t (t) = 1' xl (u) dx2 (u). Then

(A.14) sup EQsx[l(T) -_ (s)12] < C62
OsST, xli v IX2l<1

PROOF. Note that by Lemma A.1

(A.15) ((t) = ,f xl(u)dfil(u) + JfA xl(u)b(u,x2(u))du,

where fi3(t) = x1(t) - -X_AT b(u,xl(u))du is a one dimensional Q5x
Brownian motion. Hence,

(A.16) EQs.x[l(T) -_ (s)12]
_ 2EQ5, x |xl(u)dlu2]) + 2EQs'x |xl(u)b(u, X2 (u)) du 2

Since x1(u) < 6 a.s. Q, for s < u < T.

(A.17) EQS.x[L. x1(u) dfl1(u) ] .2(T - s).
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Using the independence of x1() and x2() under QW X, we have

(A.18) EQs~{ fT x1(u)b(u, x2(u)) du ]

= 2 J EQS[xl(uj)Xl(u2)]
s= U l=,_u 2 <= T

EQS-x- [b(u1, x2(uj))b(u2, X2(U2))] duldU2.
Observe that

(A.19) EQS2x[b(u1, x2(u1))b(u1, x2(U2))]
= EQs-x[b(u1, X2(u1))EQU1(0oX2(u1))[b(u2, X2(U2))]].

Since (b(u, *) is nonincreasing and antisymmetric, it is easy to see that v(u1, ) =
EQU1o-)[b(u2, x2(u2))] has the same properties. In particular,
(A.20) EQS-x[b(u1, x2(u1))b(u x2(U2))] 0.

Hence,

(A.21) EQsXLf x1(u)b(u, x2(u)) du ]< 62EQX[ T b(u, x2(u)) du ]

= 62EQsX[f2(T) - x2(T) -X21] .c62.
Q.E.D.
THEOREM A.1. Define ,(t) as in Lemma A.2 and let W = WO0,. Then

(A.22) lim inf W(C41(t)I0T < Mb6Hiix(t)|||T < 6) = 1.
M-.cs 0O<~~1

PROOF. Let a be a stopping time which is dominated by T. Then for A e wa0
(A.23) EW[XAn{S>T}I(T) - 4(U) 12]

= EW[XAn{r? > ,Ew-x(f)(X~ro0> T} 4(T) _)1l-
= EW[XAn~z,>wax(a)(c, > T)EQ-X(-)[I (T) - 4(a)12]]
. C62 W(A n {-T > T}).

Thus if Q = QO0,, then

(A.24) EQ[14(T) - 4(U)12I| #a0] - C62.
Now let a= (inf {t > 0: |I(t) | _fb) A T. Then

(A.25) Q({QU2 < T} n {1|(T) .-(6})
< Q({QU2 < T} n {| (T) - (a2e)| >. (6})
< QC(U2 < T)
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Thus,

(A.26) Q(U21 < T) < > ( ))-C ( "-c"
-(C/12) ={2 1\(

Q.E.D.
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