The

Ballistic Research Laboratory
CAD Package
Release 4.0

VOLUME I
The BRL-CAD Philosophy
December 1991

Advanced Computing Systems |
The U.S. Army Ballistic Research Laboratory

Aberdeen Proving Ground, Maryland 21005-5066




REPORT DOCUMENTATION PAGE OB A 188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,

1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,

Paperwork Reduction Project (0704-0188) Washington, DC 20503.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
01-12-1991

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

The Ballistic Research Laboratory CAD Package Release,

4.0, volume I: The BRL-CAD Philosophy 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
.. REPORT NUMBER
Ballistic Research Laboratory
Aberdeen Proving Ground MD 21005-5066 BRL-CAD-R4-V1
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER

12. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The BRL-CAD Release 4.0 Manual is a collection of papers and manuals that gives an overview of
BRL-CAD, explains installation and use of the package, and presents accomplishments and techniques
performed using BRL-CAD. Papers included in this manual were written by members of the BRL-CAD
development team as well as other users of the package. Many of the papers were submitted during the
three BRL-CAD symposia held during 1988, 1989, and 1991. This manual in its entirety provides an
extensive library of reference material for all types of users. Volume 1 contains articles written for symposia
and magazines that discuss the development and purpose of BRLCAD.

15. SUBJECT TERMS

BOOLEAN EVALUATION ALGORITHM; TESSELLATORS; MGED; COMPUTER-AIDED-DESIGN,
BRL-CAD(BALLISTICS RESEARCH LABORATORY COMPUTER AIDED DESIGN)

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF [ 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
UNCLASSIFIED ABSTRACT OF PAGES Clifford Yapp

a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPONE NUMBER (Include area code)
u2 u2 u2 U 2 102 410-278-1382

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI-Std Z39-18




ARL PILOT ARL PILOT

Quality Assurance and OPSEC Review

This form is an approval record for ARL generated information to be presented or disseminated external to ARL.

Section |- To be completed by lead ARL author or COR

A. General Information: [ ]Abstract [ |BAA [ |invention Disclosure [_|Multimedia [ |Presentation [ |Publication [ |Report [ |SBIR Other

1. Today's Date: 2. Due Date: 3. Unclassified Title or Solicitation Number/Title:
The Ballistic Research Laboratory CAD Package Release 4.0 - Volume 1
09/20/2013 10/11/2013 The BRL-CAD Philosophy
4. Author(s): (Last, First, Ml): - . -
Muuss, Michael John; Dykstra, Phillip C.; Deitz, Paul H.; Mermagen, Wiliam H, | 5+ Site & Office Symbol: 6. Telephone Number:
Jr; Stay, Paul R.; Reed, Harry L. Jr.; Davisson, Edwin O. 410-278-1382
APG RDRL-SLB-S -
Modern POC: Yapp, Clifford W. 7. Invited: [ ] Yes [v]No
4b. Source Material Folder Location: [ Y:ARL_Form_1\SLAD\SLB-S\Yapp.C.20Sep13_BRLCAD4_Volt
4c. Form 1 Author/POC's E-mail audress:{ clifford.w.yapp.civ@mail.mil i 8. Contract No.:
4d. Division Chief's E-mail address: I rachelle.m.moulsdale.civ@mail.mil | ARL COR:

10. Distribution Statement: Is manuscript subject to export control? [ ] Yes No 9. Key Words:

11. Check Appropriate Letter and Number(s). See instructions: 12. Security Classification:

A B CDEF 1234586789101 12 |Unclassified
MOOOOO -DDDDDDDDDDDD

B. Presentation [[] Conference Presentation [] Notable Presentation [[] Key Note Speaker [ ] Briefing
13. Conference / Meeting Name: I | 14. Conference / Meeting Location:
15. Conference / Meeting Date 16. Conference / Meeting is: [] Classified [CJother
[_] Open to General Public [ | Unclassified / Controlled Access
17. WIll foreign nationals have access to 18. Countries and International Agreement(s) of Foreign Nationals:
this information?
[JYes [JNe

C. Publication [ ] Abstract [ |Book [ | Book Chapter [ | Conference Proceeding [ | Refereed Jounal Article [ | Other

19. Material will be submitted for publication in:

Journal Title: Country:
D.Report  []Contractor Report [ | Memorandum Report [ | Reprint [ | Special Report [_] Technical Note [] Technical Report
20. Project No.: 21. Period Covered (mmfyyyy) |22. Sponsoring Agency:
12/1991 Ballistic Research Laboratory
E. Multimedia [] Software Web [ |Poster [ |VideoClip [ ]Other

23. Location: DTIC, ARL website, BRL-CAD website, etc.

F. Author's Statement

24, All authoers have concurred in the technical content and the sequence of authors. All authors have made a substantial contribution to the
manuscript, and all authors who have made a substantial contribution are identified in Block 4.

word by VAP CLIFFORD WALLIAML 144738708

ARL Lead Author or COR X YAPP.CLIFFORD.WILLIAM.1364725708 2‘?‘.“,.",3‘:,.,“"’;.7."..‘?,;%;”“‘ Date 09/20/2013

Section Il - OPSEC Review Checklist To be completed by an ARL Trained Internal OPSEC Reviewer

OPSEC POC: Complete and explain any positive responses in block 28.
Note: ARL must be the proponent of the proposed information for release.

1. Does this material contain Sensitive Information? [Jyes NO 7. Does this material contain:
2. Does this information contain state-of-the-art, a. Any contract proposals, bids, and/or proprietary []YEs [v]no
breakthrough technology? [JYES [¢]NO information?
3. Does the United States hold a significant lead b. Any information on inventions/patent application for ™ yes [/] NO
time in this technology? []Yes NO which patent secrecy orders have been issued?
4, Does this information reveal aspects of reverse c. Any weapon systems/component test results? D YES NO
engineering? iqi i i

: D N | et ot ity o [ (Ao
5. Does this material reveal any security practices or 9 ’
procedures? [JYES VINO | ¢ weakness andior vuinerability information? [] YEs [¥]NO
6. Would release of this information be of economic : :

f. Al formati t ?
benefit to a foreign entity, adversary, or allow for the iy SRR R auIEmensITRY D pess He
development of countermeasures to the system or |:| YES NO | 9. Any fielding/test schedule information? []yes NO
technology?
ARL Form 1- October 2003 Last Modified: 04 Sep 2013 ARL v1,00 PE 7.h
Page 1 of 5

ARL PILOT ARL PILOT



ARL PILOT

ARL PILOT
Section Il - OPSEC Review Checklist Continued
h. Any Force Protection, Homeland Defense k. Contain information with foreign policy or foreign
DYES NO relations implications? [1ves Ho

(security) information?

among military services or other federal agencies? ]:I YES NO | Elements of Friendly Information (EEFI)?

J Information on military applications in space,
nuclear chemical or biological efforts: high energy []es NO
laser information; particle beam technology; etc?

i. Information on subjects of potential controversy l. Does this information contain current ARL Essential
[JYeEs [¢] NO

G. Internal OPSEC Review

25. OPSEC Review Comments / Explanations / Continuations:

26. Internal OPSEC Approval Statement:
I, the undersigned, am aware of the adversary's interest in DoD publications and in the subject matter of this material and that, to the
best of my knowledge, the net benefit of this release out weighs the potential damage to the essential security of all ARL, AMC,
Army, or other DoD programs of which | am aware.

Penny T. Willard X WILLARD PENNY.T 1282301488 St St i v,
OPSEC Reviewer Name OPSEC Reviewer Signature Date 09/20/2013

NA: []
T

Section lll - Approval to be completed by designated individual(s)

H. Technical Review

27. Technical Reviewer Name(s) Technical Reviewer Signature(s) Date(s)
BOWMAN. WILLIAM KEITH. 13805723 frajmes o sesssremymarmos
X 34 e
X
X

I. Supervisor Review

X PERRY .MARTIN.J.1043561320 &%

i 09/23/2013
28. Supervisor Name Supervisor Signature Date

J. Technical Publications Editorial Review

X
29. Editor Name Editor Signature

Date

Section IV - To be completed by designated individual

K. Security

30. ARL OPSEC Officer Material has been reviewed for OPSEC Policy and 1S [/ [ 118 NOT acceptable for public release.

Comments:

CRAMER.DANIEL.BRUCE.122 rmﬁ?m“wm

) X 9367800 S e s Date
ARL OPSEC Officer Name Daniel B Cramer ARL OPSEC Officer Signature 09/24/2013

31. Classified Information:

Classified by/Derived from: Date
Declassified on date: Security Manager X

32. Foreign Intelligence Office (Limited distribution information)
X Date

FIO Reviewer Name FlO Reviewer Signature

33. Foreign Disclosure Office

(Limited distribution information for release to foreign nationals) X

FDO Reviewer Name FDO Reviewer Signature

Date

L. Division Chief

34. The information contained in this material has received appropriate technical / editorial review and IS / D IS NOT acceptable for public release.

Shelly Moulsdale, for Bob Bowen o
MOULSDALE RACHELLE M. 12557 Sysyawetyunuionsmomit uarm I
o . X 78354 e Date 09/26/2013 1
Division Chief Name Division Chief Signature

M. Public Affairs Office

35, The information contained in this material has received appropriate technical / editorial review and IS / [:] IS NOT approved for public release.

Joyce M. Conant CONANT.JOYCE.M.11 z:‘m?zomqnvcsunmwm‘m N/A: i:‘
) X 61860308 fongtmerbanbioali il Date 09/26/2013
PAO Reviewer Name PAO Reviewer Signature i
ARL Form 1- October 2003  Last Modified: 04 Sep 2013 Page 2 of 5 ARLY1.00 PE 7.h

ARL PILOT

ARL PILOT



VOLUME I - THE BRL-CAD PHILOSOPHY

ABOUT BRL-CAD

The BRL-CAD package combines a powerful solid-modeling capability
with network-distributed image processing. This software is currently installed
and running at over 800 sites. BRL-CAD started in 1979 as a task to provide an
interactive graphics editor for the BRL vehicle-description database. Today, the
package with over 100 programs totals more than 280,000 lines of "C" source
code, runs under the UNIX operating system, and is supported by more than a
dozen product lines, from Sun Workstations to the Cray 2. The BRL-CAD
package includes four major features:

* A solid geometric editor

* The ray tracing library

* Two lighting models

* Many image-handling, data-comparison, and other support utilities.

Release 4.0 of the BRL-CAD package also supports several geometrical
representations of data:

* The original Constructive Solid Geometry (CSG) BRL database

* Extensions that include solids made from collections of Uniform B-
Spline surfaces and Non-Uniform Rational B-Spline (NURB)
surfaces '

* A faceted data representation

* n-Manifold Geometry (NMG).

THE RELEASE 4.0 MANUAL

The BRL-CAD Release 4.0 Manual is a collection of papers and manuals
that gives an overview of BRL-CAD, explains installation and use of the package,
and presents accomplishments and techniques performed using BRL-CAD.
Papers included in this manual were written by members of the BRL-CAD
development team as well as other users of the package. Many of the papers
were submitted during the three BRL-CAD symposia held during 1988, 1989, and
1991. This manual in its entirety provides an extensive library of reference
material for all types of users.

Because the material covered by the Release 4.0 Manual is extensive, the
manual has been divided into five volumes and is organized to help readers find
the information needed. The volumes are also bound separately for ease of use.
BRL-CAD users who are interested in specific subjects can find the appropriate




articles in either the Table of Contents for each volume or the Permuted Index.
Brief descriptions of the material found in each volume follow:

VOLUMEI- The BRL-CAD Philosophy
This volume contains articles written for symposia and
magazines that discuss the development and purpose of BRL-
CAD.

VOLUME Il - The BRL-CAD User's Manual
This volume contains instructions for installing BRL-CAD, the
man pages for the commands, libraries, and file types, and short
documents pertaining to the updates in Release 4.0 as well as
short documents previously included in Release 3.0.

VOLUME Il - The BRL-CAD Applications -
This volume contains supplemental applications written and
discussed by various users of BRL-CAD. Some sections are mini-
manuals that explain commands in more detail than the man
pages in Volume II,

VOLUME IV - The MGED User's Manual
This volume contains the stand-alone user's manual written for
MGED as a guide for constructing and editing BRL-CAD solid
models.

VOLUME V - The BRL-CAD Analyst's Manual
This volume consists of papers written for the 1988, 1989, and
1991 BRL-CAD symposia and memorandum reports discussing
the usefulness and progress of the software. The articles are
arranged according to subject matter, so an individual interested
in raytracing, for example, can flip to the papers that discuss this
feature. The permuted index at the end of this volume directs
the reader to articles based on keywords or phrases. The
permuted index lists keywords that are referenced in articles,
regardless of the paper's subject matter. Using this index, one can
quickly locate papers containing the topic of interest.

HOW TO GET STARTED

It is suggested that users who are new to BRL-CAD first review Volume I.
The overview papers explain solid modeling, surface modeling, and hybrids and
describe the techniques employed by BRL-CAD. The article A Road Map
Through the BRL-CAD Package gives an excellent explanation of the data flow
and approach to using BRL-CAD. Other articles also describe the history and
development of the package and new features in Release 4.0,

ii



When it is time to install the package, Installing the BRL-CAD Package,
Release 4.0 in Volume II explains the installation procedures and the
configuration required. The man pages included in the next section of the
volume explain all the commands available, the libraries used by the package,
and the appropriate file formats. Volume II also provides a handy reference for
users who are editing, interrogating, or analyzing the models. Short documents
and E-mail discussions that occurred during development and publication of
Release 4.0 follow the man pages. Release 3.0 Notes and Errata Sheets are found
in the last sections of this volume. Papers discussing supplemental commands
and applications to BRL-CAD are included in Volume III,

For users interested in creating and editing solid models, Volume IV
explains the Multiple-Device Graphics Editor (MGED) in detail. It is in the
format of a stand-alone user's manual and provides instructions about solid
modeling, available commands, and useful techniques. This manual should be
kept within easy reach of the graphics workstation.

Those who are interested in the various uses for BRL-CAD, efforts
accomplished using the package, or techniques for using BRL-CAD as an analysis
tool should refer to Volume V. This volume comprises numerous papers |
written for the three BRL-CAD symposia as well as separately-published articles.
For convenience, this manual is divided into sections, each representing a
subject contained in the articles, such as benchmarking, modeling, radar,
survivability/vulnerability, etc. One paper may reference several subjects, but in
each case, the overall or major subject was chosen for organizational purposes.
Refer to the Table of Contents located at the beginning of the volume for a list of
the subjects and the articles contained within the subject of interest.

An index has also been provided in Volume V to help readers find the
articles referring to topics of interest. The index is permuted; that is, it lists
keywords found in the abstracts and introductions of the articles and for every
key word lists the titles of the articles in which it was found. A reader interested
in a particular topic can look up a single word or phrase and find all the articles
that use those words. For example, suppose the reader is researching how BRL-
CAD was used for radar models. A quick check against the permuted index
shows the word "radar" used in 13 different articles. The Table of Contents for
Volume V only lists five articles with radar as the major subject. For more
information about radar, the user may refer to the other eight articles indicated
by the permuted index.
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BRL-CAD RELEASE 4.0
FEATURES AND DISTRIBUTION INFORMATION

The BRL-CAD Package is a powerful Constructive Solid Geometry (CSG) computer based solid
modeling system. BRL-CAD includes an interactive geometry editor, a ray tracing library, two ray-tracing
based lighting models, a generic framebuffer library, a network-distributed image-processing and signal- -
processing capability, and a large collection of related tools and utilities. Release 4.0 is the latest version
of software which has been undergoing continuous development since 1979.

The most significant new feature for Release 4.0 is the addition of n-Manifold Geometry (NMG) support
based on the work of Kevin Weiler. The NMG software converts CSG solid models into approximate
polygonalized boundary representations suitable for processing by subsequent applications and high-speed
hardware display.

BRL-CAD is used at over 800 sites located throughout the world. It is provided in source code form only,
- and totals more than 280,000 lines of "C" code.

BRL-CAD supports a great variety of geometric representations, including an extensive set of traditional
CSG primitive solids such as blocks, cones and torii, solids made from closed collections of Uniform B-
Spline Surfaces as well as Non-Uniform Rational B-Spline (NURBS) Surfaces, purely faceted geometry,
and n-Manifold Geometry (NMG). All geometric objects may be combined using boolean set-theory
operations such as union, intersection, and subtraction.

Material properties and other attribute properties can be associated with geometry objects. Combining
material properties with geometry is a critical part of the link to applications codes. BRL-CAD supports a
rich object-oriented set of extensible interfaces through which geometry and attribute data are passed to
applications.

A few of the applications linked to BRL-CAD include:

« Optical Image Generation (including specular/diffuse reflection, refraction, multiple light
sources, and articulated animation)

An array of military vehicle design and evaluation Vulnerability/Lethality (V/L) Codes
Bistatic laser analysis

Predictive Synthetic Aperture Radar Codes (including codes due to ERIM)
High-Energy Laser Damage

High-Power Microwave Damage

Weights and Moments-of-Inertia

Neutron Transport Code

PATRAN™, ADINA, EPIC-2, NASTRAN, etc. for structural/stress analysis

X-Ray image calculation

® & ® ® & @ 8 ® @

BRL-CAD requires the UNIX operating system and is supported on more than a dozen product lines from

workstations to supercomputers, including: Alliant FX/8 and FX/80, Alliant FX/2800, Apple Macintosh

I, Convex C1, Cray-1, Cray X-MP, Cray Y-MP, Cray-2, Digital Equipment VAX, Gould/Encore PN
V1S01A00




6000/9000, IBM RS/6000, Pyramid 9820, Silicon Graphics 3030, Silicon Graphics 4D "Iris", Sun
Microsystems Sun-3, and the Sun Microsystems Sun-4 "SparcStation”. Porting 1o other UNIX systems
is very easy, and generally only takes a day or two.

You may obtain a copy of the BRL-CAD Package and distribution materials in one of two ways:

1. FREE distribution with no support privileges: Those users with online access to the DARPA
InterNet may obtain the BRL-CAD Package via FTP file transfer, at no cost, after completing and
returning a signed copy of the enclosed agreement and survey form. There are encrypted FTP-able files in
several countries around the world. Directions on how to obtain and decrypt the files will be sent to you
upon receipt of your signed agreement. One printed set of BRL-CAD documentation will be mailed to you
at no cost. Note that installation assistance or telephone support are available only with full service
distributions. Upgrade to full service status can be made at any time by following instructions under 2
below. Please send the signed distribution agreement and survey form via ISO Group III FAX to USA
(410) 278-5058 or mail to:

BRL-CAD Distribution

ATTN: SCLBR-LV-V

Ats)i'deen Proving Ground, MD 21005-5066
U

For further details, E-mail to <keith@brl.mil>, send message to number above or write to the above
address.

2. FULL SERVICE distribution: The Survivability/Vulnerability Information Analysis Center
(SURVIAC) administers the supported BRL-CAD distributions and the information exchange programs
for BRL through the SURVIAC Aberdeen Satellite Office. The full service distribution cost is US $500
(no cost to US Government Agencies). A copy of the BRL-CAD package will be provided to you on your
choice of magnetic tape media. You may also elect to obtain your copy via network FTP. One printed set
of BRL-CAD documentation will also be mailed to you. BRL-CAD maintenance releases and errata sheets
will be provided at no additional charge, and you will have access to full technical assistance by phone,
FAX, letter, or E-mail. Complete and return a signed copy of the enclosed distribution agreement and
survey form with a check or purchase order payable to "BA&H/SURVIAC” and mail to:

BRL-CAD Distribution

SURVIAC Aberdeen Satellite Office

1003 Old Philadelphia Road

Suite 103
Aberdeen, MD 21001 USA

For further details, call Ms, Carla Moyer at USA (410)-273-7794, send E-mail to <cad-dist@brl.mil>,
send ISO Group ITI FAX message to USA (410)-272-6763, or write to the above address.

All users have access to the BRL-CAD Symposia, workshops, user's group, and BRL-CAD information
via E-mail,




BRL-CAD:
Recent Progress
and
Future Directions

Michael John Muuss

Ballistic Research Laboratory
Aberdeen Proving Ground
MD 21005-5066 USA

ABSTRACT

The current production release of the BRL-CAD Package is Release 3.7,
which has been in use since June of 1989. In the intervening years, a lot of work
has been accomplished, and these new developments will be made available as
Release 4.0. A brief review of the improvements that have been added in Release
4.0 will be given.

Many projects are planned for the future, or are in an early stage of investi-
gation. Some of these projects are a natural continuation of the work of the past
few years, while other projects represent bold departures into new areas for BRL-
CAD. To give BRL-CAD Package users an idea of what developments can be
expected, this paper touchs on the highlights of future work.

April 14, 1991
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BRL-CAD:
Recent Progress
and
Future Directions

Michael John Muuss

Ballistic Research Laboratory
Aberdeen Proving Ground
MD 21005-5066 USA

The BRL-CAD Package as it stood in 1989 was one of the few production CAD systems
which was based purely on the combinatorial solid geometry (CSG) technique. The final shapes of
all objects were created by boolean combinations of primitive solids. No attempt was made to
represent either the topology or the surface geometry of any object in explicit form. The exact
nature of the final shape of an object was discovered only on a point by poeint basis by sampling
the object with ray-tracing. At the same time, the assortment of primitive solids available wo
designers was a hybrid of traditional CSG primitives and more recent boundary-representation
{B-rep) primitives. The primitive solids described by their boundaries included a variety of
faceted solids, as well as solids defined by a closed collection of non-rational B-spline surfaces.
This rich collection of primitive solids can be combined by the designer through any nuinber of
boolean operations. However, complex combinations of primitives can be difficult to visualize
except through the careful study of their three dimensional wireframes rotating in real time cou-
pled with the judicious use of ray-traced renderings.

1. Improvements added in Release 4.0

1.1. n-Manifold Geometry

Given that modern computer workstations with integral polygon rendering hardware
'Molnar87a] are now commonly available, and that hardware rendering speeds can exceed one mil-
lion polygons per second, it seems highly desirable to take advantage of this hardware. Also, theve
is a wealth of analysis software that simply can not make do with a geometry interrogation inter-
face that supports only the ray-tracing paradigm. What was missing from the BRL-CAD Package
was a way of obtaining an ezplicit description of the final shape of modeled objects.

The single most significant BRL-CAD effort in recent times has been the addition of the n-
Manifold Geometry {NMG) support. The NMG data structures have the advantages of complete
generality and closure under boolean operations [Muuss90a]. NMGs also encode the full topologi-
cal structure of an ohject, as well as the geometric information. This representation contains [ull
topology information. so that the relationships between vertices, edges, laops. aces, and shells are
continuously available. Geometry is associated with each topological clement. Because of the fre-
quency of occurrence of non-3-manifold conditions in CSG modeling, both intentionally and as
part of various analysis operations, the NMG data structures were essential.

The addition of NMG support to the BRL-CAD Package is concentrated in several key
areas. The existing combinatorial solid geometry database remains unchanged. Thus. any appli-
cation that needs an explicit representation of the model obtains that explicit representation by
converting the CSG database with a “‘post-processing” operation. Much more detail is available
in [Muuss91al.



1.1.1. The NMG Library Routines

The applications programmer is insulated from the details of the NMG radial-edge data
structures by a library of functions which perform all of the basic tasks. Each of these routines
accepts a valid NMG model or a part of one. and performs an operation, returning a valid model
upon completion. The routines within the library are organized into three groups: constructive,
destructive, and manipulative.

1.1.2. Tolerance-Driven Tessellators

The job of a tessellator is to convert a given solid primitive into a laceted approximation
stored in NMG data structures. There are two aspects to this conversion: establishing the topol-
ogy of the approximation, and then generating the geometry to associate with the approximate
topology. )

Conversion of curved, implicitly defined primitive solids to a faceted representation will
necessarily be inexact. Three types of tolerances are passed to the tessellator to provide control
over the nature and magnitude of the errors introduced by the faceted approximation used in the
tessellation. The absolute tolerance, which limits the maximum permissible difference between any
point on the tessellation and the corresponding point on the original solid, is expressed as an abso-
lute distance. For example, using this mechanism it is possible to ensure that no face deviates
from the true surface by more than 2 mm. The relative tolerance also limits the maxiinum error
of any point, but it is expressed as a fraction (between 0.0 and 1.0) of the diameter of the bound-
ing sphere which encloses the original solid. Finally, the normal tolerance limits the maximum
angular error of the surface normal. This normal tolerance permits users to make statements
about the accuracy of the surface normals. ‘

1.1.3. The Boolean Evaluati;m Algorithm

As each boolean operation is encountered in the database, it is performed on the appropriate
tessellated solids. nmg_do_bool() takes the two tessellated objects and combines them according to
the boolean operation, resulting in a consistent set of solid tessellated objects [Muuss90a|. Once all
the objects have been retrieved from the database and combined with their boolean formulaes, the
resultant collection of NMG objects is supplied to the application.

1.1.4. Extensions to MGED

The majority of a BRL-CAD user’s contact with the new non-manifold geometry capability
will be through mged [Applin88a|. The user can request the calculation of approximate boundary
wireframes. The evaluation is performed by tessellating each of the primitive solids into an NMG
object meeting the current tolerance, and combining them according to the indicated boolean
operations. This operation is invoked with the command

mged > ev -w object

Note that the evaluated boundary wireframes are not stored in the database and are primarily
intended as a visualization aid for the designer.

On those hardware platforms where polygon drawing capabilities exist, it is possible to have
a flat-shaded polygonal rendering of database objects drawn. This operation 1s invoked with the
evaluate command

mged > ev object

Once the polygonalized version of the object is on the screen, it can be rotated in real time. This
capability gives the designer the opportunity to more fully appreciate the complex shape which has
been created, and to judge whether the evaluated shape matches the intended design.

On hardware platforms, such as the Silicon Graphics 4D workstations, which have hardware
support for drawing shaded polygons lit with multiple light sources, it is possible to activate the
hardware lighting model. This provides a much more realistic rendition of the evaluated abjects.




1.1.5. Export of Polygons to Qther Applications

The ability to produce an explicit approximate representation of the surface of any object
stored in the geometry database exists as a general capability. Any application program that links
to the library librt can use this capability at any time in the analysis process. Furthermore, use
of this capability can be simultanecusly intermixed with other forms of interrogation supported by
the library, so that an application can perform some operations using the approximate surface
description and other operations using ray-tracing. The application has no knowledge of the
underlying primitives used to describe the objects in the database, nor is the application aware
that the library creates the surface description by extracting the objects from the geometry data-
base, tessellating them into NMG solids, and then combining them via boolean formulas.

: There may be circumstances when a designer wishes to take a collection of primitive solids,
tessellate and combine them into some faceted shape, and then store the faceted shape as the fin-
ished design. This can be accomplished with the mged facetize command:

mged > facetize newsol oldsol
mged > facetize newreg oldreg

The facetize command takes either a single pre-existing solid or a single pre-existing combi-
nation of solids {such as a group or region), tessellates them according to the current tolerance set-
tings, and creates a new facetized solid in the database. This resulting solid is represented using
. the NMG data structures, and has exactly the same standing as any other primitive solid: it can

be ray-traced, instanced, and combined with other solids to create new shapes. However, no his-
tory is kept about the formation of the new NMG solid. Thus, changes made to the parameters of
an original solid inside the original region oldreg are not propagated to the [lacetized version
newreg.

1.2, Support of mged on the SGI i

SGI lighting model support in mged is for lit polygons. A very preliminary version of light-
ing model support in mged exists to help debug the NMG tessellation routines. It uses four infin-
ite lights of dubious color and location, to help see the facets {eg, on the TGC) very clearly. As
usual, getting the SGI to do anything useful was a much bigger fight than expected. A project for
the future is to program the lighting model on the SGI to use the same Phong parameters that rt
uses when rendering each object.

mged was extended to retain the color information found when reading UNIX-plot files with
the overlay command This has proved helpful for examining some of the NMG debugging plot
files, It is completely general, allowing any color UNIX-Plot file to be used as an overlay. Since in
mged each solid can be drawn in exactly one color, this is accomplished by accumulating a dif-
ferent _"PLOT_OVERLAY “phantom’ solid for vectors of each color.

. It is now possible to move and resize the mged window. In previous releases, resizing the
window did not work. It seems that the SGI write-protects all new bits added to a window
on resize or move until they are made writable with scrmaskf).

® Accounts for 4:3 aspect in NTSC mode, so that circles are round on TV.

L Clears the full viewport in NTSC mode, to clean out other window stuff that popped up in
the interim, such as a libfb window created by running rt from within mged.

1.3. New Spline Library

The old spline library in Release 3.7 has been replaced by a completely new spline library,

The new library is able to interpolate n-dimensional data: e.g. X,Y,Z spatial dimensions plus -

R,GB and temperature, simultaneously across the same surface. This library also facilitates new

. modeling operations: surfaces of revolution, and general extrusions. In addition to modeling

_ applications, this n-dimensional technique is useful for applying a camouflage pattern to the sur-
 Tace, mapping thermal data onto the surface, and other energy/geometry mappings.

librt support for ray-tracing NURBS solids has been improved by the addition of much




more robust ray intersections. This solves the “‘crack’ problem which happened frequently when
the old algorithm subdivided the spline into polygons. Because different parts of the spline needed
different amounts of subdivision, edges of adjoining polygons did not always match up. The new
algorithm does not generate polygons as an intermediate step. This method uses much less
memory while still converging to a solution of the ray/spline intersection in similar time. The new
approach is a fully parallel algorithm, with no interlocking or critical sections. On parallel CPUs,
this eliminates the serious bottleneck of the previous algorithm.

The new NURBS Algorithm first converts the NURBS surfaces into Bezier patches, and then
transforms each Bezier patch into a projective (2-D) space, where the ray is located at origin of the
projection. This reduces the problem from having to compute with 5-tuples to computing with
only 2-tuple, resulting in 60% less computation for every intersection. Bezjer clipping is used to
locate origin, by finding the zeros of the polynomial.

1.4. New Primitive Solids

Improved geometric coverage is the goal. In addition to adding a variety of new traditional
(GIFT) primitives, NMG objects may also be stored in the database as primitives. The traditional
primitives that have been added are the arbitrary convex faceted solid (ARBN), the halfspace
(HAF), and wire solids (WIR). The wire solids are implemented in the much more general form of
a “pipe”’ solid, which is either sclid or hollow. A pipe solid is composed of an arbitrary number of
segments, where each segment is either linear with constant radius, linear with changing radius, or
bending with constant radius. In addition, the “particle” solid was added to support the use of
particle systems. Addition of new ERIM solids is planned for the near future.

1.5. COMGEOM-G: GIFT Database Importer

This is a new COMGEOM “card deck” to BRL-CAD geometry database converter. This
function was formerly provided by the (unsupported) programs cvt4 and evt5. comgeom-g can
handle both ““current” GIFT versions (version 4 and version 5) of the input "deck” format, as well
as the traditional (version 1) MAGIC format, which is still used by the Department of Energy.
Automatic units conversion is built-in. Furthermore, it properly converts the halfspace (HAF),
ARBN, and WIR solids, which previous converters did 'not do. comgeom-g writes the mged
database by employing libwdb subroutines.

1.6. G2ZASC, ASC2G: ASCII Database Converters

Support of the particle and pipe solids has been added, as well as support of ARBN solids.
The new asc2g uses libwdb for most geometry output operations, making it smaller and much
easier to understand and maintain. This is also an important precursor to the planned {post-
Release-4.0) database format change.

1.7. More image/signal processing tools

Many of Phil Dykstra’s private stock of image processing tools have been polished up and
included in the distribution. This includes libfft, a library for evaluating FFTs, and a new direc-
tory (“sig™") of tools for signal processing, including a variety of windowing and filtering programs,

1.8. Improvements to LIBFB

The framebuffer server fbserv is the most prominent addition to libfb. fbserv provides
the bridge between the framebuffer semantics of libfb and the transient nature of the windowing
environment found on most modern graphics workstations [Muuss89a]. An arbitrary number of
fbserv processes can be run, with each one being given a different identifying number (usually
small integers like 0, 1, 2). Each fbserv opens a window on the workstation, and then blocks,
awaiting an incoming libpkg connection from a libfb graphics display program. Between uses,
the fbserv process continues to exist, maintaining the state of the window for the next applica-
tion.




More device support was added to libfb, including improvements to the SGI interface, the
addition of support for the Abekas AB0 digital videodisk, and preliminary support for the Tek-
source framebuffer.

In Release 4.0, there has been a slight shift in the philosophy of the library. libfb now has
to be linked with the system-specific libraries indicated by the cake configuration variable
LIBFB_LIBES, because copies of all the required vendor libraries are no longer included within the
libfb archive. Thus, libfb is no longer ‘“‘self-contained”, but may continue to reference routines
from system-specific libraries, This has the benefit of greatly reducing the size of libfb. For
example, the copy of libfb for the SGI made the old way was truly enormous, because it included
complete copies of libgl, 1ibX11, and libnet, as well as the actual libfb routines. This new stra-
tegy permits more flexibility in working around difficulties, such as using X11 libraries created by
BLD on the Crays.

This change forces libfb applications to use Cakefiles, or have Makefiles that are hand-
adjusted on a per-system basis. Instead, Cakefile.defs defines a new symbol, LIBFB_LIBES, that
lists any and all loader options that need to be used when linking against libfb. Thus, all Cakefile
rules should look like:

LIB_PRE”LIBFB LIBFB_LIBES

to refer to the framebuffer library. All the distributed Cakefiles were modified to reflect this
change.

Some new subroutine interfaces have been added to the library. fb_view() and fb_getview()
replace the viewport, window, zoom routines. fb_getcursor() and fb_poll() have also been added.

libfb/if_disk.c was extended so that the framebuffer named "—" {single minus) is now a
synonym for standard output (stdout). If a program that writes to a framebuffer is "well-
behaved” and writes scanlines in ascending order, then that program can be used in a pipeline for
further processing. As a simple but potent example,

fbelear —F— 100 200 100 | pixmatte ....

is a way of creating a file of a given color of exactly the right size. (A better way of actually
accomplishing this task is with gencolor). For programs that are not well-behaved in writing to
the framebuffer, stdout can be stacked with the /dev/mem interface, meaning that commands
like

fbgrid -F "/dev/mem —" | pixmatte ....

can also be used in this way.

The fbhelp program will return information about the framebuffer choices currently avail-
able, and details on the current selection., Here is an example output:
A Frame Buffer display device is selected by
setting the environment variable FB_FILE:
{(/bin/sh ) FB_FILE=/dev/device; export FB_FILE
(/bin/csh) setenv FB_FILE /dev/device
Many programs also accept a "-F framebuffer” flag.
Type "man brlcad” for more information.
=== == Available Devices =========s======
/dev/sgi  Silicon Graphics Iris '4D’
/dev/debug Debugging Interface
/dev/ab Abekas A60 Videodisk, via Ethernet
/dev/stack Multiple Device Stacker
/dev/mem  Memory Buffer
/dev/null  Null Device
host:{dev] Remote Device Interface
filename  Disk File Interface
= = = Current Selection = == ===




Description: Silicon Graphies Iris ‘4D°
Device:  dev/sgi
Max width height; 1280 1024
Default width height: 512 512
Usage: /dev/sgiloptions]
Private memory - else shared
Lingering window - else transient
Full centered screen - else windowed
Thirty Hz (e.g. Dunn) - else 60 Hz
NTSC+GENLOCK - else normal video
External sync - else internal
Perform software colormap - else use hardware colormap on whole screen
G Don't use GT & Z-buffer hardware, if present {debug)
s On GT, single buffer, don’t double buffer
2 Zap (free) shared memory 3
This program can be a big help in determining what framebuifer options have heen selected, and
what other choices may be available. It describes remote and stacked collections of framebuffers,
as well as simple local framebuffer references.

(“‘DDC‘"“"""'U

1.9. Improvements to librt

librt was extended to include a general collection of point, line, and plane subroutines, such
as rl_mk_plane_3pts(), rti_mkpoint_3planes(), and rt_isect_ray_plane().

The object-oriented interface between librt and the individual geometry modules has been
extended, with the addition of several new operations that each geometry module is required to
implement. First, a distinction is now made between the format of a primitive solid when it is
located in the geometry database on disk, and when it is in memory, intended for processing by a
program. A future extension to the mged database format will make the database become
machine independent, while the in-memory representation must be in the hardware’s native inter-
nal format. As the first step in this direction, all BRL-CAD code is being reorganized so that only
the librt geometry modules have knowledge of the on-disk format of solids. Through the
geometry modules ft_import() and ft_export() interfaces, the opaque format disk information can
be converted into an internal hardware specific format. The internal format is now described by
the beader file “h/rtgeom.h”. The internal format can be freed with fteifreef), and the solid that
it represents can be described by ft-describe(). The description is returned in a variable length
string (struct rt_vls), as described by the header file “h/restring.h”. The ft_fessellate() interface
causes the solid to be approximated as a collection of planar faces, in an NMG nmgregion struc-
ture.

In Release 3.7, the rt_vlist structures used within mged and librt to represent “‘display
list” contained a single point and command per data structure. Each data structure was individu-
ally allocated with malloc(). A given solid ranges from having dozens to tens of thousands of
points in its display list; with the old t_vlist structures, this resulted in an inefficient use of
memory and a lot of needless time spent in malloc(). New “‘chunky” rt_vlist structures have been
instituted, and the librt, rt, and mged directories have all been converted. By grouping
RT_VLIST_.CHUNI (currently 35) points together, much more efficient use of memory is made.
On 32 bit machines, each rt_vlist structure weighs in at just under 1k bytes. making it a con-
venient size to manage.

Phil Dykstra’s Quaternion math package 'Shoemake85al was added to librt in the file
“libet/gmath.h™. It has also been supplemented with many of the quaternion caleulus operations
such as natural logarithm (In), exponentiation (exp), spherical linear interpolation (stable slerp),
ete [Shoemake89a). The macros have been added to h/vmath.h, and the subroutines now live in
librt/qmath.c.

The robustness of the root finder package in librt was greatly improved. This resolved a
bug with certain TGC solids when viewed from an azimuth of zero degrees, and overall should




help produce better results.

In Release 3.7, every time a program needed to traverse the directed acyclic graph (DAG) of
" a database tree, a small piece of specialized code was written. This strategy resulted in the proli-
" feration of ‘“‘tree walker” routines. The addition of the NMG ev command to mged required
another tree walker a little different from all the existing ones. This motivated the creation of one
fully general tree walker, capable of replacing all of the half-dozen existing ones. As a result of
this, all the features described below apply uniformly to rt, Igt, etc., as well as to all the viewing
commands in mged (¢, ev, B, etc.).
: Non-union operations are now supported in combination nodes which are located above
region nodes. To get a cutaway view of a whole model, it used to be necessary to individually
remove the cutout solids from each and every region in the model. Now, for example, a top-level
group can now be created which is "vehicle minus cutout”. This vastly simplifies the construction
of “molds" for parts, and for making cutaway views for improved design visualization.

When naming objects in the database, the traditional approach of naming just the treetop
can be used, or partial or full path specifications can be given, with any modeling transformations
-accumulated along the way. For example, within mged it is now possible to give the command

e vehicle.g/suspension/l-track/idler vehicle.g/engine/drive-train

‘and see the "idler” and "drive-train” assemblies drawn in their final locations, relative to the com-
mon combination "vehicle.g".

The model tree can now be walked and "prepped” in parallel, on multi-CPU systems. For
large models, tree walking and database prepping can take a significant amount of time; why not
use multiple processors when they are available? This feature applies to mged viewing commands
'(!,ike ¢, ev, etc.), as well as to callers of the librt routine rt_gettrees{). Parallel tree walking works,
“and provides a significant speedup on parallel systems. For the moderately large database “"the
Mountain Fortress” (12,076 solids in 3,798 regions, in an area 25 km on a side) on an SGI-4D/240,
the table gives the measured speedup factor.

CPUs Speedup Elapsed Time (sec)
1 1 392
3 2.15 182
4 2.45 160

4Notes on parallel tree walking:

1) Only a portion of rt_gettrees{) runs in parallel, so 100% speedup can never be achieved.
There will be a small amount of “serial bottleneck™.

2)  In the parallel portion, database I/O is involved, resulting in about 20% system time over-
head per processor.

The new tree-walker provides better bounding RPP support. When a region contains non-
: unlon operations between solids, sometimes better model (and region) bounds are found than with
the previous tree walking algorithms. The improved algorithm which is now used is due to Ed
Davisson. Most noticeably, this should give much better "view auto-sizing” in rt.

- The new tree-walker also provides uniform support of articulated animation. Animation
directives are now handled automatically by the tree walker, so any program that uses the new
tree walker and desires animation capability can now easily obtain it. In particular, this will
make it easy for mged to preview the articulation scripts that rt has been able to render.

+10. RT Family of Programs

_ New command line options have been added to all of the rt family of programs (e.g. rt,
Tteheck, rtxray, rtbscat, rthide, etc.). First, the "-c” option allows any rt animation script
fommand to be given on the command line. Animation scnpt commands which contain embedded
Spaces need to be enclosed in quotes. For example,




rt -s64 -c "set bounces=7" -c "set” moss.g all.g

allows the maximum number of ray bounces to be changed (through the first -c option), and the
current viewing-model variables to be displayed (using the -c "set” option). Another example is:

rt =364 -¢ "set background=.25,0,5" moss.g all.g

which sets the background to the old purple background color, using normalized intensities in the
range O to 1. This can also be accomplished with a shorthand option, using RGB values in the
range of zero to 255:

rt -s64 -C 63/0,/127 moss.g all.g

Note that any non-numeric characters can be used as value separators. The comma and slash are
the two most often used. The convention generally [ollowed is to use slashes for RGRB values, and
commas for normalized intensities in the range of 0.0 to 1.0, although the number parser does not
care.

The -¢ option will be especially useful for the radar codes built as rt view modules, as it will
now allow access to all the application-specific variables from the command line. Traditionally,
they could only be set in an animation script, which was not always convenient.

The default background color in rt was changed from purple (63/0/127) to black (0/0/1).
The choice of 0/0/1 rather than 0/0/0 is so that the checkpoint/restart code can tell the difference
between unwritten pixels in the middle of the image and pixels which have been determined to
have background color. When rt is running in parallel, and when remrt is running with more
than one server machine, the output file is written in semi-random order. As each span of pixels is
completed, it is written to the appropriate location in the output pix(5) file. I this results in
intermediate portions of the file not being written, UNIX will zero-fill (with 0/0/0) those portions
automaticly. By choosing the background color to be 0/0/1, this saves rt from having to recom-
pute all the rays that result in background color pixels on a restart.

The choice of 0/0/1 over other dark colors was made because the eye is less sensitive to blue
than to either red or green. Keen-eyed watchers would be less likely to see 0/0/1 than, say, 0/1/0.
Ordinarily, 0/0/1 (which is 0,0,0.0039 in floating point format) is indistinguishable from black
0/0/0. Compositing images generated with the new background color can be done with:

pixmatte foo.pix -C0/0/1 stuff

A number of new ray-tracing analysis programs based on the “rt view module interface”
[Muuss91b| have been added, including rtxray for making X-ray images of models, rtbscat for
computing radar backscattering, and rthide for producing hidden-line-removed UNIX-plots of
models [Muuss9lc|.

1.11. REMRT

The network distributed ray-tracing software was enhanced to suffer less from dispatcher
latency, so that significantly more compute servers can be employed [Muuss87al. Also. the algo-
rithm for determining server assignment size has been made more dynamic, now taking into
account both the measured performance of the compute server, and the workload of the dispatcher
process. Also, the size of the maximum assignment was significantly increased, to take advantage
of today’s faster computers [Muuss90b!.

remrt’s distributed raytracing server, named rtsrv, has gained a new feature. When start-
ing up, it reads the file ;usr/tmp/public_cpus to find out how many CPUs on that system it may
use. The file contains a single number, in ASCII, on a line by itself. If the file does not exist,
rtsrv will create it. This file is writable to all users, and is is expected to be updated at any time
by the users of systems running rtsrv, to exert control over the load on their machine.

If the number of public CPUs is zero, rtsrv will not continue to run on that machine. If the

number of public CPUs is positive, rtsrv will use that many CPUs, not to exceed the number of

physical CPUs actually operating at that time. If the number of public CPUs is negative, rtsrv
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will use "all but" that many CPUs. For example, if public-cpus = -2 and the system has 8§ CPUs,
rtsry will use 6 ("all but 2"). These semantics follow rt’s -P (number of processors) option. This
makes it possible to use some, but not all, the resources of a given machine for rtsrv.

1.12. Cake & Development Environment Support

The "cakeinclude.sh™ Shell script was replaced with a new C program "cakeinclude” by Lee
Butler, which is compiled and installed automaticly by "setup.sh". This provides a significant
speedup when cake builds it’s dependency lists, each time cake is run. Here are some timings for
running on a full directory of source. The speedup factors are computed from the decrease in
elapsed time. (SWM is a diskless Sun-3/50, SPARK is a Gould PN9080, and VOYAGE is an SGI
4D/240. The files were accessed via NFS from SPARK).

Machine  SreDir Script Program Speedup
sSWm rt 47a 7.0s1:0019%  2.1u 2.7s 0:11 43% 5.5X
swm util 12.2u 22.55 2:48 20%  5.1u 8.8s 0:24 58% 7.0X
spark rt 29u 7.250:1759%  1.2u 2.55 0:05 65% 3.4X
spark util 7.8u 23.4s 1:00 51%  3.5u 9.1s 0:21 58% 2.9X
voyage rt 1.2u 3.0s 0:05 66%  0.2u 1.0s 0:02 37% 2.5%
voyage util 3.2u11.0s 0:20 68%  1.2u 4.0s 0:10 48% 2.0X

The location of the include files has changed. Release 3.7 uses /usr/include/brlcad. Release
4.0 uses /usr/brlcad/include, with a symlink from /usr/include/bricad. The intention is to keep
all files related to the BRL-CAD distribution located in one place in the filesystem tree. Refer-
ences to these files will be inserted into the appropriate system directories (/usr/include, /usr/lib}
using symbolic links. -

1.13. Release 3 of Utah Raster Toolkit

The latest version of librle was installed, as have all the new image handling tools from the
Utah Raster Toolkit. All BRL-CAD utility programs have been converted to use the new libraries.
Although librle usage has been changed slightly by Utah, the rle(5) file format has not changed.

1.14. Improvements to Utility Programs

pix-fb, bw-fb, and pixhalve all gained the "-a" flag, which invokes a file autosize function.
A table of common image sizes is consulted, and if the input image size matches the size found in
the table, then the values for width & height from the table are used. This goes a long way to
keeping the "headerless” image file formats convenient to use, given that BRL-CAD is now often
used with images other than the default size of 512x512. Other programs that deal with images
will probably also acquire this flag.
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W N Format
50 50
64 64
128 128
160 120  1/4 640x480
256 256

320 200 PC screen
320 240 1/2 640x480
512 512  (default)
640 al2 1/2 1280x1024
640 400 PC screen
640 480 SGI NTSC
720 486  Abekas NTSC
1024 768  SGI-3D screen
1152 900  Sun screen
1024 1024 -h
1280 960 2* 640x480
1280 1024  SGI-4D screen
1440 972 2* Abekas
2048 2048
4096 4096
8192 R192

Image Sizes Supported by Autosize

pixhalve is a program to downsample an image to one-half it’s original size. It does so
using a 5x5 filter kernel to obtain each pixel in the output file. The intent was that a single-pixel
wide image feature in the input image will be guaranteed to influence at least two pixels in the
output image, even though the output image has only one quarter the number of pixels in it. This
becomes quite significant when producing images for NTSC video, because the NTSC chrominance
bandwidth is only half that of the luminance bandwidth. As a consequence, the color can change
only every other pixel [Conrac80a]. When pixhalve takes a 1280x960 image and reduces it to
640x480, displaying the resulting image on a composite NTSC monitor produces a rendition of the
image that is about as good as NTSC can get. This defines a new high point in BRL-CAD’s abil-
ity to prepare images for NTSC video display.

1.15. Halftone package

While the majority of image synthesis done with the BRL-CAD Package results in 24-bit
color images, the most common format for communicating results is still the (1-bit deep) mono-
chrome printed page. The halftone package provides a sophisticated set of image contouring,
sharpening, and halftoning routines to produce high-quality one-bit monochrome images which
retain most of the visual information of the 24-bit original. Because information is being dis-
carded, the user will have to experiment with the various options to determine which processing
modes reproduce the image with the best fidelity [Johnson91a].

1.18. Minimal Standard Random Number Library

An implementation of the minimal standard random number generator described by Park
and Miller in CACM [Park88a] as been included as libmsr. Both integer and floating point uni-
form random numbers are provided, as well as floating point Gaussian random numbers. This
library computes a large array of random values and then provides them as required via a fast
macro. The array is refilled when all the values have been used. This permits the creation of the
random numbers to be vectorized, and keeps the subroutine linkage overhead to a minimum.
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1.17. EDPIX

An SGl-specific mouse driven picture editor and “paint’ program called edpix was added,
to supplement the fbed program, which has fewer features but is vendor independent.

1.18. NIRT

A new program was added to the distribution for interactively exploring a model by firing
single rays at the model from keyboard commands. The list of region partitions that the ray
passes through is printed on stdout ITanenbau9la). This can be a valuable tool for checking
models, and for debugging ray-tracing applications codes.

2. Future Directions beyond Release 4.0

2.1. VINT GUIMS
As a result of carefully designed file formats, all BRL-CAD image files and plot files are net-

work transparent and vendor independent [Muuss90b|. This allows the full power of network
computing to be easily applied to most image processing tasks. Because of the clean and elegant
UNIX “filter” and “pipeline” strategy employed, existing tools can be combined in many confi-
gurations, allowing most problems to be solved without writing additional programs (Muuss88a)/.
Yet, at the same time, creating a new image processing tool in C takes only a few man-days to
program. This is a consequence of the UNIX “Standard 1/0” paradigm and BRL-CAD’s powerful
collection of subroutine libraries.

It should be possible to achieve these same kinds of efficiencies, both in programming and
using such teools, while extending the tools to have sophisticated “‘user friendly” graphical user
interfaces (GUIs). Adding a graphical user interface to an application code requires weeks or
months of programming. The details of the visual appearance need to be specified in minute
detail, and provisions need to be made for handling the wide variety of events which might occur:
keyboard events, buttons, knobs, mouse events, window system events, etc.

In 1979, when ged (the precursor to mged) was first created, the Apple Macintosh computer
did not even exist, and the now-famous Xerox bitmapped user interface was just a laboratory
curiosity. High-performance graphics display hardware proliferated, and ged evolved into mged,
gaining a clean interface to a vendor-independent display manager library to access the display
hardware. Shortly after this, Chuck Kennedy used libpkg and htond(} to create an experimental
network transparent remote display-manager interface. This early experiment was BRL’s first
encounter with the power and possibilities of a Vendor-Independent Network-Transparent (VINT)
Graphical User Interface (GUI). At the same time, libfb gained it’s network transparent “remote
framebuffer® capability. Because of the object-oriented design, any combination of local and
remote libfb framebuffers could be stacked together, and thus the capability for tele-science was
born. Over the years, this has proven immensely useful, with applications ranging from sending
tmages to remote co-workers, to creating multiple-location demonstrations, to facilitating trans-
continental scientific collaboration.

Looking ahead, it should be possible to enjoy all the benefits of the current environment
(rapid program development, network transparence, vendor independence, and high performance)
in the context of a full-feature graphical user interface. In addition, there should be some tools for
tontext-sensitive help semi-automatically provided, which expands the GUI into a graphical user
interface management system (GUIMS). For example, it should be possible to take an existing
image processing tool, and with no more than an additional few days of programming effort, add
a sophisticated graphical user interface with online help and a significant number of control
Parameters and interaction forms. Ideally, this GUI version will still achieve a full color graphical
display with interactive performance comparable to that currently achieved with libfb or mged
funning on the same hardware platform. This is the goal of the BRL-CAD VINT GUIMS project.

The X Window System [ScheifieSﬁa} Is emerging as the “lowest common denominator” ven-
dor independent network transparent window system standard. The X Window paradigm of




-12-

preparing bitmaps on the host computer and sending them across the network to the display com-
puter, works superbly for monochrome displays containing text and simple graphics. Editing com-
plex 3-D geometry as is done with mged requires a tremendous bandwidth between mged and the
display screen. For local display on a workstation, it seems likely that using vendor-specific
software to drive the graphics display hardware will give better performance than using X. For
example, in SGI's [RIX Release 4, user interface operations will be handled in X, but high perfor-
mance graphics applications will still have to be written using SGI's proprietary libgl. Alsa, port-
ing X to a new workstation requires substantial effort; it is likely that supporting the VINT
GUIMS directly on a new workstation would be much simpler than porting X,

A successful VINT GUIMS implementation will result in an immediate improvement in the
user interfaces of mged, MUVES, and the BRL-CAD image processing tool suite. A prototype
VINT GUIMS effort is currently in progress as a joint collaboration between BRL and The Royal
Melbourne Institute of Technology (RMIT).

2.2. New MGED UIF, using VINT GUIMS

With the addition of NMG support to mged, a rich set of possibilities for improved
geometry editing become apparent. For example, many existing faceted primitives can be con-
verted to NMG form without loss of information, Thus, if sophisticated new interactive editing
facilities which operated exclusively on NMGs were implemented, this investment could also pro-
duce enhanced editing capability for many existing solids with minimal additional effort. By

employing the concept of “‘editing under constraints”, this facility could be easily extended to edit-
ing NURBS as well.

Adding a significantly more complex editing capability to mged will require a tremendous
amount of additional user interaction. In the context of the current mged, much of this interac-
tion would be via the traditional keyboard-oriented command set and could prove cumbersome to
use. However, if even part of the promise of the VINT GUIMS is realized, then a comprehensive
new user interface for mged could be created, entirely in the context of the VINT GUIMS.

2.3. Method of Moments

When a metallic vehicle is illuminated with radar energy, that energy is partly absorbed,
and partly dispersed back into the surroundings. Some of the illumination energy returns to the
transmission position, and it does so carrying an electronic ‘“signature” of the vehicle
Toomay82a|. A variety of different techniques exist to calculate the predicted radar signature of
a given vehicle. The algorithms based on ray-tracing tend to handle multi-bounce effects very well
but are unable to simulate edge diffraction and creeping wave phenomena. However, algorithms
based on feature-based descriptions of the the vehicle or coarse polygonalizations tend to handle
diffraction and creeping waves acceptably but are unable to handle multiple bounce effects. The
best known technique for the simulation of radar signatures is the Method-of-Moments technique
{Harringt82a,Pizer84a] , which requires a polygonalization of the surface of the vehicle as input.

In order to achieve high accuracy, the Method-of-Moments technique requires that each sur-
face polygon be no wider than one fifth of one wavelength of the radar signal. The relationship
between frequency [ and wavelength A is given by

y = £ _ 3%10% m/s

; [ Hz

Thus, the method of moments technique requires exceptionally fine surface tessellations to be
used. Tessellating full size vehicles this finely produces a gargantuan number of facets. This is
one of the prime applications of the NMG tessellation capability. An experimental Method-of-
Moments processing pipeline was implemented and is undergoing testing. An experimental mged
command is used to capture the tessellation of a model as a binary polygon file. These polygons
are converted to records containing centers, normals, and areas (CNA file). The CNA file is pro-
cessed to build a complex Z matrix. The Z matrix is inverted, to produce the complex invZ
matrix. The incident field is computed, and the field is multiplied by the invZ matrix to produce
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the solution field. The solution field is applied to the polygon file to produce a colored polygon
file, which is then rendered.

2.4. Interface to MESA, CTH

Both MESA [Mandell89a] and CTH need only volume-fraction per cell information. Com-
puting this volume fraction information is a good first step towards the goal of producing full
three-dimensional Finite-Element-Mesh (FEM) data directly from the geometry database. This
will create an important linkage between BRL-CAD’s ability to model complex shapes, and a very
important family of structural analysis codes.

Extracting volume fractions from an mged database is very straightforward, and the first
implementation will be done using the ray-tracing paradigm. For comparisons of speed and accu-
racy, an NMG-based implementation will also be attempted.

2.5. librt performance from NUGrid

At AUSGRAPH '90, Mike Gigante presented a new space partitioning algorithm dubbed
-NUGrid [Gigante90a], which is currently the best known method for efficiently handling the
“teapot in a stadium’ problem. An experimental implementation of the NUGrid algorithm exists
for librt, and the hope is that when completed, this will provide a significant performance
improvement over the non-uniform binary-tree algorithm that is currently in used in librt.

In addition, the NUGrid algorithm has also been successfully employed in an application
which solves the 3-dimensional cluster analysis to determine the minimum number of perceptually
“close’ pixel values used in a full-color image. This is an important step in converting images for
display on color (ramebuffers that are only 8 bits deep, such as is commonly found on personal
computers and low-end workstations like Suns [Johnson91a)|.

2.8. Trimmed NURBS support

Trimmed NURBS (t-NURBS) are a relatively recent development, circa 1986. Finding the
intersection of two NURBS surfaces in 3-space is very difficult. However, once the intersection
curves have been found, if the solution is recorded as a pair of curves in the u,v parameter spaces,
then using the intersection curves becomes very easy. Once the intersections are found, the
trimmed NURB is used to cut out the unwanted regions, and then the two surfaces are jointed
together.

As an extra benefit, capping operations become trivial, even if the extruded shape to be
capped has a very convoluted contour. In this case, a rectangular NURB is placed on top of the
extrusion, and the projection of the end surface onto the NURB is used as the trimming curve.
Now the trimmed NURB forms the perfect cap.

The algorithms for implementing t-NURBS have been designed and implemented, and test-
ing is underway.

2.7. Combining NMGs and Trimmed NURBS

An NMG representation comprised exclusively of rectangular parametric surfaces, such as
B-splines or similar tensor-product surface patches, was considered. However, research to date has
shown that while B-spline surfaces can be combined using boolean operations, the resulting object
can not be expressed strictly in terms of B-splines [Thomas84a]. Existing algorithms for intersect-
ing two NURBS surfaces have returned the results as a collection of many smaller NURBS, plus
bundles of polygons from the vicinity of the intersection curve. This occurs because the boolean
combination of rectangular parametric surfaces is not necessarily bounded by rectangular
- parametric surfaces; i.e., the representation is not closed. This mixed representation of B-splines
and polygons becomes ungainly when subjected to repeated boolean operations.

Thus, in the design of the existing NMG system, NURBS can not be used for storing the
faces of solids, because the B-spline representation does not have closure under the set of boolean
operations. Recent work has suggested that a representation comprised of trimmed B-splines and
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shared-edge polylines might be closed under boolean operations [CobbBdaj, but a full implementa-
tion i1s not yet known to exist. Therefore, when NMGs were umplemented for BRL-CAD, there
was no choice: the explicit representation of modeled objects had to be expressed in terms of col-
lections of polygons.

The major significance of the trimmed NURBS work is that trimmed NURBS (t-NURBS)
offer-the potential of being closed under Boolean operations. If this is indced the case, then this
breakthrough permits full CSG modeling to be performed on trimmed NURBS, without needing
any auxiliary data structures or surface representations.

The implication of this is tremendous. It means that the existing NMG implementation,
which only supports solids with planar faces, can be readily extended to include two kinds of faces:
planar faces, and t-NURBS faces. In such a t-NURBS extended NMG implementation, the power
of free-form surface modeling can be employed on those surfaces which require it, while planar
faces can retain their original simplicity. :

This provides a natural path for adding detail to geometric models later in the design cycle.
Imagine a vehicle designer starting with a front glacis plate modeled as an ARBS: a slab with 8
vertices and 6 planar faces. As the design evolves, imagine that the outer face of the slab needs to
be thickened somewhat in the center. In a system which employed a homogeneous spline represen-
tation, all six faces would have to be converted to splines. With t-NURBS extended NMGs, only
the outer face needs to be upgraded into a t-NURB. The four edges on that face become space
curves, while the remaining five faces are kept as simple planar faces, albeit with the four side
faces also being modified to have one curved edge and three linear edges each. This permits
tremendous economies.

2.7.1. Storage Efficiencies

NURBS take significantly more storage to represent than planar faces. While superficial
consideration reveals that a rectangle in the plane can be represented efficiently with NURBS, this
efficiency does not persist when the planar NURBS faces need to be interfaced to genuinely curved
faces. In the example given above, the non- t-NURBS implementation has to convert each side
face into a spline with one simple knot vector, and one knot vector that was compatible with the
curved face,

2.7.2. Performance Efficiencies

The time to compute intersection curves between NURBS surfaces increases as the complex-
ity of the surfaces increases. Even though the individual knots used in the NURBS surface are
designed to provide only local support of the surface, some increases in processing time are una-
voidable, because of the increased amount of data to sift through. If each of the m edges has km
knots in it, the traditional NURBS approach has complexity roughly proportional to

m
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while the t-NURBS extended NMG approach has complexity proportional to only
1=m
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2.7.3. Designer Efficiencies

In a full scale solid modeling system, the designer expresses the initial structures directly into
the modeling system’s editor, just as a modern author creates his “rough draft’ directly into a
word processor. Most elements of a design begin as “rough”, blocky shapes, which are refined into
the final form by applying modifications. This strategy is akin to how a sculptor crafts a sculp-
ture: large chunks are removed from the slab of stone until an approximation of the desired shape
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is achieved, alter which progressively smaller modifications are made until the result is acceptable,
Similarly, the t-NURBS extended NMG approach permits the designer to build using simple prim-
itive shapes, confident that any portions of the design which need to be medified can be simply
and economicly refined in the future.

2.7.4. Improved tessellation

Another significant implication of the t-NURBS extended NMG approach occurs in the area
of tessellation. Many of the existing CSG primitive solids can be tessellated into eract t-NURBS
representations. This means that computing evaluated surface descriptions of the underlying CSG
database can, in many cases, be an exact (albeit voluminous) description of the solid. This allows
deferring the conversion of the evaluated surface descriptions into polygons until a later processing
stage.

2.7.5. Analytic Surface Calculations

This affords the opportunity to create new analysis codes that can process curved surfaces,
vet at least initially only have to deal with one very general kind of shape. This also provides a
very direct and natural interface to spline-based [Rogers90a| and Bezier-patch [Bezier74a| based
modeling systems.

Given a homogeneous geometric representation such as the Trimmed B-Splines just discussed
which also has an analytic representation, a further processing capability arises. Rather than
interrogating the database by sampling or subdivision techniques, the direct mathematical mani-
pulation of the source geometry through its parametric representation becomes possible. Calcula-
tions of physical properties requiring integration over a surfaces can often be evaluated with
greater accuracy using an explicit analytic calculation rather than by numerical evaluation. While
this may be difficult in general due to the complexity of the parametric expression, some classes of
surface representations are good candidates. Splines, for example, are piecewise-polynomial func-
tions which have relatively simple Fourier transform representations. Since 2-D spatial Fourier
transforms arise frequently in far-field electromagnetic scattering calculations, exploitation ol the
parametric spline representation is of interest in predictive scattering calculations. Direct use of
spline parameters in o Physical Optics scattering model is part of the methodology used at the
Aircraft Division, Northrop Corporation.

With the rapidly developing potential of symbolic calculation, treatment of seemingly impos-
sible formulas resulting from the geometry /physics interaction may become tenable. This can help
to reduce the trend towards employing numerical methods at the onset of a problem and avoid
some of the accompanying instabilities and errors.

3. Summary

This is an exciting time in the development of the BRL-CAD Package. On the one hand, the
geometric coverage of the modeling system is expanding rapidly, while on the other haund, the
interface between the geometry and analysis codes continues to grow richer. This leads to support
for an ever-increasing assortment of engineering analysis tools to provide a hitherto undreamed-of
level of computer assistance to the designer. One can only speculate about what new accomplish-
ments this will facilitate.

4. Acknowledgments

The BRL-CAD developers would like to gratefully acknowledge the financial support for the
NMG work which was provided by the Joint Technical Coordinating Group-Munitions Effective-
ness (JTCG-ME), Smart Munitions Working Group, under grants monitored by Julian A. Cher-
nick, US Army Materiel Systemns Analysis Activity, Aberdeen Proving Ground, MD, 21005-5066.

The author would like to thank Dr. Paul Deitz for providing unflagging support and
encouragement for the BRL-CAD effort. Also. the clarity of the paper was greatly improved
thanks to numerous suggestions by Susanne Muuss and Christopher Johnson.



- 16 -

References

Applin88a. K. A. Applin, M. J. Muuss, R. J. Reschly, M. Gigante, and 1. Overend, Users Manual
for BRL-CAD Graphics Editor MGED, BRL Internal Publication {Octaber 1983).

Bezier74a. P. E. Bezier, Mathematical and Practical Posstbilities of UNISURF, Academic Press
New York (1974).

Cobb84a. E. S. Cobb, Design of Sculptured Surfaces using the B-spline Representation. PhD
dissertation, University of Utah (June 1984).

Conrac80a. Conrac, Raster Graphics Handbook, Van Nostrand Reinhold, New York (1980).
;

Gigante90a. M. Gigante, “‘Accelerated Ray Tracing using Non-Uniform Grids,” roceedings of
Ausgraph '90, pp. 157-163 (September 1990).

Harringt82a. R. F. Harrington, Field Computation by Moment Methods, Krieger, Malabar, Florida
(1982).

Johnson91a. C. Johnson, Digital Halftoning: The halftone package and Applications to BRLCAD,
BRL-CAD Symposium '91, Aberdeen Proving Ground, MD (7-9 May, 1991).

Mandell89a. D. Mandell and T. Adams, MESA Input Manual, Los Alamos National Laboratorv
Report LA-CP-89-345 (August 1989).

Molnar87a. Zsuzsanna Molnar, “Advanced Engineering/Scientific Graphic Workstations,” in
Techniques for Computer Graphics, ed. D. F. Rogers, . A. Earnshaw, Springer-Verlag
(1987).

Muuss89a. M. Muuss, Frame Buffers and Window Systems: Internals of the Silicon Graphics 4D
Framebuffer Support for LIBFB, BRL-CAD Symposium '89, Aberdeen Proving Ground, MD
(24-25 October, 1989).

Muuss87a. M. J. Muuss, “RT and REMRT - Shared Memory Parallel and Network Distributed
Ray-Tracing Programs,” USENIX: Proceeding of the Fourth Computer Graphics Workshop,
(Oct 1987).

Muuss88a. M. J. Muuss, “Distributed Graphics for High-Resolution 3-D Modeling,” SGI Iris
Universe Magazine, pp. 14-19 (Fall 1988).

Muuss90b. M. J. Muuss, “Workstations, Networking, Distributed Graphics, and Parallel Process-
ing,” in Computer Graphics Techniques: Theory and Practice, ed. D. I'. Rogers, R. A.
Earnshaw, Springer-Verlag (1990).

Muuss90a. M. J. Muuss and L. A. Butler, “Boolean Operations on Boundary Representation
Solids Using n-Manifold Geometry,” Proceedings of Ausgraph '90, pp. 291-299 (September
1990). _

Muuss9la. M. J. Muuss and L. A. Butler, “Combinatorial Solid Geometry, Boundary Representa-
tions, and Non-Manifold Geometry,” pp. 185-223 in Advanced Computer Graphics Tech-
nigues, ed. D. F. Rogers, R. A. Earnshaw, Springer-Verlag (1991).

Muuss91b. S. Muuss, Rapid Creation of Analysis Codes: The RT View-Module Interface, BRL-
CAD Symposium '91, Aberdeen Proving Ground, MD (7-9 May, 1991). i

Muuss91c. S. Muuss, RTHIDE: 3-D Hidden Line Removal, BRL-CAD Symposium '91, Aberdeen
Proving Ground, MD (7-9 May, 1991).

Park88a. S. Park and K. Miller, “Random number generators: good ones are hard to find,”
Comm. ACM 31(10)(Oct 1988). ‘ :

Pizer84a. J. Moore and R. Pizer (eds), Moment Methods in Electromagnetics, Wiley, New York
(1984).

Rogers90a. D. F. Rogers and J. A. Adams, Mathematical Elements for Computer Graphics. 2nd
ed., McGraw-Hill, New York {1990).

Scheifle86a. Robert W. Scheifler and Jim Gettys, “The X Window System,” Transactions on
Graphics 5(2) pp. 79-109 (April 1986).

R A e s A S




~ 17~

Shoemakes5a. K. Shoemake, “Animating Rotation with Quaternion Curves,” Computer Graphics
19({3) pp. 245-254 (July 1985).

ShoemakeB9a. I, Shoemake, “Quatermon Caleulus for Animation,’ pp. 187-205 in (ourse Noles:
Muth for SIGGRAPH, ACNM SIGGRAPH (1989).

Tanenbau$la. P. Tanenbaum and N. Eberius, NIRT: Interactive Ray-Tracing with BRL-CAD,
BRL-CAD Symposium 91, Aberdeen Proving Ground, MD (7-9 May, 1991}

Thomas84a. S. W. Thomas, Modelling Volumes Bounded by B-spline Surfaces, PhD dissertation.
University of Utah (June 1984).

Tocmay82a. J. C. Toomay, Kadar Principles for the Non-Specialist, Lifetime Learning Publica-
tions, London (1982},







The BRL-CAD Package
An Overview

Phillsp C. Dykstra
Michael John Muuss

Advanced Computer Systems Team
U. S. Army Ballistic Research Laboratory

Aberdeen Proving Ground
Maryland 21005-5066 USA

ABSTRACT

The major components of the BRL-CAD Package are reviewed, The BRL-CAD

Package is a combinatorial solid geometry (CSG) based modeling system which
includes an interactive model editor, a ray tracing library, a generic frame buffer
library, and a large collection of related tools.

An object-criented ray tracing library provides the primary method of model
interrogation. A whole family of engineering analysis applications based on the
ray tracing paradigm has been built, including traditional renderers, and predic-
tive radar models. A generic frame buffer library interface with transparent net-
working capability provides hardware independent access to any display device
from any host. Several categories of software tools for image display, manipula-
tion, and analysis are discussed. Some general user interface issues are mentioned.

This paper emphasizes the reasons which led to the system as it exists today, and
comments on some of its various strengths and weaknesses,
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An Overview
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Advanced Computer Systems Team
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1. Introduction

The Ballistic Research Laboratory CAD Package is a large body of software consisting
mainly of 1) a solid model editor (MGED), 2) a ray tracing library for model interrogation (librt),
3) a generic frame buffer library with full network display capability (libfb), and 4) a large collec-
tion of software tools for frame buffer and image manipulation and analysis. Parts of this system
have roots in work done over two decades ago, most notably the solid modeling, and the ray trac-
ing. Recently this software has been through a new generation of growth. It is now distributed
free of charge to many sites around the world on a non-redistribution basis.

As with many large systems, parts of it were the result of years of evolution, with many
band-aids, hacks, and “backward compatibility" requirements along the way. The work that one
needed to accomplish today was often more influential than any carefully made plans. Most of
this history is known only to those who watched it happen.

This paper provides a briefl overview of the major components of the BRL-CAD system. It
will attempt to explain how and why many parts of it are the way they are. Finally, it will enter-
tain the question of what is good and bad about it, and how the various decisions that were made
have or have not worked.

2. Solid Modeling - MGED

The BRL has been building solid models of vehicles and other objects for over twenty years,
These models are analyzed for various physical properties (such as center of mass, moments of
inertia), vulnerability, and more recently for optical, radar, and IR signatures.

This work began in the early 1960s when BRL had the Mathematical Applications Group
Inc. (MAGI) develop a method of geometric description for military vehicles.! The method decided
upon was Combinatorial Solid Geometry (CSG), sometimes referred to as Set Theoretic modeling.
This is a system where various geometric solids (boxes, cones, ellipsoids, tori, etc.) are combined
using boolean operations {union, intersection, and subtraction). CSG represents one of the two
major classes of modeling, the other being surface or boundary representations (B-reps). A key
reason for the selection of CSG modeling is that it is "true to reality.” Physical objects are solids,
not just surfaces. If an object has been constructed with CSG, one is at least assured of its physi-
cal possibility.

For several years, models were constructed on large sets of punch cards. One or more cards
would contain the parameters for a particular solid; other cards would describe the boolean rela-
tionships between solids. This system was not hierarchical, all solids and combinations existed at
one level. Ray tracing was used to analyze these models, but the only images of these models ever
produced were crude plotter drawn wire frames,

A new generation of modeling tools emerged in 1979-1980. A system was built which
allowed these models to be interactively displayed and edited on vector display devices.  The




success of these early efforts, coupled with the failure to find commercial tools of sufficient power,
led to the development of the MGED model editor. The MGED editor is written in C and has
been run on a large variety of machines. An object oriented interface to a set of display managers
allows many different display devices to be supported. The types of primatives supported include:
arbitrary boxes of up to eight vertices, ellipsoids, truncated general cones, tori, polygonal solids,
and solids constructed of B-spline surfaces.?

The CSG representation is a natural form for our most common method of model interroga-
tion - ray tracing. There are some methods of analysis however for which a surface facet represen-
tation of a model is the desired form. Work is currently under way on the facetization of CSG
models, in order to support the needs of such codes. Future work is also planned in automatic
mesh generation for similar reasons. These two capabilities will further ease the barrier between
model representation, and model analysis.

For a much more comprehensive coverage of solid modeling, with MGED as a case study, see
Muuss.?

3. Model Analysis - Ray Tracing

Ray tracing is a method of point sampling a geometric model by mathematically intersecting
lines with objects in the model. At each intersection point various properties of the model can be
determined: where did it intersect, what is the surface normal and curvature at that point, what
part of the model was hit, what are the material properties at that point, etc. The computer
graphics community often cites the origins of ray tracing with Kay’s 1979 thesis,* or Whitted’s
paper of 1980.5 However, the use of ray tracing as a method of geometric model interrogation has
its origin in a BRL contract with MAGI, the initial results of which were published in 1967.! More
details on the origins of ray tracing can be found in Muuss.® For an overview of the method itself,
see Rogers.”

Ray tracing is the primary method used by BRL for model interrogation. While ray tracing
{(and radiosity) is generally held as the highest fidelity form of rendering (image generation) avail-
able, many people in the computer graphics community dislike it due to its notoriously high com-
putational expense compared to other rendering techniques. But there are several key reasons why
BRL uses it: 1) We are primarily concerned with doing an engineering analysis of the model, not
just making pretty pictures of it, this objective is what led us to CSG models to begin with. 2)
When CSG models are used, ray tracing is the most common method for evaluating the boolean
expressions, 3) Firing a ray at a model is very much like firing a projectile (or light) at it, and is
thus a natural method for vulnerability and signature analysis.

The ability to intersect rays with a model is common to all of the analysis tools, whether one
is rendering a picture of the model or computing a moment of inertia. For this reason, the code
which knows how to efficiently trace rays through a CSG model has been put in a library, librt.
An application linked to this library has complete control over which rays are fired, how much
information is computed at the intersection points, and what is done with the returned informa-
tion. This library level separation of ray tracing and analysis has proven to be an extremely good
one.

Other splits between ray tracing and analysis have been made or proposed. Some systems
trace the entire model, placing the results into an intermediate file. There are two problems with
this: the analysis code can not influence the ray trace (for example, by deciding when to reflect or
when to fire extra rays in an area), and the volume of data generated is extremely large, often fil-
ling an entire large disk drive. The split could also be implemented by passing messages between
separate processes via a remote procedure call, or a stream mechanism such as a UNIX pipe. The
amount of overhead involved with either of these methods is typically of the same order of magni-
tude as the work involved in tracing a single ray. This approach is thus [elt to be impractical.

Two ray tracing programs which use librt are provided in the CAD package: RT and LGT.
LGT is an optical rendering program with a curses based screen oriented user interface. RT also
provides rendered images with command line arguments, but is itself the front end for several




applications including a radar model. RT also has the ability to read scripts of commands which
can control the computation of a sequence of frames, and the orientations and properties of
materials in each frame of an animation.

Future work with the ray tracer includes extending the classes of traceable objects, further
efficiency improvements, and its extension to handle a broader class of physical phenomena. The
latter goal includes multiple spectral point sampling (instead of just Red Green Blue) to account
for dispersion and complex spectra, divergence factors {for the concentration and diffusion of
light), and polarization effects.

4. The Frame Buffer Library

The frame buffer library (libfb) provides a device independent interface to a raster display.
A program compiled with this library can access many different display types, including those on
other machines on the network. The most important routines are summarized below.

libfb routines
fb_open(device,width,height)  open the device
fb_close(fbp) close the device
fb_read(fbp x,y,buf,count) read count pixels at x,y
fb_write(fbp,x,y,buf,count) write count pixels at x,y
fb_clear(fbp,color) clear to an optional color
fb_rmap{{bp,colormap) read a color map
fb_wmap(fbp,colormap) write a color map
fb_window(fbp,x,y) place x,y at screen center
fb_zoom(fbp,xzo0om,yzoom) pixel replicate zoom
fb_getwidth(fbp) actual device width in pixels
fb_getheight(fbp) actual device height
fb_cursor(fbp,mode,x,y) cursor in image coords
fb_scursor(fbp,mode,x,y) cursof in screen coords
[b_log(format,arg,...) user replaceable error logger

The coordinate system for x,y specifications is first quadrant. While we went round and
round about first vs. fourth quadrant with arguments akin to “which end of the egg first,” the
decision for first quadrant resulted primarily because that is the same ordering as our image files
(-pix files, see below). The image files themselves were ordered that way because the University of
Utah's RLE files are first quadrant. If reads and writes extend beyond the end of a scanline, they
wrap in first quadrant fashion.

The pixels passed to and from the library are simply arrays of bytes interpreted as
RGBRGB.... While we used to define a C language pixel structure with red, green, and blue ele-
ments, this was changed 1o a typedel’d array of three unsigned chars. This was important in
order to avoid structure padding. The Cray computers for example would have used eight bytes
per pixel with the old format. Unfortunately, one does run into some compiler touchiness when
using pointers to typedefs which are themselves arrays!

The display to be used is selected by a command line argument, an environment variable
FB_FILE, or a default for the system the code is running on. The format is
[host:]/dev/device_name[#], or simply "filename”. The /dev/ part is used to identify a display
device. The device_name need not correspond to entries in /dev, it is just that if the /dev prefix is
not given a file pathname is assumed. If a hostname is given, a network connection is opened to
the frame buffer library daemon (rfbd) on that machine. The remaining part of the string is
passed to that host for the open (this generalizes the open to allow multiple "hops” in order to get
to a host). Currently supported displays include the Adage Ikonas, Silicon Graphics Iris, black
and white and color Sun workstations, Raster Technologies One/80, the X Window System, and
AT&T 5620 terminals. There is also a debug interface, a disk file interface, and a "stack” inter-
face that allows multiple cutput devices to be combined together.




- A set of buffered 1/O routines is also provided. In this interface a "band" of scanlines is kept
memory and the appropriate pre-reads and flushing is done. While this interface can speed up
single pixel reads and writes, it does not make the drawing of vertical lines any easier, since such a
line would run through several bands. In practice, very few of our programs use buffered 1/0.
Most programs keep their own scanline buffers and do unbuffered scanline size reads and writes.
Some thought has been given toward allowing the selection of the memory buffering mode at run
time, perhaps keyed on a device name parameter. This would permit the user to control the trade
off between speed and interactive output. The ability to make such a decision becomes particu-
ly important when one is using a remote display.

libfb buffered I/O
fb—ioinit(fbp) set up a memory buffer
fb_seek(fbp,x,y) move to an X,y location
fb_tell{fbp,xp,yp) gives the current location

fb_rpixel(fbp,pixelp}  read a pixel and bump location
fb_wpixel(fbp,pixelp)  write and bump current location
fb_flush(fbp) bring display up to date

The frame buffer library owes much of its current form to its history. One of the first true
rame buffers purchased by BRL was an Ikonas (now Adage RDS-3000), in 1981. This device runs
as either 3 512x512 or 1024x1024 display with 24 bit pixels. It has three 256 entry 30-bit (10 bits
per DAC) color maps, hardware pan and zoom, and hardware cursor support. Michael Muuss of
BRL wrote our first library for that device (libik).

- Later, a Raster Technologies One/180 frame buffer was acquired and a libik like interface
as created for it. As other devices followed, libfb was born. At first there was a switch in every
ibrary routine for every display device. Later it was reworked to have an object oriented inter-
face: opening a device fills in a function switch table with that display’s routines, and a "frame
buffer pointer” was returned to that structure. Most of the frame buffer routines became macros
which vector directly out to the device dependent code.

_Finally, the machine which had our nice displays on it (a VAX 11/780) was also one of our
est.. To make this less of an issue, a libfb look alike was put together one evening which
passed all library calis and returns across a network connection to a daemon that made calls to a
“real” libfb. This was facilitated by the Package Protocol® (PKG) which allows messages to be

changed, both synchronously and asynchronously, across a TCP connection (this protocol had
originally been developed to make a remote MGED display possible, but later found uses in com-
mand and control experiments, etc.). The remote frame buifer code was merged into libfb during
its object-oriented restructuring, so that one need only link with a single library to get both local
d remote display capability.

Starting with the Ikonas in some sense spoiled us. It gave us full color pixels, color maps,
cursors, and pan and zoom. These features were incorporated into the generic frame buffer model
in our library. This makes fitting devices like the Sun workstations into our library quite
trying, but this difficulty is more the result of things that workstations like the Sun can’t do than
L is a design problem with our library. On the other hand, the Ikonas also left us with programs
hat have to open the device in one of two "modes”, either high or low resolution. To make
matters worse, it does not allow the current display mode to be read back from the hardware.
Therefore, the open must set the [konas to a known state. As a result, every frame buffer pro-
gram, even those which have little to do with display size (such as those which read or write color
F}‘PS), carries around a "hires” flag so the device can be opened in the proper "mode."

One commonly asked question is whether a network window system, such as the X Window
_hygtem° from MIT will make the BRL frame bulfer library unnecessary. I believe that the answer
t‘"____"his is no. A window system provides a user interface to a workstation (and programs). A
ﬁ“m! buffer library provides a programmatic interface to a particular kind of hardware device. A
Window system can be viewed as a shared resource manager, the resources being the screen,



keyboard, mouse, etc. A frame buffer is usually a dedicated device typically with hardware pan,
zoom, and color maps, and usually with little or no general processing power of its own. Frame
buffers make poor platforms for a window system interface like X - they would need a server run-
ning on the host processor of the system they are attached to, and they tend to be very slow at the
"BITBLT" operations that window systems use heavily. Window systems in turn, provide poor
interfaces to frame buffers.

We have implemented libfb interfaces for several window systems: MEX and 4sight on Sili-
con Graphics workstations, SunView on Sun Microsystems workstations, and the X Window Sys-
tem (which will work on any machine having an X server). While window systems such as these
seem to be what the industry has to offer to graphics users, all of them are of questionable value
as a replacement for a frame buffer. Only a few window system platforms offer 24-bit color, fewer
still provide genuine color maps for their windows (where the color map is not consumed mapping
say, 8-bit to 24-bit color), and none that the author is aware of support built in pan and zoom. As
an example of a more deep seated issue, consider that in a frame buffer when one writes data into
it, it stays there until different data is written. In a window system, a window is opened by a pro-
gram and written in, and typically goes away along with the data after that program has exited.
You can’t get the data back out of the no longer existent window. We have used shared memory
in the host machine where possible, to mimic the permanent store of a frame buffer, as well as
creating "lingering" windows which live beyond program execution. Even more difficult is the case
of X, where the programs on different machines can rendezvous at a frame buffer "window,” but
where now should the permanent image data be stored (the server can’t do that for you)? Thus
the frame buffer library can and is being used under window systems, but window systems were
never intended to behave the same way as frame buffers (nor probably should they).

5. The Software Tools

A large number of simple tools for manipulating images and frame buffers are provided in
the CAD package. They have been written in the traditional UNIX Software Tools fashion: each
performs a simple basic function, with a minimum of back talk, and is intended to be hooked
together with other tools to achieve an overall goal. A fair amount of effort has gone into making
a standard interface to the tools. All tools provide a usage message if executed with no arguments
(often after checking for a tty on stdin or stdout when it expects binary data), and common collec-
tion of flags is defined for all of the tools.

The use of software tools for computer graphics is not new. Recent systems advocating this
tools based approach include those of Duff!® and Peterson.!! The BRL-CAD Package has proven
to be extremely flexible as as result of this approach. Generally, a new tool is added whenever the
existing ones are found to be inadequate. Success can be claimed if one can easily achieve day-to-
day tasks without having to write specialized programs.

5.1. File and Image Formats

Several kinds of files are read and generated by programs in the CAD package. These
include model databases in a binary form (with a typical filename extension of .g), portable ASCII
versions of those (.asc), and University of Utah Run Length Encoded (RLE) images (.rle). By far
the most common image format for the tools however is either eight bit per pixel black and white
(.bw) or 24-bit per pixel color (.pix). The files have the simplest format imaginable: there is no
header at all, and pixels run in first quadrant order - lower left corner, across the scan lines, bot-
tom scan line first, up through the top scan line. The values in the bytes are viewed an intensities
from O (off), through 255 (full on). The color (.pix) files are in RGBRGB... order. Note that while
we use the University of Utah RLE format, we view it simply as a means of image compression,
unlike Utah which actually manipulates RLE files directly in their Raster Toolkit.!!

The use of a simplistic headerless image format is perhaps the most debatable decision we
made. It's primary advantage comes when piping several tools together. Each program is simply
handed data. It doesn’t have to know "how" to read it; there is no header to discard, or harder
still, it doesn’t have to do the "right thing" with the header information. Doing the “right thing"
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is extremely complicated if the header contains very much information. We have also avoided the
N"2 problem of format conversion by converting all other formats into and out of this simple one.

Having "raw" headerless data has its price however. It is difficult to tell whether a given
image is color or not, what its dimensions are, etc. File naming conventions (.bw or .pix) solve the
first; "standard sizes" of 512x512 or 1024x1024 (hires) help alleviate the second (recall that these
came from the lkonas frame buffer}. Note that usually only the scanline length needs to be
known, the number of lines can then be found by the file size. Many algerithms simply run until
all of the data is gone, and some don’t even care about scanlines at all.

5.2. Format Conversion

Several other image formats are accommodated by "filters" that convert one into the other.
A selection of these is listed in the table. In all of the tables given the reverse conversion is omit-
ted, e.g. there is also a pix-rle for converting color images into RLE format. Also, only the color
(pix) version of a tool has been shown while most have black and white (bw) equivalents. Most of
the tools listed also allow a wide variety of options. The color to black and white converter for
example (pix-bw), allows either equal, NTSC, or "typical” CRT weighting to be applied. It also
allows arbitrary weights to be given for selecting or mixing of the color planes in any way desired.

Selected Format Conversion Tools

g2asc model database to portable ascii form
bw-pix black and white to color image
bw3-pix  three black and whites to color RGB
rle-pix Utah’s RLE format to color image
ap-pix Applicon Ink-Jet to color image
sun-pix  Sun bitmap to color or black and white
mac-pix Maclntosh MacPaint bitmaps to color

5.3. Frame Buffer Tools

We have chosen to do most of the image manipulation and processing either on data
streams, or on disk files. This was done in order to separate the notion of a device from image
handling. A common beginning or end of a processing pipeline is to get or put an image into or
from a frame buffer. Frame buffers do allow one to manipulate images in many useful ways how-
ever, so some device independent tools are provided for that. These include tools to allow chang-
ing color maps, panning and zooming through an image, labeling, etc. Where tools require the
user to move a cursor or the image, both EMACS and VI style commands are accepted by all pro-
grams.

Selected Frame Buffer Tools
fb-pix frame buffer to color image
fb-bw frame bulfer to black and white
fb-cmap read a frame buffer color map
fbemap can load several "standard” color maps
fbelear clear to an optional RGB color
fbgamma load or apply gamma correcting color maps
fbzoom general zoom and pan routine
fbpoint select pixel coordinates
fblabel put a label on an image
fbeolor a color selecting tool
fbscanplot  scanline RGB intensity plotter
fbanim a "postage-stamp” animator
fbemrot a color map rotator
fbed a frame buffer image editor

7




6.4. Image Manipulation

A collection of tools for image manipulation are provided. These can generate statistics, his-
tograms, extract parts of an image, rotate, scale, and filter them, etc. Some of these are listed in
the table.

Selected Image Tools
pixstat statistics - min, max, mean, etc.
pixhist histogram
pixhistdd RGB color space cube histogram
pixfilter apply selected 3x3 filters

pixrect extract a rectangle
pixrot rotate, reverse, or invert
pixscale scale up or down

pixdiff compare two images
pixmerge merge two/three images
pixtile mosaic images together

gencolor  source a byte pattern
bwmod apply expressions to each byte

8. User Interface

Using software tools effectively comes with experience. The BRL-CAD Package has tried to
ease the difficulty of learning a new set of tools by using a common set, of flags and common tool
naming conventions throughout the package. The "user interface” is ultimately the Unix shell,
and its conventions for establishing pipes, passing arguments to programs, etc. A shell with his-
tory recall and editing, such as the fesh, is almost a necessity when constructing complicated com-
mand line pipes. :

Constructing complex interconnections between processing tools from the command line is
sometimes difficult. One limitation is the single input single output notion of a Unix pipe. Image
manipulation often calls for three or more channels of data. The most common solution to this
problem is the use of intermediate files. Other approaches include extensions to the fee program,
or a special tool such as chan!? which demultiplexes a stream, feeds each channel to a different
program, and remultiplexes the results.

- Recently several systems have been developed to facilitate the coupling of dataflow oriented
tools. Stephen Willson of NRTC has developed what he calls a Layered User Interface.!® This is a
set of tools that provides generic buttons and sliders which can pass values on as tool arguments.
Several of the BRL-CAD tools have been used in this environment. Dave Tristram of NASA Ames
has put together a system called Flowtools! which allows the connections between tools to be
specified with a dataflow like language, including inputs from sliders, etc. Both of these systems
allow complex custom applications to be put together without writing any code.

7. Conclusions

The BRL-CAD Package is a Unix based system which provides a CSG solid model editor, a
ray tracing library for model interrogation, a generic frame buffer library with network display
capability, and a large collection of software tools. The library level interface to the ray tracer
has allowed a large collection of model analysis tools to be incorporated into the system. The gen-
eric network capable frame buffer library has proven to be of tremendous day to day importance.

The package provides a flexible set of software tools for image manipulation. The image for-
mats are extremely simplistic, something which has proven to have both good and bad characteris-
tics. Approaches to providing higher level interfaces to tools of this form have been indicated.
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I. INTRODUCTION

For more than 40 years the vulnerability community
has been developing analytic methods to predict the
potentia]l damage to targets from threats likely to be
encountered 1n hostile engagements. Early methods of
analysis  consisted of manual calculations for
bullet/target interactions. From the beginning, target
geometry and matenal specifications were required input
to the calculations. Such inputs were manually derived
through use of blueprints and other system data. By the
1960's, the first attempts were made to apply machine-
processing methods to problems of vulnerability
assessment.

Two similar, but distinct, methods arose in the
vulnerability community. One called the COM-
GEOM/GIFT technique was developed by MAGI [1-4]
for use by the US Army; the other called
PATCH/FASTGEN was developed by FALCON ([5]
(now Denver Research Institute [DRI]). However the
method of approach for each was identical. To perform
a vulnerability analysis 1] a target description had to be
generated. This file represented the three-space
definition of geometry and coupled material
information. 2] Mathematical rays, simulating bullet
trajectories, were then passed through the target
descriptions in order to find points-of-intersection,
surface normals, line-of-sight thicknesses, and materials
3] All of the information from step 2| was then passed to
a vulnerability analysis were penetration relations and
component-damage criteria were applied to calculate
average system-level damage.

The difference between the COM-GEOM/GIFT and
the PATCH/FASTGEN methods was principally in the
schemes used to represent geometry In the case of
COM-GEOM, a set of simple shapes (called primitives)
was defined, iIncluding four to eight-sided planar
enclosures, an ellipsoid, a general cylinder, a general
conic section, a torus, and a (constrained) faceted, self-
closed shape used to model compound surfaces (such as
cast turrets and aircraft bodies).

By contrast, the PATCH data base consisted
uniformly of an {unconstrained) faceted representation.
In each approach, the target description was developed
by hand, with few automatic aides, and with none of the
computer-aided design (CAD) assists that are familiar to
all today. The bullet trajectory/material information
was extracted from a COM-GEOM file via the GIFT
code [6] and from a PATCH file via the FASTGEN code
[5].

Over a period spanning more than fifteen vears, two
significant communities of vulnerability workers have
developed generally using one or the other method.
Because of incompatibilities between the geometric data
structures (COM-GEOM vice PATCH), resources of one
community were expended to replicate geometry already
pre-existing in the other because of the incompatibilities
of the techniques. Also, it can be assumed, useful
analyses were f{oregone because existing target

descriptions were incompatible and resources/time were
insufficient to perform a duplication

Against this background the BRL initiated some nine
years ago a program with a goal to introduce modern
methods of interactive computing to the problem of
geometry generation, modification and interrogation
The mitial task was to build an interactive editing
environment so that BRL COM-GEOM descriptions no
longer had to be built by hand. Later new ray casting
utilities were generated to replace the old GIFT program
used for many years Also many image-handling and
geometric data manipulation utilities were written to
perform useful tasks. This suite of programs has become
known as BRL-CAD |[7] and consists now of some
150,000 lines of source code. This package has been
distributed to over 300 computer sites around the world
and supports a significant number of vulnerability,
signature, and structural-analysis programs.

The aim of this paper is to summarize the chief
properties of the BRL-CAD package, and particularly
update current efforts to extend the old COM-GEOM
data base to include both spline surfaces as well as the
PATCH data base of DRI This last extension
represents a significant development for the US
vulnerability community for finally both dominant
target description techniques are supported within one
consistent environment With these advances, COM-
GEOM, splines, and PATCH geometries are fully
supported both for editing and shotline interrogation.
Further, the various geometries can be used in "pure”
form or in a "mixed” mode.

II. OVERVIEW OF BRL-CAD

The BRL-CAD package 1s written exclusively in C-
code using structured coding methods. Individual
processing modules are designed to support specific
capabilities. Copious use is made of the "library”
concept of software organization By this method,
software modules of general utility to a group of users
are instslled as system utilities and called by other
programs under the control of the users themselves
This makes the individually tailored user programs
much simpler, reduces greatly the volume of code
maintenance, and allows utility upgrades and bug fixes
to be available to all in an automated fashion BRL-
CAD s comprised of some 70 individual programs
Some of the principal elements are

« mged: Standing for Multiple-device Graphics Editor
[7-9/, mged is an interactive editor for constructing
and updating target descriptions of the COM-GEOM
variety. Support is there for editing the basic six
primitive shapes of COM-GEOM. Screen prompting
is via a wire-frame representation of the solid-model
data base. Many user aides have been added over the
years including the ability to switch instantly
between English and metric units, calculating
volumes, surface areas, and (armor) fall-back angles
for various shapes, region overlap checking: also
commands to assign material property to regions,
save a view for ray-tracing, and many others The



display-oriented approach to building the COM-
GEOM data bases 1s very easy to learn and can be
used to build complicated models in a short time
Mged allows several graphies display devices to be
used by the community for building COM-GEOM
data bases Some of the graphics devices include the
Megatek 7000 vector display. Silicon Graphics Iris
and 4D graphics workstations, Sun workstations,
Tektronix vector displays, and Evans and Sutherland
PS 300 graphics terminals Recently added was a
driver for the X Window System, which 1s used by
many graphics display workstations vendors as a
common graphics interface Porting mged to new
graphics devices 1s a straight-forward task and takes
a short time to accomplish

o librt: A library of functions suitable for ray tracing a
target description file

o rt- A lighting model whose input 1s based on ray
tracing (via librt support). Up to ten light sources
can be simulated, and objects can be given the
properties of mixed diffuse and specular scattering,
and refraction

o libfb: A generic frame-buffer hibrary which includes
support for a number of display devices, as well as
file, network, and debugging interfaces

{ibplot3: A public-domain version of the UNIX-Plot
library has been extended with the following
features; three-dimensional plotting support, 24-bit
RGB color values, and floating-point values. These
values are written 1nto the plot file In a
transportable, machine-independent binary format
and can be wused between different machines
connected vig a network

e ultl: A collection of 1mage-handling utilities, each
constructed as individual tools intended to be used in
combination. Such functions as color correction,
format conversion, pixel comparison, and image
filtering/processing are supported

o 7fbd: A "message-passing” interface layered on top of
standard UNIX network protocols which  allows
image data to be transmitted from one computer and
displayed on another

BRL-CAD is designed to run under the UNIX™
operating systern  This strategy has paid significant
dividends by easing the porting of this code over many
different. computing environments and/or display
devices Some of the computers on which this software
runs include

0 DEC VAX-11/750, VAX-11/780. VAX-11,/785
VAX-11/8600, & VAXSTATION Il GPX

O GOULD PN6000 and PN9000 Series
O Sun Workstations

O ISI 68020

O Ridge 330

Pyramid 90Mx

Elxsi 6400 Series

Convex C1 XP & C2

Multiflow TRACE 7,/200

Alliant FX/8 & FX/80

Silicon Graphies IRIS 3000 Series & 4D Workstations
CRAY X-MP/48 & CRAY 2

0 o 0o o o o o
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I. BRL-CAD GEOMETRIC DATA
REPRESENTATION

The heart of a geometric modeling system 1s reflected
m the data representation for three-space geometry As
noted above, BRL-CAD was originally designed to
support the six classes of primitives under the old
COM-GEOM file structure and to be interrogated by the
old ray casting program GIFT [6]. These primitive
types are illustrated i Fig 1  The advantage of
geometric description by such primitives 1s that the
mathematical description 1s generally economic. In the
case of the ARBs, the corners are specified In the case
of the second-order primitives (conics, ellipsoids) and the
fourth-order prinutive (torus), the descriptions are
economic too and the surfaces are mathematically
smooth Their economy 1s also their limitation, i that
the degrees-of-freedom of each primitive shape are
clearly himited

In the old COM-GEOM file structure, all of the
primitive objects were simply numbered In ascending
order. Only numerical designations could be given, so
interpretation of objects by name was difficult. The
current MGED file structure 1s hierarchical =o that a
target description can be constructed in multiple levels
of logical groupings English names can also be
assigned An instancing feature also has been added so
that a single object prototvpe {round of ammunition,
vehicle wheel, etc) can be replicated to multiple
positions and orientations 1n space By this strategy, if
the prototype 1s changed, all copies change
automatically

For certain classes of analysis, enitical errors result if
complex geometries are approximated by faceted
representations (such as the ARS). In order to
accommodate high-precision  surface modeling, the
MGED data base was extended some years ago to
support the Non-Uniform Rational B-Spline (NURB)
representation of the Alpha_1 geometry svstem [10-13]
An example of a part modeled with Alpha_1 1s shown in
Fig 2 The strategy followed by the BRL has been to
use the Alpha-1 editor, SHAPE_EDIT to perform the
actual construction of spline entities  MGED 15 then
used to read the spline geometry mto the target space,
supported by global rotate, translate, and scaling
capabilities

A recent extension of the MGED geometry
environment has been the inclusion of the PATCH
representation used by DRI The approach used here is
to represent all shapes by triangular (patch) regions For



Figure 1. The set of primitive objects originally supported by the BRL-CAD environment.
Basic shapes include the ARBs (four- to eight-sided planar shapes), the ellipsoid, a general
eylinder, a general conic section, a torus and a (constrained) faceted object called the
arbitrary surface (ARS).

Figure 2. A geometric description of a ship screw built using spline geometry supported by
the U. of Utah system, Alpha 1. Such spline geometry can be merged into the BRL-CAD
data base. The use of splines to model complex surfaces avoids the use of faceted
approximations. For certain applications where high surface fidelity is required, this
eapability is eritical. ((Feomelry courtesy of the UL of Litah. ]



flat surfaces, the approximation is exact. For curved
surfaces, the degree of approximation depends on the
number of facets used to represent the geometry.
Figures 3a and 3b show an example of a DRI-created
description of an F-14 aircraft. The wireframe image
(Fig. 3a) shows the visual support given a target
describer while in MGED. Figure 3b shows the rendered
version of that aircraft created by the ¢ lighting model
program. It is significant to note that the lighting model
program was written well before either the PATCH or
spline geometries were added to the BRL-CAD
environment. Accommodation to interrogate new
geometries is achieved entirely at the ray casting process
supported in the library function librt to be discussed in
the next section. However such extensions do not change
the formatting of data passed from the ray interrogation
process, so that all application codes whether a lighting
model, as here, or a vulnerability application need
undergo no changes whatsoever.

The inhomogeneous data base strategy described
above has a number of important features and
capabilities:

« Target descriptions for the purpose of vulnerability
analysis (or any other application) can now be
assembled and interrogated in the single MGED
environment. If the geometry in itself 1s sufficiently
accurate, there is no need to perform a "translation”
from one representation to another. The approach
here is simply to merge, as 1is, all geometric
representations into a single environment. Thus a
target description can consist as only PATCH, only
spline, only COM-GEOM shapes, or any mixture of
the three

e For some applications, particularly in the area of
signatures, faceted geometry (either through use of
the ARS or PATCH shapes) embodies surface
approximations which introduce serious errors in
subsequent analysis. The inclusion of splines,
together with surface fitting routines, gives an
efficient upgrade path when needed. This capability
is illustrated in Fig. 4 in which a US tank turret is
shown first in a faceted representation and then
transformed into a smooth-body spline shape.

¢ On the other hand, spline geometry is expensive in
terms of data storage and interrogation. For high-
detail point-burst vulnerability analysis, many
thousands of intertor vehicle or aircraft parts must
be described. The relatively simple shapes of COM-
GEOM adequately reflect the presented area and
spatial position of these components without heavily
taxing computer storage or processing requirements.

IV. LIBRARY SUPPORT

As noted in Section I, BRL-CAD makes copious use
of the library approach to software support. Library
routines are executable codes which are installed as part
of the standard set code for use by all computer users.
A number of the more important library routines are
summarized:

e librt: Several routines which compute the geometric
ray /intersection calculations with all primitives in
the data base have been included in librt. By using
these common routines, the applications programmer
can place emphasis on modeling and programming
the physics of a problem rather than invest time to
recode the geometric properties of the model. The
application sends the data base and its associated
sub-trees to the library. A ray origin and direction
are specified; other options include stopping the ray
after first, next, or all object intersections. The
library then performs the following calculations: 1)
space partitioning, 2) bounding volume calculations,
3) ray/geometry intersections, and 4) boolean
evaluations, and performs both parallel and vector
execution, if available. The library then can return
the following information to the application if
needed: 1) hit points, 2) distance from the ray origin,
3) surface normals, 4) material property, and 5)
surface curvature. The library is designed such that
new primitives can be added easily to the system.
Using this feature both NURBS [14] and PATCH
models were added to the BRL-CAD system.

o libfb:  The f{ramebuffer library provides device-
independent access to raster displays {or displaying a
common image format consisting of pixels of red,
green, and blue values. There are several device
drivers to support a variety of displays including
Adage lkonas, Silicon Graphics IRIS 3030 and 4D,
Sun, and AT&T 5620 terminals. There is also a
debug and disk interface. The library is designed to
provide isolation f{rom the low-level functions
necessary to interact with the display hardware.
This library uses the libpkg library to support display
devices connected to other machines on the network.
Library routines supporting the following operations
are available for displaying images: open, close,
zoom, pan, read/write pixels, read/write color maps,
and cursor manipulation.

libwdb: The libwdb library permits writing of
MGED data bases from arbitrary programs. Though
1t does not currently have the full spectrum of
MGED primitives, it does include the following
primitives: half-space, rectangular- parallelepiped,
arb4, arb8, sphere, ellipse, torus, right circular
cylinder, truncated right cylinder, spline, and facet.
In addition, this library permits the creation of
"regions” and manipulation of their material
property parameters.

This new capability has made conversion from
other geometrical data base types to MGED easier to
implement and hence more efficient. In particular,
the conversion code that converts PATCH
descriptions into MGED data bases makes significant
use of the libwdb library routines.

V. OTHER INTERFACES TO APPLICATIONS
CODES

As noted in Section IV, ray casting in BRL-CAD is
supported viz the librt routines. Ray casting has always



Figure 3. Part of a F-14 target description built using PATCH geometry due to DRI. The
geometry on the top is shown as il appears when displayed by the graphies editor, MGED.
The wireframes bounding triangular regions delineate the edges of the individual patches.

The image on the botlom shows the object following rendering with the BRL «f lighting
maodel. [Geomelry couriesy of DRI



Figure 4. Images of an M48 tank built originally with a faceted turret on the top. On the
bottom is illustrated the same turret after upgrading through the use of a spline fit.
[Geomelric model by P, Stay, H."‘H.-.;I



been central to vulnerability analysis in order to
simulate bullet trajectories. It is also used by many
other applications codes including lighting models and
various programs to predict signatures.

It is important to note, however, that there are other
approaches to linking geometry to applications. These
have been discussed elsewhere [15], but are summarized
briefly here:

o Topology: Certain radar codes use a representation
of geometry consisting of various canonical shapes
such as flat plates, dihedral, and trihedral surfaces.
Utilities have been generated which can be used to
process a MGED target description to extract these
shapes via processing filters.

¢ 3-D Surface & Volume Meshes: Many important
mechanical and structural codes (ADINATM,
NASTRAN™ etc.) are supported by such mesh
structures. In order to support meshes which are
direct derivatives of MGED geometry, a commercial
modeling system called PATRAN™ has been linked
via a translation code [16]. This conversion program
maps each of the COM-GEOM primitives into the
corresponding representation in PATRAN. Then
PATRAN is used to generate the desired mesh.

Analytic Representation: Each of the COM-GEOM
primitives can be mapped into splines, the same is
true for any PATCH object. Splines are one of the
few geometric representations which can be
manipulated analytically. One such property is that
splines can be Fourier transformed. A number of
radar modeling groups have attempted to take
advantage of this and related properties.[17]

V1. OTHER UTILITIES /CAPABILITIES OF BRL-
CAD

Lighting Models: Two ray tracing programs that use
the ray casting support of librt are provided in the
BRL-CAD package, rt and lgt; lgt is an optical
rendering program with a screen-oriented user
interface. lgt has the ability to provide animation
scripts and laser target renderings. rt also provides
rendered images with command line arguments, but
1s itself the front end for several applications
including a radar model. rt also has the ability to
read scripts of commands which can control the
computation of a sequence of frames and the
orientations and properties of materials in each
frame of an animation.

Figures 5 and 6 show exterior views of the
Bradley Armored Fighting Vehicle rendered using
{gt. The target description used here is extremely
detailed so as to support a high-frequency radar
simulation. Figure 7 illustrates a lighting model
option in which armor is rendered transparent so
that internal component placement can be viewed.

o Animation: The continuous control of viewing
position and/or the changes in relative geometry are
of growing importance both as a tool to understand

geometry itself as well as key to many applications
including the multi-spectral signature area. The
control of animation is achieved in the following
fashion. Using mged a few frame positions
{keyframes) can be selected using the saveview
command. After multiple keyframes are generated,
the program zlate fits a spline curve to the saved
frames and generates additional frames to create a
smooth animation sequence. The rmats command
within mged will read processed frames to inspect the
wireframe version of the animation, which can then
be used to generate a series of images that can be
transferred to video tape.

Ray Tracing Benchmark Results
Rays/Sec  VAX /780 Machine
107.7 0.96 VAX Station II GPX
112.1 1.00 VAX 11/780
119.0 1.06 SGI IRIS 3030
127.3 1.14 Sun 3/50
191.8 1.71 VAX 11/785
4134 3.69 GOULD 9080
521.1 464 VAX 11/8600
571.0 5.09 Sun 4/260
982.8 876 SGI 4D /60T
3972.9 35.44 Alliant FX/8, 8 CEs,
5376.3 47 96 Alliant FX/80, 8 CEs
7275.8 64.90 Cray 2, 4 CPUs,
13320.2 118.82 Cray XMP/48, 4 CPUs,

» Benchmarking Support: Finally, as the capabilities
and costs of computing change rapidly, it is
important to understand the benefits and limitations
of the growing number of candidate machines and
display devices in the market place. This has been
achieved in part by utilizing a number of standard
benchmarks for processing standard target-
description/lighting-model images. The above table
shows the results of running the program rt with a
common data base and comparing them with the
speed of a Digital VAX 11/780.

VII. APPLICATIONS CODES WHICH INTERFACE

TO BRL-CAD

There is a Jarge number of applications codes which

interface to BRL-CAD. They have been enumerated in
some detail elsewhere (18], and are simply listed below:

« Weights and Moments-of-Inertia
¢ An array of Vulnerability /Lethality Codes
« Neutron Transport Code

« Optical Image Generation (including specular/
diffuse reflection, refraction, and multiple light
sources, animation, interference)

« Bistatic laser target designation analysis
¢ A number of Infrared Signature Codes

e A number of Synthetic Aperture Radar Codes
{including codes due to ERIM and Northrop)



Figure 5. Frontal view of the Bradley Armored Fighting Vehicle using the BRL lg¢ lighting
model. The geometry, built with MGED and only the primitive shapes illustrated in Fig, 1, is
highly detailed so as to support high-frequency radar simulations. {Geometric model by K.
Applin, BRL.}



Figure B. Rear view of the Bradley Armored Fighting Vehicle calculated as in Pig. 5.
(Geometric model by 1. Applin, BRL.



Figure 7. Transparent rendering of the Bradley Armored Fighting Vehicle. Using the same
target description file as in Figs. 5 and 8, a lighting model option allows armor to be rendered
transparent, revealing internal component placement. (Geometric model by K. Applin, BRL.}



« Acoustic modal predictions
« High-Energy Laser Damage
« High-Power Microwave Damage

« Link to PATRAN™ and hence to ADINA™ EPIC-
QTM, NASTRANN, etc. for structural/ stress
analysis

e X-Ray Imagery

VIII. WORK IN PROGRESS/EXTENSIONS

There are a number of projects underway which will
greatly extend the utility of the package. Some of these
are:

« Translations to Facets: The flat-sided objects such as
the ARBs, ARSes, and PATCHes, are, by definition,
facetized Objects which are represented by facets
have important utility for certain types of display
and data representation. In order to achieve the
ability to generate homogeneous facetized geometry,
algorithms are being investigated to convert each of
the higher-order representations nto a facetized
approximation 1n which facet size is under user
control. A more difficult issue 1s the resolution of
overlapping primitives. In the shotline interrogation
process, boolean definitions (UNION,
INTERSECTION, DIFFERENCE) are used to logic
process the geometric rays. The resolution of
boolean precedence along a single line is a relatively
simple operation. The boolean resolution of
overlapping meshes is much more difficult.

There are a number of important payofls for
extensions along these lines. A direct translation of
the mixed MGED data base to facets would achieve
the following objectives: 1) Support of codes
mentioned above which require 3-D surface meshes
would be direct. 2} Also, many modern display
devices support real-time polygon fill capability via
hardware This provides for much more realstic
object rendering than the usual interactive wireframe
images

Automated Drafting: In previous years the BRL has
seldom needed to generate standard blueprints from
its solid geometry Nevertheless, such a capability
would be a useful extension. A program is being put
in place to make this improvement wvia a small
business contract.

e Data Base Extensibility: We note again that the
current BRL-CAD geometric data base is distinctly
non-homogeneous. When another modeling scheme
has been used to represent geometry, and when it is
important to utilize that geometry in the BRL-CAD
environment, there are two paths to compatibility
The first is to see if the new geometry has an exact,
corresponding representation with the current BRL-
CAD primitives. If so, it 1s simply a data
reformatting job to make a MGED-readable input
file.  However, if the new geometry does not
correspond to any current structire (previous
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examples include both the spline and the PATCH
data bases), then the current MGED data base is
simply  extended to include  the  desired
representations. This requires work at two distinct
points. The first 1s in the formatting of the MGED
data base and the graphical 1maging and
manipulation tools in the MGED editor itself The
second point s in librt; there the ray casting tool
must be modified so that it knows how to perform
the intersection, surface normal, curvature, etc.
calculations. However, once these changes are made,
no other modifications are required, and all
application codes run with no change

IX. SUMMARY

In this paper we have described a unified set of
software which brings the two major geometric data
bases used for vulnerability analysis under a single
integrated environment. Sphne surfaces are supported
as well, making available an important growth path
when high-precision geometry is required for demanding
analyses.

Because of these efforts, it is no longer necessary to
duplicate identical target geometry because of two
incompatible representations. In fact, mixed modes of
targets can be assembled using arbitrary combinations of
COM-GEOM, PATCH, and spline data bases

This software has been designed to run on more than
a dozen brands of vendor hardware. Machines from the
SUN Workstations to the CRAY 2 are supported. Since
the source code for all of this software 1s Government
owned, it can be ported to any desired target machine
without cost of royalty or suffering vendor constraint

Finally, the code has been built in modular blocks
This makes for easier development and enhancements
It is to be expected that the evolution of this package
will continue to reflect both user needs and the rapid
development of higher speed machines and display
devices
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I expect that almost everyone here shares in the belief that CAD is an extremely useful and
powerful tool - yea indispensable in this age of engineering; so I won’t try to sell you on CAD.
Rather I'll talk about some anecdotal history, some of my thoughts that come from locking at the
history of CAD at the BRL, and talk about what I think are some of the challenges to the applica-
tions of CAD. I'll follow this list of issues:

(1] USEFULNESS - is a particular area of endeavor better off for having CAD?
(2] RELATION TO REALITY - is the image true to reality? More true?

(3] STABILITY - do refinements and "improvements" produce converging results? Are general
trends discernible? Can results from previous versions be reconciled?

[4/ GLOBAL UNIFICATION - do we have the proper approach to the knowledge base issues to
allow the computer to be the unifying and facilitating tool it can and should be?

[5) THE NEED FOR HUMOR - the world of Computer Science and CAD is often strange.

1. USEFULNESS

In BRL, the demand preceded and drove the technology (at least initially). A couple of
decades ago, tanks were whittled not designed. Wooden mockups were made, where more room
was needed (say for ammunition handling) wood was gouged out, wood was added to the outside
to maintain the armor protection, and when the process was completed the mockup was measured
and drawings were made. The value of computer technology in this area can best be attested to
by the recent acquisition of a Cray-2 by the Tank Automotive Command.

To conduct vulnerability analyses a variety of simple but practical tricks were used. For
example pieces of paper that represented the outline of a target and of the presented area of com-
ponents of interest (e.g. the engine) target were cut out and weighed. The ratios of the weights
gave such quantities as the probability that a hit on the target would result in a hit on the engine
(of course penetration also had to be considered). Planimeters used with drawings were a more
sophisticated approach. With the need for many targets, many aspects, many munitions, various
types of damage, etc. making and measuring all these drawings became a very labor intensive
business. ’

Vulnerability analysis got a leg up with the introduction of computerized geometry (we
called it COMGEOM) in the late 1950’s. It relied on the use of over-the-counter batch computers
and the primitive output of a line printer. Still it was a giant step forward.
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A little over ten years ago, BRL got into the interactive computing world with the introduc-
tion of UNIX based tools and the first pieces of BRLNET. In developing CAD at BRL, Mike
Muuss, Paul Deitz, et al have met a demand. This was not a case of technology looking for an
application; this was an application that was hungry for the technology.
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Likewise, BRL'’s interest in SMART weapons produced a need to be able to model target sig-
natures and to simulate the end game situation in which a sensor on an approaching projectile or
missile uses information from the target signature to provide a hit. In the early 1970’s, people in
the BRL tried to develop models for the thermal signature of tanks. Success was limited largely
by CPU power and the effort was dropped. Now optical, IR, and radar signature modeling all
seem very possible and promising.

Peeiniss

2. RELATION TO REALITY

Let me start by saying that the BRL’s CAD program has been outstanding as a balanced
effort among experimentation, computation, analysis, and validation. I believe that you'll get
more of that flavor from much of what you’ll hear in these two days. This is true in both the vul-
nerability and lethality area and in the target signature area.

It’s most important to understand what our computer tells us, and to make sure that we use
the best data and theory that engineering science can provide. Sometimes we’re asked to "take
our best shot" when we know that our ground is uncertain. We do it - and rightly so as long as all
concerned understand the limitations and the risks.
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It is also often the case that the technologies that support the analysis of different aspects of
a problem have considerably different maturities. For example, one major portion of an analysis
may be supported by huge amounts of computation, and another part that is equally as important
may only be addressable by very crude empirical methods. One must be very careful to appreciate
the limitations of the total result, but the detailed calculations may well be extremely valuable in
their own right. And of course, there is always a temptation to give these intensive calculations a
specially intimidating role in espousing a position.

Also, often, our ability to do engineering and science are outstripped by our ability to do
computer graphics. In many areas we are far form having an authoritative ab initio model. This
certainly does not mean that we cannot learn new and valuable things from using these models (on
the contrary they are exceptionally valuable). However we must always make sure that we under-
stand new results - whether they indeed are correct and why they come about.

A few of the engineers with whom I chatted recently used the expression "Air Brush Phy-
sies". When pressed to explain that term, they could only express an uneasy feeling that some-
times a lot of fine tuning of a particular view might go on at the display tube and that the result
might either not be so good as it appeared or that the production of numerous similar cases might
be prohibitive. I don’t want to over play this concern except as I think that it points out the very
great importance for the practitioners of CAD to work closely with their clientele to make sure
that everyone concerned understands the limitations and the abilities of the engineering and of the
computer technology.

3. STABILITY

One issue under stability is convergence. Simply enough, that is the question of whether
results improve or even converge to a set of results with additional complexity and sophistication
of the models.

For example, in the area of target modeling for SMART weapons, there. is a need for both
detailed target signature data and for some sort of "averages" which relate to total system perfor-
mance during the course of a war. However, the average signature is dull (verging on useless);
averages must be taken after the application of the (specific) nonlinear decision algorithm. The
complications of various ambient conditions, natural and man-made, backgrounds, and ete can
make the evaluation virtually impossible using highly detailed models. And, of course, it often
remains to be shown that increasing the number of runs would provide a (correct) convergent
result.

On the other hand, using a small number of detailed calculations raises what I’ll call the con-
tinuity problem. That is, to be useful, a model should have the property that vanishingly small
changes in input and configuration should produce vanishingly small changes in output. Is there
an instability of detail i.e. as we create more detail (with the concomitant increase in computing
needed per scene) do we require more views and statistical samples to produce a suitably continu-
ous product?

4. GLOBAL UNIFICATION

I am thoroughly convinced that CAD and related technologies such as networked computing
promise entirely new vistas in the Total System Design and Analysis. Truly from cradle to the
grave the system will be created, modified. evaluated, and produced with a continuous application
of related computer programs.

The CRAY-2 for BRL and the CRAY-2 for TACOM were sold with just this idea in mind.
A tank could be created as a total systém - not a vehicle that carries around armor, or an armored
truck or etc. But as an integrated design in which the armor is an integral part of the structure.
Also some preliminary analysis could be done with mobility models to help select among designs
and to provide promising designs without cutting a lot of metal for the losing designs. Of course
testing of hardware must occur, but these tests could be limited to winning concepts and could be
more efficient and effective with the computer to help to provide hypotheses for testing.
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Of course, with more than one phase of the design process involving more than one computer
center etc., there is considerable potential for reinvénting the Tower of Babel. The essence of the
computer in this sort of application must involve (among other things) "putting it in once and
only once” - to use one and only one computer master file as the current and authoritative source
of data that is easily usable and available for all application programs and that can be reliable,
easily, and rapidly updated to reflect proper changes through the process from development of
concept to engineering design to the operation of digital machine tools.

I know that Paul Deitz would love to have everyone use the BRL CAD package. This would
certainly be nice, and it would represent one form of unification. But more important, I think, is
the need to work the data base problem. We must always maintain seminal data (whatever the
fundamental representation of the system is). Those data must be readily available to any
appropriate application program in a transparent manner and likewise the updating process must
be accomplishable from a similarly transparent process. In my mind this problem in knowledge
representation is the major problem in this area of using CAD and related computer technology in
a global system context.

5. NEED FOR A SENSE OF HUMOR and a very open mind

Computer science folks are very creative people, and sometimes march to quite different
drummers. And of course the technology is spread over a most diverse landscape from hard
engineering to creative art. Many times, good ideas come from strange (to the military) places;
sometimes this includes computer games which are an anathema to many of the managers and
controllers of computers.

I've been a bit of a Dutch Uncle today. I must say that I've been proud to have been part of
the BRL computer experience and while [ was chiel of SECAD to have been able to brag about the
CAD accomplishment that were a joint effort between our division and the Vulnerability and
Lethality division - (or more specifically between Mike Muuss’ team and Paul Deitz’s braneh). It’s
a special pleasure for me to be part of this symposium, and I certainly hope that you find your
visit rewarding and enjoyable.
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A Road Map Through the BRL-CAD Package

Phillip C. Dykstra

Advanced Computer Systems Team
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ABSTRACT

This paper provides an overview of the various parts of the BRL-CAD Package
and how they relate to each other. It does so from the viewpoint of the major
data formats involved, and the dataflow between them, i.e. how these formats
get generated, how that are modified, and what options exist to convert one form
to another. Attention will focus on the big picture: the five or so most significant
file formats, the most important creators and consumers of these formats, and the
interfaces into and out of each format (e.g. the libraries involved). The goal of
this paper is to make the overall picture accessible to the reader.
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A Road Map Through the BRL-CAD Package

Phillip C. Dykstra

Advanced Computer Systems Team
U. S. Army Ballistic Research Laboratory
Aberdeen Proving Ground
Maryland 21005-5066 USA.

1. Introduction

This paper provides an overview of the various parts of the BRL-CAD Package and how
they relate to each other. It does so from the viewpoint of the major data formats involved, and
the dataflow between them, i.e. how these formats get generated, how that are modified, and
what options exist to convert one form to another. Attention will focus on the big picture: the five
or so most significant file formats, the most important creators and consumers of these formats,
and the interfaces into and out of each format (e.g. the libraries involved). The goal of this paper
is to make the overall picture accessible to the reader. Details are found elsewhere.

2. The Big Picture

While the BRL-CAD Package can be described in terms of its major parts,! another perhaps
more "holistic” view is as a large collection of interworking tools. The user is presented with a
large body of software which can serve as a tremendous aide in accomplishing a diversity of tasks.
It is perhaps even more powerful to the programmer who, by taking advantage of the many
library or file format interfaces that exist, can link in any application specific pieces that may not
be available in the general tools.

The figure in the front of this document shows a truly big picture of the BRL-CAD system
from the viewport of dataflow. File formats are shown in double boxes, libraries in ellipses, and
programs in single boxes. Programs that convert one format to another are shown on the ares
connecting those formats. Circles depict display devices.

The four most important file formats are shown. Also depicted is the frame buffer display
interface, which is so significant to the BRL-CAD system, that it will be discussed in this paper as
if it were another file format. While the picture may appear quite complicated, it is a quite sim-
plified view of the total system. Many programs and connections were omitted for clearity.

8. Universal Naming Conventions

The short names in the boxes are the strings or file name extensions associated with these
formats throughout the system. For example, "pix" is a 24-bit per pixel color image. These image
files are usually named "file.pix", while programs that read or write them will have "pix" in their
names. If a program converts one kind of data to another it will have a hyphen between the
incoming and outgoing formats or destinations: e.g. "pix-bw" converts pix file input to bw file
output. "bw-fb" takes bw file input and places it an a frame buffer (display device).* If a program
operates on a single kind of data, or is the source or sink of data, its name will be prefixed by that
format. Examples: "fbzoom" performs panning and zooming on a frame buffer; "pixmod” modifies
values in a pix file.

As one of the stranger examples in the system, there exists a program called "fb-cmap” which

A couple of old exceptions to this rule are g2ase, pix2asc, and their inverses, where a "2" was used instead of »
hyphen.
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takes a color map from a frame buffer and outputs it to a file, as well "fbemap” which places one
of several built-in color maps on a frame buffer (it sources the data, and thus no hyphen, and
operates on a frame buffer, and thus the prefix fb), and finally there is the program "emap-fb"
which takes a color map file as input, and places on a frame buffer. [There is no cmapfb. Think
about it - such a name would imply that it performs an “fb" operation on a color map file, what-
ever that might be.] If the reader understands this last example, you are well on your way toward
understanding the entire system!

The major formats:
g - geometry data base.
pix - 24 bit per pixel color image.
bw - 8 bit per pixel black and white image.
p! - UnixPlot simple plot file description.
fb - frame buffer display interface.

See the Appendix for a more complete list.

4. g - Geometry Database File

This is a binary Constructive Solid Geometry (CSG) database of a model. You will some-
times see the geometry description that it contains called COMGEOM. It consists of geometric
primitives (ellipsoids, cones, spline solids, etc.), a hierarchy of boolean combinations of these
(union, intersections, subtraction), and a certain amount of material type identifiers and so forth.
The file h/db.h defines the exact structure of this database.

Of all the major formats discussed, this is the only one that is machine dependent in that it
contains machine specific integer and floating point values (a future release will change to a
machine independent one). To move a database from one machine to another it must be con-
verted to Ascii text on the source machine (g2asc) and then back to binary on the destination
machine (asc2g).

There are three ways in and out of a g file:
1)  libwdb provides a means for programs to create/write databases.

2)  librt has some routines for reading, but most importantly for tracing rays through the
geometry in a g file.

8)  directly reading and writing the structures.

The major producer of these files, and also one of the largest single components of the BRL-
CAD system, is the solid model editor MGED (Multi-device Graphics EDitor). MGED interacts
with the user through one of several "display managers,” which provide a "wire frame" interface to
a display device. One display manager exists for each kind out output device supported. The
display managers are all compiled into MGED and are found in mged/dm-XXX.c. A future
release will break these out into a library - libdm.

Another way of creating these g files are from programs which use libwdb (see for example
the directory proc-db), or converters from other solid model databases (e.g. the Air Force Patch
format converter).

The major consumer of g files are analysis codes that interrogate the geometry via librt. As
a simple programming example of using this library see librt/rtexample.c. Shown are the two
rendering programs, Igt and rt, both of which produce pix file images. Others include rtshot,
riray, rtrad, etc.

RT is itself a multiheaded program. It has an internal interface to “view modules” which
control what happens at each ray/geometry intersection, and what kind of output gets produced
(see rt/view*). Several different programs are produced by linking the common front end with
different view modules.




5. pix - 24-bit Color Image Files

The major image format used in the BRL-CAD Package is a 24 bit per pixel RGB color file.
It has the simplest structure possible - no header whatsoever, just 3 8-bit unsigned values for each
pixel representing intensities from 0 (min) through 255 (max) for the Red, Green, and Blue chan-
nels, These pixels are stored in first quadrant order as RGBRGBRGB... from lower left, across
the rows left to right, and up the image from bottom to top. See [1] for why we chose this.

Because this format is so simple, there is no library interface to these files. Instead programs
simply read and write bytes directly (usually with the Standard I/O fread/fwrite calls). Largely
because of this simplicity (and generality - often the data manipulated need not be an image at
all), we choose this format for the basis of most of our image manipulation and processing tools.
Rendering programs such as rt and Igt produce these, and other image formats can be imported
and exported to and from pix files for processing and display. A very large number of programs
exist for dealing with pix files themselves. To name a few examples these could be grouped
roughly into information (pixstat, pixhist), modification (pixmod, pixfilter), manipulation (pixrot,
pixcrop), comparison (pixdiff), composition (pixmerge). [The frame buffer also plays a major role
in the processing and composition of images.]

One of the more notable formats that pix files can be converted to and from are rle files.
These are the University of Utah’s Run Length Encoded compressed files. The BRL-CAD package
treats rle files primarily as a compressed storage format only, and while we provide a means of
displaying these files directly, all processing is done by converting them to the much simpler pix
format. An alternative approach that the University of Utah has taken in the Utah Raster
Toolkit (included in the BRL-CAD release) is to provide a library interface to the rle files and
center all of the utilities around this format, by having them all use that library.

8. bw - 8-bit Black and White Image Format

The bw file format is exactly like the pix format except that there is only one byte per pixel,
usually assumed to represent a shade of gray from O (black) through 255 (white). A large collec-
tion of tools exists for bw files as well, most often the exact same utilities as the pix ones except
with a bw instead of a pix prefix. [It is worth noting that a few of the pix programs are general-
ized to handle "pixels” of not just three, but any number of bytes via a -# <bytes> flag. This
allows many clever trick to be performed. For example matrices of floating point values can be
transposed with pixrot by specifying the data size and matrix dimensions!|

Sometimes it is more convenient to process color images as individual color planes. pix files
can be converted to either three bw files, one per channel (pix-bw3), or the planes can be smashed
together in a variety of ways (pix-bw). The reverse programs are also provided.

7. pl - UnixPlot Files

Both Berkeley BSD Unix and AT&T System V Unix systems usually include a simple device
independent plot file format plot(5). This format is very simple, consisting of moves and draws,
points, circles, simple text, etc. It is machine independent, consisting of Vax order 18-bit signed
integers. Filter are included called tXXX to output these files on various devices (e.g. t4014).

BRL has extended this simple file format to include three dimensional points and lines, and
machine independent floating point (84-bit JEEE). A public domain libplot(3) replacement called
libplot3(3) is included that allows programs to write this extended format. Floating point plotting
has proven dramatically superior to arbitrarily scaled integer plotting spaces in that natural coor-
dinates can be used (allowing different plots to be naturally combined and coordinates read from
the plot file itself), and the plots can be dynamically scaled over several orders of magnitude
without loss of precision.

PI files can be viewed in Ascii for debugging (pldebug), rotated, translated, or scaled {plrot),"
converted to the simple 2D integer format for consumption be the standard Unix utilities (pl-pl),
or viewed on a number of devices (e.g. pl-fb, pl-sgi, pl-X).

Other links to pl format are that rt can produce pl plot;s-of ray paths and geometry
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bounding boxes, and MGED can overlay a plot file over the existing geometry display (used with
rtoverlap for overlay checking).

8. fb - Frame Buffer Library

The frame buffer library and tools are where many operations cccur. Simple compositing
and comparison of images can be done, tiny animations can be run in real time using pan and
zoom, color maps can be altered for image detail/contrast enhancement, etc. Each type of
hardware display supported has an module in libfb called if DEVICE.c. Any program compiled
with this library is now able to directly control any of the display types supported in that library.
Several default interfaces are always available including a debug interface and a "stacker” that
allows multiple displays to be ganged together.

Of particular note is the remote network interface. This interface passes all libfb calls across
the network to a daemon on a remote machine. These called are then passed on to any of the
displays on that machine via rfbd (the Remote Frame Buffer Daemon). The power and utility of
this can not be overstated. It frees one of the distinction between where they might be sitting (e.g.
what displays are available near by) and what computer they are using. It also gives sight to ordi-
narily blind machines such as the Cray supercomputers.

9. Other Programs

Not shown on the diagram are a very large number ol prograias that operat.: on the file for-
mats directly. Most notably, the pix, bw, and pl file formats. See that manual pages for these.
Other libraries that programs in the package may use include:

libtermio - BSD and System V independent terminal support

libsysv - System V compatibility routines

libspl - spline routines, usually included via librt

libfont - vfont access routines

10. Conclusion -~ The User

Where does the user sit in all of these pictures? Typing to the Unix shell, the user has the
ability to execute any of the programs on the arcs between these different formats, as well as all of
the programs that generate or manipulate a single format. This places you in the role of the con-
ductor, where you orchestrate how all of these tools get linked together to perform the desired
task. As a programmer, you can also utilized any of the library interfaces or file formats to couple
with this existing body of software extremely easily.




Appendix - Abbreviations found in the BRL-CAD software.

ap - Applicon color ink jet printer.
asc - any one of several "printable Ascii" formats
(usually to avoid binary for portability).
bw - 8 bit per pixel black and white image.
cat - C.A.T. phototypesetter code (“standard" troff produces this)
ci - SGI "Color Image" format
cmap - a frame buffer color map file
dit - Device Independent Troff code (Documenters Workbench troff)
dvi - DeVice Independent code (TeX output)
fb - frame buffer display interface.
g - geometry data base.
imp - Imagen IMPress page description language
mac - Macintosh bitmap.
op - Optronics film scanner.
pix - 24 bit per pixel color image.
pl - UnixPlot simple plot file description.
pp - "pretty picture” output from an old ray tracer called GIFT.
ps - PostSeript
rad - a ray history file used by the Radsim radar simulator.
ray - "VLD Standard" ray file format (don’t ask).
rle - University of Utah Run Length Encoded (compressed) image.
sgi - Silicon Graphics Inc. workstation.
sun - Sun workstation bitmap (or the workstation itself).
X - the X Window System.
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distributed graphics for
high-resolution 3D modeling

gy Michael John Muuss

Ballistic Research Laboratory’s CAD Package, now listed in
silicon Graphics' Software Exchange program, consists of
three major elements, the most significant of which is a sol-
ids-modeling system (complete with a ray-tracing library).
The system'’s second important element is a set of libraries
for producing graphical output on varied display hardware.
Comprising the third component are numerous software
tools, each of which is focused on a single function but de-
signed to be combined via UNIX piping with other tools.
The technology and software employed in shaping these
pieces of the CAD environment are described in some de-
tail in "Understanding the Preparation and Analysis of Solid
Models” [Muunss§7].

The intent of Ballistic Research Laboratory (BRL) in design-
ing the CAD package was to enable the creation and analy-
sis of highly detailed three-dimensional solid models. The
strategy of the package's designers was to develop a broad
set of analysis tools supported by the same geometry data-
base. Using these tools, the strength, weight, protection,
and performance levels offered by structures in a model
can be readily assessed. As a result, highly detailed designs
can be constructed using a philosophy of system optimiza-
tion right from the start, thus allowing for the rapid develop-
ment of designs offering desired performance at an appro-
priate price.

analysis tools

Users of the BRL CAD Package are provided a powerful
platform upon which to build analysis tools, where the phys-
ics of a particular analysis are insulated from the complexi-
ties of the shapes under analysis. Analysis tools are built,
free from the details of an underlying geometry, using the
package's ray-tracing library for model interrogation, librt.
Ray-tracing makes it easy to deal with objects that are either
partly or entirely reflective; the same is true of transparent
objects of varying refractive indices, which--like highly re-
flective objects—-would otherwise be difficult to model. By
applying proper dither, motion-blur, depth-of-field, translu-
cency, and shadow penumbra, other effects can be
achieved. The package, morover, makes it easy to animate
the position of the "eye” (camera) and light sources and to
articulate the model geometry itself. Both operations can
prove quite beneficial in comprehending complex geome-

try.
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By recording light ray paths, one may follow light that's re-
fracting through lenses and reflecting from mirrors while
rendering an image. Lens behavior can be predicted, in-
cluding exact focal length, influences of spherical distortions
and edge effects, amounts of image distortion due to inter-
nal reflection and scattering, and levels of reflection due to
lens-mounting hardware. Experiments, moreover, can be
conducted to determine the effects of adding or removing
baffles, irises, special lens coatings, and the like.

Another analytic problem that BRL's CAD Package provides
for has to do with moments and products of inertia. Particu-
larly when designing aircraft, weights, gravitational centers,
and parameters related to inertia are vital issues to consider
in creating stable, high-performance designs. Moments of
inertia are also important in determining the conditions un-
der which a vehicle might be overturned; they, for instance,
can help in predicting the vehicle's handling during maneu-
vers over rough terrain.

Synthetic aperture radar (SAR) is a technique BRL's CAD
Package employs for imaging distant objects. While stan-
dard radars only report target backscatter and range infor-
mation, SAR techniques can resolve distinct scattering re-
gions of an object by correlating multiple radar samples
taken from various positions [Toomay82]. Thus, by using this
sort of predictive analysis, users can learn how models will
look to radar.

local graphics display

Designers working in a highly interactive analysis environ-
ment spend most of their time using graphics screens to in-
teract with a model geometry--contemplating it, viewing it,
changing it. After a significant design change, one or more
analyses may be conducted on the new design, with the out-
put images being displayed on a graphics screen as they are
computed. Then, interaction with the model can continue.

Several distinct types of graphics support, though, are re-
quired to implement this style of interaction. The specifica-
tion, viewing, and modification of a model geometry can be
done under BRL's CAD Package in a highly interactive
mode using the system's solid model editor mged. A library
of display manager modules exists to support a wide variety
of hardware types both with and without displaylist capabili-
ties, using a single formalized interface.
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All images in this article were generated on an IRIS using tools from the BRL CAD Package. Here, positioned clock-
wise, are: (1) a tank constructed of plate-glass armor (Kennedy): (2) a fanciful blue-chrome molecule (Muuss and
Stay): (3) a view of a room in a museum (Muuss): and (4) procedurally generated clufter (Muuss).
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BRL's CAD Package also simplifies local graphics display in
et another way. Many analysis programs produce full-color,

shaded images. To free applications programs from the spe-

- cifics of multiple types of hardware, a hardware-independent
~ framebuffer library called libfb has been included in the

- package. By using this library, each application can be writ-

~ten to perform abstract operations on an idealized 24-bit

- RGB framebuffer. The library allows one application to open

~ an arbitrary number of framebuffers, where each may be of

a different type. The format of the device string is

. "[host:1/dev/device_name[#]" to designate a hardware de-

vice; just "filename” will do to designate a file as a virtual

- framebuffer. If a host name is given, a network connection

will be opened to the framebuffer daemon on that machine.

UNIX systems support device-independent plotting in two
- dimensions with 16-bit signed integer coordinates, using
;}lot(S) format plot files. BRL's libplot3(3) library provides
' additional features, including: the ability to use 24-bit RGB
colors, points with three coordinates, and routines that take
2D and 3D floating-point values (written in a transportable,
- machine-independent binary format). What's more, rou-
tines for drawing coordinate axes, scaling data, and the like
_have been added to support traditional data plotting.

networking

ollaboration is an important aspect of most creative en-
deavors, whether scientific or artistic, and this can often re-
uire efficient machine communication. Thus, since the pro-
cessor architectures of hosts in any given network are likely
_to be different, careful attention must be given to the format
“and order in which data is transmitted. But when construct-
ng distributed applications intended to run across a wide va-
_riety of machines, it is not possible to predict in advance how
the hardware will be coupled. Therefore, either (1) all ma-
chines must agree to adopt a single standard for communi-
cation, or (2) all machines must be able to convert their data
to the internal formats of all other machine types. The first
Strategy is the one favored by the DARPA Network Research
fommunity, so it shouldn't be surprising that the BRL CAD
Package continues in this tradition.

Network graphics applications often transmit only integers,
¢ither for efficiency or simplified conversion. For scientific
“omputing, though, large dynamic range and many digits of
significance are needed, requiring double-precision, float-
ing-point numbers. The most portable representation of a
floating-point number would be a printable ASCII string, us-
ing at least 23 bytes. The binary form is more compact, re-
quiring a constant eight bytes; this uses one-third the band-
Width of the printable form.

From all of the possible binary formats, the ANSI/IEEE Stan-
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dard 754 for Binary Floating-Point Arithmetic was chosen
for use in the BRL CAD Package. Thus, floating-point val-
ues must be converted from the host-specific form to the 64-
bit IEEE form before transmission, and upon reception, all
floating-point values must be converted from the 64-bit
IEEE form to the host-specific form, using library routines.
Transmission is in Big-Endian (IBM) byte order. With this
standard, it's possible to easily read and write messages in a
portable, machine-independent, binary format--which is
the principal reason the BRL package has a following in net-
worked environments. A related feature of enormous sig-
nificance stems from the decision to include the system's
3D floating-point plotting capabilities in libplot3, thus pro-
viding a machine-independent “plot metafile" capability by
which users can "zoom" in by an arbitrary degree to exam-
ine extraordinarily fine details.

The BRL Remote Frame Buffer capability, moreover, allows
framebuffer operations to be directed to any display screen
attached to the network simply by specifying the computer
and target display. The details of the network connection
are entirely transparent to the user, except for speed varia-
tions. The use of framebuffers across fast network connec-
tions doesn't appear much different to the user from nor-
mal local display performance. This represents a significant
convenience to graphics users.

pipeline distributed computation

The careful division of application software into indepen-
dent tools has resulted in significant rewards for software
developers and maintainers alike. For the user, meanwhile,
the ability to combine a set of software tools in arbitrary
ways might lead to functionality that even the tools' original
designers could not have imagined. Traditional operating
systems require that each command in a multi-command
sequence be run sequentially, with the output from each
command being stored in a temporary file. But UNIX al-

lows commands to be connected together using pipes, like
s0:

step1 < input | step2 | step3 > output

Not only does this approach avoid temporary files and their
storage, it introduces parallelism. The Dual-VAX work done
at Purdue University in the early '80s [Goble81] popularized
multiprocessor UNIX systems. In recent years, such sys-
tems have become increasingly common. And they can be
conveniently and transparently exploited--without the need
to reprogram--by utilizing the UNIX pipeline construct.

A large number of simple tools for manipulating images

and framebuffers are provided with BRL's CAD Package.
Written in UNIX Software Tools fashion, each of these utili-
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The top image here depicts the meeting of the Great Glassner
Pyramid and the Moss World (Muuss). Below' is o representafion

of the Maoss World in outer space (Dykstra and Butier),
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ties performs a single function and is designed to by
connected with other tools. Since the taols have a
standardized interface, they've proven to be extre
Iy flexible.

Mg

The difficulty in learning a large new set of tools is
eased in the case of BRL's CAD Package by the use
of a common set of flags and naming conventions
throughout. The "user interface” is the UNIX shel],
together with its conventions for establishing pipes,
passing arguments, and so forth. A shell with history
recall and screen-oriented command editing is a ma-
jor convenience.

The effective construction of software tools depends
on having standards for the data that's passed be-
tween various tools. Binary formats are generally pre-
ferred for graphics, and stringent requirements are
necessary for file formats so as to keep them portable
between different tvpes of machines. The two most
common image formats are the eight-bit-per-pixel
black-and-white bw(5) and 24-bit-per-pixel color pix
(5) formats. Files have the simplest possible format,
with no header, in order to enable the rapid develop-
ment of new tools. The primary advantage of the
headerless format is the convenience it spells when
users wish to connect tools using pipes, or to create
new tools without resorting to 1,/0 routines specific to
the reading and writing of images.

The operations for handling a display device are sep-
arated in the package from tools for image handling,
which is performed either on pipes or disk files. A
common beginning to a pipeline is fb-pix to get an
image from a framebuffer, with pix-fb being used to
display the final result. Interaction with framebuffers
is supported, allowing changes to be made to color-
maps, as well as making it possible to pan and zoom
through an image, move a pointer, and add labeling,
among other operations. A substantial collection of
tools for image manipulation are provided with the
package, including statistics routines, histograms, re-
gion extractors, rotaters, resizers, and filters.
Coupling dataflow tools, moreover, allow one to build
complex custom applications without writing any ac-
tual code. For example:

pixinterp2x -s512 < image.pix |\
pixfilter -s1024 -flo |\

pixmerge - backgnd.pix |

pixrot -r -i 1024 1024 |\

pix-fb -h

says to the svetem, "take mage.pixv and interpolate
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up. then low-pass filter and compuosite with backgnd pix,
then rotate and display on the frame buffer”. Notice how no
intermediate images are stored in disk files throughout this
procedure. This becomes significant when one is required
to manipulate 400 MB images, since image processing can
take a significant amount of time. There also is another ad-
vantage in being able to observe the progress of the compu-
tation: as results arrive on the display, the opportunity exists
to abort when something goes wrong. [n addition to saving
computer time, this can save considerable "people time”,

general network computing

One of the greatest advantages of the BRL CAD Package is
that it allows for efficient operation across a network, which
can be especially important when that network includes su-
percomputing resources. Being able to open a window on a
Cray from a workstation and obtain the same environment
as would appear on other machines in the network is worth
a lot. Also, running image processing on a Cray with rsh,
without having to make special arrangements for moving
input files or submitting batch jobs, allows one to harness
the power of supercomputing without having to pay a stiff
premium in terms of convenience.

The Berkeley rsh remote shell command, moreover, has a
hidden synergistic power that appears when the command
is combined with a collection of goad tools. For instance,
when logged in on the console of a workstation, this pipeline
would produce plot data which would be shown at the local
display as:

cruncher | pl-sgi

In the event that the computation speed of the workstation
is not quite sufficiant, a slight variation could be used:

rsh Cray.arpa cruncher | pl-sgi

By ordering remote execution (via rsh} and naming the ma-
chine to perform the computation ("Cray.arpa”}, the power
of an extra machine can be brought to bear. Using rsh pro-
duces an effect indistinguishable from what would occur
were the same operation done locally. Thus, if vou were
logged in directly to a Cray, and you wished to see an image,
vou could enter:

cruncher | rsh Vax.arpa pl-fb

This would send the plot to a framebuffer on “Vaxarpa”. To
generate a videotape of what happens when a simulation
parameter on the Cray is varied, one could use the display
and videotape capability on the VAX like so
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for parm in loop 1 100 2°
do

cruncher $parm |\

rsh Vax.arpa "pl-fb: vas4 record”
done

The loop call generates integers betwween 1 and 100 with an
increment of 2. For each value of parn, cruncher is run, and
the plot is sent to the framebuffer on "Vax.arpa”, where the
video animaticen controller records the image onto one
frame of videotape. Also, consider this variation on the earli-
er image processing example:

pixinterp2x -s512 < image.pix |\

rsh Cray arpa "pixfilter -s1024 -flo" |\

rsh Alliant.arpa "pixmerge - backgnd.pix | \
rsh Vax.arpa "pixrot -r -i 1024 1024 | pix-fb -h"

This interpolates up on the local machine, sending the im-
age to the Cray for filtering, then on to the Alliant for compo-
siting, and finally to the VAX for rotation and display.

With rsh, the possibilities of combining tools from different
machines are staggering. With the proper infrastructure of
computers, operating systems, display hardware, network
software, and image processing tools--all connected in com-
patible ways--the tremendous potential of distributed com-
puting can be easily harnessed, without the need to write
any actual code!

the software

The BRL CAD Package is in its third generation, and repre-
sents over 150,000 lines of C source code written since 1979.
It is highly portable, having run on five distinct generations
of hardware using various versions of the UNIX operating
system. The software runs on hardware from many different
vendors, and is in use at over 350 sites worldwide.
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ABSTRACT

The principal focus of Automatic Object Recognition (AOR) involves the generation of appropriate algorithms
to process the output of multi-spectral sensor arrays. Given the high dimensionality that characterizes the
signatures of targets of interest, it is normally impossible-to satisfy the need for raw signature data by means of
measurement records a'one. Individual sensor characteristics in conjunction with aspect-angle dependence, target
and background configuration (singly and in synergism) and multi-spectral tradeoffs inexorably lead 'to a
requirement for predictive signature modeling methods. By means of this stratagem, a measured signature data
base can be leveraged significantly, improving the fidelity of the overall simulation.

Irrespective of the specific representation used for a three-dimensional geometry and material database, rarely
does a predictive-signature application code read that database directly. Rather, a specific interrogation method is
used to pass particular-geometric and material attributes-to the application-code. Clearly the-nature of the physics
employed in-the-application is both enabled and constrained by-the form of the in.errogation process used.

In this paper, several examples of predictive radar-codes are given, illustrating several-strikingly different ways
of linking geometry to-applications. Following those examples the interface methods known-to-the-authors will be
described. While many-of ‘the techniques have already been implemented, some are currently in development. In
addition, the utility- of various techniques will be related-to particular application codes.

1. INTRODUCTION

The principal focus of Automatic Object Recognition (AOR) involves the generation of -appropriate algorithms
to process the output of what are often multi-spectral sensor arrays. The generation .and testing of such
algorithms necessarily require the full panoply of desired object (target) signatures -as well as undesired and
unavoidable (clutter). signatures. Even ignoring the sensor response characteristics (time- and space resolution,
polarization, .ioise, etc.), both the target and clutter signature sets are unbounded even for a single frequency, let
alone in multi-spectral-domains. The unboundedness.is.strictly true for these signature sets-and most probably so
even for derived statistical-measures. 7

Given, therefore, -the-requirements of a typical- AOR-project for copious signature files for algorithm generation
and testing, it is normally impossible to satisly the need by means of measurement records alone. The single-
frequency sensor characteristics noted above in conjunction with aspect angle dependence, target and background
configuration (singly and-in synergism) and multi-spectral tradeoffs, inexorably lead to a requirement for predictive

$ Presented at the Advanced Instituie Trogrum on Autoinaiic Object Recognition, sponsored by the Society of I hoto-Optical

Instrumentation-Engineers (SPIE), Cocoa Beach, FL, April 21-23, 1990,




modeling methods. By means of this stratagem, a measured signature data base can be leveraged significantly,
improving the fidelity of the overall simulation.

For more than twenty years, the Ballistic Research Laboratory (BRL) has been utilizing solid %eometric
modeling methods to support vulnerability, lethality and neutron transport studies of military targets.”™ In suci
item-level studies, target geometry and material information are passed to various application codes to derive
certain measures-of-performance. Building on the general paradigm, workers at BRL and:elsewhere have extended
the general techniques to support many predictive signature modcls‘“i including optical, millimetre wave
(MMW),! Infra-Red (IR), magnetic and X-ray models. '

It is 1mportant to note that this type of analysis must generally be supported by a solid geometric model. A
solid model” is a computer deseription of closed, solid, three-dimensional shapes represented by an analytxcal
framework within which the three-dimensional materlal can be completely and unambiguously-defined. Two major
families of solid model representations exist, each with several unique advantages. The first is the Combinatorial
Solid Geometry Representation (CSG-Rep) Solid models of this type are expressed as boolean combinations of
primitive solids which are geometric entities described by some set of parameters-and occupying a fixed volume in
space. The second is the Boundary Representation (B-Rep), of which there are two sub-types: (1) explicit, where
each solid is described by an explicit enumeration of the extent of the surface of the solid; and (2) implicit, where
the surface of the solid is described by an analytlc function such as a Coons patch, Bezier patch, B-spline, etc.
Hybrid systems such as the BRL-CAD Package also exist.

Irrespective of the specific representation used for a three-dimensional geometry and material data base, rarely
does an application code read that database directly. Rather, a specific interrogation method is invoked to pass
particular geometric and material attributes from a source or reference file to the -application code. Clearly the
nature of the physics employed in the application is both enabled and constrained by the form-of the interrogation
process used.

In this paper, several examples of predictive radar codes are given, illustrating-several strikingly-different ways
of linkin geometry to applications. Following those examples the interface methods known-to the-authors will be
described. Many of the techniques have already been implemented; some are currently in development. In
addition, the utility of various techniques will be related to particular application codes.

2. CASE STUDIES IN-PREDICTIVE RADAR MODELING
2.1 Examples of Synthetic Aperture Radar Imagery

Early radars were designed to estimate target range and closing rates. For these systems, the main parameter
of interest for a given target was Radar Cross Section (RCS). The RCS figure represents-the efficiency with which
radar waves are scattered back to the receiver. Certain modern radars, when-placed on-moving platforms such as
aircraft, can be used to form two-dimensional iniages of targets. Radar imagery of this-class-is called Synthetic
Aperture Radar (SAR). A description of an Armored Fighting Vehicle (AFV). has been. analyzed with a SAR
program10 (to be described below) and the results are shown in Figs. 1 and 2.

Figure 1, left-hand side, shows the AFV as seen by the SAR radar from a (35° 30°) (Azimuth, Elevation)
orientation. A horizontal flight path (left to right) is assumed. The properties of SAR processing arc such that
following signal detection and manipulation an image is derived which resolves the-target in-range-and cross-range
(along the flight path) but not in the remaining orthcgonal direction. Thus the final SAR image orientation is
similar to the optical rendering shown_in the right-h .nd side of Fig. 1.

t Recently, an initiative was made to consolidate-Radar Cross Section (RCS) code development sponsored -by-the Tri-Services and NASA.
The Electromagnetic Code Consortium has chosen the geometry tools developed by the BRL as the basis for radar_codes to be sponsored by
this group. See Ref. 6.




Figure «. On the left an optical image of an AFV i’ ustrating the radar view of the target (35°, 30°)
for a synthetic aperture radar (SAR) simulation. The SAR is modeled as mo/ing in the azimuthal
direction (elevation and range constant). On the right, complementary optical image to that shown
on the left, the apparent aspect is (2156° 80°) and is « aggestive of the SAR reconstructive process
when range is plotted against cross-range as in Fig. 2. (Fromn Ref. 10)

Figure 2. Computed SAR image for target resolution of 10 inches. Left-liand image is for 10 Ghg,
Vertical, Vertical (co-polarization transmit/ receive) modes; right-hand image is for Vertical,’
Horizontal (cross-polarizat. >n transmit/ receive) modes. (From Ref. 10)



A pair of SAR images for the AFV is shown in Fig. 2. Both images are computed for a target resolution of 10-
inches. The left image is the result of a transmit Vertical, receive Vertical polarization mode; the right, for a-
Vertical/Horizontal polarization mode. In each of these images, the radar signal is propagating from-top .down.
Range information is plotted along the ordinate and cross-range data along the abscissa.

2.2 The SRIM Code of ERIM

‘Simulated Radar IMagery (SRIM) i 1s a high-frequency predictive radar code developed at the -Envireamental
Research Institute of Michigan (ERIM) Early versions of the code used a geometry representation-sé¢heine for
whxch ‘no convenient editor existed. In 1983, ERIM linXked its electromagne tics section of SRIM:to BRL’s CSG-Rep
geometric modeling capability,. BRL geometry is described in terms of Boolean combinations (mterﬁectxons,
unions, diffetences) of primitive objects suck as ellipsoids, ¢; :ders, and tori. Ray-tracing is used to- extract
geometric infofmation from the database. The ERIM-BRL link provides an easy means for generating geometry
descriptions through an excellent graphics editor and a natural geometry interrcgation technique-for determining
ray path information. SRiM follows the Geometric Optics (GO) paths of rays as they hit and reflect from the
target surfaces. For each ray emanating from the radar a piecewise-linear path is traced through the gecmetry snd
a history is recorded of hit-point coordinates, normal vectors, principal curvatures, principal curvature directions
and a flag designating whether or not line-of-sight exists to the radar. This geometric information is then. passed to
the electromagnetics portion: of the model. At each hit point along the ray path, the incoming illumination
wavefront is resolved into parallel and perpendicular components, a complex Physical Opties (PO) field
contribution at the radar js calculated, taking into account the wavelength of the system and: this contribution is
then resolved into its vertical and honzontal polarization components. SRIM is thus-able to determine the PO
field contributions-for -not-only first-surface illumination, but also for contributions due-to multiple:-bounces-along
the specular directions. If a total radar cross section is desired, this complex return is summed into a total-feld
variable. If a SAR image-is desired, the‘location at which this contribution would appear-in-an image-is-calculated
and added to the appropriate range/cross-range bin. Image parameters.such as resolution, beam weighting -and
pixel size-are specified in a separate file.

Il a- vehicle on a ground plane is the object of interest, SRIM can generate- a clutter modei for the ground
backscatter and will properly represent the shadowing of the ground plane by the vehicle. In:fact, all shadowing
cffects-are correctly represented as a natural result of the ray-tracing paradigm used in-this simulation.

2.3 The SARSIM Code of Northrop

SARSIM is another high-frequency synthetic aperture radar simulation code. It was devéloped-at the Northrop
Research and Technology Center.! In this model, the radar images of the target-and surrounding background are
-computed-separately. In-a final step the two images are combined via processing which-reflects appropriate noise,
speckle and system-response values. For the geometric calculations an underlying target representation -of
triangular plates is employed. For a given SAR resolution, each of the triangular plateSfin:the’targebfdcscriptif)nf:is
subdivided-into panels- whose contributions fall into a single SAR resolution bin. For each of these-panels:in:the
target description, a PO calculation is carried out to determine the contribution to the corresponding SAR
resolution -bin. This is also done for a Physical Theory of Diffraction calculation on the.panel edges. As-of 1987
only the specular. (first surface) and diffraction contributions were considered in this model. A-simplified:shadowing
algorithm eliminates any-panels partially obscured by other panels. Multiple reflections-are not considered-yet.

2.4 The TRACK Code of GTRI

‘Georgia Teck Research Institute (GTRI) has develoed a radar prediction tool called ’H{‘AGK—f13 The
geometry-used by TRACK is based on a subset of objects supported by the GTRI MAX geometry editor. A hybrid
representation of simple shapes such as ellipsoids, plates, frusta and special radar-specific constructs such as
dihedrals and trihedrals are accepted by the TRACK code. TRACK has a series-of subroutines referred-to as
CROSS-which caleulate-the-field contribution of-the individual scatterers in a MAX geowmetty file. CROSS uses:PO
to calculate the fields for polygonal flat plates, right circular frusta, general ellipsoids, ogives and -toroids. A
combination of Geometric and Physical Optics is use to calculate the fields for dihedral and trihedral shapes.
CROSS also predicts diffraction from straight and curved edges by methods of equivalent currents to avoid
probiems associated with caustics. The returns from the individual scatterers can be summed coherently,




noncoherently, or retained in complex form-for postprocessing. Shadowing is-handled by ignoring-all plates that
face.away from the radar and by excluding:from the electromagnetics calculations ary scatterer that-is completely
obscured by other geometric elements. ‘When an element is partially covered, the full energy of that element is
returned, which can sometimes be a source of error. For post-processing,.a file with scatterer types, location, size
and orientation is-generated. This can then be used in numeroas scenarios, such-as SAR, doppler radar, and ISAR
(Inverse SAR).

2.5 Discussion-of Approaches

Each of the aforementioned high-frequency scattering codes required compromise. The choice of geometric
representation and interrogation method led to advantages and shortcomings. Choosing a particular geometric
approach often requires approximations in-the implementation of the physics of an analysis, Likewise, a particular
formulation of a physical analysis can force the acceptance of a simplified and -less general geometry representation
for the sake of gétting some portion of the problem solved.

SRIM uses the information gathered by ray-tracing to determine a scattered field. Fields are calculated locally
so that the ray-trace sampling density can. be chosen small enough to guarantee that each contribution to-the
scattered field will lie in a unique resolution cell, a feature not guaranteed by the GTRI model. While the ray-
tracing technique is computaticnally intensive, the automatic shadowing and multiple bounce calculations are
attractive features. If two modeled surfaces are at a right angle to-each- other, the SRIM code will calculate a
scattered:field -that is appropriate for a dihedral without requiring.the explicit designation of a dihedral element in
the geometry file. This approach does have the severe cost of requiring ray-tracing densities which zre frequency
dependent, so-that the number of rays which must be cast at the target description for a 94 GHz radar calculation
is on the order-of 100 times the number of rays needed at 10 GHz. Originally the code simply point-sampled the
field contribution at a location, but this approach suffered from aliasing problems due to under sampling high
spatial frequency (fine detail) geometric elements. Improvements have-been made so that the field ¢ontribution is
integrated .over-a-planar approximation at -the scattering surface, so that field calculations are less-sensitive to ray-
trace sampling densities. Even so, with- a ray-tracing approach, one can still run the risk of not adequately
sampling the-fine detail in the geometric-model, although increasing sampling densities with-ray-tracing-makes the
inter-ray sampling distances arbitrarily small. It is possible to place an upper bound on the size of geometric
objects that will-be under sampled; with knowledge about the-distribution of feature sizes in the geometry, the ray
spacing can-be chosen so as to make it-statistically unlikely to miss-any details.

Only PO fields are calculated for SRIM. Diffraction effects occurring at edges are not calculated because the
ray-tracing -interrogation method does not provide the required edge information. Some of the representational
schemes discussed later will show how -this might be accomplished with an alternate form :for extracting
information-from the-model geometry.

One advantage of the SARSIM approach-to field calculations is-that integration takes place over each facet or
panel-in a target-description and all of the-modeled geometry is guaranteed-to be included in the calculation. SRIM
can not guarantee-this. Likewise, if one-has:adopted a particular resolution-cell size and subdivided:the triangular
plates into panels appropriate for the resolution cell size, there will-be-no increase in the number-of panels for an
increase in ‘the frequency of the radar. On the other hand, in modeling the target with flat plates, one must
approximate any curved surfaces and thereby introduce some uncertainty about the fidelity of the:geometry itself,
since flat plate representations of curved-surfaces intidduce edges-where no real edges exist. Thus, each edge must
be marked by -the-geometry modeler, to indicate if the edge is an actual edge, or a modeling artifact. For radar
diffraction calculations this criterion must-be used to trigger the inclusion or-exclusion of edges.

Multiple reflections are not modeled.in SARSIM, so any radar signature dominated by -multiple bounces of
energy within the target will be poorly modeled. Many ground vehicles, especially tracked vehicles, exhibit
dramatic dihedral and trihedral returns, making multiple-bounce considerations a primary concern. The use of
piecewise-linear target representations does lend itsell to polygonal projection for determining multiple path
interaction, thereby avoiding ray-tracing. However, such an approach introduces its own set of difficulties. These
techniques require significant computation o find all the facet-to-facet “form factors”. For a geometry with N
facets, a solution-to the global illumination problem requires a system-of N-equations in N unknowns-to be solved.




With most targets of interest the value of N is quite large, and performing Gaussian elimination on the N-by-N
matrix is often prohibitive.

The GTRI radar simulation provides highly accurate electromagnetic calculations for most of its primitive
geometry types. Of the three models considered here, it-provides the most detailed calculations for certain simple
objects. For many modeling scenarios this approach gives excellent results. However, the technique for combining
these component field calculations for a complex geometric object fails to address some important issues. The basic
approach of modeling complex geometry with simple objects for which highly detailed electromagnetic field
calculation are known, has been used for many years.l ‘For simple shapes, ¢.g. rockets, or for objects where a few
scatterers with wide spatial separation dominate the returns, this has been a highly successful technique. When the
target under consideration has non-convex complexity such as seen in a tank, the effects of multiple-reflection
scattering cannot be ignored. Although the GTRI model has dihedral and trihedral .geometric primitives to
account for some multiple reflection scattering, the modeler must provide the information -of how large and where
these objects should be. Even with this feature, multiple reflection paths may escape the-modeler’s attention or be
of such complexity as-to be insufficiently modeled by dihedrals or trihedrals. To deal with this type of scattering
with a general-purpose code that does not require operator intervention, it would be necessary to appeal to another
geometric model of higher resolution to find the multiple reflection paths.

One other shortcoming of this method is the coarseness of the criterion for determining when one primitive
obscures or shadows another. The GTRI method does-not sufficiently subdivide the scattering geometry, so that
full-power returns to the radar are considered to exist even when the scattering object is almost completely
obscured. Only when a primitive is totally obscured.is the electromagnetic scattering omitted from the field
calculation. Notice that -even if it were geometrically simple to determine what portion of a given solid is
obscured, this electromagnetics calculation method would not provide the field contribution from the partially
visible portion. Still:worse problems arise for imaging-radar simulations if the scattering object is geometrically
larger than a resolution cell, since a given scatterér has only one field value and -that field value cannot be
distributed over more than one cell. This all-or-nothing field calculation method is a-consequence of the physics
being constrained by the-chosen geometry interface.

A geometric representation method and an interface of that method to the scattering calculations have been
selected in each of the three codes just discussed. These-choices clearly have advantages-and liabilities. Any code
requiring veometric information will likewise be limited-in-some areas and enhanced in-others by the choices of -the
geometric representation- and the interface of that geometry to the analysis. Each.analysis code described so far
employs only one of -these geometry/analysis code links, but significant benefits might be gained from: analysis
codes that use two or more-of these interfaces simultaneously. Examples of the informatior that can be readily
provided from various-geometry representations and.interfaces will be discussed in the following sections.

3. GEOMETRIC INTERFACES

In what follows a- number of methods are described: by which geometric and- material data are supplied -to
applications codes. Where possible, the interface methods developed and supported by the BRL-CAD geometry
tools”2® will be used-to describe and illustrate these processes. A goal of BRL-CAD has-been to provide a general
and open analysis environment in which a variety of mterrogatlon mterfaces are supported so that diverse
application codes:¢an-be-driven from a single, unified geometric model.*® The APPENDIX gives a brief overview
of the BRL-CAD modeling environment and some strategies-which have guided its development.

3.1 Ray-tracing

Rays begin at a point'l_” and-proceed infinitely in a given direction given by the-unit normal vector B. The
direction vector or direction cosmcs for the ray (Dx,Dy,D )-are the cosines of the angle-between the ray and each of
the Cartesian axes. Any-point Aona ray may be expressed as a linear combination of 7P andﬁ by the formula

A=F+k*D

where valid values fork are in-the range | 0, o).




The traditional approach to ray-tracing has been batch-oriented, with the user defining a set of “viewing
angles”, initiating a large batch job to compute all the ray intersections and then post-processing all the ray- data
into some meaningful form. However, the major drawback of -this approach is that the application has no
immediate control over ray paths, making another batch run necessary for each level of reflection, etc.

In order to be successful, applications need: (1) interactive control of ray paths, to naturally implement
reflection, refraction and fragmenting into multiple subsidiary rays and (2) the ability to fire rays in arbitrary
directions from arbitrary-points. Nearly all non-batch implementations-havc closely coupled a specific application
(typically a model of illumination) with the ray-tracing code, allowing efficient and effective control of the ray
patho. The most flexible approach of all is to provide the ray-tracing-capability through a general-purpose library
and make the functionality available as needed to-any application. For example, the decision of when a ray should
be reflected, transmitted, or absorbed.should be enlirely under the control of the application program. A set of
sample ray histories that.might result from an application exerting-such interactive control is shown in Fig. 3.

3.1.1 RT Library Interface: The third generation ray-tracing:capability in the BRL-CAD Package is-a set_of
library routines in-librt-to allow application programs to intersect rays with model geometry. There are two parts:
to the interface: “‘preparation’ routines and the actual ray-tracing routine. rt_dirbuild() opens the database-file
and builds the in-core database table of contents. rt_gettree() adds a database sub-tree to the active model
space, and can be called-multiple times to join different parts of the database together.

To compute the intersection of a ray with the geometry in-the -active model space, the application must call
rt_shootray() once for each ray. Ray behaviors such as perspective, reflection, refraction, etc, are entirely
determined by the applications program logic, and not by the ray-tracing library. The ray-path -specification
determined by the applications-program is passed as a parameter-to-rt_shootray() in the application structure,
which contains five major-elements: the vector a_ray.r_pt (?) which is-the starting point of the ray, the vector
a_ray.r_dir (D) which-is the unit-length direction vector, the-pointer-*a_hit() to an application-provided routine to
be called when some-geometry is hit by the ray, the pointer *a_miss() to an application-provided routine-to be
called when the ray-does-not hit.any geometry, and the variable-a_onehit. In addition, there are various-locations

for applications to-store-state information such as recursion level, intermediate color values, and cumulative-ray
distance.

When the a_onehit variable is set to zero, the ray is traced through the entire model. Applications-such as
lighting models may often-only be interested in the first object hit; in-this case, a_onehit may be set to the-value
one to stop ray-tracing as-soon as the ray has intersected-at least_one piece of geometry. Similarly, if only-the first
three hits are required-(such as in the routine that refracts light through glass), then a_onehit may ‘be given the
value of three. Then, at most three hit points will be returned, an in-hit, an out-hit and a subsequent.in=hit.
When only a limited -number of intersections are required, the use of this flag can provide a significant savings in
run-time.

The rt_shootray()-function is designed for full recursion so that the application provided ahit()/a_miss()
routines can themselves-fire-additional rays by recursively calling-rt_shootray() before deciding their own return
value. In addition, the function rt_shootray() is fully capablée-of operating in parallel with other instances of
itself in the same address-space, allowing the applicationto-take advantage of parallel hardware capabilities:where
such exist.

3.1.2 Sample RT Application: A simple application program. that fires one ray at a model and -prints the
result is included below, to-demonstrate the simplicity of the interface-to librt.
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Figure 3. Application Control of Multiple Bounces

struct application-ap;

main() {
rtdirbuild("model.g");
rt_gettree("car”);
rt_prep();
VSET( ap.a_point, 100, 0, 0 );
VSET( ap:a-dir, -1, 0, 0-);
ap.a_hit = &hit_geom;
ap.a_miss = &miss_geom;
rtshootray( &ap);

hit_geom(app, part)
struct application *app;
struct partition *part;

printf("Hit %s", part->pt_forw->pt_regionp->reg_name);
}
miss_geom(){

printf("Missed");

3.1.3 Ray Intersection Data: If a given ray hits some model geometry, the a_hit() routine is called and is
provided a-pointer-to-the head of a-doubly-linked list of partition structures. Each partition structure contains
information about a line segment along the ray; the partition has both an “in” (pt-inhit) and an “out”
(pt—outhit) hit point. .Each hit point is-characterized by-the-hit distance hit—dist, which-is the distance k_from
the starting point r.pt along the ray to the hit point. The linked list of partition structures is sorted by
ascending values of hit_dist. As a result-of this definition, the “line-of-sight” distance-between any two hit-points
can be determined simply by subtracting the two- hit_dist values. This will give the distance between the -hit
points, in millimeters. ' o - o

If the variable a_onehit was-set non-zero, then-only the first a_onehit hit points along the partition- list are
guaranteed to be correct; any additional hit points provided should be ignored. This is usually important only




when a_onehit was set to an odd number; in this case the value of pt—outhit in the-last partition structure may
not be accurate and should be ignored.

If the actual 3-space coordinates o_i; the hit point are required, they can be computed into the hit—point
element with the C-language version of A =P+k*D:

VJCINI( hitp->hit_point, rayp->r_pt, hitp->hit_dist, rayp->r_dir );

3.1.4 Surface Normals: As an efficiency measure-only the hit distances are computed-when a ray is intersected.
with the model geometry. For any hit point, the surface normal at that point can-be easily acquired by executing:
' the C macro:

RT-HIT_-NORM( hitp, stp, rayp );

In addition to providing the unit-length outward-pointing surface normal in struct hit-element hit_normal, this
macro also computes the 3-space coordinates of the hit point in struct hit element hit_point.

] 3.1.5 Gaussian Curvature: For any hit point, after the surface normal has been computed, the Gaussian
surface curvature at that-hit point can be acquired-by executing the C macro:

RT-GURVE( curvp, hitp, stp );

At the hit point, there exists exactly one pair of orthogonal directions also orthogonal to-the surface normal N for
which the values-of ¢ take on the minimum and maximum values ¢, and c,. ¢; and-c, are the inverse radii of:
curvature and |c;|< ey, f.e. ¢ is the most nearly flat principle curvature. A positive curvature indicates that the
surface bends toward the (outward pointi_ng) normal vector N at the hit point. -A_curvature structure has three
elements, the unit vector erv_pdir (or A) pointing in the direction of the first :principle curvature, the scalar
crv_cl (or ¢;) giving the curvature in the first principle direction and the scalar crv_c2 (or c,) giving the
curvature in the second principle diréction B. The second principle direction ﬁfis’ implied and can be found by
taking the cross product of the normal with erv_pdir, i.e., =N XX.

3.1.8 U-V Mapping: Each primitive solid can 'bei_fonsidered to be bounded by -one-or more regular surfaces.
Each regular surface is defined as the locus of points S{u,v) depending on two real-parameters u and v which range
from 0.0 to 1.0 inclusively. These parameters form the coordinates of a two-dimensional -Cartesian u,v-plane. A
given (u,v) coordinate-will-appear only once on each-regular surface, but in objects with-more than one surface that
same (u,v) pair may-appear at more than one place on-the object. The (u,v) coordinate of the hit point is returned
in uveoord structure elements uv—u and uv_y. For any hit point, after the -value of hit_point has been
computed, the (u;v)-coordinates of that point can be acquired by executing the C macro:

RT-HIT_UVCOORD( ap, stp, hitp, uvp );

For some simple optical rendering applications , it is sometimes desirable to create a mapping between the
coordinate system on the surface of an object-to-coordinates on a plane. This is generally uszd to drive simple, two
dimensional tezture mapping algorithms. The most common application is to extract a “paint” color from a
rectangular image-file at coordinates (u,v),.and -apply-this color to the surface of an-object. These parameters can
also be used to-simulate the effect of minor surface.roughness using the bump mapping-technique. Here, the u-and v
coordinates index into-a rectangular file of perturbation angles; the surface normal-returned-by RT_HIT_NORM().
is then modified by up to 90 degrees each in both the u and v directions, according:to the stored perturbation.

In addition, the-approximate “beam coverage” of the ray in terms of the pars neters-(u,v) is returned in-the
structure -elements uv=du and uv_dv. These approgimate values are ‘based upon the ray’s initial beam radius
(a—rbeam) and beam divergence per millimeter (a~diverge) as specified in the application-structure. These delta-u

~ and delta-v values-can be helpful for anti-aliasing or filtering areas of the original texture map to produce an “area
sample” value for the.hit point.




3.2 Topological Representation

Some predictive radar signature codes, such as the TRACK code of GTRI discussed above, do not operate
directly on a solid geometric representation-of an object. Instead, they rely on the fact that large radar returns
occur primarily due to the existence of dihedral and trihedral structures in the object. Rather than. describing a
vehicle simply as a collection of these topological structures, one can analyze a three dimensional solid model to
locate all instances of the topological features of interest. For example, the software could locate planar face
elements, edges where two locally planar elements join to make a dihedral, edges where three locally planar
elements join to make a trihedral, etc. Then this list of topological features becomes the input to the feature-based
analysis code.

Due to the rather broad set of possible interpretations of the term “feature”, each kind of topological:feature
extraction is itself considered an application program and, therefore, is not a standard part of the interrogation
library. The process of topological feature extraction is currently programmed using the ray-tracing interrogation
features described above.

3.3 3-D Surface Mesh

Combinatorial Solid Geometry (CSG)-models are formed by the boolean combination of “primitive” solids.”
For example, a plate with a hole is most easily modeled as a plate primitive minus a cylinder primitive. It is
important that in CSG models, there is no explicit representation of the surfaces of the solids stored; indeed, for
complex boolean combinations of complex primitives, some of the resultant shapes may have very convoluted
topology and surfaces that may be at best high degree polynomials.

There are many applications that would benefit from being able to express an approziniation of these complex
shapes created using CSG modeling as a collection of planar N-sided polygons (N-gons) which together enclose
roughly the same volume of space as the original CSG solid. The most obvious such application- is to. drive
polygon-based rendering routines (lighting -modules) for predictive optical signatures. On many modern
workstations there is direct hardware or firmware support-for high-speed rendering of polygons. In addition, there
are whole collections of polygon-based- predictivé infrared and radar signature programs. Some of the most
accurate radar signatures have been calculated- using the Method of Moments.}” This approach requires-a three
dimensional surface tessellation to sub-wa relength:resolution over-an entire geometric model.

A sensible strategy for converting a-CSG.model to the equivalent approximate three dimensional surface mesh
is to tackle the problem in two parts. First,.a routine has-to-be written to convert each of the primitive-solids into
tessellated form. Second, a routine-has-to-be-written to take two tessellated objects and. combine them:according
to a boolean operation (union, intersection-or subtraction) back into a consistent set of solid tessellated-objects.
‘Until very recently, this second step has proven-extremely difficult. The topology of solid tessellated-objects has
traditionally been represented using the “winged-edge’” data structure. Within the winged-edge representation, an
edge represents the boundary or intersection: between exactly two faces. Unfortunately, this structure fails to
handle other valid configurations, such as an-edge- being shared by four faces, or an edge being part-of-only asingle
(“dangling”) face. These other configurations arise when the topology of an object is not that of a simple 3-
‘manifold, 7.c. when the topology of the object can not be mapped to a sphere. These non-3-manifold-conditions
arise in the construction of finite element meshes,-and from the use of the boolean intersection operation.

The inability of the winged-edge data structure to represent non-3-manifold configurations resulted- in the )
development of a more general data 'struét,urrels"m. This new data structure has been dubbed alternately the ,
“radial-edge”, “Non-Manifold Geometry”’ (NMG), or “n-Manifold Geometry” data structure. The radial-edge
representation provides topological links-between_all faces which share an edge. This single representation has-the
ability to handle n-manifolds (M) for 0 < n <3: 3-manifolds (solid objects), 2-manifolds-(lone_faces, not -part of-a
solid), 1-manifolds (lone edges, not part of a face)-and-0-manifolds (lone points, not part of an edge).

t+ SeeRef, 5, Figs. 8 and 9.
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Consider the intersection of two solids that share only a single face, edge, or vertex. The result of the
intersection will be a manifold object of dimension less than three. The winged-edge data structure-is unable to
represent-these boolean results, because it requires every edge to adjoin exactly two-faces. Thus, the-winged-edge
representation is not closed under boolean operations, To overcome this lack of closure, winged-edge -systems
substitute regularized boolean operators which are defined to produce only 3-manifold results; all  lesser dimension
results-are discarded. In contrast, because all manifold objects of dimension less than three can be represented
using-the NMG data structures, NMG objects are closed under boolean operations,

Employing the NMG representation for faceted solid objects gives rise to the rich set of possibilities diagramed
in-Fig. 4. From this diagram it should be clear that the final evaluated NMG solid object. can-be employed in-a
variety of ways. The primary use will be for input to analysis codes that need an approximate 3-D surface mesh of
the solid model. In this case, the NMG objects are sent across the interface, either directly into an:application, or
vfa a-triangulator that turns the planar N-gon faces of the NMG objects into simple triangle lists and-thence to
applications such as SARSIM. However, a very powerful second use will be to create-new faceted-shapes which are
then stored back in the database as new geometric objects, suitable for future editing-or analysis.

While a detailed description of the NMG data structures is beyond the scope of this p‘aper,")0 ‘there:are-several
advantageous properties of the NMGs that are worth mentioning. The NMG representation maintains full
topology information, so that the relationships between vertices, edges, loops, faces and shells are continuously
available. The geometry information associated with a planar face is the plane equation :(which includes the
outward-pointing surface normal); the plane equation does not have to be re-derived from the vertices. For
applications that would prefer visual realism rather than geometric fidelity, there is-room in-the-vertex geometry
structure to carry around a ‘“phony” normal for each vertex, suitable for intensity interpolation- shading
algorithms used in Gouraud shading,"1 or for normal-vector interpolation-shading algorithms.

One of the most exciting current research projects at BRL is the-extension of the NMG-framework ‘to_permit
faces-either to be planar N-gons, or trimmed Non-Uniform Rational B-Splines (“trimmed NURBS?’). This-will
permit many of the tessellation operations to be implemented exactly, rather -than as approximations. This will
also permit solids to enjoy the economy of having most faces be represented as planar N-gons, which- are very
compact and efficient to process, while those few faces that require sculptured surface shape control -can be
represented as trimmed NURBS. This combination providés both efficiency and-fuli-shape-control-in-the-rich-n-
manifold topological framework; a combination that does not exist in-any current-commercial:CAD-system.

3.4 3-D Volume Mesh

Many forms of cnergy flow analysis, such as heat flow, vibrational analysis (acoustic energy flow), and stress
analysis require the use of 3-D Finite-Element Mesh (FEM) techniques. While:-there-has been some work.on using
the ray-tracing paradigm to construct finite element and finite diﬁerance—mesheszg’it,haS’been;diﬂjculb;to:deal*with
high- spatial frequency (fine detail) portions of the model. In particular, meshing small -diameter pipes is
problematic; undersampling can cause the pipe to incorrectly be separated into multiple pieces.

In order to improve on the current state of affairs, it seems necessary to provide support-for the-generation of
volume meshes directly as part of the application interface. This would provide -the meshing:algorithm to have
unrestricted access to the underlying geometry, the space partitioning tree, and other internal data in-order ‘to
perform a better job.

Even more promising still would be a strategy that takes advantage of the NMG-support. A-first:pass  might
tessellate the model and evaluate the booleans to produce a surface mesh. The-second pass-would-then take-the
surface mesh and fill the interior (or exterior) volumes with appropriately chosen-volume elements: A very-good fit
could probably be achieved using only parallelepiped (*brick’) elements and 20-node “‘superslements’. The brick
elements would be-used to fill interior volume that does not border on a face, and the superélements- -would- be used
for volume that contacts a face. Recourse could be made back to the underlying-geometry (pérhaps. v;q,ﬁrmg,a few
wéll chosen- rays) to gei the curvature of the superelement faces to match- the curvature of the underlying.

primitive, rather than having to rely strictly on the NMG planar-face approximation.
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Figure 4. Logic flow for n-Manifold Geometry (NMG) processing.

3.5 3-D Volume Elements (Voxels)

A representation which is similar-to-the finite-element mesh is based on Volume:Elements (VOXELS). There
are two distinct kinds of voxels. The first kind of voxels can be considered a special case of volume meshing
discussed previously, in which the model'is “diced” into-a large collection of homogeneous parallelepiped (“brick”)
elements. As one example, ERIM has 2 .utility program. which uses ray-trac;nrg, to convert BRL CSG-format
geometry to-this kind of voxel representation to feed a first-principies IR model. %In contrast to the ERIM’s voxel
modeling approach, the Physically Reasonable Infra-Red. Signature Model (PRISM).predictive IR code, developed
at the Keweenaw Research Center, is-based on a geometry of. flat plates Two codes-linking the BRL CSG-format.
geometry to PRISM have been developed: the TACOM FRED-editor” % and-the BRLi irprep program. 0

A distinctly different form of voxel representation is -based upon the use of 8-way binary space subdivision
stored using an “oct-tree” data structure. In this technique, the model is enclosed in a bounding box. The
Lounding box is evenly split along the X, Y and Z axes-to-form -eight smaller boxes. This algorithm is- applied
recursively so-that all boxes which are neither entirely full-nor entirely empty are repeatedly split, until-the-size of
the voxels-satisfies some termination: condition. In this-way, small voxels that lie along the surface of objects can
fit arbitrarily tightly to the surface, while the interior of an isomorphic region will be contained primarily in a
single large voxel.

The oct-tree representation provides the application program with a homogeneous geometric representation
based entirely on cubes of varying-size. Having such a homogeneous representation:can often greatly ease the task
of algorithm. development. On the- other hand, achieving a gond approximation -of curved objects using -cubes
requires a huge number of voxels to-be used, resulting in very large voxel datasets, and an exponential.increase
(order N°-in -the number of element-to-element equatlons to-be solved. The-oct-tree approach to IR signature
generation is-employed in the BRL-CAD-program Igt. &
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3.6 Homogeneous Trimmed B-Splines

When support for trimmed NURB faces has been added to the NMG capability, it will be possible to represent
all existing primitives either with exact rational B-spliie versions, or with very good rational B-spline
approximations. This could be-done even for/faces that were completely planar.

This offers the hope that it might be possible (albeit memory intensive)-to convert an entire CSG solid model
into a homogeneous collection_of non-uniform rational B-spline faces organized in a-n-manifold topological data
structure. In addition to the conceptual simplicity afforded by having a uniform representation for shape, this
affords the opportunity to create new analysis codes that can process curved surfaces, yet at least initially only
have to deal with one kind of shape. This would also provide a very direct.and natural interface to spline-based
and Bezier-patch28 based modeling systems.

3.7 Analytic Analysis

Given a homogeneous geometric representation such as the Trimmed B-Splines just discussed which also has an
analytic representation, a further processing capability arises. Rather than interrogating the data base by means
of sampling or subdivision techniques, the direct mathematical manipulation of the source geometry through its
parametric representation becomes-possible. Calculations of physical properties-requiring integration over a surface
can often be evaluated with greater accuracy using an explicit analytic calculation than could be provided by
numerical methods. While this-may be difficult in general due to the complexity of a parametric expression, some
classes of surface representations may be good candidates for this approach. Splines, for example, are piecewise-
polynomial functions which have relatively simple Fourier transform representations. Since 2-D spatial Fourier
transforms arise frequently-in-far-field-electromagnetic scattering calculations, exploitation of the parametric spline
form is of interest in predictive-scattering calculations. Direct use of spline-par=meters in a PO scattering model is
part of the methodology used-at-the Aircraft Division of The Nort,hrdp:(Jorpor;i.-‘,ion.29

Support for this tack may be inferred from the work of Schneider and Peden who have exploited analytic
methods for calculation of radar-cross sections using dielectric ellipsoids:m?in;the'detection of buried targets.” Here
the approach involves the approximation of the geometry of interest with a shape for-which the analytic solution of
the electromagnetic scattering problem can be solved. Great care must be taken to insure that the errors
introduced by the geometry are-a-small perturbation of the desired solution.

With the rapidly developing pote .al of symbolic calculation, treatment of seemingly impossible formulas
resulting from the geometry/physics ir‘eraction may become tenable. This-could help-to reduce the trend towards
employing numerical methods at the onset of a problem and avoid some of -the accompanying instabilities and
errors.

4. SUMMARY

In this paper we have discussed-some-issues hasic to the prediction-of signatures in-support of Automatic Object
Recognition, in particular the way in which three-dimensional geometry and:-material data are linked to certain
applications. This point -was illustrated vie a discussion of three predictive radar codes, each designed for
essentially the same application, but each- nevertheless employing unique geometric methods. The descriptive
approach and the manner-in which -each is linked to the physics of the codes-has been shown to both enable and
constrain algorithmic exploitation.

The methods for linking geometry to applications codes were described in turn. The BRL-CAD package was
used to illustrate each approach. As.described in the APPENDIX, the-strategy utilized in BRL-CAD is based on
an inhomogeneous collection -of closed-surface geometries, of which-the variety of shapes is constantly expanding.
By this tack, in.addition to-using geometry files created with BRL-CAD, three-dimensional geometry files that were
developed under other systems-c¢an either be mapped into the BRL-CAD data base ezactly (if the corresponding
gcomctm forms already -exist) or-the-data base can be extended to support any-important new forms (so that the
conversion becomes an exact mapping as well). By this method the enormous-costs-of-geometry generation can be
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recovered; any model developed on a true-3-D modeling system can be transferred through file importation-to the
general and open environment of BR_L-CAD.z

Another important point that was emphasized was the possible utility of each particular:intérface. A related
goal, therefore, of BRL-CAD has been to-support -all-such ‘interfaces from the extensible data base-of -geométry:
types. Many of the forms have been implemented; the NMGs which will provide homogeneous-polygon support-are
in the final stages of development.

By these developments it is our intent to support the AOR community to t'ie maximum-extent -possible-with
the tools needed to develop the multi-spectral, multi-sensor-simulations critical to autonomous-sensor-applications.

APPENDIX

The solid modeling package called BRL-CAD™!® was originally developed to support the input-requirements-of
vulnerability and lethality modeling at the Ballistic Research Laboratory. Its capabilities are briefly simmarized
‘here:

* BRL-CAD is composed of more than-200,000 lines of portable C language source code which support:
O Solid geometric editor (mged)
O Ray tracing utilities
O Lighting models for a variety of frequencies
O Many-image-handling, data-comparison, image-processing and other supporting utilities

o The set of closed-surface (inhomogeneous) geométrical:representations supported by BRL-CAD include:
O The original Constructive Solid Geometry (CSG) BRL-data base
B Non-Uniform Rational B-Spline Surfaces-(NURBS)
O The faceted data representation (PATCH):developed by Falcon/ Denver Research Institute and-used by the
Navy and Air Force for vulnerability calculations.

o It supports association of material (and- other attribute properties) with geometry which- is critical to
subsequent applications codes.

o It supports a set of extensible irterfaces:' by means of which geometry {and attribute data) are -passed to
applications:
0 Ray casting
O Topological representation
0 3-D Surface Mesh Generation-
0 3-D Volume Mesh Generation
O Analytic (Homogeneous Spline) representation.

o Source code for BRL-CAD has been distributed to more than 650 computer sites world wide -throughout
Government, Industry and Academia.

¢ In addition to the vulnerability and signature-codes-generated by the BRL, many BRL-CAD based applications
codes have been built by others, including- apphcatlonsfdeveloped by workers at TACOM/ Keweenaw ‘Résearch
Center, ERIM, Northrop, MITRE, University of-Illinoic-and scores of other sites.

Figure Al gives a general layout of the BRL-CAD database representation. A number of fundamental
strategies are key here. First, the primary data base is inhomogeneous; that is, many types of géometric
representations are allowed so long as they represent-fully enclosed space. New shapes are added-to the-geometric

$ An important-caveat here is that the-mathematical form-of-the_geometric representation and data base to be.imported must_be known.
_Unfortunately, most commercial CAD-vendors-are-unwilling:to provide this information for files_generated by their- s_ystems.xsmce that,

-might free the user from "vendor lockin”,
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Figure Al. Organization of BRL-CAD Database Representation.
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-data base from time to time and the BRL-CAD package has a number of utilities written expressly to aid that
process.

Second, specific interface standards have been -adopted at the points where geometry is normally passed to
applications (e.g. ray casting, topology, surface mesh). By this strategy changes which take place in the geometric
data base itself are isolated from the specific means of geometry linkage. By means of this strategy both (a) an
extremely large primary data base of geometry types can be supported in a data-storage efficient fashion aid (b)-
various application codes can link-to that data base-in the manner most suitable for the application.

As noted above, although the original application of BRL-CAD was in,sufyort of vulnerability and lethality
analyses, its utility has been extended much beyond those applications.l'7'1°' A graphical depiction of current
uses is given.in Fig. A2. )
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