
Improving Prescripted Agent Behavior with Neuroevolution
Undergraduate Thesis - Ryan Cornelius

Faculty Advisor - Risto Miikkulaiuen

Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712-0233

Abstract
Machine learning can increase the appeal of video games
by allowing agents to adapt in response to the player.
Therefore, methods need to be developed specifically for
video games that adapt agent behaviors in real-time. For
example, the real-time NeuroEvolution of Augmenting
Topologies (rtNEAT) method evolves artificial neural
networks (ANNs) fast enough so that improvements can be
perceived by the player. However, video game developers
are accustomed to relying on prescripted behaviors,
frequently encoded in finite state machines (FSMs). It is
difficult to incorporate agents that develop behaviors on
their own into the current practice. Such learned behaviors
might be undesirable, violating the designer's intentions.
This problem could be avoided if game designers could
specify an initial behavior using an FSM and allow
adaptation. This paper describes such a method,
Knowledge-Based NEAT (KB-NEAT), which converts a
FSM into an ANN using a KBANN-based technique. In
this paper, KB-NEAT is tested in the game of blackjack,
demonstrating that the FSM successfully converts into an
ANN with identical behavior and further improves its
perfonnance during the game using NEAT. KB-NEAT
can help the game industry utilize machine learning
methods with minimal change to current practices.

1 Introduction

In many video games, non-player characters (NPCs) are
driven by prescripted behaviors, often encoded as finite
state machines (FSMs) (Orkin 2002). Over the course of a
game, players begin to recognize patterns these NPCs
exhibit leading the game lo beco1ne predictable and dull.
Because they are controlled by scripts and FSMs, the
NPCs have no way of adapting to these manipulations,
and the game loses its appeal. In order to keep the game
interesting and challenging, it is therefore important to
develop methods that allow the NPCs to adapt in real
time.

Research on the NERO video game (NeuroEvolving
Robotic Operatives) has achieved early success in
achieving this goal (Stanley, Bryant, and Miikkulainen
2005). In NERO, NPCs adapt in real time to the player
using the real-time NeuroEvolution of Augmenting
Topologies (rtNEAT) method, which evolves increasingly
complex artificial neural network (ANN) controllers.
Thus, technology exists in NERO to allow real-time
adaptation, but another issue has einerged. Adaptation

from scratch can lead to a variety of behaviors, which is
exactly what makes the game interesting, but these
behaviors are no longer completely under the developer's
control. There are no guarantees that a given level of
performance is achieved and maintained, and unwanted
side effects may emerge as well.

Instead of evolving the behaviors from scratch, it would
therefore be useful to start the evolution from a set of
scripted behaviors that establish the core performance,
and let evolution improve them and generate variety based
on them. This paper describes such a method, Knowledge
Based NEAT (KB-NEAT), which combines the
prescripted behaviors with the adaptability of a neural
network using NEAT. The developers first describe the
behavior in an FSM, and then convert it into an equivalent
neural network using the Knowledge Based Artificial
Neural Networks (KBANN) method (Towell and Shavlik
1994). This network serves as a basis for a population that
is then further evolved with NEAT over the course of the
game. In this way, developers can be confident that agents
interact with the world based on the prescripted behaviors,
but can also discover new behaviors if they turn out more
effective during the actual game.

KB-NEAT is tested in this paper in the gamd of
blackjack. One simple FSM and one complex FSM «-ere
hand-designed to play this game. These FSMs were
converted into a neural network and allowed to adapt over
a number of games. The results show that (I) KB-NEAT
can improve the performance of the simple original
behaviors, and (2) KB-NEAT does not hurt the
performance if the original behavior is already well
optimized. KB-NEAT therefore makes it possible to start
a game with well-understood, prescripted behaviors and
further improve them through evolution, allowing the
game industry utilize machine learning with minimal
change to current practices.

The next two sections explain NEAT and KB-NEAT.
Section 4 describes the blackjack domain, and Section 5
overviews the experiments used to test KB-NEAT. The
last sections cover the results of the experiments and
discuss future opportunities.

2 NeuroEvolution of Augmenting Topologies
(NEAT)

In order to allow agents to adapt in a video game, a
powerful and reliable machine learning method is needed.
Neuroevolution (NE), i.e. the artificial evolution of neural
networks, is a promising such technology. In NE, a
population of ANN controllers is evolved in a survival of
the fittest competition. Because only the fittest ANNs are
allowed to reproduce, behaviors gradually improve over
generations. The method can discover successful
solutions based on only high-level specifications of
desired behavior, and through recurrent connections,
complex behaviors that require n1emory can emerge.

NE has been successfully used to evolve motor-control
skills such as those necessary in continuous-state games in
many challenging non-Markovian domains (Floriano and
Mondada 1994; Fogel 2001; Gomez and Miikkulainen
2003; Gruau et al. 1996; Moriarty and Miikkulainen 1996;
Nolfi et al. 1994; Stanley and Miikkulainen 2004; Whitley
et al. 1993). Recent NE research has focused on evolving
higher-level strategies and including real-time adaptation,
which are needed for both continuous and discrete multi
agent games (Agogino et al. 2000; Bryant and
Miikkulainen 2003; Stanley and Miikkulainen 2004). One
example is the NERO video game (Stanley, Bryant, and
Miikkulainen 2005), where non-player characters evolve
complex behaviors as the game is being played. NERO
demonstrates that the technology can make commercial
video games more interesting in the future.

The NERO game is based on the NEAT method of
neuroevolution (Stanley and Miikkulainen 2002a; Stanley
and Miikkulainen 2004), which is also used in the
experiments in this paper. NEAT is well-suited for the
task of improving upon prescripted behavior because it
can evolve arbitrary network topologies. Methods such as
KBANN that convert rules into a corresponding ANN
topology can be used to construct a starting point for
further evolution with NEAT.

NEAT is based on three key ideas. First, evolving
network structure requires a flexible genetic encoding.
Each genome in NEAT includes a list of connection
genes, each of which refers to two node genes being
connected. Each connection gene specifies the in-node,
the out-node, the weight of the connection, whether or not
the connection gene is expressed (an enable bit), and an
innovation number, which allows finding corresponding
genes during crossover. Mutation can change both
connection weights and network structures. Connection
weights mutate as in any NE syste111, with each connection
either perturbed or not. Structural nlutations, which allow
complexity to increase, either add a new connection or a
new node to the network. Through mutation, genomes of
varying sizes are created, so1netimes with completely
different connections specified at the same positions.

Each unique gene in the population is assigned a unique
innovation number, and the numbers are inherited during
crossover. Innovation numbers allow NEAT to perform
crossover without expensive topological analysis.
Genomes of different organizations and sizes stay
compatible throughout evolution, and the problem of
matching different topologies (Radcliffe 1993) is
essentially avoided.

Second, NEAT speciates the population, so that
individuals compete primarily within their own niches
instead of with the population at large. This way,
topological innovations are protected and have time to
optimize their structure before they have to compete with
other niches in the population. The reproduction
mechanism for NEAT is explicit fitness sharing (Goldberg
and Richardson 1987), where organisms in the same
species must share the fitness of their niche, preventing
any one species from taking over the population.

Third, unlike other systems that evolve network
topologies and weights (Gruau et al. 1996; Yao 1999)
NEAT begins with a uniform population of simple
networks with no hidden nodes. New structure is
introduced incrementally as structural mutations occur,
and only those structures survive that are found to be
useful through fitness evaluations. This way, NEAT
searches through a minimal number of weight dimensions
and finds the appropriate complexity level for the
problem.

In this paper, FSM blackjack players are converted into
ANNs that NEAT further evolves to improve their
performance. The next section describes the FSM to
ANN conversion procedure.

3KB-NEAT

The FSMs are converted to neural networks that are
compatible with NEAT using a modified version of
KBANN (Towell and Shavlik 1994; Maclin 1995).
Instead of boolean inputs of the original KBANN (and its
FSM version fsKBANN), the modified version processes
continuously-valued inputs. Such inputs are necessary
because video game states are often described with
continuous variables, and also because the FSM
conditionals can be represented more accurately.

Each FSM contains a list of inputs, outputs,
conditionals and states (Carlisle 2002). Each state
represents a behavioral action to be performed by agents
in the game. Conditionals are used to determine
transitions from one state to another. KB-NEAT currently
supports 5 different conditional types: (l) less-than, (2)
less-than-equal-to, (3) greater-than, (4) greater-than-equal
to, and (5) AND. These conditionals receive input
variable values and constant floating-point values as their
input and evaluate to true or false. Inputs are normalized
floating-point values between a minimum and a maximum
that describe the state of the game.

The FSM can be expressed as a neural network
structure: The output nodes of the ANN correspond to the

states of the FSM, and the input nodes correspond to all
the possible variables used in the FSM as well as the
previous values of the output nodes. An FSM can be
converted into an equivalent ANN in five steps (Figure 1
depicts an example of this process). Steps I through 4
convert the FSM to a set of rules and instantiate the
proper inputs and outputs so that the ANN can implement
the same state transitions as the FSM; step 5 translates the
rules into their corresponding ANN structure.

1. Extract a list of rules fron1 the FSM by traversing
over every transition. At each transition, a
conditional determines whether the transition should
be taken or not; this conditional becomes the left
hand side of the rule. Panel 1 in Figure l shows the
list of rules generated fron1 the complex FSM.

2. Create a network with the appropriate number of
inputs and outputs. The nurnber of output nodes is
equivalent to the nun1ber of states in the FSM. The
number of input nodes is equal to the sum of the

number of inputs available, the number of states in
the FSM, and one for the bias. Assign every node in
the network with a number designating its node id.

3. Take the list of inputs and states and match them
to the corresponding nodes in the network created in
step 2. In panel 3, the states used as inputs are
marked with an apostrophe, indicating that these
inputs represent the previous value of the output
node with the same name.

4. Go through the rules generated in step 1 and
replace the names of all inputs with the appropriate
node using the table generated in step 3. This step
makes it easier to modify the network later.

5. Add the rules to the neural network one at a time.
In this step, each of the five conditionals is converted
into an appropriate ANN structure specific to that
conditional.

Step 5 is a modified version of KBANN. Recall that
each of the five conditionals is converted into a different

[ifHANDVALUE<= .5333 and HANDVALUE>= .4and DEALERSUP<= .5454 and HIT'> 0.5 then [output STAND 1.0))
{ if HANDY ALUE >= .5666 and HIT' > 0.5 then {output STAND 1.0))

Panel 1: Conditionals are converted into rules. The general rule is:
{if CONDITIONAL and CURRENT_STATE' > 0.5) then {output NEXT_STATE I.OJ

INPUTS
1-HANDVALUE
2-HASACES
3 - DEALERSUP
4-HIT'
5-STAND'
6-BIAS

OUTPUTS
7-HIT
8-STAND

Panel 2: Construct a NN. The number of output nodes is the

number of states. The number of input nodes is sum of the
number of inputs, states and one for the bias.

Panel 3: Gather a list of all the inputs and the states and

assign them to the appropriate node ids.

{ if 1 <= .5333 and
1 >= .4 and
3 <= .5454 and
4 > 0.5 then {output 8 1.0 } }

{ if 1 >= .5666 and
4 > 0.5 then {output 8 1.0} }

Panel 4: The input and state names from the set of
rules in panel 1 are replaced with the corresponding
node IDs.

OUTPUTS

HIDDEN
LAYER

-27.8

INPUTS

Panel 5: Converting the rules to the NN. Connections with 0 weight not
shown.

Figure 1. The KBvNEAT algorithm demonstrated using the complex FSM from Figure 2b.

-25.5

network substructure. While in KBANN the only
conditionals are boolean operators such as AND, KB
NEAT also supports conditionals that compare floating
point numbers. In steps 1 through 4, the FSM was
converted into a set of conditionals, all of which must
evaluate to true if the specified state transition is to occur
(Figure 1, panel 1 shows the general form of a state
transition rule, and Panel 4 gives a specific example.). For
each conditional in the set, a hidden node is created in the
network. The input for the hidden node includes one link
to a node representing the variable and a bias representing
the constant used for comparison.

For a greater-than or greater-than-equal-to
comparison, the link's weight is positive 50 and the bias is
set to- 50c - e , where c is the constant in the
conditional and E is a small offset. Less-than and less
than-equal-to are similarly converted except with a
negative weight and a positive bias.

The second layer of hidden nodes represent
conjunctions (i.e. using AND) of the conditionals in each
rule. For conjunctive rules, the weights are50/ n, where
n is the number of inputs to the hidden node. The bias is
then set to 25~n -50. For disjunctive rules, the weights
are assigned 50 In as well, but the bias is always set
to-25/n. Following this procedure, the ANN perfectly
replicates the policy of the FSM.

Finally, a method is needed to implement FSM state
transitions using the ANN. In a FSM, if any of the
transitions from the current state are activated a transition
to another state occurs. To detennine the next state of the
ANN, the output node with the highest activation is
chosen as the next state if the activation value exceeds a
threshold (0.6 in this paper). If no output nodes are above
the threshold, the ANN does not transition and hence
remains in the same state.

The ANN created fron1 the FSM can be improved

Q Conditional

D Input a State

(a) Simple FSM

HANDVALUE

I STAND I

through further evolution in NEAT. A population of such
networks is created by perturbing these networks slightly
and this population will serve as a starting point fo;
evolution. The test domain of blackjack is described next.

4 The Blackjack Domain

Blackjack was chosen as the domain for testing KB
NEAT because it is easy to design FSMs with different
skill levels to play the game.

Blackjack is a simple card game where players try to
obtam a hand value as close as possible to 21 but still
below it, while beating the dealer's hand value. In the
simulation, a single deck is shuffled before every game.
Each agent is dealt two cards and the dealer is dealt two
cards, but the agent can only see the value of one of those
cards. The agent must decide whether to hit or stand based
upon the cards they have and the card the dealer has
facing up. If the agent chooses to hit, a card is dealt to it
and the decision process starts over again. If the cards
total over 21 (with face cards being valued at 10 and an
ace counting as 11 or 1), the agent has busted and loses
the hand. After all the agents have either busted or stood,
the dealer hits until it busts or has a hand totaling 17 or
higher.

In the simulation, the dealer is controlled by the simple
FSM shown in Figure 2a. This same strategy, called the
simple FSM, was also used as one of the prescripted
behaviors. The other prescripted behavior is shown in
Figure 2b. This FSM, called the complex FSM, represents
a previously known effective strategy (Smith 2004). Since
it is known that the complex FSM can perform better than
the simple FSM, an important question is whether
evolution can improve the simple FSM to a similar level
of pla~. Second, if evolution starts with the complex
FSM, it should maintain a similar level of play and not get

(b) Complex FSM

DEALERS UP

HANDVALUE

Figure 2. _(a) The simple FSM has one conditional(>= 17) that takes the player's hand value as an input. This FSM will stand
when 17 is reached. _(b) The Complex FSM uses 5 conditionals (in one case joining 3 different conditionals together using

two ANDs) to descnbe a more successful way of playing blackjack.

weaker over time. The experin1ents were designed to
answer these two questions.

5 Experiments

Three experiments were perforn1ed. The first one was
designed to verify that the conversion from FSM to an
ANN is indeed correct, i.e. that the ANN duplicates the
behavior of the FSM. The second one answers the
question: Is KB-NEAT able to improve upon the
performance described in a si1nple FSM? The third
experiment in turn addresses the question: If the FSM
solution is nearly optimal, does further NEAT evolution
hurt performance?

In the first experiment, a single ANN formed with KB
NEAT was placed into a game against the FSM from
which it was derived: The sin1ple FSM in the first part of
the experiment, and the con1plex FSM in the second. The
two agents then played one million games. The ANN and
FSM were dealt exactly the same cards in each hand,
causing them to make decisions based on the same
circumstances. The number of hands each agent won and
the way each hand was played was compared over the
simulation.

In the second experin1ent, a population of ANNs was
formed from an ANN derived from the simple FSM, and
in the third, from the con1plex FSM. In both experiments,
an initial population of 100 networks consisted of the
converted network and 99 versions of it with weights
uniformly perturbed with a mutation parameter of 0.1.
Because the converted network remained in the
population, the best network in the population cannot be
worse than the original FSM. Each network was
evaluated on its perforn1ance over 5000 games of
blackjack. Fitness was detennined as the square of the

0.43

0.425

•
"' 0.42 • E • ~ • 0.
0 0.415
§

0.41

0.405

percentage of games won. The best networks at the end of
evolution were then tested in one million games, and their
performance compared to that of the originals FSM. The
performance was averaged over 20 runs.

6 Results

In the first experiment, the NN and the FSM played every
hand exactly the same way with both conversions (simple
and complex). Over 1 million games both agents had the
same number of wins and played each hand the same.

The second experiment, shown in figure 3,
demonstrated that it is possible for NEAT to evolve
networks that improve upon the original converted ANN.
Using KB-NEAT, the ANNs derived from the simple
FSM improved 2 percentage points over 500 generations.
The difference is significant well above the 95%
confidence level. In fact, the evolved ANNs were very
close to the performance of the complex FSM.

The ANNs derived from the complex FSM maintained
a high level of play throughout the run, declining only
slightly in their performance (just below the 95%
confidence range). The difference is due to noisy fitness
estimation. With only 5000 hands, occasionally a network
appears to be playing better than it actually is, and is
selected as a champion. Had the number of hands been
increased from 5000, the performance would have been
closer to the original FSM, and possibly surpassed it. In
fact, in five of the 20 cases, performance remained the
same, and in four other cases, evolution improved slightly
upon the performance of the complex FSM. Of course,
more accurate evaluations take more time, so there is a
tradeoff on how quickly the adaptation has to happen and
how accurate it needs to be.

In sum, the performance improved significantly over

0 100 200 300 400 500

Generation

Figure 3. This graph shows winning percentage improvements over each generation. The FSM and SFSM lines are both flat, as they do
not evolve behaviors. The FSM to NEAT line rises dramatically above the FSM it was based upon, well above the 95% confidence
bars. However, the SFSM to NEAT line dips below the SFSM line just slightly. The corresponding network is shown in figure 1.

the simple FSM and ren1ained strong even when evolving
from the complex FSM, demonstrating that improving on
prescripted behaviors using KBANN is both possible and
safe.

7 Current Work

The results of the blackjack experiment demonstrate a
potential for KB-NEAT to be used in more complex real
time simulations. The NERO project has created a
framework to easily integrate and test KB-NEAT in a
robust video game environn1ent. Currently the entities
controlled in NERO are trained off a population
containing ANNs with randon1ly perturbed weights. By
integrating KB-NEAT into NERO, training should
become more focused as entities will be able to begin with
a basic knowledge of the world around them. Players will
not have to wait for the population to learn basic
maneuvers such as approaching an enemy or shooting,
before carrying on to more co1nplex tasks such as obstacle
navigation or fighting tactics.

Following a successful integration into NERO,
experiments will be set up to further test the abilities of
KB-NEAT. The first experin1ent to be conducted will use
evolution to develop a tea111 of ene1nies pitted against a
single opponent. The details of the experiment are as
follows. A large nu1nber of enemies will spawn in random
locations around a simple environn1ent. In addition to
these enemies, a powerful single agent, hereafter known as
the hero, will be spawned in a randomly location. The
enemies and the hero will be controlled by an ANN
derived from a FSM using KB-NEAT. Tlie agents are set
loose and once either the hero kills all the enemies, the
hero is killed or a time limit is exceeded the simulation
ends. Following the tennination of the simulation, the
enemy brains are evaluated and a new population is
created for the next round. The hero brain is evaluated and
another brain extracted fron1 the hero population. Over the
course of many gan1es the hero and the enemies will co
evolve to better fight each other.

With the usage of KB-NEAT, a FSM must be created to
describe the actions of the first enemies and hero. The
complexity of the initial FSMs will be nluch greater than
that of the FSM nlachines used to describe Blackjack
Strategy. At the mo1nent the states an agent may exhibit
are move forward, move backward, tum left, turn right
and fire. Each agent also has access to more than twenty
sensors comprising of data relating to enemy proximity,
friend proximity, and obstacle obstruction. From initial
estimates the FSMs for these agents will consist of more
than fifteen transitions between the five states. This is
much more complex than two n1achines describing
blackjack strategy which consist of a combined seven
conditionals and three state transitions.

This richer domain closely resembles current video
game environments unlike the Blackjack simulation
presented in this paper. This type of system where
enemies are encountered in groups at a time is present in

many current video games. By conducting experiments in
this domain, the results will be more convincing and
appealing to video game developers.

8 Discussion and Future Work

KB-NEAT allows game developers to easily convert their
FSM-driven agents to adaptable agents controlled by
ANNs. The method therefore allows both to control what
kind of behavior is likely to emerge and to allow better
behaviors to evolve. In games with a lot of human
interaction with NPCs, such as a Massive Multiplayer
Online Role Playing Game (MMORPG), the ability for
NPCs to slowly adapt to humans would keep the game
interesting and challenging over the course of months and
even years. Moreover, the ability to start from a
prescripted behavior means that games will function from
the beginning as the developer intended.

One immediate direction of future work is to try to
counteract the effect of noisy evaluations by continually
inserting the original converted FSM into the population
as the game progresses. That way, the original
performance level would be guaranteed to remain in the
population throughout the run.

The method could also be extended so that it can learn
new behavioral states and inputs that were originally not
included in the FSM. For example, the blackjack domain
could be further expanded to allow for more complex
playing styles. Adding the ability to split, double down,
and get insurance would greatly expand the ways to
improve upon the FSM strategy. With an expanded game,
even without knowledge of splitting or doubling down in
the FSM, the knowledge-based ANN should be able to
adapt to use these new actions to its advantage. How to
best balance the initial prescriptions and future learning
ability is an interesting direction for future work.

9 Conclusion

KB-NEAT allows game developers to use machine
learning to control NPCs with minimal change to current
practice. By converting prescripted behaviors into
equivalent ANNs, developers maintain control of NPC
behavior. During the course of the game, the agents can
further adapt to the world, while still being controlled by
the high-level behavioral structures designed by the
developers. Using KB-NEAT, it is possible to
significantly improve performance over the initial FSM,
and even with a highly optimized initial state, the
performance remains strong. KB-NEAT can therefore
serve as a vehicle for bringing sophisticated machine
learning into the practice of game development.

10 Acknowledgements

This research was supported in part by DARPA under
NRL Grant NOOl 73041G025 and by the Digital Media

Collaboratory. Special thanks for Chern Han Yong, who
developed the code to add rules to NEAT networks. Also,
thanks for Kenneth Stanley for developing the rtNEAT
algorithm and helping me through every step of this
project.

Reference

Agogino, A., Stanley, K., and Miikkulainen, R. 2000. Real-time
interactive neuro-evolution. Neural Processing Letters, 11:29-38.

Bryant, B. D., and Miikkulainen, R. 2003. Neuroevolution for
adaptive teams. In Proceeedings of 1he 2003 Congress on Evolutionary

Computation (CEC 2003), vol. 3, 2194-2201. Piscataway, NJ: IEEE.

Carlisle, P., and Rabin S. ed. 2002. Designing a GUI Tool to Aid in
the Development of Finite-State Machines. Al Game Programming

Wisdom. Hingham, Mass.: Charles River Media, INC ..

Floriano, D., and Mondada, F. 1994. Automatic creation of an
autonomous agent: Genetic evolution of a neural-network driven robot.
In From Animals to Animals 3: Proceedings of the Third International

Conference on Simulation of Adaptive Behavior.

Fogel, D. B. 2001. Blondie24: Playing at the Edge of Al. San

Francisco, CA: Morgan Kaufmann.

Goldberg, D.E., and Richardson, J. 1987. Genetic algorithms with

sharing for multimodal function optimization. In Grefenstette, J.J., ed:
Proceedings of the 2"d Intl. Conf on Genetic Algorithms, San

Francisco, CA: Morgan Kaufmann 148-154.

Gomez, F., and Miikkulainen, R. 2003. Active guidance for a finless
rocket using neuroevolution. In Proceeedings of the Genetic and

Evolutionary Computation Conference (GECC0-2003). San Francisco,
CA: Morgan Kaufmann.

Gruau, F., Whitley, and D., Pyeatt, L. 1996. A comparison between

cellular encoding and direct encoding for genetic neural networks. In
Koza, J.R., Goldberg, D.E., Fogel, D.B., Riolo, R.L., eds.: Genetic

Programming 1996: Proceedings of the First Annual Conference,

Cambridge, MA, MIT Press 81-89.

Maclin, R. 1995. Leaming fro1n Instruction and Experience:
Methods for Incorporating Procedural Domain Theories into
Knowledge-Based Neural Networks. PhD thesis, Department of
Computer Sciences, University of Wisconsin-Madison.

Moriarty, D. E., and Miikkulainen, R. 1996. Evolving obstacle

avoidance behavior in a robot arm. In Maes, P., Mataric, M. J., Meyer,
J.-A., Pollack, J., and Wilson, S.W., editors, From Animals to Animats

4: Proceedings of the Founh I1uernational Conference on Simulation

of Adaptive Behavior, 468-475. Cambridge, MA: MIT Press.

Nolfi, S., Elman, J. L., and Parisi, D. 1994. Leaming and evolution

in neural networks. Adaptive Behavior, 2:5-28.

Orkin, J., and Rabin, S. ed. 2002. 12 Tips from the Trenches. AI

Game Programming Wisdom. Hingham, Mass.: Charles River Media,
INC ..

Radcliffe, N. J. 1993. Genetic set recombination and its application
to neural network topology optimization. Neural computing and

applications, 1(1):67-90.

Smith, K. R., 2004. website: Blackjack Basic Strategy Chart.
http://www.blackjackinfo.com/cgi-bin/bjbse.cgi. January 2005.

Stanley, K.0., and Miikkulainen, R. 2002a. Evolving neural
networks through augmenting topologies. Evolutionary Computation

W,99-127.

Stanley, K.O., and Miikkulainen, R. 2002b. Efficent reinforcement

learning through evolving neural network topologies. In Proceedings of

the Genetic and Evolutionary Computation Conf (GECC0-2002), San

Francisco, CA, Morgan Kaufmann.

Stanley, K.O., and Miikkulainen, R. 2004. Competitive coevolution
through evolutionary complexification. Journal of Artificial Intelligence

Research, 21:63-100.

Stanley, K.0., Bryant, B. D., and Miikkulainen, R. 2005. The NERO
Real-Time Video Grune. IEEE Transactions on Evolutionary

Computation Special Issue on Evolutionary Computation and Games.

Towell, G. G., and Shavlik, J. W. 1994. Knowledge based artificial
neural networks. Artificial Intelligence 70: 119-165.

Whitley, D., Dominic, S., Das, R., and Anderson, C. W. 1993.
Genetic reinforcement learning for neurocontrol problems. Machine

Learning, 13:259-284.

Yao, X. 1999. Evolving artificial neural networks. Proceedings of

theIEEE87(9): 1423-1447.

