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Abstract— Several studies have demonstrated that teaching
agents by human-generated reward can be a powerful tech-
nique. However, the algorithmic space for learning from human
reward has hitherto not been explored systematically. Using
model-based reinforcement learning from human reward in
goal-based, episodic tasks, we investigate how anticipated future
rewards should be discounted to create behavior that performs
well on the task that the human trainer intends to teach. We
identify a “positive circuits” problem with low discounting (i.e.,
high discount factors) that arises from an observed bias among
humans towards giving positive reward. Empirical analyses
indicate that high discounting (i.e., low discount factors) of
human reward is necessary in goal-based, episodic tasks and
lend credence to the existence of the positive circuits problem.

I. INTRODUCTION

Social rewards and punishments powerfully influence an-
imal behavior, humans included. In recent years, this form
of communication has been adapted to permit teaching of
artificial agents by their human users [2], [16], [4], [15], [13],
[10]. We call this form of teaching interactive shaping. Here,
“human reward” is conceptually communicated to the trainer
as signaling degrees of reward and punishment, approval and
disapproval, or something similar, and the reward is received
by the learning agent as a scalar value through varying
interfaces (e.g., keyboard, mouse, or verbal feedback).

Interactive shaping enables people—without programming
skills or complicated instruction—(1) to specify desired
behavior and (2) to share task knowledge when correct
behavior is already indirectly specified (e.g., by a pre-coded
reward function). Further, in contrast to the complementary
approach of learning from demonstration [1], learning from
human reward employs a simple task-independent interface,
exhibits learned behavior during teaching, and, we speculate,
requires less task expertise and places less cognitive load on
the trainer.

This paper is the first to assess a fundamental aspect
of interactive shaping: how expectations of future human
reward are discounted when an agent evaluates the quality
of available actions. As we detail in Section II, past work
on learning from human reward has consistently employed
relatively high discount rates (some of which are previously
unreported but were ascertained through email with the
authors). This trend has gone unnoticed until now; this paper
both identifies and justifies the trend. Besides being a curious
aspect of past work, the question of discounting human
reward is crucial because discounting directly determines
what learning algorithms can be used and the flexibility
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of the agent (discussed in Section III). Additionally, the
comparative analysis within this paper gives structure to the
body of past work on learning from human reward, which
previously lacked comparison between studies.

We are generally interested in the question of how to
perform reinforcement learning with human reward.1 Rein-
forcement learning (RL) [14] without hidden state usually
concerns solving tasks formulated as Markov Decision Pro-
cesses (MDPs), denoted as {S,A, T,R, γ,D}. Here, S and
A are the sets of possible states and actions; T is a function
describing the probability of transitioning from one state to
another given a specific action; R is a reward function, taking
a state and an action as inputs; γ is a discount factor; and D
is the distribution of start states for each learning episode. RL
algorithms seek to learn policies (π : S → A) for an MDP
that maximize return from each state-action pair, Qπ(s, a),
where Qπ(s, a) =

∑t
t=0Eπ[γ

tR(st, at)]. We refer to such
return-maximizing policies as MDP-optimal.

In this paper, we do not focus on designing algorithms that
achieve MDP-optimal behavior. Rather, we investigate how
to define an MDP such that MDP-optimal behavior performs
well on the task the trainer intends to teach, as measured by
a task performance metric τ . This problem is challenging
because we, as algorithm designers, cannot specify the re-
ward function, leaving that duty to the human trainer. But the
discount factor can be controlled; we investigate the effect
of this parameter in our experiments.

We specify MDPs in which the reward function is a pre-
dictive model of human reward, R̂H : S ×A→ R, creating
an MDP {S,A, T, R̂H , γ,D}. If an agent knows such an
MDP, it may find the MDP-optimal policy, but that policy
is not guaranteed to be the best possible policy according
to τ . Indeed each choice of γ will lead to a different MDP-
optimal policy. We ask the following experimental question:
what discount factor maximizes the MDP-optimal policy’s
task performance, measured by τ?2 In other words, we are
exploring the space of the agent’s objective, searching for
the objective that when maximized leads to the best task
performance (the trainer’s objective).

This paper presents an application of model-based RL
to learning from human reward (though this contribution
is not our focus), where the reward function is learned
from a human trainer and the transition function may be
given, as it is in our experiments, and the agent plans with
the two models. We find the model-based approach more
informative than model-free RL because giving the agent
knowledge of the MDP specification allows an agent to
learn policies that perform well on the MDP more quickly,



making agent behavior more effectively reflect the current
R̂H , approaching and often achieving MDP-optimal behavior
that allows evaluation of the MDP specification itself.

We focus on episodic tasks [14] that are goal-based,
meaning that the agent’s task is to reach one or more
goal states, after which the learning episode ends, a new
episode starts with state chosen independently of the reached
goal state, and the subsequently experienced reward is not
attributable to behavior during the previous episode. As we
explore throughout this paper, goal-based tasks have char-
acteristics that make a comparison of different discounting
rates especially informative. Despite our focus on goal-based
tasks, however, we seek an algorithm that effectively learns
in all episodic tasks, whether goal-based or not.

In Section II, past work is briefly reviewed. Section III dis-
cusses the consequences of the two extreme rates of discount-
ing. Section IV presents a hypothesis about discounting—
that maximizing only immediate reward results in the best
task performance—and an intuitive argument for the hypoth-
esis’ likelihood that is built on observations that humans tend
to give more positive reward than negative reward, creating
what we term the positive circuits problem. In Section V, we
describe two empirical analyses of discounting that support
our hypothesis and the intuition behind it, after which we
conclude the paper.

II. PAST WORK ON LEARNING TASKS FROM HUMAN
REWARD

Interestingly, all previous algorithms have discounted more
severely than is typical for MDPs. For episodic tasks, re-
searchers have discounted by γ = 0.75 [16] and γ =
0.9 [15]. In continuing domains, γ = 0.7 [2], γ = 0.75 [13],
γ = 0.9 [8], and γ = 0.99 [10] have been used.3 The γ =
0.99 work is a non-obvious example of high discounting;
with time steps of 5 ms, reward one second ahead is dis-
counted by a factor of approximately 0.134. At the extreme
of this trend, the TAMER framework discounts by γ = 0,
learning a model of human reward that is (because of this
discounting) also an action-value function [4]. This pattern
of myopic maximization of human reward has hitherto not
been identified.

In many of these studies, learning from human reward
is shown to improve in some respect over learning only
from MDP reward4 (sometimes the championed learning
algorithm uses both human and MDP reward and sometimes
also a form of action suggestions) [16], [4], [5], [15]. In
most of the others, learning from human reward is shown
to be effective in a task where specifying an MDP reward
function would be infeasible in the motivating use case [2],
[10] (i.e., training a user-specific policy when the user cannot
program).

III. CONSEQUENCES OF DISCOUNTING

The two extremes of discounting have different advan-
tages, briefly described in this section.

For γ = 1, the agent acts to maximize the undiscounted
sum of future reward. With this discounting, the reward

function could encode a trainer’s desired policy, the trainer’s
idea of the task goal, or some mixture of the two; expression
of a task goal permits simpler reward functions (e.g., 0 for
transitions that reach the goal and -1 otherwise), which could
reduce the need for training, allow the agent to find behaviors
that are more effective than those known by the trainer, and
make the agent’s learned behavior robust to environment
changes that render ineffective a previously effective policy
but leave the purpose of the task unchanged (e.g., when the
MDP-optimal path to a goal becomes blocked, but the goal
remains unchanged). Given a model of system dynamics
(i.e., a transition model) and a planning algorithm, these
advantages become even more pronounced.

For γ = 0, the agent acts myopically to maximize
immediate reward. This objective is simpler algorithmically,
since a discount factor of zero reduces reinforcement learning
to supervised learning. Supervised learning is generally an
easier problem, and such discounting enables the agent
to build upon a larger body of past research than exists
for reinforcement learning, including tools for automatic
selection of features, the representation of the human reward
model, and the algorithm for learning parameters of this
model. A disadvantage of this discounting, on the other hand,
is that the reward model can encode a policy but not more
general goals of the task.

Our ambition in this work is to create a natural interface
for which people generate reward on their own. Accord-
ingly, we observe that algorithm designers should choose
a discounting level that is compatible with human reward
rather than assuming the human trainers will fit their reward
to whatever discounting is chosen. Granted, there appears
to be some flexibility in the choice of algorithm: trainers
can be instructed before they teach, and humans appear to
adapt to the interface and learning algorithm with which
they interact. But it may nonetheless be the case that certain
intuitively appealing algorithms are incompatible with some
or all human training, even after instruction and practice. The
rest of this paper explores such a possibility.

IV. INTUITION FOR INCOMPATIBILITY OF HUMAN
REWARD WITH γ = 1

In this section, we describe our intuition in two parts for
why treating human reward identically to conventional MDP
reward in episodic, goal-based tasks—i.e., using γ = 1—
will often cause minimal task performance, a situation we
call the positive circuits problem.

A. Humans tend to give more positive than negative reward

Thomaz and Breazeal conducted experiments in which
humans train agents in an episodic, goal-based task [16].
Focusing on the first quarter of the training session, when
the agent’s task performance is generally worst, they found
that 16 out of 18 of their subjects gave more instances of
positive reward than of negative reward.

We also examined the balance of positive and negative
reward from previous experiments, specifically from 27
subjects teaching TAMER agents to play Tetris (the control



condition of the “critique experiment” in [3]) and 19 subjects
teaching TAMER agents to perform the mountain car task [4]
(as defined in Sutton and Barto [14]). Comparing the sums
of each trainer’s positive reward values and negative reward
values, they found that 45 of the 46 trainers gave more
positive reward than negative over their training session.5

Based on past experiments, human trainers appear to
generally give more positive reward than negative reward
with remarkable consistency.

B. Consequences of positive reward bias for learning with
large discount factors

In many goal-based tasks, there exist behavioral circuits
that the agent can repeatedly execute, returning to the same or
similar states. Such circuits exist for many MDPs, including
any deterministically transitioning MDP with at least one
recurrent state and any MDP that contains at least one state in
which an agent can remain by taking some action. A simple
example is an agent walking in circles in a navigational task.
For such tasks, given the predominance of positive reward, it
is likely that at least one such circuit will provoke positive net
reward over each iteration of the circuit. Assuming that the
goal-based task is episodic (i.e., a goal state is an absorbing
state that ends a learning episode, a large class of problems),
the MDP’s discount factor γ is conventionally 1. Given that
γ = 1, the expectation of return from states along a net-
positive reward circuit will consequently be infinity, since
the return is the sum of infinitely repeated positive reward.
Therefore, if a circuit exists with net-positive reward, an
MDP-optimal policy for γ = 1 will never reach the goal,
since reaching absorbing state will end accrual of reward,
making the return of a goal-reaching state-action pair finite,
regardless of how large the reward is for reaching the goal.
Thus, we call this issue the positive circuits problem. The
general problem of positive circuits in RL has been discussed
previously [11], [9] but to our knowledge has not been
connected to human-generated reward or episodicity.

Positive circuits can also be problematic at high γ values
that are less than 1. For instance, if γ = 0.99 and some
circuit exists that has an average reward of 0.5 per transition,
expected return from at least one state in this circuit will be
approximately 50 or higher (because

∑∞
t=0 0.5 ∗ γt = 100).

Though finite, such high expectations of return may, despite
the trainer’s best efforts, be larger than the expectation of
return for any path from the state to the goal.

Trainer adaptation may be insufficient to avoid such a
goal-averse result; delivering reward such that there are zero
repeatable circuits of positive net reward may be severely
unnatural for a trainer. Consequently, we hypothesize that
RL algorithms using γ = 0 for human rewards will generally
perform better on the trainer’s task performance metric τ on
goal-based, episodic tasks.

V. EMPIRICAL ANALYSIS

In this section, we present two empirical analyses of the
impact of different discount factors when learning goal-
based, episodic tasks from human reward. Recall that, as
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Fig. 1. Aggregate results for the γ-independent model analysis, showing
mean task performance and mean sum of R̂H -generated reward per episode
for mountain car, over the final 500 episodes of 4000 episodes of learning.

discussed in Section II, maximizing the discounted sum of
human reward is not equivalent to maximizing task perfor-
mance. In fact, it is precisely the relationship between these
two types of objectives that we are investigating.

In both analyses, the model of human reward, R̂H , is
learned through the TAMER framework [4], and the output
of this model provides reward for the agent within an
MDP specified as {S,A, T, R̂H , γ,D}. During training, R̂H
is updated by human reward signals. The agent seeks to
maximize the expectation of the sum of R̂H ’s future output
from any given state, Qπ(s, a) =

∑∞
t=0E[γtR̂H(st, π(st))],

but the agent is evaluated by a task performance metric τ .
From a start state, this return of predicted human reward is
denoted Vπ(so). For both tasks used below, the conventional
MDP specifications (i.e., with hard-coded reward functions)
have γ = 1; thus, at γ = 1 R̂H is being used as if it were
interchangeable with a conventional MDP reward function.

During training for both analyses, human reward was given
via two keys on the keyboard, which mapped to 1 and -1.
This mapping, though not infallible, is an intuitive choice
that is similar to that of related works that explain their exact
mappings [16], [15], [10], [13].6

A. Varying γ with pre-trained human reward models

This first analysis uses 19 fixed R̂Hs learned from
the training logs created from a past experiment using
TAMER [4], taken from the third run of 19 trainers of the
mountain car task. In mountain car, a simulated car must
accelerate back and forth across two hills to reach the top of
one. Each of these R̂Hs provide reward for an RL algorithm
at various discount factors. We call this experiment the “γ-
independent model experiment” because the human reward
data was gathered under γ = 0 discounting, which differs
from the discounting of most of our experimental conditions.
We discuss possible training bias caused by such mismatched
training and testing at the end of this section.

The RL algorithm is an enhanced Sarsa(λ) algorithm that
exhaustively searches a transition tree up to 3 steps ahead.7

For these experiments, the agents learn from R̂H for 4000
episodes, and episodes are terminated (with an update of
0 reward) if the goal is not attained after 400 time steps,
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Fig. 2. (a) Non-aggregate version of the results in Figure 1, showing learned task performance over 500 episodes after 3500 episodes of learning (left)
and mean total reward per episode over these final 500 episodes (right) for each of the 19 trainer models. Gray shading in the “Human reward” column
indicates the inclusive range of γ values at which the agent’s task performance is minimal (-400 per episode). (b) Learning curves at γ = 1, showing
mean task performance over 100 episode intervals for each trainer model.

limiting the agent’s maximum return to a finite value.

The R̂Hs—the trainer models—were learned with the
same linear representation over Gaussian RBF features that
was used during the live training session, updating by incre-
mental gradient descent [4].8

Figure 1 displays mean task performance and mean total
reward per episode for each tested discount factor across all
19 R̂H models. Additionally, Figure 2 displays the same data
for each model separately to allow further inspection and to
show the consistency of qualitative results between various
models. We consider final performance to be over the last

500 episodes of learning.

Most importantly, at final performance all trainer models
led to the worst possible return at γ = 1. With γ = 0.99,
18 models led to minimal return. We visually examined
agents learning at γ = 1 from five of the trainer models;
each agent exhibited a circuitous behavior, indicating the
positive circuits problem is likely responsible for minimal
task performance. Indeed, the mean sum of predicted human
reward per episode increases as performance decreases, as
can be seen in the plots of the final task performance with
each trainer model (Figure 2). For all 19 trainer models, the



mean reward accrued per episode is higher at discount factor
of 1 than 0. Further, for almost every trainer, at every γ value
that leads to worst-possible task performance (i.e., values
shaded gray in the “Human reward” column of Figure 2),
the corresponding mean total reward per episode is higher
than at all γ values that lead to better performance. The three
exceptions (trainer models 2, 3, and 6) break this general
observation by small margins, 15% or less.

Two general patterns emerge. We have noted the first:
performance decreases as the discount factor increases.
Secondly, agent algorithms also accrue higher amounts of
predicted human reward as the discount factor increases.
In other words, best task performance is not aligned with
behavior that accrues the most predicted human reward.9

Figure 2(b) shows learning curves at 100-episode intervals
for a single run at γ = 1 for each trainer model. Good initial
performance lasts for a varying amount of time but then
degrades to worst-possible performance quickly. In the plots,
this degradation occurs during the intervals with intermediate
performance.

There is one important caveat to the conclusions we draw
from this γ-independent model analysis. Training occurred
with TAMER algorithms, effectively at γ = 0. We strongly
suspect that trainers adjust to the algorithm with which they
interact; if the agent is maximizing immediate reward, a
trainer will likely give more reward for immediately pre-
vious behavior. Only a γ-dependent model analysis—as we
perform in the following experiment—will address whether
this caveat of trainer adjustment has affected our conclusions.

B. Setting γ before training human reward models

!" #

Fig. 3. A screenshot of the
grid-world task used in the second
experiment. To communicate the
agent’s actions and state transi-
tions to the trainer, the simulated
robot’s eyes point in the direction
of the last action and wheel tracks
connect the agent’s last occupied
cell to its current location. Start
and goal cells are labeled ’S’ and
’G’ respectively.

In the analysis described
in this section, as in the γ-
independent model analysis
in the previous section, the
human reward model R̂H is
learned by TAMER and pro-
vides predictions that are in-
terpreted as reward by an RL
algorithm. But unlike the pre-
vious analysis, R̂H is learned
while performing reinforce-
ment learning, and the RL al-
gorithm selects actions while
learning R̂H—not after R̂H is
learnt under TAMER’s γ = 0
discounting. Thus the human
trainer will be adapting to
the same algorithm, with the
same γ, that is being tested.

Because the agent in this
experiment learns from a fre-
quently changing reward function, behaving optimally with
respect to the current reward function is difficult. Our choice
of task and RL algorithm creates approximately MDP-
optimal behavior with small lag in responding to changes
to the reward function, a lag of a few time steps or less.
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Fig. 4. Success rates for the grid-world experiment by discount factor.

The task is a grid world with 30 states, shown in Figure 3.
At each step, the agent acts by moving up, down, left, or
right, and it cannot pass through walls. Task performance is
measured as the time to reach the goal. The agent always
starts a learning episode in the state labeled “S” in Figure 3.
The shortest path from the start state requires 19 actions.
Each time step lasts approximately 800 ms.

The reinforcement learning algorithm is value itera-
tion [14], except that instead of iterating until state values
converge, one update sweep over all of the states occurs
each 20 ms, creating 40 sweeps per step. At each step, the
agent greedily chooses the action that maximizes predicted
return for the current state, as calculated by a one-step
lookahead for each action, using the predicted human reward
and discounted value of the next state.

The TAMER module learns and represents the human
reward model R̂H as a linear model of Gaussian RBFs. One
RBF is centered on each cell of the grid world, effectively
creating a pseudo-tabular representation that generalizes
slightly between nearby cells.10

The experiments were conducted through subjects’ web
browsers via Amazon Mechanical Turk. Subjects were ran-
domly given an algorithm using one of five different discount
factors: 0, 0.7, 0.9, 0.99, and 1. For these five conditions,
the respective number of subjects was 10, 8, 10, 7, and
7.11 Subjects were prepared with video instructions and a
period of controlling the agent followed by a practice training
session. The real training session stopped after the agent
reached the goal 5 times or after 300 steps, whichever came
first.

Figure 4 shows the success rate of trained agents by
condition, dividing them among those that never reach the
goal, reach the goal 1–4 times, and reach the goal the
maximum 5 times. Task performance consistently worsens
as the discount factor increases, a pattern supported by
significance testing. Fisher’s Tests compared outcomes of
reaching the goal all 5 times or not by condition: between
γ = 0 and γ = 1, p = 0.0006 (extremely significant);
between γ = 0 and γ = 0.9, p = 0.0325 (significant); and
between γ = 0 and γ = 0.7, p = 0.4444 (not significant).

To evaluate the intuition given in Section IV for why
γ = 1 discounting might be problematic in a goal-based
episodic task, we examine the ratio of cumulative positive
reward to cumulative negative reward given by successful
trainers in each condition, shown in Figure 5. Success
appears highly related to this ratio; in Figure 5, we are



able to draw a dividing line at each condition between
all agents that never reach the goal and all other, more
successful agents. Additionally, the ratio of this division
between success and failure monotonically decreases as the
discount factor increases, which supports our conjecture that
the positivity of human reward becomes more problem-
atic as the discount factor increases (Section IV). Without
recognition of the positive circuits problem (Section IV),
this pattern of lower-performing agents getting more reward
would be quite counter-intuitive. Further, negative Spearman
correlations between discount factor and these ratios are
extremely significant both for all trainers and for only trainers
whose agents reached the goal once or more (p <= 0.0005),
but the correlation when considering only goal-reaching
trainers is stronger (ρ = −0.7594, compared to ρ = −0.543
for all trainers). We conjecture that γ affects ratios by both
filtering out trainers that give too much positive reward in
conditions of higher γs and by pressuring trainers to adjust
their ratio in response to the agent. In surveys given after
training, at least one trainer, from the γ = 0.9 group, spoke
of his attempts to adapt to the agent: “When [the reward]
key is stroked there is not much response in the robot. Only
[the punishment] key stroke worked.”

Reward is predominately positive (a ratio greater than 1)
for 66.7% of trainers in this experiment. Though this result
supports the conjecture that human reward generally has
a positive bias, we do see a higher incidence of negative
training than did past work (see Section II), mostly from
higher γ values than had previously been reported.

After training, there was at least one behavioral circuit
with net-positive reward in 35 of the 42 MDPs created
from trainers’ reward models. In other words, 83.3% of the
trained agents would exhibit the positive circuits problem if
learning with γ = 1. Half of the predominately negative
trainers created positive circuits. Those without positive
circuits all had positive-to-negative reward ratios below 0.63
and generally were from higher γ experimental groups: one
from 0.7 and two each from 0.9, 0.99, and 1.

VI. CONCLUSION

Given a reward function—a model of human reward in this
paper—the choice of γ determines the MDP-optimal poli-
cies. We investigate which γs create MDP-optimal policies
that perform best on the task performance metric τ that the
trainer seeks to maximize. The empirical results described
in Section V indicate that MDP-optimal policies defined by
low γ values (e.g., 0) translate to the best task performance
in goal-based, episodic tasks. Consequently, human reward
cannot naively be learned from as if it is conventional
MDP reward, an approach that would entail high discount
factors and is shown here to potentially lead to minimal
task performance. Further, the results lend credence to the
prevalence of the positive circuits problem (Section IV),
our speculative explanation for the relationship between
discounting and task performance: the positivity of human
reward will lead to infinite, goal-avoidant behavioral circuits.
More specifically, Section V-A demonstrates that raising the
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Fig. 5. Ratio of cumulative positive reward to cumulative negative
reward given by each trainer, divided by discount factor condition and task
performance. Jitter has been added along the x-axis for readability. For each
condition, a horizontal line was placed above the mark for the highest ratio
at which a subject trained the agent to reach the goal at least once.

discount factor—with static human reward models that are
successful at lower discount rates—can cause an RL agent
to accrue more cumulative human reward while performing
worse on the task. And in Section V-B, the rate of successful
training and the ratio of the total positive reward to total
negative reward by successful trainers monotonically decline
as the discount factor increases.

Since TAMER, with γ = 0, has been implemented suc-
cessfully to train episodic tasks that are not goal-based (in
Tetris [4], keepaway soccer [12], and cart pole [7]), we
suspect that further investigation will reveal that γ = 0
generally results in the best task performance in common
episodic tasks, goal-based and otherwise.

This paper represents a step forward in the effort to create
effective algorithms for learning from human reward. We
note, however, that more analysis is required before one
can decisively conclude that γ = 0 is ideal for learning
from human reward, at which point the phrase “human
reward” may need to be exchanged for terminology that
does not confuse this form of feedback with reward from
reinforcement learning. Changing the mapping of keys to
scalar values, the instructions to trainers, and our algorithmic
choices—though all carefully chosen to avoid overt bias—
might create qualitatively different results.

Additionally, our argument that high discount fac-
tors can lead to infinite circuits—and thus minimal task
performance—is specific to episodic tasks. An intriguing
direction of inquiry, which we are currently undertaking, is
whether the results will change if the task is made continuing
in the eyes of the agent, possibly by creating an experienced
transition between episode-ending states and start states.
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NOTES

1We write “human reward” because we seek algorithms
that capture the simplicity and ease of teaching by reward
and punishment among natural organisms. Further, this usage
is consistent with most past work, fits our inclusion of the
words “reward” and “punishment” in instructions to trainers,
and may be fully correct if human reward is ultimately found
to be equivalent to some form of reward in reinforcement
learning. We recognize that we may ultimately find that
this form of feedback does not map to “reward” as it is
used in reinforcement learning, necessitating a change of
terminology.

2Though τ may be subjective and flexibly defined in
practice, in this paper the trainer is given a static, pre-
specified τ to maximize, facilitating empirical evaluation of
the MDP’s resultant task performance.

3The discount factors for three publications were learned
through personal correspondence with an authors Isbell [2]
and Morales [15], [8].

4As shorthand, we call traditional reward—predefined
and necessarily Markovian—“MDP reward”, contrasting
with human reward.

5The one exception, a mountain car trainer, gave an equal
amount of positive and negative reward. The Tetris agents of
eight trainers could not clear even 10 lines a game, in many
cases averaging less than a line cleared per game. Yet these
trainers still gave more positive reward than negative reward,
despite dreadful task performance.

6Though giving negative values to all human reward
would communicate that the task is goal-based, this mapping
is not an option because we seek algorithms that are agnostic
to whether the task is goal-based.

7This algorithm estimates return for each possible imme-
diate action by taking the highest-return path on that action’s
branch, where a path’s return is calculated as the sum of
discounted reward along the path and the discounted, learned
return at the leaf state of the path. Action selection is similar
to ε-greedy: there is a probability ε at each step that the agent
will choose a uniformly random action, and otherwise the
action is that with the highest estimated return. Lastly, the
depth of the agent’s exhaustive tree search is chosen from
a Uniform(0,3) distribution at each step to provide a wider
range of experiences. The agent updates its value function
only on experienced transitions. The Sarsa(λ) parameters
are below, following Sutton and Barto’s notation [14]. The
action-value function Q is represented by a linear model over
Gaussian RBF features. For each action, 1600 RBF means
are located on a 40 × 40 evenly spaced grid over the state
space, where the outermost means in each dimension lie on
the extremes of the dimension. Additionally, an activation
feature of 0.1 is added for each action, creating a total of
4803 state-action features. When an action is input to Q,
the features for all other actions are zero. The width σ2 of
the Gaussian RBFs is 0.08, following Sutton and Barto’s
definition of an RBF’s “width” and where the unit is the
distance in normalized state space between adjacent Gaussian

means. All weights of Q are optimistically initialized to
0. The Sarsa(λ) algorithm uses ε-greedy action selection,
starting with ε = 0.1 and annealing ε after each episode by
a factor of 0.998. Eligibility traces were created as replacing
traces with λ = 0.84. The step size α = 0.01.

8Each R̂H trained on the first 20 episodes of its cor-
responding training log. To account for a small step size
(0.001), each R̂H was trained from 100 epochs on the trainer
log. Credit assignment was performed by the “aggregate
reward” method, updating only when reward was received
as in the “reward-only” condition described in Section 3.4.3
of Knox’s dissertation [6].

9In general, the choice of RL algorithm will impact
performance, so one might ask whether the algorithm used
here is actually learning an MDP-optimal policy for its
corresponding human reward model and discount factor. At
γ = 0 and γ = 1, the answer appears to be “yes.” At
γ = 0, the agent optimizes return at tree search depths greater
than 0. When the search depth is zero, it uses the learned
value for Q(s,a), which is roughly equivalent to R̂H(s, a)
after many learning samples at or near (s,a). At γ = 1, if
the RL algorithm learns an infinitely repeatable sequence of
actions with positive net reward, then the disastrous policy
that loops on that sequence is necessarily within the set
of MDP-optimal policies (with respect to predictions of
human reward). As mentioned above, we visually checked
the behavior of five models’ corresponding algorithms while
they exhibited the worst possible performance, and each
agent looped until the episode limit was reached. During
looping, the maximum Q values at all observed states were
positive. Therefore, the results for γ = 0 and γ = 1 can be
considered correct — independent of the RL algorithm used
— with confidence. However, for 0 < γ < 1, another RL
algorithm might learn a policy with a higher mean RĤ(so)
than the mean return in these results.

10Each RBF has a width σ2 = 0.05, where 1 is the
distance to the nearest adjacent RBF center, and the linear
model has an additional bias feature of constant value 0.1.
R̂H is updated with new feedback by incremental gradient
descent with a step size of 0.2. In accordance with the most
recent version of TAMER [6], we used aggregate reward
for credit assignment with a probability distribution over
feedback delay of Uniform(-0.4 seconds, -0.15 seconds)
(with negative values because the algorithm looks backwards
in time from the feedback signal to potentially targeted
events), and updates occurred at every step regardless of
whether reward was provided.

11Variation in subject numbers comes from a few user
errors (usually not typing in their experimental condition
correctly), errors in logging, and the removal of 3 subjects
for insufficient feedback (the 1 removed subject who gave
any feedback had a feedback-instances-to-time-steps ratio of
0.01.; subjects who were retained had ratios above 0.1).


