
CERTIFIED SATISFIABILITY MODULO THEORIES (SMT)
SOLVING FOR SYSTEM VERIFICATION

NEW YORK UNIVERSITY

JANUARY 2017

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2017-007

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2017-007 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

/ S / / S /
STEVEN L. DRAGER JOHN D. MATYJAS
Work Unit Manager Technical Advisor, Computing &

 Communications Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JAN 2017
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

AUG 2013 – JUL 2016
4. TITLE AND SUBTITLE

CERTIFIED SATISFIABILITY MODULO THEORIES (SMT)
SOLVING FOR SYSTEM VERIFICATION

5a. CONTRACT NUMBER
FA8750-13-2-0241

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62303E

6. AUTHOR(S)
Clark Barrett, Burak Ekici Liana Hadarean, Guy Katz, Chantel Keller,
Alain Mebsout, Andrew Reynolds, Cesare Tinelli

5d. PROJECT NUMBER
HACM

5e. TASK NUMBER
SC

5f. WORK UNIT NUMBER
SV

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
New York University
70 Washington Square S
New York, NY 10012-1019

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency AFRL/RITA
675 North Randolph Street 525 Brooks Rd.
Arlington, VA 22203-2114 Rome, NY 13441

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2017-007
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research deemed
exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and
AFRL/CA policy clarification memorandum dated 16 Jan 09.
13. SUPPLEMENTARY NOTES

14. ABSTRACT
Modern society relies increasingly on software. Many software systems, however, are unacceptably unreliable as they often contain conceptual or
implementation errors and are therefore vulnerable to security attacks. It is now widely recognized that dramatically improving the reliability of
computer software is going to be one of the most important scientific and technological challenges of this century. In model-based development,
software systems, in particular embedded ones, are developed by first constructing a mathematical model of the system; then verifying desired
functional properties against the model; and finally implementing the model. Increasingly, the property-checking phase can be handled formally and
automatically using model-checking and verification techniques that rely on automated reasoning engines. Despite the success of these techniques,
the complexity of the verification tools involved makes their trustworthiness an important issue. Incorrect results from the automated reasoning
engines may compromise the whole verification process. In addition, even if the trustworthiness of a particular reasoning engine can be assured, a
large verification task may require multiple reasoners to work together. Thus, the compositionality of trustworthiness is also a critical capability: tools
must be able to trust and use the results of other tools. One approach for ensuring trustworthy results from a complex reasoning engine, and for
supporting compositionality, is to have the engine emit an independently checkable proof. Compositionality can then be facilitated by using a proof
format that can easily be processed by other verification tools. This report describes the results of efforts to do exactly this. CVC4, a modern, open-
source solver for Satisfiability Modulo Theories (SMT), has been instrumented with the ability to generate independently checkable proofs for any
verification condition it is able to prove. Additionally, a translator has been implemented to take proofs produced by CVC4 into Coq, an interactive
theorem prover often used in large verification projects.
15. SUBJECT TERMS

Model-based development of software systems, model checking, Satisfiability Modulo Theories, CVC4

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
STEVEN L. DRAGER

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

72

i

Table of Contents
1 Summary.. 1

2 Introduction ... 2

3 Methods, Assumptions, and Procedures .. 3
3.1 DPLL(𝓣𝓣) -Based SMT Solvers .. 3
3.2 Generating Proofs in DPLL(𝓣𝓣) ... 6

3.2.1 Proof Generation for Propositional Unsatisfiability ... 7
3.2.2 Proof Generation for Unsatisfiability Modulo Theories .. 8

3.3 Lazy Proof Production ... 10
3.4 LFSC .. 12

4 Results and Discussion ... 15
4.1 Proof Systems for SMT Theories .. 15

4.1.1 Uninterpreted Functions .. 16
4.1.2 Arrays with Extensionality .. 17
4.1.3 Bit-vectors .. 18
4.1.4 Bit-vector proof generation in CVC4 ... 18
4.1.5 LFSC Bit-vector signature .. 19
4.1.6 Encoding bit-vector formulas .. 20
4.1.7 Bit-blasting ... 21
4.1.8 Resolution in SATbb ... 22

4.2 SMTCoq: communication between Coq and SMT solvers .. 24
4.2.1 The SMTCoq Tool .. 25
4.2.2 Extending SMTCoq to support CVC4 ... 29
4.2.3 Support for the Theory of Fixed-width Bit Vectors... 36
4.2.4 Support for the Theory of Functional Arrays with Extensionality ... 38
4.2.5 Proof Holes ... 41
4.2.6 The cvc4 Coq tactic .. 42

4.3 Evaluation .. 45
4.4 Related Work .. 49

5 Conclusion ... 51

References ... 52

A Appendix.. 56
A.1 Implementation of SMTCoq ... 56

A.1.1 Top-level architecture of SMTCoq .. 56
A.1.2 Small checkers .. 59
A.1.3 OCaml implementation of the plugin .. 62

List of Symbols, Abbreviations, and Acronyms... 64

ii

Table of Figures

Figure 1 State transition rules. In Learni, x is a (possibly empty) tuple of variables; c is a
tuple of fresh constants from C of the same sort as x. ... 5

Figure 2 An execution using only propositional rules .. 7

Figure 3 A refutaion tree (on the left) with a sub-proof for a learned clause (on the right) ... 8

Figure 4 An execution using theory rules .. 9

Figure 5 Using theory-specific proof in proving a lemma .. 10

Figure 6 LFSC declarations encoding propositional resolution. .. 13

Figure 7 DPLL(T) architecture, SMT proof structure, and proof checker. 15

Figure 8 A refutation of { x = y, z = f(y), f(x) ≠ z}. .. 16

Figure 9 Refutation of {i ≠ j, aj: = yi = x, a[i] ≠ x}. .. 17

Figure 10 Bit-vector proof structure. ... 20

Figure 11 Partial LFSC signature for the theory Tbv of bit-vectors ... 20

Figure 12 Partial list of the LFSC bit-blasting rules for Tbv. ... 21

Figure 13 SMTCoq's main checker and its uses. .. 25

Figure 14 Internals of the Coq checker. ... 27

Figure 15 Integration of CVC4 in SMTCoq. ... 29

Figure 16 CVC4 tactic in SMTCoq... 42

Figure 17 Eager vs. Lazy proof production runtimes, in seconds. .. 45

Figure 18 Proof sizes both cvcLz and cvcE. .. 46

iii

Table of Tables
Table 1 Main differences between the LFSC and SMTCoq certificate formats. 32

Table 2 Producing and checking proofs. All times are in seconds. Experiments were run
with a 600 second timeout. .. 46

Table 3 Overhead of proof generation and its impact on the number of problem solved. ... 47

Table 4 SMTCoq's experiments in QF_AUFLIA ... 48

Table 5 SMTCoq's experiments in logic QF_AUFBVLIA ... 49

Table 6 Support for solvers and theories in SMTCoq. ... 51

Approved for Public Release; Distribution Unlimited
1

1 Summary
Modern society relies increasingly on software. Many software systems, however, are
unacceptably unreliable. Software often contains conceptual or implementation errors and
is vulnerable to security attacks. It is now widely recognized that dramatically improving
the reliability of computer software is going to be one of the most important scientific and
technological challenges of this century.

In model-based development, software systems, in particular embedded ones, are
developed by first constructing a mathematical model of the system; then verifying desired
functional properties against the model; and finally implementing the model. Increasingly,
the property-checking phase can be handled formally and automatically using model-
checking and verification techniques that rely on automated reasoning engines.

Despite the success of these techniques, the complexity of the verification tools involved
makes their trustworthiness an important issue. Incorrect results from the automated
reasoning engines may compromise the whole verification process. In addition, even if the
trustworthiness of a particular reasoning engine can be assured, a large verification task
may require multiple reasoners to work together. Thus, the compositionality of
trustworthiness is also a critical capability: tools must be able to trust and use the results of
other tools.

One approach for ensuring trustworthy results from a complex reasoning engine, and for
supporting compositionality, is to have the engine emit an independently checkable proof.
Compositionality can then be facilitated by using a proof format that can easily be
processed by other verification tools.

This report describes the results of our efforts to do exactly this. We have instrumented
CVC4, a modern, open-source solver for Satisfiability Modulo Theories (SMT) with the
ability to generate independently checkable proofs for any verification condition it can
prove. We have also implemented a translator from proofs produced by CVC4 to Coq, an
interactive theorem prover often used in large verification projects.

Approved for Public Release; Distribution Unlimited
2

2 Introduction
Many different tools for system analysis and verification exploit the reasoning capabilities
of Satisfiability Modulo Theories (SMT) solvers. Typically, these tools dispatch satisfiability
queries to an SMT solver and then use the returned results to prove or disprove various
system properties. Thus, one’s ability to rely on the outcome of the analysis depends on the
level of confidence in the results returned by the underlying SMT solver. Unfortunately,
obtaining the high level of trust required for, e.g., safety-critical systems can be difficult, as
the solvers themselves are highly complex tools and may contain errors.

One reasonable approach to increasing one’s level of confidence in an SMT solver’s answers
is to have it produce solution certificates checkable by simpler, external tools. In the case of
a satisfiable (quantifier-free) query, a natural certificate is a satisfying assignment for the
input formula, which typically can be checked by straightforward means. In the
unsatisfiable case, the natural counterpart of a satisfying assignment is a proof certificate,
which details how to derive a contradiction from the input assertions using a reasonably
small set of trusted inference rules. Proof certificates can then be checked by a small
trusted proof-checker, thus removing the need to trust the SMT solver.

Proof certificates provide several additional benefits. For instance, they can be used for
interpolant generation [1] and certified compilation [2]. Notably, they can be used also to
improve the performance of skeptical proof assistants. The proof assistant discharges
subgoals to the SMT solver and then uses the proof certificates to internally reconstruct a
proof [3]–[5].

To illustrate this, we have integrated the CVC4 SMT solver with the Coq proof assistant. We
have built on a pre-existing, third-party tool called SMTCoq and extended it for our purpose
with the collaboration of one of the original SMTCoq developers (co-author Keller).
SMTCoq is a communication tool between the Coq proof assistant and external SAT and
SMT solvers. Based on a checker for generic first-order certificates implemented and
proved correct in Coq, SMTCoq offers facilities both to check external SAT and SMT
answers and to improve Coq ’s automation using such solvers, in a safe way. While it
originally supported only the SAT solver ZChaff and the SMT solver veriT for a combination
of the theories of uninterpreted function symbols and linear integer arithmetic, SMTCoq
was meant to be extendable to other solvers and theories with a reasonable amount of
effort. Here we present our extensions to support CVC4 together with the theories of bit
vectors and functional arrays.

The report is organized as follows. In Chapter 3, we describe the theory and overall
approach for instrumenting an SMT solver to produce proofs. Next, in Chapter 4, we
describe the results of the project which include (i) proof-producing solvers for three
specific theories: equality with uninterpreted functions (EUF), arrays, and bit-vectors; and
(ii) the SMTCoq tool that translates proofs produced by the SMT solver into theorems in the
Coq proof assistant. We also report on an empirical evaluation and discuss related work.
Chapter 5 concludes.

Approved for Public Release; Distribution Unlimited
3

3 Methods, Assumptions, and Procedures
Instrumenting SMT solvers to generate proofs is a complex task. One challenge is that
modern solvers reason about their input on multiple levels: typically an underlying SAT
engine performs Boolean reasoning, whereas multiple dedicated theory solvers (e.g. array,
arithmetic, and bit-vector solvers) perform theory-specific deductions. The various
components interact with each other in subtle ways—the theory solvers interact with the
SAT engine and also with each other—and all of these interactions need to be properly
captured in the produced proofs. Another challenge is to produce fine-grained proofs, i.e.,
proofs that are sufficiently detailed to be checked by simple means.

In this chapter, we describe our approach to instrumenting SMT solvers to produce proofs.
We have made three major contributions to the state of the art:

1. We have developed a general approach for fine-grained proof generation in DPLL(𝒯𝒯)-
style SMT solvers. This approach is not limited to one specific theory (e.g., fixed-width
bit-vectors); in fact, it even supports proof generation for combinations of theories. We
explain the approach in terms on an abstract description of DPLL(𝒯𝒯) and also discuss
ways to implement it in practice.

2. We demonstrate how our approach can be realized using lazy proof generation, which
incurs a lower overhead. During search, an SMT solver will often generate a multitude
of lemmas that are not actually needed to derive a contradiction from the input. Our
lazy approach postpones proof construction for such lemmas until after the
contradiction has been found, and then generates proofs just for those lemmas that
were actually used.

We start with a high-level description of the DPLL(𝒯𝒯) framework for SMT solvers in
Section 3.1. Next, in Section 3.2, we explain how proofs of unsatisfiability can be generated
in a DPLL(𝒯𝒯) setting. In Section 3.3 we discuss our approach to lazy proof production.

3.1 DPLL(𝓣𝓣) -Based SMT Solvers
In its most general formulation, SMT is the problem of determining the satisfiability of a set
of formulas in some background theory 𝑇𝑇. This work focuses on quantifier-free formulas
and on SMT solvers based on the DPLL(𝒯𝒯) architecture [6], which modularly combines a
generic CDCL SAT solver (the SAT engine) with one or more reasoners (the theory solvers).
Each theory solver decides the satisfiability of constraints (i.e., conjunctions of ground
literals), in a specific background theory. Commonly supported theories include equality
over uninterpreted functions (𝑇𝑇UF), linear arithmetic over the integers (𝑇𝑇LIA) or the reals
(𝑇𝑇LRA), fixed-width bitvectors (𝑇𝑇BV), arrays (𝑇𝑇AX), and their combinations.

Abstract DPLL(𝒯𝒯) Framework. We follow a recent abstract formalization of DPLL(𝒯𝒯) -style
SMT solvers by Reynolds et al. [7], which in turn is an elaboration of the one first
introduced by Nieuwenhuis et al. [6]. We consider a background theory 𝑇𝑇 that is a
combination of 𝑚𝑚 theories 𝑇𝑇1, … ,𝑇𝑇𝑚𝑚 with respective many-sorted (i.e., typed) signatures
𝛴𝛴1, … ,𝛴𝛴𝑚𝑚. For convenience, and without loss of generality, we assume that the theories

Approved for Public Release; Distribution Unlimited
4

have no predicate symbols besides equality1 and that they all have the same set 𝐒𝐒 of sort
symbols. We also assume that the theories share no function symbols except for a set 𝒞𝒞 =
⋃ 𝒞𝒞𝑆𝑆𝑆𝑆∈𝐒𝐒 of constant symbols (functions of arity 0), where each 𝒞𝒞𝑆𝑆 is a distinguished infinite
set of free (i.e., uninterpreted) constants of sort 𝑆𝑆. DPLL(𝒯𝒯) solvers can be formalized
abstractly as state transition systems defined by a set of transition rules. The states of the
transition system are either the distinguished state 𝖿𝖿𝖿𝖿𝖿𝖿𝖿𝖿 or triples of the form ⟨𝑀𝑀,𝐹𝐹,𝐶𝐶⟩,
where

• 𝑀𝑀, the current context, is a sequence of literals and decision points •,

• 𝐹𝐹 is a set of ground clauses derived from the original input formula, and

• 𝐶𝐶 is either the empty set or a singleton set containing a ground clause, the current
conflict clause.

Each context 𝑀𝑀 can be factored uniquely into a concatenation of the form 𝑀𝑀0 • 𝑀𝑀1 • ⋯ • 𝑀𝑀𝑛𝑛,
where the 𝑀𝑀𝑖𝑖 ’s contain no decision points. For every 0 ≤ 𝑖𝑖 ≤ 𝑛𝑛 we call 𝑀𝑀𝑖𝑖 the 𝑖𝑖’th decision
level of 𝑀𝑀, and denote with 𝑀𝑀[𝑖𝑖] the subsequence 𝑀𝑀0 • ⋯• 𝑀𝑀𝑖𝑖 . Each atom of a clause in 𝐹𝐹 ∪
𝐶𝐶 is pure, in the sense that it has signature 𝛴𝛴𝑖𝑖 for some 𝑖𝑖 ∈ {1, … ,𝑚𝑚}. Note that two atoms in
the same clause can have different signatures, and when they do they share at most the
constants in 𝒞𝒞. Input formulas can always be converted to this form while preserving
satisfiability in 𝑇𝑇.

The initial state of the transition system is ⟨∅,𝐹𝐹0,∅⟩, where 𝐹𝐹0 is a given set of clauses to be
checked for satisfiability (i.e., the input formula). The expected final states are either 𝖿𝖿𝖿𝖿𝖿𝖿𝖿𝖿,
when 𝐹𝐹0 is unsatisfiable in 𝑇𝑇, or ⟨𝑀𝑀,𝐹𝐹,∅⟩ where 𝑀𝑀 is satisfiable in 𝑇𝑇, 𝐹𝐹 is equisatifiable with
𝐹𝐹0 in 𝑇𝑇, and 𝑀𝑀 propositionally entails 𝐹𝐹.

The possible behaviors of the system are defined by a set of non-deterministic transition
rules that specify a set of successor states for any given state. These rules are depicted in
Figure 1 in guarded assignment form [8].2 A rule applies to a state 𝑠𝑠 if all of its premises
hold for 𝑠𝑠.

In the rules, 𝖬𝖬, 𝖥𝖥, and 𝖢𝖢 denote, respectively, the context, clause set, and conflict component
of the current state. The conclusion describes how each component is changed, if at all. We
write 𝑙𝑙 to denote the complement of literal 𝑙𝑙 and 𝑙𝑙 ≺𝖬𝖬 𝑙𝑙′ to indicate that 𝑙𝑙 occurs before 𝑙𝑙′ in
𝖬𝖬. The function 𝖿𝖿𝗅𝗅𝗅𝗅 maps each literal of 𝖬𝖬 to the (unique) decision level in which it occurs.
The set Lit𝖥𝖥 (resp., Lit𝖬𝖬) consists of all literals in 𝖥𝖥 (resp., in 𝖬𝖬) and their complements. For
𝑖𝑖 = 1, … ,𝑚𝑚, the set Lit𝖬𝖬|𝑖𝑖 consists of the 𝛴𝛴𝑖𝑖-literals of Lit𝖬𝖬. Int𝖬𝖬 is the set of all interface
literals of 𝖬𝖬: the equalities and disequalities between shared constants, where the set of
shared constants is {𝑐𝑐 | constant 𝑐𝑐 occurs in Lit𝖬𝖬|𝑖𝑖 and Lit𝖬𝖬|𝑗𝑗, for some 1 ≤ 𝑖𝑖 < 𝑗𝑗 ≤ 𝑚𝑚}. The
index 𝑖𝑖 for the rules 𝖯𝖯𝖯𝖯𝖯𝖯𝖯𝖯𝑖𝑖 , 𝖢𝖢𝖯𝖯𝖢𝖢𝖿𝖿𝖿𝖿𝑖𝑖 , 𝖫𝖫𝗅𝗅𝖿𝖿𝖯𝖯𝖢𝖢𝑖𝑖 , and 𝖤𝖤𝖤𝖤𝖯𝖯𝖿𝖿𝑖𝑖 ranges from 1 to 𝑚𝑚. In those rules, ⊨𝑖𝑖

1 Other predicate symbols can be expressed as function symbols with return sort 𝖡𝖡𝖯𝖯𝖯𝖯𝖿𝖿, interpreted
as the Booleans in each theory.

Approved for Public Release; Distribution Unlimited
5

denotes validity in the theory 𝑇𝑇𝑖𝑖. Clauses are implicitly processed modulo associativity,
commutativity and idempotency of ∨.

Figure 1 State transition rules. In Learni, x is a (possibly empty) tuple of variables; c is a tuple
of fresh constants from 𝒞𝒞 of the same sort as x.

2 To simplify the presentation, we do not consider here rules that model the forgetting of learned
lemmas or restarts of the SMT solver.

Approved for Public Release; Distribution Unlimited
6

Modeling Solver Behavior. Rules 𝖼𝖼 , 𝖯𝖯𝖯𝖯𝖯𝖯𝖯𝖯 , 𝖤𝖤𝖤𝖤𝖯𝖯𝖿𝖿 , 𝖢𝖢𝖯𝖯𝖢𝖢𝖿𝖿𝖿𝖿 , 𝖥𝖥𝖿𝖿𝖿𝖿𝖿𝖿 , 𝖫𝖫𝗅𝗅𝖿𝖿𝖯𝖯𝖢𝖢 , and 𝖡𝖡𝖿𝖿𝖼𝖼𝖡𝖡𝖡𝖡 model the
behavior of the SAT engine, which treats atoms as Boolean variables. In particular, 𝖢𝖢𝖯𝖯𝖢𝖢𝖿𝖿𝖿𝖿
and 𝖤𝖤𝖤𝖤𝖯𝖯𝖿𝖿 model the conflict discovery and analysis mechanism used by CDCL SAT solvers
[9]. The remaining rules model the interaction between the SAT engine and the individual
theory solvers within the overall SMT solver. The rules maintain the invariant that every
conflict clause and learned clause is entailed in 𝑇𝑇 by the initial clause set.

Generally speaking, the system uses the SAT engine to construct the context 𝖬𝖬 as a truth
assignment for the clauses in 𝖥𝖥, as if those clauses were propositional. However, it
periodically asks the solver of each theory 𝑇𝑇𝑖𝑖 to check if the set of 𝛴𝛴𝑖𝑖-constraints in 𝖬𝖬 is
unsatisfiable in 𝑇𝑇𝑖𝑖 or entails some yet-undetermined literal from Lit𝖥𝖥 ∪ Int𝖬𝖬. In the first
case, the theory solver returns an explanation of the unsatisfiability as a conflict clause,
which is modeled by rule 𝖢𝖢𝖯𝖯𝖢𝖢𝖿𝖿𝖿𝖿𝑖𝑖 . The propagation of entailed theory literals and the
extension of the conflict analysis mechanism to them is modeled by rules 𝖯𝖯𝖯𝖯𝖯𝖯𝖯𝖯𝑖𝑖 and 𝖤𝖤𝖤𝖤𝖯𝖯𝖿𝖿𝑖𝑖 .
We assume (as in [6]) that each 𝑇𝑇𝑖𝑖-solver provides an 𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝑖𝑖 method with the property
that if 𝑙𝑙 is a literal propagated by the solver, then 𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝑖𝑖(𝑙𝑙) returns a subset
{𝑙𝑙1, 𝑙𝑙2, … , 𝑙𝑙𝑛𝑛} of 𝑀𝑀, such that ⊨𝑖𝑖 𝑙𝑙1 ∨ 𝑙𝑙2 ∨ ⋯∨ 𝑙𝑙𝑛𝑛 ∨ 𝑙𝑙. The inclusion of the interface literals Int𝖬𝖬
in rules 𝖣𝖣𝗅𝗅𝖼𝖼 and 𝖯𝖯𝖯𝖯𝖯𝖯𝖯𝖯𝑖𝑖 achieves the effect of the Nelson-Oppen combination method [10],
[11]. Rule 𝖫𝖫𝗅𝗅𝖿𝖿𝖯𝖯𝖢𝖢𝑖𝑖 models theory solvers following the splitting-on-demand paradigm [12].
When asked about the satisfiability of the set of 𝛴𝛴𝑖𝑖-literals in 𝖬𝖬, such solvers may return
instead a splitting lemma, a clause encoding a guess that needs to be made about those
literals before the solver can determine their satisfiability. The set 𝐿𝐿𝑖𝑖 in the rule is a finite
set consisting of additional literals, i.e., not present in the original formula in 𝖥𝖥, which may
be generated by splitting-on-demand theory solvers.

3.2 Generating Proofs in DPLL(𝓣𝓣)
One can prove that the transition rules defined in Section 3.1 are refutation sound: if an
execution starting with ⟨∅,𝐹𝐹0,∅⟩ ends with 𝖿𝖿𝖿𝖿𝖿𝖿𝖿𝖿, then 𝐹𝐹0 is unsatisfiable in 𝑇𝑇. We discuss
below how to generate unsatisfiability proofs from such executions.

Approved for Public Release; Distribution Unlimited
7

Figure 2 An execution using only propositional rules

Example 1. Figure 2 shows an example of an execution from an initial state to 𝘧𝘧𝘧𝘧𝘧𝘧𝘧𝘧, using only
propositional rules. In the figure, we abstract clause atoms by numbers to stress that they are
treated purely propositionally by these rules. The Rule column shows the rule used for each
transition, together with the clause the rule was applied to. We observe that 𝘍𝘍𝘧𝘧𝘧𝘧𝘧𝘧 could have
been applied right after the second application of 𝖢𝖢𝖯𝖯𝖢𝖢𝖿𝖿𝖿𝖿 ; however, we show instead a longer
execution that regresses (with 𝖤𝖤𝖤𝖤𝖯𝖯𝖿𝖿) the conflict clause 3 ∨ 2 to the empty clause ⊥. As we
discuss later, the applications of 𝖤𝖤𝖤𝖤𝖯𝖯𝖿𝖿 are needed for proof generation. Note that the second
occurrence of 3 ∨ 2 as a conflict could have been avoided by learning the conflict clause 2 as
soon as it was generated. Then, a shorter execution leading to 𝘧𝘧𝘧𝘧𝘧𝘧𝘧𝘧 would have been possible.

3.2.1 Proof Generation for Propositional Unsatisfiability

Given a failed execution from an input set 𝖥𝖥0 that uses only propositional clauses, as in
Example 1, one can construct a proof that 𝖥𝖥0 is (propositionally) unsatisfiable. Intuitively,
we can understand a failed execution as trying to construct a refutation tree: a tree of
clauses built from the leaves, which are either clauses in 𝖥𝖥0 or learned clauses, down to the
root ⊥, where each non-leaf node is a propositional resolvent of its children. Thus, a failed
execution can be translated into a Boolean resolution proof in a straightforward manner.

Observe, however, that a refutation tree provides only part of the full proof, since it only
shows the unsatisfiability of the initial clause set plus some set of learned clauses. Thus, to
complete the proof one also needs to prove that each learned clause is a consequence of the
initial clause set. This can be performed similarly to how conflict analysis is performed in
CDCL solvers [13]: every learned clause is the result of an application of the 𝖢𝖢𝖯𝖯𝖢𝖢𝖿𝖿𝖿𝖿 rule and

Approved for Public Release; Distribution Unlimited
8

possibly a series of 𝖤𝖤𝖤𝖤𝖯𝖯𝖿𝖿 rules. A sequence of resolution applications to the clauses to
which these rules were applied produces the learned clause.

Figure 3 A refutaion tree (on the left) with a sub-proof for a learned clause (on the right)

Figure 3 depicts a refutation tree for the execution in Figure 2. The tree shows the final
resolution proof once all the needed clauses have been learned. Its leaves are the input
clauses 3 ∨ 2, 3 ∨ 2 and 1 ∨ 2, and the learned clause 1. The tree itself is constructed simply
by revisiting the applications of rules 𝖢𝖢𝖯𝖯𝖢𝖢𝖿𝖿𝖿𝖿 and 𝖤𝖤𝖤𝖤𝖯𝖯𝖿𝖿 that led to the conflict clause ⊥, since
each application of 𝖤𝖤𝖤𝖤𝖯𝖯𝖿𝖿 produces a new conflict clause as the resolvent of the current
conflict clause and an initial or learned clause. A separate proof is constructed for the
learned clause 1, from the applications of 𝖢𝖢𝖯𝖯𝖢𝖢𝖿𝖿𝖿𝖿 and 𝖤𝖤𝖤𝖤𝖯𝖯𝖿𝖿 that generated it. In general, this
recursive proof-tree generation process always terminates because each learned clause is
derived from initial clauses and previously learned ones. It can be implemented in practice
by keeping track of the various applications of 𝖤𝖤𝖤𝖤𝖯𝖯𝖿𝖿 .

3.2.2 Proof Generation for Unsatisfiability Modulo Theories

Executions ending in 𝖿𝖿𝖿𝖿𝖿𝖿𝖿𝖿 that involve the use of the non-propositional transition rules can
also be seen as attempts to construct a refutation tree. This time, however, the leaves of the
tree can include, in addition to initial and propositionally learned clauses, also theory
lemmas—a name we give to clauses that come from the 𝖢𝖢𝖯𝖯𝖢𝖢𝖿𝖿𝖿𝖿𝑖𝑖 , 𝖫𝖫𝗅𝗅𝖿𝖿𝖯𝖯𝖢𝖢𝑖𝑖 , and 𝖤𝖤𝖤𝖤𝖯𝖯𝖿𝖿𝑖𝑖 rules.
Thus, the full proof tree requires combining propositional resolution proofs, produced by
the SAT engine, with theory-specific proofs for each theory lemma.

To make this possible, we require each 𝑇𝑇𝑖𝑖-solver to provide a method 𝚎𝚎𝚙𝚙𝚙𝚙𝚙𝚙𝚎𝚎𝚙𝚙𝚎𝚎𝚙𝚙𝚙𝚙𝚙𝚙𝚙𝚙𝚙𝚙𝑖𝑖
that takes as input a theory lemma and returns a proof of that lemma using theory-specific
proof rules.3 Then, a full proof tree can be constructed as before, by visiting the application
of rules that led to the final conflict clause ⊥. When visiting applications of 𝖤𝖤𝖤𝖤𝖯𝖯𝖿𝖿𝑖𝑖 , the
conflict clause 𝑙𝑙1 ∨ ⋯∨ 𝑙𝑙𝑛𝑛 ∨ 𝐷𝐷 is obtained by resolving 𝑙𝑙 ∨ 𝐷𝐷 with the theory lemma 𝐸𝐸 = 𝑙𝑙1 ∨
⋯ 𝑙𝑙𝑛𝑛 ∨ 𝑙𝑙. We then call 𝚎𝚎𝚙𝚙𝚙𝚙𝚙𝚙𝚎𝚎𝚙𝚙𝚎𝚎𝚙𝚙𝚙𝚙𝚙𝚙𝚙𝚙𝚙𝚙𝑖𝑖 on 𝐸𝐸 to obtain the missing part of the proof. Rule
𝖢𝖢𝖯𝖯𝖢𝖢𝖿𝖿𝖿𝖿𝑖𝑖 adds a conflict clause 𝐶𝐶 = 𝑙𝑙1 ∨ ⋯∨ 𝑙𝑙𝑛𝑛, which may end up as a leaf in a refutation tree.
Thus, 𝐶𝐶 is also a theory lemma and we call 𝚎𝚎𝚙𝚙𝚙𝚙𝚙𝚙𝚎𝚎𝚙𝚙𝚎𝚎𝚙𝚙𝚙𝚙𝚙𝚙𝚙𝚙𝚙𝚙𝑖𝑖 on it if we encounter it during
proof construction. Finally, rule 𝖫𝖫𝗅𝗅𝖿𝖿𝖯𝖯𝖢𝖢𝑖𝑖 adds the clause 𝐷𝐷 = 𝑙𝑙1[𝐜𝐜] ∨ ⋯∨ 𝑙𝑙𝑛𝑛[𝐜𝐜] directly to 𝖥𝖥,

3 We give a few examples of theory-specific proofs for theory lemmas in Section 4.1, when we
discuss specific theory solvers.

Approved for Public Release; Distribution Unlimited
9

with the consequence that 𝐷𝐷 can act as an input clause. Thus, if we encounter it during
proof construction, we call 𝚎𝚎𝚙𝚙𝚙𝚙𝚙𝚙𝚎𝚎𝚙𝚙𝚎𝚎𝚙𝚙𝚙𝚙𝚙𝚙𝚙𝚙𝚙𝚙𝑖𝑖 on 𝐷𝐷 to obtain its theory-specific proof.

Thanks to the use of pure literals in clauses and the controlled exchange of information
between the various theory solvers through the use of interface literals, 𝖤𝖤𝖤𝖤𝖯𝖯𝖿𝖿𝑖𝑖 and
𝚎𝚎𝚙𝚙𝚙𝚙𝚙𝚙𝚎𝚎𝚙𝚙𝚎𝚎𝚙𝚙𝚙𝚙𝚙𝚙𝚙𝚙𝚙𝚙𝑖𝑖 , which are local to the 𝑇𝑇𝑖𝑖-theory solver for each 𝑖𝑖, are enough to construct
complex SMT proofs that involve several theories.

Example 2. Suppose 𝑇𝑇 is the combination of the theory of uninterpreted functions (𝑇𝑇1 is 𝑇𝑇UF)
and the theory of arrays with extensionality (𝑇𝑇2 is 𝑇𝑇AX), and consider an initial clause set 𝐹𝐹0
containing the atoms:

1: 𝑐𝑐3 = 𝑓𝑓(𝑐𝑐1) 3: 𝑐𝑐5 = (𝑎𝑎[𝑐𝑐3]: = 𝑐𝑐1)[𝑐𝑐4]
2: 𝑐𝑐4 = 𝑓𝑓(𝑐𝑐2) 4: 𝑔𝑔(𝑐𝑐3, 𝑐𝑐5) = 𝑔𝑔(𝑐𝑐4, 𝑐𝑐1)

where 𝑎𝑎 is an array, 𝑐𝑐1, … , 𝑐𝑐5 are shared constants, and 𝑓𝑓 and 𝑔𝑔 are uninterpreted functions.
The expression 𝑎𝑎[𝑖𝑖] denotes the result of reading an array 𝑎𝑎 at index 𝑖𝑖, and 𝑎𝑎[𝑖𝑖] ∶= 𝑏𝑏 denotes
the result of writing value 𝑏𝑏 at index 𝑖𝑖 of 𝑎𝑎. Suppose that literals 1,2,3 occur as unit clauses in
𝐹𝐹0 while 4 occurs in some longer clause. Then, a possible execution from 𝐹𝐹0 might look like the
one in Figure 4 where 5, 6, and 7 are the following interface literals:

5: 𝑐𝑐1 = 𝑐𝑐2 6:  𝑐𝑐3 = 𝑐𝑐4 7:  𝑐𝑐5 = 𝑐𝑐1 .

If that execution eventually ends in 𝘧𝘧𝘧𝘧𝘧𝘧𝘧𝘧 and uses the learned clause 𝐶𝐶 = 1 ∨ 2 ∨ 3 ∨ 4 ∨ 5,
then a proof certificate for 𝐹𝐹0 will need a proof of 𝐶𝐶. The proof tree for 𝐶𝐶 generated from the
given execution is shown in Figure 5, with the proofs of the various theory lemmas omitted.
Note that 𝐶𝐶, which has both 𝛴𝛴1- and 𝛴𝛴2-literals, is valid in 𝑇𝑇. However, it is not a lemma of
either component theory. Proving it valid in 𝑇𝑇 really requires a collaboration between the two
theory solvers.

Figure 4 An execution using theory rules

Approved for Public Release; Distribution Unlimited
10

Figure 5 Using theory-specific proof in proving a lemma

In practice, concrete implementations of this framework do not pass to the SAT engine the
theory lemmas used in 𝖤𝖤𝖤𝖤𝖯𝖯𝖿𝖿𝑖𝑖 steps, to avoid polluting the engine with unnecessary clauses.
This means that in the example above, for instance, to obtain a proof for the learned clause
𝐶𝐶, we must be able to reconstruct the theory lemmas used in each 𝖤𝖤𝖤𝖤𝖯𝖯𝖿𝖿𝑖𝑖 step. To do this, we
record for each learned clause a proof sketch: a list of theory propagations, each performed
by a specific theory solver that together justify the learned clause. A clause’s proof sketch
can be used later to produce a full proof as needed: each individual propagation is
converted into a theory lemma via a call to the relevant solver’s 𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝑖𝑖 method, and
then a proof for that propagation is obtained via a call to 𝚎𝚎𝚙𝚙𝚙𝚙𝚙𝚙𝚎𝚎𝚙𝚙𝚎𝚎𝚙𝚙𝚙𝚙𝚙𝚙𝚙𝚙𝚙𝚙𝑖𝑖 . These
intermediate proofs are then composed into a proof for the learned clause, using resolution
as in the example above. By keeping these proof sketches we have enough information to
construct complete proofs later on. This process facilitates lazy proof generation for
learned clauses, as we discuss next.

3.3 Lazy Proof Production
In the previous section we saw that in order to produce proofs in a DPLL(𝒯𝒯) setting, each
𝑇𝑇𝑖𝑖-solver must be able to justify the theory lemmas it generates. In this section, we discuss a
complementary question: when should it provide these justifications?

One approach, found in some solvers that support various forms of proof production [14],
[15], is to prove each theory lemma eagerly, at the time it is generated. This has the
advantage that proof production for each theory step typically incurs only a small
overhead, and often boils down to recording the internal deductive process that the theory
solver follows when generating the lemma. However, this greedy approach can be
inefficient. During the solution phase, theory solvers usually produce numerous lemmas
that end up not being used in deriving the empty clause, and so do not make it into the final
refutation tree. Hence, any proofs produced for such lemmas are a waste of effort. As an
alternative, we advocate a lazy approach where no proofs for theory lemmas are generated
until the final refutation tree has been found. Then, the 𝚎𝚎𝚙𝚙𝚙𝚙𝚙𝚙𝚎𝚎𝚙𝚙𝚎𝚎𝚙𝚙𝚙𝚙𝚙𝚙𝚙𝚙𝚙𝚙𝑖𝑖 methods are
invoked only for those theory lemmas that appear as leaves in the tree.

For many of the benchmarks we tried, only a fraction of the thousands of theory lemmas
generated during the solving phase are used in the final proof, so the savings from
producing proofs for theory lemmas lazily can be significant. A disadvantage is that theory

Approved for Public Release; Distribution Unlimited
11

lemmas occurring in the final proof end up being processed twice: once when they are
originally generated, and then again when producing the proof. Typically, this means that
in addition to generating the proof, the theory solver will have to redo the deductive work
that was required to generate each lemma in the first place.

Choosing an appropriate strategy depends on the particular theory solver in question. For
some theory solvers reproving lemmas is cheap, making the lazy approach more suitable;
for others, an eager approach may yield better results. Our experiments (in Section 4.3)
indicate that, in the cases of 𝑇𝑇UF and 𝑇𝑇AX, the lazy approach fairs better. We discuss some of
the particulars of our implementation in Section 4.1.

Lazy Proofs and Rewrite Rules. Modern SMT solvers make use of a large arsenal of rewrite
rules aimed at simplifying formulas. These rules specify how and when to replace atoms
and terms with simpler but equivalent versions, and applying them can significantly
improve the performance of solvers. However, the simplification of even a single atom that
appears in a theory lemma can interfere with lazy proof production, as illustrated by the
following example, encountered while attempting to produce proofs for the SMT-LIB
benchmarks [16] in the theory 𝑇𝑇ABV combining arrays and bitvectors.

Example 3. Suppose that the 𝑇𝑇𝐴𝐴𝐴𝐴-solver generates the theory lemma 𝐿𝐿1: (𝑏𝑏 + 1 = 1) ∨
((𝑎𝑎[𝑏𝑏 + 1]: = 𝑥𝑥)[1] = 𝑎𝑎[1]), where 𝑎𝑎 is an array and 𝑏𝑏 is a fixed-width bitvector (for
conciseness, we give here the lemma in non-purified form). Intuitively, this lemma says that if
𝑏𝑏 + 1 ≠ 1, then writing 𝑥𝑥 to 𝑎𝑎[𝑏𝑏 + 1] does not alter the value of 𝑎𝑎[1]. 𝐿𝐿1 is valid in 𝑇𝑇𝐴𝐴𝐴𝐴, and so
the 𝑇𝑇𝐴𝐴𝐴𝐴-solver should be able to prove it.

In the lazy approach, the 𝑇𝑇𝐴𝐴𝐴𝐴-solver is not asked to provide a proof for 𝐿𝐿1 right away. Now,
suppose that during subsequent processing of the theory lemma, a bitvector rewrite rule is
invoked, simplifying the atom 𝑏𝑏 + 1 = 1 to 𝑏𝑏 = 0, and consequently transforming lemma 𝐿𝐿1
into 𝐿𝐿2: (𝑏𝑏 = 0) ∨ ((𝑎𝑎[𝑏𝑏 + 1]: = 𝑥𝑥)[1] = 𝑎𝑎[1]). This lemma is valid in 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴, but not in 𝑇𝑇𝐴𝐴𝐴𝐴.
Thus, when the time comes to produce a proof and the 𝑇𝑇𝐴𝐴𝐴𝐴-solver is asked to prove 𝐿𝐿2, it will
fail to do so.

We can overcome this difficulty as follows. First, we extend the abstract DPLL(𝒯𝒯)
framework with the following, general rule, which allows theory solvers to rewrite literals:

We call the clause 𝑙𝑙1 ∨ ⋯∨ 𝑙𝑙𝑛𝑛 ∨ (𝑙𝑙 = 𝑙𝑙′) above a rewrite lemma. During the solution phase,
we keep track of the application of these rewrite rules to theory atoms. Whenever a theory
atom that participates in a lemma is rewritten, we record this information in the lemma’s
proof sketch. Then, if and when we need to prove the (rewritten) lemma, we can separately
prove the original lemma and each specific rewrite lemma used to rewrite it, and then
combine their proofs into a proof for the rewritten lemma. In our example above, when we
need to prove 𝐿𝐿2, we first have the 𝑇𝑇AX-solver prove the original lemma 𝐿𝐿1, and then

Approved for Public Release; Distribution Unlimited
12

separately ask the 𝑇𝑇BV-solver to provide a proof for the equivalence (𝑏𝑏 + 1 = 1) = (𝑏𝑏 = 0).
These two proofs can then be combined to prove 𝐿𝐿2, which is the actual leaf in the
refutation tree. Observe that this technique is applicable even if there is a series of rewrites
involving multiple theory solvers, because, according to the 𝖱𝖱𝗅𝗅𝖱𝖱𝖯𝖯𝖿𝖿𝗋𝗋𝗅𝗅𝑖𝑖 rule, each rewrite
lemma used is valid in some individual theory.

Besides enabling proof production when rewrite rules are applied, this process also has a
beneficial effect on modularity: it separates proofs for rewrite rules from those of the
theory lemmas, thus simplifying proof production and improving proof legibility.

3.4 LFSC
LFSC is an extension of the Edinburgh Logical Framework (LF) [17], a meta-framework
based on an extension of simply-typed lambda calculus with dependent types. LF has been
used extensively to encode various kinds of deductive systems. In general, a specific proof
system 𝑃𝑃 can be defined in LF by representing its proof rules as LF constants and encoding
their premises and conclusions as a type. In this setting, a formal proof in the encoded
proof system is represented as an LF term whose constants (in the sense of higher-order
logic) are proof-rule names. A collection of type and term constant declarations is called a
signature in LF. Checking the correctness of a proof then reduces to type checking: an LF
proof checker takes as input both a signature 𝑆𝑆 defining a proof system 𝑃𝑃 and a proof term
𝑡𝑡 encoding a proof in 𝑃𝑃. It verifies the correctness of the proof by checking that 𝑡𝑡 is well-
typed with respect to 𝑆𝑆. For example, the equality transitivity proof rule:

(3.1)

in (unsorted) first-order logic can be encoded in LF as a constant with type:

 𝗋𝗋𝖯𝖯𝖿𝖿𝖢𝖢𝗍𝗍 :𝛱𝛱𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3: 𝗋𝗋𝖯𝖯.  𝛱𝛱𝑝𝑝1: 𝗁𝗁𝖯𝖯𝖿𝖿𝗁𝗁𝗍𝗍 (𝗅𝗅𝖾𝖾 𝑡𝑡1 𝑡𝑡2).  𝛱𝛱𝑝𝑝2: 𝗁𝗁𝖯𝖯𝖿𝖿𝗁𝗁𝗍𝗍 (𝗅𝗅𝖾𝖾 𝑡𝑡2 𝑡𝑡3).  𝗁𝗁𝖯𝖯𝖿𝖿𝗁𝗁𝗍𝗍 (𝗅𝗅𝖾𝖾 𝑡𝑡1 𝑡𝑡3) (3.2)

where 𝛱𝛱 is the binder for the dependently typed product, 𝗋𝗋𝖯𝖯 is the type of first-order terms,
𝗅𝗅𝖾𝖾 is a binary function of type 𝗋𝗋𝖯𝖯 × 𝗋𝗋𝖯𝖯 → 𝖿𝖿𝖯𝖯𝖯𝖯𝖿𝖿 (where 𝖿𝖿𝖯𝖯𝖯𝖯𝖿𝖿 is the type of first-order
formulas), and 𝗁𝗁𝖯𝖯𝖿𝖿𝗁𝗁𝗍𝗍 is a unary (dependent) type parametrized by a first-order formula.4 As
a proof constructor, the proof rule (3.1) takes as arguments terms 𝑡𝑡1, 𝑡𝑡2 and 𝑡𝑡3, as well as
proofs 𝑝𝑝1 of 𝑡𝑡1 = 𝑡𝑡2 and 𝑝𝑝2 of 𝑡𝑡2 = 𝑡𝑡3, and returns a proof of 𝑡𝑡1 = 𝑡𝑡3. The LF declaration in
(3.2) encodes this in the type of the constant 𝗋𝗋𝖯𝖯𝖿𝖿𝖢𝖢𝗍𝗍. One possible proof that 𝑎𝑎 = 𝑑𝑑 follows
from the premises 𝑎𝑎 = 𝑏𝑏, 𝑏𝑏 = 𝑐𝑐, and 𝑐𝑐 = 𝑑𝑑 is represented by the (well-typed) term:

𝜆𝜆𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑: 𝗋𝗋𝗅𝗅𝖯𝖯𝖿𝖿.  𝜆𝜆𝑝𝑝1: 𝗁𝗁𝖯𝖯𝖿𝖿𝗁𝗁𝗍𝗍 (𝗅𝗅𝖾𝖾 𝑎𝑎 𝑏𝑏).  𝜆𝜆𝑝𝑝2: 𝗁𝗁𝖯𝖯𝖿𝖿𝗁𝗁𝗍𝗍 (𝗅𝗅𝖾𝖾 𝑏𝑏 𝑐𝑐).  𝜆𝜆𝑝𝑝3: 𝗁𝗁𝖯𝖯𝖿𝖿𝗁𝗁𝗍𝗍 (𝗅𝗅𝖾𝖾 𝑐𝑐 𝑑𝑑).
 (𝗋𝗋𝖯𝖯𝖿𝖿𝖢𝖢𝗍𝗍 𝑎𝑎 𝑐𝑐 𝑑𝑑 (𝗋𝗋𝖯𝖯𝖿𝖿𝖢𝖢𝗍𝗍 𝑎𝑎 𝑏𝑏 𝑐𝑐 𝑝𝑝1 𝑝𝑝2) 𝑝𝑝3)

4 Intuitively, an LF expression of dependent type 𝛱𝛱𝛱𝛱: 𝖿𝖿𝖯𝖯𝖯𝖯𝖿𝖿.  𝗁𝗁𝖯𝖯𝖿𝖿𝗁𝗁𝗍𝗍(𝛱𝛱) represents a proof that the
formula 𝛱𝛱 holds.

Approved for Public Release; Distribution Unlimited
13

Using the wild-card symbol _, the body of the innermost lambda term can be simplified to
(𝗋𝗋𝖯𝖯𝖿𝖿𝖢𝖢𝗍𝗍 _ _ _ (𝗋𝗋𝖯𝖯𝖿𝖿𝖢𝖢𝗍𝗍 _ _ _ 𝑝𝑝1 𝑝𝑝2) 𝑝𝑝3), since the omitted arguments can be inferred
automatically during type-checking.

Purely declarative proof systems like those defined in LF cannot always efficiently model
the kind of complex reasoning usually employed by SMT solvers. LFSC addresses this issue
by extending LF types with computational side conditions, explicit computational checks
defined as programs in a small but expressive functional first-order programming
language. The language has built-in types for arbitrary precision integers and rationals, ML-
style pattern matching over LFSC type constructors, recursion, limited support for
exceptions, and a very restricted set of imperative features. A proof rule in LFSC may
optionally include a side condition written in this language. When checking the application
of such a proof rule, an LFSC checker computes actual parameters for the side condition
and executes its code. If the side condition fails, the LFSC checker rejects the rule
application.

As shown in Figure 7, when using LFSC , the trusted core includes both the (generic) LFSC
checker and the specific LFSC signature which consists of a set of proof rules, each of which
may have side conditions.

We refer the reader to [18] for a detailed description of the LFSC language and its formal
semantics. Here we introduce LFSC syntax via examples to illustrate the main features of
the framework.

Example 4. An inference rule at the heart of SAT and SMT solvers is the propositional
resolution rule:

where 𝑙𝑙’s are literals. This rule alone is actually not enough to express resolution derivations
as formal objects, since one also has to account for the associativity, commutativity and
idempotency of the ∨ operator. In LF, this problem can be addressed only by adding additional
proof rules for those properties. Doing so makes it possible to move literals around in a clause
and remove duplicate literals, but at the cost of requiring many proof rules for each resolution
step, resulting in the generation of very large proofs. Alternative solutions [19] eschew the
generic, declarative approach provided by meta-frameworks like LF and instead hard-code
the clause data structure in the proof checker, requiring a proof-checker with higher
complexity and lower generality.

𝗎𝗎𝖢𝖢𝖿𝖿𝗋𝗋,  𝗅𝗅𝖿𝖿𝖯𝖯,  𝖿𝖿𝖿𝖿𝗋𝗋,  𝖼𝖼𝖿𝖿𝖿𝖿𝗎𝗎𝗍𝗍𝗅𝗅: 𝗋𝗋𝗍𝗍𝖯𝖯𝗅𝗅 𝗁𝗁𝖯𝖯𝖿𝖿𝗁𝗁𝗍𝗍: 𝖼𝖼𝖿𝖿𝖿𝖿𝗎𝗎𝗍𝗍𝗅𝗅 → 𝗋𝗋𝗍𝗍𝖯𝖯𝗅𝗅 𝖼𝖼𝖿𝖿𝖢𝖢: 𝖼𝖼𝖿𝖿𝖿𝖿𝗎𝗎𝗍𝗍𝗅𝗅
𝖯𝖯𝖡𝖡: 𝗎𝗎𝖢𝖢𝖿𝖿𝗋𝗋 𝖯𝖯𝖯𝖯𝗍𝗍,  𝖢𝖢𝗅𝗅𝗇𝗇: 𝗅𝗅𝖿𝖿𝖯𝖯 → 𝖿𝖿𝖿𝖿𝗋𝗋 𝖼𝖼𝖿𝖿𝖼𝖼: 𝖿𝖿𝖿𝖿𝗋𝗋 → 𝖼𝖼𝖿𝖿𝖿𝖿𝗎𝗎𝗍𝗍𝗅𝗅 → 𝖼𝖼𝖿𝖿𝖿𝖿𝗎𝗎𝗍𝗍𝗅𝗅

𝖯𝖯𝗅𝗅𝗍𝗍𝖯𝖯𝖿𝖿𝗅𝗅𝗅𝗅 (𝑐𝑐1, 𝑐𝑐2: 𝖼𝖼𝖿𝖿𝖿𝖿𝗎𝗎𝗍𝗍𝗅𝗅, 𝑣𝑣: 𝗅𝗅𝖿𝖿𝖯𝖯): 𝖼𝖼𝖿𝖿𝖿𝖿𝗎𝗎𝗍𝗍𝗅𝗅 = 𝖿𝖿𝗅𝗅𝗋𝗋 𝑝𝑝 (𝖯𝖯𝖯𝖯𝗍𝗍 𝑣𝑣) 𝖿𝖿𝖢𝖢 𝖿𝖿𝗅𝗅𝗋𝗋 𝑛𝑛 (𝖢𝖢𝗅𝗅𝗇𝗇 𝑣𝑣) 𝖿𝖿𝖢𝖢
 𝖿𝖿𝗅𝗅𝗋𝗋 _ (𝖯𝖯𝖼𝖼𝖼𝖼𝗎𝗎𝖯𝖯𝗍𝗍 𝑝𝑝 𝑐𝑐1) 𝖿𝖿𝖢𝖢 𝖿𝖿𝗅𝗅𝗋𝗋 _ (𝖯𝖯𝖼𝖼𝖼𝖼𝗎𝗎𝖯𝖯𝗍𝗍 𝑛𝑛 𝑐𝑐2) 𝖿𝖿𝖢𝖢 𝖿𝖿𝗅𝗅𝖯𝖯𝗇𝗇𝗅𝗅 (𝖯𝖯𝗅𝗅𝖿𝖿𝖯𝖯𝗅𝗅𝗅𝗅 𝑝𝑝 𝑐𝑐1) (𝖯𝖯𝗅𝗅𝖿𝖿𝖯𝖯𝗅𝗅𝗅𝗅 𝑛𝑛 𝑐𝑐2)
𝖱𝖱𝗅𝗅𝗍𝗍:𝛱𝛱𝑐𝑐, 𝑐𝑐1, 𝑐𝑐2: 𝖼𝖼𝖿𝖿𝖿𝖿𝗎𝗎𝗍𝗍𝗅𝗅.  𝗁𝗁𝖯𝖯𝖿𝖿𝗁𝗁𝗍𝗍 𝑐𝑐1 → 𝗁𝗁𝖯𝖯𝖿𝖿𝗁𝗁𝗍𝗍 𝑐𝑐2 → 𝛱𝛱𝑣𝑣: 𝗅𝗅𝖿𝖿𝖯𝖯 {(𝖯𝖯𝗅𝗅𝗍𝗍𝖯𝖯𝖿𝖿𝗅𝗅𝗅𝗅 𝑐𝑐1 𝑐𝑐2 𝑣𝑣) ↓  𝑐𝑐}.  𝗁𝗁𝖯𝖯𝖿𝖿𝗁𝗁𝗍𝗍 𝑐𝑐

Figure 6 LFSC declarations encoding propositional resolution.

Approved for Public Release; Distribution Unlimited
14

In contrast, an LFSC proof rule for resolution can use a side condition to encode that the
resulting clause is computed by removing the complementary literals in the two input clauses
and then merging the remaining literals. One encoding of the rule and its side condition,
together with all the necessary types and constants, is shown in Figure 6. In the figure and in
the remainder of the chapter, we write 𝜏𝜏1 → 𝜏𝜏2 to abbreviate as usual a type of the form
𝛱𝛱𝑥𝑥: 𝜏𝜏1.  𝜏𝜏2 where 𝜏𝜏2 contains no occurrences of 𝑥𝑥. Clauses are encoded essentially as nil-
terminated lists of literals. They are built with the constructors 𝘤𝘤𝘧𝘧𝘤𝘤, for the empty clause, and
𝘤𝘤𝘧𝘧𝘤𝘤, for non-empty clauses. Literals are built from propositional variables using the
constructors 𝘱𝘱𝘱𝘱𝘱𝘱 and 𝘤𝘤𝘯𝘯𝘯𝘯, for positive and negative literals. Variables do not have
constructors because LFSC variables can be used directly.

The resolution rule 𝘙𝘙𝘯𝘯𝘱𝘱 takes as input the clauses 𝑐𝑐1, 𝑐𝑐2, and 𝑐𝑐, together with a proof of 𝑐𝑐1 of
type 𝘩𝘩𝘱𝘱𝘧𝘧𝘩𝘩𝘱𝘱 𝑐𝑐1, one of 𝑐𝑐2 of type 𝘩𝘩𝘱𝘱𝘧𝘧𝘩𝘩𝘱𝘱 𝑐𝑐2, and a variable 𝑣𝑣 to be used as the resolved atom. The
𝘳𝘳𝘯𝘯𝘱𝘱𝘱𝘱𝘧𝘧𝘳𝘳𝘯𝘯 side condition function computes the resolvent of clause 𝑐𝑐1 with 𝑐𝑐2, provided that 𝑐𝑐1
contains at least one occurrence of the positive literal (𝘱𝘱𝘱𝘱𝘱𝘱 𝑣𝑣) and 𝑐𝑐2 contains at least one
occurrence of the negative literal (𝖢𝖢𝗅𝗅𝗇𝗇 𝑣𝑣). The side condition {(𝖯𝖯𝗅𝗅𝗍𝗍𝖯𝖯𝖿𝖿𝗅𝗅𝗅𝗅 𝑐𝑐1 𝑐𝑐2 𝑣𝑣) ↓  𝑐𝑐}
succeeds if 𝑐𝑐 is the result of resolving 𝑐𝑐1 and 𝑐𝑐2 on 𝑣𝑣. In that case, the proof rule returns a
proof of 𝑐𝑐. The definitions of the auxiliary functions 𝘱𝘱𝘤𝘤𝘤𝘤𝘰𝘰𝘳𝘳𝘱𝘱, 𝘳𝘳𝘯𝘯𝘳𝘳𝘱𝘱𝘳𝘳𝘯𝘯, and 𝘳𝘳𝘯𝘯𝘳𝘳𝘯𝘯𝘯𝘯 are omitted
from Figure 6 due to space constraints. (𝖯𝖯𝖼𝖼𝖼𝖼𝗎𝗎𝖯𝖯𝗍𝗍 𝑙𝑙 𝑐𝑐) does nothing if the literal 𝑙𝑙 is in the clause
𝑐𝑐; otherwise, it raises a failure exception; (𝖯𝖯𝗅𝗅𝖿𝖿𝖯𝖯𝗅𝗅𝗅𝗅 𝑙𝑙 𝑐𝑐) returns the result of removing the
literal 𝑙𝑙 from the clause 𝑐𝑐; (𝖿𝖿𝗅𝗅𝖯𝖯𝗇𝗇𝗅𝗅 𝑐𝑐1 𝑐𝑐2) returns the clause with no repeated literals resulting
from merging clauses 𝑐𝑐1 and 𝑐𝑐2.

LFSC has previously been successfully used to encode the constructs necessary for Boolean
resolution, CNF conversion, and propositional abstraction of theory lemmas [18]. In this
chapter, we did not cover these constructs, but instead focused on how to encode theory
specific reasoning in LFSC .

Approved for Public Release; Distribution Unlimited
15

4 Results and Discussion
In this chapter, we describe the results of the project. We begin with a description of the
proof systems developed for specific theories. We then describe our implementation in
CVC4, a state-of-the-art SMT solver [20]. We conducted extensive experiments using the
relevant benchmarks from the SMT-LIB library [16]. Our tool was able to produce proofs in
the vast majority of cases. We conclude with a description of the SMTCoq tool which uses
proofs produced by CVC4 to produce proofs within the Coq proof assistant.

4.1 Proof Systems for SMT Theories
Recall that in the purely propositional case (as in Example 1), a proof can always be
constructed that consists of a sequence of applications of Boolean resolution, starting from
the input clauses. In the non-propositional case, we saw that each theory solver must
provide proofs for its theory lemmas. This requires additional instrumentation in the
theory solvers as well as additional deduction rules and axioms beyond Boolean resolution.

More generally, SMT proofs typically have a three-tiered structure: (𝑖𝑖) a derivation of the
internal CNF formula 𝜓𝜓 from the input formula 𝛱𝛱;5 (𝑖𝑖𝑖𝑖) a resolution refutation of 𝜓𝜓 in the
form of a resolution tree whose root is the empty clause and whose leaves are either
clauses from 𝜓𝜓 or theory lemmas; and (𝑖𝑖𝑖𝑖𝑖𝑖) theory proofs of all the theory lemmas
occurring in the resolution tree.

Figure 7 DPLL(T) architecture, SMT proof structure, and proof checker.

Figure 7 depicts the DPLL(𝒯𝒯) architecture and how it relates to the structure of SMT
proofs. Below, we describe proof production in three common theories: uninterpreted

5 This step typically also includes the application of simplifying rewrite rules as discussed in Section
3.3. We ignore this issue in this chapter. Extending the approach here to include the many pre-
processing rewrite rules used in real solvers is tedious but straightforward.

Approved for Public Release; Distribution Unlimited
16

functions with equality (𝑇𝑇UF), arrays with extensionality (𝑇𝑇AX) and fixed-width bitvectors
(𝑇𝑇BV).

In all theory solvers, it is more convenient to prove a theory lemma 𝑙𝑙1 ∨ ⋯∨ 𝑙𝑙𝑛𝑛 by first
proving the unsatisfiability of the set {𝑙𝑙1, … , 𝑙𝑙𝑛𝑛}; so we focus on the latter kind of proof here.

4.1.1 Uninterpreted Functions

A general scheme for a proof-producing 𝑇𝑇UF-solver was proposed by Fontaine et al. [21].
We follow a similar approach, briefly summarized below. Decision procedures for 𝑇𝑇UF are
normally based on congruence closure: the solver maintains an equality graph which
partitions the terms appearing in the input constraints into equivalence classes. As the
search progresses, equivalence classes get merged. Unsatisfiability is derived when two
terms 𝑎𝑎 and 𝑏𝑏 from an input constraint 𝑎𝑎 ≠ 𝑏𝑏 end up in the same equivalence class.

To produce a refutation tree, the 𝑇𝑇UF-solver keeps track of all previously performed merges
of equivalence classes. When it is asked to prove that 𝑎𝑎 = 𝑏𝑏 is a consequence of some of the
input constraints (contradicting the input constraint 𝑎𝑎 ≠ 𝑏𝑏), it backtracks through these
merges and constructs a chain 𝑎𝑎 = 𝑥𝑥1 = ⋯ = 𝑥𝑥𝑛𝑛 = 𝑏𝑏, where each link is the result of an
input constraint or an application of the congruence rule (deriving, for instance, 𝑓𝑓(𝑥𝑥) =
𝑓𝑓(𝑦𝑦) from 𝑥𝑥 = 𝑦𝑦) [21]. This chain can then be transformed into a proof tree whose leaves
are input assertions and whose internal nodes are generated by the application of one of
the following rules:

Transitivity: from 𝑥𝑥 = 𝑦𝑦 and 𝑦𝑦 = 𝑧𝑧 derive 𝑥𝑥 = 𝑧𝑧
Congruence: from 𝐱𝐱 = 𝐲𝐲 derive 𝑓𝑓(𝐱𝐱) = 𝑓𝑓(𝐲𝐲)
Symmetry: from 𝑥𝑥 = 𝑦𝑦 derive 𝑦𝑦 = 𝑥𝑥

Figure 8 depicts a refutation of the negation of the 𝑇𝑇UF theory lemma (𝑥𝑥 ≠ 𝑦𝑦) ∨ (𝑧𝑧 ≠
𝑓𝑓(𝑦𝑦)) ∨ (𝑓𝑓(𝑥𝑥) = 𝑧𝑧) using those rules.

Figure 8 A refutation of { x = y, z = f(y), f(x) ≠ z}.

A convenient way to implement eager 𝑇𝑇UF proof production is to instrument the 𝑇𝑇UF-
solver’s 𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝚎 function to produce, apart from an explanation clause, also a proof for
that clause. However, 𝑇𝑇UF is a prime candidate for lazy proof production: since the decision
procedure in this case is very efficient, reproving previous lemmas is cheap. In the lazy
approach, during proof construction, if we encounter a 𝑇𝑇UF theory lemma 𝑙𝑙1 ∨ …∨ 𝑙𝑙𝑛𝑛, we
assert its negation to a fresh proof-producing instance of the 𝑇𝑇UF-solver. This solver then

Approved for Public Release; Distribution Unlimited
17

constructs the proof as it derives a contradiction. Our experimental evaluation (see Section
4.3) suggests that the lazy approach is superior to the eager approach for 𝑇𝑇UF.

4.1.2 Arrays with Extensionality

We now show how we can build on the procedure for 𝑇𝑇UF to produce proofs for 𝑇𝑇AX. An
efficient decision procedure for 𝑇𝑇AX [22] uses congruence closure and maintains an equality
graph, similarly to the 𝑇𝑇UF case; however, it merges equivalence classes also as the result of
array-specific axioms (proof rules with no premises):

1. Read-over-write 1: for any array 𝑎𝑎, indices 𝑖𝑖 and 𝑗𝑗 and element 𝑥𝑥, if 𝑖𝑖 ≠ 𝑗𝑗 then (𝑎𝑎[𝑖𝑖] ∶=
𝑥𝑥)[𝑗𝑗] = 𝑎𝑎[𝑗𝑗].

2. Read-over-write 2: (𝑎𝑎[𝑖𝑖] ∶= 𝑥𝑥)[𝑖𝑖] = 𝑥𝑥.

The first axiom guarantees that writing to index 𝑖𝑖 does not change the value at a different
index 𝑗𝑗, and the second guarantees that written values persist. A third axiom states that
disequal arrays must differ in at least one cell:

3. Extensionality: for any two arrays 𝑎𝑎 and 𝑏𝑏, if 𝑎𝑎 ≠ 𝑏𝑏 then there exists a 𝑘𝑘 such that
𝑎𝑎[𝑘𝑘] ≠ 𝑏𝑏[𝑘𝑘].

Observe that, unlike in the 𝑇𝑇UF case, an unsatisfiable set of constraints here does not have
to include one of the form 𝑎𝑎 ≠ 𝑏𝑏, since disequalities can also be deduced by the
extensionality axiom. A contradiction is reached when two contradictory literals, 𝑎𝑎 = 𝑏𝑏 and
𝑎𝑎 ≠ 𝑏𝑏, are derived.

Instrumenting a 𝑇𝑇AX-solver to produce proof trees based on these axioms again consists of
collecting the reasons for the merges of equivalence classes. In particular, any application
of Read-over-write 1 and Extensionality contains a sub-proof for the axiom’s guard—
respectively, 𝑖𝑖 ≠ 𝑗𝑗 and 𝑎𝑎 ≠ 𝑏𝑏.

Figure 9 depicts a refutation of the negation of the 𝑇𝑇AX theory lemma (𝑖𝑖 = 𝑗𝑗) ∨ ((𝑎𝑎[𝑗𝑗]: =
𝑦𝑦)[𝑖𝑖] ≠ 𝑥𝑥) ∨ (𝑎𝑎[𝑖𝑖] = 𝑥𝑥) using the first read-over-write (RoW) axiom.

Figure 9 Refutation of {𝑖𝑖 ≠ 𝑗𝑗, (𝑎𝑎[𝑗𝑗]: = 𝑦𝑦)[𝑖𝑖] = 𝑥𝑥,𝑎𝑎[𝑖𝑖] ≠ 𝑥𝑥}.

Eager proof production can be achieved as in the 𝑇𝑇UF case. For lazy proof production, we
can again instantiate a fresh copy of the solver for every lemma that we need to prove.
However, in this case, reproving lemmas from scratch does not suffice. The problem is due
to the Extensionality axiom. Consider a case where we need to reprove an instance (𝑎𝑎 =
𝑏𝑏) ∨ (𝑎𝑎[𝑘𝑘] ≠ 𝑏𝑏[𝑘𝑘]) of that axiom, where 𝑘𝑘 is a free constant witnessing the disequality 𝑎𝑎 ≠
𝑏𝑏. If we attempt to lazily prove this lemma by instantiating a fresh 𝑇𝑇AX-solver and asserting
to it the set {𝑎𝑎 ≠ 𝑏𝑏,  𝑎𝑎[𝑘𝑘] = 𝑏𝑏[𝑘𝑘]}, it will be unable to refute it (simply because, by itself, it is
not unsatisfiable). This problem can be overcome by some simple bookkeeping during the

Approved for Public Release; Distribution Unlimited
18

solution phase: whenever the Extensionality axiom is used, we record that 𝑘𝑘 is a witness
for 𝑎𝑎 ≠ 𝑏𝑏; later, during lazy proof production, we ensure that the same 𝑘𝑘 is used to witness
𝑎𝑎 ≠ 𝑏𝑏 in the fresh solver. Again, our experiments (see Section 4.3) suggest that, despite this
extra bookkeeping, the lazy approach is superior to the eager approach for 𝑇𝑇AX.

4.1.3 Bit-vectors

Proofs for the theory of fixed-width bit-vectors are of particular practical importance, with
applications in both hardware and software verification. Previous work [23] shows how to
reconstruct proofs from the Z3 SMT solver in HOL4 and Isabelle/HOL. However, due to the
lack of detail in the Z3 bit-vector proofs, proof reconstruction is not always successful. In
this section, we present a method of encoding and checking fine-grained SMT -generated
proofs for the theory 𝒯𝒯𝖻𝖻𝗅𝗅 of bit-vectors as formalized in the SMT-LIB 2 standard [16]. Proof
generation and checking for the bit-vector theory poses several unique challenges.
Algebraic reasoning is typically not sufficient by itself to decide most bit-vector formulas of
practical interest, so often bit-vector (sub)-problems are solved by reduction to SAT.
However, such reductions usually result in very large propositional proofs. In addition, the
reduction itself must be proven correct. Encoding the 𝒯𝒯𝖻𝖻𝗅𝗅 proof rules in LFSC helps address
some of these challenges.

We make the following contributions: (i) we develop an LFSC proof system for the
quantifier-free theory of fixed-width bit-vectors that includes proof rules for bit-blasting
and allows for a two-tiered DPLL(𝒯𝒯) proof structure; and (ii) we report experimental
results on an extensive set of unsatisfiable SMT-LIB benchmarks in the QF_BV logic.

We discuss how bit-vector constraints are decided in CVC4 and how to generate proofs for
them in Section 4.1.4, and Section 4.1.5 introduces the LFSC proof rules that are specific to
the bit-vector theory.

4.1.4 Bit-vector proof generation in CVC4

Decision procedures for the theory 𝒯𝒯𝖻𝖻𝗅𝗅 of bit-vectors almost always involve a reduction to
propositional logic. One approach for encoding a bit-vector formula 𝛱𝛱 into an
equisatisfiable propositional formula 𝛱𝛱𝐴𝐴𝐴𝐴 is known as bit-blasting. For each variable 𝑣𝑣
denoting a bit-vector of size 𝑛𝑛, bit-blasting introduces 𝑛𝑛 fresh propositional variables,
𝑣𝑣0, … 𝑣𝑣𝑛𝑛−1, to represent each bit in the vector. To be able to encode this mapping in 𝒯𝒯𝖻𝖻𝗅𝗅 , we
extend the 𝒯𝒯𝖻𝖻𝗅𝗅 signature with a family of interpreted predicate symbols (𝖻𝖻𝖿𝖿𝗋𝗋𝖻𝖻𝖿𝖿𝑖𝑖:𝖡𝖡𝖡𝖡𝑛𝑛 ↦
𝖻𝖻𝖯𝖯𝖯𝖯𝖿𝖿)0≤𝑖𝑖<𝑛𝑛, where 𝖻𝖻𝖿𝖿𝗋𝗋𝖻𝖻𝖿𝖿𝑖𝑖 takes a bit-vector 𝑥𝑥 of width 𝑛𝑛 and returns true iff the 𝑖𝑖𝑡𝑡ℎ bit of 𝑥𝑥 is
1. Let 𝛱𝛱 be a bit-vector formula. For each atom 𝑎𝑎 appearing in 𝛱𝛱, let 𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑏𝑏𝑚𝑚(𝑎𝑎) denote a
propositional formula consisting of the circuit representation of 𝑎𝑎. Let 𝐶𝐶𝐴𝐴𝐴𝐴 denote the
conjunction of bit-blasting clauses obtained from converting to CNF the atom definitions:

𝐶𝐶𝐴𝐴𝐴𝐴 ≡ 𝐶𝐶𝐶𝐶𝐹𝐹� �
𝑎𝑎∈𝐴𝐴𝑡𝑡𝐴𝐴𝑚𝑚𝐴𝐴(𝜑𝜑)

𝑎𝑎𝐴𝐴𝐴𝐴 ⇔ 𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑏𝑏𝑚𝑚(𝑎𝑎)� ,

where 𝑎𝑎𝐴𝐴𝐴𝐴 is a fresh propositional variable representing atom 𝑎𝑎 and 𝐶𝐶𝐶𝐶𝐹𝐹 represents
conversion to CNF. The formula 𝛱𝛱𝐴𝐴𝐴𝐴: = 𝛱𝛱[𝑎𝑎 ↦ 𝑎𝑎𝐴𝐴𝐴𝐴]𝑎𝑎∈𝐴𝐴𝑡𝑡𝐴𝐴𝑚𝑚𝐴𝐴(𝜑𝜑) ∧ 𝐶𝐶𝐴𝐴𝐴𝐴 is a propositional

Approved for Public Release; Distribution Unlimited
19

formula equisatisfiable with 𝛱𝛱. Most state-of-the-art solvers for 𝒯𝒯𝖻𝖻𝗅𝗅 generate a formula like
𝛱𝛱𝐴𝐴𝐴𝐴 and then rely on a single query to a SAT solver to check its satisfiability. Thus, a proof
of unsatisfiability for 𝛱𝛱 could consist of: (𝑖𝑖) a proof that 𝛱𝛱 is equisatisfiable with 𝛱𝛱𝐴𝐴𝐴𝐴 in 𝒯𝒯𝖻𝖻𝗅𝗅 ,
(𝑖𝑖𝑖𝑖) a propositional proof that 𝛱𝛱𝐴𝐴𝐴𝐴 is equisatisfiable with 𝐶𝐶𝐶𝐶𝐹𝐹(𝛱𝛱𝐴𝐴𝐴𝐴), and (𝑖𝑖𝑖𝑖𝑖𝑖) a monolithic,
potentially very large, resolution-based refutation of 𝐶𝐶𝐶𝐶𝐹𝐹(𝛱𝛱𝐴𝐴𝐴𝐴).

CVC4 incorporates an eager bit-vector decision procedure (cvcE) based on the approach
sketched above. It also provides, as an alternative, a lazy DPLL(𝒯𝒯) -style bit-vector solver
(cvcLz) that maintains the word-level structure of the input terms and separates reasoning
over the propositional structure of the input formula 𝛱𝛱 from bit-vector term reasoning
[24]. In cvcLz, the bit-vector theory is treated like any other theory: the main DPLL(𝒯𝒯) SAT
engine SATmain reasons on the propositional abstraction 𝛱𝛱P whereas a 𝒯𝒯𝖻𝖻𝗅𝗅 -solver decides
conjunctions 𝑏𝑏 of 𝒯𝒯𝖻𝖻𝗅𝗅 -literals.

Recall from Chapter 3.3 that the 𝒯𝒯𝖻𝖻𝗅𝗅 solver must repeatedly decide the satisfiability of the
𝒯𝒯𝖻𝖻𝗅𝗅 -literals 𝑏𝑏 and return a 𝒯𝒯𝖻𝖻𝗅𝗅 -valid clause over the atoms of 𝑏𝑏 if 𝑏𝑏 is 𝒯𝒯𝖻𝖻𝗅𝗅 -unsatisfiable. We
achieve this by relying on a second SATsolver, SATbb, to decide the satisfiability of each
assignment . It does this by checking the propositional formula 𝑏𝑏𝐴𝐴𝐴𝐴 ∧ 𝐶𝐶𝐴𝐴𝐴𝐴 , where 𝑏𝑏𝐴𝐴𝐴𝐴 =
𝑏𝑏[𝑎𝑎 ↦ 𝑎𝑎𝐴𝐴𝐴𝐴]𝑎𝑎∈𝐴𝐴𝑡𝑡𝐴𝐴𝑚𝑚𝐴𝐴(𝐴𝐴). Note that this may be significantly smaller than the formula 𝛱𝛱[𝑎𝑎 ↦
𝑎𝑎𝐴𝐴𝐴𝐴]𝑎𝑎∈𝐴𝐴𝑡𝑡𝐴𝐴𝑚𝑚𝐴𝐴(𝜑𝜑) ∧ 𝐶𝐶𝐴𝐴𝐴𝐴 checked in the eager approach.

If 𝑏𝑏𝐴𝐴𝐴𝐴 ∧ 𝐶𝐶𝐴𝐴𝐴𝐴 is unsatisfiable, SATbb returns a set of literals 𝐿𝐿𝐴𝐴𝐴𝐴 ⊆ 𝑏𝑏𝐴𝐴𝐴𝐴 that is inconsistent
with 𝐶𝐶𝐴𝐴𝐴𝐴 . The clause ¬𝐿𝐿 is a 𝒯𝒯𝖻𝖻𝗅𝗅 -valid lemma, and the ¬𝐿𝐿P clause is added to SATmain. We
can efficiently use SATbb to check the satisfiability of 𝐶𝐶𝐴𝐴𝐴𝐴 with different assumptions 𝑏𝑏𝐴𝐴𝐴𝐴 by
using the solve with assumptions feature of SAT solvers [25].

The lazy solver cvcLz in CVC4 also has several algebraic word-level sub-solvers. However,
we do not yet support proof production for these sub-solvers, so in this chapter, we focus
on the 𝒯𝒯𝖻𝖻𝗅𝗅 -lemmas generated by SATbb.

4.1.5 LFSC Bit-vector signature

In this section, we discuss proof generation for the lazy bit-vector solver described in
Section 4.1.4. Figure 10 shows the overall structure of the 𝒯𝒯𝖻𝖻𝗅𝗅 proof by zooming in on the
𝒯𝒯𝖻𝖻𝗅𝗅 -lemmas that occur as leaves in the resolution SAT proof. We start with the bit-blasting
proofs that each atom 𝑎𝑎 is equivalent to its bit-blasted formula: 𝑎𝑎 ⇔ 𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑏𝑏𝑚𝑚(𝑎𝑎). These
proofs require no assumptions as 𝑎𝑎 ⇔ 𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑏𝑏𝑚𝑚(𝑎𝑎) is 𝒯𝒯𝖻𝖻𝗅𝗅 -valid.6 Next, the CNF proof
establishes that the bit-blasting clauses 𝐶𝐶𝐴𝐴𝐴𝐴 follow from the atom definitions.7 Note that
this step also establishes the mapping from the 𝒯𝒯𝖻𝖻𝗅𝗅 -atom 𝑎𝑎 to the abstract Boolean variable
𝑎𝑎𝐴𝐴𝐴𝐴 used in the SATbb SAT solver.

6 Recall that 𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑏𝑏𝑚𝑚(𝑎𝑎) is a propositional formula encoding the semantics of atom 𝑎𝑎, and contains
𝖻𝖻𝖿𝖿𝗋𝗋𝖻𝖻𝖿𝖿𝑖𝑖 applications on the bit-vector variables in 𝑎𝑎.

7 For details on how to use LFSC to encode proofs for CNF conversion, see [18]

Approved for Public Release; Distribution Unlimited
20

Each 𝒯𝒯𝖻𝖻𝗅𝗅 -lemma has a corresponding resolution proof in SATbb with 𝐶𝐶𝐴𝐴𝐴𝐴 as leaves. The
resolution proof constructs a clause over the 𝑎𝑎𝐴𝐴𝐴𝐴 SAT variables. To use this in SATmain, we
need to map the lemma to 𝒯𝒯𝖻𝖻𝗅𝗅 atoms, and then to the SAT variables 𝑎𝑎P in SATmain. In the
figure, circles denote 𝒯𝒯𝖻𝖻𝗅𝗅 -atoms and diamonds the propositional variables that abstract
them (either in SATbb or in SATmain).

Figure 10 Bit-vector proof structure.

4.1.6 Encoding bit-vector formulas

Figure 11 Partial LFSC signature for the theory 𝒯𝒯𝘣𝘣𝘳𝘳 of bit-vectors

Figure 11 shows the LFSC constructs needed to represent formulas in the theory of bit-
vectors. Note that the encoding distinguishes between formulas and terms: formulas are
represented by the simple type 𝖿𝖿𝖯𝖯𝖯𝖯𝖿𝖿 and terms by the dependent type 𝗋𝗋𝗅𝗅𝖯𝖯𝖿𝖿, parametrized
by the sort of the term: 𝛱𝛱𝑠𝑠: 𝗍𝗍𝖯𝖯𝖯𝖯𝗋𝗋.  𝗋𝗋𝗅𝗅𝖯𝖯𝖿𝖿 𝑠𝑠. Formulas are constructed with the usual logical
operators and with an equality operator over terms which is parametric in the terms’ sort.
The 𝖿𝖿𝖢𝖢𝗋𝗋 type is LFSC’s own built-in infinite precision integer type. Bit-vector sorts are
represented by the dependent type 𝛱𝛱𝑛𝑛: 𝖿𝖿𝖢𝖢𝗋𝗋.  𝖡𝖡𝖡𝖡 𝑛𝑛 where 𝑛𝑛 is the width of the bit-vector. Bit-

Approved for Public Release; Distribution Unlimited
21

vector constants are represented as lists of bits using the 𝖼𝖼𝖯𝖯𝖢𝖢𝗍𝗍𝗋𝗋𝖡𝖡𝖡𝖡 type with the two
constructors 𝖻𝖻𝗅𝗅𝖢𝖢 and 𝖻𝖻𝗅𝗅𝖼𝖼, for the empty sequence and the list cons operator respectively.
The 𝖼𝖼𝖯𝖯𝖢𝖢𝗍𝗍𝗋𝗋𝖡𝖡𝖡𝖡 bit-vector constants are converted to bit-vector terms with the 𝖼𝖼𝖯𝖯𝖢𝖢𝗍𝗍𝗋𝗋𝗈𝗈𝖡𝖡𝖡𝖡
function. Bit-vector variables are represented as LFSC variables of type 𝗅𝗅𝖿𝖿𝖯𝖯𝖡𝖡𝖡𝖡 and
converted to terms with 𝗅𝗅𝖿𝖿𝖯𝖯𝗈𝗈𝖡𝖡𝖡𝖡.

Example 5. The bit-wise conjunction operator is encoded in LFSC as:

𝖻𝖻𝗅𝗅𝖿𝖿𝖢𝖢𝗁𝗁:𝛱𝛱𝑛𝑛: 𝖿𝖿𝖢𝖢𝗋𝗋.  𝗋𝗋𝗅𝗅𝖯𝖯𝖿𝖿 (𝖡𝖡𝖡𝖡 𝑛𝑛) → 𝗋𝗋𝗅𝗅𝖯𝖯𝖿𝖿 (𝖡𝖡𝖡𝖡 𝑛𝑛) → 𝗋𝗋𝗅𝗅𝖯𝖯𝖿𝖿 (𝖡𝖡𝖡𝖡 𝑛𝑛)

Similarly, the unsigned comparison operator < is encoded as:

𝖻𝖻𝗅𝗅𝗎𝗎𝖿𝖿𝗋𝗋:𝛱𝛱𝑛𝑛: 𝖿𝖿𝖢𝖢𝗋𝗋.  𝗋𝗋𝗅𝗅𝖯𝖯𝖿𝖿 (𝖡𝖡𝖡𝖡 𝑛𝑛) → 𝗋𝗋𝗅𝗅𝖯𝖯𝖿𝖿 (𝖡𝖡𝖡𝖡 𝑛𝑛) → 𝖿𝖿𝖯𝖯𝖯𝖯𝖿𝖿

The 𝒯𝒯𝘣𝘣𝘳𝘳 formula (𝑡𝑡1 = 𝑡𝑡2 & 𝑡𝑡3) ∨ (𝑡𝑡1 < 0[3]) where & is 𝘣𝘣𝘳𝘳𝘧𝘧𝘤𝘤𝘩𝘩, 0[3] is the zero bit-vector of
size 3, and 𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3 have type (𝗋𝗋𝗅𝗅𝖯𝖯𝖿𝖿 (𝖡𝖡𝖡𝖡 3)) can be encoded in LFSC as

(𝖯𝖯𝖯𝖯  (=   _ 𝑡𝑡1 (𝖻𝖻𝗅𝗅𝖿𝖿𝖢𝖢𝗁𝗁 _ 𝑡𝑡2 𝑡𝑡3))
(𝖻𝖻𝗅𝗅𝗎𝗎𝖿𝖿𝗋𝗋 _ 𝑡𝑡1 (𝖼𝖼𝖯𝖯𝖢𝖢𝗍𝗍𝗋𝗋𝗈𝗈𝖡𝖡𝖡𝖡 3 (𝖻𝖻𝗅𝗅𝖼𝖼 𝖻𝖻𝖻𝖻 (𝖻𝖻𝗅𝗅𝖼𝖼 𝖻𝖻𝖻𝖻 (𝖻𝖻𝗅𝗅𝖼𝖼 𝖻𝖻𝖻𝖻 𝖻𝖻𝗅𝗅𝖢𝖢)))))),

with 𝖻𝖻𝖻𝖻 representing the zero bit.

4.1.7 Bit-blasting

Figure 12 Partial list of the LFSC bit-blasting rules for 𝒯𝒯𝘣𝘣𝘳𝘳.

Approved for Public Release; Distribution Unlimited
22

Recall that a bit-blasting proof (see Figure 10) makes the connection between a bit-vector
formula and its propositional logic encoding by proving for each bit-blasted atom 𝑎𝑎 in the
input formula, the following formula:

𝑎𝑎 ⇔ 𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑏𝑏𝑚𝑚(𝑎𝑎).

We represent a bit-blasted bit-vector term of width 𝑛𝑛 as a sequence of 𝑛𝑛 formulas, with the
𝑖𝑖𝑡𝑡ℎ formula in the sequence corresponding to the 𝑖𝑖𝑡𝑡ℎ bit. The 𝖻𝖻𝖻𝖻𝗋𝗋 type encodes bit-blasted
terms and has two type constructors 𝖻𝖻𝖻𝖻𝗋𝗋𝖢𝖢 and 𝖻𝖻𝖻𝖻𝗋𝗋𝖼𝖼 as shown in Figure 12. We introduce
the dependent type constructor 𝖻𝖻𝖻𝖻𝖻𝖻𝗅𝗅𝖯𝖯𝖿𝖿 to encode the fact that the bit-vector term 𝑥𝑥:𝖡𝖡𝖡𝖡 𝑛𝑛.
corresponds to a bit-blasted term 𝑦𝑦: 𝖻𝖻𝖻𝖻𝗋𝗋. For example, the following term encodes that 15[4]
is bit-blasted as [𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡]:

(𝖻𝖻𝖻𝖻𝖻𝖻𝗅𝗅𝖯𝖯𝖿𝖿 _  (𝖼𝖼𝖯𝖯𝖢𝖢𝗍𝗍𝗋𝗋𝗈𝗈𝖡𝖡𝖡𝖡 4 (𝖻𝖻𝗅𝗅𝖼𝖼 𝖻𝖻𝖻𝖻 (𝖻𝖻𝗅𝗅𝖼𝖼 𝖻𝖻𝖻𝖻 (𝖻𝖻𝗅𝗅𝖼𝖼 𝖻𝖻𝖻𝖻 (𝖻𝖻𝗅𝗅𝖼𝖼 𝖻𝖻𝖻𝖻 𝖻𝖻𝗅𝗅𝖢𝖢 )))))
(𝖻𝖻𝖻𝖻𝗋𝗋𝖼𝖼 𝗋𝗋𝖯𝖯𝗎𝗎𝗅𝗅 (𝖻𝖻𝖻𝖻𝗋𝗋𝖼𝖼 𝗋𝗋𝖯𝖯𝗎𝗎𝗅𝗅 (𝖻𝖻𝖻𝖻𝗋𝗋𝖼𝖼 𝗋𝗋𝖯𝖯𝗎𝗎𝗅𝗅 (𝖻𝖻𝖻𝖻𝗋𝗋𝖼𝖼 𝗋𝗋𝖯𝖯𝗎𝗎𝗅𝗅 𝖻𝖻𝖻𝖻𝗋𝗋𝖢𝖢)))))

We can define proof rules for each piece of syntax in bit-vector terms and compose them in
order to build up arbitrary bit-blasted terms. Figure 12 shows several such bit-blasting
rules. The 𝖻𝖻𝖻𝖻𝖡𝖡𝖿𝖿𝖯𝖯 rule takes a bit-vector variable 𝑣𝑣, its width 𝑛𝑛, and a sequence of bit-blasted
terms 𝑣𝑣𝑏𝑏, and checks that the sequence computed by the side condition code in 𝖻𝖻𝖻𝖻 − 𝗅𝗅𝖿𝖿𝖯𝖯
matches 𝑣𝑣𝑏𝑏. The side condition code just builds a sequence of applications of the 𝖻𝖻𝖿𝖿𝗋𝗋𝖻𝖻𝖿𝖿
operator to 𝑣𝑣—with (𝖻𝖻𝖿𝖿𝗋𝗋𝖻𝖻𝖿𝖿 𝑣𝑣 𝑖𝑖) representing the 𝒯𝒯𝖻𝖻𝗅𝗅 predicate 𝖻𝖻𝖿𝖿𝗋𝗋𝖻𝖻𝖿𝖿𝑖𝑖 introduced at the
beginning of Section 4.1.4. Similarly, the rule that establishes how to bit-blast bit-wise
conjunction (&) takes a proof 𝑥𝑥𝑏𝑏𝑏𝑏 that 𝑥𝑥𝑏𝑏 is the bit-blasted term corresponding to 𝑥𝑥 as well
as a proof 𝑦𝑦𝑏𝑏𝑏𝑏 for 𝑦𝑦𝑏𝑏 corresponding to 𝑦𝑦 and returns a proof that 𝑥𝑥&𝑦𝑦 is bit-blasted to 𝑡𝑡𝑏𝑏.
The 𝑡𝑡𝑏𝑏 term is constructed by the side condition code 𝖻𝖻𝖻𝖻 − 𝖻𝖻𝗅𝗅𝖿𝖿𝖢𝖢𝗁𝗁 (not shown) which
works similarly to −𝗅𝗅𝖿𝖿𝖯𝖯 . The 𝖻𝖻𝖻𝖻𝖤𝖤𝖾𝖾 rule for equality 𝒯𝒯𝖻𝖻𝗅𝗅 -atoms follows a similar pattern, but
returns a formula instead of a 𝖻𝖻𝗅𝗅𝖯𝖯𝖿𝖿 . Note that bit-blasting proof rules do not take any 𝒯𝒯𝖻𝖻𝗅𝗅 -
assertions as assumptions: their conclusions are 𝒯𝒯𝖻𝖻𝗅𝗅 -valid.

Example 6. Encoding in LFSC the bit-blasting proof for the formula 𝑎𝑎[8] = 𝑥𝑥[8]&𝑦𝑦[8] requires
the following proof rule applications:

(𝖻𝖻𝖻𝖻𝖤𝖤𝖾𝖾 _ _ _ _ _ _ (𝖻𝖻𝖻𝖻𝖡𝖡𝖿𝖿𝖯𝖯 8 𝑎𝑎 _ ) (𝖻𝖻𝖻𝖻𝖻𝖻𝖢𝖢𝗁𝗁 _ _ _ _ _ _ (𝖻𝖻𝖻𝖻𝖡𝖡𝖿𝖿𝖯𝖯 8 𝑥𝑥 _ ) (𝖻𝖻𝖻𝖻𝖡𝖡𝖿𝖿𝖯𝖯 8 𝑦𝑦 _ )))

Assuming previously defined variables 𝑎𝑎, 𝑥𝑥, and 𝑦𝑦, the above term has type 𝘵𝘵𝘩𝘩𝘵𝘵𝘱𝘱𝘧𝘧𝘩𝘩𝘱𝘱(𝛱𝛱) where
𝛱𝛱 is:

(𝑎𝑎[8] = 𝑥𝑥[8]&𝑦𝑦[8]) ⇔ � (𝑎𝑎𝑖𝑖 ⇔ (𝖻𝖻𝖿𝖿𝗋𝗋𝖻𝖻𝖿𝖿 𝑣𝑣 𝑖𝑖) ∧ (𝖻𝖻𝖿𝖿𝗋𝗋𝖻𝖻𝖿𝖿 𝑣𝑣 𝑖𝑖))
0≤𝑖𝑖<8

.

The bit-blasting LFSC proof rules rely on the side-condition code to build up the bit-blasted
terms. This side-condition code thus becomes part of the trusted core and offers an
efficient way to encode bit-blasting proofs.

4.1.8 Resolution in SATbb

A resolution refutation can be obtained from a SAT solver by instrumenting it to store
resolution proofs of all the clauses learned during search. The empty clause is then derived

Approved for Public Release; Distribution Unlimited
23

by resolving input clauses and learned clauses. Recall that SATbb uses “solve with
assumptions” to identify a subset 𝐿𝐿𝐴𝐴𝐴𝐴 ⊆ 𝑏𝑏𝐴𝐴𝐴𝐴 that is inconsistent with 𝐶𝐶𝐴𝐴𝐴𝐴 and thereby
produce the theory lemma ¬𝐿𝐿. Because the assumption literals are implemented as
decisions in SATbb, all clauses learned in SATbb follow from the bit-blasting clauses alone
and can thus be reused in subsequent checks by SATbb. In particular, we can retrieve a
resolution proof of the ¬𝐿𝐿𝐴𝐴𝐴𝐴 clause from SATbb starting from the bit-blasting clauses 𝐶𝐶𝐴𝐴𝐴𝐴
and using the stored resolutions of the learned clauses. We are careful to reuse the
resolution proofs of learned clauses in multiple 𝒯𝒯𝖻𝖻𝗅𝗅 lemmas.

Stepping back and examining the overall 𝒯𝒯𝖻𝖻𝗅𝗅 proof structure, it looks like we could obtain
one big resolution proof if we could plug the SATbb resolution trees into the SATmain
resolution tree. However, this cannot be done directly as the SATvariable 𝑎𝑎𝐴𝐴𝐴𝐴 abstracting 𝒯𝒯𝖻𝖻𝗅𝗅
-atom 𝑎𝑎 in the resolution proof in SATbb is not the same as the 𝑎𝑎P variable used to abstract
the same atom in SATmain. Therefore, we need a proof construct to map the proof of a clause
𝑐𝑐𝐴𝐴𝐴𝐴 to 𝑐𝑐P (the dashed lines between SATmain and SATbb in Figure 10).

In previous work on encoding SMT proofs in LFSC [18], we developed a specialized proof
rule 𝖿𝖿𝗍𝗍𝗍𝗍𝗎𝗎𝖿𝖿𝖯𝖯 used to transform a 𝒯𝒯 -proof of ⋀ ¬𝑛𝑛

𝑖𝑖=0 𝑙𝑙𝑖𝑖 ⊨𝒯𝒯⊥ to a proof of the clause 𝑐𝑐P =
[𝑙𝑙1P, … , 𝑙𝑙𝑛𝑛P] where we use the square brackets as a shorthand for the LFSC syntax for clauses.
Chaining 𝖿𝖿𝗍𝗍𝗍𝗍𝗎𝗎𝖿𝖿𝖯𝖯 rules turns a term of type 𝗋𝗋𝗁𝗁𝗍𝗍𝖯𝖯𝖿𝖿𝗁𝗁𝗍𝗍(¬𝑙𝑙1) → ⋯ → 𝗋𝗋𝗁𝗁𝗍𝗍𝖯𝖯𝖿𝖿𝗁𝗁𝗍𝗍(¬𝑙𝑙𝑛𝑛).𝗁𝗁𝖯𝖯𝖿𝖿𝗁𝗁𝗍𝗍 𝖼𝖼𝖿𝖿𝖢𝖢
into a term of type 𝗁𝗁𝖯𝖯𝖿𝖿𝗁𝗁𝗍𝗍 [𝑙𝑙1P … 𝑙𝑙𝑛𝑛P]. Our goal here is to build a proof that takes as
assumptions the negation of each literal 𝑙𝑙𝑖𝑖 as well as a proof of the clause 𝑐𝑐𝐴𝐴𝐴𝐴 =
[𝑙𝑙1𝐴𝐴𝐴𝐴, … , 𝑙𝑙𝑛𝑛𝐴𝐴𝐴𝐴] and returns a term of type 𝗁𝗁𝖯𝖯𝖿𝖿𝗁𝗁𝗍𝗍 𝖼𝖼𝖿𝖿𝖢𝖢. We will do this using the 𝖿𝖿𝖢𝖢𝗋𝗋𝖯𝖯𝖯𝖯𝗂𝗂𝖢𝖢𝖿𝖿𝗋𝗋 rule: 8

𝖿𝖿𝖢𝖢𝗋𝗋𝖯𝖯𝖯𝖯𝗂𝗂𝖢𝖢𝖿𝖿𝗋𝗋:  𝛱𝛱𝑓𝑓: 𝖿𝖿𝖯𝖯𝖯𝖯𝖿𝖿.  𝛱𝛱𝑣𝑣: 𝗅𝗅𝖿𝖿𝖯𝖯.  𝛱𝛱𝑐𝑐: 𝖼𝖼𝖿𝖿𝖿𝖿𝗎𝗎𝗍𝗍𝗅𝗅. 
 𝗋𝗋𝗁𝗁𝗍𝗍𝖯𝖯𝖿𝖿𝗁𝗁𝗍𝗍 𝑓𝑓 → 𝖿𝖿𝗋𝗋𝖯𝖯𝖿𝖿 𝑣𝑣 𝑓𝑓 → (𝗁𝗁𝖯𝖯𝖿𝖿𝗁𝗁𝗍𝗍 [𝑣𝑣] → 𝗁𝗁𝖯𝖯𝖿𝖿𝗁𝗁𝗍𝗍 𝑐𝑐) → 𝗁𝗁𝖯𝖯𝖿𝖿𝗁𝗁𝗍𝗍 𝑐𝑐

This natural deduction style rule states that if formula 𝑓𝑓 holds (𝗋𝗋𝗁𝗁𝗍𝗍𝖯𝖯𝖿𝖿𝗁𝗁𝗍𝗍 𝑓𝑓) and is abstracted
by propositional variable 𝑣𝑣 (𝖿𝖿𝗋𝗋𝖯𝖯𝖿𝖿 𝑣𝑣 𝑓𝑓), and if we can derive clause 𝑐𝑐 from the unit clause
corresponding to 𝑓𝑓 (𝗁𝗁𝖯𝖯𝖿𝖿𝗁𝗁𝗍𝗍 [𝑣𝑣] → 𝗁𝗁𝖯𝖯𝖿𝖿𝗁𝗁𝗍𝗍 𝑐𝑐), then we can derive clause 𝑐𝑐.

Example 7. We show how to put these rules together to lift a proof of a clause in SATbb to a
proof of the corresponding clause in SATmain. In the sub-expression below, assume 𝑐𝑐 has type
𝗁𝗁𝖯𝖯𝖿𝖿𝗁𝗁𝗍𝗍 [¬𝑎𝑎1𝐴𝐴𝐴𝐴, ¬𝑎𝑎2𝐴𝐴𝐴𝐴] and that 𝑎𝑎𝑡𝑡1 and 𝑎𝑎𝑡𝑡2 have types 𝖿𝖿𝗋𝗋𝖯𝖯𝖿𝖿(𝑎𝑎1𝐴𝐴𝐴𝐴,𝑎𝑎1) and 𝖿𝖿𝗋𝗋𝖯𝖯𝖿𝖿(𝑎𝑎2𝐴𝐴𝐴𝐴,𝑎𝑎2),
respectively. The two resolution steps between the assumption unit clauses 𝑡𝑡1 and 𝑡𝑡2 derive
the empty clause from 𝑐𝑐. Therefore, the computed type of the following term is
𝗋𝗋𝗁𝗁𝗍𝗍𝖯𝖯𝖿𝖿𝗁𝗁𝗍𝗍(𝖢𝖢𝖯𝖯𝗋𝗋 𝑎𝑎1) → 𝗋𝗋𝗁𝗁𝗍𝗍𝖯𝖯𝖿𝖿𝗁𝗁𝗍𝗍(𝖢𝖢𝖯𝖯𝗋𝗋 𝑎𝑎2) → 𝗁𝗁𝖯𝖯𝖿𝖿𝗁𝗁𝗍𝗍 𝖼𝖼𝖿𝖿𝖢𝖢, which is exactly what the 𝘧𝘧𝘱𝘱𝘱𝘱𝘰𝘰𝘳𝘳𝘱𝘱 rule
requires:

8 For simplicity, 𝖿𝖿𝖢𝖢𝗋𝗋𝖯𝖯𝖯𝖯𝗂𝗂𝖢𝖢𝖿𝖿𝗋𝗋 only introduces literals in positive polarity. In reality, we also use a dual
version that introduces literals in negative polarity.

Approved for Public Release; Distribution Unlimited
24

𝜆𝜆ℎ1: 𝗋𝗋𝗁𝗁𝗍𝗍𝖯𝖯𝖿𝖿𝗁𝗁𝗍𝗍(𝖢𝖢𝖯𝖯𝗋𝗋 𝑎𝑎1).  𝜆𝜆ℎ2: 𝗋𝗋𝗁𝗁𝗍𝗍𝖯𝖯𝖿𝖿𝗁𝗁𝗍𝗍(𝖢𝖢𝖯𝖯𝗋𝗋 𝑎𝑎2).
      (𝖿𝖿𝖢𝖢𝗋𝗋𝖯𝖯𝖯𝖯𝗂𝗂𝖢𝖢𝖿𝖿𝗋𝗋 _ _ _ ℎ1 𝑎𝑎𝑡𝑡1 (𝜆𝜆𝑡𝑡1: (𝗁𝗁𝖯𝖯𝖿𝖿𝗁𝗁𝗍𝗍[𝑎𝑎1𝐴𝐴𝐴𝐴]).
                (𝖿𝖿𝖢𝖢𝗋𝗋𝖯𝖯𝖯𝖯𝗂𝗂𝖢𝖢𝖿𝖿𝗋𝗋 _ _ _ ℎ2 𝑎𝑎𝑡𝑡2 (𝜆𝜆𝑡𝑡2: (𝗁𝗁𝖯𝖯𝖿𝖿𝗁𝗁𝗍𝗍[𝑎𝑎2𝐴𝐴𝐴𝐴]).
                          (𝖱𝖱𝗅𝗅𝗍𝗍 _ _ (𝖱𝖱𝗅𝗅𝗍𝗍 _ _ 𝑐𝑐 𝑡𝑡1 𝑣𝑣1) 𝑡𝑡2 𝑣𝑣2)))))

4.2 SMTCoq: communication between Coq and SMT solvers
SMTCoq9 [3] is a tool that allows the Coq [26] proof assistant to communicate with external
automatic solvers for Boolean satisfiability (SAT) and Satisfiability Modulo Theories (SMT).
Its twofold goal is to:

• increase the confidence in SAT and SMT solvers: SMTCoq provides an independent and
certified checker for SAT and SMT proof witnesses;

• safely increase the level of automation of Coq: SMTCoq provides starting safe tactics to
solve a class of Coq goals automatically by calling external solvers and checking their
answers (following a skeptical approach).

With our extensions, SMTCoq currently supports the SAT solver ZChaff [27] and the SMT
solvers veriT [28] and CVC4 [20] for the quantifier-free fragment of the combined theory of
linear integer arithmetic, equality with uninterpreted functions, bitvector arithmetic and
functional arrays. There is a large variety of SAT and SMT solvers, with each solver typically
excelling at solving problems in some specific class of propositional or first-order
problems. While the SAT and SMT communities have adopted standard languages for
expressing input problems (namely the DIMACS standard for SAT and the SMT-LIB [29]
standard for SMT), agreeing on a common output language for proof witnesses has proven
to be more challenging. Several formats [18], [30], [31] have been proposed but none has
emerged as a standard yet. Each proof-producing solver currently implements its own
variant of these formats.

To be able to combine the advantages of multiple SAT and SMT solvers despite the lack of
common standards for representing proof certificates, SMTCoq has been designed to be
modular along two dimensions:

• supporting new theories: SMTCoq’s main checker is an extendable combination of
independent small checkers;

• supporting new solvers: SMTCoq’s kernel relies on a generic certificate format that can
encode most SAT and SMT reasonings for supported theories; the encoding can be
done during a preprocessing phase, which does not need to be certified.

9 SMTCoq is distributed as free software at https://github.com/LFSC/smtcoq/tree/v1.3-darpa.

https://github.com/LFSC/smtcoq/tree/v1.3-darpa

Approved for Public Release; Distribution Unlimited
25

In this report, we emphasize the key ideas behind the modularity of SMTCoq , and validate
this by reporting on the work of the integration of the SMT solver CVC4 [20], the theory of
bit vectors and functional arrays. This work simultaneously aims at:

• offering CVC4 users the possibility to formally check CVC4 proofs in a trusted
environment like Coq;

• bringing the power of a versatile and widely used SMT solver like CVC4 to Coq ;

• providing in Coq decision procedures for

– bit-vectors: a theory widely used, for instance, for verifying circuits or
programs using machine integers or bit-level representation of floating-point
numbers, and

– functional arrays: a theory which is used in program verification to encode
programming languages arrays but also to represent memory.

4.2.1 The SMTCoq Tool

General Idea

The heart of SMTCoq is a checker for a generic format of certificates (close to the format
proposed by Besson et al. [31]), implemented and proved correct inside Coq (see Figure
13). Taking advantage of Coq ’s computational capabilities, the SMTCoq checker is
executable inside Coq .

Figure 13 SMTCoq's main checker and its uses.

Approved for Public Release; Distribution Unlimited
26

The Coq signature of this checker is the following:

where the type formula represents the deep embedding (implementation of the syntax
with an interpretation to it) in Coq of SMT formulas, and the type certificate represents
SMTCoq ’s format of certificates.

The checker’s soundness is stated with respect to a translation function from the deep
embedding of SMT formulas into Coq terms:

that interprets every SMT formula into its Coq Boolean counterpart. The correctness of the
checker is given by the following lemma:

which states that whenever the checker returns true for a given a formula and a certificate
for it, the interpretation in Coq of the formula is a valid Boolean sentence.

The choice of the type of Booleans bool as the codomain of the translation function ⟦•⟧,
instead of the type of (intuitionistic) propositions Prop, allows us to handle the checking of
the classical reasoning made by SMT solvers without adding any axioms to Coq. The
SSReflect [32] plugin for Coq can be used to bridge the gap between propositions and
Booleans for the theories considered by SMTCoq. The major shortcoming of this approach
is that it does not allow quantifiers inside goals sent to SMT solvers, although it does not
prevent one from feeding these solvers universally quantified lemmas. The first use case of
this correct-by-construction checker is to check the validity of a proof witness, or proof
certificate, coming from an external solver against some input problem (Figure 13, middle).
In this use case, the trusted base is both Coq and the parser of the input problem. The parse
is part of the trusted based because we need to make sure we are effectively verifying a
proof of the problem we sent to the external solver. However, this parser is fairly
straightforward.

The second use case is within a Coq tactic (Figure 13, right). We can give a Coq goal to an
external solver and get a proof certificate for it. If the checker can validate the certificate,
the soundness of the checker allows us to establish a proof of the initial goal. This process
is known as computational reflection as it uses a computation (here, the execution of the
checker) inside a proof. In this use case, the trusted base consists only of Coq: if something
else goes wrong (e.g., the checker cannot validate the certificate), the tactic will fail, but
nothing unsound will be added to the system.

In both cases, a crucial aspect for modularity purposes is the possibility to preprocess proof
certificates before sending them to the SMTCoq checker, without having to prove anything
about this preprocessing stage. Again, if the preprocessor is buggy, the checker will fail to
validate the proof certificate (by returning false), which means that while nothing is

Approved for Public Release; Distribution Unlimited
27

learned, nothing unsafe is added to Coq’s context. This allows us to easily extend SMTCoq
with new solvers: as long as the certificate coming from the new solver can be logically
encoded into SMTCoq ’s certificate format, we can implement this encoding at the
preprocessing stage. As a result, SMTCoq ’s current support for ZChaff , veriT and CVC4 is
provided through the implementation of a preprocessor for each solver. These
preprocessors convert to the same proof format, thus sharing the same overall checker.

Using a preprocessor is also beneficial for efficiency: proof certificates may be encoded
more compactly before being sent to the SMTCoq checker, which may improve
performance.

The Checker

We now provide more details on the checker of SMTCoq . As presented in Figure 14, it
consists of a main checker obtained as the combination of several small checkers, each
specialized in one aspect of proof checking in SMT (e.g., CNF conversion, propositional
reasoning, reasoning in the theory of equality, linear arithmetic reasoning, bit-vector
arithmetic, functional arrays and so on).

Figure 14 Internals of the Coq checker.

Approved for Public Release; Distribution Unlimited
28

The type certificate is actually the aggregation of specialized types, one for each small
checker. The role of the main checker is thus to dispatch each piece of the certificate to its
dedicated small checker, until the initial formula is proved.

A small checker is a Coq program that, given a (possibly empty) list of formulas and a
certificate step associated with it, computes a new formula:

The soundness of the checker comes from the soundness of each small checker, stated as
follows:

meaning that the small checker returns a formula which is implied (after translation into
Coq ’s logic) by the conjunction of its premises. Note that the list of premises may be empty:
in such a case, the small checker returns a tautology in Coq.

Here are some examples of small checkers.

• For propositional resolution chains, the checker takes as input a list of premises and
returns a resolvent if it exists, or a trivially true clause otherwise. In this case, a
certificate is not required as part of the small checker’s input.

• For the theory of equality with uninterpreted functions (EUF), the checker takes as
input a formula in this theory formulated as a certificate (corresponding to a theory
lemma produced by the SMT solver), and returns the formula if it is able to check it, or
a trivially true clause otherwise. In this case, no premises are given.

• For linear integer arithmetic (LIA), the checker works similarly to the EUF checker, but
checks the formula using Micromega [33], an efficient decision procedure for this
theory implemented in Coq.

• For bit-vectors, the checkers work like the EUF one but some of them have premises.
Most rules concern bit-blasting bit-vector operators, and so the formulas manipulated
by this checker use a special predicate to relate bit-vectors and their bit-level
interpretation.

• For the theory of functional arrays with extensionality (A), the checker takes as input a
formula of this theory (corresponding to an instance of one of the three axioms of
arrays), returns it if it is able to check it, or the true clause otherwise. This checker
only produces tautologies.

The only thing that small checkers need to share is the type formula, and its interpretation
into Coq Booleans. Each small checker may then reason independently, using separate
pieces of the certificate. Again, this is crucial for modularity: to extend SMTCoq with a new
theory, one only has to extend the type formula with the signature of this theory and,

Approved for Public Release; Distribution Unlimited
29

independently of the already existing checkers, implement a small checker for this theory
and prove its soundness.

Notice that “small checker” can be understood in a very general sense: any function that,
given a list of first-order formulas, returns an implied first-order formula, can be plugged
into SMTCoq as a small checker. In principle, such a checker could even be as complex as an
SMT solver, as long as it can be proved correct in Coq.

Figure 15 Integration of CVC4 in SMTCoq.

4.2.2 Extending SMTCoq to support CVC4

Approach for supporting CVC4

As detailed above, CVC4 is a proof-producing SMT solver, whose proof format is based on
the Logical Framework with Side Conditions (LFSC) [18]. LFSC extends the Edinburgh
Logical Framework [17] by allowing types with computational side conditions, explicit

Approved for Public Release; Distribution Unlimited
30

computational checks defined as programs in a small but expressive functional first-order
programming language. On the other hand, SMTCoq supports certificates in a restricted
format. Our approach for supporting the SMT solver CVC4 in SMTCoq is to write a
translator/preprocessor from the fragment of LFSC in which CVC4 produces its proofs to
the internal certificate representation of SMTCoq, as shown in Figure 15.

LFSC proof witnesses

The LFSC language has built-in types for arbitrary precision integers and rationals, ML-
style pattern matching over LFSC type constructors, recursion, a minimal support for
exceptions, and a very restricted set of imperative features. One can define proof rules in
LFSC as typing rules that may optionally include a side condition written in this language.
When checking the application of such proof rules, an LFSC checker computes actual
parameters for the side condition and executes its code; if the side condition fails, the LFSC
checker rejects the rule application. The validity of an LFSC proof witness thus relies on the
correctness of the proof rules which it uses. In particular, this includes any side conditions
functions used in the rules. CVC4 defines its own proof rules for the various theories it
supports in LFSC files called signatures. These include:

• sat.plf: Definitions for propositional variables, clauses, and rules for resolution. The
resolution used in this signature is called deferred resolution and has a strong
computational content.

• smt.plf: This file defines the language of terms and formulas used in the logic of SMT
solvers as well as CNF-conversion rules and mappings from SMT atoms to
propositional variables.

• th_base.plf: Constructors for functions types and applications are defined in this file.
The rules of congruence of uninterpreted functions together with rules of equality are
defined here also. These rules represent what is usually referred to as the EUF
(equality over uninterpreted function) theory (or the empty theory) in SMT solvers.

• th_int.plf: This file only provides constructors and symbols for linear integer
arithmetic. There are no rules yet as CVC4 doesn’t produce proofs for arithmetic yet.
We show later though that this is not a problem for SMTCoq.

• th_bv.plf: This file contains types and constructors for the theory of fixed-size bit
vectors. All symbols and operators are declared here, while rules for bit-blasting these
operators are defined in an accompanying file . These rules too have a strong
computational content through the use of side-conditions.

• th_arrays.plf: This file contains the two operators read and write for the theory of
functional arrays as well as rules that encode the usual axiomatization of this theory.

Approved for Public Release; Distribution Unlimited
31

Example 8 (Simple rules in LFSC). This is how the rule for elimination of disjunction (or) is
written in LFSC . The judgment th_holds is declared for terms of type formula and means
that the formula is valid (or holds) in all models. The corresponding formulation as an
inference rule in mathematical notation is given on the right. There, th_holds is written as ⊨.

Example 9 (Rules with side-conditions in LFSC). We use the same notations as the previous
example. This rule bit-blasts the bitwise and operation on bit vectors of size n (bvand). An
extra judgment is present here, bblast_term _ x f which means that f is the bit-level
interpretation (or bit-blasted formula) corresponding to the term x.

The corresponding inference rule in mathematical notation is shown below, where the
judgment above is denoted by bbT.

This rule uses a side condition, which means that the rule can only be applied when 𝑡𝑡𝑏𝑏 is equal
to (𝚋𝚋𝚋𝚋𝚎𝚎𝚎𝚎𝚋𝚋𝚋𝚋_𝚋𝚋𝚙𝚙𝚎𝚎𝚎𝚎𝚙𝚙 𝑥𝑥𝑏𝑏 𝑦𝑦𝑏𝑏) where 𝚋𝚋𝚋𝚋𝚎𝚎𝚎𝚎𝚋𝚋𝚋𝚋_𝚋𝚋𝚙𝚙𝚎𝚎𝚎𝚎𝚙𝚙 is the small recursive functional program
given earlier.

Approved for Public Release; Distribution Unlimited
32

SMTCoq certificates

SMTCoq does not support LFSC for proof certificates. Instead, it uses a format is strongly
inspired by (and related to) the one proposed in [31]. A proof certificate in SMTCoq is a
sequence of proof steps, where each proof step is either:

1. an input clause, or

2. the application of a rule to a (potentially empty) list of derived clauses together with a
resulting clause.

Each resulting clause is identified by a unique number. SMTCoq already has a set of
predefined rules whose checker (which ensures that the application of the rule yields the
specified conclusion) are proven correct in Coq. Some of these rules are deductive, while
some other are given in the form of a tautology (i.e., rules with no premises). This format of
certificates is inherently linear. For instance, the following proof step says that the result of
resolving the clauses identified by 9 and 5 is the clause (𝑏𝑏 ∧ 𝑑𝑑) ∨ ¬𝑑𝑑, which is given the
identifier 11.

The key differences between LFSC and the SMTCoq format are presented in Table 1. The
major difference lies in the presentation of the deduction rules. In SMTCoq , the small
checkers deduce a new formula from already known formulas, possibly with the help of a
piece of certificate that depends on the theory. The LFSC format is more uniform, thanks to
the side conditions described above.

Table 1 Main differences between the LFSC and SMTCoq certificate formats.

LFSC SMTCoq

Rules deduction + computation deduction + certificate
Nested proofs supported not supported

Translation

To support LFSC, and so CVC4 , we have implemented (in OCaml) an untrusted
preprocessor that transforms LFSC proofs into SMTCoq proofs. To this end, for some
theories, we need to replay parts of the side conditions, in order to produce the
corresponding SMTCoq premises, conclusion and piece of certificate that will be passed to
the small checkers. This requires us to perform type checking on the LFSC object itself as
well. This encoding, however, is relatively straightforward:

• for propositional reasoning, LFSC side conditions use the same logical content as
SMTCoq rules;

Approved for Public Release; Distribution Unlimited
33

• CNF conversion and EUF proofs are nested in LFSC, so they require some processing
for the moment;

• for linear integer arithmetic, since SMTCoq relies on an existing decision procedure in
Coq, it only needs to know what theory lemma is being proved, and can ignore the
actual proof steps in the LFSC certificate.

One difficulty in translating LFSC proofs to the SMTCoq format comes from the possibility
in LFSC of using natural-deduction-style proofs, where one can nest one proof inside
another. For instance, it is possible to have lemmas inside an LFSC proof whose witnesses
are themselves LFSC proofs. The architecture of the main and small checkers of SMTCoq
does not currently allow this sort of nesting: every clause produced by the small checkers
needs to be a direct consequence of input clauses or clauses that were previously produced.
To encode an LFSC proof into SMTCoq, our preprocessor thus linearizes nested proofs. The
LFSC proofs generated by CVC4 are constructed in such a way that this does not cause a
blow-up in practice; however, to support LFSC in general, we would need to extend
SMTCoq certificates with nested proofs. Again, this extension should be made easier by the
modularity inside the checker. It should impact only the main checker, and not the various
small checkers already in SMTCoq.

Example 10. This example shows the differences in proofs between the LFSC version and the
SMTCoq one for a simple problem below, expressed in SMT-LIB 2 format:

The LFSC proof generated by CVC4 follows. One can notice the nesting of proof rules
applications (e.g., (not_not_intro _ (not_and_elim _ ...))).

Approved for Public Release; Distribution Unlimited
34

As an example of SMTCoq certificate, we take the proof generated by the SMT solver veriT
(the #i id’s denote shared subterms).

Approved for Public Release; Distribution Unlimited
35

Finally, the last listing shows a textual representation (in the same format as the one of
veritT) of the translated version of the LFSC proof produced by CVC4.

The SMTCoq representation is more compact; however, the LFSC proof is more detailed.10

This translator (or preprocessor) is implemented as an OCaml functor which takes as
argument a module providing facilities for translating terms, clauses and constructing rule
applications. This functor is instantiated with a module that performs terms translation
using the SMTCoq API directly, effectively enabling SMTCoq itself to accept certificates in
the format of LFSC. It is also instantiated with a different module that simply prints terms
and rules in the proof format of veriT. This allows us to provide a standalone translator

10 The LFSC proof does omit terms in certain positions, replacing them by underscores, but these
terms can be reconstructed automatically by type inference as needed.

Approved for Public Release; Distribution Unlimited
36

from LFSC to veriT proofs which can be used independently The tool is called and is
especially useful to debug and replay proofs in a step-by-step fashion.

4.2.3 Support for the Theory of Fixed-width Bit Vectors

We explained in Section 4.1 how we extended CVC4 to produce LFSC proofs for the
quantifier-free fragment of the SMT theory of bit vectors. To check proof certificates in this
theory, SMTCoq needed be extended as well. As explained in Section 4.2.1, to do that one
needs to:

1. extend the Coq representation of formulas with the signature of the bit vector theory
and the interpretation function into Coq terms;

2. implement (new) small checkers and their corresponding certificates for this theory,
and prove their correctness.

Step 1 is a simple extension on the SMTCoq side. The major difficulty is that Coq itself has
limited support for bit vectors. Its bit vector library provides only the implementation of
bitwise operations (and not arithmetic operations), and no proofs. We have thus
implemented a more complete library for this theory, which is detailed in Section 4.2.3.
Step 2 involves implementing and adding new certified Coq programs, the small checkers.
As already mentioned, however, because of SMTCoq’s design, none of the previous small
checkers and their proofs of correctness need to be changed as a result of this addition.

LFSC proofs for bit vectors produced by CVC4 mainly involve the following two kinds of
deduction steps:

• bit-blasting steps that reduce the input bit vector formula to an equisatisfiable
propositional formula;

• standard propositional reasoning steps (based on resolution).

The propositional steps can be handled directly by previous small checkers. For the bit-
blasting steps, we have implemented new small checkers that relate terms of the bit vector
theory with lists of Boolean formulas representing their bits, and proved the correctness in
Coq for these small checkers.

LFSC proofs generated by CVC4 involve a third kind of step: formula simplifications based
on the equivalence of two bit-vector terms or atomic formulas (for instance, by normalizing
inequalities). Currently, these simplification steps are not provided a detailed LFSC
subproof by CVC4, although there are plans to do so in the near future. In the current
SMTCoq implementation then, we assume those steps, as in the LFSC proof coming from
CVC4, or let the user prove them, in the case of tactics. Since those steps correspond to
applications of CVC4 -defined rewriting and simplification rules, we plan for now to prove

Approved for Public Release; Distribution Unlimited
37

the correctness of these rules once and for all at the Coq level, and to pre-process
simplification steps into applications of these rules.

A Coq library for bit vector arithmetic: BVList

Our Coq library BVList consists of two module types, namely BITVECTOR and RAWBITVECTOR,
that include the signatures of the abstract structure. Naively, they are just lists of Coq
parameters and axioms. There is also a functor module RAW2BITVECTOR that takes an
instance of RAWBITVECTOR and returns a module satisfying the BITVECTOR signature.

The notation <: says that we are making a module satisfying the BITVECTOR signature out of
an instance M of type RAWBITVECTOR. In order to build bit vectors, this functor module uses
the bit vector implementation coming from the input module 𝙼𝙼, together with a well-
foundedness obligation on its size. They are respectively implemented as the fields bv and
wf of the following Coq record:11

Observe that in the above implementation, the type of bit vectors is a dependent type which
depends on the value of its parameter n, a Coq binary natural (the corresponding Coq type
is noted N as opposed to the type of unary naturals nat).

We then make an instance module RAWBITVECTOR_LIST of RAWBITVECTOR where bit vectors
are implemented as Coq’s Boolean lists storing, in order, the individual bits of the bit vector
(and so having a length equal to the bit vector size).

As a consequence, any operation defined over bit vectors is encoded as an operation over
Boolean lists. For instance, bit vector and is a binary operation that returns the list which is
built by mapping Boolean and over the elements of input lists if input lists have the same
size; nil otherwise.

11 A Coq record is an inductive type with a single constructor, and associated projection functions
for its fields.

Approved for Public Release; Distribution Unlimited
38

Using such kind of definitions, we can state and prove properties of bit vectors such as the
commutativity of and:

This lemma can be proven by structural induction on the instance a and a case analysis on
b. It is reflected in the interface BITVECTOR as

Passing the module RAWBITVECTOR_LIST to the functor RAW2BITVECTOR as an argument, we
get the module BITVECTOR_LIST satisfying the BITVECTOR signature. In this module, bit
vectors are dependently typed with the values of Coq’s binary naturals. This is not
surprising since the module is built by the functor module. One can see the bit vector
structure (a Coq record) by using the destruct tactic (in Coq ’s proof editing mode) over an
instance 𝚎𝚎:𝚋𝚋𝚎𝚎𝚋𝚋𝚙𝚙𝚎𝚎𝚋𝚋𝚋𝚋𝚙𝚙𝚙𝚙 𝚎𝚎:

where bv is an instance of type RAWBITVECTOR_LIST.bitvector which unfolds into a
Boolean list while wf is of type RAWBITVECTOR_LIST.size bv = n which unfolds into the
Prop12 instance, 𝙽𝙽.𝚙𝚙𝚙𝚙_𝚎𝚎𝚎𝚎𝚋𝚋(𝚎𝚎𝚎𝚎𝚎𝚎𝚕𝚕𝚋𝚋𝚕𝚕 𝚋𝚋𝚙𝚙) = 𝚎𝚎. We use this module to extend the structures
of formulas of SMTCoq with bit vector types and operations as described earlier.

4.2.4 Support for the Theory of Functional Arrays with Extensionality

To support the theory of functional arrays, we have built a library on top of a version of
Coq’s FMapList 13 with type classes. Arrays are encoded as (finite) maps from keys to
elements for the keys that are present in the map, with a default value for those keys not in
the map. Since SMTCoq requires to have structural equality over terms, we have used such
a formalization to have extensional equality over arrays that is reflected in the structural
equality. In other words, two array terms denote the same array in the theory of arrays if
and only if their Coq representations are structurally equal. This allows us to extend Coq

12 Prop, the type of formulas, or propositions, in Coq, is a Coq universe just like Set and Type.

13 See https://coq.inria.fr/library/Coq.FSets.FMapList.html for instance.

https://coq.inria.fr/library/Coq.FSets.FMapList.html

Approved for Public Release; Distribution Unlimited
39

representation of formulas with the signature of the theory of arrays and with the
interpretation into Coq terms.

This library provides a Coq type farray parameterized by two other types, one for the
keys, and the other for the elements. In addition, this library requires the type of keys to
have a total order (this is to ensure that maps are unique) and that the type of elements to
be inhabited (this is to make sure that maps can have a default value). To this effect we
provide type classes for the user to define its own instances (e.g., for custom types).

EqbType is a class of types with a Boolean equality that reflects in Leibniz equality (this is
equivalent to saying that the type has decidable equality), OrdType is for types equipped
with a partial order. Adding the function compare (through the class Comparable) makes
this order total. Finally Inhabited only asks for the user to provide an element of the type
(which is used as a default value in the map). We also provide predefined instances of these
classes, ready to use, for the types manipulated by SMTCoq. This way there is no need to
prove that e.g., ℤ has a total order, is inhabited and has a decidable equality, every time we
want to reason about arrays with integer indices. Similarly, we show that if both the
elements (say of type e) and keys (say of type k) enjoy these properties then so does the
type farray k e. This allows one to effectively reason in Coq about arrays of arrays of …
(or multi-dimentional arrays) and use the checkers that we built in a transparent manner.

In the semantics of SMT-LIB 2, the standard language of SMT , arrays associate any key
with an element. This means that the function select (also called get, or read) is total, as
opposed to the semantic given by partial maps (the function find in Coq returns an option
elt). In our interpretation, the function select is defined as below, i.e. if the key i is in the
map then it returns the element to which it is associated, otherwise it returns the default
value (given by the fact that elt is inhabited).

Approved for Public Release; Distribution Unlimited
40

This interpretation is consistent with the semantic of the theory of functional arrays with
extensionality, but only on the quantifier-free fragment. In particular it realizes the three
following axioms of the theory of arrays. In the following we use the notation 𝑎𝑎[𝑖𝑖] for
𝗍𝗍𝗅𝗅𝖿𝖿𝗅𝗅𝖼𝖼𝗋𝗋(𝑎𝑎, 𝑖𝑖) and 𝑎𝑎[𝑖𝑖 ← 𝑣𝑣] for 𝗍𝗍𝗋𝗋𝖯𝖯𝖯𝖯𝗅𝗅(𝑎𝑎, 𝑖𝑖, 𝑣𝑣), these notations can be combined/chained to
improve legibility.

∀ 𝑎𝑎: 𝖿𝖿𝖿𝖿𝖯𝖯𝖯𝖯𝖿𝖿𝗍𝗍 𝖡𝖡𝗅𝗅𝗍𝗍 𝗅𝗅𝖿𝖿𝗋𝗋, 𝑖𝑖: 𝖡𝖡𝗅𝗅𝗍𝗍, 𝑣𝑣: 𝗅𝗅𝖿𝖿𝗋𝗋. 𝑎𝑎[𝑖𝑖 ← 𝑣𝑣][𝑖𝑖] = 𝑖𝑖
∀ 𝑎𝑎: 𝖿𝖿𝖿𝖿𝖯𝖯𝖯𝖯𝖿𝖿𝗍𝗍 𝖡𝖡𝗅𝗅𝗍𝗍 𝗅𝗅𝖿𝖿𝗋𝗋, 𝑖𝑖, 𝑗𝑗: 𝖡𝖡𝗅𝗅𝗍𝗍, 𝑣𝑣: 𝗅𝗅𝖿𝖿𝗋𝗋. 𝑖𝑖 ≠ 𝑗𝑗 ⟹ 𝑎𝑎[𝑖𝑖 ← 𝑣𝑣][𝑗𝑗] = 𝑎𝑎[𝑗𝑗]

∀ 𝑎𝑎, 𝑏𝑏: 𝖿𝖿𝖿𝖿𝖯𝖯𝖯𝖯𝖿𝖿𝗍𝗍 𝖡𝖡𝗅𝗅𝗍𝗍 𝗅𝗅𝖿𝖿𝗋𝗋. (∀ 𝑖𝑖: 𝖡𝖡𝗅𝗅𝗍𝗍. 𝑎𝑎[𝑖𝑖] = 𝑏𝑏[𝑖𝑖]) ⟹ 𝑎𝑎 = 𝑏𝑏

This last axiom is known as extensionality (of equality) over arrays.

Remark.

Extensionality as defined in is expressible and provable in an intuitionistic setting (the one
of Coq). In fact, the corresponding lemma is proven without any additional axioms.

However it is not the case for the form of extensionality that we need to represent proofs of
CVC4 . The following, more useful lemma requires classical axioms to be proven.

Notice that this not an issue in itself because SMT solvers use classical logic already. The
corresponding rule in LFSC goes even as far as to provide a Skolem constant for the index
at which the two arrays differ. This is also possible in Coq, using classical axioms again:

This helper function is used to define a function diff which returns the specific index at
which a and b differ. One can then easily prove the following lemma that says that when
two arrays are indeed distinct, then they differ in particular at the index returned by diff.
(Notice that diff is a total function.)

Extending the structures of formulas of SMTCoq with array types and operations requires a
similar level of modification as the one described in Section 4.2.3 for bit vectors. The main
difference is that the representation of types is now recursive, and the different
interpretations need these total ordering properties inside the definitions themselves.

The checker for the theory of arrays can handle three rules, one for each of the axioms
presented in this section. The proof of the correctness of these checkers rely directly on the
properties of the underlying interpretation we provide through the use of our library.

Approved for Public Release; Distribution Unlimited
41

4.2.5 Proof Holes

CVC4 is currently not fully instrumented for proof production. In particular, a large number
of internal term simplification rules (used to speed up reasoning) do not have yet
corresponding proof rules. This means that some LFSC proofs can contain holes, i.e. proof
steps which are not justified. Most of the time they can be easily identified in the proof
object as applications of the (unsound) rules trust or trust_f.

The rule trust is clearly unsound as it allows one to derive false from any context. Rule
trust_f is unsound as well as it allows one to derive that any formula at all. Although
unsound, these rules offer the possibility to progressively build proof production support
in a solver, allowing developers to temporarily omit justifications for some reasoning steps
and fill them in later.

Holes in CVC4 Proofs

Currently, proofs generated by CVC4 have holes corresponding to any pre-processing step
performed on the original (input) formulas of the problem. Pre-processing in SMT solvers
is a crucial step (although very much heuristic) which greatly influence performance of the
latters. It consists in replacing (or rewriting) sub-terms of formulas of the original problem
by equivalent versions. Our translation to the proof format of SMTCoq uses holes in a
similar fashion.

As shown in Section 4.2.2, the translation only works for a predefined set of rules and for
proofs of a certain shape (the one produced by CVC4). If the translator encounters an
unsupported rule, it will be replaced by a hole in the SMTCoq proof. This allows a loser
coupling between the tools and makes our approach robust with respect to future small
variations. For instance, CVC4 uses rewrite steps that appear in the proof of some theory
lemmas (e.g. bit vectors) some of them have a corresponding rule in LFSC but there is at the
moment no checker implemented in Coq for those. With our mechanism, these rewrite
steps appear as holes and can thus be handled at a later stage outside of SMTCoq.

Supporting Partial Proofs in SMTCoq

SMTCoq was extended to provide a way to add a hole in the proof. This rule can have
premises, and also requires a proof that its conclusion is a consequence of its premises.
When SMTCoq is used as a checker for a proof witness associated to an SMT-LIB 2 problem,

Approved for Public Release; Distribution Unlimited
42

the user is shown a warning message which says that the system has assumed the content
of the hole to be true (if it is actually used by the proof).

This approach has the advantage of not impeding progress in the proof process even if
automated SMT solvers only produce partial proofs.

4.2.6 The cvc4 Coq tactic

SMTCoq brings the power of SMT solvers to Coq. This is very useful for Coq user because it
provides a level of automation that is greatly lacking in most interactive theorem provers
(especially Coq). SMTCoq already provided two tactics built on top of the main Coq checker.
The first one, zchaff calls the SAT solver ZChaff [27] to handle propositional (or Boolean)
goals. The other, verit uses the proof producing SMT solver veriT [28] to give users an
automated decision procedure for quantifier free goals involving a combination of the
theories of equality over uninterpreted functions and linear integer arithmetic. These
tactics do not compromise the soundness of Coq (see Figure 16).

Figure 16 CVC4 tactic in SMTCoq.

We have added a new tactic, cvc4, that calls the SMT solver CVC4. This allows to discharge
directly in Coq goals in the combination of the theories of equality over uninterpreted

Approved for Public Release; Distribution Unlimited
43

functions, linear integer arithmetic, fixed-width bit vectors and functional arrays with
extensionality.

This uses the same process of reification as explained in [34]. Of course, users that wish to
use this tactic need to express their goals using our own library for bit vectors and
functional arrays. However, we believe this is a reasonable requirement, especially
considering the fact that these libraries have been constructed to be generic and easily
extensible.

Practical Usage

For a user to be able to use the different SMTCoq tactics, he or she needs to first install the
SMTCoq Coq library in a place that Coq can find (or add this path to Coq’s load path). Only
the first line in the snippet that follows is actually necessary, the other imports are here to
provide concise notations for arrays and bit vectors.

One needs to also have installed the solvers corresponding to the chosen tactic somewhere
in their PATH. In addition for the cvc4 tactic we require that the LFSC signatures
(distributed with either CVC4 or SMTCoq) be placed in a directory which should be
specified in the environment variable LFSCSIGS.

The cvc4 tactic doesn’t take any arguments and is to be invoked as any other Coq tactic.
Like its sister tactic verit, it only works on goals of the form

where b_1 and b_2 are two Coq terms of type bool (𝔹𝔹). This tactic can either succeed in
proving the goal, fail, or succeed in proving the goal with a number of hypotheses which are
then presented to the user as sub-goals to prove. Failure of the tactic can happen in the
following scenarios:

• the solver answered sat, and can provide a counter-example to the goal;

• the solver crashed;

• the translation of the LFSC proof failed;

• the translated SMTCoq proof witness cannot be checked by the Coq checker (one or
several proof steps fail).

Approved for Public Release; Distribution Unlimited
44

Notation.

In the following Coq examples we use the notation:

for Boolean implication. The symbols ∵ and � stand for the vernacular Coq commands
Proof. and Qed. respectively.

Examples

For instance, one can prove the following goal involving only Boolean reasoning with a
single application of the Coq tactic cvc4.

In a similar fashion, the following goal involving arrays, uninterpreted functions and linear
integer reasoning can also be solved by our tactic.

This next example makes use of arrays indexed by bit vectors of size four. This is a typical
example of the kind of reasoning that can be done when performing proof of programs
manipulating the heap (often represented as arrays) and machine integers (represented as
bit vectors).

Approved for Public Release; Distribution Unlimited
45

4.3 Evaluation
For evaluation purposes we implemented our proof generation approach in CVC4 [20]. For
this evaluation, we extended CVC4 with both eager and lazy proof generation capabilities
for 𝑇𝑇UF and 𝑇𝑇AX. We also completed the instrumentation of the DPLL(𝒯𝒯) engine as
described in Section 3.2, enabling it to handle any combination of the three theories above.
Support for proving rewrite rules is still under development, and so for the purposes of this
evaluation rewrite rules are treated as axioms, i.e. are given without fine-grained
justification. However, the rewrite rules do appear in separate lemmas outside the main
proof as discussed in Section 3.3, and their usage in other parts of the proof is checked for
correctness. All changes have been integrated into the master branch of CVC4, which is
available online through CVC4’s GitHub repository at https://github.com/CVC4.

We first compared the lazy and eager proof generation approaches for 𝑇𝑇UF and 𝑇𝑇AX. Figure
17 shows the results on all QF_UF and QF_AX benchmarks from the SMT-LIB library [16].
For QF_UF benchmarks, the eager approach was slower than the lazy one on almost all
instances and incurred an average performance overhead of 30%. For QF_AX benchmarks,
the eager approach was 25% slower on average. Both cases thus indicate a clear advantage
for the lazy approach.

Figure 17 Eager vs. Lazy proof production runtimes, in seconds.

https://github.com/CVC4

Approved for Public Release; Distribution Unlimited
46

Table 2 Producing and checking proofs. All times are in seconds. Experiments were run with a
600 second timeout.

We then ran a more extensive experiment to test our ability to correctly generate and
check proofs (lazily for the 𝑇𝑇UF and 𝑇𝑇AX solvers) for unsatisfiable benchmarks from all the
relevant logics (including theory combinations) in the SMT-LIB library [16]: QF_UF, QF_AX,
QF_BV , QF_UFBV, QF_ABV and QF_AUFBV. Table 2 shows the results. The Default columns
describe the performance of CVC4 with proof production disabled; the Generate and Check
Proof and Generate Proof columns describe performance when producing a proof with and
without checking it, respectively. Also shown in the table are results on a set of industrial
QF_ABV benchmarks encoding symbolic execution problems, which were provided to us by
collaborators from GrammaTech, Inc. These results appear in the row labeled Symbolic
Execution.

CVC4 was able to produce proofs for over 99% of all instances that it could solve without
proof generation. We were similarly able to check most of the generated proofs using
LFSC’s external proof checker. In the future, we plan to improve proof checking time by
optimizing the LFSC checker and using more efficient LFSC encodings for our proofs.

Figure 18 Proof sizes both cvcLz and cvcE.

Approved for Public Release; Distribution Unlimited
47

Next, we selected all of the 17,172 unsatisfiable QF_BV benchmarks used in the 2015 SMT-
COMP competition and evaluated the overhead of proof generation for both the lazy and
the eager configurations of CVC4. CVC4 is a competitive bit-vector solver that placed
second in the QF_BV division of the 2015 SMTCOMP by running and in parallel.14 The proof
generated by uses the same proof signature as but has a single monolithic resolution proof
as opposed to the modular two-tiered structure of proofs.

Table 3 Overhead of proof generation and its impact on the number of problem solved.

Table 3 shows the results for both solvers. We ran the following configurations: solving
with proof generation disabled (𝗁𝗁𝗅𝗅𝖿𝖿𝖿𝖿𝗎𝗎𝖿𝖿𝗋𝗋); solving with proofs enabled (i.e., the solver logs
the information needed to produce the proof) but without actually producing proofs
(+𝖿𝖿𝖯𝖯𝗇𝗇); solving with proof generation including writing the proof object to disk (+𝖿𝖿𝖯𝖯𝗇𝗇 +
𝖯𝖯𝖯𝖯𝖯𝖯𝖯𝖯𝖿𝖿); and solving with proof generation as well as proof checking (+𝖿𝖿𝖯𝖯𝗇𝗇 + 𝖯𝖯𝖯𝖯𝖯𝖯𝖯𝖯𝖿𝖿 + 𝖼𝖼𝗁𝗁𝗅𝗅𝖼𝖼𝖡𝖡).
For the lazy solver cvcLz, the overhead of proof logging results in 2 fewer problems solved
while adding an 11% overhead to solving time.15 The additional overhead of stitching the
proof together and outputting it to a file is only 3% of the solving time. For the eager solver
cvcE, proof logging adds a higher overhead of 19% and solves 18 fewer problems than the
default configuration of cvcE. The overhead of proof generation is higher for the eager
solver than for the lazy one.

To ensure the correctness of the proofs we generated, we checked them using our LFSC
proof checker. Within the 600 sec time limit, we were able to succesfully check 84% of the
problems we could solve with and 82% of the ones solved with cvcE. Proof checking failed
due to unsupported proof steps in our generated proof for 33 problems attempted by cvcLz,
and for 92 attempted by cvcE. The other failures in proof checking were due to timeouts:
proof checking is an order of magnitude slower than solving. We believe that with
additional work on the LFSC proof checker, this can be improved.

Despite the slow checking times, we achieve higher proof checking rates for QF_BV than the
proof reconstruction approach in Böhme et al. [23]. In that work, proofs could be produced
for 735 of the 1377 QF_BV benchmarks available at the time. Out of these, the produced
proofs were successfully checked only for 38.5% of the total; 48.4% timed out and 13.1%
produced errors. The authors attribute the timeouts to the long time taken to reprove

14 CVC4 solved 26001 problems in that division compared to 26260 problems solved by the
winning solver, Boolector [35].

15 Overhead in each column is measured by comparing the time taken to solve only those problems
solved by both the default and the column configuration.

Approved for Public Release; Distribution Unlimited
48

large-step Z3 inferences. Our experimental results indicate that fine-granularity bit-vector
proofs enable proof checking for a significantly larger number of problems.

Finally, we compared the sizes of the proof files generated. Figure 18 (left) is a log-scale
scatter plot comparing the sizes of the proofs generated by the two solvers. Overall, the
proofs generated by the two-tiered lazy approach are smaller: adding the sizes of all the
lazy generated proofs results in 276GB while for the eager solver it is 328GB. Figure 18
(right) shows, with the 𝑦𝑦-axis in log-scale, the distribution of the proof sizes over the
benchmark selection. The majority of the benchmarks have relatively small proofs, well
under 1GB.

We also evaluated 16 SMTCoq and its extensions on a set of around 500 benchmarks taken
from the categories QF_AUFLIA of the SMT-LIB repository. Excluding the ones for which
CVC4 fails to return a proof in less than 120 seconds, the ones where our version of Coq
crashed due to a segmentation fault and the ones on which CVC4 crashes during its proof
production phase, we are left with 251 successful experiments. Out of those, we get 240
proof files automatically checked by SMTCoq and 11 proofs rejected. The investigation on
rejected proof certificates pointed us the failure of the micromega based checker which is
used in SMTCoq to solve goals in linear integer arithmetic.

Table 4 shows the average run times (in seconds) for those accepted (240 files) together
with the average number of holes that are left unproven.

Table 4 SMTCoq's experiments in QF_AUFLIA

We have split the times to accurately measure the time necessary for type checking the
LFSC proof (by our own OCaml LFSC type checker), the time needed to convert the LFSC
proof to and SMTCoq certificate, and finally the time for the certified Coq checker to check
the certificate. As shown, the total average run time of the certified Coq LFSC checker is
around 2.3 seconds which we think is acceptable especially for SMT-LIB benchmarks.
Notice also that 1 hole which in turn generate an additional sub-goal (in average) is left
unproven which is simply due to CVC4 ’s pre-processing step where no proof is generated.

16 These experiments have been performed on an Intel i7-3630QM @2.40GHz machine with 8 GB
memory running Ubuntu 16.04 LTS. Here are the software versions:

• CVC4 version at
https://github.com/CVC4/CVC4/tree/edce1662b001dd6f229a25685fb4de6789ff008d

• Coq-8.5pl2

• SMTCoq version at https://github.com/LFSC/smtcoq/tree/v1.3-darpa

https://github.com/CVC4/CVC4/tree/edce1662b001dd6f229a25685fb4de6789ff008d
https://github.com/LFSC/smtcoq/tree/v1.3-darpa

Approved for Public Release; Distribution Unlimited
49

The SMT-LIB benchmarks for the theories QF_ABV and QF_AUFBV are simply too large to
be checked by the SMTCoq checkers but we anticipate that uses of the cvc4 tactic inside
coq will be done on smaller goals as is generally the case with traditional Coq
developments. Instead of experimenting on them, we have generated (by hand) 20
benchmarks mixing the theory of bit vectors, functional arrays and linear integer
arithmetic and get all corresponding proofs certified by SMTCoq, with the following run
times in seconds:

Table 5 SMTCoq's experiments in logic QF_AUFBVLIA

 One point to notice here is that the cvc4 tactic can get inefficient (taking more than a
couple of seconds to respond) when the proof involves application of the rule for bit-
blasting multiplication over bit vectors of size greater than 16 bits 17.

We have performed tests on a large variety of benchmarks the combination of the
mentioned theories. We are confident that the cvc4 tactic will manage to automatize a good
number of goals as long as our bit vector library and our version of the functional arrays
library are used.

4.4 Related Work
Various SMT solvers have taken different approaches to proof production over the years
(see Barrett et al. [14] for a recent survey). To the best of our knowledge, the only other
SMT solver that is both actively maintained and able to produce independently-checkable
proofs is veriT [28], which supports eager proof-production for 𝑇𝑇UF and the theory of linear
arithmetic. Our approach for eager proof production in 𝑇𝑇UF is similar to that of veriT [21].
However, veriT does not support lazy proof production or proofs for 𝑇𝑇AX or 𝑇𝑇BV.

The LFSC meta-framework has been successfully used for encoding proofs generated by
SMT solvers for other theories in [18], [36], [37]. The current work extends this line of
work to support LFSC proofs for the bit-vector theory. In [1] the authors show how to use
LFSC to compute interpolants from unsatisfiability proofs in the theory of equality and
uninterpreted function symbols. We believe this approach can be extended to generate bit-
vector interpolants from LFSC bit-vector proofs. Other approaches for checking SMT-
generated proofs include using custom checkers [38] or skeptical proof assistants based on
higher-order logic [21], [39]–[41]. These approaches are based on translating SAT/SMT

17 This same remark can also be made for SMT solvers that do bit-blasting of bit vector operators
but on much smaller scale.

Approved for Public Release; Distribution Unlimited
50

certificates to applications of the inference rules of the kernels of these proof assistants. In
contrast, our approach in Coq is based on computational reflection: the certificate is
directly processed by the reduction mechanism of Coq ’s kernel.

Heule et al. implemented an efficient checker for state-of-the-art SAT techniques, verified in
ACL2 [42], [43]. It is mainly based on a generalization of extended resolution [44], [45] and
on reverse unit propagation [30]. SMTCoq currently handles only standard extended
resolution for its propositional part.

The work whose scope is most similar to ours is an effort that was undertaken to
reconstruct bit-vector proofs produced by Z3 within Isabelle/Hol [23]. The main difference
in that work is that Z3 does not produce full proofs, but rather “proof sketches,” essentially
a record of propositional inferences plus a listing of theory lemmas used [15]. Specifically,
Z3 provides some “large-step” inferences, lemmas that are valid in the theory of bit-vectors,
without proof. As the authors remark, the coarse granularity of Z3’s proofs makes proof
reconstruction particularly challenging. A significant part of the proof checking time is
spent re-proving large-step inferences that Z3 does not provide details for. In contrast, our
approach is more fine-grained as it provides full details for every step. As we have shown,
this enables our approach to check more proofs.

Based on an efficient encoding of a large subset of HOL goals into first-order logic, the
Sledgehammer tactic [46] allows HOL-based proof assistants to efficiently and reliably help
manual proving. Proofs are replayed using either the proof reconstruction mechanism
described above or a built-in first-order prover. We hope that SMTCoq can help in adding
such techniques into Coq and other Type Theory-based proof assistants, by providing a
proof replay mechanism based on certificates.

Approved for Public Release; Distribution Unlimited
51

5 Conclusion
Adding proof production capabilities to complex tools like SMT solvers can greatly increase
our level of confidence in their results. We presented a technique that allows DPLL(𝒯𝒯) -
style SMT solvers to produce unsatisfiability proofs for queries involving combinations of
theories. Our approach requires that each theory solver provide proofs for its theory-
specific deductions; and these sub-proofs are then interwoven into a complete, cohesive
proof by the main SAT engine. Our approach is modular and extensible in the sense that
any new proof-producing solver can be readily integrated with existing ones. We also
explored lazy proof generation and demonstrated its advantages for 𝑇𝑇UF and 𝑇𝑇AX.

In the future, we plan to improve CVC4’s ability to prove rewrite steps, as discussed in
Section 3.3. Another planned enhancement is the addition of proof support for arithmetic
and quantified logics—with the aim of eventually being able to produce proofs for
unsatisfiable formulas in the full input language supported by CVC4.

SMTCoq has been designed to be modular in such a way that facilities its extension with
new solvers and new theories. In particular, such extensions should not require any
changes in existing checkers or in their proofs of soundness. Thus, while it may require
some effort to certify new small checkers or to translate new proof formats into the
SMTCoq format, such extensions require only local changes. Our current extensions to
CVC4, bit-vector arithmetic and the theory of functional arrays validate this goal: indeed,
the work so far covered mostly in implementing an untrusted preprocessor for certificates
and adding new, independent checkers (see Table 6 for SMTCoq’s list of features). One
limiting aspect of SMTCoq is the lack of support for nested proofs, which we plan to add.
Thanks to the modularity of the checker, we believe this feature too can be added locally.

Table 6 Support for solvers and theories in SMTCoq.

We want the cvc4 tactic to work also on goals in Coq’s Prop universe. This will require, in a
preprocessing step, to get the Boolean counterpart of a proposition (using SSReflect’s
reflect predicate [32]) and call the cvc4 tactic afterwards.

We also intend to provide, in addition to our own bit-vectors library, support for Bedrock,
namely words [47]. This will not bring any additional feature to the system but support the
goals written in the format of words. To do so, we need to prove the bit-vector checkers
once again using the facts of words in Coq.

Approved for Public Release; Distribution Unlimited
52

References

[1] A. Reynolds, C. Tinelli, and L. Hadarean, “Certified interpolant generation for EUF,” in

Workshop on satisfiability modulo theories, 2011.

[2] J. Chen, R. Chugh, and N. Swamy, “Type-Preserving Compilation of End-to-End
Verification of Security Enforcement,” in Proc. 10th acm conf. on programming language
design and implementation (pldi), 2010, pp. 412–423.

[3] M. Armand, G. Faure, B. Grégoire, C. Keller, L. Théry, and B. Werner, “A Modular
Integration of SAT/SMT Solvers to Coq through Proof Witnesses,” in CPP, 2011, vol.
7086, pp. 135–150.

[4] J. Blanchette, S. Böhme, and L. Paulson, “Extending Sledgehammer with SMT Solvers,”
Journal of Automated Reasoning, vol. 51, no. 1, pp. 109–128, 2013.

[5] B. Ekici, G. Katz, C. Keller, A. Mebsout, A. Reynolds, and C. Tinelli, “Extending SMTCoq, a
Certified Checker for SMT,” in Proc. 1st int. workshop on hammers for type theories
(hatt), 2016, pp. 21–29.

[6] R. Nieuwenhuis, A. Oliveras, and C. Tinelli, “Solving SAT and SAT Modulo Theories:
From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T),” Journal
of the ACM (JACM), vol. 53, no. 6, pp. 937–977, 2006.

[7] A. Reynolds, C. Tinelli, A. Goel, and S. Krstić, “Finite Model Finding in SMT,” in Proc. 25th
int. conf. on computer aided verification (cav), 2013, pp. 640–655.

[8] S. Krstić and A. Goel, “Architecting Solvers for SAT Modulo Theories: Nelson-Oppen with
DPLL,” in Proc. 6th int. symposium on frontiers of combining systems (frocos), 2007, pp.
1–27.

[9] J. Marques-Silva and K. Sakallah, “GRASP: A Search Algorithm for Propositional
Satisfiability,” IEEE Transactions on Computers, vol. 48, no. 5, pp. 506–521, 1999.

[10] C. Tinelli and M. Harandi, “A New Correctness Proof of the Nelson—Oppen
Combination Procedure,” in Proc. 1st int. symposium on frontiers of combining systems
(frocos), 1996, pp. 103–120.

[11] R. Bruttomesso, A. Cimatti, A. Franzen, A. Griggio, and R. Sebastiani, “Delayed Theory
Combination vs. Nelson-Oppen for Satisfiability Modulo Theories: a Comparative
Analysis,” Annals of Mathematics and Artificial Intelligence (AMAI), vol. 55, nos. 1-2, pp.
63–99, 2009.

[12] C. Barrett, R. Nieuwenhuis, A. Oliveras, and C. Tinelli, “Splitting On Demand in SAT
Modulo Theories,” in Proc. 13th int. conf. on logic for programming, artificial
intelligence, and reasoning (lpar), 2006, pp. 512–526.

Approved for Public Release; Distribution Unlimited
53

[13] M. Heule and A. Biere, “Proofs for Satisfiability Problems,” All about Proofs, Proofs for
All, vol. 55, no. 1, pp. 1–22, 2015.

[14] C. Barrett, L. de Moura, and P. Fontaine, “Proofs in Satisfiability Modulo Theories,” All
about Proofs, Proofs for All, vol. 55, no. 1, pp. 23–44, 2015.

[15] N. Bjørner and L. de Moura, “Proofs and Refutations, and Z3,” in Proc. 14th int. conf. on
logic for programming, artificial intelligence and reasoning (lpar), 2008.

[16] C. Barrett, P. Fontaine, and C. Tinelli, “The Satisfiability Modulo Theories Library (SMT-
LIB).” http://www.SMT-LIB.org, 2015.

[17] R. Harper, F. Honsell, and G. D. Plotkin, “A framework for defining logics,” J. ACM, vol.
40, no. 1, pp. 143–184, 1993.

[18] A. Stump, D. Oe, A. Reynolds, L. Hadarean, and C. Tinelli, “SMT Proof Checking Using a
Logical Framework,” Formal Methods in System Design, vol. 42, no. 1, pp. 91–118, 2012.

[19] N. Wetzler, M. J. Heule, and W. A. Hunt Jr, “DRAT-trim: Efficient checking and trimming
using expressive clausal proofs,” in Theory and applications of satisfiability testing,
2014.

[20] C. Barrett, “CVC4,” in Proc. 23rd int. conf. on computer aided verification (cav), 2011, pp.
171–177.

[21] P. Fontaine, J. Marion, S. Merz, L. Nieto, and A. Tiu, “Expressiveness + Automation +
Soundness: Towards Combining SMT Solvers and Interactive Proof Assistants,” in
Proc. 12th int. conf. on tools and algorithms for the construction and analysis of systems
(tacas), 2006, pp. 167–181.

[22] L. de Moura and N. Bjørner, “Generalized, Efficient Array Decision Procedures,” in Proc.
9th int. conf. on formal methods in computer-aided design (fmcad), 2009, pp. 45–52.

[23] S. Böhme, A. C. J. Fox, T. Sewell, and T. Weber, “Reconstruction of Z3’s Bit-Vector Proofs
in HOL4 and Isabelle/HOL,” in Certified programs and proofs - first international
conference, CPP 2011, kenting, taiwan, december 7-9, 2011. proceedings, 2011, vol.
7086, pp. 183–198.

[24] L. Hadarean, K. Bansal, D. Jovanovic, C. Barrett, and C. Tinelli, “A tale of two solvers:
Eager and lazy approaches to bit-vectors,” in Conference on computer aided
verification, 2014.

[25] N. Eén and N. Sörensson, “An extensible SAT-solver,” in Theory and applications of
satisfiability testing, 2004.

[26] B. Barras, “The Coq proof assistant: reference manual,” INRIA, 2000.

[27] Y. S. Mahajan, Z. Fu, and S. Malik, “Zchaff2004: An efficient SAT solver,” in Theory and
applications of satisfiability testing, 7th international conference, SAT 2004, vancouver,
bc, canada, may 10-13, 2004, revised selected papers, 2004, vol. 3542, pp. 360–375.

http://www.smt-lib.org/

Approved for Public Release; Distribution Unlimited
54

[28] T. Bouton, D. de Oliveira, D. Déharbe, and P. Fontaine, “veriT: An Open, Trustable and
Efficient SMT-Solver,” in Proc. 22nd int. conf. on automated deduction (cade), 2009, vol.
5663, pp. 151–156.

[29] C. Barrett, A. Stump, and C. Tinelli, “The SMT-LIB Standard: Version 2.0,” in
Proceedings of the 8th international workshop on satisfiability modulo theories
(edinburgh, uk), 2010.

[30] A. V. Gelder, “Producing and verifying extremely large propositional refutations - Have
your cake and eat it too,” Ann. Math. Artif. Intell., vol. 65, no. 4, pp. 329–372, 2012.

[31] F. Besson, P. Fontaine, and L. Théry, “A Flexible Proof Format for SMT: a Proposal,” in
PxTP 2011: First international workshop on proof eXchange for theorem proving august
1, 2011 affiliated with cade 2011, 31 july-5 august 2011 wrocław, poland, 2011, pp. 15–
26.

[32] G. Gonthier and A. Mahboubi, “An introduction to small scale reflection in coq,” J.
Formalized Reasoning, vol. 3, no. 2, pp. 95–152, 2010.

[33] F. Besson, “Fast Reflexive Arithmetic Tactics the Linear Case and Beyond,” in TYPES,
2006, vol. 4502, pp. 48–62.

[34] C. Keller, “A Matter of Trust: Skeptical Communication Between Coq and External
Provers,” PhD thesis, École Polytechnique, 2013.

[35] R. Brummayer and A. Biere, “Boolector: An efficient SMT solver for bit-vectors and
arrays,” in Tools and algorithms for the construction and analysis of systems, 2009.

[36] A. Reynolds, L. Hadarean, C. Tinelli, Y. Ge, A. Stump, and C. Barrett, “Comparing proof
systems for linear real arithmetic with LFSC,” in Workshop on satisfiability modulo
theories, 2010.

[37] D. Oe, A. Reynolds, and A. Stump, “Fast and Flexible Proof Checking for SMT,” in
Workshop on satisfiability modulo theories, 2009.

[38] M. Moskal, “Rocket-Fast Proof Checking for SMT Solvers,” in Proc. 14th int. conf. on
tools and algorithms for the construction and analysis of systems (tacas), 2008, pp. 486–
500.

[39] S. McLaughlin, C. Barrett, and Y. Ge, “Cooperating Theorem Provers: A Case Study
Combining HOL-Light and CVC Lite,” in Proc. 3rd workshop on pragmatics of decision
procedures in automated reasoning (pdpar), 2005, pp. 43–51.

[40] T. Weber, “SAT-based Finite Model Generation for Higher-Order Logic,” PhD thesis,
Institut für Informatik, Technische Universität München, Germany, 2008.

[41] S. Böhme and T. Weber, “Fast lcf-style proof reconstruction for Z3,” in Interactive
theorem proving, first international conference, ITP 2010, edinburgh, uk, july 11-14,
2010. proceedings, 2010, vol. 6172, pp. 179–194.

Approved for Public Release; Distribution Unlimited
55

[42] M. Heule, W. A. H. Jr., and N. Wetzler, “Verifying refutations with extended resolution,”
in Automated deduction - CADE-24 - 24th international conference on automated
deduction, lake placid, ny, usa, june 9-14, 2013. proceedings, 2013, vol. 7898, pp. 345–
359.

[43] N. Wetzler, M. Heule, and W. A. H. Jr., “Mechanical verification of SAT refutations with
extended resolution,” in Interactive theorem proving - 4th international conference, ITP
2013, rennes, france, july 22-26, 2013. proceedings, 2013, vol. 7998, pp. 229–244.

[44] G. Tseitin, “On the Complexity of Proofs in Propositional Logics,” in Seminars in
mathematics, 1970, vol. 8, pp. 466–483.

[45] O. Kullmann, “On a generalization of extended resolution,” Discrete Applied
Mathematics, vols. 96-97, pp. 149–176, 1999.

[46] L. C. Paulson and J. C. Blanchette, “Three years of experience with sledgehammer, a
practical link between automatic and interactive theorem provers,” in The 8th
international workshop on the implementation of logics, IWIL 2010, yogyakarta,
indonesia, october 9, 2011, 2010, vol. 2, pp. 1–11.

[47] A. Chlipala, “Mostly-automated verification of low-level programs in computational
separation logic,” in ACM sigplan notices, 2011, vol. 46, pp. 234–245.

Approved for Public Release; Distribution Unlimited
56

A Appendix

A.1 Implementation of SMTCoq
This section describes the organization of the SMTCoq repository and locations of source
code and modules.

Sources are contained in the directory src which can be found at top-level. The directories
examples and unit-tests contain respectively example files of usage for SMTCoq and
regression tests for the different tactics and vernacular commands that the plugin provides.

The rest of the section describes the organization of src.

A.1.1 Top-level architecture of SMTCoq

SMTCoq sources are contained in this directory. A few Coq files can be found at top-level.

configure.sh

This script is meant to be run when compiling SMTCoq for the first time. It should also be
run every time the Makefile is modified. It takes as argument an optional flag -native
which, when present, will set up the sources to use the native Coq libraries. Otherwise the
standard version 8.5 of Coq is used.

SMTCoq.v

This is the main SMTCoq entry point, it is meant to be imported by users that want to use
SMTCoq in their Coq developments. It provides (exports) the other SMTCoq modules as
well as declares the OCaml plugin for adding the new vernacular commands and tactics.

Trace.v

This file defines the types of certificates and steps (atomic certificate pieces) as well as the
main checkers.

The first section trace gives a generic definition of a main checker parameterized by the
type of individual steps and a function to check individual steps check_step (small
checkers). Correctness of the main checker is proved under the assumption that the small
checker is correct.

These generic definitions are applied to construct main checkers for resolution (module
Sat_Checker), CNF conversion (module Cnf_Checker) and satisfiability modulo theories
(module Euf_Checker). They each define an inductive type step to represent certificate
steps. For instance, in the case of the resolution checker, the only possible step is to apply
the resolution rule so steps are defined as:

Approved for Public Release; Distribution Unlimited
57

The main theorems for these modules are named checker_correct. For instance the main
result for the SMT checker (Euf_Checker) is formulated as follows:

which means that if the checker returns true on the formula d and the certificate c then d is
not valid (i.e. c is a refutation proof certificate for d).

State.v

This module is used to define representations for the global state of the checker. A state is
an array of clauses:

on which we define resolution chain operations set_resolve that modify the state.

Variables, literals and clauses are defined respectively in modules Var, Lit and C. Binary
resolution is defined between two clauses in C.resolve.

SMT_terms.v

This Coq module defines reification types for formulas (Form.form), types (Typ.type) and
atoms/terms (Atom.atom). Formulas are given an interpretation in Coq’s Booleans, types
are interpreted in Coq types (for instance, type TZ is interpreted as Coq’s mathematical
integers Z) and atoms are interpreted as Coq terms of type the interpretation of their type
(for instance an atom whose type is TZ is interpreted as an integer of Z).

Some important lemmas.

A function cast allows to change the encoded type of a term of type Typ.type when we
know two types are equal (the inductive cast_result provides the conversion function).

This is the lemma to use to remove cast constructions during the proofs.

This other lemma says that Boolean equality over interpretation of types is the equivalent
to Leibniz equality. This is useful to allow rewriting.

Approved for Public Release; Distribution Unlimited
58

Atom (as well as formulas) are encoded by integers, and mapping is preserved by an array
t_atom. Another array maintains interpretations of encodings. The following lemma states
that these two relates:

Misc.v

This module contains miscellaneous general lemmas that are used in several places
throughout the development of SMTCoq.

versions

This directory contains everything that is dependent on the version of Coq that one wants
to use. standard contains libraries for the standard version of Coq and native contains
everything related to native Coq. Note that some libraries are already present in the default
libraries of native Coq, in this case they have a counterpart in standard that replicates the
functionality (without using native integers or native arrays).

A particular point of interest is the files smtcoq_plugin_standard.ml4 and
smtcoq_plugin_native.ml4. They provide extension points for Coq by defining new
vernacular commands and new tactics. For instance the tactic verit tells Coq to call the
OCaml function verit.tactic (which in turns uses the Coq API to manipulate the goals and
call the certified checkers).

spl

This directory contains everything related to simplifications of input formulas as well as
the Coq machinery to handle step checkers that use assumptions (and generate sub-goals).

• Arithmetic.v: Arithmetic simplifications

• Operators.v: Simplifications of SMT-LIB 2 operators (atomic disequalities and distinct
operators)

• Syntactic.v: Flattening and normalization of propositional structures

• Assumptions.v: Small checker for assumptions

Approved for Public Release; Distribution Unlimited
59

extraction

This is the extracted version of the SMTCoq checker, that can be run outside Coq. It still
needs to be fixed for the new additions and extensions.

classes

The definitions of interpretations of terms and types of SMTCoq requires some additional
constraints that are encoded as Coq type-classes. This directory contains definitions and
properties of these classes SMT_classes.v as well as predefined useful instances of these
classes SMT_classes_instances.v.

These classes are:

• EqbType: types with a Boolean equality that reflects in Leibniz equality

• DecType: types with a decidable equality

• OrdType: class of types with a partial order

• Comparable: augmentation of class of partial order with a compare function to obtain a
total order

• Inhabited: class of inhabited types (used to obtain default values for types)

• CompDec: a class that merges all previous classes

A.1.2 Small checkers

Small Coq checkers are organized in sub-directories that reflect the theories they handle.
Small checkers for propositional logic, equality over uninterpreted functions and linear
integer arithmetic all use preexisting standard Coq libraries (Bool, Arith, Z, BinPos, …) to
formalize the underlying interpretation of these theories. The theories of fixed-width bit-
vectors and functional unbounded arrays are formalized in new custom Coq libraries (that
are distributed with SMTCoq).

Computational small checkers have the following signature:

where s is the state of the main checker, p1, …, pn are positions (there can be none) of
deduced clauses that appear in the state s and l1, …, lm are literals. The function checker
returns a clause that is deducible from the already deduced clauses in the state s.

Approved for Public Release; Distribution Unlimited
60

It states that the clause returned by checker is valid. In most cases for the small checkers,
when they fail they return a trivially true clause (C._true).

cnf

Small checkers for CNF (conjunctive normal form) are defined in the module Cnf.v. In
essence they implement a Tseitin conversion.

For instance, the checker check_BuildDef returns a tautology in clausal form (the validity
of the clause is not dependent on the validity of the state) and the checker
check_ImmBuildDef is a generic encoding of conversion rules that have a premise (which
appears in the state).

euf

The checkers for EUF (equality over uninterpreted functions) are defined in the module
Euf.v.

The first one checks application of the rule of transitivity. check_trans takes as argument
the result of the rule application as well as list of equalities of the form a = b, b = c, …,
x = y, y = z.

The other checker takes care of applications of the congruence rule. Functions in SMT-LIB
have a given arity and they are interpreted as Coq functions. The checker for congruence
can check rule applications with a number of equalities corresponding to the arity of the
function.

lia

Checking linear arithmetic lemmas that come from the SMT solver is performed using the
already existing Micromega solver of Coq. The corresponding checker is implemented in
module Lia.v.

bva

The small checkers for bit-vector operations can be found in module Bva_checker.v. They
implement the rules for bit-blasting operators of the theory of fixed width bit-vector.

There are small checkers for:

• bit-wise operators (bvand, bvor, bvxor, bvnot)

• equality

• variables

• constants

• extraction

• concatenation

Approved for Public Release; Distribution Unlimited
61

• arithmetic operations (addition, negation, multiplication)

• comparison predicates (signed/unsigned)

• extensions (zero/signed)

The theory of fixed width bit-vectors is realized by an implementation provided in BVList.v.
There, bit-vectors are interpreted by lists of Booleans. The type of bit-vectors is a
dependent type:

In the implementation, a bit-vector is a record that contains a list of Booleans bv, i.e. the
lists of its bits, as well as a proof of well formedness wf, i.e. a proof that the size of the list bv
is the parameter n of the type.

array

The theory of unbounded functional arrays with extensionality is realized in Coq by a
custom type that can be found in FArray.v.

The type farray is parameterized by the type of keys (or indexes) of the array and the type
of the elements. key must be a type equipped with a partial order and elt must be
inhabited.

An array is represented internally by an association list for its mappings with additional
constraints that encode the fact that the list is sorted and that there are no mapping to the
default value.

Approved for Public Release; Distribution Unlimited
62

This library also provides useful properties on these arrays. Notably extensionality which is
required by the theory of arrays in SMT solvers:

The extensionality rule that is used by the checker is a bit different and requires classical
axioms to be proven. This is done in section Classical_extensionality which provides an
alternative version without contaminating uses of the library.

There are three small checkers for arrays. They check application of the axioms (in the
theory sense) of the theory of arrays, two for read over write and one for extensionality

A.1.3 OCaml implementation of the plugin

Part of SMTCoq are implemented in OCaml. This concerns functionalities which are not
certified such as the reification mechanism, the parsers, pre-processors and the definitions
of tactics.

This part communicates directly with Coq by using the OCaml Coq API.

trace

This directory contains the implementation of certificates and the representation of SMT-
LIB formulas in SMTCoq.

• coqTerms.ml contains imports from Coq of terms to be used directly in OCaml. These
include usual Coq terms but also ones specific to SMTCoq.

• smtAtom.mli contains the definitions for the types of atoms in SMTCoq but also
provides smart constructors for them. The modules defined in this file have functions
to reify Coq terms in OCaml and to translate back OCaml atoms and types to their Coq
counterpart interpretation.

• smtForm.mli plays the same role as smtAtom but on the level of formulas.

• smtCertif.ml contains definitions for an OCaml version of the steps of the certificate.
These are the objects that are constructed when importing a certificate from an SMT
solver for instance.

• smtTrace.ml contains functions to build the Coq version of the certificate from the
OCaml one.

• smtCommands.ml constitute the bulk of the implementation of the plugin. It contains
the OCaml functions that are used to build the Coq vernacular commands
(Verit_checker, Lfsc_checker, …) and the tactics. It also contains functions to
reconstruct Coq counter-examples from models returned by the SMT solver.

• smtCnf.ml implements a CNF conversion on the type of SMTCoq formulas.

• smtMisc.ml contains miscellaneous functions used in the previous modules.

Approved for Public Release; Distribution Unlimited
63

smtlib2

This directory contains utilities to communicate directly with SMT solvers. This includes a
lexer/parser for the SMT-LIB 2 format (smtlib2_parse.mly) a conversion module from SMT-
LIB 2 to formulas and atoms of SMTCoq (smtlib2_genConstr.ml) and a way to call and
communicate with SMT solvers through pipes (smtlib2_solver.mli).

zchaff

Files in this directory allow to call the SAT solver ZChaff. It contains a parser for the sat
solver input files and ZChaff certificates. The implementation for the Coq tactic zchaff can
be found in zchaff.ml.

verit

This directory contains the necessary modules to support the SMT solver veriT. In
particular it contains a parser for the format of certificates of veriT (veritParser.mly) and
an intermediate representation of those certificates (veritSyntax.mli). This module also
implements a conversion function from veriT certificates to SMTCoq format of certificates.
This pre-processor is a simple one-to-one conversion.

The file (verit.ml) contains the functions to invoke veritT and create SMT-LIB 2 scripts. This
is used by the definition of the tactic verit of the same file.

lfsc

This directory contains the pre-processor for LFSC proofs to SMTCoq certificates (as well
as veriT certificates). The files ast.ml and builtin.ml contain an OCaml implementation of a
type checker for LFSC proofs. This directory also contains a parser and lexer for LFSC (c.f.,
lfscParser.mly).

The pre-processor is implemented in the module converter.ml) as a functor. Depending on
the module (for terms and clauses conversions) that is passed in the functor application,
we obtain either a pre-processor from LFSC proofs to SMTCoq certificates directly or a
converter from LFSC proofs to veriT certificates.

Note.

A standalone version of the converter can be obtained by issuing make in this directory.
This produces a binary lfsctosmtcoq.native that can be run with an LFSC proof as
argument and produces a veriT certificate on the standard output.
Finally, the tactic cvc4 is implemented in the file lfsc.ml. It contains functions to call the
SMT solver CVC4, convert its proof and call the base tactic of smtCommands.

Approved for Public Release; Distribution Unlimited
64

List of Symbols, Abbreviations, and Acronyms

• 𝛴𝛴 - Used to denote a signature in many-sorted first order logic.

• • - A decision point in a context.

• 𝑙𝑙 - The logical complement of 𝑙𝑙.

• 𝑙𝑙 ≺𝖬𝖬 𝑙𝑙′ - 𝑙𝑙 occurs before 𝑙𝑙′ in 𝖬𝖬.

• ⊨𝑖𝑖 - Denotes validity in the theory 𝑇𝑇𝑖𝑖.

• 𝑎𝑎[𝑖𝑖] - The result of reading an array 𝑎𝑎 at index 𝑖𝑖.

• 𝑎𝑎[𝑖𝑖]: = 𝑏𝑏 - The result of writing value 𝑏𝑏 at index 𝑖𝑖 of 𝑎𝑎.

• 𝒞𝒞 - A set of constant symbols.

• CDCL - Conflict-directed Clause-learning. Refers to a modern algorithm for Boolean
satisfiability.

• Coq - A skeptical proof assistant - see https://coq.inria.fr.

• CNF - Conjunctive Normal Form.

• CVC4 - An open-source SMT solver available at http://cvc4.cs.nyu.edu.

• DIMACS - A textual format for expressing Boolean satisfiability problems.

• DPLL - The Davis-Putnam-Logemann-Loveland algorithm, a complete algorithm for
Boolean satisfiability.

• DPLL(𝒯𝒯) - An architecture for SMT solvers in which a DPLL-based SAT solver interacts
with a theory solver for theory 𝒯𝒯.

• EUF - Equality with Uninterpreted Functions.

• 𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝑖𝑖 - A function provided by a theory solver which maps a propagated literal to
a valid clause responsible for the propagation.

• 𝖿𝖿𝖿𝖿𝖿𝖿𝖿𝖿 - A distinguished abstract state signifying unsatisfiability.

• 𝖿𝖿𝗅𝗅𝗅𝗅 - A funciton mapping each literal of 𝖬𝖬 to the unique decision level in which it
occurs.

• Lit - A function which returns all of the literals in its argument and their complements.

• Lit𝖬𝖬|𝑖𝑖 - The 𝛴𝛴𝑖𝑖-literals of Lit𝖬𝖬.

https://coq.inria.fr/
http://cvc4.cs.nyu.edu/

Approved for Public Release; Distribution Unlimited
65

• Int𝖬𝖬 - The set of all interface literals of 𝖬𝖬: the equalities and disequalities between
shared constants, where the set of shared constants is {𝑐𝑐 | constant 𝑐𝑐 occurs in Lit𝖬𝖬|𝑖𝑖
and Lit𝖬𝖬|𝑗𝑗, for some 1 ≤ 𝑖𝑖 < 𝑗𝑗 ≤ 𝑚𝑚}

• LF - The Edinburgh Logical Framework. A proof format.

• LFSC - Logical Framework with Side Conditions. An extension of LF that supports
computational side conditions.

• 𝚎𝚎𝚙𝚙𝚙𝚙𝚙𝚙𝚎𝚎𝚙𝚙𝚎𝚎𝚙𝚙𝚙𝚙𝚙𝚙𝚙𝚙𝚙𝚙𝑖𝑖 - A function provided by a theory solver which maps a theory lemma
to a proof for the theory lemma.

• 𝑀𝑀𝑖𝑖 - The 𝑖𝑖’th decision level.

• 𝑀𝑀[𝑖𝑖] - The subsequence 𝑀𝑀0 • ⋯ • 𝑀𝑀𝑖𝑖 .

• ⟨𝑀𝑀,𝐹𝐹,𝐶𝐶⟩ - An abstract state consisting of the context M, a set F of clauses, and a set C
containing conflicts.

• QF_ABV - The SMT-LIB logic for quantifier-free array and bit vector formulas.

• QF_AUFBV - The SMT-LIB logic for quantifier-free array and uninterpreted functions
and bit vector formulas.

• QF_AX - The SMT-LIB logic for quantifier-free array formulas.

• QF_BV - The SMT-LIB logic for quantifier-free bit vector formulas.

• QF_UFBV - The SMT-LIB logic for quantifier-free uninterpreted function and bit vector
formulas.

• QF_UF - The SMT-LIB logic for quantifier-free uninterpreted function formulas.

• 𝐒𝐒 - A set of sort symbols.

• SAT - Boolean satisfiability.

• SMT - Satisfiability Modulo Theories.

• SMT-COMP - The SMT competition, held annually (see www.smtcomp.org).

• SMT-LIB - The Satisfiability Modulo Theories benchmark library.

• SMTCoq - A tool that translates SMT proofs into Coq proofs.

• Z3 - An SMT solver developed at Microsoft Research.

• ZChaff - A SAT solver developed at Princeton University.

• 𝑇𝑇 - Used to represent a generic logical theory.

• 𝑇𝑇AX- The theory of arrays.

Approved for Public Release; Distribution Unlimited
66

• 𝑇𝑇ABV - The theory of arrays combined with the theory of fixed-width bitvectors.

• 𝑇𝑇BV- The theory of fixed-width bitvectors.

• 𝑇𝑇LIA- The theory of linear arithmetic over the integers.

• 𝑇𝑇LRA- The theory of linear arithmetic over the reals.

• 𝑇𝑇UF- The theory of equality with uninterpreted functions.

• veriT - An SMT solver developed at INRIA, France.

