

US Army Corps of Engineers_® Engineer Research and Development Center

DoD Corrosion Prevention and Control Program

Demonstration and Validation of Reactive Vitreous Coatings to Prevent Corrosion of Steel Fixtures Attached to Masonry Walls

Final Report on Project F10-AR12

Steven C. Sweeney, Christopher Olaes, and Darrell Skinner

December 2016

Construction Engineering Research Laboratory **The U.S. Army Engineer Research and Development Center (ERDC)** solves the nation's toughest engineering and environmental challenges. ERDC develops innovative solutions in civil and military engineering, geospatial sciences, water resources, and environmental sciences for the Army, the Department of Defense, civilian agencies, and our nation's public good. Find out more at www.erdc.usace.army.mil.

To search for other technical reports published by ERDC, visit the ERDC online library at <u>http://acwc.sdp.sirsi.net/client/default</u>.

Demonstration and Validation of Reactive Vitreous Coatings to Prevent Corrosion of Steel Fixtures Attached to Masonry Walls

Final Report on Project F10-AR12

Steven C. Sweeney

Construction Engineering Research Laboratory U.S. Army Engineer Research and Development Center 2902 Newmark Drive Champaign, IL 61822

Christopher Olaes and Darrell Skinner

Mandaree Enterprise Corporation 812 Park Drive Warner Robins, GA 31088

Final report

Approved for public release; distribution is unlimited.

Prepared for Office of the Secretary of Defense (OUSD(AT&L)) 3090 Defense Pentagon Washington, DC 20301-3090

Under Project F10-AR12, "Use of Reactive Vitreous Coatings on Steel Fixtures for Masonry Wall to Prevent Corrosion at Fort Stewart, GA"

Abstract

Masonry block and brick wall veneer construction, widely used on military installations, is subject to rapid deterioration when the ferrous hardware tying brick veneer to substrate corrodes prematurely. Corrosion of veneeranchor hardware can compromise structural integrity and cause fracture and spalling of masonry materials. Because these building ties are concealed beneath the veneer, corrosion can proceed undetected until structural damage occurs. A new reactive silicate material that can be bonded to steel hardware with a layer of vitreous enamel, developed by the U.S. Army Engineer Research and Development Center, was evaluated for corrosionprotection performance in a demonstration project at Fort Stewart, GA. When fractured, this coating produces a self-healing reaction by formation of silicate hydration products that passivate any exposed steel surface. Steel anchors were coated with the vitreous enamel and then installed in sections of damaged brick veneer on buildings needing rehabilitation. Brick/block coupons were also fabricated using these anchors for exposure and ASTM E754 pullout-strength testing.

Results show that the enamel-coated ties were more corrosion resistant than both bare steel and galvanized ties used in the exposure specimens. Issues with coating coverage and flaking were noted, and implementation caveats are offered. The project return on investment was 3.31.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. All product names and trademarks cited are the property of their respective owners. The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

Contents

Abs	Abstractii				
Fig	Figures and Tablesv				
Pre	Prefacevii				
Uni	it Con	version Factors	viii		
1	Intro	duction	1		
	1.1	Problem statement	1		
	1.2	Objective	2		
	1.3	Approach	2		
	1.4	Metrics	3		
2	Tech	nical Investigation	4		
	2.1	Project overview	4		
	2.2	Installation of the technology	5		
	2.3	Technology operation and monitoring	11		
3	Discu	Discussion			
	3.1	Results	14		
		3.1.1 ASTM E754 pullout testing	. 14		
		3.1.2 Borescope visual inspections	. 16		
		3.1.3 Destructive inspection of coupons	. 20		
	3.2	Coating material characteristics and coverage	26		
	3.3	Lessons learned	27		
4	Econ	omic Summary	28		
	4.1	Costs and assumptions	28		
	4.2	Projected return on investment (ROI)	29		
5	Conc	lusions and Recommendations	31		
	5.1	Conclusions	31		
	5.2	Recommendations	32		
		5.2.1 Applicability	. 32		
		5.2.2 Implementation	. 32		
Ref	References				
Ар	pendix	x A: ASTM E754 Test Reports	35		

Appendix B: Borescope Inspection Locations	71
Appendix C: Visual Inspection Reports	75
Report Documentation Page	

Figures and Tables

Figures

Figure 1. Exterior view of Building 632 brick veneer construction.	4
Figure 2. Failed masonry joints, showing spalled bricks.	5
Figure 3. Vitreous-coated double-eye tie component (left) and pintle (right).	5
Figure 4. Scaffolding erected for project.	6
Figure 5. Selected panels stripped to bare walls.	6
Figure 6. Application of adhesive.	7
Figure 7. Application of the rubber sheathing	7
Figure 8. Installed double-eye component with chalk line for alignment	8
Figure 9. Drilling a pilot hole for a double-eye wall tie component	8
Figure 10. Installation of a double-eye wall tie component.	9
Figure 11. Installation of foam board insulation.	9
Figure 12. Coated double eye component with pintle attached.	10
Figure 13. Installed pintles protruding through foam insulation	10
Figure 14. Plastic tubing for borescope inspection	11
Figure 15. View showing brickwork and mortar adjacent to tubes and tie	11
Figure 16. Production of ASTM E754 coupons	12
Figure 17. Production of comparison coupons.	12
Figure 18. Fort Stewart coupon test rack	13
Figure 19. Duck, NC, coupon test rack	13
Figure 20. Borescope inspection of a vitreous coated wall tie after 18 months of exposure in Building 635 location 2-2.	16
Figure 21 Borescope inspection of a vitreous coated wall tie after 18 months of exposure in Building 635 location 1-1	17
Figure 22 Borescope inspection of a vitreous coated wall tie after 18 months of exposure in Building 635 location 3-3	17
Figure 23. Borescope inspection of a vitreous coated wall tie after 18 months of exposure in Building 635 location 4-1	18
Figure 24. Borescope inspection of a vitreous coated wall tie after 18 months of exposure in Building 632 location 2-1	18
Figure 25. Borescope inspection of a vitreous coated wall tie after 18 months of exposure in Building 632 location 3-1	19
Figure 26. Borescope inspection of a vitreous coated wall tie after 18 months of exposure in Building 632 location 3-1	19
Figure 27. Borescope inspection of a vitreous coated wall tie after 18 months of exposure in Building 632 location 4-2.	20
Figure 28. Destructive inspection of prism interior with galvanized pintle after 18 months of exposure at Fort Stewart	21

Figure 29. Inspection of the exterior part of the galvanized pintle after 18 months of exposure at Fort Stewart, GA.	21
Figure 30. Inspection of the exterior tip of the galvanized pintle after 18 months of exposure at Fort Stewart, GA.	22
Figure 31. Inspection of the exterior part of the vitreous coated pintle after 18 months of exposure at Fort Stewart, GA	22
Figure 32. Destructive inspection of the interior of a vitreous coated pintle after 18 months of exposure at Fort Stewart, GA	23
Figure 33. Inspection of the exterior part of the standard steel pintle after 18 months of exposure at Duck, NC.	23
Figure 34. Inspection of the exterior part of the standard steel (left) and galvanized (right) pintle after 18 months of exposure at Duck, NC	24
Figure 35. Inspection of the exterior part of the galvanized (left) and vitreous coated (right) pintle after 18 months of exposure at Duck, NC.	24
Figure 36. Destructive inspection of the interior of a standard steel (left) and galvanized (right) pintle after 18 months of exposure at Duck, NC	25
Figure 37. Destructive inspection of the interior of a galvanized (left) and vitreous coated (right) pintle after 18 months of exposure at Duck, NC.	25
Figure 38. Solo galvanized pintle in an ASTM E754 brick coupon at Fort Stewart, GA	26

Tables

Table 2. ASTM-E-754 results of sample with approximately 12 months of exposure, February 2012.15Table 3. ASTM-E-754 results of sample with approximately 18 months of exposure, August 2012.15Table 4. Summary of expenditures for CPC Project F10-AR12.28Table 5. Cost breakdown for performing field demonstration and validation.28Table 6. Return on investment calculations for Project F10-AR12.30	Table 1. ASTM-E754 initial results for control samples, March 2011.	14
Table 3. ASTM-E-754 results of sample with approximately 18 months of exposure, August 2012	Table 2. ASTM-E-754 results of sample with approximately 12 months of exposure, February 2012.	15
Table 4. Summary of expenditures for CPC Project F10-AR12.28Table 5. Cost breakdown for performing field demonstration and validation.28Table 6. Return on investment calculations for Project F10-AR12.30	Table 3. ASTM-E-754 results of sample with approximately 18 months of exposure, August 2012.	15
Table 5. Cost breakdown for performing field demonstration and validation	Table 4. Summary of expenditures for CPC Project F10-AR12	
Table 6. Return on investment calculations for Project F10-AR12	Table 5. Cost breakdown for performing field demonstration and validation	
	Table 6. Return on investment calculations for Project F10-AR12	

Preface

This study was conducted for the Office of the Secretary of Defense (OSD) under Corrosion Prevention and Control Program Project F10-AR12, "Use of Reactive Vitreous Coatings on Steel Fixtures for Masonry Wall to Prevent Corrosion at Fort Stewart, GA." The proponent was the U.S. Army Office of the Assistant Chief of Staff for Installation Management (ACSIM), and the stakeholder was the U.S. Army Installation Management Command (IMCOM). The technical monitors were Daniel J. Dunmire (OUSD(AT&L)), Bernie Rodriguez (IMPW-FM), and Valerie D. Hines (DAIM-ODF).

The work was performed by the Materials Branch of the Facilities Division (CEERD-CFM), U.S. Army Engineer Research and Development Center, Construction Engineering Research Laboratory (ERDC-CERL). At the time of publication, Vicki Van Blaricum was Chief, CEERD-CFM; Donald K. Hicks was Chief, CEERD-CF and Kurt Kinnevan, CEERD-CZT was the Technical Director for Adaptive and Resilient Installations. The Deputy Director of ERDC-CERL was Dr. Kirankumar Topudurti and the Director was Dr. Ilker Adiguzel.

John B McCormick (CESAW-ECP-CJ), Civil Engineer at Fort Stewart, GA, is gratefully acknowledged for his support and assistance in this project.

The Commander of ERDC was COL Bryan S. Green and the Director was Dr. Jeffery P. Holland.

Unit Conversion Factors

Multiply	Ву	To Obtain
degrees Fahrenheit	(F-32)/1.8	degrees Celsius
feet	0.3048	meters
inches	0.0254	meters
inch-pounds (force)	0.1129848	newton meters
mils	0.0254	millimeters
pounds (force)	4.448222	newtons
pounds (force) per foot	14.59390	newtons per meter
pounds (force) per in.	175.1268	newtons per meter
pounds (force) per square foot	47.88026	pascals
pounds (mass)	0.45359237	kilograms
pounds (mass) per cubic foot	16.01846	kilograms per cubic meter
pounds (mass) per cubic in.	2.757990 E+04	kilograms per cubic meter
pounds (mass) per square foot	4.882428	kilograms per square meter
square feet	0.09290304	square meters

1 Introduction

1.1 Problem statement

Masonry block and brick wall veneer construction is commonly used for administrative and residential construction on Department of Defense (DoD) installations. Many such structures use two-piece steel wall anchors, each consisting of a pintle and an eye, embedded in the mortar to anchor courses of brick masonry to other structural elements in the building. Corrosion of these ties degrades bonding between the mortar and the steel, , and this can cause the loss of structural continuity within the wall. Failures in structural connection of this type become visible when brick/block and mortar spalls or crumbles away from the wall. Because the steel fixtures are covered with mortar and hidden from view during construction, corrosion can proceed undetected until serious damage has occurred.

There is currently no simple solution to the deterioration of reinforcement steel embedded in concrete or masonry. Industry-standard epoxy coatings may crack or delaminate from the steel in as little as five years and concrete additives have not yet been shown to be effective in preventing the corrosion of masonry-embedded steel. Researchers at the U.S. Army Engineer Research and Development Center (ERDC) previously developed a new reactive silicate material that can be bonded to steel reinforcement bars with a layer of vitreous enamel (Morefield et al. 2008). The vitreous enamel coating contains a blend of a hydraulically reactive silicate cement with a glass enameling frit that is fused to steel. Research has shown that when Portland cement is used in the vitreous formulation, the hydration reaction that occurs in cement paste is also observed in the cement component of the coating. If the coating fractures, a self-healing reaction can result through the creation of calcium silicate hydration products (Morefield et al. 2008). Experimental results have indicated that after only seven days of curing, the chemical bond that forms between coated steel elements and concrete is typically two to three times stronger than it is for bare steel, while also protecting the steel from corrosion processes initiated by the intrusion of moisture and chlorides or other chemicals (Moser et al. 2010). The technology was awarded a U.S. patent in 2014 (Day et al. 2014).

In order to evaluate the potential applicability of this technology to brick/block masonry construction, a Corrosion Prevention and Control Program demonstration/validation (dem/val) project was funded to fabricate, install, and assess the performance of enamel-coated steel anchors in existing buildings that require rehabilitation due to corrosion-related brick veneer and structural degradation.

1.2 Objective

The objective of this project was to install new steel hardware coated with the patented calcium-silicate enamel as part of scheduled brick/block facility rehabilitation at Fort Stewart, GA; visually monitor corrosion effects and performance; and measure the strength of masonry specimens representing the demonstrated structural system.

1.3 Approach

The project team identified several buildings at Fort Stewart, GA, that were damaged due to corroded wall ties and scheduled for replacement of most of their brick veneer. The team selected Buildings 632 and 635 for the demonstration. The brick panels targeted for replacement on these buildings displayed visible evidence of failure in the form of cracking, broken bricks, displaced mortar, and wall ties that had broken free and were visibly protruding from the panels.

The project was coordinated with the Fort Stewart Department of Public Works, which retained a contractor to refurbish the failing brick veneers. This contractor was also responsible for providing the enamel-coated wall ties. All of the brick panels replaced on Buildings 632 and 635 incorporated these fuse-bonded, enamel-coated wall ties instead of standard steel ties. These ties were subsequently inspected at various intervals using a borescope at inspection points built into the structures during repair.

In addition, test samples were made at the project site with the same materials used in the repair. These samples were then exposed to the elements at both Fort Stewart and at test racks constructed at an oceanfront research site at Duck, NC. These samples were removed at various times to inspect for corrosion and test the ties for pull-out strength.

1.4 Metrics

The primary means of evaluating technology performance was visual inspection of the wall ties for any corrosion activity. The external wall panels, installed vitreous brick ties, and exposed coupons were inspected at quarterly intervals. Twenty-one inspection points on Buildings 632 and 635 were selected for monitoring. During masonry rehabilitation, the inspection points were fitted with flexible plastic tubing behind the brick veneer to facilitate the use of a fiber-optic borescope device in performing the inspections.

Additionally, 12 brick coupons were fabricated for exposure testing at Fort Stewart and at the Field Research Facility (FRF) located at Duck, NC. Mortar joint strength of the coupons was tracked and tested in accordance with ASTM E754-80 (2006), *Standard Test Method for Pullout Resistance of Ties and Anchors Embedded in Masonry Mortar Joints*.

2 Technical Investigation

2.1 Project overview

This demonstration involved selecting two buildings that totaled approximately 6,200 sq ft of masonry requiring replacement. The subject buildings had multiple panels of masonry work that displayed visible evidence of failure in the form of fractured/crumbling brick, corroded reinforcing wire, and displaced mortar joints as shown in Figure 1 and Figure 2.

Figure 1. Exterior view of Building 632 brick veneer construction.

For the purposes of this demonstration 2,500 two-piece steel wall ties, each consisting of double-eye wall plates and 5 by 2 in. rectangular wire pintles of 3/16 in. diameter were procured (Figure 3). This hardware was sent to Pro Perma Engineered Coatings in Rolla, MO, for application of the vitreous enamel coating. After coating, the materials were shipped to Fort Stewart for installation.

Figure 2. Failed masonry joints, showing spalled bricks.

Figure 3. Vitreous-coated double-eye tie component (left) and pintle (right).

2.2 Installation of the technology

The demonstration buildings were cordoned off, protective barriers were installed to limit pedestrian traffic, and scaffolding was erected as required, as shown in Figure 4. Figure 5 depicts the selected panels that were stripped of hardware, moisture barrier, and coatings until the bare cinderblock substructure was exposed.

Figure 4. Scaffolding erected for project.

Figure 5. Selected panels stripped to bare walls.

To begin the rehabilitation of the wall panels, a waterproof adhesive was applied to the concrete block (Figure 6). The adhesive/sealant was applied liberally to each wall panel using a paint roller system to ensure an effective coating for the installation of rubber waterproof sheathing. Figure 7 shows application of the sheathing.

Figure 6. Application of adhesive.

Figure 7. Application of the rubber sheathing.

Chalk lines applied to the wall panels provided straight and level courses and proper spacing for the wall ties to be anchored (Figure 8). A hammer drill was used to create the holes for the wall tie anchors along the chalk lines. After the holes were drilled, the anchor plate and fasteners were installed using two, ¼ in. diameter hammer-drive pin anchors (Figure 9).

Figure 8. Installed double-eye component with chalk line for alignment.

Figure 9. Drilling a pilot hole for a double-eye wall tie component.

Upon installation of the anchor plates on the wall panels (Figure 10), a 1 in. layer of insulating foam board was installed over the entire wall panel (Figure 11). A small portion of the foam was cut out to facilitate installing the eyes (Figure 12). Figure 13 shows a section of installed pintles.

Figure 10. Installation of a double-eye wall tie component.

Figure 11. Installation of foam board insulation.

Figure 12. Coated double eye component with pintle attached.

Figure 13. Installed pintles protruding through foam insulation.

At designated sites on select wall panels, a 5/8 in. plastic tubing was installed to provide the guide for the borescope camera inspections (Figure 14). In each of these wall panels, three wall ties were selected as inspection points. Guide tubes were secured to the foam insulation board, with the interior ends of the tubes being turned down to prevent debris from falling into the tube and obstructing it. The brick masons then laid mortar and brick in the customary manner for anchored brick veneer construction (Figure 15).

Figure 14. Plastic tubing for borescope inspection.

Figure 15. View showing brickwork and mortar adjacent to tubes and tie.

2.3 Technology operation and monitoring

Visual inspections were facilitated by the inspection points installed in select wall panels during construction. Immediately after installation, a visual inspection of the exterior walls of Buildings 632 and 635 was completed. The performance of the vitreous coated wall ties was monitored for 18 months. Borescope inspections were performed one month after the installation and at three-month intervals. A final inspection was performed one month prior to the end of the monitoring period. This demonstration also included the construction of 50 masonry coupons to be used in destructive exposure testing (see Figure 16 and Figure 17). The vitreous-ceramic coated pintle was installed in 15 of the test coupons, and a conventional galvanized steel pintle was installed in 15 other coupons. The remaining 20 specimens were comparison coupons, each built with an uncoated steel pintle, a galvanized steel pintle, and an enamelcoated steel pintle.

Figure 17. Production of comparison coupons.

The coupons were transported to two different geographic locations for exposure. Twenty-two of the coupons were set up in a USACE test yard at Fort Stewart and twenty-two were moved to the FRF at Duck, NC, for exposure to a high-chloride coastal environment (see Figure 18 and Figure 19). The remaining six coupons were sent to a testing facility for ASTM E754 testing after completing the required seven-day cure cycle.

Baseline data were acquired using a borescope camera in video mode to establish the condition of the pintles at the start of the inspection period. Over the course of the next two years, photos and videos will be updated periodically to note any detectable corrosion. At twelve-month intervals, exposure coupons were retrieved from the exposure sites and tested in accordance with ASTM E754.

Figure 18. Fort Stewart coupon test rack.

Figure 19. Duck, NC, coupon test rack.

3 Discussion

3.1 Results

The overall observation is that, to date, the wall ties have performed as expected. No failure of the wall panel or individual mortar joints has occurred, and no evidence of corrosion has been detected in the wall ties.

3.1.1 ASTM E754 pullout testing

The results of the initial ASTM E754 testing of the coupons is shown in Table 1. The average peak load before failure of the vitreous coated ties was 2,174 lb, and the average load before failure of the galvanized ties was 1,749 lb. After 12 months of exposure, the average peak load before failure of the vitreous coated ties was 2,251 lb, and the average load before failure of the galvanized ties was 1,901 lb (Table 2). The vitreous-coated ties had 18.4% higher pullout strength at that time compared to the galvanized ties. After 18 months of exposure, the average load before failure for the vitreous-coated ties was essentially the same as in the 12 month tests (2,227 lb). At that same time, the galvanized ties had a pullout strength of 1,642 lb (Table 3), a 13.6% reduction in strength. These test results show that the vitreous-coated ties maintained their pullout strength while the pullout strength of the galvanized specimens degraded during the performance period.

Sample ID	Peak Load (lb)	Peak Displacement (in.)	Failure Type
V1	2,109	0.7320	Mortar joint failure
V 2	2,103	0.7520	Metal pullout failure
٧3	2,310	0.7470	Mortar joint shear
Average	2,174	0.7437	NA
G 1	1,873	0.5210	One-sided metal pullout failure
G 2	1,716	0.5050	One-sided metal pullout failure
G 3	1,569	0.5100	One-sided metal pullout failure
Average	1,749	0.5120	NA

Table 1. ASTM-E754 initial results for control samples, March 2011.

Sample ID	Peak Load (lb)	Displacement at Peak Load (in.)	Failure Type
VST 1	1,911	0.1940	One-sided metal pullout failure
VST 2*	1,146	0.1825	Mortar joint shear
VST 3	2,221	0.5015	One-sided metal pullout failure
Average	1,760	0.2927	NA
GST 1	1,959	0.1038	One-sided metal pullout failure
GST 2	1,436	0.1995	Double sided metal pullout failure
GST 3	1,487	0.0818	Mortar joint shear
Average	1,627	0.1284	NA
VNC 1	2,258	0.6208	One-sided metal pullout failure
VNC 2	2,235	0.3443	One-sided metal pullout failure
VNC 3	2,261	0.3398	One-sided metal pullout failure
Average	2,251	0.4350	NA
GNC 1	2,962	0.1960	One-sided metal pullout failure
GNC 2	1,479	0.1338	Mortar joint shear
GNC 3	1,261	0.1478	One-sided metal pullout failure
Average	1,901	0.1592	NA

Table 2. ASTM-E-754 results of sample with approximately
12 months of exposure, February 2012.

Table 3. ASTM-E-754 results of sample with approximately18 months of exposure, August 2012.

Sample ID	Peak Load (lb)	Displacement at Peak Load (in.)	Failure Type
VST 4	2,132	0.4715	One-sided metal pullout failure
VST 5	2,252	0.6225	One-sided metal pullout failure
VST 6	2,235	0.7573	One-sided metal pullout failure
Average	2,206	0.6171	NA
GST 4	1,575	0.2970	One-sided metal pullout failure
GST 5	1,658	0.0930	Double sided metal pullout failure
GST 6	2,487	0.3103	Double sided metal pullout failure
Average	1,907	0.2334	NA
VNC 4	2,238	0.4333	One-sided metal pullout failure
VNC 5	2,203	0.7560	One-sided metal pullout failure
VNC 6	2,240	0.6395	One-sided metal pullout failure
Average	2,227	0.6096	NA
GNC 4	1,391	0.3703	One-sided metal pullout failure
GNC 5	1,752	0.2593	One-sided metal pullout failure
GNC 6	1,782	0.2468	One-sided metal pullout failure
Average	1,642	0.2921	NA

3.1.2 Borescope visual inspections

Borescope inspections were completed every 3 months for a period of 18 months after installation. Figure 20 – Figure 27 are images from the final inspection completed in August 2012, and they include eye and pintle components that show the most evidence of corrosion from each inspection location. Individual reports from each inspection are listed in Appendix C. Corrosion was primarily found on the rounded edges of the eye components. The rounded edges are the most susceptible coating imperfections, which was the cause for the corrosion found on items tested. The pintles showed little to no corrosion in all locations. It was also observed that the components experiencing the most corrosion were in locations with the least exposure to sunlight, suggesting that prolonged moisture retention in the masonry may have been a factor.

Figure 20. Borescope inspection of a vitreous coated wall tie after 18 months of exposure in Building 635 location 2-2.

Figure 21 Borescope inspection of a vitreous coated wall tie after 18 months of exposure in Building 635 location 1-1.

Figure 22 Borescope inspection of a vitreous coated wall tie after 18 months of exposure in Building 635 location 3-3.

Figure 23. Borescope inspection of a vitreous coated wall tie after 18 months of exposure in Building 635 location 4-1.

Figure 24. Borescope inspection of a vitreous coated wall tie after 18 months of exposure in Building 632 location 2-1.

Figure 25. Borescope inspection of a vitreous coated wall tie after 18 months of exposure in Building 632 location 3-1.

Figure 26. Borescope inspection of a vitreous coated wall tie after 18 months of exposure in Building 632 location 3-1.

Figure 27. Borescope inspection of a vitreous coated wall tie after 18 months of exposure in Building 632 location 4-2.

3.1.3 Destructive inspection of coupons

Visual inspections of the brick coupon were completed every 3 months for a period of 18 months after installation. Figure 28 – Figure 37 are images from the final inspection completed in August 2012. Individual reports from each inspection are listed in Appendix C. The brick coupons were broken apart and the mortar was removed from the pintles. The surface area of the standard steel and galvanized pintle that was outside the mortar was 100% covered in rust within 9 months of exposure. The vitreous coated pintle only showed signs of corrosion at the tip of the pintle as shown in Figure 30. The geometry of the tip of the pintle is subject to inadequate coating during application and is the cause of the corrosion. Within 18 months, rust was beginning to form throughout the width of the brick coupon on the standard and galvanized coupons. The vitreous coated coupons did not show any visual signs of corrosion in the interior of the brick coupons.

Figure 28. Destructive inspection of prism interior with galvanized pintle after 18 months of exposure at Fort Stewart.

Figure 29. Inspection of the exterior part of the galvanized pintle after 18 months of exposure at Fort Stewart, GA.

Figure 30. Inspection of the exterior tip of the galvanized pintle after 18 months of exposure at Fort Stewart, GA.

Figure 31. Inspection of the exterior part of the vitreous coated pintle after 18 months of exposure at Fort Stewart, GA.

Figure 32. Destructive inspection of the interior of a vitreous coated pintle after 18 months of exposure at Fort Stewart, GA.

Figure 33. Inspection of the exterior part of the standard steel pintle after 18 months of exposure at Duck, NC.

Figure 34. Inspection of the exterior part of the standard steel (left) and galvanized (right) pintle after 18 months of exposure at Duck, NC.

Figure 35. Inspection of the exterior part of the galvanized (left) and vitreous coated (right) pintle after 18 months of exposure at Duck, NC.

Figure 36. Destructive inspection of the interior of a standard steel (left) and galvanized (right) pintle after 18 months of exposure at Duck, NC.

Figure 37. Destructive inspection of the interior of a galvanized (left) and vitreous coated (right) pintle after 18 months of exposure at Duck, NC.

3.2 Coating material characteristics and coverage

Inspection results indicate that the demonstrated coating is very brittle, like a typical ceramic or glass material. Therefore, the coating is vulnerable to fracture when the treated hardware is bent or subject to sharp impact. Although conventional steel ties and pintles tolerate bending adjustments and impacts related to shipping, handling, and installation, the coating on the demonstrated enameled hardware is subject to damage from such stresses. The wall ties in particular are subject to sharp impacts associated with the installation process, which uses hammer-driven pin anchors as described in section 2.2, Figure 10; the impact of hammering can potentially cause damage to the coating.

Destructive inspection of some of the 20 comparison coupons (i.e., those containing one bare steel, one galvanized steel, and one enamel-coated steel tie assembly) revealed galvanized pintles that were corroding faster than individual galvanized ones in specimens earmarked for ASTM E754 testing, such as the one shown in Figure 38.

Figure 38. Solo galvanized pintle in an ASTM E754 brick coupon at Fort Stewart, GA.

It was determined that the presence of the uncoated steel pintle inside the same coupon as the galvanized one created a corrosion cell when moisture was present in the mortar to serve as an electrolyte and conductor. The
zinc coating of the galvanized pintle had begun to sacrifice itself to protect exposed steel in both pintles. Corrosion-cell current was confirmed by connecting a multimeter to both materials. Because the vitreous enamel coating is an insulating material, no current should have been able to move between the galvanized pintle and the coated one as observed. To verify that corrosion current was affecting the coated hardware, a tip was cut off and voltage measurement was taken between the exposed substrate and the standard steel pintle; the recorded voltage was similar to the current between the bare steel and galvanized specimens, suggesting the presence of a break in the vitreous coating undetected through visual inspection.

3.3 Lessons learned

The vitreous coating has a very high gloss and makes borescope inspection difficult. The light at the end of the borescope reflects off the coating and back at the camera lens, causing glare and focusing difficulties. Several types of borescope tips were used to diminish this effect; however, none were able to completely mitigate the reflection. Consequently, many photographs were out of focus due to a lack of light and incorrect focal length; others were degraded by glare from the vitreous reflective surfaces. Since this inspection method is potentially beneficial for other corrosion prevention and control studies or applications, prospective users should investigate the availability of a polarizing filter or similar optical or digital methods that could minimize or eliminate the specular glare that degraded the visual data in this project.

4 Economic Summary

4.1 Costs and assumptions

The total cost of this project amounted to about \$400,000. A rough breakdown of project expenses is shown in Table 4, and the field demonstration costs are shown in Table 5.

Description	Amount, \$K
Labor	166.3
Contracts	188.7
Travel	20
Reporting	20
Air Force and Navy participation	5
Total	400

Table 4. Summary of expenditures for CPC Project F10-AR12.

Description	Amount, \$K
Labor for project management and execution	126.5
Travel for project management	19.9
Cost for wall ties (5000)	2.3
Cost for coating wall ties (5000)	5.0
Cost for evaluation and report	35.0
Total	188.7

Table 5. Cost breakdown for performing field demonstration and validation.

Standard galvanized wall ties have become common in the installation of brick veneers. Although galvanized steel is effective at preventing corrosion, the life cycle in this application is expected to be only 120 months. Hardware coated in a vitreous enamel is expected to last three to five times longer than traditional galvanized wall ties.

To calculate the return on investment (ROI), it is assumed that the DoD commonly builds brick veneer structures for use as administrative and residential construction. Brick veneer construction typically uses metal ties to connect the brick to the structural frame. Brick veneer construction typically costs \$14.00 per sq ft, and the metal hardware (i.e., ties, flashing, etc.) typically accounts for 3% of the installation and materials cost. Applying the vitreous enamel coating to standard metal hardware will increase that cost to 4.5% of the total, meaning that the cost of coating ties for a single average building would be \$0.010/sq ft of brick veneer. An average administrative or residential building requires 39,200 sq ft of brick veneer. It is assumed that normal ties would deteriorate in 10 years to the point of requiring repair, and that repair of the normal tie system would be equal to original construction costs (assumed to be \$275,000). Properly coated ties are assumed to last for 30 years. For the purpose of this ROI calculation, ten total buildings on the installation are assumed to be repaired using these wall ties over the next ten years.

4.2 Projected return on investment (ROI)

The total investment for this project was \$400,000. The return on investment is achieved by reducing the need for repairs owing to the corrosion resistance of the vitreous-coated ties. The ROI was calculated in accordance with U.S. Office of Management and Budget Circular No. A-94 (1992). Over the specified 30-year analysis period (Table 6), the calculated ROI was 3.31. Table 6. Return on investment calculations for Project F10-AR12.

Return on Investment Calculation

			Investr	nent Required		[400
			Return on Inv	estment Ratio	3.31	Percent	331%
	Net P	resent Value of	Costs and Be	nefits/Savings	1,832	3,155	1,323
A Future Year	B Baseline Costs	C Baseline Benefits/Savings	D New System Costs	E New System Benefits/Savings	F Present Value of Costs	G Present Value of Savings	H Total Present Value
1	[
2	275		279		244	240	-4
3	275		279		228	224	-3
4	275		279		213	210	-3
5	275		279		199	196	-3
6	275		279		186	183	-3
7	275		. 279		174	171	-3
8	275		279		162	160	-2
9	275		. 279		152	150	-2
10	275		279		142	140	-2
11	275		279		133	131	-2
12	275					122	122
13	275					114	114
14	275					107	107
15	275					100	100
16	275					93	93
17	275					87	87
18	275					81	81
19	275					76	76
20	275					71	71
21	275					66	66
22	275					62	62
23	275		•			58	58
24	275					54	54
25	275		·			51	51
26	275		•			47	47
27	275					44	44
28	275					41	41
29	275					39	39
30	275					36	36

5 Conclusions and Recommendations

5.1 Conclusions

The demonstrated vitreous enamel coating provides a method to mitigate the potential for corrosion and extend the service life of wall ties used in brick-veneer masonry construction, thereby reducing the need for costly periodic repairs caused by corroded wall-tie hardware. The coating applied to the pintle-and-eye type wall ties used in this project proved to be more resistant to corrosion than both stock steel and galvanized steel wall ties. However, the vitreous coating is subject to flaking and cracking, and the coating of the complex geometry—specifically at the ends of the pintle wire—was found to be inconsistent, allowing spot corrosion to occur. If used, all coated pieces should be closely inspected before installation, and the pintles should not be bent or impacted during installation.

In several cases there also was inadequate coverage on geometric shapes with rounded edges. The borescope inspections of the installed coated pintles showed that some rounded edges were susceptible to corrosion. As seen in the exposure coupons, the tips of the pintles also were a weak area of the coating, confirming the borescope inspections.

The ASTM E754 testing was not able to validate any increase in the bond strength of the masonry specimen through the use of the vitreous coating, but the results showed that the coating enhances the pullout strength over galvanized pintles.

The exposure coupon experiment designed to determine corrosion rates of each type of pintle was flawed. A galvanic corrosion cell was created inadvertently when the dissimilar metals of the four pintles were placed in the same mortar on a single brick coupon. As a result, the destructive coupons did not provide an individual performance comparison of corrosion resistance of each pintle type. None the less, the coupons verified that the vitreous coating holds up significantly longer than traditional coatings.

The economic analysis projects that the vitreous enamel coating will provide a ROI ratio of 3.31 when used on brick wall ties. The average life span of a wall tie coated with vitreous enamel is increased by three to five times.

5.2 Recommendations

5.2.1 Applicability

Vitreous enamel coated pintle-and-eye type wall ties can be used to improve performance in both corrosion resistance and wall strength over standard galvanized wall ties of similar design. If this technology is specified for veneer construction, users should visually inspect each wall-tie component to confirm proper coating, especially at bends and at the ends of the pintle. Additionally, proper installation techniques should be used so that the pintle is never bent or sharply impacted.

Before specifying this coating in a brick veneer construction or renovation project, prospective users should survey the state of the market to help ensure that the technology can meet the requirements of the present project. Also, wall ties coated with this material should not be used in applications where there is a need to bend the hardware or the possibility that the tie will be subjected to direct hammering or other sharp impacts.

5.2.2 Implementation

To facilitate awareness of this emerging corrosion-mitigation technology throughout the DoD civil engineering community, a description of it is recommended for incorporation into Unified Facilities Guide Specification UFGS 04 20 00, *Unit Masonry* (November 2015). A new subsection on vitreous-coated rebar can be added to section 2.6.2, "Anchors, Ties, and Bar Positioners," to include language pertaining to the use of, manufacturer quality control, acceptance testing on site, handling, and installation of vitreous enamel coated wall ties.

Vitreous coatings for steel reinforcement materials show promise for reinforced-concrete applications in severely corrosive environments where accelerated corrosion damage can lead to serious equipment damage and/or financial losses. However, broader DoD-wide implementation recommendations should be postponed until coating methods are shown to consistently produce more uniform steel-coverage results and long-term corrosion performance can be rigorously validated in a fully controlled, industry-accepted testing program.

References

- ASTM E754-80(2006)e1. 2006. Standard Test Method for Pullout Resistance of Ties and Anchors Embedded in Masonry Mortar Joints. West Conshohocken, PA: ASTM International.
- Day, Donna C., Melvin C. Sykes, Charles A. Weiss, Jr., Philip G. Malone, and Earl H. Baugher, Jr. Configuration for Improving Bonding and Corrosion Resistance of Reinforcement Material. U.S. Patent 8,859,105 B2, filed 7 July 2011 and issued 14 October 2014.
- Herzberg, Eric F., Norman T. O'Meara, and Rebecca F. Stroh. February 2014. *The Annual Cost of Corrosion for the Facilities and Infrastructure of the Department Of Defense*. Report DAC21T4. Tysons, VA: LMI Government Consulting.
- Morefield, S.W., V.F. Hock, C.A. Weiss Jr., P.G. Malone, and M.L. Koenigstein. December 2008. "Reactive Silicate Coatings for Protecting and Bonding Reinforcing Steel in Cement-Based Composites," presented at 26th Army Science Conference, Orlando, FL.
- Moser, R., P. Allison, P. Malone, C. Weiss, and S. Morefield. "Physical and Chemical Characterization of the Interface between Concrete and Glass-Ceramic Bonding Enamel MS&T 2010." *Proceedings of the Materials Science & Technology Conference*, October 17–21, 2010, Houston, TX. Red Hook, NJ: Association for Iron and Steel Technology.
- Office of Management and Budget (OMB). 1992. *Guidelines and Discount Rates for Benefit-Cost Analysis of Federal Programs*. OMB Circular No. A-94. Washington, DC: Office of Management and Budget.
- Unified Facilities Guide Specification (UFGS) 04 20 00. November 2015. *Unit Masonry*. Washington DC: Department of Defense.

(This page intentionally blank.)

Appendix A: ASTM E754 Test Reports

r. Karl Palutke Provide the provide our services to you on this project. Please do not situate to contact us at your convenience if you have any questions about this report or if we appreciate the opportunity to provide our services to you on this project. Please do not situate to contact us at your convenience if you have any questions about this report or if we appreciate the opportunity to provide our services to you on this project. Please do not situate to contact us at your convenience if you have any questions about this report or if we appreciate the opportunity to provide our services to you on this project. Please do not situate to contact us at your convenience if you have any questions about this report or if we appreciate the opportunity to provide our services to you on this project. Please do not situate to contact us at your convenience if you have any questions about this report or if we appreciate the opportunity to provide our services to you on this project. Please do not situate to contact us at your convenience if you have any questions about this report or if we appreciate the opportunity to provide our services to you on this project. Please do not situate to contact us at your convenience if you have any questions about this report or if we appeciate the opportunity to provide our services to you on this project. Please do not situate to contact us at your convenience if you have any questions about this report or if we appeciate the constanting Services, Inc.	March 31, 20		Testing • Engineering • Consulting	
r. Karl Palutke Phone: 478-329-8233 andaree Enterprises Park Drive Email: palutke@gmail.com arner Robins, GA 31088 biject: ASTM E754 Masonry Anchor Pull Test Report Date Samples Made: 02/09/2011 TEC Services Project No. TEC 11-0867 TEC Lab No. 11-110 ear Mr. Palutke: sting, Engineering and Consulting Services, Inc. (TEC Services), an AASHTO R18 and ISO 025 certified independent testing laboratory, is pleased to submit this final report of our results r the testing performed on the submitted masonry anchor samples at our Lawrenceville, GA cility in February of 2011. Our services were performed in accordance with the terms and nditions of our Service Agreement dated May 18, 2009. The test results presented only perfair the samples tested. is our understanding that the samples were fabricated on February 9, 2011 by Mandaree terprise representatives. Anchor pull testing was performed in accordance with ASTM E754- (2006) <i>Standard Test Method for Pullout Resistance of Ties and Anchors Embedded in paorny Mortar Joints</i> . Due to the high strength nature of the test specimens ligh strength paymen nor was epoxy resin found suitable to bind the test specimens using a fabricated ting rig. It should be noted that samples 4-6 were possibly damaged during the initial trials ing binders (gypsum and epoxy) versus direct tension pulling. are specimens were tested until ultimate failure occurred either by achieving the ultimate tensile ength of the anchors or shearing of the mortar joint. Test results are presented in Table 1. totos of the testing configuration and failure modes are attached to this report. e appreciate the opportunity to provide our services to you on this project. Please do not sitate to contact us at your convenience if you have any questions about this report or if we ay be of further assistance. neerely, esting, Engineering & Consulting Services, Inc. Magneting be analysed further assistance. here early by Magnetia Shawin P. McCormick Laboratory Manager				
andare Enterprises Fax: 4/8-3/29-8946 Email: palutke@gemail.com arner Robins, GA 31088 bject: ASTM E754 Masonry Anchor Pull Test Report Date Samples Made: 02/09/2011 TEC Services Project No. TEC 11-0867 TEC Lab No. 11-110 ear Mr. Palutke: sting, Engineering and Consulting Services, Inc. (TEC Services), an AASHTO R18 and ISO 025 certified independent testing laboratory, is pleased to submit this final report of our results r the testing performed on the submitted masonry anchor samples at our Lawrenceville, GA illty in February of 2011. Our services were performed in accordance with the terms and nditions of our Service Agreement dated May 18, 2009. The test results presented only pertain the samples tested. is our understanding that the samples were fabricated on February 9, 2011 by Mandaree terprise representatives. Anchor pull testing was performed in accordance with ASTM E754. (2006) Standard Test Method for Pullout Resistance of Ties and Anchors Embedded in asonry Mortar Joints. Due to the high strength nature of the test specimens using a fabricated sting rig. It should be noted that samples 4-6 were possibly damaged during the initial trials ing binders (gypsum and epoxy) versus direct tension pulling. ee specimens were tested until ultimate failure occurred either by achieving the ultimate tensile ength of the anchors or shearing of the mortar joint. Test results are presented in Table 1. totos of the testing configuration and failure modes are attached to this report. ea specienter the opportunity to provide our services to you on this project. Please do not sitate to contact us at your convenience if you have any questions about this report or if we ay be of further assistanc	Mr. Karl Pal	utke	Phone: 478-329	-8233
 Hink Drive GA 31088 biject: ASTM E754 Masonry Anchor Pull Test Report Date Samples Made: 02/09/2011 TEC Services Project No. TEC 11-0867 TEC Lab No. 11-110 ear Mr. Palutke: ears Mr. Palutke: ears Mr. Palutke: ears Mr. Palutke: ears Mr. Palutke: ear Mr. Palutke: ears Mr. Joints: ears Method for Pullour Resistance of the st specimens light strength patient of the test specimens for tensile testing: ears Mr. Joints: Due to the high strength nature of the test specimens light strength patient of the test specimens light strength patiented to thight patient test peris	Mandaree Ei 812 Dark Dr	nterprises	Fax: 478-329 Email: polute@	-8946
 abject: ASTM E754 Masonry Anchor Pull Test Report Date Samples Made: 02/09/2011 TEC Services Project No. TEC 11-0867 TEC Lab No. 11-110 ear Mr. Palutke: sting, Engineering and Consulting Services, Inc. (TEC Services), an AASHTO R18 and ISO 025 certified independent testing laboratory, is pleased to submit this final report of our results r the testing performed on the submitted masonry anchor samples at our Lawrenceville, GA lithy in February of 2011. Our services were performed in accordance with ASTM E754- (2006) Standard Test Method for Pullout Resistance of Ties and Anchors Embedded in acomy Mortar Joints. Due to the high strength nature of the test specimens high strength psum nor was epoxy resin found suitable to bind the test specimens using a fabricated ting rig. It should be noted that samples 4-6 were possibly damaged during the initial trials ing binders (gypsum and epoxy) versus direct tension pulling. we specimens were tested until ultimate failure occurred either by achieving the ultimate tensile ength of the anchors or shearing of the mortar joint. Test results are presented in Table 1. totos of the testing configuration and failure modes are attached to this report. e appreciate the opportunity to provide our services to you on this project. Please do not sitate to contact us at your convenience if you have any questions about this report or if we ay be of further assistance. neerely, sting, Engineering & Consulting Services, Inc. Maxwaw ey McCants oject Manager, Chemist 	Warner Rob	ins, GA 31088	Eman. <u>partice(a</u>	gman.com
Date Samples Wade: 02097011 TEC Services Project No. TEC 11-0867 TEC Lab No. 11-110 ear Mr. Palutke: sting, Engineering and Consulting Services, Inc. (TEC Services), an AASHTO R18 and ISO 025 certified independent testing laboratory, is pleased to submit this final report of our results r the testing performed on the submitted masonry anchor samples at our Lawrenceville, GA cility in February of 2011. Our services were performed in accordance with the terms and nditions of our Service Agreement dated May 18, 2009. The test results presented only pertain the samples tested. is our understanding that the samples were fabricated on February 9, 2011 by Mandaree tarprise representatives. Anchor pull testing was performed in accordance with ASTM E754- (2006) Standard Test Method for Pullout Resistance of Ties and Anchors Embedded in asonry Mortar Joints. Due to the high strength nature of the test specimens high strength psum nor was epoxy resin found suitable to bind the test specimens using a fabricated sting rig. It should be noted that samples 4-6 were possibly damaged during the initial trials ing binders (gypsum and epoxy) versus direct tension pulling. The specimens were tested until ultimate failure occurred either by achieving the ultimate tensile ength of the anchors or shearing of the mortar joint. Test results are presented in Table 1. toos of the testing configuration and failure modes are attached to this report. e appreciate the opportunity to provide our services to you on this project. Please do not sitate to contact us at your convenience if you have any questions about this report or if we ay be of further assistance. merely, setting, Engineering & Consulting Services, Inc. Magnet ey McCants oject Manager, Chemist Shawn P. McCormick Laboratory Manager	Subject:	ASTM E754 Masor	nry Anchor Pull Test Report	
ear Mr. Palutke: sting, Engineering and Consulting Services, Inc. (TEC Services), an AASHTO R18 and ISO 025 certified independent testing laboratory, is pleased to submit this final report of our results r the testing performed on the submitted masonry anchor samples at our Lawrenceville, GA ility in February of 2011. Our services were performed in accordance with the terms and nditions of our Service Agreement dated May 18, 2009. The test results presented only pertain the samples tested. is our understanding that the samples were fabricated on February 9, 2011 by Mandaree terprise representatives. Anchor pull testing was performed in accordance with ASTM E754- (2006) <i>Standard Test Method for Pullout Resistance of Ties and Anchors Embedded in asonry Mortar Joints</i> . Due to the high strength nature of the test specimens high strength psum nor was epoxy resin found suitable to bind the test specimens for tensile testing, ing binders (gypsum and epoxy) versus direct tension pulling. the specimens were tested until ultimate failure occurred either by achieving the ultimate tensile ength of the anchors or shearing of the mortar joint. Test results are presented in Table 1. totos of the testing configuration and failure modes are attached to this report. the appreciate the opportunity to provide our services to you on this project. Please do not sitate to contact us at your convenience if you have any questions about this report or if we ay be of further assistance. Incerely, states to contact us at your convenience if you have any questions about this report or if we ay be of further assistance. Incerely, states of contact us at your convenience if you have any questions about this report or if we ay be of further assistance. Incerely, Shawn P. McCornnick Laboratory Manager		TEC Services Proje TEC Lab No. 11-11	e: 02/09/2011 ect No. TEC 11-0867 10	
 sting, Engineering and Consulting Services, Inc. (TEC Services), an AASHTO R18 and ISO 025 certified independent testing laboratory, is pleased to submit this final report of our results r the testing performed on the submitted masonry anchor samples at our Lawrenceville, GA sility in February of 2011. Our services were performed in accordance with the terms and nditions of our Service Agreement dated May 18, 2009. The test results presented only pertain the samples tested. is our understanding that the samples were fabricated on February 9, 2011 by Mandaree terprise representatives. Anchor pull testing was performed in accordance with ASTM E754-(2006) <i>Standard Test Method for Pullout Resistance of Ties and Anchors Embedded in asonry Mortar Joints</i>. Due to the high strength nature of the test specimens high strength psum nor was epoxy resin found suitable to bind the test specimens using a fabricated sting rig. It should be noted that samples 4-6 were possibly damaged during the initial trials ing binders (gypsum and epoxy) versus direct tension pulling. as especimens were tested until ultimate failure occurred either by achieving the ultimate tensile ength of the anchors or shearing of the mortar joint. Test results are presented in Table 1. totos of the testing configuration and failure modes are attached to this report. appreciate the opportunity to provide our services to you on this project. Please do not sitate to contact us at your convenience if you have any questions about this report or if we ary be of further assistance. neerely, exting, Engineering & Consulting Services, Inc. Matta Services, Sina, Commisting Services, Inc. 	Dear Mr. Pa	lutke:		
 025 certified independent testing laboratory, is pleased to submit this final report of our results is it the testing performed on the submitted masonry anchor samples at our Lawrenceville, GA solility in February of 2011. Our services were performed in accordance with the terms and inditions of our Service Agreement dated May 18, 2009. The test results presented only pertain the samples tested. is our understanding that the samples were fabricated on February 9, 2011 by Mandaree terprise representatives. Anchor pull testing was performed in accordance with ASTM E754-(2006) <i>Standard Test Method for Pullout Resistance of Ties and Anchors Embedded in asonry Mortar Joints</i>. Due to the high strength nature of the test specimens high strength psum nor was epoxy resin found suitable to bind the test specimens using a fabricated sting rig. It should be noted that samples 4-6 were possibly damaged during the initial trials ing binders (gypsum and epoxy) versus direct tension pulling. we specimens were tested until ultimate failure occurred either by achieving the ultimate tensile ength of the anchors or shearing of the mortar joint. Test results are presented in Table 1. toots of the testing configuration and failure modes are attached to this report. we appreciate the opportunity to provide our services to you on this project. Please do not sitate to contact us at your convenience if you have any questions about this report or if we ay be of further assistance. meerely, esting, Engineering & Consulting Services, Inc. 	Testing, Eng	ineering and Consulting	g Services, Inc. (TEC Services), an	AASHTO R18 and ISO
explored performance and operative interview were performed in accordance with the terms and inditions of our Service Agreement dated May 18, 2009. The test results presented only pertain the samples tested. is our understanding that the samples were fabricated on February 9, 2011 by Mandaree terprise representatives. Anchor pull testing was performed in accordance with ASTM E754-(2006) Standard Test Method for Pullout Resistance of Ties and Anchors Embedded in asonry Mortar Joints. Due to the high strength nature of the test specimens high strength psum nor was epoxy resin found suitable to bind the test specimens for tensile testing, terefore direct connections were made to the prongs of the test specimens using a fabricated sting rig. It should be noted that samples 4-6 were possibly damaged during the initial trials ing binders (gypsum and epoxy) versus direct tension pulling. the specimens were tested until ultimate failure occurred either by achieving the ultimate tensile ength of the anchors or shearing of the mortar joint. Test results are presented in Table 1. toots of the testing configuration and failure modes are attached to this report. the appreciate the opportunity to provide our services to you on this project. Please do not sitate to contact us at your convenience if you have any questions about this report or if we are be of further assistance. meerely, testing, Engineering & Consulting Services, Inc. Mutual Mandaree and Manda	17025 certif	red independent testing I ag performed on the su	laboratory, is pleased to submit this f bmitted masonry anchor samples at	our Lawrenceville GA
nditions of our Service Agreement dated May 18, 2009. The test results presented only pertain the samples tested. is our understanding that the samples were fabricated on February 9, 2011 by Mandaree terprise representatives. Anchor pull testing was performed in accordance with ASTM E754- (2006) <i>Standard Test Method for Pullout Resistance of Ties and Anchors Embedded in asonry Mortar Joints</i> . Due to the high strength nature of the test specimens high strength psum nor was epoxy resin found suitable to bind the test specimens for tensile testing, terefore direct connections were made to the prongs of the test specimens using a fabricated sting rig. It should be noted that samples 4-6 were possibly damaged during the initial trials ing binders (gypsum and epoxy) versus direct tension pulling. the specimens were tested until ultimate failure occurred either by achieving the ultimate tensile ength of the anchors or shearing of the mortar joint. Test results are presented in Table 1. toots of the testing configuration and failure modes are attached to this report. the appreciate the opportunity to provide our services to you on this project. Please do not sitate to contact us at your convenience if you have any questions about this report or if we are used of further assistance. therefy, testing, Engineering & Consulting Services, Inc.	facility in F	ebruary of 2011. Our	services were performed in accorda	nce with the terms and
is our understanding that the samples were fabricated on February 9, 2011 by Mandaree therprise representatives. Anchor pull testing was performed in accordance with ASTM E754-(2006) <i>Standard Test Method for Pullout Resistance of Ties and Anchors Embedded in asonry Mortar Joints</i> . Due to the high strength nature of the test specimens high strength psum nor was epoxy resin found suitable to bind the test specimens for tensile testing, terefore direct connections were made to the prongs of the test specimens using a fabricated sting rig. It should be noted that samples 4-6 were possibly damaged during the ultimate tensile ength of the anchors or shearing of the mortar joint. Test results are presented in Table 1. toots of the testing configuration and failure modes are attached to this report. The appreciate the opportunity to provide our services to you on this project. Please do not sitate to contact us at your convenience if you have any questions about this report or if we ay be of further assistance. The summer of state test services, Inc. Mathematical and the services, Inc. Shawn P. McCormick Laboratory Manager services for the summer of the state of the state of the services is the service of the state of the service of the services is the service of the state of the service of the services is the service of the s	conditions o to the sample	f our Service Agreement es tested.	t dated May 18, 2009. The test resul	ts presented only pertain
Interprise representatives. Anchor put testing was performed in accordance with ASI ME 1/34- (2006) Standard Test Method for Pullout Resistance of Ties and Anchors Embedded in asonry Mortar Joints. Due to the high strength nature of the test specimens high strength psum nor was epoxy resin found suitable to bind the test specimens ligh strength psum nor was epoxy resin found suitable to bind the test specimens ligh strength psum nor was epoxy resin found suitable to bind the test specimens using a fabricated sting rig. It should be noted that samples 4-6 were possibly damaged during the initial trials ing binders (gypsum and epoxy) versus direct tension pulling. we specimens were tested until ultimate failure occurred either by achieving the ultimate tensile ength of the anchors or shearing of the mortar joint. Test results are presented in Table 1. worts of the testing configuration and failure modes are attached to this report. e appreciate the opportunity to provide our services to you on this project. Please do not sitate to contact us at your convenience if you have any questions about this report or if we ay be of further assistance. merely, eymcCants Shawn P. McCormick updet Cants Shawn P. McCormick updet Cants Shawn P. McCormick	It is our un	derstanding that the sa	imples were fabricated on February	9, 2011 by Mandaree
asonry Mortar Joints. Due to the high strength nature of the test specimens high strength psum nor was epoxy resin found suitable to bind the test specimens for tensile testing, herefore direct connections were made to the prongs of the test specimens using a fabricated sting rig. It should be noted that samples 4-6 were possibly damaged during the initial trials ing binders (gypsum and epoxy) versus direct tension pulling. The specimens were tested until ultimate failure occurred either by achieving the ultimate tensile ength of the anchors or shearing of the mortar joint. Test results are presented in Table 1. toots of the testing configuration and failure modes are attached to this report. The appreciate the opportunity to provide our services to you on this project. Please do not sitate to contact us at your convenience if you have any questions about this report or if we ay be of further assistance. Incerely, testing, Engineering & Consulting Services, Inc. Modulation of the most of the services is the substance of the function of the specific of the service of the services of the function of the service of	Enterprise re $80 (2006) S$	Standard Test Method	for Pullout Resistance of Ties and	Anchors Embedded in
psum nor was epoxy result found suitable to bind the test specimens for tensile testing, herefore direct connections were made to the prongs of the test specimens for tensile testing, herefore direct connections were made to the prongs of the test specimens using a fabricated sting rig. It should be noted that samples 4-6 were possibly damaged during the initial trials ing binders (gypsum and epoxy) versus direct tension pulling. Herefore specimens were tested until ultimate failure occurred either by achieving the ultimate tensile ength of the anchors or shearing of the mortar joint. Test results are presented in Table 1. hotos of the testing configuration and failure modes are attached to this report. He appreciate the opportunity to provide our services to you on this project. Please do not sitate to contact us at your convenience if you have any questions about this report or if we ay be of further assistance. Incerely, Herefore, Engineering & Consulting Services, Inc. Modulation of the substance of the share of the service of the state of the service of the service of the service of the test of the service of	Masonry Mo	ortar Joints. Due to the	ne high strength nature of the test s	specimens high strength
exiting rig. It should be noted that samples 4-6 were possibly damaged during the initial trials ing binders (gypsum and epoxy) versus direct tension pulling. He specimens were tested until ultimate failure occurred either by achieving the ultimate tensile ength of the anchors or shearing of the mortar joint. Test results are presented in Table 1. notos of the testing configuration and failure modes are attached to this report. He appreciate the opportunity to provide our services to you on this project. Please do not sitate to contact us at your convenience if you have any questions about this report or if we ay be of further assistance. Incerely, esting, Engineering & Consulting Services, Inc. Mathematical Sciences Scie	gypsum nor Therefore di	was epoxy resin four rect connections were r	nd suitable to bind the test specim made to the prongs of the test speci-	iens for tensile testing. mens using a fabricated
e specimens were tested until ultimate failure occurred either by achieving the ultimate tensile ength of the anchors or shearing of the mortar joint. Test results are presented in Table 1. notos of the testing configuration and failure modes are attached to this report. e appreciate the opportunity to provide our services to you on this project. Please do not sitate to contact us at your convenience if you have any questions about this report or if we ay be of further assistance. Incerely, esting, Engineering & Consulting Services, Inc. May ey McCants oject Manager, Chemist	testing rig. using binder	It should be noted that s (gypsum and epoxy) v	samples 4-6 were possibly damaged ersus direct tension pulling.	l during the initial trials
ength of the anchors or shearing of the mortar joint. Test results are presented in Table 1. totos of the testing configuration and failure modes are attached to this report. e appreciate the opportunity to provide our services to you on this project. Please do not sitate to contact us at your convenience if you have any questions about this report or if we ay be of further assistance. Incerely, esting, Engineering & Consulting Services, Inc. MMMM ey McCants oject Manager, Chemist Shawn P. McCormick Laboratory Manager	The specime	ens were tested until ulti	mate failure occurred either by achie	ving the ultimate tensile
e appreciate the opportunity to provide our services to you on this project. Please do not sitate to contact us at your convenience if you have any questions about this report or if we ay be of further assistance. Incerely, esting, Engineering & Consulting Services, Inc. Modern ey McCants oject Manager, Chemist	strength of the Photos of the	the anchors or shearing e testing configuration as	of the mortar joint. Test results at nd failure modes are attached to this r	re presented in Table 1. report.
ey McCants oject Manager, Chemist	We apprecia	the the opportunity to p	provide our services to you on this	project. Please do not
exting, Engineering & Consulting Services, Inc.	may be of fu	rther assistance.	mience if you have any questions at	Sout this report of 11 we
ey McCants oject Manager, Chemist Shawn P. McCormick Laboratory Manager	Sincerely,			
ey McCants oject Manager, Chemist Shawn P. McCormick Laboratory Manager	Testing, En	gineering & Consulting	g Services, Inc.	
ey McCants Shawn P. McCormick Laboratory Manager	1. 1	m	//	10. /
ey McCants Shawn P. McCormick oject Manager, Chemist Laboratory Manager	1000		the	. The
oject Manager, Chemist Laboratory Manager	Trey McCan	ts	Shawn I	P. McCormick
	Project Man	ager, Chemist	Laborate	ory Manager
		735 Buf	ord Drive 11 awrenceville, GA 30046	

Report of Testing for Masonry Brick Anchors TEC Services Project No. 11-0867 TEC Lab No. 11-110

Sample ID	Peak Load (lbs)	Peak Displacement (in)	Failure Type
Black Coating 1	2,109	0.7320	Mortar Joint Shear
Black Coating 1	2,103	0.7520	Metal Tensile Failure
Black Coating 1	2,310	0.7470	Mortar Joint Shear
Average	2,174	0.7437	NA
Galvanized 1	1,873	0.5210	One sided Metal Tensile Failure
Galvanized 1	1,716	0.5050	One sided Metal Tensile Failure
Galvanized 1	1,659	0.5100	One sided Metal Tensile Failure
Average	1,749	0.5120	NA

Table 1 – ASTM E754 Test Results

Photo 1 – Test Apparatus

2 of 2

March 31, 2011

Report of Testing for Masonry Brick Anchors TEC Services Project No. 11-0867 TEC Lab No. 12-082

April 25, 2012

Photos of the test samples before and after testing are attached to this report. Load vs. displacement curves for each specimen are also attached to this report. It was observed that the thickness of the mortar joints and the depth of the tie placement varied among the samples.

Sample ID	Peak Load (lbs)	Displacement at Peak Load (in)	Failure Type
VST 1	1,911	0.1940	One sided Metal Tensile Failure
VST 2*	1,146	0.1825	Mortar Joint Shear
VST 3	2,221	0.5015	One sided Metal Tensile Failure
Average	1,760	0.2927	NA
GST 1	1,959	0.1038	One sided Metal Tensile Failure
GST 2	1,436	0.1995	Double sided Metal Tensile Failure
GST 3	1,487	0.0818	Mortar Joint Shear
Average	1,627	0.1284	NA
VNC 1	2,258	0.6208	One sided Metal Tensile Failure
VNC 2	2,235	0.3443	One sided Metal Tensile Failure
VNC 3	2,261	0.3398	One sided Metal Tensile Failure
Average	2,251	0.4350	
GNC 1	2,962	0.1960	One sided Metal Tensile Failure
GNC 2	1,479	0.1338	Mortar Joint Shear
GNC 3	1,261	0.1478	One sided Metal Tensile Failure
Average	1,901	0.1592	NA

Table 1 – ASTM E754 Test Results

*Sample may have been damaged in shipping

TESTING, ENGINEERING & CONSULTING SERVICES, INC.

1 m

Trey McCants Project Manager, Chemist

Attachments: Load vs. Displacement Graphs (4) Photos of samples after failure (13)

42

Shawn P. McCormick Laboratory Manager

Page 2 of 11

August 28, 2012	Testing • Engineering • Consulting
Mr. Karl Palutke Mandaree Enterprises 812 Park Drive Warner Robins, GA 3	Phone: 478-329-8233 Fax: 478-329-8946 Email: <u>palutke@gmail.com</u>
Subject: AST. TEC TEC	M E754 Masonry Anchor Pull Test Report Services Project No. TEC 11-0867 Lab No. 12-380
Dear Mr. Palutke:	
Testing, Engineering 17025 certified indep for the testing perfor facility on August 9 conditions of our Ser to the samples tested.	and Consulting Services, Inc. (TEC Services), an AASHTO R18 and ISO endent testing laboratory, is pleased to submit this final report of our results med on the submitted masonry anchor samples at our Lawrenceville, GA , 2012. Our services were performed in accordance with the terms and vice Agreement dated May 18, 2009. The test results presented only pertain
Background Inform	ation – Provided by Mandaree Representatives
The ties used in testin per ASTM A153 at a vitreous enamel (por samples was 7 days e and an average low o The mortar used was and Tile Company an face brick and meet A	ng were Pintle with 4" projections (RB14). One set of ties were galvanized n application of 1.5 oz/ft2. The other set of ties were coated with a layer of celain), fuse reactive silicate bonded. The original curing time of these exposed to the Ft. Stewart, Georgia atmosphere with an average high of 70F of 41F. The samples were at 12 months of age when pulled from exposure. a traditional masonry mortar. The bricks originated from Cherokee Brick and are designated as product No. 53-20-970, 4" Jumbo Fort Stewart Blend STM C216-07 for Grade SW, Type FBS facing brick.
Six test sample con Carolina and are des configurations origin respectively.	figurations, 3 galvanized and 3 vitreous coated, originated from North ignated as either GNC or VNC, respectively. The remaining six sample lated from Fort Stewart, Georgia and are designated as GST or VST,
Testing of Samples	
Anchor pull testing <i>Method for Pullout R</i> the high strength nat suitable to bind the te the prongs of the test	was performed in accordance with ASTM E754-80 (2006) <i>Standard Test</i> esistance of Ties and Anchors Embedded in Masonry Mortar Joints. Due to ure of the test specimens high strength gypsum nor epoxy resin was found est specimens for tensile testing. Therefore direct connections were made to specimens using a fabricated testing rig.
The specimens were strength of the anchor	tested until ultimate failure occurred either by achieving the ultimate tensile s or shearing of the mortar joint. Test results are presented in Table 1.
	Testing, Engineering & Consulting Services, Inc. 235 Buford Drive 11 awrenceville. GA 30046

Report of Testing for Masonry Brick Anchors TEC Services Project No. 11-0867 TEC Lab No. 12-380

August 28, 2012

Photos of the test samples before and after testing are attached to this report. Load vs. displacement curves for each specimen are also attached to this report. It was observed that the thickness of the mortar joints and the depth of the tie placement varied amongst the samples.

Sample ID	Peak Load (lbs)	Displacement at Peak Load (in)	Failure Type
VST 4	2,132	0.4715	One sided Metal Tensile Failure
VST 5	2,252	0.6225	One sided Metal Tensile Failure
VST 6	2,235	0.7573	One sided Metal Tensile Failure
Average	2,206	0.6171	NA
GST 4	1,575	0.2970	One sided Metal Tensile Failure
GST 5	1,658	0.0930	Double sided Metal Tensile Failure
GST 6	2,487	0.3103	Double sided Metal Tensile Failure
Average	1,907	0.2334	NA
VNC 4	2,238	0.4333	One sided Metal Tensile Failure
VNC 5	2,203	0.7560	One sided Metal Tensile Failure
VNC 6	2,240	0.6395	One sided Metal Tensile Failure
Average	2,227	0.6096	
GNC 4	1,391	0.3703	One sided Metal Tensile Failure
GNC 5	1,752	0.2593	One sided Metal Tensile Failure
GNC 6	1,782	0.2468	One sided Metal Tensile Failure

Table 1 – ASTM E754 Test Results

We appreciate the opportunity to provide our services to you on this project. Please do not hesitate to contact us at your convenience if you have any questions about this report or if we may be of further assistance.

Sincerely,

Testing, Engineering & Consulting Services, Inc.

m

Trey McCants Project Manager, Chemist

Attachments: Load vs. Displacement Graphs (12) Photos of samples after failure (12)

Page 2 of 8

-122

Shawn P. McCormick Laboratory Manager

CHEROKEE BRICK & TILE COMPANY KENNETH D. SAMS CHARMAN & CEO BRICK & TILE COMPANY MICHAEL E. PEAVY PRESIDENT VATERVILLE ROAD DONALD L. CROWELL EXEC. VICE PRESIDENT/GEN MGR.
June 20, 2011
Mandaree Enterprises 812 Park Drive Warner Robins, GA 31088
Job: Fort Stewart
To whom it may concern, This is to certify that Cherokee Brick & Tile Company product No. 53-20-970, 4" Jumbo Fort Stewart Blend face brick are manufactured so as to meet ASTM Designation C-216-07 for Grade SW. Type FBS facing brick
Attached is a test report as performed by an independent testing laboratory on this particular brick.
CHEROKEE BRICK AND TILE COMPANY, INC.
$\frac{3 - 9 - 13}{My \text{ Commission Expires}}$ $\frac{(2 - 20 - 11)}{Date}$ LAURIE J. HARDY Notary Public STATE OF GEORGIA My Comm. Exp. 3/09/2013

	ompany	# 197	Material S	afety Data Sheet
Cherokee Brick & Tile Compa 3250 Waterville Road Macon GA 31206	iny For ac James Genera (478)70	dditional information c V. Owens, al Manager of Operations 31-6800	ontact: Date Completed Latest Revision:	: July 1994 May 30, 2006
	SECTI	ON I - PRODUCT IDEN	TIFICATION	
Product Name: Brick		Chemic Formula	al Family: Predominately Aluminum a: Mixture	Silicates
×	SECTIO	ON II - HAZARDOUS IN	IGREDIENTS	
Ingredients	CAS #	% Weight	Eveneeu	
		A HOLAN	OSHA PEL mg/m ³	ACGIH TLV ma/m ³
Aluminum Silicates	Various	50 - 85	15	10
Quartz	14808-60-7	Varies	10 / %SiO2 + 2	0.025
			(respirable)	(respirable)
Chromium compounds	Various	0 - 3	Not available	Not available
Manganese compounds	Various	0 - 3	Not available	Not available
ron Compounds as granular body additives	Various	0 – 3	Not available	Not available
Calcium compounds	Various	0 - 3	Not available	Mat available
specifications. This information h calcium, chromium, cobalt, copp amounts. Brick products as shinn	has been compiled from ker, lead, molybdenum ked do not present an e	m data believed to be re , nickel, tin, titanium, v xposure hazard.	urposes and are not intended to liable. Elements such as aluming ranadium, and zirconium may b	represent product um, arsenic, boron, e present in trace
	SECTION III - PH	YSICAL/CHEMICAL C	HARACTERISTICS	
Boiling Point: NA	SECTION III - PH	YSICAL/CHEMICAL C	HARACTERISTICS	6
oiling Point: NA apor Pressure: NA	SECTION III – PH Mełting P Vapor De	IYSICAL/CHEMICAL C oint: NA nsity: NA	HARACTERISTICS Specific Gravity: 2. Solubility in Water	6 Negliaible
ioiling Point: NA apor Pressure: NA ppearance and Odor: Granular sol	SECTION III – PH Mełting P Vapor De id, essentially odorless.	IYSICAL/CHEMICAL C loint: NA nsity: NA Bricks come in a wide rang	HARACTERISTICS Specific Gravity: 2. Solubility in Water: pe of colors.	6 Negligible
ioiling Point: NA apor Pressure: NA ppearance and Odor: Granular sol SECTION IV – FIRE AND EX	SECTION III – PH Metting P Vapor De id, essentially odorless. XPLOSION HAZARD	IYSICAL/CHEMICAL C Ioint: NA Insity: NA Bricks come in a wide rang DATA	HARACTERISTICS Specific Gravity: 2. Solubility in Water: pe of colors. SECTION V – REACT	6 Negligible IVITY
iolling Point: NA (apor Pressure: NA ppearance and Odor: Granular sol SECTION IV – FIRE AND E) Bricks as shipped do not pos	SECTION III – PH Metting P Vapor De id, essentially odortess. XPLOSION HAZARD e a fire or explosion haza	IYSICAL/CHEMICAL C ioint: NA nsity: NA Bricks come in a wide rang DATA	HARACTERISTICS Specific Gravity: 2. Solubility in Water: ge of colors. SECTION V – REACT Bricks as shipped are not r	6 Negligible IVITY eactive
Boiling Point: NA fapor Pressure: NA ppearance and Odor: Granular sol SECTION IV – FIRE AND E Bricks as shipped do not pos	SECTION III – PH Metting P Vapor De id, essentially odorless. XPLOSION HAZARD e a fire or explosion haza SECTIO	YSICAL/CHEMICAL C roint: NA nsity: NA Bricks come in a wide rang DATA ard. N VI – HEALTH HAZAE	HARACTERISTICS Specific Gravity: 2. Solubility in Water: ge of colors. SECTION V – REACT Bricks as shipped are not r RD DATA	6 Negligible IVITY reactive
bolling PoInt: NA (apor Pressure: NA ppearance and Odor: Granular sol SECTION IV – FIRE AND E) Bricks as shipped do not pos itcks as shipped do not present an in	SECTION III – PH Metting P Vapor De id, essentially odorless. XPLOSION HAZARD ie a fire or explosion haze SECTIO ihalation, ingestion or cor	YSICAL/CHEMICAL C roint: NA nsity: NA Bricks come in a wide rang DATA ard. N VI – HEALTH HAZAR ntact hazard. However, op	HARACTERISTICS Specific Gravity: 2. Solubility in Water: a of colors. SECTION V – REACT Bricks as shipped are not r RD DATA erations such as sawing and grindin	6 Negligible IVITY eactive g may result in the
Iolling Point: NA (apor Pressure: NA ppearance and Odor: Granular sol SECTION IV – FIRE AND E) Bricks as shipped do not pos icks as shipped do not present an in lowing effects.	SECTION III – PH Metting P Vapor De id, essentially odorfess. XPLOSION HAZARD e a fire or explosion haz SECTIO ihalation, ingestion or con	YSICAL/CHEMICAL C roint: NA nsity: NA Bricks come in a wide rang DATA ard. N VI – HEALTH HAZAI ntact hazard. However, op	HARACTERISTICS Specific Gravity: 2. Solubility in Water: Set colors. SECTION V – REACT Bricks as shipped are not r RD DATA erations such as sawing and grindin	6 Negligible IVITY eactive g may result in the
ioiling PoInt: NA iapor Pressure: NA ppearance and Odor: Granular sol SECTION IV – FIRE AND EX Bricks as shipped do not pos icks as shipped do not present an in lowing effects. CUTE EFFECTS OF OVEREXP	SECTION III – PH Metting P Vapor De id, essentially odortess. XPLOSION HAZARD ie a fire or explosion haze SECTIO ihalation, ingestion or cor OSURE:	YSICAL/CHEMICAL C roint: NA nsity: NA Bricks come in a wide rang DATA ard. N VI – HEALTH HAZAI ntact hazard. However, op	HARACTERISTICS Specific Gravity: 2. Solubility in Water: SECTION V – REACT Bricks as shipped are not r RD DATA erations such as sawing and grindin	6 Negligible IVITY eactive g may result in the
oiling Point: NA apor Pressure: NA ppearance and Odor: Granular sol SECTION IV – FIRE AND EX Bricks as shipped do not pos icks as shipped do not present an in lowing effects. CUTE EFFECTS OF OVEREXP e: May cause irritation by abrasion	SECTION III – PH Metting P Vapor De id, essentially odorless. XPLOSION HAZARD e a fire or explosion haze SECTIO thalation, ingestion or cor OSURE: with dust or chips.	YSICAL/CHEMICAL C roint: NA nsity: NA Bricks come in a wide rang DATA ard. N VI – HEALTH HAZAI ntact hazard. However, op	HARACTERISTICS Specific Gravity: 2. Solubility in Water: SECTION V – REACT Bricks as shipped are not r RD DATA erations such as sawing and grindin	6 Negligible IVITY reactive g may result in the
oiling Point: NA apor Pressure: NA ppearance and Odor: Granular sol SECTION IV – FIRE AND E2 Bricks as shipped do not present an in lowing effects. CUTE EFFECTS OF OVEREXP ¹ e: May cause irritation by abrasion In: Brick dust or chips may cause a	SECTION III – PH Metting P Vapor De id, essentially odorless. XPLOSION HAZARD ie a fire or explosion haze SECTIO shalation, ingestion or cor OSURE: with dust or chips. Ilergic reactions in hyper	YSICAL/CHEMICAL C ioint: NA nsity: NA Bricks come in a wide rang DATA ard. N VI – HEALTH HAZAI ntact hazard. However, op sensitive individuals; May i	HARACTERISTICS Specific Gravity: 2. Solubility in Water: SECTION V – REACT Bricks as shipped are not r RD DATA erations such as sawing and grindin	6 Negligible IVITY eactive g may result in the
kolling Point: NA (apor Pressure: NA (apor Pressure: NA (apor Pressure: NA SECTION IV – FIRE AND E) Bricks as shipped do not present an in lowing effects. CUTE EFFECTS OF OVEREXPI- re: May cause irritation by abrasion tin: Brick dust or chips may cause a halation: Brick dust or chips may cause a	SECTION III – PH Metting P Vapor De lid, essentially odorless. XPLOSION HAZARD e a fire or explosion haze SECTIO Inhalation, ingestion or cor OSURE: with dust or chips. Ilergic reactions in hyper- iuse congestion and irrita	HYSICAL/CHEMICAL C roint: NA nsity: NA Bricks come in a wide rang DATA ard. N VI – HEALTH HAZAI ntact hazard. However, op sensitive individuals; May ution in nasal and respirato	HARACTERISTICS Specific Gravity: 2. Solubility in Water: SECTION V – REACT Bricks as shipped are not r RD DATA erations such as sawing and grindin cause cuts and skin abrasions. ry passages.	6 Negligible Peactive g may result in the
Iolling Point: NA (apor Pressure: NA ppearance and Odor: Granular sol SECTION IV – FIRE AND E) Bricks as shipped do not pos icks as shipped do not present an in licking effects. CUTE EFFECTS OF OVEREXP re: May cause irritation by abrasion in: Brick dust or chips may cause a nalation: Brick dust or chips may cause pestion: No known acute effects.	SECTION III – PH Metting P Vapor De lid, essentially odorfess. XPLOSION HAZARD e a fire or explosion hazar SECTIO Inhalation, ingestion or cor OSURE: with dust or chips. Illergic reactions in hyper- iuse congestion and irrita	HYSICAL/CHEMICAL C roint: NA nsity: NA Bricks come in a wide rang DATA ard. N VI – HEALTH HAZAI ntact hazard. However, op sensitive individuals; May ettion in nasal and respirato	HARACTERISTICS Specific Gravity: 2. Solubility in Water: SECTION V – REACT Bricks as shipped are not r RD DATA erations such as sawing and grindin cause cuts and skin abrasions. ry passages.	6 Negligible IVITY eactive g may result in the

-	SECTION VI – HEALTH HAZARD DATA (continued)
CARCINOGENICITY:	
The following carcinogenic	ity classifications for crystalline silica have been established by the following and
OSHA: Not regulated as a ca IARC: Group 1 carcinogenic is NIOSH: Carcinogen, with no f NTP: Known carcinogen	ircinogen n humans Urther categorization
WARNING: Brick dust ma cancer. Inhalation of brick shaping and/or use of a Nic hazards.	ay contain crystalline silica, a chemical that has been determined by the agencies listed above to cause i dust above established or recommended exposure levels should be avoided by use of wet sawing or OSH and/or MSHA approved respirator. Always stack and store bricks in a stable manner to avoid falling
	SECTION VII – PRECAUTIONS FOR SAFE HANDLING AND USE
Ventilation:	Provide adequate ventilation to maintain exposures below the OSHA PEL and ACGIH TLV for quartz and other substances.
Respiratory Protection:	For airborne concentration exceeding the OSHA PEL or ACGIH TLV use a NIOSH and/or MSHA approved respirator
Other Protective Equipment:	Eye and Face: Face shields should be used when sawing brick. Skin: Use gloves and or protective clothing if abrasions or allergic reactions are experienced. Other: Use of steel to eshoes is recommended when handling brick.
Other controls:	Use of wet sawing methods is recommended anytime that bricks must be cut.
	SECTION VIII - FIRST AID AND MEDICAL
Inhalation:	Remove from exposure to airborne particulates. Consult a physician if breathing does not return to normal
Skin:	Wash with soap and water. If an allergic reaction causes a rash that does not heal with in a few days consult a physician. Treat abrasions as any other scrape or cut with disinfectants and bandages.
Eye:	Flush with running water. Obtain medical assistance if irritation continues
Aedical Conditions Aggravated by Exposure: a	Excessive dust exposure may aggravate any existing respiratory disorders or diseases. Possible complications or Illergies resulting in irritation to skin, eyes, and respiratory tract may occur from excessive exposure to dusts.
	SECTION IX – OTHER REGULATIONS
CRA: B a re av	rick in its solid form is typically considered a non-hazardous waste for disposal, but local regulation may vary, therefore Il waste must be disposed/recycled/reclaimed in accordance with federal, state, and local environmental control sgulations. Water containing brick solids, such as from wet sawing operations, should also be disposed of in coordance with federal, state and local environmental regulation. Brick waste should not be used as a blasting agent.
PCRA Section 311/312: B	ricks as shipped are not a Section 311/312 reportable product.
PCRA Section 313: Br	ricks as shipped are not subject to the Section 313, Toxic Chemical Release Inventory reporting requirements
DT: Br	icks as shipped are not hazardous materials per DOT regulations.
	SECTION X - OTHER INFORMATION
erokee Brick & Tile Company oc required and the product is exe occasionally dry sawed. We rec	unsiders our product an 'article' as defined in 30 CFR 1200(b)(g)(iv) and 40 CFR 372.38. As an article, an MSDS is impt from all other requirements of the hazard communication standard. OSHA requires an MSDS for brick because it ommend only wet sawing of brick.
C MSDS was presented to the	mation believed accurate at the time of preparation and was prepared and provided in good faith. However, ssumes no responsibility as to the accuracy or exitability of and information and provided in good faith.

Appendix B: Borescope Inspection Locations

Appendix C: Visual Inspection Reports

6 month destructive coupon inspection

			Ft. Stewart, GA			Duck, NC			
		Standard Steel	Galvanized Steel	Viterous Cotated Steel		Standard Steel	Galvanized Steel	Viterous Cotated Steel	
1	Inside the Mortar [%]	20%	10%	0%		10%	10%	0%	
‡ uodno	Outside the Mortar [%]	100%	100%	0%		100%	100%	0%	
ŭ	Corrosion Ingress [mm]	4.5	2	0		1.5	0.25	0	
‡ 2	Inside the Mortar [%]	10%	10%	0%		10%	10%	0%	
‡ uodno	Outside the Mortar [%]	100%	100%	0%		100%	100%	0%	
ŭ	Corrosion Ingress [mm]	1.5	0.5	0		1.5	0.5	0	
			Building	632			Building 6	35	
		Pi	ntle	Wall Tie		Pi	ntle	Wall Tie	
	1.1	(0%	0%		0%		0%	
	1.2	(0%	0%		0%		0%	
	1.3	(0%	5%		0%		0%	
e.	2.1	(0%	0%		5%		5%	
Sit	2.2	(0%	5%		0%		0%	
ope	2.3	(0%	0%		0%		0%	
osc	3.1	(0%	0%		0%		0%	
Bor	3.2	(0%	0%		5%		5%	
	3.3	*	***	0%		0%		0%	
	4.1	(0%	0%		0%		0%	
	4.2	(0%	0%		(0%	0%	
	4.3	(0%	0%	Ц	(0%	0%	
Notes	*** Covered with m	ortar and ir	nvisible to ins	spection.					

Fort Stewart, GA				Duck, NC				
		Stand-	Galva-		Stand-	Galva-		
		ard	nized	Viterous Co-	ard	nized	Viterous Co-	
		Steel	Steel	tated Steel	Steel	Steel	tated Steel	
	Inside the Mor-							
# 1	tar [%]	50%	30%	0%	10%	10%	0%	
ü	Outside the							
dn	Mortar [%]	100%	100%	0%	100%	100%	5%*	
3	Corrosion In-							
	gress [mm]	3	3	0	4.5	4.5	0	
	Inside the Mor-							
# 2	tar [%]	5%	10%	0%	50%	20%	0%	
u	Outside the							
dn	Mortar [%]	100%	100%	5%*	100%	100%	5%*	
ö	Corrosion In-							
	gress [mm]	1	2	0	4.5	2	0	
			Building 632 Building 635		35			
		Pi	ntle	Wall Tie	Pi	ntle	Wall Tie	
	1.1	()%	0%	(0%	0%	
	1.2	()%	0%	(0%	0%	
	1.3	()%	10%	(0%	0%	
ē	2.1	0%		10%	1	5%	5%	
ŝ	2.2	()%	5%	0%		0%	
do	2.3	(0%	0%	0%		5%	
osc	3.1	(0%	0%	0%		0%	
ore	3.2	(0%	0%	I	5%	5%	
	3.3	*	**	0%	0%		5%	
	4.1	(0%	0%	I	5%	0%	
	4.2	,	5%	0%	(0%	5%	
	4.3	()%	0%	()%	0%	

Notes *Just the tip of the pintle started to corrode. *** Covered with mortar and invisible to inspection.

		Ft. Stewart, GA			Duck, NC			
		Standard Steel	Galvanized Steel	Viterous Cotated Steel		Standard Steel	Galvanized Steel	Viterous Cotated Steel
	Inside the Mortar							
#1	[%]	20%	50%	0%		10%	5%	0%
t uo	Outside the Mortar							
dno	[%]	100%	100%	0%		100%	100%	5%*
ŭ	Corrosion Ingress							
	[mm]	2	4	0		1	1.5	0
	Inside the Mortar							
2	[%]	50%	50%	0%		50%	24%	0%
u #u	Outside the Mortar							
dn	[%]	100%	100%	0%		100%	100%	50%
ပိ	Corrosion Ingress							
	[mm]	4.5	4.5	0		4.5	4.5	0
			Building	632			Building 6	535
		Pi	ntle	Wall Tie		Pi	ntle	Wall Tie
	1.1	(0%	0%		0%		0%
	1.2	(0%	0%		0%		0%
	1.3	I.	5%	10%		0%		0%
e	2.1	(0%	10%		5%		5%
Sit	2.2	(0%	5%		0%		0%
ope	2.3	(0%	0%		0%		5%
osc	3.1	(0%	0%		0%		5%
Bor	3.2	(0%	0%		5%		5%
	3.3	*	***	0%	Ц	(0%	5%
	4.1	(0%	5%	Ц		5%	5%
	4.2		5%	0%	Ц	(0%	5%
	4.3	. (J%	0%	Ц	(J%	5%

Notes *Just the tip of the pintle started to corrode. *** Covered with mortar and invisible to inspection.

		Ft. Stewart, GA			Duck, NC			
		Standard Steel	Galvanized Steel	Viterous Cotated Steel		Standard Steel	Galvanized Steel	Viterous Cotated Steel
	Inside the Mortar				_			
# 1	[%]	10%	20%	0%		50%	75%	0%
- uo	Outside the Mortar							
dnc	[%]	100%	100%	0%		100%	100%	5%*
ŭ	Corrosion Ingress							
	[mm]	2	4.5	0		4.5	4.5	0
	Inside the Mortar							
#2	[%]	10%	20%	0%		50%	75%	0%
pu #	Outside the Mortar							
dn	[%]	100%	100%	0%		100%	100%	50%
ပိ	Corrosion Ingress							
	[mm]	4.5	4.5	0		4.5	4.5	0
			Building	632			Building 6	535
		Pi	ntle	Wall Tie		Pi	ntle	Wall Tie
	1.1	(0%	0%		(0%	0%
	1.2	(0%	0%		0%		0%
	1.3	ļ	5%	10%		0%		0%
e	2.1	(0%	10%		5%		5%
e Sit	2.2	(0%	5%		0%		0%
do	2.3	(0%	0%		(0%	5%
OSC	3.1	(0%	0%		(0%	5%
Bor	3.2	(0%	0%			5%	5%
	3.3	K	***	0%		(0%	5%
	4.1	(0%	5%			**	**
	4.2		5%	0%			**	**
	4.3	(0%	0%		**		**

Notes *Just the tip of the pintle started to corrode. **Location 4 at building 635 was unaccessible due to refurbishment construction. *** Covered with mortar and invisible to inspection.

		Ft. Stewart, GA				Duck, NC			
		Standard Steel	Galvanized Steel	Viterous Cotated Steel		Standard Steel	Galvanized Steel	Viterous Cotated Steel	
÷1	Inside the Mortar [%]	90%	5%	0%		75%	5%	0%	
# uodn	Outside the Mortar [%]	100%	100%	0%		100%	100%	5%*	
S	Corrosion Ingress [mm]	4.5	0.25	0		4.5	0.25	0	
¢2	Inside the Mortar [%]	75%	10%	0%		75%	5%	0%	
‡ uodnc	Outside the Mortar [%]	100%	100%	0%		100%	100%	0%	
ŭ	Corrosion Ingress [mm]	4.5	2	0		4.5	0.25	0	
			Building	632			Building 6	535	
		Pi	ntle	Wall Tie		Pi	ntle	Wall Tie	
	1.1	(0%	0%		0%		0%	
	1.2	(0%	0%		0%		0%	
	1.3	, ,	5%	10%		0%		0%	
ŧ	2.1	(0%	10%		5%		5%	
e Si	2.2	(0%	5%		0%		0%	
do	2.3	(0%	0%		0%		5%	
oso	3.1	(0%	0%		(0%	5%	
Bor	3.2	(0%	0%		5%		5%	
	3.3	*	**	0%		0%		5%	
	4.1	(0%	5%	Ц		5%	5%	
	4.2		5%	0%	Ц	(0%	5%	
	4.3	(0%	0%		(0%	5%	

Notes *Just the tip of the pintle started to corrode. *** Covered with mortar and invisible to inspection.

R	EPORT D	OCUMENTATION			Form Approved
Public reporting burden fo	r this collection of inform	mation is estimated to average 1 hour p	er response, including the	time for reviewing ins	tructions, searching existing data sources, gathering and
maintaining the data needs suggestions for reducing the	ed, and completing and i his burden to Departmer	eviewing this collection of information. S at of Defense, Washington Headquarters	end comments regarding th Services, Directorate for Inter-	is burden estimate or formation Operations	any other aspect of this collection of information, including and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA	22202-4302. Responde splay a currently valid O	nts should be aware that notwithstanding	any other provision of law,	no person shall be sul	pject to any penalty for failing to comply with a collection of
1. REPORT DATE ((DD-MM-YYYY)	2. REPORT TYPE		3.	DATES COVERED (From - To)
December 201	6	Final Technical Report			
4. TITLE AND SUB	TITLE	5a	CONTRACT NUMBER		
Demonstration	and Validation	osion of			
Steel Fixtures A	Attached to Mas	onry Walls: Final Report or	Project F10-AR1	2 5b	GRANT NUMBER
		5c	PROGRAM ELEMENT NUMBER		
			Corrosion Prevention and Control		
6. AUTHOR(S)				5d	PROJECT NUMBER
Steven C. Swe	eney, Christophe	er Olaes, and Darrell Skinne	er		CPC F10-AR12
				5e	
				51.	WORK UNIT NUMBER
		AWE(S) AND ADDRESS(ES)		٥.	NUMBER
U.S. Army Eng	gineer Research	and Development Center			FRDC/CERL TR-16-23
DO Dow 0005	ngineering Rese	arch Laboratory			
P.U. BOX 9005	61926 0005				
Champaign, IL	01820-9003				
			(EC)	10	
9. SPONSORING /		ENCTINAVIE(S) AND ADDRE	133(E3)	10	OSD
2000 Defense	ecretary of Defe	nse (OUSD(AI&L))			OSD
3090 Defense I	C 20201 2000			11	SPONSOR/MONITOR'S REPORT
wasnington, D	C 20301-3090				NUMBER(S)
12. DISTRIBUTION	/ AVAILABILITY	STATEMENT		L. L	
Approved for p	oublic release; di	stribution is unlimited.			
11 1	,				
13. SUPPLEMENT	ARY NOTES				
14. ABSTRACT					
Masonry block	and brick wall	veneer construction, widely	used on military i	nstallations, is	subject to rapid deterioration when
the ferrous har	dware tying bric	k veneer to substrate corroc	les prematurely. C	orrosion of ver	neer-anchor hardware can compromise
structural integ	rity and cause fi	acture and spalling of masc	onry materials. Bec	ause these bui	lding ties are concealed beneath the
veneer, corrosi	on can proceed	undetected until structural d	lamage occurs. A r	new reactive si	licate material that can be bonded to
steel hardware	with a layer of v	vitreous enamel, developed	by the U.S. Army	Engineer Rese	arch and Development Center, was
evaluated for c	orrosion-protect	ion performance in a demoi	nstration project at	Fort Stewart,	GA. When fractured, this coating pro-
duces a self-he	aling reaction by	formation of silicate hydra	ation products that	passivate any	exposed steel surface. Steel anchors
were coated wi	th the vitreous e	namel and then installed in	sections of damag	ed brick venee	r on buildings needing rehabilitation.
Brick/block co	upons were also	fabricated using these anch	iors for exposure a	nd ASTM E75	4 pullout-strength testing.
Results show the	hat the enamel-c	oated ties were more corros	sion resistant than	both bare steel	and galvanized ties used in the expo-
sure specimens	s. Issues with coa	ating coverage and flaking	were noted, and in	plementation	caveats are offered. The project return
on investment	was 3.31.				
15. SUBJECT TER	MS				
Steel, Stress co	prrosion; Reinfor	ced masonry; Protective co	atings; Glass-cera	mics; Corrosic	on and anti-corrosives
16. SECURITY CLA	SSIFICATION OF	:	17. LIMITATION	18. NUMBER	19a. NAME OF RESPONSIBLE
			OF ABSTRACT	OF PAGES	PERSON
a. REPORT	b. ABSTRACT	c. THIS PAGE			19b. TELEPHONE NUMBER (include
Unclassified	Unclassified	Unclassified	U/U	87	area code)