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ARO STIR FINAL PROGRESS REPORT, GRANT NUMBER W911NF-15-1-0104 
 

“Dielectric Sensing of Toxic and Explosive Chemicals via  
Impedance Spectroscopy and Plasmonic Resonance” 

 
Dr. S. James Allen, Department of Physics, University of California, Santa Barbara 

Dr. Adam J. Hauser, Department of Physics, University of Alabama, Tuscaloosa 
 
 

STATEMENT OF THE PROBLEM STUDIED 

Current deployable explosives and toxic chemical sensing methods utilize ion mobility mass 
spectrometry, gas chromatograph mass spectrometry, X-ray imaging, Raman spectroscopy, and 
other such techniques.  While these techniques are highly selective, each method has its own 
shortcomings, such as low resolution, competing ion or molecule side reactions, response 
variation from different compositions of analytes, limited response range, and time-
consumption.1 In addition, most of these techniques are bulky and require significant training for 
proper utilization.  For example, as of 2011, the state-of-the-art for organophosphates was the 
Department of Defense HAPSITE (Hazardous Air Pollutants on Site) system, a 70-pound 
“portable” gas chromatograph mass spectrometer that costs well over $100,000 per unit, not 
including the costs of weekly maintenance and a field team of specially trained personnel2.   

Worse yet, although the most rapid detection method at the time, HAPSITE fails the 
requirements for rapid detection in emergency situations, with a 30 minute exposure required for 
detection of levels in which a 10-minute exposure will have debilitating effects in a significant 
fraction of the population.  Although fine for a military advance team, this sensor is not adequate 
for defense applications, and certainly not cheap or sensitive enough for civilian applications 
such as prevention of OP exposure at home or in the workplace due to pesticides or other 
aforementioned sources.  A potential approach to sense explosives and other toxic chemicals 
while circumventing the aforementioned shortcomings is to target materials that exhibit changes 
in the dielectric constant upon chemical exposure.  Because the dielectric constant of a material 
can be tuned to specific interactions, this approach offers potential specificity.  Integrating 
dielectrics into chemical sensors is desirable as they can offer portability, tunability, simplicity, 
low costs, and rapid response times. 

The primary focus of this nine-month effort was to develop electronic sensors for hazardous 
chemicals.  The first step was to identify material(s) that have interaction potential with 
chemicals of interest.  In particular, specific reaction chemistry allows for resulting materials to 
exhibit specificity.  Based on the most favorable materials, which included metal-oxides and 
metal-organic frameworks, impedance measurements and devices were pursued as the plasmonic 
resonance of these materials were far too weak to make sensible measurements or device 
architectures.  Our results show that there are materials electronically sensitive enough to enable 
impedimetric devices that use the frequency-dependence “fingerprint” of AC impedance to 
improve selectivity. 
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Figure 1. Schematic of the adsorption and molecular dissociation of (a) dimethyl methylphosphonate 
(DMMP) and (b) dimethyl chlorophosphonate (DMCP) with Fe2O3. (c)  Fe-site magnetic moment in Fe2O3 
by XMCD after 10% volume per gram saturated exposures of explosive (2-CEES) and G-agent (DIMP, 
DMMP, DMCP) analogs.  (i) Total moment/Fe site by XMCD (solid red circles), as compared to 
macroscopic measurements by SQUID (orange triangles). (ii)  Breakdown of the total moment (red circles) 
into both spin (blue diamonds) and orbital (green triangles) components. 
 

SUMMARY OF THE MOST IMPORTANT RESULTS 
 
Fe2O3 nanoparticles.  Iron-based compounds have been shown to rapidly degrade CWA 

structural analogs on contact3-5.  Iron-based oxides are considered favorable not only for rapid 
reaction time, but are both cheap and environmentally friendly.  In collaboration with Dr. 
Jennifer Soliz at Edgewood Chemical Biological Center, we identified Fe2O3 as a promising 
candidate for OP detection, using CWA structural analogs such as dimethyl methylphosphonate 
(DMMP) and dimethyl chlorophosphate (DMCP)5.  As compared to the adsorption pathway of 
many oxides, Fe2O3 has been shown to undergo a strong binding to OP compounds6-10.  The 
stoichiometric reaction mechanism, an irreversible process, is shown in Figure 1 for CWA 
structural analogs (a) dimethyl methylphosphonate (DMMP) and (b) diemthyl 
chlorophosphonate (DMCP).  The analogs are shown to initially bond through the phosphoryl 
(P=O) oxygen atom on the Fe-sites, creating a bridging phosphoryl species.  Through this 
reaction, Fe3+ undergoes reduction in cation valency to Fe2+; thereby causing a valence change 
on the nanoparticle surface and molecular dissociation of the OP compounds.  

Our collaboration has for the first time studied the effects of various compounds on the 
magnetic and electronic states of the system, with an eye toward adequate sensitivity and 
selectivity.  By converting Fe3+ to Fe2+ upon contact, OPs convert the magnetic Fe2O3 to FeO 
and cause both a change in magnetic moment and some change in electrical resistivity.  We see 
the drop in magnetic moment determined by both bulk magnetometry and x-ray magnetic 
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Figure 2. Percent changes in (a) 
impedance and (b) resistance as a function 
of frequency in pressed pellets of 23 nm 
diameter Fe2O3 nanoparticles from 
DMMP (blue) and DMCP (red) 
exposures. 

 

circular dichroism measurements at beamline 4-ID-C at Argonne National Laboratory’s 
Advanced Photon Source in Figure 1 (c), wherein a 10% volume per gram saturated exposure of 
DMCP to a pressed pellet of 30% α-phase/70% γ-phase Fe2O3 yields nearly a 50% drop in 
moment.  X-ray absorption spectroscopy analysis confirms our mechanism, as DMCP-exposed 
nanoparticles show large changes in both Fe and O spectra commensurate with the transition to 
Fe2+ states.  It is worth noting that exposure to the lesser toxic sulfur mustard agent analog, 2-
chloroethyl ethyl sulfide (2-CEES), resulted in a small decrease in magnetic moment.  However, 
the comparatively large change in moment upon exposure to some (but not all) G-agent 
compounds, put together with the unique reaction Fe2O3 undergoes with OPs imply that Fe2O3 
sensors may result in specificity to one or a small number of organophosphates. 

However, magnetic sensors cannot be made as small, robust, and cheaply as electrical 
sensors designed around a change in impedance/resistance upon exposure.    Figure 2 shows the 
percent change in (a) impedance Z and (b) resistance R (the real component of Z) as a function 
of frequency, for pressed pellet capacitor geometry when exposed to the two OP compounds 
(DMMP and DMCP) that showed magnetic evidence for chemical reaction.  Our impedance 
work was done using pressed pellets of commercially available 23 nm diameter nanoparticles 
with maximum surface areas of 30-60 m2/g.  This number is likely reduced practically due to the 
bulk-like state of the pellet.  In practice, devices can be made using impedance or resistance.  We 
observe large on/off ratios in impedance (150%) and resistivity (480%) in the 100 kHz – 1 MHz 
range, an easily attained frequency. Shifts are also large 
as one approaches the DC limit, indicating that DC 
device application is also a strong possibility.  

It is exceedingly useful that even within the 
organophosphate subclass the two compounds shown 
show shifts in different directions.  This would allow any 
device to distinguish between different species quickly, 
and speaks to another useful application of the proposed 
impedance devices; impedance fingerprinting, wherein 
the frequency profile (or simply several points therein) 
create a unique “shift fingerprint” with which high 
specificity can be determined in very short order.  In 
addition, Fe2O3 nanoparticles have recently shown 
smaller (~17%) sensitivity to NO2 gas, helping the case 
for Fe2O3’s OP selectivity11.   

We point out that a small barrier to future devices 
exists in that the same irreversible chemical process that 
makes Fe2O3 nanoparticles reactive with high change in 
impedance also makes restricts the number of uses one 
may use it for.  For instance, while the material would 
make an excellent detector or dosimeter, a device would 
be a one-time use product if left with only measurement 
capability (although this is true of nearly every sensor).  
The low cost of the device mitigates the downside of 
such a trait, especially as we bring the device size down 
to that of a credit card, or for wearables, a small patch.  
Additionally, it is possible that purging of the adsorbate 
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Figure 3.  (a) Magnitude |Z|,  (b) phase angle θ, (c) real 
component ZRe of the impedance as a function of frequency.  
(d) ZRe/ZRe(0) for various NO2 exposure dosages, where ZRe(0) 
is the real component of impedance for unexposed Zr(OH)4. 
 

and reversal of the Fe2O3  FeO reaction could implemented by reaction with oxygen gas, 
perhaps ozone treatment or gentle heating in air10.  Further study, especially within the thermal 
and chemical constraints of other device components, will be necessary to determine the range of 
device utility and reusability. 

 
Porous Zr(OH)4 particles.  Zirconium hydroxide is another cheap, commercially available 

material of interest due to high decontamination performance on an assortment of dangerous 
chemicals12-17.  Peterson (ECBC) and co-workers have found that the exceptional reactivity is 
due to the presence of both bridging and terminal hydroxyl groups, allowing both acids and bases 
to react with the material, while performing in both dry and humid conditions.  Zr(OH)4’s 
primary advantage over other metal oxides is its many built-in hydroxyl groups, as it does not 
require the previous adsorption of an –OH group to enable hydrolysis.  Additionally, particles of 
zirconium hydroxide exhibit local regions of crystallinity amongst the amorphous matrix, 
resulting in a highly porous material and resultant high surface-to-volume area even when the 
particles are on the microscale: In the materials work we will show, we used 15 μm Zr(OH)4 
particles with surface area 406 m2/g and pore volume 0.81 cc/g.  The surface area in this case, 
despite particles three orders of magnitude bigger than the aforementioned Fe2O3 nanoparticles, 
has a surface to volume ratio an order of magnitude higher. 

The choice of Zr(OH)4 for organophosphate detection is made straightforward by the work of 
Bandosz et al, who thoroughly characterized the rapid decontamination of chemical warfare 
agents VX, soman (GD) and distilled mustard gas (HD)18.  The work shows that Zr(OH)4 has an 
incredibly fast detoxification timescale for VX (1 min), while GD (8.7 min) and HD (2.3 hr) 
detoxify more slowly.   

We note that the shift fingerprint was seen in the Fe2O3 impedance data earlier (Figure 2), 
despite any clear difference in reaction 
pathways.  In Zr(OH)4, even more 
distinctive features occur. 

During this funding term, Zr(OH)4 
impedance reactivity to NO2 has been 
measured.  Pervious work by Singh et al 
has shown by photoluminescence and 
electron microscopy that the observed 
reactivity stems from replacement of 
hydroxyl groups with chemisorbed 
NO3

17.  In our work, 13 mm diameter 
pressed pellets were exposed to a range 
of NO2 dosages from 0 to 1000 ppm·hr, 
and characterized by AC Impedance 
Analysis with a constant voltage of 0.1 
V.  The magnitude |Z| and phase angle θ 
of the impedance measured as a function 
of frequency is shown in Figures 3a and 
3b, respectively, for NO2 exposures of 0, 
50, 200, and 1,000 ppm·hr.  An applied 
voltage of 0.1V was used for all data 
points.   We observe changes in |Z| over many orders of magnitude, indicating a strong 
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 Figure 4. Percent changes in current for a 
Zr(OH)4 parallel capacitor device with applied 
voltage V = 0.1 V, for total NO2 dosages of 50 
(red), 200 (green) and 1000 (blue) ppm·hr.  
Percentages in parenthesis are the percent 
increase in device current at 0.1 Hz, close to 
the DC limit.  Values at 10 kHz are displayed 
on the right edge. 

sensitivity to NO2.  We also observe a general trend in 
phase angle from -90ᵒ towards 0ᵒ, suggesting a trend 
from capacitive to resistive behavior, likely a 
reflection of chemical changes creating conductive 
pathways in the pellet.  By a dosage level of 1,000 
ppm·hr the phase angle is approaching zero at nearly 
all frequencies, and a series of three “bumps” can be 
seen above the DC limit; a pair centered around 10 
and 100 Hz, and a higher frequency feature near 100 
kHz that can be seen for even low exposure levels.  
While these features are broad and not easily 
analyzed, they inform the equivalent circuit to be used 
later in the paper for fitting and analysis. 

If one imagines our pellet/electrode setup as a 
simple resistive NO2 detection device in line with a 
0.1 V AC source, the easiest signal extraction method 
would be measurement of the resultant current 
magnitude.  This is dictated by the resistance R, 
defined as the real component of the impedance, ZRe = 
|Z| cos θ.  We plot ZRe as a function of frequency in 
Figure 3c.  Note that as dosage is increased, we see less and less difference between ZRe and |Z| 
as the system approaches pure resistive transport.  We display the changes in ZRe upon exposure 
as compared to the initial, unexposed state in Figure 3d.  One sees large drops in resistance 
below 10 kHz even down to the lowest dosage level of 50 ppm·hr .  We again see features at 
approximately 100 Hz and 100 kHz, reflecting the contribution of the phase angle to ZRe. 

The percent change in signal current due to NO2 exposure is shown in log scale in Figure 4, 
up to 10 kHz.  The peak values for signal change all occur below 1 Hz, near the DC limit.  For 
50, 200, and 1,000 ppm·hr dosages, we see signal changes of 272%, 2,374%, and 1,011,425%, 
respectively.  These values are proof of high sensitivity and wide dosage range, indicating that 
Zr(OH)4, if found to be selective, may be an excellent choice for future use in NO2 detectors or 
dosimeters.  Although the Zr(OH)4 grains are very porous, we note that the pellet was exposed 
after pressing, suggesting that further sensitivity gains may be possible by optimizing the 
surface-to-volume ratio of the material upon exposure. 

The results of Figure 4 show zirconium hydroxide to have high sensitivity across a large 
dosage range that extends through the lethal concentration 50 dosage of 360 ppm·hr.  The range 
suggests zirconium hydroxide as an excellent dosimeter for its large cumulative range, and also 
as a static point detector/monitor, wherein the change in current can be cross-checked with a 
frequency-dependent calibration curve to obtain the real-time NO2 concentration.  Additionally, 
the significant impedance shift seen even at 50 ppm·hr strongly suggests sensitivity can be 
achieved down to the point where pulmonary function begins to be affected (2-3 ppm).  This 
functionality is especially likely considering that a pressed pellet was exposed as opposed to 
loose powder or the thin film structure proposed herein. 
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Figure 6. (a) Dielectric relaxation 
frequencies ( = 1/RC) of each of the 
three resistor/constant phase 
element pairs, as fit to our data 
using the equivalent circuit in 
Figure 4(a).  (b) Resistivity and (c) 
capacitance fit values for the 
resistor and constant phase element 
(respectively) corresponding to 
each R-CPE pair. 
 

 
Figure 5. (a) Equivalent circuit 
schematic used for AC impedance 
analysis. RS: series/lead resistance.  
CPE: constant phase element.   (b)  
Log-log Nyquist plot (symbols) and 
equivalent circuit fits (lines) for 
Zr(OH)4 pellets subjected0 to NO2 
doses of  0 (grey solid circle), 50 (red 
open square), 200 (green solid 
triangle), and 1000 (blue open 
diamond) ppm·hr. 
 

Complex Impedance Analysis was done with the fitting 
program ZView (Scribner Associates, Inc)19.  A variety of 
equivalent circuit models that have been used previously were 
attempted20-27.  We find fitting to be achieved with an 
arrangement as shown in Figure 5a, utilizing three resistor-
constant phase element (CPE28) pairs in series29-31.  This 
arrangement is motivated by phase angle features in Figure 
3b, as well as the tell-tale semicircular features in the Nyquist 
plot (discussed below) that are best modeled with R-CPE 
pairs.  We did not find a similar quality fit across the entire 
range for any other equivalent circuit.  Due to the high 
impedance of the materials, the series resistor in the circuit to 
simulate lead resistance has negligible value and the same 
element values and fit quality are extracted with or without its 
presence.  Finally, we attempted to change the order and 
starting parameters of each fit to check for local minima or 
multiple solutions, but all good fits resulted in similar results. 

Figure 5b shows a log-log plot of the imaginary (Z” = |Z| 
sin θ) component of the impedance as a function of the real 
component Z’, a so-called Nyquist Plot.  Data points are 
displayed as scatter points, with our equivalent circuit fits 
shown as black lines behind the point.  From the fits, we can 
extract resistance and capacitance values for each component 
in Figure 4a, and then determine the dielectric relaxation 
frequency 1/RC, as plotted for our three as-yet unassigned 
elements in Figure 6a.  Our fits find three general frequency 
ranges, one near 5-20 Hz, one near 50-250 Hz, and another in 
the 20-200 KHz range.  Immediately, one sees an anomaly in 
frequency 1 of the 1,000 ppm·hr, several orders above the rest.   

We approach assignment of frequencies by the typical 
approach of assigning the highest frequency (1) to the grain 
interior, the next-highest (2) to grain boundary effects, and the 
lowest (3) to ionic diffusion effects23,25,32.  In the case of 
porous grains such as Zr(OH)4, we posit that the bulk-like 
grain interior component will remain fairly constant in 
resistance as ever greater portions are changed by chemical 
reaction, and the capacitance will also remain constant for a 
time.  As the core becomes extremely small and/or disappears, 
the capacitance will collapse as it is shorted by defects or 
alternate pathways, resulting in unphysical results.  As the 
chemically changed outer portion of each grain increases in 
size, each adsorption site will become increasingly 
interconnected with other grains and show marked decreases in 
resistivity as the changed “shell” increases in size within in 
grain. Meanwhile, the ionic buildup due to adsorption will 
create a measurable “double-layer capacitance” across grain 
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boundaries that will increase as the ionically charged portion increases in thickness.  We thus 
arrive at a physical picture wherein the grain boundary and ionic processes are both within the 
chemically altered regions and their impedance properties are strongly tied together 

 
 

SUMMARY 
 
This STIR project has determined that frequency-dependent impedance devices are the most 

likely pathway to sensitive and selective devices for toxic and explosive chemicals.  The 
identified materials of choice have negligible localized surface plasmonic resonance and show 
only marginal magnetic sensitivity to exposure with no clear pathway for selectivity.  However, 
by using the frequency-dependent impedance/resistance shifts, we believe that a pathway to 
chemical fingerprinting exists and represents a major opportunity going forward in chemical 
sensing.  Going forward, impedance devices with high-surface area to volume ratios must be 
pursued to determine if the impedimetric sensitivities seen in this project can be replicated and 
improved upon. 
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