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Summary 
 
This report summarizes the five year SATA (Stochastic Algebraic Topology and 
Applications) project involving three US investigators together with Robert Adler and his 
team at the Technion (Israel), who is working on a similar grant with the European Office 
of Aerospace Research and Development.  We have not always been able to separate the 
work done by the American group from the Israeli team. 
 
The project has led to approximately 50 papers, the vast majority of which are already 
published or submitted.  These include results related to the statistics of random 
functions, random complexes, and random manifolds and embeddings.  In addition, there 
have been some extensions of the scope of the project to include some new problems and 
areas related to the theme (stochastic algebraic topology) that were not mentioned in the 
original proposal in terms of connections to e.g. order statistics, sample complexity 
bounds, and topological sampling theory. 
 
This grant has also played a role in the training of graduate students and postdoctoral 
fellows, dissemination of results and general educational activity on the importance of 
stochastic algebraic topology as tool in data analysis. 
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Objectives. 
 
 Recall that the Stochastic Algebraic Topology and Applications (SATA) project 
aims to exploit recent advances in the complementary areas of topology and stochastic 
processes to tackle a wide range of data analytic problems of broad importance. Treating 
data topologically is crucial in scenarios in which it is important to detect, localize, and 
perhaps perform an initial classification of objects without attempting to completely 
characterize them. Adding a stochastic element allows for the almost pervasive situation 
in which the data itself is imperfectly observed due to the presence of background noise.  
As current probabilistic and statistical methodology is ill suited to detect such qualitative 
structures, the project aims to develop generic stochastic models whose topological 
structures are amenable to mathematical analysis, as a first step towards implementation 
of a broader, more quantitative program. Core topics include random functions on 
manifolds, random manifolds created by random embeddings, and random manifolds 
arising in machine learning, along with their theoretical and practical interplay. 
Secondary topics include the analysis of associated algorithms, and the topological 
understanding of random spaces that arise in particular stochastic models.  We have also 
studied implementation and application of these ideas on some problems coming from 
engineering and physics. 
 

 
 
Accomplishments 
 
 This is basically a mathematics-based project, and the methods are hard analysis 
supplemented with, and often motivated by, computation.  Below we describe three 
general areas in which we have made significant progress, and a fourth area of new ideas 
that were generated by our projects.  The headings all correspond to topics in the original 
proposal, which provides background material. 
 
 The research in this project grew out of two different types of topological data 
analysis: statistical and geometric.  The statistical problems were from the theory of 
Gaussian (related) random fields, and use topological invariants as proxies for 
measurements of more direct interest (such as excursion probabilities) and also can be 
used as robust signatures of complicated data (such as time series, random fields, moving 
objects, etc.)1.  The second source was geometric -- trying to find useful geometries of 
data that can be used to improve data analysis2. 
 
 The topological sampling problem is one of the first theoretical problems in 
topological data analysis:  assuming that data is being sampled from a probability 

                                                
1  A convenient source for this is the book “Random Fields and Geometry” by 
Adler and Taylor and the draft of a second volume (coauthored with K. Worsley) that can 
be found on Adler’s web page. 
2  An overview of the philosophy of this work can be found in G. Carlsson’s survey 
paper in Acta Numerica (Vol 23 (2014) 289-368.) 

DISTRIBUTION A: Distribution approved for public release.



distribution of geometric origin, can one determine the underlying geometry?  The 
literature on this and related problem has grown substantially and the picture is 
considerably different than it was at the beginning of the project. 
 
 At the time the project began, a number of papers showed that if a distribution 
was sampled from a “well conditioned” manifold with “not too much” noise, then with 
“enough” samples, with high probability, one could recover the topology (homotopy type 
or even the diffeomorphism type) of the manifold.  Different and deep versions of this 
result, and new algorithms that work more or less efficiently in different contexts, are still 
being discovered and progress on this basic problem remains important. 
 
 Among the issues that our work has illuminated directly related to topological 
sampling are: 
 

(1) The theoretical limits on when topological reconstruction is possible [20]. 
(2) The rates of convergence of specific algorithms for computation of 

topological invariants (and related phase transitions) such as homology and 
homotopy [4,5,17,18] or Euler integrals [30]. 

(3) Connections to percolation theory [51]. 
(4) The behavior of these algorithms on pure noise (as preparation for 

understanding better noisy data sets) [4,50,31]. 
(5) Stability properties of topological invariants of functions [16]. 
(6) Lower bounds on sampling, Kolmogorov and logical complexity of some of 

these reconstruction problems [47]. 
(7) What happens to (6) in the generic, as opposed to worst case, situations [7]. 

([7] directly solves one of the main problems identified in the original 
proposal, and we will discuss it in more detail below.) 

(8) Reparametrization invariant functionals on time series [52,53].  
(9) Typical shapes of discretized loops with topological constraints [8]. 
(10) Applications of critical point theory to statistical inference problems 

[12,19,21,24,25,26,27,28,34,35,36,37,38,40,41]. 
 
 We also made progress in furthering the applications of this work, developing 
new topological signatures [44, 53], and have initiated work on finding some new 
topological invariants that are more computable than the traditional ones.  Finally, we 
mention some results that stem from our topological study that are not particularly 
stochastic. 
 
Below we describe three general areas in which we have made significant progress and a 
fourth area of new ideas that are spurred by our projects.  The headings all correspond to 
topics in the original proposal for ease of comparison, which provides background 
material. 

 
1: Statistics of random functions 
 
 From a mathematical standpoint, our basic setup here starts with a base 
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topological space, M, typically but not always a manifold, and a random function f on M, 
with values in Rn for some n≥ 1. Given a realization of such a function, we proposed 
studying various statistics pertaining to it, including properties of the set of critical points, 
critical values, sub- and super-level sets, etc.  These arise in both themes mentioned 
above. 
 
(i) In joint work of Adler and Taylor with Eliran Subag, a Technion graduate student, 
they provided a new approach, along with extensions, to results in two important papers 
of Worsley, Siegmund and coworkers closely tied to the statistical analysis of fMRI 
(functional magnetic resonance imaging) brain data. These papers studied approximations 
for the exceedence probabilities of scale and rotation space random fields, the latter 
playing an important role in the statistical analysis of fMRI data. The techniques used 
there came either from the Euler characteristic heuristic or via tube formulae, and to a 
large extent were carefully attuned to the specific examples of the paper. In [1] they 
treated the same problem, but via calculations based on the so-called Gaussian kinematic 
formula. This allowed for extensions of the Worsley-Siegmund results to a wide class of 
non-Gaussian cases. In addition, it allows one to obtain results for rotation space random 
fields in any dimension via reasonably straightforward Riemannian geometric 
calculations. Previously only the two-dimensional case could be covered, and then only 
via computer algebra.  
 
(ii) The paper by Adler, Moldovskaya and Samorodnitsky [2] studied, in a one 
dimensional setting, the problem of whether or not two or more points which lie in an 
excursion set of a smooth random process belong to the same connected component. This 
is a fundamental problem, at the level of connectivity, that has eluded successful analysis 
for a number of years. 
 Adler and Samorodnistky, in a later paper [6], take this much further, to the setting 
of  continuous Gaussian random fields on higher dimensional Euclidean spaces, and 
address the question of how likely it is for the excursion sets  to have a ``hole'' of a 
certain dimension and depth?  Answering this question in full generality appears to be 
impossible at the moment, but their paper makes significant progress. Specifically, they 
determine  how likely is such a field to be above a high level on one compact set (e.g. a 
sphere) and to be below a fraction of that level on some other compact set, (e.g. at the 
center of the corresponding ball).  These questions have clear, and sometimes surprising 
and counter-inuitive, answers at the level of large deviations.  
 
(iii) Naitzat and Adler [30] proved  a central limit theorem for the Euler integral of a 
Gaussian random field. Recall that Euler integrals of deterministic functions have 
recently been shown to have a wide variety of possible applications, including in signal 
processing, data aggregation and network sensing. Adding random noise to these 
scenarios, as is natural in the majority of applications, leads to a need for statistical 
analysis, the first step of which requires asymptotic distribution results for estimators. 
The first such result is provided in this paper, as a central limit theorem for the Euler 
integral of pure, Gaussian, noise fields. 
 Proving these results turned out to be somewhat more complicated than was 
originally expected. Fortunately, the actual central limit theorem is simple to state and, 
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equally importantly, simple to apply as an inference tool in real life scenarios. On the 
other hand, the proof required a sophisticated manipulation of the most recent advances 
in central limit theorems for Gaussian functionals based on representations via the 
Malliavin calculus.   
 This work assumes additional significance because of the work of Baryshnikov and 
Ghrist relating Euler integrals to approaches to target enumeration.  These authors and 
Wright [14] develop a general Hadwiger theory for these invariants, which helps explain 
their centrality. 
 
(iv)  Baryshnikov and Weinberger have studied the generic behavior of persistent 
homology in various function spaces [16].  Unlike the usual stability theorems that assert 
that long bars are stable with respect to small perturbations, the nature of the results of 
this paper describe the stability of the small bars with respect to smooth but possibly 
large perturbations (where here large means large magnitude).  We call this kind of 
information, the “jitter” of a function or a space.   For a simple example, f(x) + sin nx 
will have many local minima and maxima for n large, whenever f is a Lipschitz function 
on an interval, say [a,b].  (And this number grows like n(b-a), i.e. linearly in n and the 
length.)   
 These statistics can give information about underlying mechanisms for data and the 
paper discusses sizes of craters on the moon and stock price time series (where the 
persistent homology is consistent with a Holder ½ function -- although more subtle 
dendrogram type invariants do distinguish these from a time reparametrised 
exponentiated Brownian motion [52, 53]).  These and additional theoretical results about 
singularities and mathematical analogues are being written into a revised version of the 
paper on jitter.  It also has a large-scale aspect, as well, and is related to the short paper 
[47]. 
 
 Note the strange nature of the integrand (note that intervals appear in it!3):  it is 
essentially a current describing the average number of times one should see an interval 
approximately of length [0, x/2] in the persistence diagram.  The blow up near the origin 
is because, with many points, there are very many very short persistence intervals.  Its 
quadratic nature is perhaps typical.  Similar effects occur for Brownian motion, as 
mentioned above.  The nonzero measure associated to long intervals is essentially a 
precise form of the crackle phenomenon. 
 
(v) Baryshnikov [52,53] initiated a study of reparametrization-invariant functionals of 
time series, an important addition to the standard toolbox of data anlysis, almost entirely 
relying on harmonic analysis, e.g. Fourier transform in its different avatars.  
 One direction deals with the realization that the Reeb tree that can be associated to 
a scalar univariate function carries more information than merely its barcode: the bars 
have a chirality, i.e. can fall or raise. Statistics of these raising or falling bars can, signify 
in a reparametrization invariant way the asymmetry of the process. In [52] Baryshnikov 
studies the baseline case of various Brownian motions, and the resulting asymmetries. 

                                                
3  Some might prefer the intervals replaced by characteristic functions of the 
intervals, and then this formula can be viewed as an equality in a space of measures. 
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On the empirical side, he exhibited time irreversibility in several classes of time series 
Another model considered by Baryshnikov deals with cyclic but not necessarily periodic 
processes (such as business cycles). Motivated by a classical theorem of K.-T. Chen, he 
introduced an algorithm to recover a cyclicity [ 53],  a family of time series sequentially 
following a similar periodic pattern, perhaps with a desynchronized clock. The algorithm 
relies on the notion of iterated integrals, and leads to remarkably reliable reconstructions 
of cyclic orderings in some systems, in particular in the relative performance of industrial 
sectors during the business cycles of the US economy.    
 
2: Morse theory, critical points, Betti numbers and random complexes 
 
 As described in the original proposal, we planned to invest considerable effort in 
the study of the topological properties of random simplicial complexes for hypothesis 
testing. 
 Adler and Bobrowski [5] considered for a finite set of points P in Rd the behavior 
of the number of critical points of the distance function dP : Rd → R+ which measures 
Euclidean distance to the set P. In particular, they studied the number of critical points of 
dP when P is a random sample from a given distribution, and the limit behavior of Nk = 
the number of critical points of dP with Morse index k, as the number of points in P goes 
to infinity. They gave explicit computations for the normalized, limiting, expectations 
and variances of the Nk, as well as distributional limit theorems. These results are related 
to recent results of Kahle in which the Betti numbers of the random Cech complex based 
on P were studied. The practical implication of these results lies in the design of sampling 
algorithms for manifold learning via approximating simplicial complexes. 
 
 Similar ideas, applied to a different regime, were used by Bobrowski and 
Weinberger [18] to discover the phase transitions in the computation of homology of 
Riemannian manifolds from Cech complexes, at least in the case of flat tori.  They gave a 
heuristic indicating that the same results should apply in general, but did not give 
quantitative results about the rate of convergence.  This is ongoing work. 
 
 On another front, Adler and Yogeshwaran [50] have studied random complexes 
(generally Cech or Rips) generated from point clouds in settings where the underlying 
point process is neither Poisson nor a simple random sample, but comes from a general 
stationary process in which there may be considerable correlations (either positive or 
negative) between different regions. A typical example of significant current interest 
from both theoretical and applied points of view is given by determinantal point 
processes. Their surprising finding is that many of the results from the better known, and 
simpler, scenarios, while they do carry over in principle to the correlated situation, 
involve quantitative differences which are going to be important in any learning or 
estimation scenario.  
 
 Additional results have been written up in [51] for which the limit regime is in the 
so-called `thermodynamic' regime (which includes the percolation threshold) in which 
the complexes become very large and complicated, with complex homology 
characterised by diverging Betti numbers. The proofs combine probabilistic arguments 
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from the theory of stabilizing functionals of point processes and topological arguments 
exploiting the properties of Mayer-Vietoris sequences. The Mayer- Vietoris arguments 
are crucial, since homology in general, and Betti numbers in particular, are global rather 
than local phenomena, and most standard probabilistic arguments are based on the 
additivity of functionals arising as a consequence of locality.  These results are closely 
related to the ideas about the role of topological testability and are one of the main future 
directions of this work. 
 
 A related problem on which Adler, Bobrowski and Weinberger have made 
considerable progress [4] is a phenomenon that we have named `crackle'. Once again, 
random Cech complexes are created, this time with fixed inter-point distances and based 
over different types of samples.  It was shown that if the additional noise is in some sense 
large then sample points can appear basically anywhere, introducing extraneous 
homology elements.  We observe that Gaussian noise does not crackle (which explains 
why topological methods have been of most use in that sample) but exponential and 
scale-free has a lot of crackle.   
 
A family of results, including a law of large numbers, will appear in a joint work of all 
the PI’s and co-PI’s. Among these is the result that, for a sample of n exponential 
variables, the expected number of bars in the zero-th order persistence homology of 
length in the interval [x,y] tends, as n tends to infinity, to  
 

∫e-u(1-e-u)-2 1[2x,2y](u) du. 
 

The blow up near the origin is results from the fact that, with many points, there are very 
many very short persistence intervals. The quadratic nature of the divergence is perhaps 
typical.  Similar things occur for persistence intervals in the level set filtrations of 
Brownian motion. Overall, the nonzero measure associated to long intervals is essentially 
a precise formulation of the crackle phenomenon. 
 
 In a subsequent paper [17] far more precise results are established. There, point 
process convergence of spherically symmetric k-tuples (Xi1 ,...,Xik) � (Rd) is studied 
under certain geometric constraints. If the law of the random points in Rd has either 
regularly varying or exponentially decaying tails that vanish slowly enough, then a 
certain Poisson random measure becomes the weak limit of the point process. On the 
contrary, if the law of the random points has rapidly decaying exponential tails, the 
corresponding point process tends to zero in probability. As an application, the homology 
of the Cech complex built over those random points is studied. The weak convergence 
result shows that Betti numbers of order up to d -1 have either Poisson limits or are 
degenerate, depending upon how heavy are the tails of the distributions of the random 
points. 
 
 As this paper was being written up it became clear that although the work was 
originally motivated by, and has immediate applications to, topological data analysis, the 
main results in some sense “belong” to the classical area of extreme value theory (EVT). 
Consequently, the paper was written in the language of EVT, for two reasons. The first 
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was one of convenience - most of the natural notation and a lot of the needed pre-existing 
lemmas came from there. The second was more long term, in that the authors wanted to 
introduce to the EVT community, in a language with which they are familiar, the general 
area of stochastic algebraic topology. 
 Despite this, the paper concludes in the language of applied topology, and allows 
the topology literate reader to understand the implications of EVA type analysis to 
applied topology.   
 Owada has taken this further in subsequent papers [32,33].  While still motivated 
by the issue of crackle in TDA, and thus interested in the behavior of Betti numbers and 
other topological aspects of Cech complexes, the approach taken in this work is to 
investigate the limiting behavior of a sub-graph counting process, when the graph in 
question is the 1-skeleton of the complex.  In particular, the subgraph counting process at 
the core of the paper counts the number of subgraphs having a specific shape that exist 
outside an expanding ball as the sample size increases. As an underlying law, the paper 
considers distributions with a regularly varying tail and those with an exponentially 
decaying tail.  
 The aim is then to obtain functional limit theorems for these processes as the 
underlying scale parameter of the Cech complex changes. This is, of course, a much more 
sophisticated result than a standard (central) limit theorem, and is, to the best of our 
knowledge, the first time that a functional limit theorem has been proven in the setting of 
random topology.  Regarding the specific results, it is seen that the nature of the 
functional central limit theorem differs according to the speed at which the ball expands.  
In fact, the proper normalizations for the limit theorems and the properties of limiting 
Gaussian processes are all determined by whether or not an expanding ball covers a 
region - called a weak core - in which the random points are densely scattered and form a 
giant geometric graph.  
 The results of this work not only have implications for increased understanding of 
the structure of persistent homology under crackle - an issue of applied relevance - but 
have significant intrinsic interest. In particular, the limiting stochastic processes that 
appear here seem to be completely new in the context of probability theory. 
 
3: Random manifolds and random embeddings 
 In the initial proposal we noted that random manifolds arise in a number of 
scenarios, and that one of the key geometric quantities that arises there in recovering the 
homology of a manifold M ⊂ Rn by randomly sampling points from it is the critical 
radius τ of the manifold. 
 Roughly speaking, the reach, or critical radius, of a manifold is a measure of its 
departure from convexity that incorporates both local curvature and global topology. It 
plays a major role in many aspects of differential geometry, and more recently has turned 
out to be a crucial parameter in assessing the efficiency of algorithms for manifold 
learning. 
 
 As the critical radius depends on the embedding it is of interest to study the 
behavior of the critical radius of a Riemannian manifold (M; g) for a generic, or random 
embedding of Μ into Rn for large n. A natural model to consider is based on taking 
independent, identically distributed, copies, f1,..., fn of a real-valued random field on M 
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and then working with f = (f1,...,fn) : M → Rn to define the random, embedded manifold 
f(M). Each such random embedding gives rise to a random Riemannian metric on M, that 
is naturally related to the original metric g. Other geometric features of interest include 
the study of the geometric invariants of such Riemannian metrics, such a volume, 
curvature, diameter, etc. 
 
 Together with a Technion graduate student, Sreekar Ram Krishnan, Adler, Taylor 
and Weinberger have shown [7] that the self-normalised critical radii of these randomly 
embedded manifolds converges almost surely to a deterministic limit determined by the 
structure of the underlying manifold M and the covariance function of the process  
 Somewhat unexpectedly, this limit turns out to be the same one that arises in 
studying the exceedance probabilities of the Gaussian process over the manifold. 
 
 En passant it was also proven that the induced embeddings are asymptotically  
isometric, from which it follows that other properties of the embedded manifolds, such as 
volume, curvature integrals, etc, also converge. Underlying this there turns out to be a 
much deeper notion of convergence.  [23] proves such results. 
 
 This collection of theorems results in an important philosophical implication, which 
is encouraging for topological data analysis.   Although the sample complexity of 
learning a manifold grows (exponentially) with ambient dimension (see [47]), even with 
lower bounds on the critical radius and upper bound on diameter, for a given “platonic 
ideal”, the random embeddings do not suffer this defect, and generically the image 
manifold can be learned with a sample complexity that does not grow with dimension 
even in the presence of (controlled) noise.   
 
4. Other directions that have grown out of this work. 
 
(i)  The lower complexity bounds in the problems, established, in general, in [47] 
pose an important issue for TDA. Many of the usual questions people ask are unfeasible 
in general: computation of invariants is too difficult, the number of topological types is 
too large.  Applications of topological methods must either explain why the data should 
be suitable for those methods - e.g. why the complications that could arise, do not (as in 
the work [7] mentioned in the previous paragraph NOT MENTIONED THERE) - or they 
should be focused on invariants that can be measured.  Weinberger has been studying 
such invariants, modeled on testability properties of graph properties.  The simplest of 
these is the Euler characteristic divided by the volume - which is essentially (for 
Riemannian manifolds) the average (Pfaffian of the) curvature.  As an average, it is 
subject to sampling.  Thus, a large submanifold in Euclidean space whose average 
curvature is large will surely have complicated topology, and discovering its topological 
properties will require enormous sampling and computational resources.   
 
 Similarly, characteristic 0 Betti numbers seem to be testable (but not too 
straightforwardly:  random regular graphs have high Euler characteristic and first Betti 
number:  but randomly they look like trees that have no local topology!  (The fact that the 
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ratio can be approximated via finite samples is a consequence of Hodge theory).  
Whether this is the case for mod p Betti numbers is an important problem.  
 
 Weinberger has shown that for “geometric complexes” i.e. those which embed in 
Euclidean space with bounded geometry, the phenomenon of “foamless foam”, i.e. of the 
presence of large homology without any homology being present at a small scale, does 
not occur.  This suggests that better algorithms for computing such invariants might be 
possible for the geometric case.  These results are consistent with the results of [51] on 
thermodynamic limits.  Thermodynamic limits also arise in the dual question: throwing 
away the many visible small cycles and look for the birth of the large, macroscopic 
cycles.  Bobrowski and Weinberger have been studying this and its connection to 
percolation theory.  These works are not yet complete. 
 
  
 
(ii)  Another “spin off” is the paper [20] which deals with the question of whether 
there are manifolds that can be made arbitrarily close to one another in Gromov-
Hausdorff space with a local contractibility function.  Any such manifolds must be 
homotopy equivalent and must have the same rational characteristic classes. (The first is 
easy; the second is a deep theorem of S. Ferry.) 
 However, we show that there are indistinguishable manifolds, and even some 
infinite sets of such manifolds.  We also show that for “reasonable fundamental groups” 
the set of doppelgangers of a given manifold is finite.  However, there are some.   
 In revised versions of this paper, the connection between this topological problem 
and analytic methods based on C* algebras has been strengthened, resulting in the paper 
being rewritten to take this into account.  As a consequence the theory is now essentially 
complete for many fundamental groups (including abelian, and torsion free linear 
groups). 
 
(iii)  Taylor and several co-authors have been studying inferential problems in statistics 
and machine learning related to critical points of common objective functions 
encountered in machine learning. A canonical example of such an objective function 
would the LASSO (squared error plus an L1 penalty). The solution to this problem is a 
critical point, and many of the tools developed in the theory of smooth random fields on 
piecewise smooth spaces developed by Adler and Taylor are applicable to such problems. 
 
 Taylor and several co-authors have continued work on selective inference 
reported in SATA's 2014 annual report. The main methodological contribution [21] 
describes a formal approach to inference after model selection where model selection is 
broadly described as observing partial information about the entire sample. Previously 
reported work [25] applied an early version of this framework to inference after selecting 
features using the LASSO. 
 
 One of the key constructions in [13] is the idea of performing inference under a 
selected model as opposed to inference for different parameters of the same model as in 
[14]. This technical distinction allows for valid inference in regression models with 
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unknown variance [27]. Other work in this vein include a version of selective inference in 
which the sample is randomized before a model selection algorithm is applied [40]. These 
algorithms are similar to those appearing in the differential privacy literature (c.f. “The 
reusable holdout: preserving validity in adaptive data analysis", Science, 2015). The 
intervals and hypothesis tests in [40] are less conservative than the differential privacy 
approach. 
 Work is continuing on applying this approach to model selection from a 
continuum of models as in [19] in which a selective inference algorithm is proposed for a 
sequential algorithm to determine the rank of spiked covariance model in PCA. The 
proposed algorithm is less conservative than asymptotic approaches based on RMT. 
Current work is focused on applying these techniques to CCA (canonical correlations 
analysis) and relating our finite sample size algorithms to the asymptotic RMT 
approaches.   The complete development of these ideas appear in the papers 
[12,19,21,24,25,26,27,28, 34, 35,36,37, 38, 40, 41] 
 
[37] builds on the exact selective inference of [25] in the Gaussian least squares setting to 
the setting of general likelihoods with a LASSO penalty.  It describes how to remove the 
parametric modelling assumption for the covariance, using a bootstrap estimate of 
covariance, removing the assumption that the selected model is correct. 
 
The model in [26] considers selective inference in regression problems where features are 
clustered and one uses a prototype to represent the entire cluster in a regression model. 
They derive an analog of the F-test for the entire cluster given its prototype was selected 
in a model selection procedure like the LASSO. 
 
[41] Building on the framework of selective inference after randomization in [37], we 
describe a simple randomization scheme that yields an explicit formula for the selective 
likelihood ratio which is necessary for selective inference. The construction relies on an 
exact inversion of the KKT conditions of a particular randomized LASSO problem. Co-
author Nan Bi was supported by AFOSR in carrying out this work. 
 
[54] This paper extends the approach of [41] to fairly arbitrary convex programs. 
Notably, penalties with some curvature such as the group LASSO can easily be handled 
in this fashion, as well as multiple steps forward stepwise and \top K" marginal 
screening. For penalties with curvature, the change-of-measure formula involves a 
Jacobian encoding similar geometric structure to the Jacobian in Steiner-Weyl volume-
of-tubes formulae.  [34] This paper considers selective inference in a Bayesian context, 
building on an approach for univariate problems in [49]. The main technical difficulty in 
this work is computing the selection probability as a function of the parameter on which a 
prior is specified. We use a large-deviations approximation to this probability that 
involves solving a well-defined convex program for each step of the Markov Chain. This 
program possesses nice structure, particularly if selection is randomized.   [21] produces 
a sequential model selection algorithm that satisfies the hypotheses of the sequential 
FDR-controlling procedure of [22]. We demonstrate an improvement in power over the 
spacings test of [41] whose tests also fail to satisfy the hypotheses required for control of 
FDR. 
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(iv)  Baryshnikov and Mileyko have been studying problems related to many of the 
above, but on networks.  The persistence homology of networks (with analytic growth 
bounds, with respect to steadily increasing scale) has been related to network flow and 
congestion problems as well as to defining dimensions of networks4. Baryshnikov and his 
postdoc Yuri Mileyko continued the studies of the (local) dimensions of synthetic and 
real-life networks. The background for this quest was an emerging trend in networking 
community to view networks as hyperbolic in some sense (e.g. as being CAT(0) spaces, 
or Gromov-hyperbolic, etc). One thread in this area of research had as an underlying 
premise that the real-life networks can be properly modeled by random geometric graphs 
sampled from a ball in homogeneous hyperbolic spaces, or, even more specifically, from 
the hyperbolic plane. While the pictorial representations in the numerous publications in 
this spirit looked convincing, the basic questions were not asked, i.e. why the hyperbolic 
plane? Why the assumptions of homogeneity? etc.  
In general, the random finite metric space obtained by a dense enough sampling from a 
Riemannian manifold would provide enough data to detect at least the dimension of the 
underlying manifold: if X ⊂ M is a finite sample from M, a manifold of dimension m, 
then for spherical shells of points in X, and judiciously chosen radii R, r (R much less 
than the injectivity radius, r large to ensure dense sampling), the persisting homology of 
the Rips complex of SX(x; R; r) = H(X, X-x; R,r) should be concentrated in dimensions 0 
and m, for interior points of the sample, and just in dimension 0 for the points near the 
boundary.   
Experiments confirmed that this is exactly what happens for the samples from hyperbolic 
plane. However, contrary to what one might expect from the existing literature, the 
analysis of the ASN network (the world-visible structure of the autonomous domains, 
roughly the network of Internet connections) shows that their local homologies are 
extremely wild and irregular, and are nowhere close to the sample from the hyperbolic 
plane (or any manifold). On the positive side, the local homology is yet another 
characteristic of the nodes in large graphs, and we plan to use it systematically for 
network analysis (and, perhaps, to analyze samples from singular spaces, in a TDA 
fashion).  
 The results of these experiments are available at the web site 
http://publish.illinois.edu/ymb/2014/09/21/dimension-of-the-internet/  and show how the 
local homologies behave for samples of the hyperbolic plane and for the “internet graph”.   
 Other applications of these methods large networks obtained from sampling large 
geometric function spaces will appear in the revised version of [16]  
 
(v)  S. Mukherjee and Katharine Turner have developed a persistent homology 
transform that has application to shape statistics – describing a shape by a “Radon 
transform”” of the persistent homology of the height functions in  all the different 
directions, and  applied this, together with D. Boyer in the Evolutionary Anthropology 
Department at Duke University, to data comparing calcanei bones of various primates 

                                                
4  See the paper of Block and Weinberger on Large Scale Homology theories of 
Metric spaces and Baryshnikov, Bonahon, Jonckheere and Lou, on Euclidean versus 
Hyperbolic congestion for some background, all available on the authors’ web pages. 
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[33].  Turner and V. Robins have been studying persistence homology invariants of sand 
and other disordered materials [34]. This, too, has strong connections with theory of 
testable invariants mentioned above. 
 
(vi)  Arnold, Baryshnikov and Mileyko’s paper [25] studies the typical shapes of the 
(discretized) loops sampled uniformly from the space of loops in a given (free) homotopy 
class on a surface. It is shown that there exists a large deviation principle forcing the 
sampled loop to be close to the solution of a variational problem. (For example, in the 
case of plane with punctures, to a collection of straight segments representing the 
minimal loop in the given homotopy class.) We note that this result is in tension with the 
large amount of time it can take loops that are near to an index zero geodesic that is not 
actually length minimizing.  A given homotopy class can have infinitely many such 
geodesics even for a bumpy metric on S2.  Nevertheless, asserts [25] in that case, “almost 
all” geodesics will be “pointlike”. 
 
(vii) In [9], Baryshnikov studies problems related to tiling spaces -- a topic closely related 
to the mathematical physics of testability and to the problem of defining invariants that 
can be computed quickly.  The classical Wang (2D)-tilability problem asks whether one 
can tile the plane using a collection of domino tiles (with marked boundaries, under the 
matching boundaries constraints). Motivated by some questions from Markov Random 
Fields, we investigate same problem under constraints on the (asymptotic) frequencies of 
tiles of each type. There are some natural conditions coming from matching the boundary 
frequencies, but, as it turned out, they are not sufficient. We prove that the realizable 
frequencies form a convex proper subset of the polyhedron of feasible frequencies. In a 
sequel (finalized now with Abram Magner and Spankowski) we ask for more general 
question: what is the average asymptotic genus of a 2D surface with a free Z2 action 
admitting a tiling with given frequencies of tiles. 
 
(viii) We conclude with discussing some more engineering applications of topological 
ideas.  These were done by Baryshnikov and collaborators. 
 
In the three papers [11, 13, 46] the authors analyze the topology of the configuration 
space from the viewpoint of complexity of any feedback control stabilizing the trajectory 
under the (stochastic or not) perturbations on an attractor. The topology of the 
configuration space is critical for this structure of the feedback control loop. In the first 
paper, we look at the configuration space of multi-legged robotic device that turned out to 
be related to moment-angle complexes and Stanley-Reisner rings.   
 
 It is well-known that randomly switching between multiplications by several 
operators can lead to divergent dynamics, even if each operator in the family is 
asymptotically contracting. Some algebraic conditions (such as solvability of the Lie 
algebra generated by the operators) prevent such anomalies. Solvability is not an open 
property, motivating the study [15] , that proves that slightly relaxing the solvability 
condition keeps the switched systems stable. 
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Training of Graduate and Postdoctoral Fellows    
 

Omer Bobrowski, a student of Adler, was partly trained on this grant.  After a 
postdoc at Duke, has taken a tenure-track position at the Technion. 

Weinberger’s student, Katharine Turner, got her Ph.D. and is now a postdoc at 
EFPL (Lausanne). 

Eliran Subag did his masters at the Technion, and moved to Weizmann for Ph.D. 
studies, and will be receiving his PhD in 2017.  

Gregory Naitzat moved to University of Chicago (Statistics) from the Technion. 
Yogeshwaran Dhandapani, who was a postdoc at Technion moved to the Indian 
Statistical Institute in Bangalore. 
 Sunder Ram Krishnan is continuing with his PhD and should finish in 2017. 

A recent Stanford PhD, Michael Lesnick, visited the Technion  for 3 months, 
before taking up a postdoctoral position at Princeton (to work with MacPherson).  He is 
now at the Princeton Neuroscience Institute. 
 Han Wang, a PhD student at UIUC, defended PhD and is now a postdoc at NCSU. 
 Harish Chintakunta,a postdoc of Baryshnikov’s is now at Florida Polytechnic. 
 Yuriy Mileyko, another of Baryshnikov’s postdocs moved to University of 
Hawaii. 

 
 
Selected talks and conference organization. 
 
 In January 2012, AMS Short Course on Random Fields and Random 
Geometry, was organized by Adler and Taylor at the AMS Annual Meeting, 
Boston. 
 Adler coordinated a tutorial on An Introduction to Statistics and Probability for 
Topologists at the IMA in October 2013, as well as being one of the organizers of a 
workshop on Topological Data Anaysis which followed the tutorial session.  In February 
2014, he coorganized the SAMSI workshop on LDHD: Topological Data Analysis. 
 In April, 2015, Adler gave the Annual de Rahm Lecture, at EPFL, Lausanne, 
Switzerland. (Phase Transitions and Random Topology.) 
 Adler also was a member of the Scientific Committee of the June 2015 meeting 
DyToComp (Dynamics, Topology and Computations), in Bedlewo, Poland.  In August 
2015, at the Stochastic Geometry Workshop, in Poitiers, France, he spoke on Topological 
Phase Transitions and also gave a course on applied topology. In September 2015, he 
spoke at the Heilbronn Annual Conference, Bristol, UK.  
 Adler and Taylor coorganized the October 2013, IMA Tutorial: An Introduction 
to Statistics and Probability for Topologists, and the October 2013, IMA Workshop on 
Topological Data Analysis. Co-Organiser.  Weinberger spoke at this meeting. 
 Adler co-organized February 2014: SAMSI workshop on Low Dimensional 
Structure in High Dimensional Systems: Workshop on Topological Data Analysis. 
Adler was a member of the scientific committee of  Extreme Value Analysis, EVA15, 
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Ann Arbor, Michigan.  Adler spoke in November 2014 at the Workshop on Discrete, 
Computational and Algebraic Topology, Copenhagen. (Pondering Persistence and 
Extolling Euler.)   Finally, in Summer/Fall 2016, A d l e r  w a s  a  m e m b e r  o f  
t h e  s c i e n t i f i c  c o m m i t t e e  o f  t h e  Thematic Semester on Probabilistic 
Methods in Geometry, Topology, and Spectral Theory. Centre de Recherches 
Math´ematiques, Montreal.  
 Baryshnikov and Weinberger gave plenary talks at ATMCS 6 (British Columbia) 
in May 2014. 
 Baryshnikov organized a special semester on applied algebraic topology at 
ICERM in Fall 2016. 
 Baryshnikov presented some of the results on random networks at NIST-Bell 
Labs workshop on Geometry of Networks, at NIST, the MCA special session on Applied 
Algebraic Topology, and a plenary talk at the SIAM conference on Applied Algebraic 
Geometry 
 Baryshnikov, Taylor and Weinberger all spoke at Stochastic Processes and 
Random Fields: Geometry and Fine properties, at Technion, June 2015 
 Taylor spoke at Statistical Inference for Large Scale Data, Simon Fraser, April 
2015  
 Taylor spoke at a special Topological Data Analysis workshop at NIPS in 
December 2012.  He was an invited speaker at the European Meeting of Statisticians and 
participated at the IMA workshop in October 2013. 
 Taylor and his collaborators gave several talks at the Joint Statistical Meetings in 
Boston in August 2014. 
 Taylor also gave the Berkeley-Stanford Colloquium, Berkeley, April 2015 and at 
JSM 2015 he organized an ISM invited session on Post-Selection Inference" at JSM2015. 
One of speakers was student Joshua Loftus, speaking on their joint work.  He (Talyor) 
also gave invited talk in the session on “Modern Inferential Methods for Big Data 
Analysis". 
 Weinberger gave a plenary talk at the Applied Algebraic Topology meeting in 
Bedlewo.  He gave the “Frontiers of Mathematics” lecture series at Texas A&M; one of 
the lectures featuring ideas related to property testing and its connections to both pure and 
applied problems.  He lectured three times at IMA during 2013-14, and visited ICERM 
four times in Fall 2016. 
 Weinberger organized a conference “Geometric Methods in Data Analysis” in 
May 2015 at the Stevanovich Center for Financial Mathematics (Chicago).  Adler and 
Baryshnikov were invited speakers.  At June, 2015, DyToComp (Dynamics, Topology 
and Computations), Bedlewo, Poland. Adler was a member of the Scientific Committee.  
Weinberger was an invited speaker. 
 Weinberger spoke at the joint IAS-Penn-Rutgers seminar on applied topology and 
gave a colloquium at Yale (on quantitative topology, which is a theme that overlaps this 
project).  He also gave a lecture in the Simons Science Series at the Simons foundation in 
New York.  Both of these will took place in November 2014.  In February, he gave the 
applied math colloquium at Stanford. 
 Weinberger organized a conference “Geometric Methods in Data Analysis” in 
May 2015 at the Stevanovich Center for Financial Mathematics (Chicago). Baryshnikov 
and Bobrowski both were among the invited speakers. 
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 Finally, we are very happy to report on Adler’s four pieces for the IMS, 
introducing the ideas of applied topology to a very broad audience of statisticians. 
  
Honors and awards. 
 
 Adler was invited to give a plenary Special Invited Lecture at the European 
Meeting of Statisticians in Budapest, July 2013 and was awarded a prestigious European 
Research Council Advanced grant. He was awarded the 2014 Henry Taub Prize for 
Academic Excellence at Technion, and gave the 2015 de Rham lecture of the Swiss 
Doctoral Programme, and the 2015 Heilbronn lecture. Finally, he was invited to give a 
Plenary lecture at the 2016 British Mathematical Colloquium. 
 
 Jonathan Taylor gave an invited lecture at the Bernoulli World Congress 2016, 
Toronto, Canada. 2016 and the Scandinavian Journal of Statistics invited talk: Selective 
inference in regression.  At NORDSTAT 2016, Copenhagen, Denmark. 2016. 
 
 Shmuel Weinberger was inducted in 2012 into the inaugural class of Fellows of 
the American Mathematical Society. In 2013 he became a Fellow of the American 
Association for the Advancement of Science.  In 2015, Weinberger was appointed the 
Andrew MacLeish Distinguished Professor of Mathematics at the University of Chicago. 
He gave the Frontiers in Mathematics lecture series at Texas A&M in 2013, the MINT 
Distinguished lectures at Tel Aviv University in November 2015, and was invited to give 
the 2017 Minerva lectures at Princeton University, an invited lecture at the 2017 
Mathematical Congress of the Americas and a plenary lecture at the tri-annual meeting of 
FoCM in Madrid. 
 
 The graduate student, Turner received the 2013 Stevanovich Center for Financial 
Math Fellowship for her work on the Persistent Homology transform and its application 
to evolutionary biology data, 
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