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COMPUTER CODE FOR INTERPRETING 13C NMR RELAXATION 
MEASUREMENTS WITH SPECIFIC MODELS OF MOLECULAR MOTION:  THE 

RIGID ISOTROPIC AND SYMMETRIC TOP ROTOR MODELS AND THE FLEXIBLE 
SYMMETRIC TOP ROTOR MODEL 

 
 

1. INTRODUCTION 
 
Nuclear magnetic resonance (NMR) spectroscopy is a tremendously powerful 

technique for analyzing the structure, conformation, and architecture of molecules and molecular 
systems.  Both one- and two-dimensional methods have provided valuable information for 
molecules ranging in size from the simplest solvent molecules to extremely large protein 
complexes.  Another valuable application of NMR spectroscopy concerns the property of 
molecular motion, which is related to many physical, and even biological, functions of molecules 
in solution.  Investigating the motional dynamics of molecular systems provides not only 
complementary information about structure and conformation, but also a deeper insight into the 
physical behavior of the molecules in general and the biological properties of molecules from 
living systems. 

 
NMR spectroscopy has long been exploited to evaluate molecular motions, and 

has been extensively applied to dynamic problems for many different types of molecules and 
molecular complexes (Lyerla and Levy, 1974; Heatley, 1979).  In particular, carbon-13 nuclear 
magnetic resonance (13C NMR) relaxation measurements can be used to simultaneously evaluate 
motion at several different carbon sites on a molecule’s framework.  The NMR signal of each 
carbon nucleus is associated with a set of relaxation parameters that reflect the average 
interaction of that nucleus with the environment.  Such 13C relaxation parameters, including the 
spin-lattice relaxation time (T1), spin-spin relaxation time (T2), and the nuclear Overhauser effect 
(NOE), are related to the spectral density, or power spectrum, of local magnetic fields that are 
generated by the atomic and electronic environment of the nucleus.  Modulated by the overall 
molecular rotational reorientation, or the tumbling of the molecule in solution, together with its 
internal motions (motions involving parts of the molecule such as rotations of methyl groups), 
these local fields can promote relaxation when they have a frequency component at or near the 
Larmor frequency of the nucleus.  This provides a direct link between nuclear magnetic 
relaxation and molecular motion. 

 
The persistence of the fluctuating local fields before they are averaged to zero by 

molecular motion, and hence their effectiveness in producing relaxation, is described by a time-
correlation function.  Because this function embodies all of the information about the 
mechanisms and rates of motion for molecules, obtaining it is the crucial point for a quantitative 
interpretation of relaxation data.  As described herein, the spectral-density and time-correlation 
functions are Fourier transform pairs that interrelate motional frequencies (the spectral density 
function and frequency domain) and motional rates (the time-correlation function and time 
domain).  In the simplest case, the tumbling of a rigid (no internal motions) molecule is 
described by a single correlation time.  This is the rigid isotropic rotor model, which is used to 
describe the molecular tumbling of highly symmetrical molecules such as methane or fullerines 
(buckyballs).  
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A second model used for rigid molecules is based on the rotational reorientation 

of a prolate ellipsoid (Woessner, 1962).  These ellipsoids are often used as an approximation to 
symmetric top molecules such as a helix, and the feasibility and reasonableness of this practice 
has been discussed elsewhere (Torchia et al., 1975; Schleich et al., 1989).  This rigid symmetric 
top rotor model includes two correlation times for describing molecular rotational reorientation 
about the ellipsoid minor and major axes.  In addition, the model can be modified to include the 
effects of internal motions, giving a third model, the flexible symmetric top rotor model, used to 
represent flexible helical structures such as DNA fragments (Withka et al., 1991).  This report 
reviews the fundamental theory and selected mathematical results that were created to model T1, 
T2, and NOE measurements in terms of the three models of overall molecular rotational 
reorientation.  All three models are illustrated in Figure 1. 

 

 
Figure 1.  Models of overall molecular rotational reorientation.  τc is the correlation time 
describing the molecular tumbling of an isotropic rotor.  The model is commonly used for highly 
symmetric, small molecules and for symmetric globular proteins.  τx and τz are the correlation 
times for molecular tumbling about the minor (x) and major (z) axes, respectively, of a 
symmetric top rotor, which is represented as a prolate ellipsoid.  The model is typically used for 
molecular helices such as small fragments of DNA and α-helices.  The flexible symmetric top 
rotor superimposes an effective correlation time, τe, onto a symmetric top rotor to account for 
internal motion. 
 
 
2. THEORY 

 
The purpose of this section is to outline some fundamental aspects as a framework 

for discussing the quantitative features of nuclear magnetic relaxation and to specifically 
describe how simple 13C relaxation theory is used to describe quantitatively simple molecular 
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motions.  More-detailed accounts of nuclear magnetic relaxation can be found in a number of 
basic textbooks (i.e., Farrar and Becker, 1971; Fukushima and Roeder, 1981; Harris, 1986). 

 
 
2.1 Principles of 13C Relaxation 

 
Magnetic relaxation arises from fluctuating terms in the spin Hamiltonian.  By far, 

the most-important term for organic molecules is the intramolecular dipole–dipole interaction, 
which is time-dependent because of molecular rotation.  The relaxation times of 13C nuclei in 
13CHn groups (n > 0) are dominated by the dipolar interactions with their attached protons, with 
very few exceptions (Heatley, 1979).  Because the 13C–1H bond length remains constant to a 
high degree of accuracy from one organic molecule to another, 13C relaxation times are a reliable 
probe for molecular mobility.  13C relaxation times are normally measured with full proton 
decoupling, and under this condition, the T1 and T2 values for a 13C nucleus in a 13CHn group that 
is relaxed solely by interaction with the attached protons is given by (Doddrell et al., 1972) 
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where γH and γC are the nuclear magnetogyric ratios for protons and 13C nuclei, respectively;  
ωH and ωC are the resonance frequencies for protons and 13C nuclei, respectively; µ0 is the 
permeability of free space (4π × 10–7 Hm–1); and rCH is the internuclear distance (assumed to be a 
constant 1.09 Å).  The J(ω) terms are the spectral density functions for specific frequencies, 
which are described in Section 2.2. 

 
Irradiation of the protons gives rise to an enhancement of the integrated 13C signal 

intensity due to a 13C–1H NOE (Doddrell et al., 1972).  If the protons are completely saturated, 
the NOE enhancement factor, commonly designated as NOEF or ηC, is given by 
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where Sd and S0 are the 13C integrated intensities with and without proton irradiation, 
respectively.  Some investigators report NOE values directly rather than ηC, which are related by 
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2.2 Spectral Density Functions 
 
For any one value of ω, Jn(ω) is defined by 
 

( ) ( ) ττω deGJ i
nn ∫

+∞

∞−

−= ωτ                                                         (5) 

 
where Gn(τ) is the autocorrelation function for all time-dependent motional events contributing 
to the reorientation of the 13C–1H bond vector in a laboratory-fixed frame 
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The equation states that Gn(τ) is the ensemble average (conformational average) of all 13C–1H 
dipole–dipole interactions contributing to the relaxation of the 13C signal.  Each interaction is 
defined in terms of a space function evaluated at time t, and later time t + τ; these are designated 
as Fn(t) and Fn(t + τ) in the equation, respectively.  The asterisk in the Fn(t + τ) term designates 
that its value may include contributions from magnetic field strength inhomogeneities in addition 
to those from relaxation.  The space functions include an angle ρ that relates the orientation of 
the 13C–1H bond vector to that of the NMR spectrometer static magnetic field (the z axis of a 
Cartesian coordinate system fixed in the laboratory frame).  There is a single space function for 
each dimension in three-dimensional space: 
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In addition, when the value of rCH is time-dependent, it should be included in a refined definition 
of Gn(t).  When a rigid molecule reorients by isotropic rotational diffusion (see Figure 1), Gn(t) is 
exponential 
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because the quantities Fn(t) are defined to give the unit mean square.  Therefore, the subscript n 
on Jn(ω) is dropped henceforth, and J(ω) takes the familiar form 
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Woessner (1962) derived the J(ω) for anisotropic rotational reorientation in a 
manner parallel to that described for the isotropic case.  Full anisotropic reorientation assumes 
that rotational reorientation about each of the orthogonal axes in three-dimensional space (the x, 
y, and z axes) is unique and therefore is represented by three unique correlation times.  The 
symmetric top rotor is a special case of this model where the molecular tumbling about two of 
the three axes is identical (degenerate), and both can be represented by a single correlation time 
to give a total of two unique correlation times (τx and τz in Figure 1).  The identical tumbling 
rates can arise from molecular symmetry, which is why the model is used for helical molecules.  
The J(ω) for a rigid symmetric top rotor can be derived by replacing τc in eq 8 with an effective 
correlation time that relates the 13C–1H relaxation vector to the major axis (τz) with an angle, β.  
Expressed in terms of τx and τz, J(ω) takes the following form: 
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In cases where τx = τz, the equation reduces to the isotropic rotor J(ω) shown in eq 8, regardless 
of the value for β. 

 
Equation 8 can also be modified to include the effects of internal motion for a 

symmetric top rotor by substituting τc with a different effective correlation time, designated 
herein as τe.  Described by Withka and coworkers (1991), τe not only relates the 13C–1H 
relaxation vector to τz with β, but also relates the internal diffusion of the 13C–1H relaxation 
vector within an ellipsoid cone (refer to the symmetric top rotor with internal motions model in 
Figure 1).  The expression for τe is  
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In the equation, θ is the square root of the mean square polar angle of motion, and ε is the square 
root of the mean square azimuthal angle of motion.  In the absence of internal motions (θ = ε = 
0°), the expression that is derived from substituting τc in eq 8 with τe reduces to the symmetric 
top rotor J(ω) in eq 9. 
 
 
3. COMPUTER CODE DEVELOPMENT 

 
The software program MLAB (Civilized Software, Inc.; Silver Spring, MD) was 

used to create mathematical modeling programs to plot T1, T2, and ηC values as a function of 
correlation time for the rigid isotropic and symmetric top rotor models and for the flexible 
symmetric top rotor model.  Magnetic field strengths of 11.75, 16.45, 18.8, and 21.5 T (Tesla; 1H 
Larmor frequencies of 500, 700, 800, and 900 MHz, respectively) were used exclusively, as 
these are commercially available field strengths that are typically found in 13C nuclear magnetic 
relaxation investigations.  The effects of varying β in both symmetric top rotor models were also 
evaluated in detail.  In every case, the computer code was rigorously tested to ensure that their 
results returned the relaxation behavior described in textbooks and the scientific literature.  For 
all calculations, a value of 1.09 Å was used for rCH.  Appendix A contains the computer code 
used to generate Figures 2–8. 

 
 

4. RESULTS 
 
The results for the rigid isotropic rotor are presented to illustrate the general 

behavior of T1, T2, and ηC as a function of τc.  Calculated data for different magnetic field 
strengths are included to illustrate the field strength dependence of nuclear magnetic relaxation.  
The rigid symmetric top rotor results are then presented to show how parameters specific to the 
model affect relaxation behavior.  Data calculated for this model also include rigid isotropic rotor 
data that are provided strictly for comparison, and only a single magnetic field strength is shown 
to ensure that the figures are clearly presented.  The results from the flexible symmetric top rotor 
model are presented last, in a manner revealing how progressively adding internal motion into a 
symmetric top rotor affects τe values. 

 
 

4.1 The Rigid Isotropic Rotor Model 
 
Figure 2 shows rigid isotropic rotor T1 values as a function of τc, which was 

calculated at magnetic field strengths of 16.45, 18.80, and 21.15 T.  The corresponding T2 and ηC 
results are shown in Figures 3 and 4, respectively.  As these relaxation times and ηC values are 
frequency-dependent quantities (see eqs 1–3), their behaviors are closely related to the relative 
magnitudes of ω and τc in eq 8.  For rapid motions (ω << 1/τc), eq 8 becomes 
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and T1, T2, and ηC are all quantities that are not dependent on magnetic field strength, which 
decreases continually as τc increases (motions become slower).  This field strength independence 
for both relaxation times, and their continual decrease associated with increasing τc, are clearly 
shown in Figures 2 and 3 for τc ≤ 10–11 s.  In this region of fast motions, which is the so-called 
extreme narrowing limit, eqs 1–3 simplify to 
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Equation 12 indicates that T1 = T2 in this region, which can be seen by comparing Figures 2 and 
3, while eq 13 shows that ηC also attains its maximum value of 1.988 in this region, which is 
determined directly by the magnetogyric ratios γH and γC.  The latter point is illustrated in 
Figure 4, where the ηC values for all three magnetic field strengths reach this maximum value at 
τc = 10–11 s. 
 

 
Figure 2.  Rigid isotropic rotor T1 as a function of τc.  Results are shown for magnetic field 
strengths of 16.45, 18.80, and 21.15 T. 
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At a Larmor frequency of ω ≈ 1/τc; relaxation is the most effective; J(ω) attains 
its maximum value; and as shown in Figure 2, T1 values reach a minimum.  For longer 
correlation times (ω > 1/τc) outside the extreme narrowing limit, relaxation again becomes less 
effective, and T1 values increase and become frequency-dependent quantities.  This frequency 
dependence is shown in Figure 2 starting at τc ≈ 10–11 s and continues as motion slows.  T2 also 
becomes frequency-dependent at long τc, but unlike T1, T2 decreases continually with τc to the 
limit where motion is considered frozen (Figure 3).  This behavior is due to the zero frequency-
dependence of T2 (compare eqs 1 and 2) arising from fluctuations in the local fields along the 
z direction, which is equivalent in the laboratory-fixed frame and molecular system of 
coordinates.  Furthermore, and as shown in Figure 4, ηC also decreases progressively to lower 
values as motion slows and asymptotically reaches a minimum value of 0.15 for a long τc.  
Therefore, ηC can have values much less than 1.988, despite the fact that dipole–dipole 
interaction is the dominant relaxation mechanism.  The three magnetic field strengths in the 
figure reveal that ηC can also be a frequency-dependent parameter outside of the extreme 
narrowing limit.  Figure 4 shows that as field strength increases, ηC values concomitantly 
decrease in this region. 

Figure 3.  Rigid isotropic rotor T2 as a function of τc.  Results are shown for magnetic field 
strengths of 16.45, 18.80, and 21.15 T. 
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Figure 4.  Rigid isotropic rotor ηC (NOEF) as a function of τc.  Results are shown for magnetic 
field strengths of 16.45, 18.80, and 21.15 T. 

 
 
4.2 The Rigid Symmetric Top Rotor Model 

 
In contrast with the isotropic rotor model, the symmetric top rotor model contains 

three parameters,τx, τz, and β.  A large number of plots can be generated by varying one or more 
of these parameters to illustrate their theoretical effects on nuclear magnetic relaxation.  For 
simplicity, however, figures displaying symmetric top rotor calculations are presented to 
illustrate how varying a single parameter of the model theoretically affects T1 or ηC and returns 
the model to the isotropic rotor model. 
 
4.2.1 Results of Varying β 

 
Figure 5 illustrates the influence of varying β for a rigid symmetric top rotor on  

T1 values.  It is of particular interest to consider the β = 0° curve because this angle orients the  
13C–1H relaxation vector parallel to the ellipsoid long axis, where it is not reoriented by rotation 
about the axis.  The curve, therefore, corresponds to the isotropic reorientation of the 13C–1H 
vector by only τx.  When β > 0°, the contributions of both τx and τz to J(ω) change 
concomitantly, and T1 values change in response.  As β increases from 0°, the τz contribution to 
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J(ω) gradually increases until it reaches a maximum at 90°.  At the same time, the corresponding 
τx contribution gradually decreases to a minimum at this same β value.  Because the T1 curves 
were calculated with τx > τz, the overall apparent effect is the same as that of increasing the 
molecular weight or decreasing the temperature.  As is shown in Figure 5, this results in T1 
values that concomitantly increase for τx < 1/ω (the extreme narrowing region) and decrease for 
larger values of τx, as β increases from 0 to 90°.  Graphically, the entire T1 curve for β = 0° 
appears to be displaced horizontally toward longer τx values (slower rotation) as β approaches 
90°.  As expected, the β = 0° curves for the corresponding T2 and ηC calculations also appear to 
be displaced toward longer τx values as β increases from 0 to 90° (not shown).  Collectively, 
these results demonstrate that there can be a strong dependence on β for relaxation times and ηC 
values.  It is clear from Figure 5 that the curves can provide a reliable estimate of T1 only if the 
value of β for a 13C–1H vector is accurately known. 

 

 
Figure 5.  Changes in symmetric top rotor T1 induced by varying β.  Rigid symmetric top rotor T1 
values are plotted as a function of τx, as calculated for β = 0 (), 30 (– – – –),  
60 (— — —), and 90° (– — – —).  All values were calculated with τx three times larger than τz 
at a magnetic field strength of 18.80 T. 
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For the interpretation of NMR relaxation results with the symmetric top rotor 
model, β values are measured from an assumed or established conformation of the molecule 
under investigation and can have values between 0 and 180°.  As the angles increase from 90°, 
the τz contribution to J(ω) begins to gradually decrease until β = 180°, where the 13C–1H 
relaxation vector is once again parallel to the ellipsoid long axis (as in the case of β = 0°), and τz 
no longer contributes to J(ω).  In concomitant fashion, the τx contribution to J(ω) gradually 
increases to a maximum at β = 180°.  At this point, the symmetric top model returns the isotropic 
model with the reorientation of the 13C–1H vector, which is described once again by only τx.  
This is the opposite behavior from that described previously for β that increase from 0 to 90°, 
and this is reflected in the theoretical relaxation times and ηC values.  For example, as β 
increases from 90°, the β = 90° curve in Figure 5 appears to be displaced back toward shorter τx 
values (faster reorientation) until β = 180°, where the curve returns to and superimposes with the 
β = 0° curve.  Therefore, although Figure 5 only shows data for 0° ≤ β ≤ 90°, the full range of T1 
behavior for 0° ≤ β ≤ 180° is represented in the figure.  As expected, the analogous symmetric 
top rotor T2 and ηC curves for β = 90° also appear to be horizontally displaced in a similar 
manner toward shorter τx values as β increases form  90° (not shown). 

 
4.2.2 Results from Varying τz/τx  

 
The consequences of changing the relative values of the two symmetric top 

correlation times, which are expressed as τz/τx, on nuclear magnetic relaxation are illustrated in 
Figures 6 and 7.  Figure 6 shows the theoretical 18.80 T T1 values as a function of τx using 
β = 60° and three different values of τz/τx, and the corresponding ηC data are shown in Figure 7.  
In both figures, the τz/τx = 1 curve corresponds to the isotropic reorientation of the 13C–1H vector. 

 
The simplest and most-straightforward approach to explaining the effects of 

varying τz/τx is by considering the expression in terms of an effective correlation time (not the τe 
specifically defined in eq 10).  Increasing τz/τx results in a larger values for the effective 
correlation time (slower rotation), which will be directly reflected in the calculated relaxation 
times and ηC values.  For example, Figure 6 reveals that as τz/τx values increase from 1 to 10, T1 
values decrease for all τx < 1/ω (the extreme narrowing region) and increase for larger τx values; 
these are the same results observed when increasing molecular weight or decreasing temperature.  
The figure also shows that the isotropic rotor T1 curve appears to be displaced horizontally 
toward shorter values of τx (faster rotation) when τz/τx is changed from 1 to 10.  An analogous 
horizontal displacement of the isotropic rotor ηC curve is also shown in Figure 7 and also occurs 
for T2 curves (not shown).  Such displacements occur concomitantly for all relaxation times and 
ηC values, as long as τz/τx increases.  However, the amount of this displacement decreases as τz/τx 
values increase because the same increment of τz contributes continually less to the value of τz/τx 
as it increases.  And, as expected, the opposite effect occurs when the value of τz/τx is decreased.  
In Figures 6 and 7 for example, when τz/τx is decreased from 1 to 0.1, the isotropic rotor T1 and 
ηC curves are horizontally displaced toward larger τx values. 
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Figure 6.  Rigid symmetric top rotor T1 as a function of τx for different values of τz/τx.  Results 
were calculated using β = 60°; a magnetic field strength of 18.80 T; and τz/τx values of 0.1, 1,  
and 10. 

 
 

 
Figure 7.  Rigid symmetric top rotor ηC (NOEF) as a function of τx for different values of τz/τx.  
Results were calculated using β = 60°; a magnetic field strength of 18.80 T; and τz/τx values of 
0.1, 1, and 10. 
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4.3 The Flexible Symmetric Top Rotor Model 
 
The consequences of adding internal motion into the symmetric top rotor model 

are most easily demonstrated by using the τe that is defined in eq 10.  Figure 8 shows the change 
in τe for an ellipsoid with τz/τx = 3.5 as a function of β and θ.  The results clearly revealed that in 
the presence of such conformational motion (increasing θ), the dependence of τe on β 
diminishes.  When the extent of internal conformational motion approaches 25°, the β 
dependence of the correlation time is somewhat diminished, and it becomes somewhat negligible 
at around 45° of motion.  In the presence of sufficient internal motion, therefore, the strong 
dependence on β, shown in Figure 5, would significantly diminish, and the displacement of the 
T1 curve toward longer τx as β increases from 0 to 90° would become more modest (not shown). 

 
 

 

 
 

Figure 8.  The diminishing dependence on β induced by increasing internal motion.  The flexible 
symmetric top rotor τe is plotted as a function of β and θ for τz/τx = 3.5.  Values for τe are relative 
to the highest value on the three-dimensional surface, and all angles are shown in degrees. 
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5. DISCUSSION AND CONCLUSIONS 
 
A total of 25 mathematical modeling programs have been developed for the rigid 

isotropic and symmetric top rotor models, as well as for the flexible symmetric top rotor model.  
These modeling programs were used to plot the dependence of T1, T2, and ηC on various 
correlation times.  The programs all used one of four different magnetic field strengths: 11.75, 
16.45, 18.8, or 21.5 T, which are the commercially available field strengths that are commonly 
used for 13C nuclear magnetic relaxation investigations.  All programs were rigorously tested to 
ensure that the results returned were in agreement with the relaxation behavior that was 
described in the textbooks and scientific literature.  Particular attention was given to those 
programs that used the two symmetric top rotor models, as changing their corresponding 
parameters to specific values must return results that are identical to the isotropic rotor or rigid 
symmetric top models.  For example, Figure 5 shows that the rigid symmetric top rotor model 
returned the rigid isotropic rotor model at β = 0°, and Figures 6 and 7 showed this same effect 
when τz/τx = 1.  In a similar manner, the flexible symmetric top rotor model was tested for its 
ability to return the rigid symmetric top rotor model by removing all internal motion.  The end 
result is very robust computer code that can be used for modeling 13C nuclear magnetic 
relaxation data in terms of the three models studied herein.  One useful modification of the 
programs would be to keep the robust mathematical code unaltered while adding new code 
statements that would allow experimental relaxation data to be curve-fit to each of the models 
(Henderson et al., 2003).  Such modifications are currently in progress, along with the creation of 
additional mathematical modeling programs that use statistical distributions of correlation times 
to model very flexible molecules (McCall et al., 1959; Connor, 1964; Schaefer, 1973). 
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ACRONYMS AND ABBREVIATIONS 
 

 
β angle between the 13C–1H bond (13C–1H relaxation vector) and the 

prolate ellipsoid major (z) axis in a symmetric top rotor 
γC magnetogyric ratio for 13C nuclei 
γH magnetogyric ratio for protons 
ε square root of the mean square azimuthal angle of motion for a 

flexible symmetric top rotor 
θ square root of the mean square polar angle of motion for a flexible 

symmetric top rotor 
µ0 permeability of free space 
ρ angle between the 13C–1H bond (13C–1H relaxation vector) and the 

direction of a static magnetic field (the z axis of a Cartesian 
coordinate system fixed in the laboratory frame) 

τc
 isotropic rotational correlation time 

τe flexible symmetric top rotor effective correlation time 
τx

 symmetric top correlation time for rotation about the minor (x) 
axis 

τz
 symmetric top correlation time for rotation about the major (z) 

axis 
ωC

 resonance frequency for 13C nuclei 
ωH resonance frequency for protons 
13C NMR carbon-13 nuclear magnetic resonance 
Fn(t) space function for the nth dimension defined in the laboratory-

fixed frame 
Gn(τ) autocorrelation function for all time-dependent motional events in 

the nth dimension, defined in the laboratory-fixed frame 
J(ω) spectral density function 
NMR nuclear magnetic resonance 
NOE nuclear Overhauser effect 
NOEF nuclear Overhauser effect enhancement factor (also ηC) 
rCH 13C–1H internuclear distance 
Sd 13C signal integrated intensity acquired with proton irradiation 
S0 13C signal integrated intensity acquired without proton irradiation 

t time 
T Tesla (unit of magnetic field strength) 
T1 spin-lattice relaxation time 
T2 spin-spin relaxation time 
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APPENDIX 
 

MLAB CODE USED TO GENERATE FIGURES 2 THROUGH 8 
 
 

A.1 PROGRAM CODE FOR FIGURE 2 
 
"ISOPLOTT1.DO:  A MLAB program which plots {1H}13C T1 values as a function of                   " 
"               correlation time for a rigid isotropic rotor                                    " 
"                                                                                               " 
"              Code for 16.45, 18.80 and 21.15 T static fields                                  " 
"                                                                                               " 
"              WRITTEN 30-31 OCTOBER 2013 BY TERRY J. HENDERSON                                 " 
 
 
/*                                   PLOT WINDOW STATEMENTS                                    */ 
 
DELETE W 
WINDOW -12 TO -6, -1 TO 2 IN W 
XAXIS -12:-6:1&'-1 PT DTICK LABEL -12:-6:1 LABELSIZE .015 FFRACT OFFSET(-.02, -.03) IN W 
YAXIS -12&'-1:2:1 PT LTICK LABEL -1:2:1 LABELSIZE .015 FFRACT OFFSET(-.04, -.007) IN W 
TITLE "ISOTROPIC ROTOR T'.3D'.7S1'1.43S'.3U" AT (.31,.9)FFRACT IN W 
TITLE "21.15 T" AT (.6,.8)FFRACT IN w 
TITLE "16.45 T and" AT (.57,.25)FFRACT IN W 
TITLE "18.80 T (center)" AT (.525,.2)FFRACT IN W 
TITLE "Log '15Tt'R'.3D'.7sc'1.43s'.3U (s)" AT (.41, 0.04) FFRACT IN W 
TITLE "Log T'.3D'.7S1'1.435S'.3U (s)" AT (.06,.38) FFRACT ANGLE 90 IN W 
 
/*                                 SPECTRAL DENSITY FUNCTIONS                                  */ 
 
/*                          For 16.45 T - 700 MHz Operating Frequency                          */ 
 
FUNCTION CAR7(TAU) = (2*TAU)/(1+((1.22367*10^18)*((TAU)^2))) 
FUNCTION DIF7(TAU) = (2*TAU)/(1+((1.08431*10^19)*((TAU)^2))) 
FUNCTION SUM7(TAU) = (2*TAU)/(1+((3.03079*10^19)*((TAU)^2))) 
 
/*                          For 18.80 T - 800 MHz Operating Frequency                          */ 
 
FUNCTION CAR8(TAU) = (2*TAU)/(1+((1.59829*10^18)*((TAU)^2))) 
FUNCTION DIF8(TAU) = (2*TAU)/(1+((1.41614*10^19)*((TAU)^2))) 
FUNCTION SUM8(TAU) = (2*TAU)/(1+((3.95845*10^19)*((TAU)^2))) 
 
/*                          For 21.15 T - 900 MHz Operating Frequency                          */ 
 
FUNCTION CAR9(TAU) = (2*TAU)/(1+((2.023*10^18)*((TAU)^2))) 
FUNCTION DIF9(TAU) = (2*TAU)/(1+((1.79226*10^19)*((TAU)^2))) 
FUNCTION SUM9(TAU) = (2*TAU)/(1+((5.01002*10^19)*((TAU)^2))) 
 
/*                                     EXPRESSIONS FOR T1                                      */ 
 
/*                          For 16.45 T - 700 MHz Operating Frequency                          */ 
 
FUNCTION T1L(TAU) = (9.30908*10^-10)/(DIF7(TAU)+(3*CAR7(TAU))+(6*SUM7(TAU))) 
 
/*                          For 18.80 T - 800 MHz Operating Frequency                          */ 
 
FUNCTION T1M(TAU) = (9.30908*10^-10)/(DIF8(TAU)+(3*CAR8(TAU))+(6*SUM8(TAU))) 
 
/*                          For 21.15 T - 900 MHz Operating Frequency                          */ 
 
FUNCTION T1H(TAU) = (9.30908*10^-10)/(DIF9(TAU)+(3*CAR9(TAU))+(6*SUM9(TAU))) 
 
/*                                      OUTPUT STATEMENTS                                      */ 
 
/*                                         For 16.45 T                                         */ 
 
P1 = POINTS(T1L, 1E-12:1E-9:1E-14) 
P2 = POINTS(T1L, 1E-9:1E-6:1E-11) 
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DRAW LOGLOG(P1) 
DRAW LOGLOG(P2) 
 
/*                                         For 18.80 T                                         */ 
 
U1 = POINTS(T1M, 1E-12:1E-9:1E-14) 
U2 = POINTS(T1M, 1E-9:1E-6:1E-11) 
DRAW LOGLOG(U1) LT 2 
DRAW LOGLOG(U2) LT 2 
 
/*                                         For 21.15 T                                         */ 
 
X1 = POINTS(T1H, 1E-12:1E-9:1E-14) 
X2 = POINTS(T1H, 1E-9:1E-6:1E-11) 
DRAW LOGLOG(X1) LT 3 
DRAW LOGLOG(X2) LT 3 
 
VIEW 

 
 

A.2 PROGRAM CODE FOR FIGURE 3 
 
"ISOPLOTT2.DO:  A MLAB program which plots {1H}13C T2 values as a function of                   " 
"               correlation time for a rigid isotropic rotor                                    " 
"                                                                                               " 
"             Code for 16.45, 18.80 and 21.15 T static fields                                   " 
"                                                                                               " 
"             WRITTEN 30-31 OCTOBER 2013 BY TERRY J. HENDERSON                                  " 
 
 
/*                                   PLOT WINDOW STATEMENTS                                    */ 
 
DELETE W 
WINDOW -12 TO -6, -4 TO 2 IN W 
XAXIS -12:-6:1&'-4 PT DTICK LABEL -12:-6:1 LABELSIZE .015 FFRACT OFFSET(-.02, -.03) IN W 
YAXIS -12&' -4:2:1 PT LTICK LABEL -4:2:1 LABELSIZE .015 FFRACT OFFSET(-.04, -.007) IN W 
TITLE "ISOTROPIC ROTOR T'.3D'.7S2'1.435S'.3U" AT (.31,.9)FFRACT IN W  
TITLE "21.15 T" AT (.42,.6) IN W 
TITLE "16.45 T and" AT (.28,.47) IN W 
TITLE "18.80 T (center)" AT (.23,.42) IN W 
TITLE "Log '15Tt'R'.3D'.7sc'1.43s'.3U (s)" AT (.41, 0.04) FFRACT IN W 
TITLE "Log T'.3D'.7S2'1.435S'.3U (s)" AT (.06,.38) FFRACT ANGLE 90 IN W 
 
/*                                 SPECTRAL DENSITY FUNCTIONS                                  */ 
 
/*           Zero-Frequency Spectral Density (independent of magnetic field strength)          */ 
 
FUNCTION ZER(TAU) = 2*TAU 
 
/*Spectral Densities for Protons, Carbon-13 Nuclei, and Both the Sum and Difference Frequencies*/ 
/*                         (all dependent on magnetic field strength)                          */ 
 
/*                          For 16.45 T - 700 MHz Operating Frequency                          */ 
 
FUNCTION CAR7(TAU) = (2*TAU)/(1+((1.22367*10^18)*((TAU)^2))) 
FUNCTION PRO7(TAU) = (2*TAU)/(1+((1.93518*10^19)*((TAU)^2))) 
FUNCTION DIF7(TAU) = (2*TAU)/(1+((1.08431*10^19)*((TAU)^2))) 
FUNCTION SUM7(TAU) = (2*TAU)/(1+((3.03079*10^19)*((TAU)^2))) 
 
/*                          For 18.80 T - 800 MHz Operating Frequency                          */ 
 
FUNCTION CAR8(TAU) = (2*TAU)/(1+((1.59829*10^18)*((TAU)^2))) 
FUNCTION PRO8(TAU) = (2*TAU)/(1+((2.52746*10^19)*((TAU)^2))) 
FUNCTION DIF8(TAU) = (2*TAU)/(1+((1.41614*10^19)*((TAU)^2))) 
FUNCTION SUM8(TAU) = (2*TAU)/(1+((3.95845*10^19)*((TAU)^2))) 
 
/*                          For 21.15 T - 900 MHz Operating Frequency                          */ 
 
FUNCTION CAR9(TAU) = (2*TAU)/(1+((2.023*10^18)*((TAU)^2))) 
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FUNCTION PRO9(TAU) = (2*TAU)/(1+((3.19884*10^19)*((TAU)^2))) 
FUNCTION DIF9(TAU) = (2*TAU)/(1+((1.79226*10^19)*((TAU)^2))) 
FUNCTION SUM9(TAU) = (2*TAU)/(1+((5.01002*10^19)*((TAU)^2))) 
 
/*                                     EXPRESSIONS FOR T2                                      */ 
 
/*                          For 16.45 T - 700 MHz Operating Frequency                          */ 
 
FUNCTION T2L(TAU) = (1.86182*10^-
9)/((4*ZER(TAU))+DIF7(TAU)+(3*CAR7(TAU))+(6*PRO7(TAU))+(6*SUM7(TAU))) 
 
/*                          For 18.80 T - 800 MHz Operating Frequency                          */ 
 
FUNCTION T2M(TAU) = (1.86182*10^-
9)/((4*ZER(TAU))+DIF8(TAU)+(3*CAR8(TAU))+(6*PRO8(TAU))+(6*SUM8(TAU))) 
 
/*                          For 21.15 T - 900 MHz Operating Frequency                          */ 
 
FUNCTION T2H(TAU) = (1.86182*10^-
9)/((4*ZER(TAU))+DIF9(TAU)+(3*CAR9(TAU))+(6*PRO9(TAU))+(6*SUM9(TAU))) 
 
/*                                      OUTPUT STATEMENTS                                      */ 
 
/*                                         For 16.45 T                                         */ 
 
Q1 = POINTS(T2L, 1E-12:1E-9:1E-14) 
Q2 = POINTS(T2L, 1E-9:1E-6:1E-11) 
DRAW LOGLOG(Q1) 
DRAW LOGLOG(Q2) 
 
/*                                         For 18.80 T                                         */ 
 
V1 = POINTS(T2M, 1E-12:1E-9:1E-14) 
V2 = POINTS(T2M, 1E-9:1E-6:1E-11) 
DRAW LOGLOG(V1) LT 2 
DRAW LOGLOG(V2) LT 2 
 
/*                                         For 21.15 T                                         */ 
 
Y1 = POINTS(T2H, 1E-12:1E-9:1E-14) 
Y2 = POINTS(T2H, 1E-9:1E-6:1E-11) 
DRAW LOGLOG(Y1) LT 3 
DRAW LOGLOG(Y2) LT 3 
 
VIEW 
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A.3 PROGRAM CODE FOR FIGURE 4 
 
"ISOPLOTNOE.DO:  MLAB program which plots {1H}13C NOEF values as a function of                  " 
"                correlation time for a rigid isotropic rotor                                   " 
"                                                                                               " 
"             Code for 16.45, 18.80 and 21.15 T static fields                                   "           
"                                                                                               " 
"             WRITTEN 30-31 OCTOBER 2013 BY TERRY J. HENDERSON                                  " 
 
 
/*                                   PLOT WINDOW STATEMENTS                                    */ 
 
DELETE W 
WINDOW -11 TO -8, 0 TO 2.5 IN W 
XAXIS -11:-8:1&'0 PT DTICK LABEL -11:-8:1 LABELSIZE .015 FFRACT OFFSET(-.02, -.03) IN W 
YAXIS -11&'0:2.5:.5 PT LTICK LABEL 0:2.5:.5 LABELSIZE .015 FFRACT OFFSET(-.06, -.007) IN W 
TITLE "ISOTROPIC ROTOR NOEF" AT (.30,.9)FFRACT IN W  
TITLE "18.8 T (center)" AT (.15,.4)FFRACT IN w 
TITLE "and 21.15 T" at (.18,.35)FFRACT IN W 
TITLE "16.45 T" AT (.4,.65)FFRACT IN W 
TITLE "Log '15Tt'R'.3D'.7sc'1.43s'.3U (s)" AT (.41, 0.04) FFRACT IN W 
TITLE "NOEF" AT (.055,.449) FFRACT ANGLE 90 IN W 
 
/*                                 SPECTRAL DENSITY FUNCTIONS                                  */ 
 
/*                          For 16.45 T - 700 MHz Operating Frequency                          */ 
 
FUNCTION CAR7(TAU) = (2*TAU)/(1+((1.22367*10^18)*((TAU)^2))) 
FUNCTION DIF7(TAU) = (2*TAU)/(1+((1.08431*10^19)*((TAU)^2))) 
FUNCTION SUM7(TAU) = (2*TAU)/(1+((3.03079*10^19)*((TAU)^2))) 
 
/*                          For 18.80 T - 800 MHz Operating Frequency                          */ 
 
FUNCTION CAR8(TAU) = (2*TAU)/(1+((1.59829*10^18)*((TAU)^2))) 
FUNCTION DIF8(TAU) = (2*TAU)/(1+((1.41614*10^19)*((TAU)^2))) 
FUNCTION SUM8(TAU) = (2*TAU)/(1+((3.95845*10^19)*((TAU)^2))) 
 
/*                          For 21.15 T - 900 MHz Operating Frequency                          */ 
 
FUNCTION CAR9(TAU) = (2*TAU)/(1+((2.023*10^18)*((TAU)^2))) 
FUNCTION DIF9(TAU) = (2*TAU)/(1+((1.79226*10^19)*((TAU)^2))) 
FUNCTION SUM9(TAU) = (2*TAU)/(1+((5.01002*10^19)*((TAU)^2))) 
 
/*                                    EXPRESSIONS FOR NOEF                                     */ 
 
/*                          For 16.45 T - 700 MHz Operating Frequency                          */ 
 
FUNCTION NOEFL(TAU) = 3.97607*(((6*SUM7(TAU))-DIF7(TAU))/(DIF7(TAU)+(3*CAR7(TAU))+(6*SUM7(TAU)))) 
 
/*                          For 18.80 T - 800 MHz Operating Frequency                          */ 
 
FUNCTION NOEFM(TAU) = 3.97607*(((6*SUM8(TAU))-DIF8(TAU))/(DIF8(TAU)+(3*CAR8(TAU))+(6*SUM8(TAU)))) 
 
/*                          For 21.15 T - 900 MHz Operating Frequency                          */ 
 
FUNCTION NOEFH(TAU) = 3.97607*(((6*SUM9(TAU))-DIF9(TAU))/(DIF9(TAU)+(3*CAR9(TAU))+(6*SUM9(TAU)))) 
 
/*                                      OUTPUT STATEMENTS                                      */ 
 
/*                                         For 16.45 T                                         */ 
 
R1 = POINTS(NOEFL, 1E-12:1E-9:1E-14) 
R2 = POINTS(NOEFL, 1E-9:1E-6:1E-11) 
DRAW LOGLIN(R1) 
DRAW LOGLIN(R2) 
 
/*                                         For 18.80 T                                         */ 
 
W1 = POINTS(NOEFM, 1E-12:1E-9:1E-14) 
W2 = POINTS(NOEFM, 1E-9:1E-6:1E-11) 
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DRAW LOGLIN(W1) LT 2 
DRAW LOGLIN(W2) LT 2 
 
/*                                         For 21.15 T                                         */ 
 
Z1 = POINTS(NOEFH, 1E-12:1E-9:1E-14) 
Z2 = POINTS(NOEFH, 1E-9:1E-6:1E-11) 
DRAW LOGLIN(Z1) LT 3 
DRAW LOGLIN(Z2) LT 3 
 
VIEW 

 
 

A.4 PROGRAM CODE FOR FIGURE 5 
 
"SYMMTOPPLOTT1BYBETA.DO:  A MLAB program that plots {1H}13C T1 values as a function of          " 
"                         correlation times for rigid symmetric top rotors with a tau-x         " 
"                         three-times larger than Tz and beta values of 0, 30, 60 and 90 degrees"                                                                                               
"                                                                                               " 
"             Code is for a 18.80 T static field (800 MHz operating frequency)                  " 
"                                                                                               " 
"             WRITTEN 01 - 02 MAY 2014 BY TERRY J. HENDERSON                                    " 
 
 
/*                                   PLOT WINDOW STATEMENTS                                    */ 
 
DELETE W 
WINDOW -12 TO -6, -1 TO 2 IN W 
XAXIS -12:-6:1&'-1 PT DTICK LABEL -12:-6:1 LABELSIZE .015 FFRACT OFFSET(-.02, -.03) IN W 
YAXIS -12&'-1:2:1 PT LTICK LABEL -1:2:1 LABELSIZE .015 FFRACT OFFSET(-.04, -.007) IN W 
TITLE "SYMMETRIC TOP ROTOR T'.3D'.7S1'1.435S'.3U FOR VARIOUS '15Tb'R' -ANGLES" AT (.08,.94)\ 
     FFRACT IN W 
TITLE "'15Tt'R'.3D'.7sz'1.43s'.3U' /'15Tt'R'.3D'.7sx'1.43s'.3U'  = 8 at 18.8 Tesla" AT (.26,.81)\ 
     FFRACT IN W  
TITLE "Log '15Tt'R'.3D'.7sx'1.43s'.3U (s)" AT (.41, 0.04) FFRACT IN W 
TITLE "Log T'.3D'.7S1'1.435S'.3U (s)" AT (.06,.38) FFRACT ANGLE 90 IN W 
 
/*                                       TAU-X AND TAU-Z                                       */ 
 
FUNCTION Tz(Tx) = (1/3)*Tx                /* Tau-x is three times as long as tau-z */ 
 
/*                                 SPECTRAL DENSITY FUNCTIONS                                  */ 
 
FUNCTION CAR8(Tx) = (2*((6*Tx)*(((.25*(((3*((COSD(B))^2))-1)^2))/6)+ \ 
     ((.75*((SIND(2*B))^2))/(5+(Tx/Tz(Tx))))+((.75*((SIND(B))^4))/(2+(4*(Tx/Tz(Tx))))))))/ \ 
     (1+((1.59829*10^18)*(((6*Tx)*(((.25*(((3*((COSD(B))^2))-1)^2))/6)+ \ 
     ((.75*((SIND(2*B))^2))/(5+(Tx/Tz(Tx))))+((.75*((SIND(B))^4))/(2+(4*(Tx/Tz(Tx)))))))^2))) 
 
FUNCTION DIF8(Tx) = (2*((6*Tx)*(((.25*(((3*((COSD(B))^2))-1)^2))/6)+ \ 
     ((.75*((SIND(2*B))^2))/(5+(Tx/Tz(Tx))))+((.75*((SIND(B))^4))/(2+(4*(Tx/Tz(Tx))))))))/ \ 
     (1+((1.41614*10^19)*(((6*Tx)*(((.25*(((3*((COSD(B))^2))-1)^2))/6)+ \ 
     ((.75*((SIND(2*B))^2))/(5+(Tx/Tz(Tx))))+((.75*((SIND(B))^4))/(2+(4*(Tx/Tz(Tx)))))))^2))) 
 
FUNCTION SUM8(Tx) = (2*((6*Tx)*(((.25*(((3*((COSD(B))^2))-1)^2))/6)+ \ 
     ((.75*((SIND(2*B))^2))/(5+(Tx/Tz(Tx))))+((.75*((SIND(B))^4))/(2+(4*(Tx/Tz(Tx))))))))/ \ 
     (1+((3.95845*10^19)*(((6*Tx)*(((.25*(((3*((COSD(B))^2))-1)^2))/6)+ \ 
     ((.75*((SIND(2*B))^2))/(5+(Tx/Tz(Tx))))+((.75*((SIND(B))^4))/(2+(4*(Tx/Tz(Tx)))))))^2))) 
 
/*                                     EXPRESSIONS FOR T1                                      */ 
 
FUNCTION T1M(Tx) = (9.30908*10^-10)/(DIF8(Tx)+(3*CAR8(Tx))+(6*SUM8(Tx))) 
 
/*                                      OUTPUT STATEMENTS                                      */ 
 
FOR N = 1:4 DO { 
 
     B = ((N*30)-30) 
 
     U1 = POINTS(T1M, 1E-12:1E-9:1E-14) 
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     U2 = POINTS(T1M, 1E-9:1E-6:1E-11) 
     DRAW LOGLOG(U1) LT N 
     DRAW LOGLOG(U2) LT N 
 
     TYPE B 
 
} 
 
VIEW 

 
 

A.5 PROGRAM CODE FOR FIGURE 6 
 
"SYMMTOPPLOTNOEBYLENGTH.DO:  A MLAB program which plots {1H}13C T1 values as a function of      " 
"                            correlation time for rigid symmetric top rotors with tau-z/tau-x   " 
"                            ratios of 0.1, 1, and 10                                           " 
"                                                                                               " 
"             Code is for a 18.80 T static field (800 MHz operating frequency                   " 
"                                                                                               " 
"             WRITTEN 04-05 DECEMBER 2013 BY TERRY J. HENDERSON                                 " 
 
 
/*                                   PLOT WINDOW STATEMENTS                                    */ 
 
DELETE W 
WINDOW -12 TO -6, -1 TO 2 IN W 
XAXIS -12:-6:1&'-1 PT DTICK LABEL -12:-6:1 LABELSIZE .015 FFRACT OFFSET(-.02, -.03) IN W 
YAXIS -12&'-1:2:1 PT LTICK LABEL -1:2:1 LABELSIZE .015 FFRACT OFFSET(-.04, -.007) IN W 
TITLE "SYMMETRIC TOP ROTOR T'.3D'.7S1'1.435S'.3U AT THREE '15Tt'R'.3D'.7sz'1.43s'.3U' \ 
     /'15Tt'R'.3D'.7sx'1.43s'  VALUES" AT (.073,.94) FFRACT IN W  
TITLE "'15Tt'R'.3D'.7sz'1.43s'.3U' /'15Tt'R'.3D'.7sx'1.43s'  = 10" AT (.13,.33) FFRACT IN W 
TITLE "1" AT (.57,.315) FFRACT IN W 
TITLE "0.1" AT (.64,.315) FFRACT IN W 
TITLE "Log '15Tt'R'.3D'.7sx'1.43s'.3U (s)" AT (.41, 0.04) FFRACT IN W 
TITLE "Log T'.3D'.7S1'1.435S'.3U (s)" AT (.06,.38) FFRACT ANGLE 90 IN W 
 
/*                                         Beta Angle                                          */ 
 
 
 
B = 60                    /* Beta angle = 60 degrees */ 
 
 
 
/*                                 SPECTRAL DENSITY FUNCTIONS                                  */ 
 
FUNCTION CAR8(Tx) = (2*((6*Tx)*(((.25*(((3*((COSD(B))^2))-1)^2))/6)+ \ 
     ((.75*((SIND(2*B))^2))/(5+(Tx/Tz(Tx))))+((.75*((SIND(B))^4))/(2+(4*(Tx/Tz(Tx))))))))/ \ 
     (1+((1.59829*10^18)*(((6*Tx)*(((.25*(((3*((COSD(B))^2))-1)^2))/6)+ \ 
     ((.75*((SIND(2*B))^2))/(5+(Tx/Tz(Tx))))+((.75*((SIND(B))^4))/(2+(4*(Tx/Tz(Tx)))))))^2))) 
 
FUNCTION DIF8(Tx) = (2*((6*Tx)*(((.25*(((3*((COSD(B))^2))-1)^2))/6)+ \ 
     ((.75*((SIND(2*B))^2))/(5+(Tx/Tz(Tx))))+((.75*((SIND(B))^4))/(2+(4*(Tx/Tz(Tx))))))))/ \ 
     (1+((1.41614*10^19)*(((6*Tx)*(((.25*(((3*((COSD(B))^2))-1)^2))/6)+ \ 
     ((.75*((SIND(2*B))^2))/(5+(Tx/Tz(Tx))))+((.75*((SIND(B))^4))/(2+(4*(Tx/Tz(Tx)))))))^2))) 
 
FUNCTION SUM8(Tx) = (2*((6*Tx)*(((.25*(((3*((COSD(B))^2))-1)^2))/6)+ \ 
     ((.75*((SIND(2*B))^2))/(5+(Tx/Tz(Tx))))+((.75*((SIND(B))^4))/(2+(4*(Tx/Tz(Tx))))))))/ \ 
     (1+((3.95845*10^19)*(((6*Tx)*(((.25*(((3*((COSD(B))^2))-1)^2))/6)+ \ 
     ((.75*((SIND(2*B))^2))/(5+(Tx/Tz(Tx))))+((.75*((SIND(B))^4))/(2+(4*(Tx/Tz(Tx)))))))^2))) 
 
/*                                      EXPRESSIONS FOR T1                                     */ 
 
FUNCTION T1M(Tx) = (9.30908*10^-10)/(DIF8(Tx)+(3*CAR8(Tx))+(6*SUM8(Tx))) 
 
/*                                      OUTPUT STATEMENTS                                      */ 
 
FUNCTION Tz(Tx) = Tx    
     U1 = POINTS(T1M, 1E-12:1E-9:1E-14) 



 
 

APPENDIX 25 
 

     U2 = POINTS(T1M, 1E-9:1E-6:1E-11) 
     DRAW LOGLOG(U1) LT 1 
     DRAW LOGLOG(U2) LT 1 
 
 
 
FUNCTION Tz(Tx) = 0.1*Tx    
     U1 = POINTS(T1M, 1E-12:1E-9:1E-14) 
     U2 = POINTS(T1M, 1E-9:1E-6:1E-11) 
     DRAW LOGLOG(U1) LT 2 
     DRAW LOGLOG(U2) LT 2 
 
 
 
FUNCTION Tz(Tx) = 10*Tx    
     U1 = POINTS(T1M, 1E-12:1E-9:1E-14) 
     U2 = POINTS(T1M, 1E-9:1E-6:1E-11) 
     DRAW LOGLOG(U1) LT 3 
     DRAW LOGLOG(U2) LT 3 
 
VIEW 
 
 

A.6 PROGRAM CODE FOR FIGURE 7 
 
"SYMMTOPPLOTNOEBYLENGTH.DO:  A MLAB program which plots {1H}13C NOEF values as a function of    " 
"                            correlation time for rigid symmetric top rotors with tau-z/tau-x   " 
"                            ratios of 0.1, 1, and 10                                           " 
"                                                                                               " 
"             Code is for a 18.80 T static field (800 MHz operating frequency                   " 
"                                                                                               " 
"             WRITTEN 05 DECEMBER 2013 BY TERRY J. HENDERSON                                    " 
 
 
/*                                   PLOT WINDOW STATEMENTS                                    */ 
 
DELETE W 
WINDOW -12 TO -8, 0 TO 2 IN W 
XAXIS -12:-8:1&'0 PT DTICK LABEL -12:-8:1 LABELSIZE .015 FFRACT OFFSET(-.02, -.03) IN W 
YAXIS -12&'0:2:.5 PT LTICK LABEL 0:2:.5 LABELSIZE .015 FFRACT OFFSET(-.06, -.007) IN W 
TITLE "SYMMETRIC TOP ROTOR NOEF AT THREE '15Tt'R'.3D'.7sz'1.43s'.3U' \ 
     /'15Tt'R'.3D'.7sx'1.43s'  VALUES" AT (.045,.94) FFRACT IN W 
TITLE "'15Tt'R'.3D'.7sz'1.43s'.3U' /'15Tt'R'.3D'.7sx'1.43s'  = 10" AT (.3,.5) FFRACT IN W 
TITLE "1" AT (.6,.5) FFRACT IN W 
TITLE "0.1" AT (.7,.5) FFRACT IN W 
TITLE "Log '15Tt'R'.3D'.7sx'1.43s'.3U (s)" AT (.41, 0.04) FFRACT IN W 
TITLE "NOEF" AT (.05,.449) FFRACT ANGLE 90 IN W 
 
/*                                          Beta Angle                                         */ 
 
B = 60                    /* Beta angle = 60 degrees */ 
 
/*                                 SPECTRAL DENSITY FUNCTIONS                                  */ 
 
FUNCTION CAR8(Tx) = (2*((6*Tx)*(((.25*(((3*((COSD(B))^2))-1)^2))/6)+ \ 
     ((.75*((SIND(2*B))^2))/(5+(Tx/Tz(Tx))))+((.75*((SIND(B))^4))/(2+(4*(Tx/Tz(Tx))))))))/ \ 
     (1+((1.59829*10^18)*(((6*Tx)*(((.25*(((3*((COSD(B))^2))-1)^2))/6)+ \ 
     ((.75*((SIND(2*B))^2))/(5+(Tx/Tz(Tx))))+((.75*((SIND(B))^4))/(2+(4*(Tx/Tz(Tx)))))))^2))) 
 
FUNCTION DIF8(Tx) = (2*((6*Tx)*(((.25*(((3*((COSD(B))^2))-1)^2))/6)+ \ 
     ((.75*((SIND(2*B))^2))/(5+(Tx/Tz(Tx))))+((.75*((SIND(B))^4))/(2+(4*(Tx/Tz(Tx))))))))/ \ 
     (1+((1.41614*10^19)*(((6*Tx)*(((.25*(((3*((COSD(B))^2))-1)^2))/6)+ \ 
     ((.75*((SIND(2*B))^2))/(5+(Tx/Tz(Tx))))+((.75*((SIND(B))^4))/(2+(4*(Tx/Tz(Tx)))))))^2))) 
 
FUNCTION SUM8(Tx) = (2*((6*Tx)*(((.25*(((3*((COSD(B))^2))-1)^2))/6)+ \ 
     ((.75*((SIND(2*B))^2))/(5+(Tx/Tz(Tx))))+((.75*((SIND(B))^4))/(2+(4*(Tx/Tz(Tx))))))))/ \ 
     (1+((3.95845*10^19)*(((6*Tx)*(((.25*(((3*((COSD(B))^2))-1)^2))/6)+ \ 
     ((.75*((SIND(2*B))^2))/(5+(Tx/Tz(Tx))))+((.75*((SIND(B))^4))/(2+(4*(Tx/Tz(Tx)))))))^2))) 
/*                                    EXPRESSIONS FOR NOEF                                     */ 
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FUNCTION NOEFM(Tx) = 3.97607*(((6*SUM8(Tx))-DIF8(Tx))/(DIF8(Tx)+(3*CAR8(Tx))+(6*SUM8(Tx)))) 
 
/*                                      OUTPUT STATEMENTS                                      */ 
 
FUNCTION Tz(Tx) = Tx    
     W1 = POINTS(NOEFM, 1E-12:1E-9:1E-14) 
     W2 = POINTS(NOEFM, 1E-9:1E-6:1E-11) 
     DRAW LOGLIN(W1) LT 1 
     DRAW LOGLIN(W2) LT 1      
 
FUNCTION Tz(Tx) = 0.1*Tx    
     W1 = POINTS(NOEFM, 1E-12:1E-9:1E-14) 
     W2 = POINTS(NOEFM, 1E-9:1E-6:1E-11) 
     DRAW LOGLIN(W1) LT 2 
     DRAW LOGLIN(W2) LT 2 
 
FUNCTION Tz(Tx) = 10*Tx    
     W1 = POINTS(NOEFM, 1E-12:1E-9:1E-14) 
     W2 = POINTS(NOEFM, 1E-9:1E-6:1E-11) 
     DRAW LOGLIN(W1) LT 3 
     DRAW LOGLIN(W2) LT 3 
 
VIEW 
 
 

A.7 PROGRAM CODE FOR FIGURE 8 
 
"TAUEFFNET.DO:  A MLAB program that plots the flexible symmetric top rotor effective correlation" 
"               time as a function of beta-angle and polar angle of motion, theta               " 
"                                                                                               "               
"               no azimuthal motion                                                             " 
"                                                                                               " 
"               Dz is 3.5-times larger than Dx                                                  " 
"                                                                                               " 
"               WRITTEN AND TESTED 7-8 MAY 2015 BY TERRY J. HENDERSON                           " 
 
 
DELETE w3 
 
/*           Polar and Azimuthal Angles of Motion, Beta Angle, and Correlation Times           */ 
 
B = 0                                             /* Beta angle starts at zero degrees */ 
 
Th = 0                                            /* Polar angle of motion starts at 0 degrees */ 
 
Ep = 0                                            /* Azimuthal angle of motion is 0 degrees */ 
 
Tz = 1 
 
FUNCTION Tx(Tz) = 3.5*Tz                          /* Gives Dz/Dx = 3.5 */ 
 
/*  Flexible Symmetric Top Rotor Effective Correlation Time as a Function of Beta and Theta    */ 
 
FUNCTION Teff(Th, B) = ((((1/4)+(9/(8*(exp(4*(Th^2)))))+((3*(cosd(2*B)))/(2*(exp(2*(Th^2)))))+((\ 
                       9*(cosd(4*B)))/(8*(exp(4*(Th^2))))))/(4*(Tx(Tz)^-1)))+((9*(1+(1/(2*(exp(4\ 
                    *(Th^2)))))-((2*(cosd(2*B)))/(exp(2*(Th^2))))+(((cosd(4*B))*(exp((-4*(Th^2))\ 
                    -(4*(Ep^2)))))/2)))/(16*((Tx(Tz)^-1)+(2*(Tz^-1)))))+((9*((exp(-4*(Th^2)))-((\ 
                    exp((-4*(Th^2))-(Ep^2)))*(cosd(4*B)))))/(4*((5*(Tx(Tz)^-1))+(Tz^-1))))) 
 
/*                                       Output Statements                                     */ 
 
M = CROSS(0:0.7854:0.03272, 0:180:7.5)            /*Theta in radians, beta in degrees*/ 
 
M COL 3 = Teff on M 
 
DRAW M LT NET 
 
CMD3D ("BOX") 
CMD3D ("TURN -55") 
CMD3D ("TWIST -13") 
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CMD3D ("RAISE -.55") 
CMD3D ("TRACK")  
CMD3D ("DOLLY 0.4") 
CMD3D ("BOTNETCOLOR 0") 
 
VIEW 
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