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Title: STIR: Microwave response of carbon nanotubes in polymer nanocomposite welds 
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PI: Micah J. Green, Artie McFerrin Department of Chemical Engineering, Texas A&M University 
Co-PI: Mohammad A. Saed, Department of Electrical & Computer Engineering, Texas Tech University 
Dates of Grant: 2015-Feb-1 to 2015-Oct-31 
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Statement of the problem studied 
Thrust 1 of the STIR project examines the heat response of polymer composites loaded with carbon 
nanotubes (CNTs) to microwave irradiation. This involves (1) a study of how CNT loading affects 
dielectric properties of polymer composites and (2) a study of how CNT loading affects the heating 
response to microwave radiation. Our hypothesis is that the heating of CNTs alone is not the only factor; 
rather, the formation of resistive (rather than capacitive) percolating CNT networks is the dominant factor 
in the interaction of the sample with the microwave field and the subsequent heat evolution. 

Thrust 2 of the STIR project examines the effects of microwave heating of CNT-based adhesives at 
welds between polymer films. We hypothesize that localized CNT heating at an interface allows for 
polymer mobility across the interface can allow the weld to become as strong as the bulk polymer sample. 
We investigate such welds in both bonded polymer films and printed polymer filament structures. 

For our experimental system, we choose polylactic acid (PLA) as a model polymer, given its common 
application in additive manufacturing.1-3 For the nanofiller, we utilize multi-walled carbon nanotubes.   

Please see original STIR proposal for more details. 

 

Summary of the most important results from Thrust 1 

Dielectric properties vs. MWCNT loading 
 
The heating effects of microwaves on polymer nanocomposite samples are a strong function of the 
dielectric properties of the composites. Both DC conductivity and AC properties (AC conductivity, loss 
tangent, dielectric constant) were measured for MWCNT-loaded hot-pressed PLA films as a function of 
MWCNT loading. DC measurements were conducted using a four-point-probe. AC measurements were 
performed with a low-power microwave network analyzer using coaxial lines feeding a cylindrical 
sample holder. (Note that all of these dielectric measurements take place at very low microwave powers 
such that the measurement itself doesn’t induce MWCNT heating.) Data in Figure 1 show AC 
conductivity (at 2.45 GHz) and DC conductivity, and a clear percolation transition is noted.4-6 (Note that 
AC and DC conductivity values are the same for percolated, resistive networks at high MWCNT loading, 
but AC conductivity is higher at low MWCNT loading where capacitive effects are important.) These 
measurements were all taken at room temperature. Figures 2 and 3 show ε' and the loss tangent (ε”/ε') as a 
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function of MWCNT loading. The relationship between these dielectric properties and the actual 
microwave heating response will be explored in further detail below. 
 

 

Fig. 1: DC conductivity and AC conductivity (2.45 GHz) vs. MWCNT loading in PLA films. 

 

Fig. 2: ε' (real part of relative permittivity) vs. MWCNT loading in PLA films. 

 

Fig. 3: tan δ = ε”/ε' vs. MWCNT loading in PLA films. 
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Thermal response vs. MWCNT loading 

We then measured the thermal response of PLA films to (10-100 W) microwave radiation at 2.45 GHz in 
a controlled environment. We used a forward-looking infrared (FLIR) camera to image the temperature 
increase of homogeneous films placed inside a rectangular waveguide (Figure 4), which in turn was 
connected to an Opthos microwave generator. The FLIR looks at the sample through a metal mesh 
window covering the open end of the waveguide; the thermal effects of the mesh itself can be subtracted 
from the signal through proper calibration. An electromagnetic RF meter was used to ensure safety during 
microwave radiation.) 

 

Fig. 4: Custom waveguide with brass mesh window for visualization. 

Figure 5 shows thermal images of PLA films at varying MWCNT loadings after 30 seconds of 20 W 
microwave exposure. Interestingly, the heating response dramatically increases as the loading is increased 
to 2 wt.% MWCNT. We hypothesize that this increase in heating response is caused by a transition from a 
disconnected capacitive network of the conducting MWCNTs to a connected resistor network. (One other 
prior study had observed a similar effect for MWCNTs dispersed in silicone oil.7) The induced electric 
current magnitudes on the MWCNTs due to microwave radiation are significantly increased above this 
threshold, resulting in high power dissipation through heating. We hypothesize that below this threshold, 
the gaps between the MWCNTs in the disconnected network inhibit current flow due to the high 
impedances in the matrix. Interestingly, the data also show a dramatic decrease in heating (and altered 
distribution) as the loading changes from 5 wt.% to 10 wt.%. From this data, we hypothesize that this is 
related to the transition from power absorbance to microwave power reflectance associated with high 
conductivity networks. The unusual, non-monotonic heating progression suggests an overall picture as 
follows:  

• At low MWCNT loading (< percolation threshold), low microwave power absorbance is 
observed 

• At MWCNT loading just above percolation, substantial microwave power absorbance is 
observed 

• At high MWCNT loading, partial microwave power reflectance and lower absorbance is 
observed. 
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Fig. 5: Preliminary study - FLIR imaging used to capture temperature profile during microwave 
exposure for MWCNT/PLA nanocomposites. The non-homogeneous profile stems from both heat 

transfer effects and inhomogeneities in the microwave field itself. 

This pattern also suggests a particular range of MWCNT loading for maximal microwave heating. In 
principle, such effects could be simulated in concert with heat transfer models and compared directly 
against these FLIR models. Follow-up studies could use finite-element modeling to undertake such a 
comparison. The maximum temperature from the FLIR videos are plotted vs. time in Figure 6, and the 
deflection from the glass transition temperature is clear. 

 

Fig. 6: Maximum temperature vs. time for FLIR videos of samples with varying MWCNT loading 
(microwave irradiation at 20W and 2.45 GHz). 

Calorimetry 

Differential scanning calorimetry (DSC) measurements were used as a point of comparison to between 
the thermal trace (Figure 6) with the heat capacity, melting temperature, and glass transition temperatures 
of the MWCNT-loaded PLA samples. Our DSC data (Figure 7) indicate that the Tg of the PLA (as 
measured from DSC) is correlated with a plateau (Figure 6) in the dynamic temperature vs. time response 
in the FLIR-imaged samples (~60 oC).  
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Fig. 7: DSC results for both neat PLA and 10 wt.% MWCNT-in-PLA hot pressed films. Star 
indicates Tg. 

Heating in non-uniform materials 

Ultimately, our goal is to examine not only homogeneous samples (as noted above) but also non-
homogeneous samples where a MWCNT -loaded coating is applied to a bulk polymeric structure. 
MWCNT-coated PLA filaments were grouped into a bundle and imaged using the FLIR camera during 
microwave exposure (150 W) inside the waveguide (Figure 8). The localized heating at the MWCNT 
coating is clear from the image; we anticipate that this localized heating will manifest in increased weld 
strength, as investigated in detail in Thrust 2. 

 

Fig. 8: FLIR imaging used to capture temperature profile during 150 W microwave exposure of a 
bundle of MWCNT-coated filaments 
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Summary of the most important results from Thrust 2 

Nanotube heating at polymer film interfaces 

Our primary goal in Thrust 2 was to examine direct mechanical probes of interfacial adhesion of 
MWCNT coatings upon microwave irradiation. In each test, a PLA film was spray-coated on a 1 in.2 area 
with a 10wt% MWCNT/PLA ink. This sprayed area was then used as an adhesive to adhere another PLA 
film.  The MWCNT-coated area was exposed to 1250W, 2.45 GHz microwave irradiation for varying 
times in a custom Faraday cage/microwave setup (Figure 9).  

 

Fig. 9: Custom microwave/Faraday cage setup for large-scale microwave exposure. 

ASTM D31-63 lap shear tests (conducted using a conventional tensile tester) were used to give a 
macroscale indication of the effect of microwave irradiation on the enhanced adhesive strength in a 
between the two PLA films.  

7 total tests were carried out. 4 of the 7 failed outside the bond area, indicating that the weld is stronger 
than the polymer itself. A typical test (Figure 10) shows that microwave radiation of thin MWCNT 
coatings can induce sufficient polymer diffusion to cause tensile failure to occur outside the weld. The 
other 3 samples broke in the welded area. 1 of these samples suffered from insufficient microwave 
exposure and broke in the weld. 2 of these samples suffered from overexposure and damage in the 
microwave. The stress-strain diagrams for these samples are indicated in Figure 11 below. 
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Fig. 10: Results from tensile tests of PLA films with microwaved MWCNT welds (10wt% 
MWCNT/PLA ink spray coated onto PLA film, bond area ~1”x1”, microwaved in 1250W in a 

chamber at 50% duty for 20 sec) 

 

Fig. 11: Stress-strain data for lap shear tests for multiple MWCNT-bonded PLA film samples. Note 
the distinction between passed and failed samples; this is due to the degree of microwave exposure. 

Legend merely designates sample name. 

(Note that the mechanical strength and toughness of the “good weld” samples are still less than what one 
would see in a PLA film tensile test; this is merely a typical consequence of the difference between 
ASTM tests since lap shear tests involve stress-concentrators near welding regions.) 

These results indicate two things: (1) Given sufficient microwave irradiation, MWCNT-PLA adhesive 
coatings can result in excellent welds that are stronger than the surrounding polymer. With no microwave 
irradiation, the bonded film fails at the weld, whereas after sufficient microwave irradiation, the bonded 
film fails in the bulk polymer.48,49 Additional tests are needed to narrow the parameter space (microwave 
power and time) where this transition occurs; thermal imaging can ensure a degree of control over this 
process. (2) Variation in microwave exposure can lead to variability in the heat response, which is 
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determined by the experimental microwave exposure chamber and ability to monitor temperature during 
exposure. We explore this second issue in greater detail below.  

Furthermore, these macroscale tests hint at the underlying polymer dynamics at the weld, where localized 
heating allows polymers to migrate across the interface and remove the failure point. Additional studies 
are needed to extract scaling laws for the time and temperature for such polymer migration to occur. 

Nanotube heating at polymer filament interfaces – thermal imaging 

In similar fashion, we utilized 3D printing on an UP! Mini 3D printer to vertically print a layered 
structure from a MWCNT-coated PLA filament. The PLA filament was coated with a 10 wt.% 
MWCNT/PLA ink prior to the 3D printing process. FLIR imaging was then used to visualize the 
temperature field in the structure during microwave irradiation. In particular, Figure 12 shows the striated 
thermal response corresponding to the printed layers; localized heating effects along the welds can be 
seen, confirming that the heating is restricted to the MWCNT-enriched regions, promoting inter-filament 
welds. 

 

Fig. 12: FLIR image of a layered, printed structure (150 W in waveguide, 50 ms exposure) 

Nanotube heating at polymer filament interfaces - mechanical data: 

As an additional probe of improved weld strength, we exposed the 3D-printed structures to microwave 
fields using two different methods. Dogbone shapes were then bored out from these structures, and we 
conducted ASTM D638 tensile tests on these dogbones. 

Representative tensile data from the prior ARO STIR grant is shown in Figure 14. This data was 
generated using the MWCNT coating, 3D printing, microwave-exposing technology described above. The 
vertically-printed dogbones were tested using an Instron tensile testing apparatus. The stress-strain 
behavior for a microwaved dogbone is shown in Figure 11 (with an exposure time of 120 seconds at a 
maximum temperature of 200 oC) alongside stress-strain data from the baseline 3D-printed dogbone and a 
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bulk PLA dogbone. This data is highly repeatable because of the feedback control over time and 
maximum temperature in our setup. 

 

Fig. 13: Stress vs. strain for vertically-printed dogbone samples; three samples are shown: native 
3D-printed samples, 3D-printed samples with microwave exposure, and bulk PLA. 

There are several critical noteworthy conclusions to draw from this data in Figure 13. The use of 
MWCNTs at the interface allows for high localized temperatures and localized polymer mobility, such 
that the strength of these welds is >90% that of the bulk polymer. This recovery in the weld strength of 
3D-printed parts is unprecedented. However, it is even more interesting to note that although the weld 
strength was almost completely restored, the toughness is not restored. The failure mechanism still 
involves a brittle failure at the weld rather than the crazing that is characteristic of the bulk polymer. 

This data shows that improved weld strength in large scale systems is possible, if the microwave exposure 
can be controlled so that the polymer reaches temperatures sufficient to induce melting but low enough to 
avoid degradation.  

Solid-state microwave source / waveguide exposure: 

In order to control the actual temperatures in the sample (rather than merely the input microwave power), 
the 3D-printed dogbone samples were placed in the waveguide (from Figure 4) powered by the solid-state 
Opthos microwave source; this source has 1W precision but only a maximum power of 150 W. Within 
this setup, the thermal dynamics of the sample can be monitored during microwave exposure by using the 
FLIR camera. The power was controlled by hand to ensure a consistent thermal history from sample to 
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sample (150 W up to 195 oC, 40-50 W to keep the sample within 190-200 oC). This means of 
simultaneously microwaving samples with a feedback loop based on maximum temperature allowed us to 
generate excellent repeatability in tensile test mechanical performance (Figure 14).  The as-measured 
mechanical strength, toughness, and strain-to-failure are below those of Figure 13 (due to the low power 
on the solid-state microwave source), but these results do indicate that a temperature-microwave power 
feedback loop can lead to repeatable polymer migration and weld heating on complex, macroscopic 
structures. 

 

Fig. 14: Stress vs. strain for waveguide-exposed, 3D-printed samples. 

Conclusions & Future Work 
From this data, we conclude the following: 

1. For homogeneous nanocomposite structures, our unusual, non-monotonic heating progression 
suggests an overall picture of microwave power transmission (in samples with MWCNT loadings 
below percolation), microwave power absorbance (samples with MWCNT loadings just above 
percolation), and microwave power reflectance (high MWCNT loadings).   

2. Polymer migration across welds using MWCNT-based adhesives and microwaves allows for 
strengthened welds that will not act as weak spots during tension; microwave exposure (i.e., 
sufficient time and temperature at the interface) as the dominant factor in the pass/fail ASTM lap 
shear test. 

3. Similarly, polymer migration across filaments in welds in 3D-printed structure allows for 
remarkable changes in stress-strain behavior; however, uniform microwave exposure with real-
time thermal monitoring is needed to ensure repeatability and control. 

These results are promising but do prompt serious fundamental scientific questions underlying many of 
these macroscale observations: 

1. How does microwave frequency and temperature affect the dielectric properties? The dielectric 
data measured above is limited to the “linear” region which doesn’t apply to samples in the 
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temperature region where welding occurs. Similarly, other key material properties such as the 
thermal conductivity of the nanocomposite would also change with temperature. 

2. Can simulations of the coupled microwave field, dielectric response, and heat transfer dynamics 
allow us to make quantitative predictions for the response of MWCNT-loaded materials to 
microwave fields? For instance, can such simulations predict power dissipation as a function of ε' 
and tan δ (which are a function of MWCNT loading, temperature, and frequency)? 

3. How do time, temperature, and molecular weight affect the migration of polymers at heated 
MWCNT interfaces during microwave exposure? Can scaling laws be extracted to allow for 
prediction of polymer motion at the microscale? 

4. Despite the preliminary data shown above, little is known about cooperative behavior and 
penetration depth limitations in the many-weld systems common to polymeric structures, 
including those created in an additive manufacturing context. How do such complex structures 
with non-homogeneous orientation and composition respond to applied microwave fields? How 
do the single-weld scaling laws for polymer motion on the microscale translate to macroscale 
many-weld systems? 

5. How does the CNT loaded polymer affect the electromagnetic field distribution within the sample 
in a given exposure system, and in turn affect the heating profile?  
  



12 
 

REFERENCES 

 (1) Giordano, R. A.; Wu, B. M.; Borland, S. W.; Cima, L. G.; Sachs, E. M.; Cima, M. J. 
Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing. 
Journal of Biomaterials Science, Polymer Edition 1997, 8, 63-75. 
 (2) Lunt, J. Large-scale production, properties and commercial applications of polylactic acid 
polymers. Polymer Degradation and Stability 1998, 59, 145-152. 
 (3) Tymrak, B. M.; Kreiger, M.; Pearce, J. M. Mechanical properties of components 
fabricated with open-source 3-D printers under realistic environmental conditions. Materials & Design 
2014, 58, 242-246. 
 (4) Sun, X.; Song, M. Highly Conductive Carbon Nanotube/Polymer Nanocomposites 
Achievable? Macromolecular Theory and Simulations 2009, 18, 155-161. 
 (5) Martin-Gallego, M.; Bernal, M. M.; Hernandez, M.; Verdejo, R.; Lopez-Manchado, M. A. 
Comparison of filler percolation and mechanical properties in graphene and carbon nanotubes filled 
epoxy nanocomposites. European Polymer Journal 2013, 49, 1347-1353. 
 (6) Bauhofer, W.; Kovacs, J. Z. A review and analysis of electrical percolation in carbon 
nanotube polymer composites. Composites Science and Technology 2009, 69, 1486-1498. 
 (7) Paton, K. R.; Windle, A. H. Efficient microwave energy absorption by carbon nanotubes. 
Carbon 2008, 46, 1935-1941. 

 




