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Abstract 
Machine learning can increase the appeal of video games 
by allowing agents to adapt in response to the player. 
Therefore, methods need to be developed specifically for 
video games that adapt agent behaviors in real-time. For 
example, the real-time NeuroEvolution of Augmenting 
Topologies (rtNEAT) method evolves artificial neural 
networks (ANNs) fast enough so that improvements can be 
perceived by the player. However, video game developers 
are accustomed to relying on prescripted behaviors, 
frequently encoded in finite state machines (FSMs). It is 
difficult to incorporate agents that develop behaviors on 
their own into the current practice. Such learned behaviors 
might be undesirable, violating the designer's intentions. 
This problem could be avoided if game designers could 
specify an initial behavior using an FSM and allow 
adaptation. This paper describes such a method, 
Knowledge-Based NEAT (KB-NEAT), which converts a 
FSM into an ANN using a KBANN-based technique. In 
this paper, KB-NEAT is tested in the game of blackjack, 
demonstrating that the FSM successfully converts into an 
ANN with identical behavior and further improves its 
perfonnance during the game using NEAT. KB-NEAT 
can help the game industry utilize machine learning 
methods with minimal change to current practices. 

1 Introduction 

In many video games, non-player characters (NPCs) are 
driven by prescripted behaviors, often encoded as finite­
state machines (FSMs) (Orkin 2002). Over the course of a 
game, players begin to recognize patterns these NPCs 
exhibit leading the game lo beco1ne predictable and dull. 
Because they are controlled by scripts and FSMs, the 
NPCs have no way of adapting to these manipulations, 
and the game loses its appeal. In order to keep the game 
interesting and challenging, it is therefore important to 
develop methods that allow the NPCs to adapt in real­
time. 

Research on the NERO video game (NeuroEvolving 
Robotic Operatives) has achieved early success in 
achieving this goal (Stanley, Bryant, and Miikkulainen 
2005). In NERO, NPCs adapt in real time to the player 
using the real-time NeuroEvolution of Augmenting 
Topologies (rtNEAT) method, which evolves increasingly 
complex artificial neural network (ANN) controllers. 
Thus, technology exists in NERO to allow real-time 
adaptation, but another issue has einerged. Adaptation 

from scratch can lead to a variety of behaviors, which is 
exactly what makes the game interesting, but these 
behaviors are no longer completely under the developer's 
control. There are no guarantees that a given level of 
performance is achieved and maintained, and unwanted 
side effects may emerge as well. 

Instead of evolving the behaviors from scratch, it would 
therefore be useful to start the evolution from a set of 
scripted behaviors that establish the core performance, 
and let evolution improve them and generate variety based 
on them. This paper describes such a method, Knowledge 
Based NEAT (KB-NEAT), which combines the 
prescripted behaviors with the adaptability of a neural 
network using NEAT. The developers first describe the 
behavior in an FSM, and then convert it into an equivalent 
neural network using the Knowledge Based Artificial 
Neural Networks (KBANN) method (Towell and Shavlik 
1994 ). This network serves as a basis for a population that 
is then further evolved with NEAT over the course of the 
game. In this way, developers can be confident that agents 
interact with the world based on the prescripted behaviors, 
but can also discover new behaviors if they turn out more 
effective during the actual game. 

KB-NEAT is tested in this paper in the gamd of 
blackjack. One simple FSM and one complex FSM «-ere 
hand-designed to play this game. These FSMs were 
converted into a neural network and allowed to adapt over 
a number of games. The results show that (I) KB-NEAT 
can improve the performance of the simple original 
behaviors, and (2) KB-NEAT does not hurt the 
performance if the original behavior is already well 
optimized. KB-NEAT therefore makes it possible to start 
a game with well-understood, prescripted behaviors and 
further improve them through evolution, allowing the 
game industry utilize machine learning with minimal 
change to current practices. 

The next two sections explain NEAT and KB-NEAT. 
Section 4 describes the blackjack domain, and Section 5 
overviews the experiments used to test KB-NEAT. The 
last sections cover the results of the experiments and 
discuss future opportunities. 



2 NeuroEvolution of Augmenting Topologies 
(NEAT) 

In order to allow agents to adapt in a video game, a 
powerful and reliable machine learning method is needed. 
Neuroevolution (NE), i.e. the artificial evolution of neural 
networks, is a promising such technology. In NE, a 
population of ANN controllers is evolved in a survival of 
the fittest competition. Because only the fittest ANNs are 
allowed to reproduce, behaviors gradually improve over 
generations. The method can discover successful 
solutions based on only high-level specifications of 
desired behavior, and through recurrent connections, 
complex behaviors that require n1emory can emerge. 

NE has been successfully used to evolve motor-control 
skills such as those necessary in continuous-state games in 
many challenging non-Markovian domains (Floriano and 
Mondada 1994; Fogel 2001; Gomez and Miikkulainen 
2003; Gruau et al. 1996; Moriarty and Miikkulainen 1996; 
Nolfi et al. 1994; Stanley and Miikkulainen 2004; Whitley 
et al. 1993). Recent NE research has focused on evolving 
higher-level strategies and including real-time adaptation, 
which are needed for both continuous and discrete multi­
agent games (Agogino et al. 2000; Bryant and 
Miikkulainen 2003; Stanley and Miikkulainen 2004). One 
example is the NERO video game (Stanley, Bryant, and 
Miikkulainen 2005), where non-player characters evolve 
complex behaviors as the game is being played. NERO 
demonstrates that the technology can make commercial 
video games more interesting in the future. 

The NERO game is based on the NEAT method of 
neuroevolution (Stanley and Miikkulainen 2002a; Stanley 
and Miikkulainen 2004), which is also used in the 
experiments in this paper. NEAT is well-suited for the 
task of improving upon prescripted behavior because it 
can evolve arbitrary network topologies. Methods such as 
KBANN that convert rules into a corresponding ANN 
topology can be used to construct a starting point for 
further evolution with NEAT. 

NEAT is based on three key ideas. First, evolving 
network structure requires a flexible genetic encoding. 
Each genome in NEAT includes a list of connection 
genes, each of which refers to two node genes being 
connected. Each connection gene specifies the in-node, 
the out-node, the weight of the connection, whether or not 
the connection gene is expressed (an enable bit), and an 
innovation number, which allows finding corresponding 
genes during crossover. Mutation can change both 
connection weights and network structures. Connection 
weights mutate as in any NE syste111, with each connection 
either perturbed or not. Structural nlutations, which allow 
complexity to increase, either add a new connection or a 
new node to the network. Through mutation, genomes of 
varying sizes are created, so1netimes with completely 
different connections specified at the same positions. 

Each unique gene in the population is assigned a unique 
innovation number, and the numbers are inherited during 
crossover. Innovation numbers allow NEAT to perform 
crossover without expensive topological analysis. 
Genomes of different organizations and sizes stay 
compatible throughout evolution, and the problem of 
matching different topologies (Radcliffe 1993) is 
essentially avoided. 

Second, NEAT speciates the population, so that 
individuals compete primarily within their own niches 
instead of with the population at large. This way, 
topological innovations are protected and have time to 
optimize their structure before they have to compete with 
other niches in the population. The reproduction 
mechanism for NEAT is explicit fitness sharing (Goldberg 
and Richardson 1987), where organisms in the same 
species must share the fitness of their niche, preventing 
any one species from taking over the population. 

Third, unlike other systems that evolve network 
topologies and weights (Gruau et al. 1996; Yao 1999) 
NEAT begins with a uniform population of simple 
networks with no hidden nodes. New structure is 
introduced incrementally as structural mutations occur, 
and only those structures survive that are found to be 
useful through fitness evaluations. This way, NEAT 
searches through a minimal number of weight dimensions 
and finds the appropriate complexity level for the 
problem. 

In this paper, FSM blackjack players are converted into 
ANNs that NEAT further evolves to improve their 
performance. The next section describes the FSM to 
ANN conversion procedure. 

3KB-NEAT 

The FSMs are converted to neural networks that are 
compatible with NEAT using a modified version of 
KBANN (Towell and Shavlik 1994; Maclin 1995). 
Instead of boolean inputs of the original KBANN (and its 
FSM version fsKBANN), the modified version processes 
continuously-valued inputs. Such inputs are necessary 
because video game states are often described with 
continuous variables, and also because the FSM 
conditionals can be represented more accurately. 

Each FSM contains a list of inputs, outputs, 
conditionals and states (Carlisle 2002). Each state 
represents a behavioral action to be performed by agents 
in the game. Conditionals are used to determine 
transitions from one state to another. KB-NEAT currently 
supports 5 different conditional types: (l) less-than, (2) 
less-than-equal-to, (3) greater-than, (4) greater-than-equal­
to, and (5) AND. These conditionals receive input 
variable values and constant floating-point values as their 
input and evaluate to true or false. Inputs are normalized 
floating-point values between a minimum and a maximum 
that describe the state of the game. 

The FSM can be expressed as a neural network 
structure: The output nodes of the ANN correspond to the 



states of the FSM, and the input nodes correspond to all 
the possible variables used in the FSM as well as the 
previous values of the output nodes. An FSM can be 
converted into an equivalent ANN in five steps (Figure 1 
depicts an example of this process). Steps I through 4 
convert the FSM to a set of rules and instantiate the 
proper inputs and outputs so that the ANN can implement 
the same state transitions as the FSM; step 5 translates the 
rules into their corresponding ANN structure. 

1. Extract a list of rules fron1 the FSM by traversing 
over every transition. At each transition, a 
conditional determines whether the transition should 
be taken or not; this conditional becomes the left­
hand side of the rule. Panel 1 in Figure l shows the 
list of rules generated fron1 the complex FSM. 

2. Create a network with the appropriate number of 
inputs and outputs. The nurnber of output nodes is 
equivalent to the nun1ber of states in the FSM. The 
number of input nodes is equal to the sum of the 

number of inputs available, the number of states in 
the FSM, and one for the bias. Assign every node in 
the network with a number designating its node id. 

3. Take the list of inputs and states and match them 
to the corresponding nodes in the network created in 
step 2. In panel 3, the states used as inputs are 
marked with an apostrophe, indicating that these 
inputs represent the previous value of the output 
node with the same name. 

4. Go through the rules generated in step 1 and 
replace the names of all inputs with the appropriate 
node using the table generated in step 3. This step 
makes it easier to modify the network later. 

5. Add the rules to the neural network one at a time. 
In this step, each of the five conditionals is converted 
into an appropriate ANN structure specific to that 
conditional. 

Step 5 is a modified version of KBANN. Recall that 
each of the five conditionals is converted into a different 

[ ifHANDVALUE<= .5333 and HANDVALUE>= .4and DEALERSUP<= .5454 and HIT'> 0.5 then [output STAND 1.0) ) 
{ if HANDY ALUE >= .5666 and HIT' > 0.5 then {output STAND 1.0 ) ) 

Panel 1: Conditionals are converted into rules. The general rule is: 
{if CONDITIONAL and CURRENT_STATE' > 0.5 ) then {output NEXT_STATE I.OJ 

INPUTS 
1-HANDVALUE 
2-HASACES 
3 - DEALERSUP 
4-HIT' 
5-STAND' 
6-BIAS 

OUTPUTS 
7-HIT 
8-STAND 

Panel 2: Construct a NN. The number of output nodes is the 

number of states. The number of input nodes is sum of the 
number of inputs, states and one for the bias. 

Panel 3: Gather a list of all the inputs and the states and 

assign them to the appropriate node ids. 

{ if 1 <= .5333 and 
1 >= .4 and 
3 <= .5454 and 
4 > 0.5 then {output 8 1.0 } } 

{ if 1 >= .5666 and 
4 > 0.5 then {output 8 1.0} } 

Panel 4: The input and state names from the set of 
rules in panel 1 are replaced with the corresponding 
node IDs. 

OUTPUTS 

HIDDEN 
LAYER 

-27.8 

INPUTS 

Panel 5: Converting the rules to the NN. Connections with 0 weight not 
shown. 

Figure 1. The KBvNEAT algorithm demonstrated using the complex FSM from Figure 2b. 

-25.5 



network substructure. While in KBANN the only 
conditionals are boolean operators such as AND, KB­
NEAT also supports conditionals that compare floating 
point numbers. In steps 1 through 4, the FSM was 
converted into a set of conditionals, all of which must 
evaluate to true if the specified state transition is to occur 
(Figure 1, panel 1 shows the general form of a state 
transition rule, and Panel 4 gives a specific example.). For 
each conditional in the set, a hidden node is created in the 
network. The input for the hidden node includes one link 
to a node representing the variable and a bias representing 
the constant used for comparison. 

For a greater-than or greater-than-equal-to 
comparison, the link's weight is positive 50 and the bias is 
set to- 50c - e , where c is the constant in the 
conditional and E is a small offset. Less-than and less­
than-equal-to are similarly converted except with a 
negative weight and a positive bias. 

The second layer of hidden nodes represent 
conjunctions (i.e. using AND) of the conditionals in each 
rule. For conjunctive rules, the weights are50/ n, where 
n is the number of inputs to the hidden node. The bias is 
then set to 25~n -50. For disjunctive rules, the weights 
are assigned 50 In as well, but the bias is always set 
to-25/n. Following this procedure, the ANN perfectly 
replicates the policy of the FSM. 

Finally, a method is needed to implement FSM state 
transitions using the ANN. In a FSM, if any of the 
transitions from the current state are activated a transition 
to another state occurs. To detennine the next state of the 
ANN, the output node with the highest activation is 
chosen as the next state if the activation value exceeds a 
threshold (0.6 in this paper). If no output nodes are above 
the threshold, the ANN does not transition and hence 
remains in the same state. 

The ANN created fron1 the FSM can be improved 

Q Conditional 

D Input a State 

(a) Simple FSM 

HANDVALUE 

I STAND I 

through further evolution in NEAT. A population of such 
networks is created by perturbing these networks slightly 
and this population will serve as a starting point fo; 
evolution. The test domain of blackjack is described next. 

4 The Blackjack Domain 

Blackjack was chosen as the domain for testing KB­
NEAT because it is easy to design FSMs with different 
skill levels to play the game. 

Blackjack is a simple card game where players try to 
obtam a hand value as close as possible to 21 but still 
below it, while beating the dealer's hand value. In the 
simulation, a single deck is shuffled before every game. 
Each agent is dealt two cards and the dealer is dealt two 
cards, but the agent can only see the value of one of those 
cards. The agent must decide whether to hit or stand based 
upon the cards they have and the card the dealer has 
facing up. If the agent chooses to hit, a card is dealt to it 
and the decision process starts over again. If the cards 
total over 21 (with face cards being valued at 10 and an 
ace counting as 11 or 1), the agent has busted and loses 
the hand. After all the agents have either busted or stood, 
the dealer hits until it busts or has a hand totaling 17 or 
higher. 

In the simulation, the dealer is controlled by the simple 
FSM shown in Figure 2a. This same strategy, called the 
simple FSM, was also used as one of the prescripted 
behaviors. The other prescripted behavior is shown in 
Figure 2b. This FSM, called the complex FSM, represents 
a previously known effective strategy (Smith 2004). Since 
it is known that the complex FSM can perform better than 
the simple FSM, an important question is whether 
evolution can improve the simple FSM to a similar level 
of pla~. Second, if evolution starts with the complex 
FSM, it should maintain a similar level of play and not get 

(b) Complex FSM 

DEALERS UP 

HANDVALUE 

Figure 2. _(a) The simple FSM has one conditional(>= 17) that takes the player's hand value as an input. This FSM will stand 
when 17 is reached. _(b) The Complex FSM uses 5 conditionals (in one case joining 3 different conditionals together using 

two ANDs) to descnbe a more successful way of playing blackjack. 



weaker over time. The experin1ents were designed to 
answer these two questions. 

5 Experiments 

Three experiments were perforn1ed. The first one was 
designed to verify that the conversion from FSM to an 
ANN is indeed correct, i.e. that the ANN duplicates the 
behavior of the FSM. The second one answers the 
question: Is KB-NEAT able to improve upon the 
performance described in a si1nple FSM? The third 
experiment in turn addresses the question: If the FSM 
solution is nearly optimal, does further NEAT evolution 
hurt performance? 

In the first experiment, a single ANN formed with KB­
NEAT was placed into a game against the FSM from 
which it was derived: The sin1ple FSM in the first part of 
the experiment, and the con1plex FSM in the second. The 
two agents then played one million games. The ANN and 
FSM were dealt exactly the same cards in each hand, 
causing them to make decisions based on the same 
circumstances. The number of hands each agent won and 
the way each hand was played was compared over the 
simulation. 

In the second experin1ent, a population of ANNs was 
formed from an ANN derived from the simple FSM, and 
in the third, from the con1plex FSM. In both experiments, 
an initial population of 100 networks consisted of the 
converted network and 99 versions of it with weights 
uniformly perturbed with a mutation parameter of 0.1. 
Because the converted network remained in the 
population, the best network in the population cannot be 
worse than the original FSM. Each network was 
evaluated on its perforn1ance over 5000 games of 
blackjack. Fitness was detennined as the square of the 
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percentage of games won. The best networks at the end of 
evolution were then tested in one million games, and their 
performance compared to that of the originals FSM. The 
performance was averaged over 20 runs. 

6 Results 

In the first experiment, the NN and the FSM played every 
hand exactly the same way with both conversions (simple 
and complex). Over 1 million games both agents had the 
same number of wins and played each hand the same. 

The second experiment, shown in figure 3, 
demonstrated that it is possible for NEAT to evolve 
networks that improve upon the original converted ANN. 
Using KB-NEAT, the ANNs derived from the simple 
FSM improved 2 percentage points over 500 generations. 
The difference is significant well above the 95% 
confidence level. In fact, the evolved ANNs were very 
close to the performance of the complex FSM. 

The ANNs derived from the complex FSM maintained 
a high level of play throughout the run, declining only 
slightly in their performance (just below the 95% 
confidence range). The difference is due to noisy fitness 
estimation. With only 5000 hands, occasionally a network 
appears to be playing better than it actually is, and is 
selected as a champion. Had the number of hands been 
increased from 5000, the performance would have been 
closer to the original FSM, and possibly surpassed it. In 
fact, in five of the 20 cases, performance remained the 
same, and in four other cases, evolution improved slightly 
upon the performance of the complex FSM. Of course, 
more accurate evaluations take more time, so there is a 
tradeoff on how quickly the adaptation has to happen and 
how accurate it needs to be. 

In sum, the performance improved significantly over 

0 100 200 300 400 500 

Generation 

Figure 3. This graph shows winning percentage improvements over each generation. The FSM and SFSM lines are both flat, as they do 
not evolve behaviors. The FSM to NEAT line rises dramatically above the FSM it was based upon, well above the 95% confidence 
bars. However, the SFSM to NEAT line dips below the SFSM line just slightly. The corresponding network is shown in figure 1. 



the simple FSM and ren1ained strong even when evolving 
from the complex FSM, demonstrating that improving on 
prescripted behaviors using KBANN is both possible and 
safe. 

7 Current Work 

The results of the blackjack experiment demonstrate a 
potential for KB-NEAT to be used in more complex real­
time simulations. The NERO project has created a 
framework to easily integrate and test KB-NEAT in a 
robust video game environn1ent. Currently the entities 
controlled in NERO are trained off a population 
containing ANNs with randon1ly perturbed weights. By 
integrating KB-NEAT into NERO, training should 
become more focused as entities will be able to begin with 
a basic knowledge of the world around them. Players will 
not have to wait for the population to learn basic 
maneuvers such as approaching an enemy or shooting, 
before carrying on to more co1nplex tasks such as obstacle 
navigation or fighting tactics. 

Following a successful integration into NERO, 
experiments will be set up to further test the abilities of 
KB-NEAT. The first experin1ent to be conducted will use 
evolution to develop a tea111 of ene1nies pitted against a 
single opponent. The details of the experiment are as 
follows. A large nu1nber of enemies will spawn in random 
locations around a simple environn1ent. In addition to 
these enemies, a powerful single agent, hereafter known as 
the hero, will be spawned in a randomly location. The 
enemies and the hero will be controlled by an ANN 
derived from a FSM using KB-NEAT. Tlie agents are set 
loose and once either the hero kills all the enemies, the 
hero is killed or a time limit is exceeded the simulation 
ends. Following the tennination of the simulation, the 
enemy brains are evaluated and a new population is 
created for the next round. The hero brain is evaluated and 
another brain extracted fron1 the hero population. Over the 
course of many gan1es the hero and the enemies will co­
evolve to better fight each other. 

With the usage of KB-NEAT, a FSM must be created to 
describe the actions of the first enemies and hero. The 
complexity of the initial FSMs will be nluch greater than 
that of the FSM nlachines used to describe Blackjack 
Strategy. At the mo1nent the states an agent may exhibit 
are move forward, move backward, tum left, turn right 
and fire. Each agent also has access to more than twenty 
sensors comprising of data relating to enemy proximity, 
friend proximity, and obstacle obstruction. From initial 
estimates the FSMs for these agents will consist of more 
than fifteen transitions between the five states. This is 
much more complex than two n1achines describing 
blackjack strategy which consist of a combined seven 
conditionals and three state transitions. 

This richer domain closely resembles current video 
game environments unlike the Blackjack simulation 
presented in this paper. This type of system where 
enemies are encountered in groups at a time is present in 

many current video games. By conducting experiments in 
this domain, the results will be more convincing and 
appealing to video game developers. 

8 Discussion and Future Work 

KB-NEAT allows game developers to easily convert their 
FSM-driven agents to adaptable agents controlled by 
ANNs. The method therefore allows both to control what 
kind of behavior is likely to emerge and to allow better 
behaviors to evolve. In games with a lot of human 
interaction with NPCs, such as a Massive Multiplayer 
Online Role Playing Game (MMORPG), the ability for 
NPCs to slowly adapt to humans would keep the game 
interesting and challenging over the course of months and 
even years. Moreover, the ability to start from a 
prescripted behavior means that games will function from 
the beginning as the developer intended. 

One immediate direction of future work is to try to 
counteract the effect of noisy evaluations by continually 
inserting the original converted FSM into the population 
as the game progresses. That way, the original 
performance level would be guaranteed to remain in the 
population throughout the run. 

The method could also be extended so that it can learn 
new behavioral states and inputs that were originally not 
included in the FSM. For example, the blackjack domain 
could be further expanded to allow for more complex 
playing styles. Adding the ability to split, double down, 
and get insurance would greatly expand the ways to 
improve upon the FSM strategy. With an expanded game, 
even without knowledge of splitting or doubling down in 
the FSM, the knowledge-based ANN should be able to 
adapt to use these new actions to its advantage. How to 
best balance the initial prescriptions and future learning 
ability is an interesting direction for future work. 

9 Conclusion 

KB-NEAT allows game developers to use machine 
learning to control NPCs with minimal change to current 
practice. By converting prescripted behaviors into 
equivalent ANNs, developers maintain control of NPC 
behavior. During the course of the game, the agents can 
further adapt to the world, while still being controlled by 
the high-level behavioral structures designed by the 
developers. Using KB-NEAT, it is possible to 
significantly improve performance over the initial FSM, 
and even with a highly optimized initial state, the 
performance remains strong. KB-NEAT can therefore 
serve as a vehicle for bringing sophisticated machine 
learning into the practice of game development. 
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