
TacTex09: Champion of the First Trading Agent
Competition on Ad Auctions

Technical Report UT-AI-10-01

David Pardoe, Doran Chakraborty, and Peter Stone
Department of Computer Science
The University of Texas at Austin

{dpardoe, chakrado, pstone}@cs.utexas.edu

1. INTRODUCTION
Sponsored search [4] is one of the most important forms of

Internet advertising available to businesses today. In spon-
sored search, an advertiser pays to have its advertisement
displayed alongside search engine results whenever a user
searches for a specific keyword or set of keywords. An ad-
vertiser can thereby target only those users who might be
interested in the advertiser’s products. Each of the major
search engines (Google, Yahoo, and Microsoft) implements
sponsored search in a slightly different way, but the overall
idea is the same. For each keyword, a keyword auction [5] is
run in which advertisers bid an amount that they are willing
to pay each time their ad is clicked, and the order in which
the ads are displayed is determined by the ranking of the
bids (and possibly other factors).

The Trading Agent Competition Ad Auctions Game (TAC
/AA) [3] was designed to providing a competitive sponsored
search environment in which independently created agents
can be tested against each other over the course of many
simulations. In this report, we describe TacTex, the win-
ning agent in the first (2009) TAC/AA competition. Tac-
Tex operates by estimating the full game state from limited
information, using these estimates to make predictions, and
then optimizing its actions with respect to these predictions.
This report is intended to supplement our conference paper
on TacTex [6] by providing a more thorough description of
the agent. Sections 4 and 5 contain significant added mate-
rial, while Sections 6, 7, and 8 contain some added details.
Algorithms 1 through 11 have been added to summarize cer-
tain parts of the agent described in the text. For discussion
of the competition and experimental results, see the confer-
ence paper.

2. GAME DESCRIPTION
We begin by providing a summary of those parts of the

TAC/AA game that are most important for understanding
the design of TacTex. For full details, see the game specifi-
cation [2].

Overview: In each TAC/AA game, eight autonomous
agents compete as advertisers to see who can make the most
profit from selling a limited range of home entertainment
products over 60 simulated game days, each lasting 10 sec-
onds. Products are classified by manufacturer (flat, pg, and
lioneer) and by component (tv, dvd, and audio) for a total
of nine products. Search engine users, the potential cus-
tomers, submit queries consisting of a manufacturer and a
component, although either or both may be null, i.e., miss-

ing. There are thus 16 total query types, divided into three
focus levels: F0 (the query with both manufacturer and com-
ponent null), F1 (the six queries with one null and one spec-
ified), and F2 (the nine queries with both specified). Each
day, for each of the 16 query types, a keyword auction is
run. For each auction, an advertiser submits i) a (real, non-
negative) bid indicating the amount it is willing to pay per
click, ii) an ad, and iii) a spending limit (optional). Ads
can be either targeted (specifying both a manufacturer and
product) or generic (specifying neither). (The set of 16 (bid,
ad, spending limit) tuples can be said to be an advertiser’s
action space, and Sections 4 through 8 essentially describe
how TacTex maps its observations into this space each day.)
The top five bidders have their ads shown in order, but if an
advertiser hits its spending limit (as a result of having its ad
clicked enough times), its ad is not shown for the rest of the
day, and all advertisers with lower bids have their ads move
up one position. Bids must exceed a small reserve price.

Users: There is a fixed pool of users, each of which re-
mains interested in a specific product throughout the game
and only submits queries corresponding to this product.
However, users cycle through states corresponding to the
focus levels according to a specified transition model. Users
begin in a non-searching (NS) state, and can then transition
through a searching (IS) state (which may submit a query of
any focus level but will not make a purchase) to one of three
buying states (F0, F1, or F2, each of which submits a query
of the corresponding focus level and makes a purchase with
a probability that increases with the focus), and eventually
back to the non-searching state. For each product, the total
number of users in any state can vary widely and rapidly.

Click model: Every searching or buying user submits
one query per day and then proceeds through the resulting
ads in order of advertiser ranking. When an advertiser’s
ad is shown, it is said to receive an impression, but not all
impressions result in clicks. The default user behavior is
as follows. If a user submitting query q reaches the ad of
advertiser a, the probability of a click is ea

q , a hidden param-
eter drawn randomly at the start of each game. If the user
clicks, it will then convert (make a purchase) with a proba-
bility dependent on the user’s focus level. For each conver-
sion, the advertiser receives $10. (This amount is technically
the sales profit before considering advertising costs, but we
will simply refer to it as the agent’s revenue). If the user
does not convert, it proceeds to the next ad with probabil-
ity γq, another randomly drawn, hidden game parameter.
Thus, the higher the position of the ad, the more likely it



Agent actions Results

Advertiser Bid Sq. bid Ad Sp. limit CPC Imps Clicks Convs Impression range Avg pos

MetroClick 0.315 0.109 generic 50.93 0.310 426 164 16 r r 1.000

QuakTAC 0.266 0.107 lioneer:dvd - 0.194 718 156 6 r r 1.593

TacTex 0.235 0.091 generic 0.236 0.201 77 1 0 r r 3.000

UMTac09 0.216 0.078 generic 7.583 0.209 700 36 6 r r 2.719

munsey 0.190 0.075 generic - 0.174 718 16 2 r r 3.675

epflagent 0.214 0.068 generic - 0.184 641 3 0 r r 4.510

AstonTAC 0.158 0.059 generic 500.0 0.133 292 1 0 r r 4.938
Schlemazl 0.062 0.020 flat:dvd 5.617 - 0 0 0 -

Table 1: Results for the query null:dvd from one game day of the 2009 TAC/AA finals

is to be clicked. A number of factors can modify this de-
fault behavior. First, if an advertiser’s ad is targeted, the
click probability is raised or lowered depending on whether
the ad matches the product desired by the user. Second,
each advertiser has a component and manufacturer specialty.
If the product desired by the user matches the component
specialty, the conversion probability is increased, and if it
matches the manufacturer specialty, the advertiser’s revenue
is increased. Finally, the conversion probability decreases if
the advertiser has exceeded its capacity, as described below.

Auctions: Ads are ranked using a generalized second
price auction. Rather than ranking ads solely by bids, the
search engine also considers click probability. If for query
type q an advertiser’s bid is bq and its default click proba-
bility is ea

q , then its squashed bid is defined as (ea
q )χbq, where

χ is a random but known game parameter. Ads are ranked
by squashed bid, and each time an advertiser’s ad is clicked,
it pays the minimum amount it could have bid while still
beating the squashed bid of the advertiser ranked below it.

Capacity: Each advertiser is assigned a capacity c which
serves as a soft constraint on how many products it can sell
(of any type) over a five day period. Whenever an adver-
tiser’s ad is clicked, if the number of products n sold over
five days (including those sold so far on the current day)
exceeds c, then the conversion probability is multiplied by a
distribution constraint equal to 0.995n−c. Note that the dis-
tribution constraint changes during the day as the advertiser
sells more products.

Information: Advertisers must operate in the face of
limited information about customers and competitors. For
each query type, the advertiser receives a daily report stating
how many impressions, clicks, and conversions the advertiser
received and the average cost per click (CPC). The only
other information available is a report on the ad used by
each advertiser and the average position of that ad. An
advertiser that wishes to increase its number of clicks would
therefore have little information about how much it would
cost to increase the position of its ad or how many clicks
it might expect in the new position. Advertisers are also
unaware of the types (specialties and capacities) of other
advertisers.

Example: Table 1 shows the results for the query null:dvd
from a sample game day. The eight advertisers are shown
in order of their squashed bids, which differs from the or-
der of the true bids due to differing ea

q values. The ads and
spending limits (where used) of each agent are also shown.
The results of these actions are shown on the right side of
the table: the cost per click, impressions, clicks, and con-
versions. In addition, the impression range column shows a
graphical representation of the period for which each adver-

tiser’s ad was shown, with the day progressing from left to
right. On this day, 718 users submitted the query null:dvd,
but due to spending limits, only two agents, QuakTAC and
munsey, received the full 718 impressions. TacTex was the
first agent to hit its spending limit (after a single click - this
was a probe, as described later). At that point, all lower
advertisers increased by one position, and since epflagent
reached the fifth position, its ad began to be shown. Hence,
the impression range column shows epflagent starting where
TacTex stopped. Although Schlemazl reaches the fifth po-
sition at the end of the day, its ad is not shown because its
bid is below the reserve. Finally, the average position for
each advertiser is shown. Note that the average positions
are not in the same order as the squashed bids, and that the
average is only for the period in which the ad was shown
(thus never above 5). From this table, the only information
available to TacTex was its own row (except for the squashed
bid) and the ad and average position columns. Much of Tac-
Tex’s computational effort is devoted to estimating the rest
of this information so that its decisions can be based on as
much information as possible.

3. TACTEX OVERVIEW
At a high level, TacTex operates by making predictions

or estimates concerning various factors (such as unknown
game parameters, user populations, and competitor bids)
and then by finding the optimal actions given this informa-
tion. These tasks are divided among a number of modules
that we describe in detail in the following sections. Here,
we give an overview of these modules. Figure 1 depicts the
relationship between the modules, including the inputs and
outputs of each.

At the start of each new day, the game server sends Tac-
Tex a report on the results of the previous day. The first
module to be called is the Position Analyzer, a preprocessor
that converts some of this information into a more useful
format. The goal of the Position Analyzer is essentially to
reconstruct the impression range column of Table 1 for each
query type.

TacTex then performs all necessary prediction and esti-
mation using three modules. The User Model uses the total
number of queries for each query type to estimate the com-
position of each of the nine user populations. From these
estimates, predictions about future user populations can be
made. The Advertiser Model takes information relating to
the actions of other advertisers and predicts the actions these
advertisers will take in the future. The Parameter Model
maintains estimates of unknown game parameters by finding
those parameters that best fit the known auction outcomes.

Finally, TacTex must use these predictions and estimates



−predicted users in each state−total impressions (Q)

−bid ranks (AQ)

−ads (AQ)

−cost per click (TQ)

−clicks (TQ)

−impression ranges (AQ)Analyzer

Position

Game Server

Prediction
Estimation and

Model
Parameter

Model
Advertiser

Model
User

Other advertisers

−predicted ads (AQ)

−predicted impressions (AQ)

−predicted bids (AQ)

−conversions (TQ)

−parameter estimates (Q)

− TacTex’s daily bids, ads, and spending limits for all queries

−avg. positions (AQ)

−impressions (TQ)

Analyzer

Query

Optimizer
Single−day

Optimizer
Multi−day

OptimizationTacTex

Figure 1: Flow of information in TacTex. T = TacTex only, A = all advertisers, Q = all queries.

to choose the optimal bids, ads, and spending limits to sub-
mit to the game server for the next day. The Query Ana-
lyzer uses the information received to compute the expected
outcomes of actions, such as how many clicks and conver-
sions would occur for a given query type. If there were
no distribution constraint, then TacTex could optimize for
each query type independently, but instead it must choose
how to allocate its available capacity among query types and
even among multiple days. The Multi-day Optimizer is re-
sponsible for dividing capacity among the remainder of the
game days, and it calls the Single-day Optimizer to divide
each day’s capacity among query types using the informa-
tion provided by the Query Analyzer.

4. POSITION ANALYZER
For each query type, the position analyzer takes as input

i) the average position of each advertiser, ii) the number
of impressions for TacTex, and iii) an upper bound on the
total number of impressions. Using this information, the
position analyzer attempts to determine i) the ranking of
the squashed bids, and ii) the first and last impression for
each advertiser – in other words, it attempts to reconstruct
the impression range column from Table 1.

For advertiser a, the three values that we wish to deter-
mine are i) ranka, the ranking of the advertiser’s squashed
bid (1-8); ii) starta, the first impression for which the adver-
tiser’s ad was displayed; and iii) enda, the impression after
the last. As part of the process we will also need to deter-
mine limitOrdera, the order in which the advertiser hit its
spending limit with respect to other advertisers (again 1-8,
with ties broken by rank). If ranka < 6, starta will be 1;
otherwise, it will be endb, where b is the advertiser for which
limitOrderb = ranka − 5 (the fact that b hits its spending
limit is what causes a to rise into fifth position). If adver-
tiser a never hits its spending limit, then enda will be the
total number of impressions plus one. Table 2 shows all of
these values for the query shown in Table 1.

The game server computes the average position for adver-
tiser a by taking the sum of positions over all of the adver-
tiser’s impressions (suma) and dividing by the number of

impressions:

averagePositiona =
suma

enda − starta
(1)

Suppose that we already know each rank value. Then we
can express suma as follows:

suma =
∑

b : rankb≤ranka

max(0,min(endb, enda) − starta)

(2)
The contribution of each advertiser b to suma is the num-
ber of impressions for which its ad was displayed above the
ad of advertiser a (advertiser a’s ads are included because
the ranking is 1-based). If we also know each limitOrder
value, then we can rewrite suma without the max and min,
giving us a system of linear equations that we could try to
solve. However, we have twice as many variables as equa-
tions (starta and enda for each advertiser a), giving us a
severely under-constrained system. In addition, we do not
in fact know the rank and limitOrder values, and would
need to try solving the system corresponding to each set of
values.

An additional piece of information that we have not taken
advantage of is the fact that despite being represented by a
Java double, each average position is a fraction (as shown in
Equation 1). We can therefore use the method of continued
fractions to find the fractional representation for each aver-
age, numeratora/denominatora. These values are shown in
Table 2. (Note that the average positions shown are trun-
cated.) In some cases, the numerator and denominator of
this fraction will equal the values shown in Equation 1, giv-
ing us exactly the information we need. For example, us-
ing average position for UMTac09, we obtain a fraction of
1903/700, and UMTac09 indeed had 700 impressions. How-
ever, if the fraction in Equation 1 is reducible, with the
numerator and denominator having a GCD of gcda, then we
need to multiply the resulting numerator and denominator
by the unknown value gcda to obtain the needed informa-
tion. For example, for QuakTAC we obtain the fraction
572/359 and must multiply by 2, and for TacTex we obtain
the fraction 3/1 and must multiply by 77. So now instead of
two variables for each advertiser a, we have only one, gcda.



Advertiser Rank Start End Impression range LimitOrder Avg pos Fraction GCD

MetroClick 1 1 427 r r 2 1.000 1/1 426

QuakTAC 2 1 719 r r 4 1.593 572/359 2

TacTex 3 1 78 r r 1 3.000 3/1 77

UMTac09 4 1 701 r r 3 2.719 1903/700 1

munsey 5 1 719 r r 5 3.675 2639/718 1

epflagent 6 78 719 r r 6 4.510 2891/641 1

AstonTAC 7 427 719 r r 7 4.938 721/146 2
Schlemazl 8 - - - - - -

Table 2: Values computed by the Position Analyzer for the data from Table 1

We could again try to solve for these variables by setting
up a system of linear equations, but in this case the system
is homogeneous, again resulting in a large space of possible
solutions. As before, we also do not know the rank and
limitOrder values.

Instead of solving a system of equations, we perform a
depth-first search of the space of possible values of each
rank, limitOrder, and gcd by cycling through nodes of cor-
responding types in the search tree. Although the search
space is large, by utilizing a number of pruning rules we can
usually search the tree quickly. Figure 2 shows a portion of
the search tree for the data from Table 1. For clarity, we
will say that the level of a node is the number of ancestor
nodes of the same type plus 1 (rather than its actual depth),
and the nodes of Figure 2 are labeled with these levels. Al-
gorithms 1-4 summarize the search process. Note that in
these algorithms, all values to be determined are treated as
global variables, and any variable set at a search node must
be unset when backtracking.

The root of the tree is the level 1 rank node. At a level
i rank node, we choose which advertiser ai has rank i. An
advertiser with average position p cannot have a rank less
than ⌈p⌉. Thus in Figure 2, there is only one choice at both
rank(1) and rank(2), while at rank(3) there are two choices.

Search then proceeds from a level i rank node to a lim-
itOrder node of the same level. At this node we choose
the order in which the advertiser ai chosen at the preceding
rank node hits its spending limit with respect to all previ-
ously chosen advertisers, set its limitOrder accordingly, and
increment any limitOrder values that have already been set
and are as large or larger. Again, our choices are constrained
by the advertiser’s average position. In order to have average
position p, an advertiser’s limitOrder cannot be less than
i+1−⌊p⌋. (The agent starts in ith place and must move up
to at least position ⌊p⌋.) In Figure 2, at limitOrder(1) we
assign MetroClick a limitOrder value of 1 (the only possi-
ble value at level 1), at limitOrder(2) we assign QuakTAC a
limitOrder of 2 (it cannot be 1 according to the constraint),
and at limitOrder(3) we can assign UMTac09 a limitOrder
of 2 or 3.

A level i limitOrder node leads to a level i gcd node. Here
we must choose the value of gcd for the advertiser ai cho-
sen at the preceding rank node. Since we know the rank
and limitOrder values of all advertisers with higher rank,
and we know that the numerator and denominator of the
fraction in Equation 1 are equal to gcdai

numeratorai
and

gcdai
denominatorai

, respectively, we can derive the follow-
ing from Equations 1 and 2:

gcdai
(numeratorai

−denominatorai
(i−limitOrderai

+1)) =

∑

b : rankb<rankai
,

limitOrderb<limitOrderai

max(0, endb − startai
) (3)

If we know the end values for all advertisers with higher
rank and both sides of the above equation are nonzero, then
it is straightforward to determine startai

, use the equation
to find gcdai

, and then compute endai
. Unfortunately, both

sides of the equation will be zero whenever limitOrderai
=

1.
As a result, we have three cases to consider. In the first

case, limitOrderai
= 1, and we continue without determin-

ing a value for endai
or gcdai

. In the second case, the right
hand side of Equation 3 is nonzero and contains no unknown
endb values. In this case, we can solve for gcdai

. In the
third case, the right hand side of Equation 3 is nonzero but
does contain unknown values. In this case, we attempt to
guess the value of gcdai

, and then we determine the values
of startai

and endai
(possibly obtaining expressions includ-

ing these unknown endb values). We also plug these values
into Equation 3 and store the resulting equation. As we
proceed down the search tree, we will usually obtain enough
equations to be able to solve for any unknowns. If at any
point the system of equations is inconsistent, we backtrack.
The possible values of gcdai

are constrained by the end val-
ues of the advertisers with the previous and next values of
limitOrder, and by the upper bound on total impressions.
Still, a wide range of values may be possible. Because we
have a limited amount of time to search, and because lower
values of gcdai

are most common, we implement a form of
iterative broadening search. We repeat the search until we
find a solution or hit a time limit of 300ms, and on our nth
attempt, we consider only the first 5n possible values for
gcdai

at each gcd node. In some cases, there will be no pos-
sible values for gcdai

, and we backtrack. Finally, we note
that when advertiser ai is our own agent, we know our own
number of impressions and thus our gcd. Unless forced to
backtrack, a level i gcd node leads to a level i+1 rank node.

Figure 2 shows examples of cases 1 (gcd(1)) and 3 (gcd(2)
and gcd(3)). At gcd(1), we know starta1

= 1 (because
MetroClick is ranked in the top five), but we cannot deter-
mine gcda1

or enda1
. At gcd(2), we can also set starta2

=
1. Because limitOrdera2

> limitOrdera1
, we know that

enda2
≥ enda1

; however, we do not know enda1
. As there

are not yet any advertisers with a higher limitOrder, our
only upper bound on enda2

is the upper bound on the total
number of impressions. Assuming this value is sufficiently
high, we will have at least five values to consider for gcda2

.
This is our first attempt at finding a solution, so we try only
the first five (1 through 5). First, we try gcda2

= 1. Plugging
known values into Equation 3 gives us 1 · 213 = enda1

− 1,
and so we can set enda1

= 214. Note that this value is incor-



x

rank(1)

limitOrder(1)

rank(2)

limitOrder(2)

rank(3)

limitOrder(3)

gcd(1)

gcd(2)

gcd(3)

.

.

.

.

.

.

.

.

.

32

UMTac09TacTex

54321

2

QuakTAC

?

1

MetroClick

Figure 2: Part of the search tree for Table 1

rect; it would be correct had we chosen the correct gcda2
of

2. We can also set enda2
= starta2

+denominatora2
gcda2

=
360. At gcd(3), we are forced to backtrack. Having chosen
limitOrdera3

to be 2 (meaning limitOrdera2
, for QuakTAC,

has been incremented to 3) UMTac09 must hit its spending
limit before QuakTAC, and so we must have enda3

< enda2
.

But this implies 1 + 700gcda3
< 360, an impossibility.

If we reach a rank node with all advertisers having been
assigned a rank, then we have found a valid solution. If any
variables remain unsolved, we set them to the median of
their possible range. Because there may be multiple valid so-
lutions, we record this solution and then backtrack to search
for more. At the end of our search, if there is only one solu-
tion, we return it. In rare cases (around 1% of the time), we
hit the 300ms time limit without finding any solutions. Of-
ten, multiple solutions are found, and we choose the best one
by scoring each solution according to a number of heuristics.
Solutions are favored if: i) the total number of impressions
is low, ii) there are no unsolved variables, iii) multiple ad-
vertisers share the maximum end value, iv) no advertisers
share any other end value, and v) only the advertiser with
greatest rank has an average position of 5.0. Typically the
solution chosen is correct or very nearly so.

5. USER MODEL
The User Model maintains estimates of the user popula-

Algorithm 1: Position-Analyzer

begin
input : all average positions, TexTex’s impressions,

upper bound on impressions
output: ranking, impressions per advertiser, total

impressions
1 n← 0
2 Equations← {}
3 Solutions← {}
4 while Solutions = {}, time < 300ms do

5 n← n + 1
6 Rank-Node(1)

7 Score solutions using heuristics and select the best

Algorithm 2: Rank-Node

begin
input: level

1 if level > number of advertisers with a position then

2 valid solution found; add it to Solutions
3 else
4 determine set A of remaining advertisers that could

have rank level
5 for ∀adv ∈ A do

6 alevel ← adv
7 rankalevel

← level
8 Limit-Order-Node(level)

Algorithm 3: Limit-Order-Node

begin
input: level

1 determine possible values of limitOrderalevel

2 for each value v do
3 for 1 ≤ i ≤ level− 1 do

4 if limitOrderai
≥ v then

5 limitOrderai
← limitOrderai

+ 1

6 limitOrderalevel
← v

7 GCD-Node(level)

tion states by using a particle filter (specifically a Sampling
Importance Resampling filter [1]) for each of the nine popu-
lations. A particle filter is a sequential Monte Carlo method
that tracks the changing state of a system by using a set
of weighted samples (called particles) to estimate a poste-
rior density function over the possible states. The weight
of each particle represents its relative probability, and parti-
cles and weights are revised each time an observation (condi-
tioned on the current state) is received. In this case, each of
the 1000 particles used per filter represents a distribution of
the 10, 000 users of that type among the six individual user
states (NS, IS, F0, F1, F2, and T). At the beginning of the
game, the particles are chosen to reflect the possible pop-
ulations resulting from the initialization process performed
by the game server. Each succeeding day, a new set of par-
ticles is generated from the old. For each new particle to
be generated, an old particle is selected at random based on
weight, and the new particle’s user distribution is randomly
generated from the old particle based on the user transition
dynamics. These dynamics are known with the exception
of the probability of a user transitioning to the Transacted
state as a result of a conversion. This probability depends
on the ads seen by the user, and thus on the behavior of the
advertisers, but we can estimate it fairly accurately from



Algorithm 4: GCD-Node

begin
input: level

1 if rankalevel
< 6 then

2 startalevel
← 1

3 else

4 find b such that limitOrderb = rankalevel
− 5

5 startalevel
← endb /* may include unknown */

6 if limitOrderalevel
= 1 then

7 leave gcdalevel
and endalevel

unset for now
8 RANK-Node(level + 1)
9 else if RHS of Equation 3 has no unknowns then

10 solve for gcdalevel

11 endalevel
← startalevel

+denominatoralevel
gcdalevel

12 if endalevel
is feasible then

13 RANK-Node(level + 1)

14 else

15 determine feasible values of gcdalevel

16 for up to 5n values v do

17 gcdalevel
← v

18 endalevel
← startalevel

+
denominatoralevel

gcdalevel

19 add Equation 3 to Equations
20 try to solve for unknowns in Equations
21 if endalevel

is feasible and Equations is
consistent then

22 RANK-Node(level + 1)

past games.
The new particles are then re-weighted based on Tac-

Tex’s observations. The daily observations that depend on
the user populations are the total impressions, clicks, and
conversions for each of the 16 queries. Some of these ob-
servations are more informative and straightforward to use
than others. Observations for queries in which the manu-
facturer or component are not specified (F1 and F2 queries)
are less informative because they represent the behavior of
users from multiple populations. Conversion rates depend
on the position and distribution constraint at the time of
the click, and suffer from small sample sizes. The most in-
formative observations are the total impressions for queries
that specify both manufacturer and component (F2 queries),
and we found that we were able to estimate user popula-
tions accurately using only these observations. Note that
unless TacTex had its ad displayed for every impression for
a query type (an uncommon case), the total impressions for
that query type must be determined using the Position An-
alyzer.

The number of impressions for an F2 query is the number
of users submitting that query, which is the number of F2
users plus those IS users that chose the F2 query. An IS
user has a 1/3 probability of choosing the F2 query, so the
probability of observing N total impressions when there are
xi IS users and xf2 F2 users is the probability that N−xf2 of
the xi IS users choose the F2 query, which can be determined
from the binomial distribution B(xi, 1/3) or (in our case)
estimated using the normal approximation to this binomial
distribution, N(xi/3, 2xi/9). Each particle has its weight
set to this probability, and weights are then normalized to
sum to one.

The resulting set of particles represents our estimated
probability distribution over the user population state on the
previous day. To obtain the expected user population n days

in the future, we update each particle n + 1 times accord-
ing to the user transition dynamics and take the weighted
average of the particles.

Figures 3 and 4 show the estimated and actual number
of users in the IS, F0, F1, and F2 states for two different
products in one game from the 2009 finals. The game server
models users as exhibiting occasional bursts of interest in
a product (i.e., moving from the NS to IS state in large
numbers), and these bursts can be seen in the IS user plots.
If these bursts can be detected, then the estimated num-
ber of IS users will be very accurate, and the estimates of
users in other states will follow. In Figure 3, these bursts
are detected perfectly, and accuracy for all four user states
is extremely good. For the product depicted in Figure 4,
TacTex’s estimates of total daily impressions were poor on
some days, and on these days the User Model could not be
sure whether a burst occurred. As a result, the IS estimate
shows a number of small “blips”, where some particles re-
flected a burst and others did not, and one true burst was
missed. Nevertheless, the User Model was able to recover on
succeeding days, and the estimates for all four states remain
good overall.

6. ADVERTISER MODEL
The Advertiser Model makes three types of predictions

about the actions of the competing advertisers.

6.1 Impression predictions
In addition to predicting the bids of other advertisers, it

is also important to predict whether and when they will hit
their spending limits. If other advertisers set low spending
limits, a relatively low bid could still result in a high aver-
age position and number of clicks. For each query type, the
Advertiser Model predicts the maximum number of impres-
sions that each advertiser could receive before hitting its
spending limit. In general, the Advertiser Model predicts
that this maximum will be the same number of impressions
as the advertiser received on the previous day; however, in
cases in which an advertiser did not hit its spending limit
by the day’s final impression, we assume that the advertiser
effectively had no spending limit and will also not hit its
spending limit on the coming day. Information about the
impressions received by other advertisers is provided by the
Position Analyzer.

6.2 Ad predictions
The Advertiser Model also predicts the ads (targeted or

generic) that other advertisers will choose. For each query
type, the Advertiser Model maintains a count for all the ads
it has seen so far from each advertiser. The predicted ad for
that query is then the majority ad, i.e., the ad having the
highest count amongst all posted ads for that query type.

6.3 Advertiser bid estimation
The third task performed by the Advertiser Model is to

maintain estimates of the bids submitted by each advertiser
for each query and then to predict what future bids will be.
Advertiser bid estimation is a hard problem because the bid-
ding dynamics of other advertisers are unknown – while bids
often change only gradually, it is not uncommon for large
jumps to occur. In addition, the Advertiser Model receives
only partial information about the bids of other advertisers
(the bid ranks and TacTex’s CPC). During the development



 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0  10  20  30  40  50  60

IS users

actual
estimated

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  10  20  30  40  50  60

F0 users

actual
estimated

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  10  20  30  40  50  60

F1 users

actual
estimated

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  10  20  30  40  50  60

F2 users

actual
estimated

Figure 3: User population estimates for one product

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0  10  20  30  40  50  60

IS users

actual
estimated

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  10  20  30  40  50  60

F0 users

actual
estimated

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  10  20  30  40  50  60

F1 users

actual
estimated

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0  10  20  30  40  50  60

F2 users

actual
estimated

Figure 4: User population estimates for a second product



of TacTex, we created two very different and independently
designed bid estimators. Our preliminary testing did not
show either approach to be superior; however, we found that
an ensemble approach that averaged the output of the two
estimators outperformed either one alone, and so the Adver-
tiser Model uses both estimators in this fashion. The pri-
mary difference between the two is that the first estimator
models all advertisers’ bids jointly, while the second models
bids independently.

The estimates obtained are for the bids active on the pre-
vious game day; however, our goal is to predict future bids
for use in planning. Currently, the Advertiser Model simply
assumes that the most recently estimated bids will persist
for the rest of the game, but improving these predictions is
an important focus of future work.

First bid estimator : The first approach (Algorithm 5)
uses particle filtering to estimate the bids of other advertis-
ers. We use one particle filter for each of the 16 query types.
Each of the 1000 particles per filter represents one set of bids
for all other advertisers for that query type. Associated with
the particles is a probability distribution that gives the like-
lihood of each particle representing the current state. On
each new day, each particle filter samples from the under-
lying distribution to obtain the next set of particles. Then
it updates each particle based on the observations received
that day, i.e., the cost per click and bid rankings. Once
the particles have been updated, the filter recomputes the
probability distribution for the new set of particles.

The sampling step is straightforward. The next step in
particle filtering is to update each particle using the known
dynamics. In the absence of such known dynamics, we pro-
pose a departure from the traditional vanilla particle filter
and use a part of the observation to do the update. Let
cpct+1 and rt+1 be the cost per click and ranking for that
query seen on day t+1. We use these values to reset some of
the bids made by other advertisers in some particles (where
necessary) in an attempt to improve the respective parti-
cle. On each iteration of the update, the bid, bx

t+1, of an
advertiser x is adjusted while holding the bids of the other
advertisers fixed. The bids are adjusted for only those cases
where the order of a bid is incorrect with respect to the
known bid ranking. Algorithm 6 gives an outline of how the
bid adjustment is done. The two cases where the order is
correct and there is no need for bid adjustment are:

rx
t+1 > (rTacTex

t+1 + 1) ∧ bx
t+1 < cpct+1

rx
t+1 < rTacTex

t+1 ∧ bx
t+1 > bTacTex

t+1 (4)

The conditions when bx
t+1 needs to be updated, and how

these updates are made, are mentioned below. rand(a, b)
denotes a random draw from the range (a, b). z denotes the
particle and z(r) denotes the bid of the advertiser ranked r
in z.

bx
t+1 =











cpct+1 if rx
t+1 = rTacTex

t+1 +1

rand(0, least bid value in z) if rx
t+1 = undefined

rand(z(rx
t+1+1), z(rx

t+1-1)) otherwise

Note that the “otherwise” case excludes the conditions men-
tioned in 4. The whole process is repeated a fixed number
of times, holding one advertiser fixed each time, with each
iteration improving upon the former (20 iterations is suffi-
cient). At the end of this update step, we have a better
particle having closer predictions of other advertiser bids.

Next comes the step of recomputing the probability distri-

Algorithm 5: Advertiser-Bid-Estimator

begin
input : ~z, P r(·), cpc, ranks

1 for ∀z ∈ ~z do
2 z ←Adjust-Bids(z, cpc, ranks)

3 Sample n particles from the filter
4 for ∀z ∈ ~z do

5 Pr(z)← Recompute-Distribution(z, ranks)

6 normalize Pr(·)

Algorithm 6: Adjust-Bids

begin
input : z, cpc, ranks
output: z

1 lo-bid ← set a low bid limit
2 size ← no of advertisers in ranks

3 rTacTex ← own rank from ranks

4 bTacTex ← own bid for q
5 count← no of iterations
6 while count times do

7 for (∀x ∈ advertiser set) do
8 rx ← rank of x from ranks
9 switch do

10 case rx = rTacTex + 1
11 bx ← cpc

12 case rx = −1 (undefined)
13 bx ← rand(lo-bid, z(size))

14 case rx > (rTacTex + 1) ∧ bx ≥ cpc
15 bx ← rand(z(rx + 1), z(rx − 1))

16 case rx < rTacTex ∧ bx ≤ bTacTex

17 bx ← rand(z(rx + 1), z(rx − 1))

bution of the sampled particles (Algorithm 7). Although the
true likelihood of a particle whose ranking does not match
the true ranking rt is zero, there may be few particles with
the correct ranking, and so we instead use a likelihood func-
tion designed to give some weight to all particles. We com-
pute the difference of ranking for each advertiser from the
two available sources, i.e., rt and the rank from z. For a dis-

tance δ, we define κ(δ) = exp(− δ2

4.9
). The likelihood of each

particle is set to the product of these κ(δ) values over all
advertisers, and thus the particles whose predicted rankings
are closer to rt get assigned higher values. These values are
normalized over all 1000 particles to give the true probability
distribution captured by the particles.

Second bid estimator: The second bid estimator dif-
fers from the first in two main ways. First, for each query
it maintains separate bid distributions for each advertiser,
rather than a single joint distribution over all bids. Second,
while both estimators approximate continuous distributions
using discrete distributions, the second filter does so using
a fixed set of bids rather than a changing set of particles.
The bid space [0, 3.75] is discretized into values v1 through

v100 by setting vi = 2i/25−2 − 0.25 (thus v50 = 0.75). Dis-
cretizing the bid space in this way allows better coverage of
low bids, which are most common, while still maintaining
the ability to represent very high bids, and it also simplifies
our modeling of changes in bids, described below.

On day t + 1, for each advertiser x, we wish to estimate
the distribution of the new bid, bx

t+1, over these discrete v



Algorithm 7: Recompute-Distribution

begin
input : z, ranks
output: Pr(·)

1 Pr(z)← 1
2 for ∀a ∈ advertiser set do

3 δ ← difference of a′s rank between z and ranks

4 δf ←
diff

7

5 Pr(z)← Pr(z)× exp(−
δ2

f

C
)

6 normalize Pr(·)

values, conditional on the observed ranking rt+1, previous
bids bx

1 ... bx
t , and the bids of other advertisers, B−x

t+1. We
make the simplifying assumptions that rt+1 and bx

1 ... bx
t are

conditionally independent given bx
t+1, and that B−x

t+1 and bx
1

... bx
t+1 are independent. Applying Bayes’ rule twice and

rearranging, we derive:

Pr(bx
t+1 = vi|rt+1, B

−x
t+1, b

x
1 ...bx

t ) ∝

Pr(rt+1|B
−x
t+1, b

x
t+1 = vi)Pr(bx

t+1 = vi|b
x
1 ...bx

t ) (5)

The first term in the R.H.S. of Equation 5 is the probability
of the observation while the second term is the transition
model of bids for x, both unknown.

We model bid transitions by assuming that bids change
in one of three ways. First, with 0.1 probability, bx

t+1 jumps
uniformly randomly to one of the vi values. This case cov-
ers sudden jumps that are difficult to model. Next, with 0.5
probability, bx

t+1 changes only slightly from bx
t . We assume

that the probability of changing from vi to vj is propor-
tional to φ0,6(|i − j|), where φ0,6 is the density function of
the zero-mean normal distribution with variance 6. Because
we discretized the bid space in such a way that bids in-
crease exponentially, the use of this distribution reflects the
assumption that the logarithms of the ratios of successive
bids are distributed normally with zero mean. Finally, we
assume that with 0.4 probability, the bid changes accord-
ing to a similar distribution, but the change is with respect
to the bid 5 days ago, bx

t−4. This case captures the fact
that bids often follow 5 day cycles due to the 5 day capacity
window. The probabilities for these three cases were cho-
sen to provide robustness to a variety of agent behaviors
in pre-competition experiments. Let tr(j, i) denote the the
resulting probability of the bid transitioning to vi from vj

using the above normal distribution and normalizing.
Summing the three cases gives us the following:

P (bx
t+1 = vi|b

x
t = vj , b

x
t−4 = vk) = (6)

0.1 · 0.01 + 0.5 tr(j, i) + 0.4 tr(k, i)

and so we can find the probability of each bid by summing
over our previous distribution estimates:

P (bx
t+1 = vi) = 0.1 · 0.01 + 0.5

100
∑

j=1

P (bx
t = vj)tr(j, i) + (7)

0.4
100
∑

k=1

P (bx
t−4 = vk)tr(k, i)

Our estimate for bx
1 is initialized to a distribution consistent

with observed game data, and when t < 5, we substitute bx
1

for bx
t−4.

Algorithm 8: Update-Distributions

begin
input : rankings rt+1, TacTex’s bid and cpc

1 for each advertiser x do

/* let T x
i be Pr(bx

t+1 = vi|b
x
1 ...bx

t ) */

2 for i = 1 ... 100 do

3 set T x
i according to Equation 7

4 for n = 1 ... 10 do

5 for each advertiser x do

6 for i = 1 ... 100 do

/* let Ox
i be Pr(rt+1|B

−x
t+1, bx

t+1 = vi) */

7 if n = 1 then
8 Ox

i = 1
9 else

10 set Ox
i according to Equation 8

11 for each advertiser x do

12 for i = 1 ... 100 do

13 Pr(bx
t+1 = vi)← Ox

i T x
i

14 normalize Pr(·)

The observation probabilities are now conditioned on a
single advertiser’s bid, rather than a set of bids as in the
first bid filter. Let y be another advertiser in the game apart
from x. If advertiser y is TacTex, then we know the bid;
otherwise we have a distribution representing our estimate
of the bid for y. Thus the conditional probability of the set
of rankings rt+1 given a fixed bx

t+1 = vi and a fixed value of
the distribution B−x

t+1 is :

P = Π∀y 6=x











Pr(by
t+1 > vi) if rx

t+1 > ry
t+1,

Pr(by
t+1 < vi) if rx

t+1 < ry
t+1,

1 otherwise

(8)

where P denotes Pr(rt+1|b
x
t+1 = vi, B

−x
t+1). Note that ranks

will only be equal if neither advertiser had any impressions;
in this case we have no information about the relative bids.
Also, whenever y is TacTex, the R.H.S. will be 1 or 0 since
we know our own bid. In addition, in some cases it is possi-
ble to use TacTex’s cost per click to exactly determine the
bid of the advertiser below it. Finally, we have been treating
B−x

t+1 as if it were known, but in fact these are the other ad-
vertisers’ bids that we are trying to estimate simultaneously.
We address this problem by applying Equation 5 for 10 iter-
ations, using the latest estimates for each bid distribution,
as this resulted in sufficient convergence in testing. Algo-
rithm 8 summarizes the update procedure used each day by
the second bid estimator.

7. PARAMETER MODEL
Recall that for each query type q, the parameter γq rep-

resents the probability that a user will progress from one
ad to the next, while each advertiser a has a parameter ea

q

that affects the probability of a user clicking its ad (and
thus also its squashed bid). Given the bid rankings and
impression ranges computed by the Position Analyzer and
the User Model’s population estimate, we can determine the
distribution over the number of clicks that TacTex would re-
ceive for any set of these parameter values. The Parameter
Model estimates the values of γq and eTacTex

q , as these are
the parameters that have the most impact on TacTex and
about which our observations provide the most information.



There is insufficient information to effectively estimate ea
q

values of other advertisers, and so we assume they equal the
mean possible value. To perform estimation, the Parame-
ter Model maintains a joint distribution over (γq, eTacTex

q )
pairs by discretizing the possible space of values uniformly
and setting the likelihood of each pair to be proportional
to the probability of all observations given that pair, that
is, the product of the probabilities of each day’s number of
clicks. When performing calculations involving these param-
eters, the Parameter Model takes the weighted average for
each parameter as its estimate. While these estimates do
not necessarily converge to the correct values by the end of
a game (and might not ever be expected to given our deci-
sion to not estimate other advertisers’ ea

q values), they are
much more accurate on average than simply assuming the
expected parameter values.

8. OPTIMIZATION
To this point, we have described those modules that esti-

mate the game state and make predictions about the future.
We now turn to the challenge of using this information to
select actions. In particular, each day TacTex must choose
bids, ads, and spending limits for each query. The key fac-
tor in the optimization process is the distribution constraint.
Recall that while there is no hard cap on capacity, exceeding
a certain number of conversions results in a reduced conver-
sion rate. Beyond some point, marginal returns per conver-
sion can become negative. As a result, TacTex performs op-
timization by reasoning about conversions and then choosing
actions expected to result in those conversions, rather than
reasoning directly in the space of possible actions.

The optimization process consists of three levels: a Multi-
day Optimizer (MDO), a Single-day Optimizer (SDO), and
a Query Analyzer (QA). Because we want to maximize profit
for the entire game, not a single game day, the top-level de-
cision that must be made is how many conversions to target
on each remaining game day, and this decision is made by
the MDO. Computing the expected profit for a given day
and conversion target requires deciding how to divide the
conversions among the 16 query types, and the MDO calls
the SDO to perform this task. Finally, the SDO calls the
QA to i) determine the bid, ad, and spending limit that are
expected to result in a given number of conversions, and ii)
compute the expected cost and revenue from those conver-
sions. We describe these three levels from the bottom up.

8.1 Query Analyzer
For any given bid, ad, and spending limit, it is fairly

straightforward to determine the expected cost, revenue, and
conversions from a specific query type. The QA does this
by taking the expected user population, iterating through
all impressions, computing our position and CPC, and then
computing the probability that the user i) reaches our ad,
ii) clicks on it, and iii) converts. (Note that at this level we
are not considering the distribution constraint, which may
lower the conversion rate.) However, the problem we face is
essentially the reverse: the QA is given a conversion target
and needs to determine the bid, ad, and spending limit that
will produce those conversions in the most profitable way.
Up to a certain point, raising either the bid or the spending
limit will increase the number of conversions, while the effect
of ad choice depends on the user population, so there may
be a number of ways to reach a given number of conversions.

We simplify matters by using no spending limits. Dur-
ing the course of a day, the expected profit per impression
can only increase as other agents hit their spending limits.
If an agent above us hits its spending limit, our position
improves along with our conversion rate. (Higher positions
have higher conversion rates due to a higher ratio of F users
to IS users – IS users never convert and thus are more likely
to reach ads at lower positions.) If the agent below us hits
its limit, then our CPC is reduced, as we are participating
in a generalized second price auction. It is therefore usually
preferable to control conversions using the bid rather than
the spending limit.1

For any given bid, we can evaluate each of the relevant ads
and pick the one that gives the highest profit per conversion.
The spending limit can then be set based on the expected
cost. As a result, the query-level predictor’s primary task is
to determine the bid that will result in the desired number
of conversions. There is one difficulty remaining, however:
because our prediction for each advertiser’s bid is a point es-
timate, any bid between the nth and n+1st predicted bids
will result in the same position, n+1, and the function map-
ping bids to conversions will be a step function. In reality,
there is uncertainty about the bids of other advertisers, and
we would expect this function to be continuous and mono-
tonically increasing. We create such a function by linearly
interpolating between the expected results for each position.
In particular, we assume that the number of conversions ex-
pected for the nth position will result from bidding the av-
erage of the n-1st and nth bid. For n = 1, we use a bid 10%
above the predicted highest bid, and for n = 8, we use a bid
10% below the predicted lowest bid. We generate functions
for cost and revenue in the same way.

The complete procedure followed by the query-level pre-
dictor is therefore as follows. First, we find the eight bids
(along with corresponding optimal ads) that correspond to
the eight possible positions, and determine the expected con-
versions, cost, and revenue for each. Next, we use linear in-
terpolation to create functions mapping bids to conversions,
cost, and revenue. Finally, for a conversion target c, we can
find the bid resulting in the target from the conversions func-
tion and determine the resulting cost (costq(c)) and revenue
(revenueq(c)) from the corresponding functions. The ad to
use is the ad corresponding to the closest of the eight bids.

8.2 Single-day Optimizer
Using this information about each query type, the SDO

can now determine the optimal number of conversions to tar-
get for each query type given a total daily conversion target
c and the initial capacity used u. The initial capacity used
(the sum from the past four days) is important because it,
along with the total conversion target, determines the dis-
tribution constraint, which can in turn have a large impact
on the profit from each conversion and the optimal solution.
To illustrate, suppose we need to choose between targeting
a single conversion from query type A with an expected rev-
enue of 10 and expected cost of 8.5, and a single conversion
from query type B with an expected revenue of 15 and ex-
pected cost of 13.3. With a distribution constraint of 1 for
this conversion, the profits would be 1.5 and 1.7, respec-

1During the 2009 TAC/AA competition, TacTex used high
spending limits as a precaution, but our experiments have
shown that this was unnecessary, and so we omit them from
the agent described here.



tively. With a distribution constraint of 0.9, however, the
profits would be 0.5 and 0.2, changing the optimal choice
from B to A. It is also important to note that although we
are targeting one conversion, with a distribution constraint
of 0.9 we would actually only expect 0.9 conversions; we will
address this issue below.

Computing the precise impact of the distribution con-
straint is difficult because it decreases after each conversion,
meaning that we would need to know when a conversion
occurred to compute its profit. We solve this problem by
making the simplifying assumption that the day’s average
distribution constraint applies to each conversion. We de-
note this value d̄(u, c) because it can be computed from the
initial capacity used and the total conversion target; in fact,
we precompute all possible d̄(u, c) values before the game
begins. The goal of the SDO is thus to find values of cq

maximizing
∑

q[d̄(u, c)revenueq(cq) − costq(cq)], where the
cq values correspond to the query types and sum to c. Again,
although we are targeting c conversions, we would actually
only expect d̄(u, c)c conversions. In general we reason in
terms of conversions before adjusting for the distribution
constraint, and so for clarity we will use the term adjusted
conversions when referring to the actual number of resulting
conversions. Note that u is expressed in terms of adjusted
conversions, while c is not.

We are now left with a fairly straightforward optimiza-
tion problem: allocating the total conversion target among
the queries so as to maximize profit. This problem can be
solved optimally using dynamic programming by casting it
as a multiple choice knapsack problem, with each (query
type, conversion) pair representing a single item and each
query type representing a class from which only one item
can be chosen. This solution is too slow for our needs, un-
fortunately, and so instead the SDO uses a nearly-optimal
greedy solution in which we repeatedly add conversions from
the most profitable query type. If it were always the case
for each query type that as the number of conversions in-
creased, the marginal profit per query type decreased, then
we could add the most profitable conversion at each step
and be guaranteed the optimal solution. In order to receive
more conversions we must increase our bid, and thus our
cost per click increases. However, as our position improves,
is it possible for our conversion rate to improve enough to
offset this cost, and so the marginal profit per conversion
may actually increase. As a result, instead of adding a sin-
gle conversion at each step of our greedy approach, we con-
sider adding multiple conversions. For each query type, we
determine the number of additional conversions (bounded
above by the number of conversions remaining before we hit
our target) that maximizes the average profit per additional
conversion, and we then add the conversions from the query
type with the highest average profit. This greedy approach
is not guaranteed to be optimal, but tests show that the re-
sulting expected profit differs from the results of the optimal
dynamic programming approach by less than 0.1% on aver-
age. The greedy optimizer is summarized in Algorithm 9.

8.3 Multi-day Optimizer
The SDO determines bids for any given conversion target

and amount of capacity already used. Determining the bids
to submit for the next day therefore requires only that we
choose the conversion target. Because the bids submitted
today affect not only tomorrow’s profit but also the capac-

Algorithm 9: Single-Day-Optimizer

begin
input : capacity used u, capacity target c
output: profit

1 cSum← 0
2 for each query type q do

3 obtain costq() and revenueq() from the QA
4 cq ← 0

5 while cSum < c do

6 Find q and c
′

q maximizing

d̄(u,c)(revenueq(c
′

q)−revenueq(cq))−(costq(c
′

q)−costq(cq))

c
′

q−cq

such that c
′

q > cq and cSum + c
′

q − cq ≤ c

7 cq ← c
′

q

8 cSum← cSum + c
′

q − cq

9 profit←
∑

q d̄(u, c)revenueq(cq)− costq(cq)

ity remaining on future days, we cannot simply choose the
conversion target myopically. In order to maximize expected
profit over the remainder of the game, we must consider not
only tomorrow’s conversion target, but also the actions we
will take on all succeeding days.

The MDO operates by finding the optimal set of conver-
sion targets for the remainder of the game. The expected
profit from any set of conversion targets can be determined
by successively applying the SDO to each remaining game
day. The goal of the MDO on day d is is therefore to find
the conversion targets ct maximizing

∑59
t=d+1 SDOt(ct, ut),

where SDOt returns the expected profit from applying the
SDO on day t, and ut represents the total adjusted conver-
sions over four days preceding t (which can be computed
from the ct values). Note that planning for the entire game
requires calling the QA (and thus predicting the bids of other
agents) for all remaining game days, not only the next day.

Once again, an optimal solution can be found using dy-
namic programming, but we choose another approach due to
time constraints. The dynamic programming approach re-
quires working backward from the last day and finding the
optimal conversion target given the number of (adjusted)
conversions on each of the previous four days. The MDO
instead uses a form of hill climbing search to solve this op-
timization problem. We begin by setting each ct value to
be one-fifth of TacTex’s capacity. Then for all t, we con-
sider increasing or decreasing ct by one and compute the
expected profit in each case. We then choose the most prof-
itable deviation over all t. This process repeats until no de-
viation is profitable. In comparing these two optimization
approaches, we found it necessary to use a somewhat coarse
degree of granularity (increments of five conversions) when
implementing the dynamic programming approach due to
memory limitations, and as a result the hill-climbing ap-
proach was actually slightly better than the dynamic pro-
gramming approach. The optimization procedure followed
by the MDO is summarized in Algorithms 10 and 11.

Once the optimal set of conversion targets is found, the
MDO takes tomorrow’s conversion target and submits the
bids determined by the SDO. Essentially, we plan for the
rest of the game and take the first step of this plan. On the
next day, we repeat this process using updated information.

There is one remaining special case. It will often be the
case that we are not interested in bidding on a particular



Algorithm 10: Find-Profit

begin
input : day d, conversion targets cd ... cend,

capacities used ud−1,ud−2,ud−3,ud−4

output: profit
1 profit← 0
2 for t = d ... end do

3 u← ut−1 + ut−2 + ut−3 + ut−4

4 profit← profit + Single-Day-Optimizer(u, ct)

5 ut ← d̄(u, ct)

Algorithm 11: Multi-Day-Optimizer

begin
input : day d, capacities used ud−1,ud−2,ud−3,ud−4

output: conversion target cd

1 for t = d ... end do

2 ct ←
total capacity

5

3 while maximum profit improves do

4 for t = d ... end, change ∈ {1,−1} do

5 ct ← ct + change

6 profit
change
t ←

Find-Profit(d, cd... cend, ud−1... ud−4)
7 ct ← ct − change

8 find t and change maximizing profit
change
t

9 ct ← ct + change

query. When this happens, TacTex submits a probe bid
designed to provide information about the bids of other ad-
vertisers. The bid chosen is one that we expect to be the
nth ranked bid, where n is the rank between 2 and 6 that
we have hit least recently. We set a spending limit equal to
the bid so that we will likely only receive a single click.

8.4 First two days
On the first two game days, we have not yet received any

information about auction results, and so we cannot use the
bidding strategy described above. Many agents use hard-
coded bids, but we choose our bids using information from
past games. For each query type, we choose an average po-
sition to target using a simple heuristic: the target begins at
5, and if the query type matches one of our specializations,
the target decreases by an amount depending on our capac-
ity. We compute the bid that we expect to result in this
position by performing linear regression on data observed in
previous games to learn a function mapping bids to posi-
tions. A separate function is learned for each day and focus
level.

9. ACKNOWLEDGEMENTS
This work has taken place in the Learning Agents Re-

search Group (LARG) at the Artificial Intelligence Labora-
tory, The University of Texas at Austin. LARG research is
supported in part by grants from the National Science Foun-
dation (CNS-0615104 and IIS-0917122), ONR (N00014-09-1-
0658), DARPA (FA8650-08-C-7812), and the Federal High-
way Administration (DTFH61-07-H-00030).

10. REFERENCES
[1] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp.

A tutorial on particle filters for on-line non-linear /
non-gaussian bayesian tracking. IEEE Transactions on
Signal Processing, 50(2):174–188, Feb. 2002.

[2] P. Jordan, B. Cassell, L. Callender, and M. Wellman.
The Ad Auctions Game for the 2009 Trading Agent
Competition. Technical report, 2009.

[3] P. Jordan and M. Wellman. Designing an ad auctions
game for the Trading Agent Competition. In IJCAI-09
Workshop on Trading Agent Design and Analysis, July
2009.

[4] S. Lahaie, D. Pennock, A. Saberi, and R. Vohra.
Sponsored search auctions. In N. Nisan,
T. Roughgarden, E. Tardos, and V. Vazirani, editors,
Algorithmic Game Theory. Cambridge University Press,
2007.

[5] D. Liu, J. Chen, and A. Whinston. Current issues in
keyword auctions. In G. Adomavicius and A. Gupta,
editors, Handbooks in Information Systems: Business
Computing. Emerald, 2009.

[6] D. Pardoe, D. Chakraborty, and P. Stone. TacTex09: A
champion bidding agent for ad auctions. In Proceedings
of the 9th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2010), May
2010.


