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SUMMARY

We present a new method for stochastic shape optimisation of engineering structures. The method generalises
an existing deterministic scheme, in which the structure is represented by a level-set method, and evolves by steepest
descent of the objective function. In non-convex optimisation problems, the deterministic algorithm can get trapped
in local optima: the stochastic generalisation enables sampling of multiple local optima, which aids the search for
the globally-optimal structure. The method is demonstrated for several simple geometrical problems, and a proof-of-
principle calculation is shown for a simple engineering structure.

I. INTRODUCTION

Topology optimisation has been demonstrated to provide substantial performance improvements and/or weight
savings in a wide range of engineering design problems [6, 17]. However, many of the relevant applications involve
non-convex optimisation problems with multiple locally-optimal designs: these might be associated with different
topologies or with numerical aspects of the (discretised) computational problem. Examples of non-convex design
spaces are stress constrained optimization [3] and coupled aeroelastic wing optimization [8].

Non-convexity and multiple optima present interesting dilemmas to engineers. When a local optimum solution is
significantly worse than the global optimum, the optimisation scheme fails. However, locally-optimal solutions can
also provide multiple design ideas to engineers, offering a range of possible solutions that an engineer may wish to
consider, based on practical design requirements such as ease of manufacturing. This particularly true when there are
several designs of similar objective function and constraint values, an example of which can be found in [3].

A common approach to topology optimisation is to employ gradient-based nonlinear programming, which can be
applied to typical engineering design problems with 104 − 106 design variables [2, 7]. In this case, iteration of the
optimiser leads to one local optimum solution. Alternative approaches such as evolutionary algorithms, particle
swarm optimisation and simulated annealing are capable of searching for multiple potential solutions and they have
been applied to topology optimisation [12, 22, 23]. However the success of such methods has been limited, partly
because they do not typically take advantage of information about the gradient of the objective function. Interested
readers are referred to a critical review [18] which presents an example: Topology optimisation was applied to a
small problem with just 144 variables, which was solved using the non-gradient method of differential evolution. This
required 15,730 function evaluations. In contrast, a gradient-based topology optimisation method – Solid Isotropic
Material with Penalisation (SIMP) – converged to a slightly superior solution after just 60 function evaluations. This
motivates the research question of how to explore non-convex engineering design spaces effectively and efficiently.

One approach which can be successful in non-convex optimisation problems is to start with a deterministic optimi-
sation procedure and to add a stochastic component, so that the objective function can both increase and decrease as
the algorithm runs. In this report, we introduce a stochastic optimisation procedure which aims to generate designs
according to a prescribed distribution, analogous to the Gibbs-Boltzmann distribution in physics. The method is
built on the deterministic gradient-based topology optimisation method of Dunning and Kim [7, 19] and that method
is recovered in the zero-noise limit of the stochastic process – this means that the stochastic method should perform
at least as effectively as the deterministic one. Moreoever, since the model is based on the Boltzmann distribution,
we expect that it can be combined with parallel-tempering methods [9, 16, 21], which offer a systematic approach for
exploring a range of near-optimal structures.

The new method is based on a recently-introduced deterministic method for level-set topology optimization
(LSTO) [7, 19]. Unlike traditional topology optimisation (e.g. SIMP) in which the design variables (for example n)
indicate whether each element of the design domain should exist (n = 1) or be absent (n = 0), the level set method
employs an implicit functional representation φ that directly represents the domain boundaries. A key advantage of
this method is that topological changes in the shape of the object (for example the removal of holes) are associated
with singularities in the behaviour of the boundary of the object, but do not involve any singularities in φ. See [15]
for a description of the level-set method and its key advantages. The effect of the level-set representation is that
topology optimisation can be reformulated as an extended shape optimisation, where boundary shapes are optimised
and the number of boundaries can change. In this paper, we will focus on the shape optimisation aspect of the
algorithm, where the level set method moves the boundaries using an advection equation. Within this scheme, the
LSTO method corresponds to steepest descent of the objective function, which ensures robust convergence of the
method to a locally-optimal design. We will show how this method can be extended to a stochastic method that can
explore non-convex design landscapes.

In this paper, we present several new results. In Sec. II, we review the method of [7], and we introduce some
simplications to that method, which clarify the relationship between that method and steepest descent optimisation of
the objective function. In Sec. III, we introduce a stochastic process that explores a range of structures, parameterised
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FIG. 1. The level-set domain: (Left) A two-dimensional square domain Ωd is discretised using a uniform square grid. A
function φ defined on the nodes of the grid indicates whether each node is inside (φ < 0) or outside (φ > 0) a (circular)
structure Ω. (Middle) The function φ is given by the signed distance to the nearest point on the boundary of Ω. With this
choice |∇φ| = 1. (Right) A discretised representation of the boundary of Ω is obtained by defining boundary points, which are
located either on nodes (if φi = 0) or on edges between nodes (if this edge connects two nodes with opposite signs for φ). The
resulting set of boundary points provide a piecewise linear approximation for of the boundary of Ω.

by a noise strength T that is analogous to the temperature in statistical physics. Sec. IV includes several examples of
the application of the stochastic method, including matching of a shape to a fixed design, and compliance minimisation
of a simple two-dimensional engineering structure, subject to a constraint on its area. We discuss the nature of the
shapes/structures explored by the stochastic method, and discuss the potential use of the method for practical
optimiation of engineering structures. Sec. V summarises our conclusions.

II. THE LEVEL SET TOPOLOGY OPTIMISATION METHOD

The optimisation problem considered here is the determinisation of a structural domain Ω that minimises an
objective function F (Ω), subject to some constraints. This section introduces the computational method used here,
which is closely based on the method of Dunning and Kim [7], see also [19]. We refer to that method as the Level-Set
Topology Optimisation (LSTO) method. The implementation described here is a slightly simplified version of the
original LSTO method: a C++ code for the method discussed here will be made available on publication of these
results. We give a brief and informal description of this (deterministic) optimisation algorithm, to set the scene for
the stochastic method that we will describe in Sec. III. Rigorous discussions of the properties of the level-set method
and of the mathematical results underlying this algorithm can be found elsewhere [15].

We introduce an objective function F , a constraint function G, and a design domain Ωd ⊂ Rd, where d is the spatial
dimensionality (In this work we take d = 2 although generalisation to higher dimension is possible.) The aim of our
optimisation is find a structure Ω ⊂ Ωd such that F (Ω) is minimised, subject to the constraint

G(Ω) ≥ G∗. (1)

Extension to multiple constraints or equality constraints of the form G(Ω) = G∗ is straightforward [7, 19] but we
consider a single inequality constraint here, for simplicity. The LSTO method prescribes a time-evolution for Ω that
converges to a (local) optimum of F , which satisfies the constraint.

A. Evolution in continuous space and time

The structure Ω is defined in terms of a real-valued function φ : Ωd → R. That is, define Ω = {x ∈ Ωd : φ(x) ≥ 0}
as the part of the domain for which φ ≥ 0. Throughout this work, bold vectors such as x indicate vectors in Rd. The
boundary of Ω is denoted by Γ and is defined as the zero level-set of φ, that is Γ = {x ∈ Ωd : φ(x) = 0}.

The boundary Γ is made up from one or more closed curves, so we index the points in Γ by an internal co-ordinate
u > 0, such that X(u) ∈ Γ is a point on the boundary of Ω. Also let n(u) be the (outward) normal vector to the
boundary at the point X(u), and define a function `′ such that

∫ u2

u1
d`(u) =

∫ u2

u1
`′(u)du is the length of the boundary

between the two points X(u1) and X(u2).

DISTRIBUTION A. Approved for public release: distribution unlimited.
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Several level-set topology optimisation approaches [2, 6] use a steepest descent strategy for the minimisation of
F (Ω). To achieve this, let the function φ evolve as a function of the time t according to an advection equation

∂

∂t
φ(x, t) = −v(x, t) · ∇φ(x, t) (2)

where v is a local velocity, to be specified below. Assume that for t = 0 then φ solves the eikonal equation |∇φ| = 1.
Given that φ = 0 on the boundary Γ, this is equivalent to taking φ(x) to be the (signed) distance of point x from
this boundary. The vector ∇φ is normal to the level sets of φ, and it is clear from (2) that the time-evolution of φ
depends only on the normal velocity vn = v · ∇φ/|∇φ|. In what follows we take ∇vn · ∇φ = 0 which ensures that if
the eikonal equation is true at t = 0, then |∇φ| = 1 for all times t > 0.

Hence, to specify the time evolution of φ, it is sufficient to specify vn for all points on the boundary Γ of the structure
Ω, since the condition ∇vn · ∇φ = 0 then specifies vn at all other points. In order that (2) corresponds to steepest
descent for the objective function F , we introduce a sensitivity sF , so that sF (u) is the sensitivity for F at the point
X(u). To define sF , consider a deformed structure Ωε whose boundary Γε consists of points Xε(u) = X(u)+εz(u)n(u)
where the function z sets the size of the displacement of each boundary point. Informally, the sensitivity sF (u) is the
rate of change of F associated with moving the boundary point X(u) in the direction n(u). More precisely, sF is the
unique function that obeys

F (Ωε) = F (Ω) + ε

∫
Γ

sF (u)z(u)d`(u) +O(ε2). (3)

We assume in the following that the objective function F and the boundary Γ are sufficiently smooth that this
sensitivity function exists. For a rigorous discussion of these issues, see [1].

To perform an unconstrained minimisation of F (Ω), one should prepare an initial condition in which φ is the signed
distance from the boundary of some initial design Ω0. Then one should solve (2), with the normal velocity at boundary
point X(u) being

vn(X(u)) = −sF (u). (4)

The normal velocity vn at any point x which is not on the boundary Γ should be set equal to the normal velocity at
the nearest point on Γ, which ensures that ∇vn · ∇φ = 0, as noted above. This time-evolution for φ encodes a time-
evolution for the structure Ω: given that φ evolves in this way, it is easy to verify that ∂tF (Ω) = −

∫
sF (u)2d`(u) ≤ 0,

so the objective function decreases with time.
We now consider minimisation of F (Ω) subject to a constraint, that G(Ω) ≥ 0. To achive this, a Lagrange multiplier

µG is introduced [19], such that

vn(X(u)) = −sF (u) + µGsG(u) (5)

where sG is the sensitivity for the constraint function G, and µG is chosen (independent of u) such that the system
does not violate the constraint on G. The generalisation of this construction to systems with multiple constraints
or to equality constraints of the form H(Ω) = 0 is straightforward but we restrict here to just one constraint, for
compactness of notation.

B. Discrete space and time, and boundary discretisation

For a computational implementation, these equations must be discretised in both space and time. For the spatial
discretisation, the domain Ωd is partitioned into a square grid of side a0 = 1: see Fig. 1. The vertices of the grid
are called nodes. Each node i has a position xi and an associated value of the level-set function φi = φ(xi). The
temporal discretisation is a simple first-order Euler scheme, so (2) becomes

φi(t+ ∆t) = φi(t)− vn
i (t)∆t · |∇φ(t)|i (6)

where vn
i is the normal velocity at node i and |∇φ(t)|i is the modulus of ∇φ, evaluated at xi, which is equal to unity if

φ solves the eikonal equation exactly. In practice, ∇φ is estimated for each node using the Hamilton-Jacobi weighted
essentially non-oscillatory method (HJ-WENO) described in [15].

In order to determine the normal velocities {vn
i }, the LSTO method employs a second level of discretisation: see

Fig. 2. From the (discretised) level set function φ, a (discrete) set of boundary points is inferred, as follows: If
φi = 0 then node i is a boundary point. Also, if two adjacent nodes have φ-values with opposite signs then there is

DISTRIBUTION A. Approved for public release: distribution unlimited.
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l↵,2l↵,1

↵

`↵ = 1
2 (l↵,1 + l↵,2)

FIG. 2. Enlarged view of the discretised zero contour of the level set function. Each boundary point α is associated
with two segments of the piecewise linear boundary. For each boundary point, we define an associated boundary length
`α = (lα,1 + l2,α,2) /2.

a boundary point between them, which is taken to lie on the edge between the nodes, with a position determined by
linear interpolation. Let the number of boundary points be n and let the position of boundary point α be Xα (with
1 ≤ α ≤ n). The boundary points form a set of closed curves, which provide a discrete representation of the boundary
Γ.

The reason for this boundary discretisation is that the LSTO method uses estimates of the sensitivities sF , sG

on the boundary points (this is the natural choice since the sensitivity is intrinsically related to the boundary Γ).
Given these sensitivities, one infers a velocity V n

α for each boundary point α: these velocities are determined by a
simple optimisation sub-problem that is solved at each time step. From the boundary point velocities V n

α , the normal
velocities vn

i for each node are calculated by a fast-marching method. Hence the level set variables can be propagated
forward in time, according to (6). We now describe these steps in more detail.

C. Determination of boundary point velocities from an optimisation sub-problem

To determine the boundary point velocities V n
α , we suppose that estimates of the sensitivities sF and sG are

available for each boundary point. For boundary point Xα let these estimates be sFα , s
G
α . (Estimation of these

sensivities depends on the problem of interest and will be discussed in Sec. IV.) Also define lα,1 and lα,2 as the
distances from point α to its neighbouring boundary points; and let `α = (lα,1 + lα,2)/2 be the length of boundary
associated with point α, as in Fig. 2. (It follows that

∑n
α=1 `α is the total boundary length.) Now suppose that each

boundary point Xα moves a distance V n
α∆t in the normal direction: discretising (3) along the boundary, the change

in the objective and constraint functions can be estimated as

∆F =

n∑
α=1

V n
α s

F
α `α∆t,

∆G =

n∑
α=1

V n
α s

G
α `α∆t.

(7)

Direct optimisation of the V n
α can then be used to optimise the change in F , given any constraints (see for example [7]).

However, optimising over all the parameters V n
α is not convenient numerically: there is a large number of such

parameters, and discretisation errors can result in rough boundaries Γ [7]. Instead, the LSTO method uses the
(constrained) steepest-descent defined by (5), with a variable time step that is optimised according to the values of
the sensitivities. Spatial discretisation of (5) yields

V n
α∆t = λF sFα + λGsGα , (8)

where λF , λG are parameters to be determined (with −λF corresponding to the time step ∆t in (5) and λG corre-
sponding to µG∆t).

At each iteration, the LSTO method optimises the parameters λF , λG, in order to make ∆F as negative as possible.
However, this procedure is subject to several constraints, which include both the optimisation constraint (1), and
several additional considerations, which are determined by the physical characteristics of the topology optmisation
problem. Note that the handling of these constraints in the algorithm presented here differs from the method of [7].
The method presented here has been chosen to combine simplicity and accuracy.

DISTRIBUTION A. Approved for public release: distribution unlimited.
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First, note that ∆F,∆G are estimates for the changes in F,G, which are accurate only if the boundary point
displacements are not too large. To avoid very large values of the λ parameters, a constraint is applied to each
boundary point displacement:

|V n
α∆t| ≤ dCFL (9)

Note that consistency between (8) and (5) shows that −λF is equal to the timestep ∆t: the primary role of this
constraint is to impose a sufficiently small time step for the Euler discretisation (6). To determine an appropriate
value for dCFL, we use the Courant-Friedrichs-Levy (CFL) condition associated with (2), which requires that dCFL be
smaller than the grid spacing. Large dCFL leads to larger time steps and hence faster optimisation, but if the resulting
convergence histories are interpreted as as approximate solutions to (2) then these solutions are less accurate when
dCFL is large. The specific value of dCFL depends on the problem of interest.

To implement the CFL constraint, the optimisation domain for λF is |λF | ≤ λFmax with λFmax = −dCFL/(maxα |sFα |).
A similar restriction is applied to λG. Since these constraints are applied separately to λF and λG, the resulting
solution may still violate the constraint (9): if this happens then the resulting λ parameters are rescaled by a factor
dCFL/(maxα |V n

α∆t|), and the V n
α are recalculated using (8), so that (9) is then satisfied.

Second, if the design at time t is Ωt, the inequality constraint (1) for the optimisation requires G(Ωt) + ∆G ≥ G∗.
If Ωt does not satisfy the constraint (G(Ωt) < G∗) then the optimiser may not be able to find any solution for which
∆G is large enough to solve the constraint. For this reason, the optimisation is performed subject to a modified
constraint ∆G ≥ G0 where G0 = G∗ −G(Ωt) if a solution is possible, otherwise a smaller value for G0 is chosen. (In
practice, the maximum possible ∆G is calculated by considering the cases λF,G = ±λF,Gmax: if the maximal possible
value ∆Gmax is less than G∗−G(Ωt) then it is likely that the constraint cannot be satisfied so we take G0 = c∆Gmax,
where the parameter c can be adusted according to the problem of interest. Typically we take c ≈ 0.5. Note that
∆Gmax < −G(Ωt) usually happens only during the initial stages of optimisation, so the way that this case is handled
does not typically affect the convergence of the method to its final solution.)

Third, note that boundary points should not move outside the design domain Ωd. To avoid this problem, let dα be
the signed distance of boundary point α from the boundary of Ωd. (The sign of dα is positive if the normal vector nα
points towards the domain boundary, negative otherwise.) We estimate that point α has moved outside the domain
if V n

α∆t > dα > 0 or V n
α∆t < dα < 0 (this is an approximation since the normal velocity is not perpendicular to the

interface, but it is sufficient for our purposes). If this happens we replace (8) by V n
α∆t = dα.

With these ingredients in place, we finally define the full optimisation problem that is used to determine λF , λG.
Combining (7,8), and accounting for the possibility that boundary points might move outside of the domain Ωd, define

∆F̂ (λF , λG) =
n∑
α=1

sFα zα`α, ∆Ĝ(λF , λG) =
n∑
α=1

sGα zα`α (10)

where zα = λF sFα + λGsGα if the boundary point remains inside the domain, and zα = dα otherwise. We then choose

λF,G to minimise ∆F̂ (λF , λG) subject to ∆Ĝ(λF , λG) > G0, on the domain |λF | < λFmax, |λG| < λGmax. Given the λF,G

solving the optimisation problem, the time step is ∆t = −λF and the boundary point velocities are V n
α = zα/∆t.

In practice, this two-parameter optimisation sub-problem is solved using the SLSQP method from the NLOPT
package [25]. The simple form of (10) means that derivatives of ∆F̂ ,∆Ĝ can be obtained analytically without the
need for the finite differences used in [7]. If some sensitivities are very large, is convenient to precondition the optimiser

by defining rescaled parameters λ̃F = λF /A and corresponding rescaled sensitivities s̃F = AsF for some parameter
A, to ensure efficient solution of this sub-problem.

D. Level set update

Having calculated the boundary point velocities V n
α , the velocities vn

i on nodes adjacent to the boundary points are
calculated by inverse-squared distance weighting. That is, if the edges associated with node i of the grid include m
boundary points, then these points are indexed by β = 1 . . .m. Let their velocity of point β be V n

β and its distance

from node i be rβ . Then vn
i =

∑m
β=1(V n

β /r
2
β)/[

∑m
β=1(1/r2

β)]. This fixes the vn
i on a narrow strip that contains the

boundary Γ. To fix the vn
i on the other nodes requires a velocity extension procedure, for which we use a fast-marching

method, as in [7].
Given the vn

i on all nodes, the level set variables φi are updated according to (6). The whole process – inference
of boundary points, sensitivity calculation, optimisation of λFλG, velocity extension, level set update – is repeated
until the algorithm converges to an optimal structure.

DISTRIBUTION A. Approved for public release: distribution unlimited.
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Finally, note that in practice, it is convenient to do the velocity extension and the level set update only in a
narrow band close to the boundary. This improves the efficiency of the method but it means that φi is given by
the signed distance to the boundary only within the narrow band. To correct for this effect, all of the φi variables
are periodically reinitialised to be consistent with a signed distance function. This reinitialisation uses the same
fast-marching implementation used for the velocity extension.

Note that given a set of boundary points Xα, reinitialisation of the φi followed by a recalculation of the boundary
point positions does in general lead to small changes in the boundary point positions (see appendix). As the system
gets close to convergence, this can have small but significant effects on the objective function, which acts as a weak
source of numerical noise during optimisation. This fact has implications for the accuracy of the stochastic method
described below.

III. STOCHASTIC LEVEL SET

Having described the deterministic optimisation algorithm of [7, 19], the next step is to introduce a stochastic
component to this algorithm. Several other stochastic level-set methods have been considered recently [10, 11, 24],
but differ from the approach proposed here in that the noise in this scheme is applied directly only on the boundary Γ,
which ensures that the function φ retains its property as a signed-distance function under the stochastic time-evolution.

We first consider the optimisation problem for F (Ω) in the absence of any constraint on G(Ω). In this case the
deterministic algorithm corresponds to steepest descent for F , which converges to a local optimum. By contrast, the
corresponding stochastic algorithm does not converge to an optimum of F . Instead it converges to a steady state
in which it explores a range of structures Ω. The algorithm is designed so that the probability pT that it visits a
structure Ω within the steady state is proportional to a Gibbs-Boltzmann factor

pT (Ω) ∝ e−F (Ω)/T (11)

where T is a noise intensity which in physics would be identified as a temperature. For T → 0 we see that the
probability will concentrate close to the optimal structure Ω∗, which minimises F .

The advantage of the stochastic algorithm is that it can explore many different (non-optimal) designs. In particular,
for a non-convex optimisation problem and given a long enough time t, it should explore all the local optima, not just
the one closest to the starting point (which would be found by a deterministic method). Moreoever, the distribution
of structures that the algorithm finds is controlled via (11). This means that the steady states of the algorithm at
different temperatures are related, as

pT2
(Ω)

pT1
(Ω)
∝ eF (Ω)(1/T1−1/T2) (12)

and in particular, the marginal distribution of the objective function itself satifies

PT2(F ) ∝ eF (1/T1−1/T2)PT1(F ) (13)

Such relationships between distributions form the basis of simulated annealing and parallel tempering methods [9, 16,
21], which have proven useful in exploring many non-convex optimisation problems.

Note however that these results are based on the proportionality relationship (11). More generally, we expect that
the invariant measure of the stochastic process for the structures Ω is

dpT (Ω) =
1

Z(T )
e−F (Ω)/Tdp0(Ω) (14)

where Z(T ) is a normalisation constant and p0 is a reference measure for structures (independent of T ). We do not
have a precise characterisation of the measure p0, but as long as p0 is independent of T then (12,13) are valid, and
can be used to check consistency between our algorithm and the asserted invariant measure (14).

A. Stochastic motion of boundary points

To describe our stochastic method, it is useful to cast (6) as an equation of motion for the boundary points Xα:

d

dt
Xα(t) = V n

α (t)nα(t). (15)
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where nα is a unit vector in the direction of the (outward) normal to the boundary Γ at point Xα. The stochastic
element of the dynamics operates directly on the boundary points. To implement this, Eq. (15) is replaced by a
stochastic differential equation (SDE). For the deterministic problem of minimisation of F in the absence of any
constraint, we write V n

α = −sFα , consistent with (4). Then a natural generalisation of (15) is the SDE:

dXα
t = −sFαnαdt+ nα

√
2T/`α ◦ dWα

t (16)

The theory of such equations is discussed (for example) in [14]. Roughly speaking, one may interpret dXα
t as a

small increment in the boundary point position Xα, associated with a small time increment dt. The increment dXα
t

consists of a determinstic part −sFαnαdt that is proportional to dt, and a random part nα
√

2T/`α ◦ dWα
t . The ◦

indicates that the SDE is written in the Stratonovich convention: the implications of this will be discussed below. The
increment dWα

t is a standard white noise (or Wiener process) associated with boundary point α, which is independent
of the noises on all other boundary points.

Inspection of (16) shows that the noise term acts in a direction perpendicular to the boundary (as might be

expected); it is proportional to
√
T which sets the noise strength. The factor of

√
1/`α might not be expected a priori

– it is necessary because consistency of the stochastic level-set method requires that the noise intensity is equal at all
points on the boundary Γ, but the boundary points are not equally spaced along Γ (recall Fig. 2). The idea is that a
given boundary Γ has many possible discretisations in terms of boundary points, but the resulting stochastic evolution
should be independent of this discretisation. Mathematically, this idea can be encapsulated as a reparameterisation
invariance of the equations of motion, as we now discuss.

B. Evolution of continuous boundaries, and reparameterisation invariance

It is useful to consider a process by which a continuous curve evolves in time, and to interpret (16) as a discretised
approximation of this process. For the continuous curve we write a generalisation of (4), as

dXt(u) = −sF (u)n(u)dt+ n(u)
√

2T/`′(u) ◦ dWt(u) (17)

where Wt(u) a random Brownian noise with equal intensity at each point u. (Technically, the quadratic variation of
this process satisfies d〈

∫ u2

u1
Wt(u)du〉 = (u2 − u1).) To derive (16) as a discretised version of (17), we identify Xα as

the centre of mass of a small segment of the boundary: Xα
t = (1/`α)

∫ u2

u1
Xt(u)d`(u). Assuming (see below) that the

segment is small enough that n(u) and `′(u) and sF (u) can be replaced by their mean values within the integral, this
yields (16).

Within this continuous setting, the idea that the evolution of the curve should be independent of its discretisation in
terms of boundary points has a mathematical statement in terms of reparameterisation of the coordinate u. Consider
a closed curve described by described by the internal co-ordinate u ∈ [0, 1], so X : [0, 1] → Ωd is a smooth function
with X(u) a point on the curve. Now consider a continuous monotonically-increasing function f : [0, 1]→ [0, 1] with

f(0) = 0 and f(1) = 1. Define X̃ : [0, 1] → Ωd by X̃(u) = X(f(u)). It should be clear that X and X̃ are different
representations of the same curve.

In order that the evolution of a curve Γ does not depend on its parameterisation in terms of boundary points, we
require that (17) evolves the functions X and X̃ in the same way. This may be verified by direct substitution, as

long as the noise prefactor
√

1/`′(u) is included. This is the reason for including the factor in
√

1/`α that multiplies
the noise in (16).

Note that we have assumed throughout that the boundary Γ is smooth enough that the normal vector n(u) can be
defined at every point X(u). Even for deterministic optimisation, this assumption requires some care, if the optimal
shape has a boundary that includes kinks. For stochastic optimisation, there is an additional factor, which is that
the noise tends to roughen the curve and the normal vector n(u) may not be defined. In our numerical scheme,
the boundary is discretised and a WENO estimate of ∇φ can always be used to define a local normal, so potential
problems with rough boundaries do not appear. For a detailed mathematical analysis, some regularisation is required
to ensure existence and uniqueness of the SDE (17), but we defer these issues to a later publication.

C. Invariant measure

Our assertion above was that the invariant measure for this process is proportional to (11). We do not have a
rigorous proof of this claim, although we will demonstrate below that our numerical method is consistent with (13).
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FIG. 3. Shape matching by the level-set method (without any stochastic component). The target shape is a discretised
representation of the Stanford bunny (top right); the initial shape is a circle (top left). The main figure shows a time series
of the (normalised) objective function F (Ωt)/A(Ωd) with F given by (24) and A(Ωd) the total area of the design domain.
Representative shapes obtained during this convergence proedure are also shown (above). The inset illustrates the definition
of the objective and sensitivity functions, for the simpler case of a circular target shape and and a square initial shape Ω.
Blue shading indicates regions where φtarget

i < φi and sF = −1, so outward motion of the interface reduces F . Similarly green
regions have φtarget

i > φi and sF = +1. The normalised objective function F (Ω)/A(Ωd) is given by the sum of the blue and
green areas, as a fraction of the total area of the design domain Ωd.

As a plausibility argument for our scheme, we note that if nαs
F
α in (16) is equal to (∂F/∂Xα)`−1

α then (16) has the
form

dXα
t = (∂F/∂Xα)σ2dt+ σ

√
2T ◦ dWα

t (18)

with σ = 1/
√
`α. It is well-known [14] that the invariant measure for this equation is of the form (11). Moreover,

spatially discretising (3) and identifying εz(u) as the boundary point displacement nα · δXα yields

F (Ωε)− F (Ω) =
∑
α

sFα `
αnα · δXα +O(δX2) (19)

indicating that indeed `αnαs
F
α does indeed correspond to the derivative (∂F/∂Xα), as required. Refining this argu-

ment into a more rigorous proof is an interesting direction for future work.
In the following, we show how the process (16) can be implemented within the level-set method described in Sec. II.

We assume that (12) holds theoretically and we investigate the extent to which it holds numerically.

D. Stochastic dynamics with a finite time step

To implement the stochastic evolution (16) within the level-set method of Sec. II, we require a generalisation of (6).
To achieve this, integrate (16) over a small time interval ∆t and identify the average boundary point velocity in the

normal direction as V n
α (t) = (∆t)−1

∫ t+∆t

s=t
n(s) · dXα

s . Hence, keeping terms up to first-order in ∆t:

V n
α (t)∆t = −sFα (t)∆t+

√
2T∆t

`α(t+ ∆t/2)
ξ (20)

where ξ is a standard normal-distributed random number. The first term on the right hand side is the standard
deterministic increment corresponding to (15). The second term is a random increment (with zero mean). Note
however that the length `α in this second term is evaluated at time t + ∆t/2, which corresponds to the midpoint of
the time interval (this is the meaning of the Stratonovich product that was denoted by ◦ in (16)). To arrive at an
equation that can be used in a (first-order) numerical scheme, it is necessary to calculate V n

α (t) in terms of quantities
that are evaluated only at time t. This can be achieved by using Ito’s formula [14], which yields

V n
α (t)∆t = −sFα (t)∆t+

√
2T∆t

`α(t)
ξ − Tκα

2`α
∆t. (21)
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FIG. 4. Shape matching with finite noise strength T : (a) Time series of the area mismatch (24) for several noise strengths
(temperatures). Raising temperature leads to increasingly sub-optimal designs and larger fluctuations. (b) A representative
shape (red) from the steady state at temperature T = 1, compared with the target shape (red). Mismatch with the target
structure is most pronounced in regions of high curvature. (c) Histograms (normalised as probability densities) of the objective
function, obtained from long time series in the steady state of the system. Data are shown for seven temperatures equally
spaced between T = 0.1 and T = 0.25, with the remaining temperatures equally spaced between T = 0.25 and T = 1.0. (d) The
measured probability densities agree well with the predictions of Eq. (13): we show measured pT (F ) for various temperatures,
and the corresponding predictions using Eq. (13) with T1 = T and T2 = T + ∆T . The temperature increment ∆T is such that
the distributions at T1, T2 are adjacent in (c).

where κα is the (signed) curvature of the boundary at point α (see Appendix).
The derivation of (21) from (16) is straightforward within the framework of stochastic calculus. We omit technical

details and provide a short argument to justify it: for a boundary point increment dXα, the change in the length
of the boundary segment is d`α = nα · (κα ◦ dXα). (Roughly speaking this corresponds to the chain rule, with
d`α/dXα = nακα, as discussed in the Appendix.) Ito’s formula [14] states that for an SDE of the form dxt =

f(xt)dt+ σ(xt) ◦ dWt, the appropriate first-order discretisation is ∆x = f(xt)∆t+ σ(xt)ξ
√

∆t+ 1
2σ
′(xt)σ(xt)∆t. In

this case we have from (16) that σ = nα
√

2T/`α: the analogue of σ′ requires a derivative with respect to `α, which

yields (−nακ/2`α)
√

2T/`α, and hence (21).

E. Implementation in level-set method, and incorporation of constraints

The stochastic velocity (21) is straightforwardly incorporated into the deterministic level set method described in
Sec. II. This yields our stochastic level set optimisation method. The only modification of the deterministic algorithm
is that noise-dependent terms are added to (8). We consider the case of optimisation subject to a constraint G = 0
as in the deterministic case.

In the stochastic method, the parameters λF , λG in (8) are calculated exactly as in the deterministic method. The
simplest approach is then to identify λF → −∆t and add the stochastic terms in (21) to the boundary increments.
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FIG. 5. Time series for deterministic minimisation of shape perimeter (circles, left axis), subject to a constraint on that the
area fraction outside Ω must be at most 60% of the total area (triangles, right axis). The top panel shows the time-dependence
of Ω, starting from a square initial shape, which violates the constraint. The shape Ω increases in size (to satisfy the constraint)
and evolves towards a circle (to minimise the perimeter). The domain Ωd is a square grid of size 200× 200.

However, since the first stochastic term is proportional to
√

∆t, this can lead to large boundary point displacements
that violate the CFL condition. Hence, given a deterministic time step ∆t = −λF , we calculate a typical stochastic
increment ∆xtyp =

√
2T∆t. If ∆xtyp > dCFL/2, the deterministic parameters λF , λG are rescaled by a factor

dCFL/2∆xtyp. That is

λFstoch = λF min(1, dCFL/2∆xtyp)

λGstoch = λG min(1, dCFL/2∆xtyp).
(22)

This construction amounts to fixing a maximal time step that ensures that the CFL condition is obeyed even in the
presence of the noise, as long as none of the `α parameters are too small (compared to unity). (We also tested a
method where the ∆xtyp is adjusted to account for the possibilities that some `αs are very small, but this led to a less
efficient method and had very little effect on the results.) The time step is −λFstoch and the boundary point increment
is finally

V n
α∆t = sFαλ

F
stoch +

√
2T |λFstoch|

`α
ξ +

Tκα
2`α

λFstoch + λGstochs
G
α (23)

This equation replaces (8) within our stochastic level set method. Once the boundary point velocities V n
α have been

calculated in this way, the rest of the method follows exactly the deterministic case: the velocities on the nodes are
calculated by interpolation and fast-marching, and the level set variables are updated using (6).

IV. RESULTS

In the following we consider several examples of the stochastic level set method, with increasing levels of complexity

A. Shape matching

We first consider a simple geometric optimisation problem. The idea, illustrated in Fig. 3 is that the domain Ω
should match a predefined reference shape Ωtarget, in this case a discretised two-dimensional representation of the
Stanford bunny. The objective function is

F (Ω) =
∑
i

|Atarget
i −Ai(Ω)| (24)
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FIG. 6. Stochastic optimisation of perimeter with a constraint on the enclosed area. (a,b) Time series for the objective function
F (perimeter) and the constraint function G (area). The legend in (a) applies to both panels. (c) The zero-temperature optimum
(a circle), compared with a representative sample from a stochastic calculation at T = 0.5. (d) Histograms of the objective
function, taken from the steady state of the stochastic process, at various temperatures. (e) Measured probability densities,
compared with the predictions of Eq. (13). The predictions use Eq. (13) with T1 = T and T2 = T + ∆T , as in Fig. 4. The
agreement is good.

where the sum runs over the cells of the grid, Ai(Ω) is the overlap area between the grid cell i and Ω, and similarly

Atarget
i is the overlap area between element i and Ωtarget.
To calculate sensitivities, note that if A is the area enclosed by Ω then sAα = 1 for all boundary points α. For

the objective function (24), this requires sFα = 1 if boundary point α is inside Ωtarget and sFα = −1 otherwise. To

estimate this sensitivity based on local information, we calculate for each node i its squared distrance φtarget
i from the

boundary of the target shape. For each boundary point α, we estimate its signed distance from the boundary of the
target as Φtarget

α , which is interpolated from the φtarget
i values on the four nearest nodes. We also interpolate a value

Φtrial
α by applying the same method to the nearest values of φi: since the boundary point is on the zero contour of φ

we expect |Φtrial
α | � 1 for all α. The sensitivity is then estimated as

sFα = sign(Φtarget
α − Φtrial

α ) (25)

Since Φtrial
α is small in magnitude, its inclusion in (25) has a small effect when the current and target shapes are

different from each other, but ensures that the deterministic method converges (exactly) to Ω = Ωtarget.
Based on these sensitivities, Fig. 3 shows the deterministic optimisation algorithm in operation. An initially circular

structure evolves in time until it matches exactly the target shape. The CFL constraint is dCFL = 0.1 and the domain
is partitioned into a grid with 200 × 200 elements, with each element having size 1. The initial shape is a circle of
radius 50.

Fig. 4 shows results for the stochastic algorithm, applied to the same problem. Panel (a) shows that the objective
function does not converge to its optimal value (F = 0). Instead the system converges to a steady state in which
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F fluctuates around a non-zero mean value. As the noise strength increases, both the mean value of F and its
fluctuations increase, as the algorithm explores a range of non-optimal designs. Panel (b) shows a representative
non-optimal shape. Panel (c) shows distributions (histograms) of the objective function, for different values of the
noise. Finally in panel (d) we test the prediction of (13), that distributions of the objective function at different noise
strengths can be related to each other. That is, for various temperatures T , the distribution P (F ) can be predicted
based on its distribution at a different temperature T + ∆T . (This prediction is possible only for small ∆T since
otherwise the exponential factor in (13) leads to large statistical errors.)

The results shown in Fig. 4(d) represent strong evidence that the system has converged to a steady state in which
the predictions of (13) are valid. The stochastic algorithm was designed in order to obtain a steady state that satisfies
(11), and the numerical agreement with (13) is a fairly stringent test of this criterion, which indicates that the
theoretical analysis and numerical implementation presented here are self-consistent.

Moreoever, the nature of the non-optimal shapes shown in Fig. 4(b) reveal some information about the null measure
p0 in (14): of the shapes Ω for which F (Ω) is not equal to its optimal value, the method seems to sample preferentially
those shapes with low curvature. In this sense the numerical noise seems to act to smooth the boundary Γ. A detailed
analysis of this effect will require a deeper understanding of the stochastic dynamics of the boundary, which is an
interesting direction for future work.

B. Perimeter minimisation with area constraint

As a simple optimisation problem that includes a constraint, we next consider minimisation of the perimeter of
Ω, subject to a constraint on its total area. Given that F (Ω) is the perimeter of Ω, the sensitivity sF is is given by
the (signed) Euclidean curvature κ of the boundary Γ (see Appendix). The constraint function G is the difference
between the total domain size and area of Ω: that is, G(Ω) = A(Ωd)−A(Ω). (We consider Ω as a hole in large piece
of material, so G(Ω) is the area of the material.) The associated sensitivity is sG = −1.

Estimation of the curvature κ is non-trivial for the discretised boundaries considered here [4]. Following numerical
tests of several different methods, we use a scheme that combines accuracy and simplicity, by calculating curvatures
using an explicit finite-difference sensitivity calculation. Details of this procedure, and its associated errors are
discussed in the Appendix.

Results for deterministic optimisation are shown in Fig. 5. The grid is of size 200×200. An initially square structure
Ω evolves into a circle whose area satisfies the constraint. In this case G ≥ 0.6A(Ωd), so the material covers at most
60% of the domain Ωd, and the area of Ω must be at least 40% of this domain.

Fig. 6 shows results for the stochastic method, which are comparable with Fig. 4. Fig. 6(b) shows that the stochastic
algorithm still satisfies the constraint (up to some numerical uncertainties). Fig. 6(e) shows that the results are again
consistent with the algorithm sampling a distribution of shapes consistent with (11,14).

However, the example shape shown in Fig. 6(c) for T = 0.5 reveals that this numerical method is affected by
discretisation effects from the underlying grid. In particular, the shape Ω shown in that figure is not circular, but
is elongated along the lattice axes, forming a kind of diamond shape. We find that the shapes Ω found for T > 0
consistently have this property (data not shown). We have investigated the reason for this effect, which we attribute to
uncertainties in our numerical estimates of the sensitivity parameters sα, particularly the sensitivity of the perimeter,
which is the curvature. These numerical issues are discussed in the Appendix. In terms of the general method, our
conclusion is that the stochastic level-set method relies on accurate sensitivity estimates, which may be difficult to
obtain in practice. However, we believe that the method itself is valid.

C. Non-convex shape matching problem with perimeter constraint

So far, we have focussed on very simple optimisation problems, as proof of principle for the method. However, a
central motivation for the development of a stochastic method is that the noise forces can allow the system to visit
multiple locally-optimal designs in a non-convex optimisation problem. As a very simple example of such a problem,
we consider the problem shown in Fig. 7.

The constraint function in this case is is related to the overlap between the shape Ω and the dumbbell (or hourglass)
target shape shown in Fig. 7. By analogy with (24), we define

G =
∑
i

|Atarget
i −Ai(Ω)| (26)

where the sum runs over all cells of the underlying grid. The constraint is that G < 0.2A(Ωd): that is, the mismatch
between the shape Ω and the target (dumbbell) shape can be at most 20% of the total design domain. In practical
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FIG. 7. Non-convex optimisation problem. (Top row) snapshots from an optimisation trajectory in which the perimeter of
the red shape Ω and its height within the design domain are both being minimised, subject to a constraint on the mismatch of
the red shape with the blue “dumbbell’. The global optimum is shown in the rightmost panel while the second panel illustrates
an additional local optimum. (Main panel) Time series of the objective function for deterministic optimisation (T = 0) and
stochastic optimisation (T = 0.002). Only in the stochastic case does the system escape from the local optimum and converge
to the global one. The mesh size is 100× 100, the dumbell consists of two circles of radius 20 whose centres are separated by
B = 38. The parameter α = 0.65.

terms, this means that when Ω is contained within one of the lobes of the dumbbell, the area of the dumbbell that is
outside Ω must be at most 0.2A(Ωd). The dumbbell is given by the union of two circles of radius 20. In Cartesian
coordinates, the size of the design domain is Lx × Ly and the centres of the circles are at (Lx/2, (Ly ± B)/2) with
B = 38.

The objective function in this case is a weighted perimeter F (Ω) = M(Ω) with

M(Ω) =

∫
m(X(u))d`(u) (27)

If m(X) = 1 for all X then M is simply the perimeter of Ω. The idea is that m(X) is the weight (per unit length)
of a boundary segment at position X. We write X = (X,Y ) in Cartesian coordinates and m(X) depends only on Y .
It is given by m = 1 for positions above the centre of the upper lobe of the dumbbell, and m = α for positions below
the centre of the lower lobe. In between, m varies linearly with Y , so that

m(X,Y ) =


1, Y > (Ly +B)/2

α, Y < (Ly −B)/2
1+α

2 + 1−α
2 (Y − Ly/2), otherwise.

(28)

The parameter α = 0.65. Physically, the objective function is small when the boundary Γ is located in the lower lobe
of the dumbbell, and larger when it is in the upper lobe. The optimal design is a circle located inside the dumbbell,
below the centre of the lower lobe.

The sensitivity sG for the constraint function G was described already in Sec. IV A. The sensitivity for M is

sMα = καm(Xα) + nyα
∂m(Xα)
∂Yα

, where κα is the signed curvature and nyα is the y component of the normal vector nα.
Fig. 7 shows results for both deterministic and stochastic optimisation for this problem. The determinstic algorithm

reveals that this is indeed a non-convex optimisation problem: that is, there are two local minima of the objective
function. Starting with a circular shape located in the upper lobe of the dumbbell, the deterministic algorithm
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FIG. 8. Stochastic optimisation of compliance. (a,b) Time series for the objective function (strain energy) and constraint func-
tion (material area) for the model problem described in the text. (c) The (local) minimum found by deterministic optimisation
(T = 0) and a representative structure at T = 0.0003. (d) Histograms for the objective function for different noise strengths
T . (e) Test of the reweighting formula (13). The results are not consistent with (13): we show measured distributions at
T1 = 0.00020 and T2 = 0.00022. The distribution at T2 is used together in (13) to arrive at a prediction for the distribution at
T1, but this prediction is not accurate. We attribute this effect to numerical errors associated with discretisation and sensitivity
estimation, as discussed in the main text

converges quickly to a local optimum in which the shape is located close to the neck (2nd image in top row of Fig. 7).
The global optimum has the shape Ω inside the lower lobe, but convergence to this shape is frustrated because the
near-circular locally-optimal shape cannot fit through the neck of the dumbbell. In order to pass through the neck,
while still obeying the constraint, the area inside the dumbbell must expand, to compensate the extra area outside.
However, this leads to an increase in the objective function F , which is not possible within the deterministic algorithm.

However, on adding a weak stochastic element, one sees (for these parameters) that the system escapes the local
optimum and converges to a steady state where it samples shapes that are close to the global optimum. A final
deterministic optimisation could be used to locate the true optimum, if required. This example shows the potential
usefulness of the stochastic level-set optimisation method, although this is obviously a very simple model at this stage.

D. Compliance minimisation

As a final example, we show how this method can be applied to problems inspired by engineering applications of
shape optimisation (this is distinct from topology optimisiation in that no holes are created during optimisation). As

DISTRIBUTION A. Approved for public release: distribution unlimited.



17

a
b

cA

B

C

area = �

a+
b+

b�

a�

(a) (b)

�(B) =
4�
abc radius, R

m
ea

n
cu

rv
at

ur
e,

�̄

0 100 200 300 4000

0.01

0.02

0.03(c)
1/R

geometric
finite di�erence

perturbation = ±�

�(B) =
[(a+ + b+)� (a� + b�)]

� (a + b)

FIG. 9. Approximations for the local Euclidean curvature around a boundary point. (a) A simple geometric approximation
can be obtained by matching a circle to any three sequential boundary points. The three points are assumed to lie on the
perimeter of the circle, with the curvature defined as the inverse of the circle’s radius [4]. (b) The curvature can also be
calculated by performing an explicity finite-difference sensitivity calculation. A boundary point is displaced in the outward and
inwards directions along its normal vector and a sensitivity is defined as the rate of change of the discretised perimeter per unit
length, i.e. using a central finite-difference. In the limit of δ → 0 this defines a local perimeter sensitivity for the boundary
point. (c) Mean Euclidean curvature for circles of increasing radius. Red circles show the analytical curvature, 1/R. Curvature
measured using the simple geometric approximation (green squares) and an explicit finite-difference sensitivity calculation (blue
triangles) show excellent agreement. A value of δ = 10−4 was used for the central difference calculation.

a proof of principle, we study a well-known benchmark problem of a two-dimensional cantilevered beam [13], as shown
in Fig. 8. The overall strain energy of the structure is minimised subject to a constraint on its area. The sensitivity
for the strain energy is computed using a linear elastic finite element analysis and the sensitivity associated with the
area constraint is sG = 1, as above. Once the sensitivities are known, the method proceeds exactly as in the simple
examples considered in previous sections.

In this problem, the grid used within the level-set method plays a second role as a finite-element mesh for the
structure. The objective function F is the strain energy of the structure. To calculate this, the structure is clamped
at the left boundary (Lx = 0) and a unit load is applied in the y-direction at position (Lx, Ly/2). The Young’s
modulus of the material inside Ω is Y = 100, the Poisson’s ratio is 0.3. The space outside Ω is occupied by a weak
material whose density is 10−3. The strain energy is minimised subject to the constraint that the total area of Ω
is at least 0.5 of the domain Ωd. The sensitivity for the compliance is calculated by a standard method [7] and the
sensitivity for the constraint is sG = +1, as described above. The mesh size is Lx × Ly with (Lx, Ly) = (40, 20).
This relatively coarse mesh is used simply for computational convenience – future work will exploit more efficient
sensitivity calculations which will allow access to finer grids, but this is beyond the scope of this work.

The results in Fig. 8 are qualitatively consistent with Fig. 6, and show that the stochastic level set method can
be applied in such contexts. The initial condition for the optimisation is a completely full grid Ω = Ωd. One sees
from Figs. 8(a,b) that the optimiser first reduces the area of Ω in order to satisfy the constraint: during this part
of the algorithm the strain energy increases. Then, once the structure satisfies the constraint, its shape is optimised
to reduce the strain energy. Fig. 8(c) shows the optimal design that was found by deterministic optimisation, and a
design found by the stochastic method. Fig. 8(d) shows that increasing the noise increases the typical values of the
objective function F , and the variance of this quantity also increases. However, Fig. 8(e) shows that the results are
not quantitatively consistent with (13). There are several potential sources of numerical error in this algorithm, of
which the largest is expected to be the numerical uncertainties in calculations of sensitivities, due to the finite-element
approximation. We attribute the deviations from the predictions of (13) to these numerical uncertainties.

To understand this effect in more detail, it is useful to notice that (13) implies quite generally that Var(F ) =
T 2 d

dT 〈F 〉, where 〈F 〉 is the mean strain energy at temperature T , and Var(F ) = 〈F 2〉 − 〈F 〉2 is its variance. This is
an example of a fluctuation-dissipation theorem (FDT) [5]. For the systems considered in Figs. 4,6, we find that this
relation holds (otherwise the predictions based on the reweighting formula (13) would fail). For this strain energy
problem, we find that Var(F ) ≈ 3T 2 d

dT 〈F 〉, indicating that the variance of the objective is around three times larger
than the prediction given by the FDT. Our hypothesis is that these extra fluctuations in F come from numerical
errors associated with discretisation and with estimates of the sensitivity, but this remains an area for future study.

Finally we note that the globally-optimal structures for this (discretised) compliance problem are not simply-
connected like the shapes considered in Fig. 8(c): the optimal structures include holes [7]. The stochastic method
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FIG. 10. Discretisation errors affect mean and local boundary point curvature. (a) Signed distance reinitialisation using
a second-order Fast-Marching Method introduces errors into the mean boundary point curvature (blue squares). When the
nodes of the level set domain are initialised using an exact signed-distance function (using the exact Euclidean distance to
the interface) the mean curvature agrees near perfectly with the analytical result (red circles). In this case the only errors
are introduced by the piece-wise linear discretisation of the boundary. (b) Local boundary point curvature around a circle
of radius R = 40. The angle is measured relative to the top of the circle. While the mean curvature is excellent, noise is
present in the local boundary curvature, even when using a perfect signed-distance function (red circles). Reinitialisation of
the signed-distance function leads to a significant increase in the noise (blue squares).

described here does not include an explicit prescription for the creation of holes during optimisation, even if these
holes would reduce the objective function. For this reason, we believe that the invariant measure of the method
described here is of the form (14), with p0(Ω) = 0 if Ω is not simply connected. Generalisation of the method to
include shapes with holes is an important direction for future work.

V. CONCLUSIONS

We have introduced a stochastic level-set shape optimisation method, which is based on the deterministic (steepest-
descent) method of [7, 19]. The stochastic element of the algorithm acts on the boundary of the shape Ω, and the
method converges to a steady state in which it explores a range of shapes, according to a probability distribution
(14). The method is novel – we are not able to prove rigorously that it converges to (14) but we have verified that
this convergence does hold in two simple problems: shape matching (Fig. 4) and perimeter minimisation at fixed area
(Fig. 6). A deeper mathematical analysis of the method would be an interesting direction for future work.

The motivation for introducing the stochastic method is to enable optimisation in non-convex problems, in which
deterministic methods converge to local minima but are not able to search the whole parameter space in order to find
the global optimum. To demonstrate the idea, we have shown results in Fig. 7 for a simple non-convex problem, in
which the stochastic algorithm outperforms the deterministic one and converges to the local optimum. For complex
problems with multiple optima, an important feature of the method is that the underlying Boltzmann distribution in
(14) allows it to be combined with methods such as parallel tempering, which are known to be effective in highly non-
convex problems [9, 16, 21]. Finally, we considered a model engineering problem (Fig. 8), for which we demonstrated
that optimisation can be performed even for problems with complicated objective functions, although numerical errors
are signficant in that case.

Compared with other stochastic optimisation methods that do not use gradient (or sensitivity) information [12, 22,
23], the scheme presented here has two strengths. First, as the noise strength is reduced, it recovers to the standard
deterministic method, so it is guaranteed to peform no worse than that method (this property is not guaranteed in
many stochastic algorithms). Second, the fact that the invariant measure (or at least its T -dependence) is known to
be (14) allows integration with parallel tempering and other methods from statistical physics[9, 16, 21], which have
proven extremely valuable in that context.
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Appendix A: Sensitivity for the curve perimeter, local curvature and level-set reinitialisation

1. Local Curvature

Several applications within this work make use of the sensitivity function associated with the perimeter of a curve.
The setting is illustrated in Fig. 9. Recall the sensitivity is defined by (3). For a curve that is represented by a set of
discrete boundary points, sFα can be estimated as shown in Fig. 9: one displaces a boundary point α by a distance δ in
the direction normal to the curve, and calculates the change in F , which in this case is the perimeter. It is convenient
also to displace the boundary point by −δ, which yields a central difference estimate of the sensitivity: for a boundary
point with index B, this estimate is

sFB =
1

2`Bδ

[
F (X1, . . . ,XB + nαδ, . . . ,Xn)− F (X1, . . . ,XB − nαδ, . . .Xn)

]
(A1)

where `B is the length of the boundary segment associated with point B, and F (X1, . . . ,Xn) is the value of the
objective function given the boundary point positions (X1, . . . ,Xn).

When the function F is the perimeter of the curve, a short calculation shows that sFB defined in this way is equal
to κB = ±1/R, where R is the radius of the circle shown in Fig. 9(a). This radius can be evaluated as shown in that
Figure. The sign of κB depends on the direction of the outward normal n at the point B: for a (locally) convex shape
then κB > 0 while for concave shapes κB < 0.

It follows that for deterministic minimisation of shape perimeter in the absence of any constraint, one should recover
curvature-driven flow of the boundary Γ (effects of stochastic noise on this process have been considered by Souganidis
and Yip [20]). In our scheme, the computational implementation of this process is affected by the discretisation of
the level-set field, and use of discrete boundary points. In particular, this discretisation affects our estimation of
sensitivities [4]. In Fig. 9(c), we initialise the level-set field as the signed distance from a circle of radius R. We then
infer the boundary points (as described in Sec. II B) and we measure the curvature κα at each such point, using the
two methods shown in Fig. 8(a,b). The plot shows the average of the κα over the boundary points α. This result is
compared with the inverse radius of the circle 1/R. The agreement is good, showing that the method is valid,

2. Level-set reinitialisation and its effects on curvature measurements

However, in Fig. 10 we investigate two other effects, which lead to uncertainties in the curvature. First, note
from Sec. II D that the level-set variables are periodically reinitialised, to maintain the property that φi is the signed
distance of node i from the boundary Γ. The reinitialisation is based on the set of boundary point positions {Xα}.
However, if one startes with a set of boundary points, reinitialises the level set, and then recalculates a new set of
boundary point positions {X ′α}, then one does not have in general Xα = X ′α: that is, the boundary points are
changed by the reinitialisation.

This motivates the following numerical experiment, whose results are shown in Fig. 10(a). Start with a level set
that encodes perfectly the signed distance from a circle of radius R. Calculate the boundary points Xα and their
associated local curvatures κα. Then reinitialise the level set based on the boundary points Xα. Recalculate the new
set of boundary points X ′α and their associated curvatures κ′α. In the absence of discretisation errors, one would have
κα = κ′α = 1/R for all α. Fig. 10(a) shows the average of the κα and the κ′α, evaluated by summing over boundary
points and dividing by the number of boundary points. One sees that the average κα is close to 1/R (as expected)
but the averaged κ′α already shows significant numerical errors (deviations from 1/R).

Moreover, Fig. 10(b) shows that the local curvatures evaluated for individual boundary points show significant
(and systematic) variation according to their positions on the perimeter of the circle. This effect can be seen even
when the level-set function is exactly equal to the signed distance from a circle: for different boundary points, the
estimated sensitivities are different from 1/R, indicating that inferring the discrete boundary points from the level set
variables can affect the local curvature. This effect is strongest when the boundary intersects the grid axes at angles
of 15− 20 degrees. Moreover, after reinitialisation of the level set field, a similar effect is observed, but the magnitude
is strongly enhaned. In this case the effect is most severe where the boundary Γ is intersecting the grid axes at angles
of approximately 45 degrees. The range of κ is large enough in this case that some values are even negative.

3. Interpretation

There are two conclusions from this analysis. First, even if the level-set function is an accurate description of a
shape (as with the analytic signed distance function considered here), one expects uncertainties in sensitivities, due
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to discretisation errors. This can effect the convergence of the deterministic method to a minimum of F , and the
extent to which the stochastic method samples (14). Accurate estimation of sensitivities is therefore an important
part of any future application of this method. Second, reinitialisation of the level set can lead to small but significant
movements of boundary points, which are large enough that local sensitivities change considerably. In determinstic
optimisation, the frequency of reinitialisation reduces as the system converges to the optimum, and this effect is not
too pronounced. On the other hand, in stochastic optimisation, reinitialisation is more frequent, and can affect the
shapes Ω generated by the method. A more detailed analysis of these effects is a direction for future work.
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