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Abstract: Computational efficiency discussions are 
necessary for understanding how to build an energy 
efficient cortical structure, but not sufficient because we 
need to consider the resulting power dissipation for 
communication. Neurobiological systems are power (and 
energy) constrained in their communication. Any cortical 
architecture must explicitly incorporate these effects to 
achieve the necessary power efficiency gains, although 
most systems built to date do not consider these issues as 
primary constraints.  
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Computational efficiency (computation per unit energy) 
considerations are necessary for understanding how to 
build an energy-efficient cortical structure to reach 
equivalent computational levels of 1-100MMAC(/s)/nW in 
Biological and Si neurobiological levels [1], but not 
sufficient because we need to consider the resulting power 
dissipation for communication [1]. Neurobiological 
systems are power (and energy) constrained in their 
communication.  The human cortex consumes about 20W 
of power, of which, only a fraction (< 25%) of this power is 
used for communication, limiting the number and length of 
axonal connections.  Most biological neurons have a high 
level of local interconnection, particularly cortical neurons.   

Any cortical architecture must explicitly incorporate these 
effects to achieve the necessary power efficiency gains, 
although most systems built to date do not consider these 
issues as primary constraints.  The DARPA Synapse 
program, requiring very tight constraints in other areas (e.g. 
Synapses), basically ignored any realistic power constraint 
for their resulting architectures allowing kW of power for a 
mouse brain verses 20W actually consumed by the human 
brain. .  

Therefore, most of the computation needs to be local; 
fortunately, neurobiological systems use a similar approach 
in the fact that over 90% of neurons in cortex project 
locally to nearby neurons (i.e. nearest 1000 pyramidal 
cells).   We want to have as much communication locally 
on a single IC for low-power operation.  Integrating 
memory and computation, as in biological systems also 
keeps communication power manageable. Using external 
memory as the primary approach for programmability and 
configurability, as is the typical use of Address-Event 
Representation (AER) communication schemes, comes at a 
huge cost that makes scaling to large systems impractical. 

Constraints from Biological Computation 

Computational efficiency discussions are necessary for 
understanding how to build an energy efficient cortical 
structure, but not sufficient because we need to consider the 
resulting power dissipation for communication. We find 
that neurobiological systems are constrained in their 
communication because of power constraints [1]. The 
human cortex consumes about 20W of power, of which, 
only a fraction (25%) of this power is used for 
communication, limiting the number and length of axonal 
connections.  This result is consistent with data that most 
neurons have a high level of local interconnection [2], such 
as nearby cortical neurons; any cortical architecture must 
explicitly incorporate these effects to achieve the necessary 
power efficiency gains.  The result requires most of the 
computation to be local; fortunately, neurobiological 
systems use a similar approach in the fact that over 90% of 
neurons in cortex project locally to nearby neurons (i.e. 
nearest 1000 pyramidal cells).     

Neurons primarily communicate to other neurons primarily 
communicating events, or action potentials, which are 
effectively digital signals.   These digital events can be 
modeled similarly to Si digital communication down a 
transmission line, where energy is proportional to the 
capacitive load, and quadratically dependant on the power 
supply (Vdd). Vdd for a biological communication is 
between 100mW to 180mW [3].  Given the power 
consumed per neuron output with a typical cortical event 
rate (0.5 Hz firing rate) results in roughly 250pF total 
capacitance on an axon line for a biological system, 
corresponding to 30.6mm average total cable length of 1µm 
diameter axon cable (fairly thin axon; typical axonal 
diameters are 1µm to 20µm).  Considering mylenation for 
cortical axons only slightly (3-5%) changes this total cable 
length. 

The net result is that with most communication on 
biological axon lines, even though they might be present 
everywhere, including intricate three-dimensional patterns, 
one does find an exponentially decreasing distribution of 
axon cable length in cortex, consistent with the neural 
communication being constrained to a tight power budget. 
This result is consistent with data that most neurons have a 
high level of local interconnection [2], such as nearby 
cortical neurons; any cortical architecture must explicitly 
incorporate these effects to achieve the necessary power 
efficiency gains. Further, these results are also consistent 
with the low average spike rates found in cortical systems 
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(1 spike per second); an entire cortical network operating 
with rate encoded signals (i.e. 3 to 300 Hz) would consume 
100 times the power, and therefore the axon cable length 
for a cortical power dissipation requires 100 times shorter 
cables, which is impractical. We expect that constraining 
silicon communication power may be required based on 
this biological inspiration.  

Constraints from Digital Computation Systems 

Rarely is the digital communication included in power for 
computation, although often it is the limiting system factor, 
both in biological and synthetic systems.  Classically, 
communication of information over a longer distance is 
expensive in power; a good summary for these approaches 
is written elsewhere [4]. The capacitance for a line is a 
function of the distance of the connection, as well as 
making connections from one package to another or 
making connections between boards or other approaches. 

Figure 1 shows an example where the computation power 
to access 1MMAC of data from a nearby memory block, 
requiring two 2Mbyte, 32bit input data, and 1Mbyte, 32bit 

output data, results in 3.1mW (Vdd = 2.5V) of power, even 
though one might find a DSP chip computing at 
4MMAC(/s)/mW power efficiency [5], close to the power / 
energy efficiency wall [6]. A memory chip or data source 
further away requires even higher level of power. As 
another example, using a memory element one chip away 
for remapping neuron addresses, which is usually a first 
step to storing synaptic weights in off-chip memory, 
requires sending an 8bit address off the chip and an 8bit 
address back on the chip. Just this power alone requires 
0.5nJ per remapping in the best case; at 1012 events / s, we 
require 500W for this simple computation. Such an 
expensive computation must be used in particular targeted 
areas.  

Digital Computation of Events 

Figure 2 shows that, where possible, we want to have as 
much communication locally on a single IC for low-
power operation, since that decreases the total amount of 
capacitance needed to be charged and discharged (i.e., 1 
pF for long distance connection on chip), as well as 
allows for a (lower) range of Vdd could be supplied as 
well as a range of possible communication schemes. 
Integrating memory and computation, as in biological 
systems also keeps communication power manageable. 

Figure 2a shows a few representative levels for 
communication of events, typical boundary locations for 
typical communication. Where possible, we want to have 
as much communication locally on a single IC for low-
power operation, since that decreases the total amount of 
capacitance needed to be charged and discharged (i.e. 1pF 
for long distance connection on chip), as well as allows 
for a (lower) range of Vdd could be supplied as well as a 
range of possible communication schemes. Further, the 
tighter integration between memory elements and 
computation further decreases communication power.  
The types of approaches at a local level needed to 
optimize the use of memory in the routing architecture. 
Dendritic structures bring more of the information 
refinement to the axon outputs.  

Almost all systems require communication between 
multiple chips. When communicating events with a 
neighbor chip (e.g. 1 chip right next to the transmitting 
IC), the minimum capacitance is typically set by 10pF by 
specification (due to packaging, bonding, etc.), as well as 
off chip communication tends to be at larger V 
these calculations), resulting in a higher energy 
computation. Such an approach results in 31.3pJ per bit 
(or 31.3µW/(Mbit/s)) independent of the communication 
scheme. Such event communication schemes could 
transmit an event in only a single bit on the resulting line. 
Further, the introduction of 3D silicon processing (die 
stacking, multiple grown layers, etc) has introduced 
technologies that can reduce the effective off chip 
capacitance by an order of magnitude, and therefore, such 

 
Fig. 1. Diagram showing typical computation models for digital 
and analog approaches. For a typical digital computation, we 
must access the data (as well as instructions), communicate it to 
the processor, perform the computation, and communicate the 
results back to the memory. When this memory is an off- chip 
device, the resulting power consumed for communication is 
much higher than an efficient processor. The analog approach 
directly computes through the memory, and therefore minimizes 
the resulting issues and complexity due to communication. One 
could use digital based computation and memory to achieve 
some advantages, limited by the computational efficiency limits 
for digital techniques.  
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approaches should be utilized where available in a 
particular technology for multichip approaches.  

When we communicate over distances longer than nearest 
neighbor chips, we typically employ an Address Event 
communication scheme (i.e. AER), which requires 
sending the location of a particular spike between chips. 
At least, this requires an address for the particular line, as 
well as the particular chip we are considering; on a single 
board, an 8bit address would be a lower limit for such 
approaches. In such an approach, a communication of an 
event would travel multiple minimum chip distances (i.e. 
8 is a lower bound for an average number), resulting in 
roughly 2nJ per operation. As we go to longer distances, 

and particularly when we go to different boards, we see a 
significant increase in capacitance and addressing as well 
as routing infrastructure; the goal is to minimize the 
number of such long distance events that need to be 
communicated, while preserving the capability.  

Figure 2b shows a graph of the power required for 
communicating a number of events for these different 
schemes. When trying to reach biological efficiencies for 
communication, we have significant limits even 
communicating single events between neighboring ICs, 
not to mention longer distance communication. 1012 
events per second results in 30W of power consumption 
(1 Tbit/s). The result requires most of the computation to 
be local; fortunately, neurobiological systems use a 
similar approach in the fact that over 90% of neurons in 
cortex project locally to nearby neurons (i.e. nearest 1000 
pyramidal cells).  

For example, if the off chip (not nearest neighbor 
communication) to is budgeted for 1W of power, then 
only 0.05% of events can use this communication 
channel. Further, if we budget 1W for off-board events, 
then with the additional capacitance and bits for selection 
needed, one would see 64 times more capacitance, 
resulting in 0.001% events communicating off board. As 
additional technology becomes available, such as multiple 
die stacking in a given package or three-dimensional 
circuit fabrication, the resulting capacitance for 
communication will decrease, improving some of these 
numbers, but the containing concepts will still be the 
same. We expect similar type issues in neurobiological 
systems; even though the brain can communicate over 
long distances by many wires, the resulting energy to do 
so would be prohibitive in its current energy budget. Such 
constraints keep the communication overhead for the 
system manageable, and therefore the communication 
structure never becomes too large a burden for the system 
scaling to large sizes.  

The low spike rate has a similar effect for synthetic 
systems as it does in biological systems; increasing spike 
rate by a factor of 100, typically necessary for 
implementations using rate encoded approaches, increases 
power by at least a factor of 100, significantly limiting 
where such systems can be used. Of course, most rate 
encoding approaches simplify neuron elements to 
elementary sigma-delta converters, eliminating most of 
the computational possibilities.  

Example of Communication in a small Network 

Figure 3 shows the tradeoffs between these systems, as 
well as simple comparisons between a small network of 
simple neurons and synapses.  Using external memory as 
the primary approach for programmability and 
configurability, as is the typical use of Address-Event 
Representation (AER) communication schemes, comes at 

 
(a) 

 
(b) 

Figure 2: Modeling of power required for transmitting an event. 
(a) We consider computation between devices on a single IC, 
between neighboring ICs, on a single board, and distances beyond 
a single board (i.e. between two boards). Each of these steps 
requires considerably more power for communicating the resulting 
event; the more local the communication, the more power efficient 
the resulting computation.  (b) Communication power versus 
number of events (Gbit) communicated. We consider the three 
cases of transmitting a bit on a chip (average CL = 1pF, Vdd = 
0.5V), transmitting a bit to a neighboring chip (average CL = 10pF, 
Vdd = 2.5V), and transmitting an event address of 8 bits on a board 
(average CL = 80pF, Vdd = 2.5V).  Each case requires 0.12pJ, 
31.3pJ, and 2nJ energy communication per bit, respectively.  We 
would expect even more power consumption for longer distance 
communication (i.e. between boards), because of the larger 
capacitance for these approaches. On board requires address 
communication, because when transmitting sparse events 
encoding the address gives an optimal solution. 
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a huge cost that makes scaling to large systems 
impractical. 

The advantages of AER communication, which include 
enabling long-range, sparse interconnections, comes with 
the added cost of digital communication, costs that are 
very small for sparse, infrequent events, and that depend 
on the distance required for communication (on-chip, off-
chip, off-board).  Adding the additional cost of FPGA or 
other high performance digital processing only further 
weakens the applicability of these approaches going 
forward.  One sees exactly the same issue when using 
multiplexing of a memory with an analog system, whether 
to load synaptic weights in an external memory.  This 
result shows the heavy energy cost of computation and 
memory that are not co-located; although this approach 

might have advantages in initial system building, it 
requires communication across sizable capacitance, and 
therefore requiring more power, as well as system 
complexity.  

Many neuromorphic systems claim to be power efficient, 
and compared to typical digital off-the-shelf approaches, 
these claims are often right. In each of these approaches, 
the IC power efficiency is between the digital and analog 
SP techniques, with much lower system power efficiency 
due to the high-level for communication overhead 
(including FPGAs for routing). Many techniques start 
with a power efficient neuromorphic sensor, such as the 
DVS imager [7], which compares well to commercial 
cameras, making it a favorite sensor interface for many 
neuromorphic platforms. Unfortunately, neuromorphic 
techniques have not often improved past the analog SP 
efficiency; often the approaches, including event- based 
approaches, reduce down to Vector-Matrix Multiply 
operations, as sometimes explicitly said by the authors 
[8]. Any practical neural implementation must make sure 
that the resulting infrastructure does not overwhelm the 
efficient computation, considering system communication 
of events, communication to outside processors, and other 
multiplexing structures.  These facts leave us with a small 
list of potential neuromorphic computational models 
currently used; the authors believe more efficient 
algorithms will be discovered / invented over the coming 
years.  
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Figure 3: Illustration of the costs of external communication for 
configurability and storage.  Where possible, we want data-flow 
operations where memory and computation are co-located with 
local routing / configurability.  Moving configurability is moved 
off of the processing die substantially increases computational cost 
because of the power and complexity requirements for moving the 
data to an external processor / memory, even if next to the IC. 
Moving memory away from Processing, say for multiplexing 
Synaptic values, further increases the resulting power and 
complexity cost, even if the original device gets simpler and 
smaller. These schemes include rate-encoded approaches 
encoding synapse values because of the increased event rate.  We 
include values for a small network of 1000 neurons with 100 
synapses operating with a 1KSPS operating speed assuming a 
typical ANN (i.e. Vector-Matrix Multiplication) neuron structure. 
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