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1. Introduction
The quantal response (QR) model seeks to characterize the value of a binary re-
sponse y ∈ {0,1} as a function of continuous stimulus x. The original formulation
postulates an unobservable stimulus limit L, which determines the response via

y =




0, x < L

1, x > L .
(1)

If L is known and constant, then y is a step function of x with jump at x = L.
Otherwise, suppose L is random with cumulative distribution function (CDF)

FL (t) = Pr [ L 6 t ] . (2)

The distribution of L determines the QR model probability of response as

P(x) = Pr [ y = 1 | x ] = Pr [ L 6 x ] = FL (x) . (3)

Assuming a specific distribution family for FL such as logistic, G(x) = (1 + e−x)−1,
or normal, G(x) = (2π)−1/2 ∫ x

−∞
e−t2/2 dt, fitting the model amounts to estimating

the limit distribution location and scale parameters m and s in

P(x) = FL (x) = G
( x − m

s

)
. (4)

The CDF of L is interpreted as a functional model for the probability of response.

The existence of L is not necessary, and as such the QR model is a special case of
the Generalized Linear Model (GLM). See Collins1,2 for details. The requirement
of increasing P can be relaxed, and then P is no longer equivalent to any CDF
(which, of course, must always be increasing). What remains is a purely functional
model with no implicit limit distribution. Several such formulations follow.

2. General QR Models
A binary response y ∈ {0,1} has an expected value depending on stimulus x,

E [ y | x] = P(x) . (5)
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The conditional distribution of y is Bernoulli with the indicated mean, so

Pr [ y = 1 | x] = E [ y | x] = 1 − Pr [y = 0 | x] . (6)

In the usual case, response is an increasing function of x, so the response function
P must be a CDF. A standard choice for P uses the logistic CDF G(x) = (1 +

e−x)−1 with the linear parameterization P(x) = G(a + bx) or the location-scale
parameterization P(x) = G ((x − m)/s).

This is inadequate, for example, in the presence of the shattergap phenomenon,
when the probability of penetration (y) is observed to decrease in some velocity
(x) range. An example data set is taken from Chang and Bodt,3 described therein
as “Results of 69 Ballistic Shots on Phase II Al2O3/Kevlar Armor Plates”, although
there are only 68 data points in the report.

Chang and Bodt also develop a specific parametric model that must be analyzed
from first principles (not GLM). This is presented in Section 3.

The remaining approaches are all based on GLM. Standard Bernoulli GLM can
estimate an arbitrarily complex response, not necessarily increasing, as in Section 4.
Nonparametric estimation of the response is accomplished with penalized B-spline
models, as in Section 5.1, or smoothing spline models, as in Section 5.2.

3. The Chang-Bodt QR Model
The Chang-Bodt3 model is

P(x) =
(
1 − Pz (x,mz, sz)

)
· P1(x,m1, s1) + Pz (x,mz, sz) · P2(x,m2, s2) , (7)

where the Pi are location-scale CDFs. P1 is the (monotonic) probability of penetra-
tion for an unshattered threat, and P2 is the probability of penetration for a shattered
threat. Pz is the probability of shatter. For low x, shatter is unlikely, Pz ∼ 0, and
P ∼ P1. For high x, shatter is likely, Pz ∼ 1, and P ∼ P2. In the intermediate x

range, the mixture is weighted according to the increasing shatter probability Pz.
For convenience, let R = 1 − P.

2
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The likelihood for a single observation (xi, yi) is

Li = Rz (xi) · P1(xi)yi R1(xi)1−yi + Pz (xi) · P2(xi)yi R2(xi)1−yi , (8)

where the parameters of Pk are (mk , sk ).

Li =




Rz (xi) · R1(xi) + Pz (xi) · R2(xi) , yi = 0

Rz (xi) · P1(xi) + Pz (xi) · P2(xi) , yi = 1
. (9)

For the logistic CDF, we have G(x) =
(
1 + exp(−x)

)−1. The usual location-scale
parameterization is P(x) = G

(
(x − m)/s

)
.

Parameter estimates can be obtained by numerical optimization of the negative log-
likelihood Λ = −

∑
log Li. The parameters reported by Chang and Bodt are not

optimal estimates. Both sets of parameter estimates are given in Table 1.

Table 1 Chang-Bodt model parameters

Model m1 s1 m2 s2 mz sz Λ

Reported 1650 100 2550 100 2050 100 22.58

Estimated 1646.97 90.49 2529.34 75.75 2020.15 87.80 21.91

See Fig. 1 for the response curves.
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Fig. 1 Chang-Bodt model
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4. Parametric QR Models
GLM with the Bernoulli response provides a way to characterize a possibly nonin-
creasing function as P(x) = G

(
f (x)

)
, where G is a monotone function such as the

standard logistic, normal, or Cauchy CDF. Finite-dimensional parametric models
are obtained by using some basis ( f1, f2, . . .), and then f (x) = X t β for fixed k

where β = (β1, . . . , βk ) and X =
(

f1(x), . . . , f k (x)
)
. So, we get

P(x) = G(X t β) . (10)

This accounts for the (monotonic) basic linear or location-scale model

P(x) = G(b0 + b1x) = G
( x − m

s

)
(11)

and polynomials of arbitrary degree

P(x) = G *
,

k∑
i=0

bi xi+
-
. (12)

The canonical polynomial basis is given by fi (x) = xi. In practice, we use an or-
thogonal polynomial basis, with degree( fi) = i and

∫
fi f j = 0 if i , j. This

eliminates numerical problems and provides the same solution as the canonical ba-
sis for each k. Other popular choices for basis sets include the natural spline and
B-spline. See Fig. 2 for basis set examples with dimension k = 5 where various
colors distinguish the basis elements. Figure 3 shows logistic response estimates
for these 3 basis sets with dimension d = 3,4,5,6.
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5. Nonparametric QR Models
Nonparametric linear models are presented in Appendix A. These arise from a pro-
cess that can be described as penalized maximum likelihood estimation, penalized
least squares, or smoothing.

In Appendix B, the iteratively reweighted least squares (IRLS) GLM estimation
procedure for QR models is adapted to use nonparametric penalized linear models.
This gives rise to nonparametric penalized QR models.

5.1 The P-spline QR Model
Eilers and Marx4 propose using an overfitted B-spline model and then penalizing
to produce a smooth fit. This is called a P-spline model. In this application, we fit
a penalized GLM with a degree 3 B-spline basis of size p = 32 penalized with the
second derivative D. The smoothing operator is S = eλD.

Selection of the smoothing parameter is usually accomplished by optimizing some
information or cross-validation quantity such as the Akaike information criterion
(AIC), ordinary cross-validation (OVC), or generalized cross-validation (GCV) as
described in Appendix A. There are other such quantities and other methods, and no
single procedure is known to give the best solution. In fact, no single procedure even
works for all data sets. So the choice of smoothing parameter selection procedure
is itself somewhat subjective. To compensate for the perception that the procedures
tend to oversmooth the response, an adjusted smoothing parameter is computed as
the minimum of the 3 values obtained less their range. For this data, λaic = −6.2,
λgcv = −6.0, λocv = −5.7, and λadj = −6.7.

See Fig. 4 for fits with various values of the smoothing parameter. Optimal solutions
for the 3 smoothing selection methods along with the adjusted solution are shown
in Fig. 5. The adjusted solution and confidence intervals are shown in Fig. 6.
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5.2 The S-spline QR Model
The smoothing spline, or S-spline, QR model has the form P(x) = G

(
f (x)

)
, where

f is an S-spline linear model with knots at the stimulus data points, and G is an
arbitrary link function. Wahba5 is the standard reference for smoothing splines.

Smoothing splines are obtained through optimization in certain function spaces,
and the GLM implementation described in Section B.3 accomplishes this using
the standard IRLS GLM algorithm. In this application, we fit a cubic smoothing
spline GLM by penalizing with the second derivative D. The smoothing operator is
S = eλD.

We allow for multiple observations at a single stimulus by averaging the response
and multiplying the weight by the observation multiplicity at that level. However,
the sum of squared errors (SSE) and Λ are computed from the original data, so they
are comparable with the other models.

Smoothing parameter selection methodology is the same as for the P-spline, Sec-
tion 5.1. Typically, different λ values are obtained.

See Fig. 7 for fits with various values of the smoothing parameter. Optimal solutions
for all 3 smoothing selection methods and the adjusted solution are shown in Fig. 8.
The adjusted solution and confidence intervals are shown in Fig. 9.
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6. Model Comparison
Table 2 displays fit statistics and Fig. 10 shows the superimposed solutions for se-
lected methods: degree 6 parametric models, reported and estimated Chang-Bodt
(CB), and adjusted P-spline and S-spline. The adjusted smoothing spline solution
is the best fit in terms of squared error and maximum likelihood measures.

Table 2 Goodness of fit comparison

Model SSE Λ

Polynomial (6) 7.237 22.49

B-spline (6) 7.212 22.34

Natural spline (6) 7.201 22.07

CB reported 7.310 22.58

CB estimated 7.186 21.91

P-spline adjusted 7.045 21.98

S-spline adjusted 6.847 21.37
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7. Conclusions and Recommendations
The simple location-scale quantal response model may not adequately capture the
behavior of observed phenomena.

Higher-order polynomial and finite-dimensional spline basis models allow for more
complicated responses as the polynomial degree or spline basis dimension increases.

Penalized B-spline (P-spline) and smoothing spline (S-spline) models offer the most
flexibility as these are nonparametric (not constrained to any particular functional
form). These should be useful in identifying nonstandard behavior via statistical
goodness-of-fit tests.
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Appendix A. The Linear Model
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A.1 The Basic Linear Model
The usual linear model is

Y = X β + ε , (A-1)

where Y is an n×1 response, X is an n×p independent matrix, β is a p×1 parameter,
and the n × 1 error ε ∼ N (0,σ2In) is normally distributed.

For any positive-definite symmetric matrix W , the corresponding weighted inner
product and norm are, respectively, 〈x, y〉W = xtW y and ‖x‖W = 〈x, x〉1/2W . So,
in general, the density of a normal vector with mean M and variance-covariance
matrix V can be written as

f (x) = (2π)−n/2 |V |−1/2 exp
[
−1

2 ‖x − M ‖2V−1

]
. (A-2)

For the model of Eq. A-1, we have EY = M = X β and Var Y = V = σ2In. Each
column of X is a linear predictor, and the model is

yi =

p∑
j=1

Xi j β j . (A-3)

We can work with a p-parameter model for a single predictor v by choosing a set of
fixed basis functions { f1, . . . , fp} and setting Xi j = f j (vi).

yi =

p∑
j=1

β j f j (vi) . (A-4)

For example, the choice of f j (v) = v j−1 gives the polynomial model

y = β0 + β1v + β2v
2 + · · · βp−1v

p−1 . (A-5)

See Eq. A-2. Solution by least squares is equivalent to maximum likelihood esti-
mation for normal error, and the criterion is to choose u that minimizes Q = εtε =

‖ε‖2 = ‖Y − X β‖2 since ε = Y − X β. This is

Q = ‖Y ‖2 − 2βt X tY + ‖X β‖2 , (A-6)
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and by setting the derivative to 0,

dQ
dβ

= −2X tY + 2X t X β = 0 , (A-7)

we obtain the normal equations

X t X β = X tY (A-8)

with solution
β̂ = (X t X )−1X tY (A-9)

and response estimate
Ŷ = HY , (A-10)

where the so-called hat matrix is

H = X (X t X )−1X t . (A-11)

Note that E β̂ = β and Var β̂ = σ2(X t X )−1.

A.2 The Weighted Model
When the error is N (0,Σ), the correct inner product is weighted by the symmetric
W = Σ−1, and so Q = εtWε = ‖ε‖2W = ‖Y − X β‖2W . This is

Q = ‖Y ‖2W − 2βt X tWY + ‖X β‖2W . (A-12)

Then
dQ
dβ

= −2X tWY + 2X tW X β = 0 , (A-13)

the normal equations are
X tW X β = X tWY , (A-14)

the solution is
β = (X tW X )−1X tWY , (A-15)

and the response estimate is Ŷ = HY , where

H = X (X tW X )−1X tW . (A-16)

Note that E β̂ = β and Var β̂ = (X tW X )−1.
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For these models, the likelihood function is

L(β) = (2π)−n/2 |Σ |−1/2 exp
[
−1

2 ‖Y − X β‖2
Σ−1

]
, (A-17)

its log derivative is
d

dβ
log L(β) = X ′Σ−1(Y − X β) , (A-18)

and the information matrix is

Mβ = X ′Σ−1X . (A-19)

A.3 Smoothing
If the system is ill-conditioned, we can maximize a penalized likelihood function

LS (β) = L(β) · exp
[
−1

2 ‖S β‖
2] . (A-20)

Equivalently, penalization can be applied to the least-squares formulation by mini-
mizing Q = ‖ε‖2W + ‖S β‖2 for some smoothing operator S. This is

Q = ‖Y ‖2W − 2βt X tWY + ‖X β‖2W + ‖ β‖2St S . (A-21)

Then
dQ
dβ

= −2X tWY + 2X tW X β + 2St S β = 0 , (A-22)

and the normal equations are

(X tW X + St S) β = X tWY (A-23)

with solution
β = (X tW X + St S)−1X tWY (A-24)

and response estimate Ŷ = HY where

H = X (X tW X + St S)−1X tW . (A-25)

This is equivalent to the model Y ∗ = X∗ β + ε∗ with weight W ∗ where Y ∗ =
[

Y
0

]
,
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X∗ =
[

X
S

]
, and W ∗ =

[
W 0
0 I

]
. Then the normal equations are

[
X t St

] 

W 0
0 I





X

S


β =

[
X t St

] 

W 0
0 I





Y

0


[
X t St

] 

W X

S


β =

[
X t St

] 

WY

0


(X tW X + St S) β = X tWY (A-26)

as required. This so-called augmented representation is useful for computation.

Modern software for linear least-squares estimation operates on Eqs. A-8, A-14,
and A-26 through the response vector Y , the weight vector W , the smoothing vector
S, and the design matrix X . The normal equations are solved efficiently without
inverting the design matrix, and we get parameter estimates and diagnostics such as
the parameter variance and hat matrix diagonal.

A.4 Nonparametric P-spline
Smoothing or penalization can be applied to an overfitted parametric model as given
by Eq. A-4. Suppose f has the particular form

f (x) =

p∑
j=1

β j f j (xi) (A-27)

for a B-spline basis ( f1, . . . , fp) and D is a linear differential operator. Computa-
tional details for the B-spline are in Appendix C, and for the differential operator
see Appendix D. The solution is the minimizer (β1, . . . , βp) of

n∑
i=1

(
yi −

p∑
j=1

β j f j (xi)
)2

+ λ2
∫ b

a

(
D

( p∑
j=1

β j f j
)
(u)

)2
du (A-28)

and is again given exactly by Eq. A-21. This works because of the ordered par-
tial partition property of B-spline bases: smoothing the coefficient vector in fact
smooths the solution. Eilers and Marx1 call this a P-spline (penalized B-spline)
model. Figure A-1 depicts the effect of smoothing parameter variation for the P-
spline model.

1Eilers PHC, Marx BD. Flexible smoothing with B-splines and penalties. Statistical Science.
1996;11(2):89–121.
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Fig. A-1 P-spline optimization, linear model
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A.5 Nonparametric S-spline
The smoothing spline is another manifestation of penalized maximum likelihood or
least squares estimation. A smoothing spline, or S-spline, f is the minimizer of

n∑
i=1

(
yi − f (xi)

)2
+ λ2

∫ b

a

(
(D f )(u)

)2 du , (A-29)

where f is in some suitable function space, and D is a linear differential operator.
The solution is a spline with knots at the data points. If D has order p, the solution
is piecewise polynomial of degree 2p − 1 with continuous derivatives of orders
0,1,2, . . . ,2p − 2. See Wahba2.

The discrete representation of this problem is Eq. A-21, with X = I and S taken to
be a scalar multiple of a differential operator D, so S = λD and St S = λ2Dt D. The
representation D of D is given in Appendix D. The discrete formulation provides
the exact solution of Eq. A-29.

WhenD is the second derivative, the solution is a cubic spline. The solution is given
at the data points, and spline interpolation can be used to evaluate the response at
other values.

Figure A-2 depicts the effect of smoothing parameter variation for the S-spline
model.

2Wahba G. Spline models for observational data. Philadelphia (PA): Society for Industrial and
Applied Mathematics; 1990.
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Fig. A-2 S-spline optimization, linear model
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A.6 Selecting the Smoothing Parameter
Choice of smoothing parameter λ is usually based on minimization of one of the
following quantities. The ordinary cross-validation (OCV) is

OCV =
1
n

n∑
i=1

(
yi − ŷi

1 − Hii

)2

. (A-30)

The generalized cross-validation (GCV) is

GCV =

1
n
∑n

i=1
(
yi − ŷi

)2

[
1
n Tr(I − H)

]2 . (A-31)

The Akaike information criterion (AIC) is

AIC = ∆ + 2 · Tr H , (A-32)

where the deviance ∆ = −2 log(Lreduced/Lfull) is defined in terms of the likelihood
function L.

For normal error, Lfull = 1, and based on Eq. A-2, we have

log Lreduced = −
n
2

log(2π) −
1
2

log |Σ | −
1
2
‖ε‖2
Σ−1 , (A-33)

where the residuals are ε = Y − X β and the error variance is Σ.

For independent and identically distributed (IID) errors, Σ = σ2In and |Σ | = (σ2)n.
And so

log Lreduced = −
n
2

log(2π) −
n
2

log(σ2) −
1

2σ2 ε
tε . (A-34)

We replace σ2 by the estimator εtε/n and get

log Lreduced = −
n
2

log(2π) −
n
2

log
(εtε

n

)
−

n
2

= −
n
2

[
log

(
2π
εtε

n

)
+ 1

]
(A-35)

so

∆ = n
[
log

(
2π
εtε

n

)
+ 1

]
. (A-36)

See Fig. A-3 for graphs of OCV, GCV, and AIC as functions of λ. Note that AIC
optimization fails for the S-spline, as no minimum value is obtained. See Fig. A-4
for GVC-optimal P-spline and S-spline solutions. With a maximum y-difference of
less than 0.01, the solutions are practically indistinguishable.
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Appendix B. The Generalized Linear Model
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B.1 Generalized Linear Model Formulation
In the Generalized Linear Model (GLM), the response Y has an arbitrary distribu-
tion, η = X β is a linear function of the parameter β, and the mean response is
modeled as

µ = E[Y | X ] = G(η) (B-1)

for some monotone link function G with derivative g = G′. (Some authors call G−1

the link.) Response distributions are taken to be from a single-parameter exponential
family, with the form

f (y, θ,ψ) = exp
[
yθ − b(θ)

a(ψ)
+ c(y,ψ)

]
. (B-2)

The parameter θ is to be estimated, and ψ is a nuisance parameter.

With ` = log f , we calculate the moments of Y in terms of exponential family
components.

E
[

d
dθ
`(y, θ,ψ)

]
= 0 (B-3)

because
∫

f (y, θ,ψ) dy = 1, and under suitable regularity conditions d
dθ

∫
f (y, θ,ψ) dy

=
∫ d

dθ f (y, θ,ψ) dy =
∫ d

dθ `(y, θ,ψ)· f (y, θ,ψ) dy = 0. Therefore, E[
(
y − b′(θ)

)
/a(ψ)]

= 0 and
E[Y ] = µ = G(η) = b′(θ) . (B-4)

Also, as usual,

E


(
d
dθ
`(y, θ,ψ)

)2 
= −E

[
d2

dθ2 `(y, θ,ψ)
]

(B-5)

because Var
[

d
dθ `

]
= E

[
( d

dθ `)2
]

=
∫

( d
dθ `)2 · f dy =

∫ d
dθ ` ·

d
dθ f dy

= d
dθ ` · f ��∞−∞ −

∫ d2

dθ2 ` · f dy = −E
[

d2

dθ2 `
]
.

Therefore, E[(y − µ)2/a(ψ)2] = −E[−b′′(θ)/a(ψ)] and

Var[Y ] = v(µ)a(ψ) = b′′(θ)a(ψ) (B-6)

where v(µ) = Var[Y ]/a(ψ) = b′′(θ) = g(η) dη
dθ .

In the case that η = θ, and hence µ = G(η) = G(θ), we say that G is the canonical
link function. Then µ = b′(θ) = G(θ) = G(η) and v(µ) = b′′(θ) = g(θ) = g(η).
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B.2 Estimation
Let [x1, . . . , xn] = X t , so the (column) vector xi is row i of X , ηi = xt

i β, and
θi = θ(ηi). Maximum likelihood estimation for the GLM is accomplished by max-
imizing the log-likelihood function

L =

n∑
i=1

`(yi, θi,ψ) =

n∑
i=1

[
yiθi − b(θi)

a(ψ)
+ c(yi,ψ)

]
. (B-7)

This is a weighted least squares problem where the design and weight depend on
the unknown parameter, and it can be solved iteratively by the Newton-Raphson
method.

B.2.1 The Newton-Raphson Method
In 1 dimension, we find a zero of F by linearizing and updating the current argument
xo to x by solving F (xo) + (x − xo)F′(xo) = 0 to get x = xo − F (xo)/F′(xo). We
optimize F by setting F′ = 0, so the update is x = xo − F′(xo)/F′′(xo).

The vector version is x = xo − [ d2

dxxt F (xo)]−1 d
dx F (xo). If we take x = xo + δ,

the increment δ = x − xo satisfies [ d2

dxxt F (xo)]δ = − d
dx F (xo). So we need some

derivatives.

B.2.2 Gradient
Differentiating, we have the gradient (vector of first derivatives)

D (β) =
dL
dβ

= a(ψ)−1 ·

n∑
i=1

[
yi − b′(θi)

]
·

dθi

dβ
. (B-8)

Since d
dβ b′(θi) = b′′(θi)

dθi
dβ = v(µi)

dθi
dβ and d

dβ b′(θi) =
dµi
dβ = d

dβG(ηi) = d
dβG(xt

i β) =

g(ηi)xi, we get
dθi

dβ
=

g(ηi)
v(µi)

xi . (B-9)

So the gradient is

D (β) = a(ψ)−1 ·

n∑
i=1

(
yi − µi

)
·
g(ηi)
v(µi)

xi = a(ψ)−1 · X tWFUF , (B-10)
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where, for i = 1, . . . ,n, the diagonal weight matrix WF has elements wFi = g(ηi)2/v(µi)

WF = diag
[
g(η1)2

v(µ1)
, · · · ,

g(ηn)2

v(µn)

]
(B-11)

and the centered/scaled response vector UF has elements uFi = (yi − µi)/g(ηi)

UF =

[
y1 − µ1

g(η1)
, · · · ,

yn − µn

g(ηn)

]
. (B-12)

B.2.3 Hessian
Using d

dβ v(µi) = v′(µi) d
dβG(xt

i β) = v′(µi)g(xt
i β)xi,

d2

dβ βt θi =
g′(ηi)v(µi) − g(ηi)2v′(µi)

v(µi)2 xi xt
i , (B-13)

and the Hessian (matrix of second derivatives) is

H (β) =
d2

dβ βtL = a(ψ)−1 ·

n∑
i=1

[
−b′′(θi)

dθi

dβ
dθi

dβ

t
+

(
yi − µi

) d2

dβ βt θi

]

= a(ψ)−1 ·

n∑
i=1

[
−
g(ηi)2

v(µi)
+

(
yi − µi

) g′(ηi)v(µi) − g(ηi)2v′(µi)
v(µi)2

]
xi xt

i

= −a(ψ)−1 · X tWN X (B-14)

where
WN = WF −WD (B-15)

and WD is a diagonal matrix with diagonal elements

wDi =
(
yi − µi

) g′(ηi)v(µi) − g(ηi)2v′(µi)
v(µi)2 . (B-16)

Since E[WD] = 0, the expected value of the Hessian is

EH (β) = −a(ψ)−1 · X tWF X . (B-17)

The Fisher Information Matrix is

Mβ = E
[ d
dβ
L ·

d
dβ
Lt

]
= −E

[ d2

dβ βtL

]
= −EH (β) = a(ψ)−1 · X tWF X , (B-18)
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and the asymptotic estimator distribution is N
(
β,a(ψ) · (X ′WF X )−1) .

B.2.4 Newton-Raphson
Now, apply the Newton-Raphson algorithm to iteratively solve the optimization.

For GLM, the Newton-Raphson update is β = βo + δ where

H (βo)δ = −D (βo)

(X tWN X )δ = X tWFUF

(X tWN X )δ = X tWNUN (B-19)

with
UN = W−1

N WFUF . (B-20)

These are the normal equations for minimization of Q = ‖UN − Xδ‖2WN
. Both WN

and UN depend on βo. The normal equations can be solved iteratively with an initial
guess βo by calculating η = X βo, µ = G(η), g, g′, v, v′, WF , UF , WD, WN , and
UN . Then solve for δ. The updated solution is β = βo + δ. Now replace βo with β,
and repeat. This is iteratively reweighted least squares with the Newton-Raphson
update.

B.2.5 Fisher Scoring
For the GLM, the Fisher scoring update uses EH in place ofH to get

EH (βo)δ = −D (βo)

(X tWF X )δ = X tWFUF , (B-21)

which are the normal equations for minimization of Q = ‖UF − Xδ‖2WF
. Both WF

and UF depend on βo. The normal equations can be solved iteratively with an initial
guess βo by calculating η = X βo, µ = G(η), g, v, WF , and UF . Then solve for δ,
update, and repeat as above. This is iteratively reweighted least squares with Fisher
scoring.

B.3 Smoothing
Smoothing is accomplished by maximizing a penalized objective

LS = L − 1
2 ‖S β‖

2 (B-22)
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with gradient

DS (β) =
dLS

dβ
= X tWFUF − St S β , (B-23)

Hessian matrix

HS (β) =
d2

dβ βtLS = −X tWN X − St S , (B-24)

and expected Hessian
EHS (β) = −X tWF X − St S . (B-25)

The Newton-Raphson update equations are

HS (βo)δ = −DS (βo)

(X tWN X + St S)(β − βo) = X tWFUF − St S βo

(X tWN X + St S) β = (X tWN X + St S) βo + X tWFUF − St S βo

· = X tWN X βo + X tWFUF

· = X tWN X βo + X tWNW−1
N WFUF

· = X tWN (X βo + W−1
N WFUF )

· = X tWN (X βo + UN )

(X tWN X + St S) β = X tWN ZN , (B-26)

where
ZN = X βo + UN . (B-27)

These are the normal equations for minimization of Q = ‖ZN − X β‖2WN
+ ‖S β‖2.

The update increment δ is now implicit. Replace βo with β and repeat.

The Fisher update equations are EHS (βo) β = EHS (βo) βo − DS (βo), or

EHS (βo)δ = −DS (βo)

(X tWF X + St S)(β − βo) = X tWFUF − St S βo

(X tWF X + St S) β = (X tWF X + St S) βo + X tWFUF − St S βo

· = X tWF X βo + X tWFUF

· = X tWF (X βo + UF )

(X tWF X + St S) β = X tWF ZF , (B-28)
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where
ZF = X βo + UF . (B-29)

These are the normal equations for minimization of Q = ‖ZF − X β‖2WF
+ ‖S β‖2.

At each step, the normal equations are solved as the augmented system of Sec-
tion A.3. P-spline models are obtained with a B-spline basis as in Section A.4, and
smoothing spline models are obtained with X = I as in Section A.5.

Figure B-1 depicts the effect of smoothing parameter variation for the P-spline
model, and Fig. B-2 depicts the effect of smoothing parameter variation for the
S-spline model. See Fig. B-3 for graphs of OCV, GCV, and AIC as functions of λ,
and see Fig. B-4 for GVC-optimal P-spline and S-spline solutions.
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Fig. B-1 P-spline optimization, GLM
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Fig. B-2 S-spline optimization, GLM
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Fig. B-3 Smoothing parameter selection, GLM
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B.4 Canonical Link
For the canonical link, wFi = g(ηi) = v(µi) and uFi = (yi − µi)/wFi. Also, since
dθi/dβ = xi and d2θi/dβ βt = 0, it follows that EH (β) = H (β). So Newton-
Raphson and Fisher scoring are equivalent.

B.5 Confidence Intervals
Normal-approximation 100c% confidence intervals on the mean response are given
by

G
(
x β ± Φ1−(1−c)/2

√
xtV x

)
, (B-30)

whereΦ is a standard normal quantile, V is the estimated parameter variance matrix,
and x is a row of an X matrix corresponding to the desired level. For the basis
implementation, this is

x =
(

f1(v), . . . , fp(v)
)
. (B-31)

B.6 Bernoulli Response
For example, suppose the response Y ∈ {0,1} is Bernoulli with Pr[Y = 1] = µ =

1 − Pr[Y = 0]. The Bernoulli distribution is a member of the exponential family,
Eq. B-2, with the particular form

f (y) = µy (1 − µ)1−y = exp
[
y log

µ

1 − µ
+ log(1 − µ)

]
. (B-32)

So a = 1, c = 0, and there is no nuisance parameter. Furthermore, θ = log
(
µ/(1 − µ)

)
and µ = 1/(1 + e−θ ), and so b(θ) = − log(1 − µ) = log(1 + eθ ). Note that
E[Y ] = b′(θ) = eθ/(1 + eθ ) = µ and Var[Y ] = v(µ) = b′′(θ) = e−θ/(1 + e−θ )2 =

µ(1 − µ) as expected.

With η = θ and µ = G(θ), we see that the canonical link for Bernoulli response is
the logistic cumulative distribution function (CDF) G(η) = 1/(1 + e−η ) = µ. Note
that g(η) = µ(1− µ) = v(µ), so wFi = µi (1− µi) and uFi = (yi − µi)/

(
µi (1 − µi)

)
.

The resulting model is logistic regression, or the logit model.

For an arbitrary link CDF G, we take η = X β, µ = G(X β), v(µ) = µ(1 − µ), and
g(η) = g(X β).

Use of the standard normal CDF G = Φ with probability density function (PDF)
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g = φ gives the probit model.

Because the likelihood function is L =
∏
µ
yi
i ·

(
1 − µi

)1−yi , we have Lfull = 1 for
the Bernoulli model, and then the deviance is ∆ = −2 log L.

As an example, consider the usual 2-parameter model with predictor (x1, . . . , xn)
and response (y1, . . . , yn). The increment δ = (d0,d1) is the solution of Mδ = A,
where

M = X tW X =



∑
wi

∑
wi xi∑

wi xi
∑
wi x2

i


and A = X tWU =



∑
wi ui∑
wi ui xi


. (B-33)

To do the Fisher update of Section B.2.5, calculate the linear response ηi = b0+b1xi,
mean µi = G(ηi), derivative gi = g(ηi), variance vi = µi (1 − µi), transformed re-
sponse ui = uFi = (yi − µi)/gi, weight wi = wFi = g2

i /vi, and weighted transformed
response wiui = wFi uFi = (yi − µi)gi/vi.

For the Newton-Raphson update, wDi = (yi − µi)(g′i vi − g
2
i v
′
i )/v

2
i and wNi = wFi −

wDi and ui = uNi = wFi/wNi (yi − µi)/gi. Then wi = wNi and wiui = wNi uNi =

wFi uFi.

For the canonical link wi = wFi = gi = vi and wiui = wFi uFi = yi − µi.
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Appendix C. B-splines
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A degree-d B-spline basis (B1,d , . . . ,Bn,d) of dimension n uses n + d + 1 knots
(t1, . . . , tn+d+1).

There are k = n − d − 1 internal knots (internal to the data) and 2d + 2 boundary
knots, d + 1 on each side. There are no internal knots if k = 0 and n = d + 1, and in
general k > 0 so n > d. The left knots are (t1, . . . , td+1), the internal knots, when
n > d + 2, are (td+2, . . . , tn), and the right knots are (tn+1, . . . , tn+d+1).

On the data range [x0, x1] internal knots are evenly spaced so ti = x0+ i−d−1
k+1 (x1−x0)

for i = d + 2, . . . ,n. This also accounts for td+1 = x0 and tn+1 = x1.

Compact knots are constructed by replicating knots at the boundary, so t1 = · · · =

td+1 = x0 and tn+1 = · · · = tn+d+1 = x1.

Uniform knots are constructed by repeating the uniform spacing for all knots, so
ti = x0 + i−d−1

k+1 (x1 − x0) for i = 1, . . . ,n + d + 1.

This is the Cox-de Boor recursion for B-spline basis functions:

Bi,0(x) =




1 , ti 6 x < ti+1

0 , otherwise
,

i = 1, . . . ,n + d ;

Bi,j (x) =
x − ti

ti+ j − ti
Bi,j−1(x) +

ti+ j+1 − x
ti+ j+1 − ti+1

Bi+1,j−1(x) ,

j = 1, . . . ,d , i = 0, . . . n + d − j . (C-1)

This is the relation for derivatives of B-spline basis functions:

d
dx

Bi,j (x) =
j

ti+ j − ti
Bi,j−1(x) −

j
ti+ j+1 − ti+1

Bi+1,j−1(x) . (C-2)

Example graphs follow. All spline bases have dimension n = 8. Figures C-1 and
C-2 demonstrate uniform and compact knots, respectively, for bases of degree d =

0,1,2, and 3. Figures C-3 and C-4 demonstrate uniform and compact knots, respec-
tively, for bases of degree d = 3 with derivative orders p = 0,1,2, and 3.
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Fig. C-1 B-spline basis, uniform
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Fig. C-2 B-spline basis, compact
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Fig. C-3 B-spline basis derivatives, uniform
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Fig. C-4 B-spline basis derivatives, compact
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Appendix D. Matrix Differentiation Operators
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Consider that y = f (x), so y is a function of x, and n values of zi = (xi, yi) for
i = 1, . . . ,n are given, where each xi < xi+1. Let f k,p be the degree-p interpolating
polynomial through the p+1 consecutive points (zk , . . . , zk+p), so that f k,p(xi) = yi

for k 6 i 6 k + p. Interpolating polynomials satisfy the recursion

f k,p(x) =
(x − xk ) f k+1,p−1(x) + (xk+p − x) f k,p−1(x)

xk+p − xk
. (D-1)

Define the Newton basis polynomials nk,j by

nk,0(x) = 1 , 1 6 k 6 n

nk,j (x) =

k+ j−1∏
i=k

(x − xi) , 1 6 k 6 n , 1 6 j 6 n − k , (D-2)

so nk,j (xi) = 0 for j > 1 and k 6 i 6 k + j − 1. Note that nk,j has degree j and the
leading coefficient 1, so nk,j (x) = x j+ lower-degree terms. Write the polynomial as

f k,p(x) =

p∑
j=0

ak,jnk,j (x) (D-3)

so that

f k,0(x) = ak,0nk,0(x) , 1 6 k 6 n

f k,j (x) = ak,jnk,j (x) + f k,j−1(x) , 1 6 j , (D-4)

and the leading coefficient of f k,j is ak,j . Then, because of Eqs. D-1 and D-4, the
coefficients obey

ak,0 = yk

ak,j =
ak+1,j−1 − ak,j−1

xk+ j − xk
. (D-5)
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The coefficient sequence is

(
ak,0 , ak,1 ak,2 , ak,3 , ak,4 , · · ·

)
=

(
yk ,

yk+1 − yk

xk+1 − xk
,

yk+2−yk+1
xk+2−xk+1

−
yk+1−yk
xk+1−xk

xk+2 − xk
,

yk+3−yk+2
xk+3−xk+2

−
yk+2−yk+1
xk+2−xk+1

xk+3−xk+1
−

yk+2−yk+1
xk+2−xk+1

−
yk+1−yk
xk+1−xk

xk+2−xk

xk+3 − xk
,

yk+4−yk+3
xk+4−xk+3

−
yk+3−yk+2
xk+3−xk+2

xk+4−xk+2
−

yk+3−yk+2
xk+3−xk+2

−
yk+2−yk+1
xk+2−xk+1

xk+3−xk+1
xk+4−xk+1

−

yk+3−yk+2
xk+3−xk+2

−
yk+2−yk+1
xk+2−xk+1

xk+3−xk+1
−

yk+2−yk+1
xk+2−xk+1

−
yk+1−yk
xk+1−xk

xk+2−xk
xk+3−xk

xk+4 − xk
, · · ·

)
.

(D-6)

For evenly spaced x j with x j+1 − x j = h and xk+ j − xk = jh, we have

ak,0 = yk

ak,j =
ak+1,j−1 − ak,j−1

jh
, (D-7)

so

(
ak,0 , ak,1 ak,2 , ak,3 , ak,4 , · · ·

)
=(

yk ,
yk+1 − yk

h
,
yk+2 − 2yk+1 + yk

2h2 ,
yk+3 − 3yk+2 + 3yk+1 − yk

6h3 ,

yk+4 − 4yk+3 + 6yk+2 − 4yk+1 + yk

24h4 , · · ·

)
. (D-8)

For evenly spaced x, the coefficients are

ak,j =
1

j!h j

j∑
i=0

(−1) j+i
(

j
i

)
yk+i . (D-9)

In general, the numerical derivative of order p coincides with the pth derivative f (p)
k,p

of f k,p,
f (p)

k,p (x) = p! ak,p. (D-10)

There are n − p sequences (zk , . . . , zk+p) and therefore n − p values of f (p)
k,p for

1 6 k 6 n − p.

Now, express the differentiation operator as a matrix.
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Define ν( j), the first-order difference matrix of dimension k > 2, size ( j − 1) × j,
by ν( j)i,i = −1 and ν( j)i,i+1 = 1 for 1 6 i 6 j − 1.

ν( j) =



−1 1
−1 1

. . .
. . .

−1 1



. (D-11)

Then

ν( j)



u1
...

u j



=



u2 − u1
...

u j − u j−1



, (D-12)

and ν serves to evaluate the numerator of Eq. D-5.

Define δ(u, j), the lag- j (square) diagonal difference matrix of dimension n − j for
u = (u1, . . . ,un) and 1 6 j 6 n − 1 by δ(u, j)i,i = u j+i − ui for 1 6 i 6 n − j

δ(u, j) =



u j+1 − u1
. . .

un − un− j



. (D-13)

So δ serves to evaluate the denominator of Eq. D-5.

Then matrix derivative operators for the n-vector x are given recursively by

D1 = δ(x,1)−1 ν(n)

D j = j δ(x, j)−1 ν(n − j + 1) D j−1, (D-14)

where the factor of j serves to evaluate the factorial in Eq. D-10.

The matrix DP evaluates the pth derivative.

Based on points (zk , . . . , zk+p) for 1 6 k 6 n− p, the individual derivative value are

f (p)
k,p (x) = (Dp y)k . (D-15)
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The derivative vector is Dp y.

Dpy =



f (p)
1,p (x)

f (p)
2,p (x)
...

f (p)
n−k,p(x)



, (D-16)

and its norm is approximately

∫ (
f (p) (x)

)2
dx ' ‖Dpy‖

2 = yt Dt
pDpy . (D-17)

R language code for evaluating Dp is easy.

D <- diff(diag(n)) / diff(x, lag=1)

if (p>1) for (j in 2:p)

D <- j * (diff(diag(n - j + 1)) / diff(x, lag=j)) %*% D

Here, diff(diag(n)) is ν(n) and diff(x, lag=j)) is δ(x, j).
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List of Symbols, Abbreviations, and Acronyms

AIC Akaike information criterion

CB Chang-Bodt

CDF cumulative distribution function

GCV generalized cross-validation

GLM Generalized Linear Model

IID independent and identically distributed

IRLS iteratively reweighted least squares

OCV ordinary cross-validation

PDF probability density function

QR quantal response

SSE sum of squared errors
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