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Final progress report for:
“Optimal Mass Transport for Statistical Estimation, 

Image Analysis, Information Geometry, and Control” 
Grant/Contract Number: AFOSR/FA9550-12-1-0319

PI: Tryphon T. Georgiou co-PI: Allen R. Tannenbaum
University of Minnesota Stony Brook University

Abstract
We developed several new directions in the theory and applications of Optimal Mass Transport
(OMT). OMT has its origins in civil engineering (Monge 1781) and economics (Kantorovich
1942), but in recent years has increasingly impacted a large number of other fields (probability
theory, partial differential equations, physics, meteorology). We have addressed computational
aspects of the problem and the need for further expanding the arsenal of computational tools. We
considered a wide range of generalizations and insights for the purpose of tackling problems of
AFOSR interest. These include matrix-valued statistics and fusion of information, optical flow,
controlled active vision, tracking and dynamic textures.

Duration:

06/15/2012 — 09/15/2016

Status/Progress

We have accomplished the following in our program and proposed research:

(i) Computational Tools for Optimal Mass Transport (OMT): We developed a number of tools
allowing us to solve several problems, including the construction of geodesics, computation
of metric distances, and transportation means. Such constructions are motivated by a variety
of engineering applications. Further, we have exploited the beautiful connection between the
Boltzmann entropy and the heat equation. The latter arises as the steepest descent when max-
imizing the Boltzmann entropy “potential” in the Riemannian metric inherited on the space
of probability densities via OMT. The rate of ascent, since entropy increases, is given by
the Fisher information metric. The same paradigm has been used to recover/generate other
gradient flows (PDEs) and thereby link via suitable information potentials to corresponding
metrics for distributions.

(ii) Power spectra: Our work on high resolution signal analysis has led to a number of novel
notions of distance between power spectra with applications to prediction theory. We have
investigated the topic of matrix-valued power spectra as it relates to several DoD interests.
In this regard, prediction theory is juxtaposed with developments in quantum information
theory, creating a synergy of methodologies for signal analysis.
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(iii) Tracking and Mesh Generation: We have continued our work in visual tracking and con-
trolled active vision. Mass transport is being used as a comparison metric on shapes as part
of a feedback loop for tracking in conjunction with statistical filtering. Further, for vari-
ous problems in computational fluid dynamics, biomechanics, and CAD, we have developed
novel techniques based on OMT that may be employed for the automatic generation of hex-
ahedral meshes for three dimensional volumes.

(iv) Optimal transport on networks: We have made significant advances on formulating and
solving optimal transport problems on discrete spaces (networks) while ensuring robustness
of the transportation plan. This work makes contact with a probabilistic formalism of bridg-
ing two probability distributions along path of a random walker that displays the two given
marginals. The development builds on the theory of the so-called Schrödinger bridges and
opens up new directions for investigating geometries of mass and probability distributions.
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41. On Cooling of Stochastic Oscillators, (with Y. Chen and M. Pavon), SIAM conference, Paris,
2015

42. Optimal control of the state statistics for a linear stochastic system, (with Y. Chen and M.
Pavon), IEEE Decision and Control (CDC), 2015 IEEE 54th Annual Conference on, DOI:
10.1109/CDC.2015.7403245.

43. Steering state statistics with output feedback, (with Y. Chen and M. Pavon), Decision and
Control (CDC), 2015 IEEE 54th Annual Conference on, DOI: 10.1109/CDC.2015.7403244

44. On the definiteness of graph Laplacians with negative weights: Geometrical and passivity-
based approaches, (with Y. Chen, S.Z. Khong), ACC 2016.

45. Optimal steering of Ensembles, (with Y. Chen and M. Pavon), Proceedings of the Intern.
Symposium on the Mathematical Theory of Networks and Systems, Minneapolis, 2016,
ISBN: 978-1-5323-1358-5

DISTRIBUTION A: Distribution approved for public release.



46. Noncommutative Sinkhorn theorem and generalizations, (with Y. Chen and M. Pavon), Pro-
ceedings of the Intern. Symposium on the Mathematical Theory of Networks and Systems,
Minneapolis, 2016, ISBN: 978-1-5323-1358-5

47. Stochastic control, entropic interpolation and gradient flows on Wasserstein product spaces,
(with Y. Chen and M. Pavon), Proceedings of the Intern. Symposium on the Mathematical
Theory of Networks and Systems, Minneapolis, 2016, ISBN: 978-1-5323-1358-5

48. Laplacian Global Similarity of Networks, (with R.l Sandhu and A. Tannenbaum), Proceed-
ings of the Intern. Symposium on the Mathematical Theory of Networks and Systems, Min-
neapolis, 2016, ISBN: 978-1-5323-1358-5

49. Matricial Wasserstein and Unsupervised Tracking (with L. Ning, R. Sandhu, A. Tannen-
baum), Proceedings of the Intern. Symposium on the Mathematical Theory of Networks and
Systems, Minneapolis, 2016, ISBN: 978-1-5323-1358-5
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1 Introduction
Optimal mass transport is a major research area with applications for numerous disciplines in-
cluding econometrics, fluid dynamics, automatic control, transportation, statistical physics, shape
optimization, expert systems, and meteorology [52, 68]. The problem was first formulated by
the civil engineer Gaspar Monge in 1781, and concerned finding the optimal way, in the sense
of minimal transportation cost, of moving a pile of soil from one site to another. Much later the
problem was extensively analyzed by the Soviet mathematician Kantorovich [35] with a focus on
economic resource allocation, and so is now known as the Monge–Kantorovich (MK) or optimal
mass transport (OMT) problem.

A major problem that elucidates how OMT is employed is image registration [28]. Since this
appears in many practical systems, tracking, and vision applications, we will briefly explain how
OMT may be used to treat this problem. Registration is the process of establishing a common
geometric reference frame between two or more data sets obtained by possibly different imaging
modalities and at different times. Registration typically proceeds in several steps. First, a measure
of similarity between the data sets is established, so that one can quantify how close an image is
from another after transformations are applied. Such a measure may include the similarity between
pixel intensity values, as well as the proximity of predefined image features such as implanted
fiducials, anatomical landmarks, surface contours, and ridge lines. Then the transformation that
maximizes the similarity between the transformed images is found. Many times this transforma-
tion is given as the solution of an optimization problem where the transformations to be considered
are constrained to be members of a predetermined class. Lastly, once an optimal transformation
is obtained, it is used to fuse the image data sets. Registration has a huge literature devoted to
it with numerous approaches ranging from statistical to computational fluid dynamics to various
types of warping methodologies; see [66, 70]. One way of defining density is via “intensity,” and
in such a case the method explicated in this proposal can be considered an intensity-driven one.
The method we devised as part of our AFOSR funded research, is also in the class of warping
strategies based on continuum and fluid mechanics, in which one tries to use properties of elastic
materials to determine the deformation. Here one defines a (typically quadratic) cost functional
that penalizes the mismatch between the deforming template and target. A key fact that will be
employed when we describe a Riemannian metric on the space of probability densisites is that the
optimal warping map of OMT may be regarded as the velocity vector field which minimizes a
standard energy integral subject to the Euler continuity (mass preservation) equation [4]. Thus, the
theory of OMT allows a natural geometry on the space of distributions and suitable warping maps
and geodesics which establish correspondence between distributions and may be used suitably in
applications.

With this background, we have investigated the following problems in our just completed
AFOSR research program:

(i) Riemannian Metrics and Gradient Flows: There is a beautiful connection between the
Boltzmann entropy and the heat equation. The latter arises as the steepest descent when
maximizing the Boltzmann entropy “potential” in the Riemannian metric inherited by the
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OMT. The rate of ascent, since entropy increases, is given by the Fisher information met-
ric. The same paradigm can be used to recover/generate other gradient flows (PDEs) and
thereby link via suitable information potentials to corresponding metrics for distributions. In
particular, we recover the affine invariant heat equation and draw connections with metrics
on power spectra. This topic is primarily of theoretical interest with potentially important
insights into the qualities of various alternative metrizations for the space of distributions.

(ii) Optical Flow, Tracking, and Mesh Generation: Optical flow is a key problem in controlled
active vision and thus in visual tracking. The optical flow field is defined as the velocity
vector field of apparent motion of brightness patterns in a sequence of images. There have
been many methods proposed for its computation. We have shown that show that ideas from
optimal mass transport are ideal for the computation of the optical flow field for scenar-
ios involving dynamic textures, that is, for objects that have internal dynamics such as fire
and smoke. Further, for various problems in computational fluid dynamics, biomechanics,
and CAD, we have shown that techniques from OMT may be employed for the automatic
generation of hexahedral meshes for three dimensional volumes.

2 Summary of Work
We summarize some of the key results developed as part of our AFOSR research program. Optimal
mass transport (OMT) and the mathematics that were spawn from the Monge-Kantorovich problem
have impacted a number of fields including probability theory, statistics, physics, the atmospheric
sciences, economics, and functional analysis; e.g., see [2, 4, 52]. Our research focused around
around problems in information fusion and control, and image registration.

2.1 Geometry of optimal mass transport
Consider once again the OMT problem. In our program, we studied, in particular, costs of the form
ρ(u, x) = |u− x|p (p ≥ 1), giving rise to the Lp Kantorovich–Wasserstein metric

dp(µ0, µ1)p := inf
u ∈MP

∫
µ0(x)|u(x)− x|p dx. (1)

Thus, an optimal MP-map, when it exists, is one which minimizes the above integral. The integral
represents a cost on the distance the map u moves each bit of material, weighted by the respective
mass.

The case p = 2 has been extensively studied in recent years. A fundamental result by Yann
Brenier [10] is that there is a unique optimal u ∈ MP transporting µ0 to µ1, and that this u is
characterized as the gradient of a convex function w, i.e., u = ∇g where g can be thought as a
convex potential. The geometric significance of this can be traced to the fact that for a transference
plan to be optimal, there should be no “crossing” of paths that individual specs of mass take. This
insight [13, 40] forces the graph of the optimal plan to have a certain cyclically monotone property,
which then, by a theorem of Rockafeller [59], implies that it is the (sub-)differential of a convex
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function. The novelty of this result is that very much like the Riemann mapping theorem in the
plane, OMT singles out particular maps with preferred geometry.

It is interesting to speculate whether a similar geometric insight is relevant in optimal multivari-
able couplings amongst more than one distribution. Such problems will be motivated later on in
the context of fusion of information from various sources/sensors. Recent works [60, 24] motivate
analogous questions but rather from an economics perspective. Thus, a question of potential great
relevance is to study in a similar manner (research direction) the geometric properties of solutions
to the multi-transport problem minµ

∑n
i=1 dp(µ, µi) for a given set of distributions µi, and develop

computational tools for this problem.

2.1.1 Optimal mass transport as an optimal control problem

The Monge-Kantorovich problem for p = 2 may be formulated as follows [4]. Consider

inf

∫ ∫ 1

0

µ(t, x)‖∇g(t, x)‖2 dt dx (2)

over all time varying densities µ and functions g satisfying

∂µ

∂t
+ div(µ∇g) = 0, (3)

µ(0, ·) = µ0, µ(1, ·) = µ1.

The integrand in (2) may be thought to represent kinetic energy with u = ∇g representing velocity.
Thus, (2) is an “action” integral in the way understood in the physics literature. One may then show
that the infimum is attained for some µmin and gmin; accordingly we set umin = ∇gmin. Further,
define the flow

X(x, t) = x+ t(umin(x)− x).

Note that when t = 0, X is the identity map and when t = 1, it is the solution umin to the Monge–
Kantorovich problem. This analysis provides appropriate justification for using (2.1.1) to define
a continuous (nonlinear) warping map X between the densities µ0 and µ1. Besides the relevance
of such a warping for applications such as image registration [28], voice morphing [33], etc., the
analysis above provides a Riemannian structure on the space of distributions that we take up next.

2.1.2 Riemannian structure of density functions

Define the space of density functions as

C := {µ ≥ 0 :

∫
µ = 1}.

The tangent space at a given “point” µ may be identified with

TµC ∼= {v :

∫
v = 0}.

DISTRIBUTION A: Distribution approved for public release.



Thus, inspired by the Benamou-Brenier framework [4], given two “points” µ0, µ1 ∈ C, the geodesic
distance is:

inf
µ,g
{
∫ ∫ 1

0

µ(t, x)‖∇g(t, x)‖2 dt dx

subject to
∂µ

∂t
+ div(µ∇g) = 0,

µ(0, ·) = µ0, µ(1, ·) = µ1} (4)

In other words, we look at all curves in C connecting µ0 and µ1, and take the shortest one with
respect to the Wasserstein metric. This leads us to give C a Riemannian structure, which will
induce the Wasserstein distance. This idea is in fact due to Jordan et al. [34]. Namely, under
suitable assumptions on differentiability for µ ∈ C, and v ∈ TµC, one solves the Poisson equation

v = −div(µ∇g). (5)

This allows us to identify the tangent space with functions g up to additive constant. Thus, for any
given v we denote the solution of (5) by gv. Then given, v1, v2 ∈ TµC, we can define the inner
product

〈v1, v2〉µ :=

∫
µ∇gv1 · ∇gv2 . (6)

An integration by parts argument, shows that this inner product will exactly induce the Wasserstein
distance given by Equation (4). It is very suggestive to also note that

〈v, v〉µ =

∫
µ∇gv · ∇gv = −

∫
gvdiv(µ∇gv) (integration by parts)

=

∫
vgv. (7)

Several interesting questions were explored explored in detail. For instance, typically, action
integrals

∫
(T − V ) in physics have both a term corresponding to the kinetic energy T and one

corresponding to a potential V . In our AFOSR work, in several publications, we have studied the
implication of a potential term to the action integral (2) and how this affected the induced geometry.

2.2 Riemannian metrics & gradient flows
The availability of a natural metric structure on the space C of distributions suggested a range
of interesting theoretical questions that were investigated in our program. This line of research
has led to the the rather deep and surprising fact that gradient flows of the Boltzmann entropy in
the geometry of Wasserstein-Kantorovich metric give rise to the heat equation [34]. A similar
approach gives rise to the affine-invariant nonlinear heat equation (co-discovered by one of the
PI’s (AT)) which has been of great significance and popularity in image processing [61, 62], and
connections are drawn with our recent work on a differential-geometric structure based on optimal
prediction theory for spectral density functions [21]. Thus, the geometry of OMT links together the
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Boltzmann entropy, the heat equation and, as we will see in the next section, the Fisher information
metric. In a similar way, the use of an information potential other than the Boltzmann entropy can
give rise to alternative gradient flows and metrics that relate to affine-invariance [61], prediction
theory [21], flow in porous media and many other important paradigms in physics [68]. In our
AFOSR research, we have elucidated the relationship between mass transport, conservation laws,
entropy functionals, on one hand and probability and power distributions and related metrics on the
other. This was a significant undertaking that was a focus of the project and has been accomplished
and reported in several of the publications that resulted under the present grant (see e.g., [63, 46,
8]).

2.2.1 Boltzmann Entropy and the heat equation

We consider the Boltzmann entropy

S := −
∫
µ log µ

as an “information” potential and evaluate S along a 1-parameter family in C, µ(t, x) or simply µ,
reserving µt for its derivative. Integrals are with respect to the spatial variable x. The derivative of
S with respect to t is

dS

dt
= −

∫
(µt log µ+ µt) = −

∫
(µt log µ), (8)

since
∫
µ = 1. In view of the characterization of the Wasserstein norm from Equation (7), we see

that the steepest gradient direction (with respect to the Wasserstein metric) is given by

µt = div(µ∇ log µ) = ∆µ,

which is precisely the linear heat equation. Finally, if we substitute µt = ∆µ into Equation (8),
and integrate by parts, we get

dS

dt
=

∫
‖∇µ‖2

µ
=

∫
‖∇ log µ‖2µ. (9)

Hence the rate of entropy increase is given by the Fisher information metric!

2.2.2 Information metrics

In an analogous manner we have explored the implications of the OMT geometry on the space of
power spectra of stochastic processes. For simplicity we assume herein that power spectra have
the same total energy and thence are normalized to have integral 1. The principal reason why the
OMT geometry is natural in the spectral domain is that the Wasserstein metric is weak∗-continuous
(generating the natural topology, like the Lévy-Prohorov metric1) and computationally tractable
[23].

1Note that in probability “weak” often refers to “weak∗”. The latter terminology is the correct one from a functional
analysis viewpoint.
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We now let µ represent the power spectral density of a discrete-time random process, though
extension to being a non-absolutely-continuous spectral measure is also possible. Thus, µ is taken
to be non-negative on the unit circle – herein identified with [0, 1), with µ(0) = µ(1). The integral∫
µwhich represents the variance of the underlying random process is normalized to 1. It is natural

to take as “information” potential the differential entropy

Sd := −
∫

log µ

as this relates to the variance of the optimal one-step-ahead prediction error which is simply e
∫

log µ.
We evaluate Sd along a 1-parameter family and take the derivative

dSd
dt

= −
∫
µt
µ
. (10)

The steepest gradient direction with respect to the Wasserstein metric is now given by

µt = −div(µ∇ 1

µ
) = div(

∇µ
µ

) =
∆µ

µ
− ‖∇µ‖

2

µ2
. (11)

This is yet another nonlinear heat equation. We specialize to one (spatial) dimension (∇µ =: µx
is now simply the partial derivative with respect to x) and we write Equation (11) explicitly using
partials with respect to this one dimension

µt =
µµxx − (µx)

2

µ2
.

Upon substitution into (10), and integration by parts we obtain that

dSd
dt

=

∫
(µx)

2

µ3
. (12)

2.2.3 Affine-invariant heat equation

It is natural to consider the general class of potentials

Sg = −
∫
f(µ),

where f is a suitable differentiable increasing function. Then the exact computation given earlier
shows that the corresponding gradient flow with respect to the Wasserstein metric is

µt = div(µ∇f ′(µ)). (13)

Moreover,
dSg
dt

=

∫
µ‖f ′(µ)‖2.
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As an application, if we take f(x) = 1
n−1

xn, n ≥ 0, then (13) becomes µt = ∆µn, which in
one spatial variable reduces to

µt = (µn)xx.

Interestingly, this can now be turned into an equation of the form

ut = (uxx)
n (14)

as follows. Simply apply −∆−1 (i.e., the negative inverse of the Laplacian) to both sides, and set
u = −∆µ. For n = 1/3, we get the 1-dimensional affine invariant heat equation [61, 3] of great
popularity in image processing. While this equation is known not to be derivable via any L2-based
gradient flow [50, 51], we have just shown that it can also be derived as such via the Wasserstein
geometric structure. The Euclidean invariant geometric heat equation may be derived via an L2

gradient descent flow [26].
Our main interest however is in natural metrics between distributions. To this end, we have

explored several new metrics that may be derived using the framework introduced here. Indeed,
following [4] again, we can devise geodesic distances analogous to action integrals (for “pressure-
less fluid flow”). Such integrals may be taken in the form:

inf

∫ ∫ 1

0

µ(t, x)h(v(t, x)) dt dx (15)

over all time-varying densities µ and vector fields v satisfying

∂µ

∂t
+ div(µv) = 0,

µ(0, ·) = µ0, µ(1, ·) = µ1.

Here h is a strictly convex even function. (In [4], h(v) = ‖v‖2/2.) One can show that this leads to
the flow

µt = div(µ∇h∗(∇f ′(µ))), (16)

where h∗ is the Legendre transform of h. We have considered and detailed this framework and its
connections with fundamental concepts of information and prediction theory in [63].

2.2.4 Unbalanced densities

General distributions (histograms, power spectra, spatio-temporal energy densities, images) may
not necessarily be normalized to have the same integral. Thus, it is very important to devise
appropriate metrics and theory. Our aim is to provide constructions for “interpolating” data in the
form of distributions. Thus, we seek to view such in a natural metric space. The first candidate
is the space of L2-integrable functions. However, as we will note next, geodesics are simply
linear intervals and fail to have a number of desirable properties [23, 33]. In particular, the “linear
average” of two unimodal distributions is typically bimodal. Thus, important features are typically
“written over”. It is instructive for us to consider this first.
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One can show that

dL2(µ0, µ1)2 = inf
µ,v

∫ ∫ 1

0

|∂tµ(t, x)|2 dt dx (17)

over all time varying densities µ and vector fields v satisfying

∂µ

∂t
+ div(µv) = 0, (18)

µ(0, ·) = µ0, µ(1, ·) = µ1.

The optimality condition for the path is then given by

∂ttµ(t, x) = 0,

which gives as optimal path the “interval” (t ∈ [0, 1])

µ(t, x) = [µ1(x)− µ0(x)]t+ µ0(x).

Our claim about bi-modality of a mix of two unimodal distributions is evident. On the other hand,
OMT geodesics represent nonlinear mixing and have a considerably different character [33].

Yet, the L2 problem may be used in conjunction with OMT in case of unbalanced mass distri-
butions. Indeed, given the two unbalanced densities µ0 and µ1 it is natural to seek a distribution µ̃1

the closest density to µ1 in the L2 sense, which minimizes the Wasserstein distance dwass(µ0, µ̃1)2.
The L2 perturbation can be interpreted as “noise.” One can then show that this problem amounts
to minimizing

inf
µ,v,µ̃1

∫ ∫ 1

0

µ(t, x)‖v‖2 dt dx+ α/2

∫
|µ1(x)− µ̃1(x)|2 dx (19)

over all time varying densities µ and vector fields v satisfying

∂µ

∂t
+ div(µv) = 0, (20)

µ(0, ·) = µ0, µ(1, ·) = µ̃1 .

This idea has been taken further in [23, 33] where the two end points µ0, µ1 are allowed to be
perturbed slightly into µ̃0, µ̃1 while the perturbation equalizes their integrals and is accounted for
in the metric. This leads to a modified Monge-Kantorovich problem which is best expressed in
terms of its dual. Recall that the original OMT-problem of transferring (balanced) µ0 into µ1 has
the following dual (see e.g., [68])

max
φ(x)+ψ(y)≤ρ(x,y)

∫
φ(x)µ0(x)dx+

∫
ψ(y)µ1(y)dy, (21)

which for the case ρ(x, y) = |x− y| can be shown to be

max
‖φ‖Lip≤1

∫
φ(µ0 − µ1)
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with ‖φ‖Lip = sup |g(x)−g(y)|
|x−y| the Lipschitz norm (see [68]). Replacing µ0, µ1 by µ̃0, µ̃1 in the OMT

problem while penalizing the magnitude of the errors ‖µi− µ̃i‖ leads to the following metric [23]:

inf
µ̃0(Ω)=µ̃1(Ω)

d1(dµ̃0, dµ̃1) + κ

2∑
i=1

dTV(dµi, dµ̃i). (22)

This metric in fact “interpolates” the total variation (which is not weak∗ continuous) and the
Wasserstein distance. The above expression has an interesting physical interpretation, where µi’s
are noisy version of the µ̃i’s and considerable practical significance, as it allows comparing distri-
butions of unequal mass in a natural way. Further, this is weak∗ continuous. The dual formulation
is particularly simple:

dunbalanced(µ0, µ1) := max
‖φ‖Lip ≤ 1
‖φ‖∞ ≤ c

∫
φ(µ0 − µ1). (23)

The constant c depends on how much penalty κ is placed on ‖µi − µ̃i‖2. Geodesics of this metric
retain several of the features at the end points [23, 33] but, it is also substantially more difficult to
compute (distances, geodesics, etc.). Parallel work on the geometry for unbalanced mass distri-
butions using substantially different tools and direction has been pursued in [5, 14]. Besides our
interest in developing natural metrics for unbalanced mass distributions, our work exemplifies the
focus in this respect: develop computational tools for (weak∗) metrics between unbalanced mass
distributions and, in particular, for (23). See also [47] for our recent development of a general
framework and specific results under the grant for transport of matrix-valued distributions.

2.2.5 Tracking

One of the benefits of a geometric framework is the availability of geodesics and geodesic paths for
linking together time-varying spectra. This is in complete analogy with the usage of approxima-
tion techniques in tracking dynamic changes in traditional system identification. Herein, spectral
geodesics represent a tool for tracking changes in the spectral domain. There are several possible
natural geometries. Here we continue on the one which we discussed in the previous section.

It can be shown (see [31]) that the geodesic distance between two matrix-valued power spectral
density functions µ0, µ1 is √

1

2π

∫
‖ log µ

−1/2
0 µ1µ

−1/2
0 ‖2

Fr, (24)

with ‖ · ‖Fr denoting the Frobenius norm. Thus, (24) is a matricial generalization of the commonly
used logarithmic deviation, and shows that the latter is in fact a meaningful geometric quantity.
Further, the geodesic path between the two is

µt = µ
1/2
0 (µ

−1/2
0 µ1µ

−1/2
0 )tµ

1/2
0 , (25)

where t ∈ [0, 1]. Likewise, using (25) we can construct geodesics between matrix-valued power
spectra. Spectral geodesics represent an effective non-parametric model for nonstationarity [33].
Recent results along this line for matrix-valued geometric transport are reported in [46, 15].
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2.2.6 Matricial Fisher information

Metrics between matrix-valued distributions which generalize the Fisher information have also
been developed for the purposes of assessing information in the setting of quantum mechanics.
Briefly, the scalar Fisher information metric is of the form

∫
δ2

µ
. The “quantum” analog, where the

perturbation ∆ is a matrix as is the distribution M , the Fisher information metric takes the form

trace(∆ · DM(∆))

where DM(∆) is a “super-operator” representing division of ∆ by M . Several options for this
“non-commutative” division exist. For instance, Y = DM(∆) can be selected to satisfy 1

2
(YM +

MY ) = ∆, but also Y = M− 1
2 ∆M− 1

2 , or
∫∞

0
(I + σM)−1∆(I + σM)−1dσ (see e.g., [56, 38],

and [16, Appendix] and the references therein). There are strong connections between these met-
rics, which constitute a family “non-commutative” Fisher infromation metrics, and the “predictive
geometry” we discuss in the previous section. Our relevant work that focuses on multivariable
covariance statistics, under AFOSR support, is [17, 18, 19, 20] and our more recent development
is detailed in [31, 48, 32, 49, 15].

2.3 Unbalanced OMT optical flow for dynamic textures
Optical flow is a computational procedure to compute the motion between a set of images, taken
within a short time difference. The main idea is that the gray values of each image do not change
between two images. This leads to the optical flow constraint

It + ~u · ∇I = 0. (26)

where I is the image and ~u = [u, v] is the flow field. Given two images taken in a short time
interval, it is possible to solve for the optical flow field ~u by solving the following optimization
problem

min
~u
‖It + ~u · ∇I‖2 + αR(~u) (27)

where R(~u) is a regularization operator, typically chosen to be the gradient of ~u and α is a regular-
ization parameter.

The underlying assumption this model is one of intensity constancy. Under this assumption
an objects brightness is constant from frame to frame. This assumption holds for rigid objects
with a Lambertian surface, but fails for fluid and gaseous materials. In computer vision, these are
modeled by so-called dynamic textures (see [11]). The dynamic textures typical of smoke and fire
possess intrinsic dynamics and so cannot be reliably captured by the standard optical flow method.
Also, the fire/smoke region tends to flow much faster than the area around it which again may
cause the model to produce erroneous results.

Our goal in this research program has been to obtain better optical flow field models for fire and
smoke modeled as dynamic textures. One way to do so is to base the optical flow on the physical
attributes of these processes. One simple attribute is that fire and smoke tends to approximately
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conserve intensity taken as a generalized mass and move the mass in an optimal way. Thus, an
appropriate mathematical optical constraint is not intensity preserving but rather mass preserving.
This model can be written as

It + div ~uI = 0. (28)

Our model for optimal flow is the one that minimizes the total energy defined as follows:

inf
~u,µ1,µ̃

∫
Ω

∫ 1

0

µ(x, t) |~u|2 dx dt+α/2
∫

(µ̃1(x)−µ1(x))2dx+β/2

∫
Ω

∫ 1

0

(µt+div ~uµ)2 dx dt. (29)

subject to
µ(x, 0) = µ0(x), µ(x, 1) = µ̃1(x).

Our results have been presented in several publications, see e.g., [43].

2.4 Mass Preserving Maps of Minimal Distortion
Both conformal (angle preserving) and mass preserving diffeomorphisms are of great interest in
surface deformations, and therefore in image registration and template-based tracking algorithms;
see [1, 30]. It is obviously very important to preserve as much geometric structure (both local and
global) in the deformation map. We have considered ways of finding area preserving maps which
distort shape minimally in the following sense.

LetM andN be two compact surfaces of genus 0 equipped with Riemannian metrics h and g,
respectively, and let φ :M→N be an area preserving map (i.e., if Ωg and Ωh are the area forms,
then φ∗ (Ωg) = Ωh). Once you have φ there are many other area preserving maps fromM to N
(just compose φ with any other area preserving ψ : N → N ). We are interested in finding the one
which has minimal distortion.

One possible answer is to try to find a map ψ ◦ φ which minimizes the Dirichlet integral

D[φ] =
1

2

∫
M
‖Dφ‖2 Ωh. (30)

We have already written down possible steepest descent flows which would deform an area pre-
serving map φ :M→ N within the class of area preserving maps to a critical point (most likely
a local minimum) of D. In the classical Dirichlet problem, one derives a conformal map as the
minimizer of such an integral. In the present case, we are minimizing the Dirichlet integral over a
more restrictive class of maps to get area preservation with the least angular distortion.

We have considered gradient descent flows for minimizing (30) including existence and unique-
ness. Indeed, even though short time existence does not follow from the standard theory on
parabolic systems, Hamilton’s approach using the Nash-Moser implicit function theorem is ap-
plicable, and leads to the soughtafter result.
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