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Semi-Supervised Multiple Feature
Analysis for Action Recognition

Sen Wang, Zhigang Ma, Yi Yang, Xue Li, Chaoyi Pang, and Alexander G. Hauptmann

Abstract—This paper presents a semi-supervised method for cat-
egorizing human actions using multiple visual features. The pro-
posed algorithm simultaneously learns multiple features from a
small number of labeled videos, and automatically utilizes data dis-
tributions between labeled and unlabeled data to boost the recog-
nition performance. Shared structural analysis is applied in our
approach to discover a common subspace shared by each type of
feature. In the subspace, the proposed algorithm is able to charac-
terize more discriminative information of each feature type. Ad-
ditionally, data distribution information of each type of feature
has been preserved. The aforementioned attributes make our al-
gorithm robust for action recognition, especially when only lim-
ited labeled training samples are provided. Extensive experiments
have been conducted on both the choreographed and the realistic
video datasets, including KTH, Youtube action and UCF50. Exper-
imental results show that our method outperforms several state-of-
the-art algorithms. Most notably, much better performances have
been achieved when there are only a few labeled training samples.

Index Terms—Human action recognition, multiple feature
learning, semi-supervised learning, shared structural analysis.

I. INTRODUCTION

EOPLE are more easily creating and sharing their personal
videos that contain actions due to phenomenal develop-
ments in cloud computing and storage technologies. As a result,
there is a heavy demand for an efficient and effective mechanism
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of automatic action video annotation that is able to facilitate re-
trieval, indexing and classification. Supervised classifiers, that
only use labeled training samples, have been extensively used
to address the problems. Unfortunately, labeled data are noto-
riously hard to obtain in the real world. By contrast, collecting
unlabeled data is often effortless. When confronted with huge
amounts of unlabeled data, manual annotation or labeling which
is absolutely tedious and time-consuming, should always be the
last choice. The goal of this work is to use multiple feature fu-
sion to study human action recognition in video data when label
information is extremely insufficient.

Human action recognition has been widely studied in com-
puter vision [4]. The common approach is to perform feature
extractions from video data and to train a classifier from the
features with class information. Generally, features for action
video can be divided into two groups: global features [5], [6] and
local features [7], [8]. Since correlations between low-level fea-
tures may provide distinctive information, more research atten-
tion [9], [10] has been put into local feature correlation mining
to improve recognition results. In [11], shared structural anal-
ysis is applied to exploit multi-label correlations. Similar ideas
of the shared structure learning have also been applied to many
domain adaptation applications [12], [13] in which a transfor-
mation is learnt from the original feature space of both source
and target domains to a subspace. This subspace is shared by all
domains, which means features in every domain can be trans-
formed into this shared subspace and then jointly learnt within it.
Armed with this technique, cross-view action recognition prob-
lems have been well investigated in [14].

As mentioned above, the scarcity of labeled training sam-
ples may lead a supervised learning model to be overfitting.
This work mainly focuses on recognizing actions represented
by multiple features when the label information is limited. Even
though semi-supervised learning and its variants are proposed
to tackle the problem of insufficient labeled data for training,
the ways to learn multiple features in a semi-supervised frame-
work for action recognition with a small impact from noises and
outliers have been largely ignored so far. Besides, exploiting
the shared structural information has proven beneficial to ac-
tion recognition in [15]. Thus, attention should also be paid to
analyzing the structural information shared by action features.

To address the aforementioned challenges in action video an-
notation, this paper proposes a novel semi-supervised approach
that does not only exploit the feature correlations within each
feature type, but also automatically leverages the multiple fea-
ture fusion. First of all, semi-supervised methods, which are
able to make use of both labeled and unlabeled data for training,
are more suitable than supervised learning approaches for real-

1520-9210 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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world data. The recognition accuracy can be improved with
a conjunction of a small amount of labeled data and a large
amount of unlabeled data. Secondly, it is assumed that similar
actions that are represented by the occurrence frequency of vi-
sual words, should share some common components in repre-
sentation. For example, similar actions of an arm exist in both
the Tennis-Swing and the Golf-Swing may have locally common
components. We propose to characterize such a high-level se-
mantic pattern through the low-level action features by applying
the shared structural analysis to the Bag-of-Words (BoW) rep-
resentation. By means of directly exploiting the correlations be-
tween low-level features, resemblant high-level semantic pat-
terns are discovered between similar types of action videos.
Thirdly, motivated by the latest research on video analysis that
utilizes multiple features, the framework is further extended into
a multiple feature based manner to achieve better classification
performances. Generally speaking, the semi-supervised action
video annotation is separately modeled by each type of feature
with the correlations between different features simultaneously
unveiled as well. In the proposed framework, training videos
comprise both labeled and unlabeled. Multiple features are ex-
tracted from both the training and testing videos. For the z-th
feature type, a graph model is first constructed using distribu-
tions of the ¢-th type of feature. Building upon this graph, virtual
labels of the unlabeled data can be generated by label propaga-
tion, during which the shared structural analysis of the features
is applied to uncover the feature correlations. This makes results
more reliable. For each feature type, the consistency of nearby
points is separately preserved, and the label prediction of the
unlabeled data in the training set is made by joint consideration
of the global consistency of the multiple features. In this way, a
multiple feature classifier is trained for action recognition. The
contributions of this paper can be summarized as follows:

* We apply a semi-supervised learning framework which an-
alyzes structures shared by BoW features by uncovering a
low-dimensional subspace based on each feature type.

* The proposed framework considers the global and local
structural consistency to train a discriminating classifier for
annotation.

* To maximize the holistic performance, the framework runs
in a multiple feature based manner with noise handling.

e Compared with other methods, the proposed method
demonstrates better performances, especially when label
information is quite scarce.

The rest of this paper is organized as follows: Related works
will be reviewed in Section II. The proposed framework is elab-
orated in Section III followed by experiments in Section IV.
Lastly, Section V concludes this paper.

II. RELATED WORK

In this section, we briefly review the related research on
multiple feature learning, semi-supervised learning and shared
structural analysis.

A. Multiple Feature Learning

An object can be described by different features that provide
different discriminating information. In light of this, research
attention on feature fusion for video analysis has arisen over
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recent years. Feature fusion methods can be categorized into
three strategies: early fusion, late fusion and multi-stage fusion.
In early fusion strategy, a multimodal representation, which is
constructed by heterogeneous features, is used to achieve clas-
sification tasks. A normal way to gain benefits from multiple
features is to directly concatenate different types of features to
form a larger feature vector. For instance, to classify human
actions, Sun et al. [16] apply concatenation of local descriptors
and holistic features as inputs to the Support Vector Machine
(SVM). Though this simple fusion scheme gains a good per-
formance, the approach usually leads to the computational
burden of processing larger feature vectors. Meanwhile, it does
not guarantee improved performance. It is possible that the
independence among heterogeneous features may degrade the
holistic performance. In contrast with early fusion methods,
late fusion separately learns multiple features and builds a mul-
timodal representation by combining learned models. In other
words, late fusion occurs after independent learning for each
type of feature. Farquhar et al. [17] propose an SVM-based
late fusion algorithm, namely SVM-2K, to learn two types of
features in a task of object classification. An extension from
a supervised learning algorithm to a semi-supervised setting,
has been proposed by Li et al. [18]. However, one drawback
of late fusion methods is the expensive cost in learning. This is
because separate learnings are carried out with respect to each
feature type, and extra learning is eventually conducted for
the fusion. Moreover, for most late fusion approaches, correla-
tions of each type of feature have not been taken into account
because the fusion occurs afterwards. In addition to early and
late fusion strategies, the multi-stage fusion scheme has also
been recently investigated. For example, Natarajan et al. [19]
firstly combine a large set of visual and acoustic features using
multiple kernel learning as the early fusion scheme. In the
next stage, two different late fusion strategies are applied to
MKL-based subsystems. The published results show that there
exist additional performance improvements when multi-stage
fusion is used.

B. Graph-Based Semi-Supervised Learning

The motivation of semi-supervised learning stems from the
prohibitive cost of manually annotating a large amount of data.
As one of the important branches, graph-based semi-supervised
learning has attracted many research interests [20]. The main
paradigm of graph-based semi-supervised learning is to utilize
relations between labeled and unlabeled data by exploring
the manifold structure. Since graph-based semi-supervised
methods are discriminative, they have been successfully ap-
plied in a number of applications. Zhou et al. [21] propose
a graph-based semi-supervised method that learns local and
global consistency, namely LGC. Specifically, a regulariza-
tion framework that iteratively predicts label information
of unlabeled samples has been developed. In [22], a graph,
which is constructed with a spatial Markov kernel, integrates
intra-image context. Afterwards, graph-based semi-supervised
learning propagates the labels of unlabeled images on the
graph. Active learning is consequently combined to achieve
interactive classification. Ma and et al. [23] use the graph-based
semi-supervised framework incorporating feature selection to
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learn classification information from real-world image data.
In addition, graph-based semi-supervised learning has also
been applied in a number of video content-based applications,
including video retrieval [24], video annotation [25], action
recognition [15] and multiple person tracking [26].

C. Shared Structure Analysis

Recently, shared structure analysis has been applied to multi-
label learning [11], [27] and multi-task learning [28]. Taking the
correlations between different labels into account, Ando et al.
[28] have proposed an approach to minimize the total loss of a
subset of predicting functions { fi(;)}7_,. Such a classifieris a
linear combination of one classifier in the original feature space
and another classifier in a low-dimensional subspace projected
by a transformation matrix ©. The classification problem is then
converted into an optimization problem in the following objec-
tive function:

Wﬂ}uin@<z :<7171 Z loss(fi (Ti) 7y£)+/r(vlu wl))‘hu@(f))
PN =1 b=t

st. 0Te =1, (1)

where 7; is the sample number of the /-th class. fl(a;ﬁ) =
vTal + pTOTx. loss(-) is the least squared loss function.
r(-) and () are regularization functions using the Frobenius
norm. Note that 4! is the ground truth label of the datum z;
which indicates whether z; belongs to the [-th category. Ando
et al. claim that if multiple tasks are correlated in a multi-task
learning problem, benefit can be significantly obtained from a
common structure shared by multiple predictors. Also, exper-
imental results demonstrate that the shared structure learning
in their linearly combined predictor is very helpful to extract
the underlying correlations between tasks. In a follow-up work
[11], Ji et al. point out it is essential to exploit correlation infor-
mation contained in different labels, and propose a combined
predictive function for multi-label classification. This function
consists of representations in the original feature space as well
as representations in a shared low-dimensional subspace. As a
result, the correlation information is added to a conventional
multi-label classification framework by using this joint predic-
tive function.

III. THE PROPOSED APPROACH

This section begins with an elaboration of the formulation
of the proposed algorithm for action video annotation. Our
method incorporates several techniques including multiple
feature learning, graph-based semi-supervised learning, shared
subspace analysis, the £ ;-norm loss function, and manifold
learning. It is named Multiple Feature Correlation Uncovering
(MFCU). Following this, we present a detailed solution of how
to obtain the classifier.

A. Formulation

In this work, we borrow the idea of structural learning in [11],
[27] and exploit the correlations among different visual words

by discovering the structural information shared by low-level
features. If we properly exploit such a shared structure, a more
discriminative classifier for action recognition can be obtained.
Specifically, we jointly take into account the original feature
space and the shared structural subspace through the following
function:

f(X)=X"v 4+ xTop=x"W, )

where W =V + QP, W € RY*°. () is a transformation matrix
which reflects the low-dimensional subspace shared by different
features. V' and P are two weight matrices in the original feature
space and the low-dimensional subspace, respectively. Building
upon (2), Ji et al. [11] have proposed to learn the shared sub-
space by incorporating a least squared loss function. Their ap-
proach explores the shared subspace between different tasks and
is easy to implement. One drawback is that the least squared loss
function is sensitive to outliers. Therefore, the £3 ; -norm is pro-
posed to apply to the loss function which is more sophisticated
and robust [29], and obtain the following objective function:

gin [ XTW =Y o+ ol W + 81 - QP
st. QTQ =1, 3)

where v and /3 are regularization parameters. ||W||% controls
the complexity of the model to avoid overfitting. Similar to
W%, |W — QP]||% should be small as a penalty term when /3
is close to a large number. According to V' = W — QP derived
from (2), the weight of representations in the original space, V,
drops while the weight of representations in the transformed
subspace (the shared subspace), P, increases, and vice versa.
Thus, ||W — Q P||% regularizes the shared structure information.
Through (3), we aim to construct a robust classifier that is both
discriminative in the original feature space and is capable of
discovering the correlations between visual words in the trans-
formed low-dimensional subspace. Through such a joint classi-
fier, classification performance can be further improved [15].
One limitation of the framework in [11] is that only a single
type of feature is applied. Performance can be improved by ap-
plying multiple features. Another limitation is that this method
relies on fully labeled training data. Our method is extended to
a semi-supervised approach due to its advantage in saving la-
beling costs while simultaneously achieving good performance.
Most semi-supervised learning methods assume that nearby
points are likely to have the same labels. Specifically, data
points which can be connected via a path through high density
regions on the data manifold are likely to have the same label.
In fact, information about density and manifold is inadequate
in the real world because of the scarcity of labeled data. To
deal with this problem, a graph is utilized to approximate the
density and manifold information for semi-supervised learning
in the framework. To begin with, the multiple feature training
data set is redefined as X, = [X., X*],1 < v < m.m is the
number of feature types. For each feature type, X! and X"
are two subsets of data with and without labels respectively.



292

Inspired by [11], [15], [27], [29], we propose a joint multiple
feature learning framework as follows:

tr (FT > XU’LUF) +ir(F - Y)Y'UWF -Y)

min
F,Fy . Wy
Qo Py, Ay v=1
i S (W 3B W Qo Pl ZH X TW—F l2,1)
v=1
+ p2 Z IF - F,|%
v=1
st. QYQ, =1, Z)\,, =1, X €0.1], (4)

v=1

where (i1, p12, o and (3 are regularization parameters. | W, ||%
and [|W, — Q, P,||% undertake the same jobs as their counter-
parts in (3) w.r.t. each feature type. F' is the global label predic-
tion, while F,, is the label prediction of the v-th feature type.
The term ming g, > o, [|F — F,||% reflects the philosophy
that predictions based on each feature type should be consis-
tent with the global type. Definition of the Laplacian matrix of
the v-th feature type, L., can be found in [15]. Note that we add
the term, >_."" | A7 L,, to balance contributions from structural
information with respect to each feature type [30]. U is a selec-
tion matrix that is defined as:

U = { oc if z; is labeled;
b 0  otherwise.

)

The shared structure learning was initially proposed for
multi-label learning in [11]. In our multiple feature learning
framework, the idea of uncovering the shared structure is ap-
plied to exploiting shared information among different features.
Moreover, this framework preserves independent structural
information from each feature which contributes to a better
understanding of action videos.

B. Optimization

We use an alternating approach to optimize our objective
function. First, we fix A, = 1/m and F to optimize the other
variants. Since the initialized F' is the one optimized through the
following objective:

min tr(F — VVU(F -Y)+tr (FT (Z AQJLU> F) (6)

v=1

The initial value of £’ is obtained by setting the derivative of (6)
w.r.t. F' to 0 as follows:

m —1
(U+ Z/\ LU) vy

v=1

After fixing F" and A, the optimization problem becomes:

min 1 (W, [3481W-Qu Pl X T W )
Qy, Py v=1

+p2 Yy |F = F7
v=1

st. QIQ, =1 (7
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By setting the derivative of the above objective w.r.t. P, to 0,
we have:

P, =Qr'w, ®)

According to [31], a general £> ; -norm minimization problem
represented as:

+ Z AU + Bgll21,

n%mf
st. Uel

can be solved by the following problem iteratively:

)+ > tr((AU + Bi)" Di(ARU + By),
k
st. UeC

min f(U
U

Therefore, after substituting P, in (8), the objective problem in
(7) can be solved by iteratively solving the following problem:

m

. min o Zl (fr (xX7w, - £,)T D, (XTW, - F,)
+rW ((a+ 8)] - BQ.QT) W)
+u2 Y ||IF - F7
v=1
st. QTQ, =1 )

where D, is a diagonal matrix with D,,,, = 1/2||z,£,\|2, Z, =
XI'W, — F,and Z, = [2L,...,2"]" € R"*¢ Note that in
'||., could be very close to zero. In this case, we can
follow the traditional regularization way and define the diagonal
elements of D, as D,,,, = 1/(2[|z¢||, + <), where ¢ is a small
constant. When ¢ — 0, it is easy to see that 1/(2]|z%||, + <)
approximates 1/(2||% 5. By setting the derivative of the above
function w.r.t. W, to 0, we get:

M, - 3Q.QF) (10)

where M, = X UDUX,,T + (a 4+ B)1. Substituting W, into (9),
the objective function becomes:

W, = ( X,D,F,,

mln X Z (trFI'D,F, — trFY D, X N, ' X,D,F,)
v=1

2 Y |IF — FlR

v=1

st. QTQ, =1, (11)

where N, = M, — 8Q,QL. By setting the derivative of the
above objective function w.r.t. ¥, to 0, we have:

FU = /J/QGUF7 (12)

where G, = (A, — D, XIN;1X,D,) ~ and 4, =
1Dy + p2I. According to the Woodbury matrix identity [32],
(G, can be written as:

1

B, (13)

Gy =A"+mE (N, — 11X, D,A;'D, X))
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where £, = X ,I,D,,A;l. By substituting /7, in (12) into (9), we
have:
min — tr(FTG,F 14
in =2t ) (14)
Substituting G, in (13) into (14), the optimization problem is
equivalent to the following one:

max Y trFTET (N, - uX,D,A,'D,XT) 'E,F (15)
Y op=1

In (15), the term (N, — u,lX,UD,UA,LTlD,UXUT)il, according to
the Woodbury matrix identity [32], is rewritten as:

I BT (QE - 80700 ) QT (6

where J, = M, — 1 X,D, A, 'D,XT. As J, is independent
on (J,, the optimization problem therefore comes to the fol-
lowing objective function:

né?axtrFTEfJ;lQU(QZ (I — ﬂJ;l) (21,)71Q5J,,71E7,F
(17)

For two arbitrary matrices A and B, tr(AB) = tr(BA). We
therefore rewrite (17) as follows:

st. QIQ, =1

max tr(QT (T - 87,1 Q) QT I E, FFTET I 1Q,

st. QTQ, =1 (18)
Let K, and C,, be:

K,=I-pJ" (19)

C,=J'E,FFTET ! (20)

After substituting K, and C,, into (18), the objective function
is reformulated as:

n‘clgax t'r‘(QfKT,Q@) 71@501,621;
QTQ, =1 (21)

Thus, the above objective function can be solved by the eigen-
decomposition of K ;1 C,. Next, we fix P,,, W,, and F, to opti-
mize F' and A, through the following objective function:

S _ T _ T v
%};\Ijh(F YVVU(F -Y) +tr (F <Z)\L> F>

v=1

s.t.

(113

oz Y ||F — FlF

v=1

st > =1, X €[0,1] (22)
v=1

After fixing A, = 1/m and setting the derivative of (22) w.r.t.
F to 0, it becomes:

T -1 m
F= (Z AL, +U + 2,@1) (UY 2y F) (23)

v=1 v=1

Algorithm 1: The MFCU algorithm.
Input:
The training data are presented by m types of features
Xi,..., X € RIX™,
The training data labels Y € R™*¢;
Parameters «, [ and
Output:
Converged W, € R4xe¢,
: Compute the graph Laplacian matrices L,, € R"*";
. Compute the selection matrix U € R"*™;
. Initialize W, € R4*¢ and F, € R"*¢ randomly;
: Initialize Ay = &= and F = (U + (3,2, A\JLy) " UY;
: repeat
Compute Z, € R as: Z, = XTW, — F,
Compute thei diagonal matrices D, as:

noA W N

=0T,
Dy =
1

2[[z2 1.

Compute @, I, W, and P; according to (21), (12),
(10) and (8), respectively.
Update F' according to (23)
Update A, according to (27)
until Convergence;
6: Return W,,.

Now A, is the only variant to be solved. From the objective
function, we notice that A, is only related to:

intr [ F7 AL F A=1, X, €001
Hilvn 7( Z:l oL, ), Zl ; : , € [0, 1] (24)

By using a Lagrange multiplier £, we convert the problem to a
Lagrange function as:

Lag(A,. &) = tr (FT > A;;’L.,,F) —¢ ( Ay — 1) (25)
v=1 v=1

Setting the derivative w.r.t. A, and & to 0 respectively, we have:

YA (FTLF) — € =0

S Ay —1=0 (26)
v=1

We thus obtain A, by solving the following equation:

WFTLLE)
A = (FTL.F) 1 a7

2 1 (v=1
Z (tr(FTLUF))

v=1

Consequently, an iterative algorithm is proposed to solve the ob-
jective function in Algorithm 1. The proposed iterative method
in Algorithm 1 can be verified to converge by the following
theorem.

Theorem 1: The objective function value shown in (4) mono-
tonically decreases in each iteration until convergence using the
iterative approach in Algorithm 1.1

IV. EXPERIMENTS

In this section, we first introduce action video datasets, fol-
lowed by a presentation of used features and compared methods.
Lastly, extensive experiments are conducted to evaluate this ap-
proach and experimental results are reported and discussed.

IProof can be found at https:/sites.google.com/site/homepageofsenwang/.
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A. Datasets and Features

In the experiments three action video datasets are used, in-
cluding the KTH dataset [1], the YouTube action dataset [2] and
the UCF50 dataset [3]. The KTH actions [1] dataset records six
categories of actions. Each action is performed by 25 subjects
under four different scenarios. In total, KTH contains 599 video
clips (2391 sequences). The Youtube action [2] dataset collects
1600 action video clips of 11 categories from Youtube.com.
This dataset is much more challenging than KTH due to large
variations in camera motion, viewpoint, background, etc. The
UCFS50 action [3] dataset is an extension of the YouTube action
dataset from 11 to 50 categories. In total, it has 6681 video clips
showing identical resolution with the Youtube action dataset.

According to [33], Harris3D interest point detector [7] and
HOG/HOF descriptors [34] have shown promising performance
for action recognition. Besides, the MoSIFT feature [8] that
treats video spatial information and temporal information sep-
arately, offers more robustness on real-world data, e.g. surveil-
lance videos. These two features are extracted from all video
data. The Bag-of-Words (BoW) model is used to represent the
videos due to its popularity in the field of human action recogni-
tion. Technically, we follow the same setting utilized in [33] and
randomly select two groups of 100,000 training features from
HoG/HoF and MoSIFT, respectively. The unsupervised clus-
tering algorithm, i.e. k-means, is applied to build two codebooks
for these two features. To increase the precision, we choose the
centers with the lowest errors as the codebook by randomly ini-
tializing k-means 10 times. The size of the two codebooks are
empirically and uniformly set to 1000. For video data, the BoW
is utilized to build two histograms to represent a video using two
different features.

B. Compared Methods and Experimental Setup

To evaluate the performance of our framework, the proposed
algorithm is compared to six state-of-the-art methods which in-
clude SVM with the x2 kernel [34], TaylorBoost (TBoost) [35],
Semi-supervised Feature Correlation Mining (SFCM) [15],
Semi-supervised Discriminative Trace Ratio analysis (SDTR)
[36], simpleMKL [37] and SVM-2K [17]. SVM, TBoost and
simpleMKL are three supervised state-of-the-art classification
algorithms. Particularly, SVM-x? has been widely applied in
human action recognition due to its prominent performance for
the BoW model. SFCM and SDTR are two semi-supervised
algorithms. SVM-2K is a classic two-type feature learning
algorithm which only deals with two types of features. Explicit
feature map [38] that approximates x? kernel is performed on
the data for SDTR, SFCM, TBoost, SVM2K, as well as our
approach. SVM-x? and simpleMKL use their default kernels
on the original data.

For the KTH action dataset, we use the standard data par-
tition provided by the author: a training set (eight persons), a
validation set (eight persons) and a test set (nine persons). For
the YouTube action dataset and the UCF50 action dataset, we
randomly split each dataset into training and testing sets. The
detailed setting for comparison is followed by the convention of
semi-supervised learning approaches. Specifically, the training
set contains both labeled and unlabeled data, and the testing set
is not available during the training phrase. Denote ¢ as the class
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number of each dataset (c = 6, 11 and 50 for KTH, Youtube and
UCF50 respectively). We randomly sample m labeled videos
(m = 1, 3,5, 10 and 15) per category in the training set, thus
resultinginl x ¢,3 x ¢,5 X ¢, 10 X ¢ and 15 X ¢ randomly la-
beled videos, with the remaining training videos unlabeled. The
experiments are conducted on ten groups of randomly generated
training and testing sets for all the methods, and average results
are reported.

In the proposed algorithm, the parameter & specifying the &
nearest neighbors for computing the Laplacian matrix is set as
5. P, which is the dimensionality of the shared structural sub-
space, and «y are set to ¢ — 1 and 10 empirically as they are not
sensitive. Additionally, we tune the parameters «, § and 12
from {10~%,1072,1,10%,10%}. For SVM-x?, SFCM, SDTR,
TBoost, simpleMKL and SVM-2K, we also tune their param-
eters from the same range using a validation set for KTH, and
5-fold cross validation for the other two datasets. For SFCM,
SDTR, TBoost, simpleMKL and SVM-y?2, multiple features are
concatenated to form a larger feature vector. For MFCU and
SVM-2K, multiple features have been learnt separately. Be-
sides accuracy, mean average precision (MAP) is used as an-
other metric for evaluations in the experiments.

C. Experimental Results

Extensive experiments have been conducted upon three
datasets in three rounds. The proposed method has been
evaluated and compared with others by two measurements.
Specifically, we firstly compare the proposed method to those
other approaches that only apply a single type of feature. Ex-
cept for our multiple feature learning approach, each compared
method has been performed with both the SIFT and MoSIFT
features separately, and their results have been compared in
Fig. 1. Note that SVM-2K is not compared here because it
leverages two different features simultaneously. Next, com-
parisons are made among all approaches that apply multiple
features and the results, in terms of average accuracy and
mean average precision, are given in Tables I and II. Lastly,
the impact of shared structure analysis in the framework and
the convergence demonstration are shown in Figs. 4 and 2,
respectively.

From Fig. 1, it is observed that MFCU outperforms other ap-
proaches that only use one type of feature. This demonstrates
that using multiple features is beneficial. In terms of average
accuracy and mean average precision, our method is consis-
tently the best on both the choreographed data (KTH) and the
real-world data (Youtube and UCF50). MFCU achieves much
better results especially when only a few labeled training data
are available. In the case of 1 x ¢ (one labeled data per class)
for the KTH dataset, for example, the accuracy and MAP of
our approach score at 58.24% and 49.93% respectively, which
are about two times higher than those of TBoost, SVM-y? and
SDTR. Compared to the second best competitor, SFCM, our
multiple feature learning algorithm still has significant advan-
tages in both accuracy and MAP.

When g, (D, — D, XTN7'X,D,) + g2l in (11), 2 should be
no less than the absolute value of the smallest eigenvalue of py (D, —
D, XTN7'X,D,) + p2I to guarantee the quadratic form of F, is positive
semi-definite.
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Fig. 1. Performance comparisons on the three datasets «.r.2. different numbers of labeled training data. Note that each compared method has been conducted using
both STIP and MoSIFT features. For example, SVM-x2-S and SVM-x“-M denote SVM with the x? kernel applies the STIP and MoSIFT features respectively.

TABLE I

PERFORMANCE COMPARISON (ACCURACY)

SVM2K

SVM-x?

TBoost

Ours

0.5451 £ 0.0491
0.6447 £ 0.0457
0.7087 £ 0.0167
0.7731 £ 0.0229
0.8065 + 0.0349

0.3122 £ 0.0526
0.5228 + 0.0399
0.6656 £ 0.0285
0.7578 £ 0.0383
0.8269 + 0.0207

0.2572 + 0.0248
0.4014 + 0.0601
0.5745 + 0.0569
0.6889 + 0.0606
0.7620 + 0.0162

0.5824 + 0.0373
0.6614 + 0.0379
0.7271 + 0.0150
0.7838 + 0.0211
0.8440 + 0.0115

0.2789 £ 0.0318
0.4097 £ 0.0210
0.5011 £ 0.0319
0.6023 £ 0.0335
0.6722 4+ 0.0122

0.2405 £ 0.0366
0.3348 £+ 0.0188
0.4292 £ 0.0161
0.5333 £ 0.0259
0.5860 + 0.0124

0.1498 + 0.0279
0.2392 + 0.0332
0.2627 + 0.0148
0.3019 £+ 0.0175
0.3468 + 0.0210

0.3383 + 0.0278
0.4634 + 0.0185
0.5308 + 0.0346
0.6142 + 0.0113
0.6941 + 0.0162

SDTR simpleMKL SFCM(Early Fusion)

1 X ¢ 02978 £ 0.0468 | 0.4737 £+ 0.0833 | 0.5639 £ 0.0349

3 X ¢ [0.5518 £ 0.0565|0.6204 £ 0.0662 | 0.6563 4+ 0.0304

KTH | 5 X ¢ [0.6607 4+ 0.0175]0.7092 &+ 0.0072 | 0.7198 + 0.0223
10 X ¢|0.7557 £ 0.0423 | 0.7590 £ 0.0366 | 0.7768 £ 0.0263

15 X ¢[0.7766 £ 0.0554|0.7914 £ 0.0242 | 0.8324 4+ 0.0260

1 X ¢ [0.2262 £ 0.0296 | 0.2400 £+ 0.0125| 0.2924 £ 0.0355

3 X ¢ [0.3442 £ 0.0266 | 0.3261 £ 0.0257 | 0.3898 4+ 0.0220

Youtube| 5 X ¢ |0.4227 £ 0.0226 | 0.3928 £ 0.0288 | 0.4772 4+ 0.0184
10 X ¢|0.5447 £ 0.0140|0.5036 £ 0.0116| 0.5801 £ 0.0135

15 x ¢[0.6254 + 0.0137 | 0.5638 £ 0.0165| 0.6431 4+ 0.0153

1 X ¢ [0.1156 £ 0.0133]0.1638 £ 0.0116 | 0.2104 4+ 0.0195

3 X ¢ |0.2582 £ 0.0042 | 0.2889 £ 0.0109 | 0.3347 £ 0.0166

UCF50| 5 X ¢ [0.3346 4+ 0.0116 | 0.3749 £ 0.0105| 0.4503 £ 0.0064
10 x ¢|0.5307 £+ 0.0166 | 0.4700 £+ 0.0071 | 0.5407 £ 0.0120

15 X ¢|0.6318 £ 0.0059 | 0.5307 £ 0.0048 | 0.5965 £ 0.0035

0.2205 £ 0.0297
0.3649 £ 0.0104
0.4617 £ 0.0063
0.5629 £ 0.0036
0.6155 £+ 0.0139

0.1406 £+ 0.0179
0.2889 £ 0.0070
0.3851 £ 0.0106
0.5106 £+ 0.0173
0.5901 £ 0.0067

0.0890 + 0.0193
0.1517 £ 0.0051
0.1976 + 0.0087
0.2362 + 0.0112
0.2736 + 0.0093

0.2364 £ 0.0165
0.3708 + 0.0160
0.4780 + 0.0057
0.5878 + 0.0100
0.6464 + 0.0055

In Tables I and II, even though all approaches have used
two features, MFCU still performs better than all the compared
methods. Specifically, MFCU outperforms all fully supervised
methods (SVM2K, SVM-2, Tboost and simpleMKL). This is
because insufficient label information is unable to train a de-
cent classifier with supervised learning algorithms. By contrast,
our approach benefits from semi-supervised learning which can
utilize both labeled and unlabeled data. Compared with two
semi-supervised methods (SDTR and SFCM), improvements
are from different sources: 1. MFCU has a more sophisticated
fusion strategy than SFCM. In our late fusion strategy, local and
global consistency are considered together. In this way, gains
from feature fusion are augmented; 2. Compared with SDTR,
the shared structural learning and the ¢; ; -norm take advantage
in terms of feature correlation mining and noise handling. From

Tables I and II, it is also found that with the increase of la-
beled training samples, the performance of all algorithms rises.
Meanwhile, the performance differences between our method
and the others decrease on KTH. The differences, by contrast,
are noticeable on Youtube and UCF50. We thus conclude that
our method is robust for different kinds of data when the training
data number varies.

To validate our claim that the proposed iterative algorithm
monotonically decreases the objective function value in (4)
until convergence, experiments have been conducted on all the
datasets. The number of labeled training samples is set to 15 X ¢
for each dataset and the parameters are set to the median value
of the tuned range. The results in Fig. 2 demonstrate by using
Algorithm 1 that the objective function value monotonically
decreases and converges after only a few iterations.
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TABLE 11
PERFORMANCE COMPARISON (MAP)

SDTR

simpleMKL

SFCM

SVM2K

SVM-x?

TBoost

Ours

KTH

1Xxec
3Xc
5Xc¢
10 x ¢
15X ¢

0.2764 £ 0.0326
0.4648 £ 0.0480
0.5657 + 0.0129
0.6634 + 0.0436
0.6908 + 0.0650

0.3965 £ 0.0659
0.5114 £ 0.0646
0.6022 £+ 0.0117
0.6625 £ 0.0426
0.7104 £ 0.0265

0.4735 £ 0.0489
0.5447 £+ 0.0318
0.5998 + 0.0320
0.6635 £ 0.0302
0.7335 £+ 0.0119

0.4544 £ 0.0606
0.5523 £ 0.0491
0.6160 + 0.0343
0.6010 + 0.0223
0.6695 + 0.0652

0.2845 + 0.0377
0.4435 £+ 0.0408
0.5690 + 0.0275
0.6633 + 0.0434
0.7492 + 0.0189

0.2307 £+ 0.0135
0.3734 £ 0.0510
0.4915 £ 0.0640
0.5774 £+ 0.0681
0.6617 £ 0.0143

0.4993 £ 0.0547
0.5623 + 0.0366
0.6167 + 0.0217
0.6860 + 0.0251
0.7512 £ 0.0068

Youtube

1Xxec
3 Xec
5Xec
10X ¢
15X ¢

0.2145 £+ 0.0167
0.2855 + 0.0180
0.3443 + 0.0128
0.4289 + 0.0190
0.4863 + 0.0113

0.2229 + 0.0181
0.2680 £ 0.0169
0.2974 £ 0.0365
0.3748 £ 0.0129
0.4251 £ 0.0227

0.2423 £+ 0.0148
0.3171 £+ 0.0216
0.3643 £ 0.0214
0.4492 + 0.0233
0.5034 £+ 0.0133

0.2458 £+ 0.0289
0.3226 + 0.0284
0.3788 + 0.0245
0.4693 + 0.0339
0.5264 + 0.0136

0.2191 £ 0.0174
0.2844 + 0.0104
0.3305 £+ 0.0144
0.4066 + 0.0230
0.4452 + 0.0112

0.1747 £+ 0.0072
0.2093 + 0.0251
0.2134 £ 0.0042
0.2416 £+ 0.0173
0.2706 + 0.0162

0.2631 £ 0.0211
0.3557 £ 0.0223
0.3950 £ 0.0341
0.4916 + 0.0189
0.5387 + 0.0149

UCF50

1Xxec
3 Xec
5Xec
10 x ¢
15X ¢

0.0844 £ 0.0087
0.1704 + 0.0016
0.2228 + 0.0105
0.3789 £ 0.0172
0.4393 £+ 0.0039

0.0996 + 0.0083
0.1617 £+ 0.0133
0.2126 £ 0.0096
0.2789 £ 0.0086
0.3288 £ 0.0034

0.1117 £+ 0.0126
0.1892 £+ 0.0112
0.2671 £ 0.0040
0.3595 £ 0.0102
0.4204 £ 0.0085

0.1202 £+ 0.0184
0.2008 + 0.0096
0.2758 + 0.0093
0.3755 + 0.0138
0.4410 £+ 0.0138

0.0913 £ 0.0144
0.1749 £ 0.0043
0.2439 £ 0.0065
0.3357 £ 0.0145
0.4100 £+ 0.0070

0.0649 £ 0.0079
0.0911 £ 0.0025
0.1139 + 0.0051
0.1321 £ 0.0042
0.1451 + 0.0039

0.1341 £ 0.0100
0.2166 + 0.0145
0.2961 £ 0.0091
0.3935 £ 0.0127
0.4582 + 0.0083

2350 1570

18004 1320+

% 1070+
1250+

o]
N
o

7004

o
J
o

Objective Function Value
Objective Function Value

150

w
N
o

13800+

11300+

8800

6300

3800

Objective Function Value

1300+

2 4 6 8 10 12 14
Iteration Times

(a)

T T T

16 2 4 6

Fig. 2.

I | —#— Ly -norm

0.8 ——— : ;

0.2 :

1xc 3xc 5xc 10xc 15xc
Number of labeled training data

Fig. 3. Performance comparison between £ 1 -norm and F-norm.

To investigate the impact of the £; ;-norm in the framework,
performance comparisons between using the £ ;-norm and re-
moving it (substituted by F-norm) on the Youtube action dataset
have been made. The results in Fig. 3 show that improvements
are gained when using the ¢3 ;-norm for all different numbers
of labeled training data. The results in Fig. 4 verify that our al-
gorithm benefits from shared structural analysis. The real-world
video dataset, Youtube, is taken as an example to demonstrate
the impact of shared structure learning. We fix o and p1 at their
optimal values, i.e. 10° and 10? respectively for 10 x c labeled
training data. It can be seen that as /3 varies from 10~2 to 10, the
accuracy increases accordingly and reaches to the peak value
when 3 = 10. Note that, a larger J means a larger propor-
tion of shared structural consideration in the holistic framework,
and vice versa. When = 0, no shared structure is utilized in
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The convergence curves of the objective function values in (4) by using algorithm 1 on the three datasets.
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Fig. 4. The variation of accuracy «:.r.t. the parameter 3 with fixed < and ¢, .

the framework. The results demonstrate that appropriately ex-
ploiting subspace shared by low-level features can further im-
prove the performance. Specifically, when the number of la-
beled training data is 10 X ¢ (the Youtube action dataset), the
extra improvement from the shared structural learning is 1.0%,
while the difference between using the £ ; -norm and removing
it, is 1.5%. Overall, the combination of graph-based semi-su-
pervised learning, the #; ;-norm and shared structural analysis
has integrally contributed to the performance boosting of our
method.

D. Discussion

From the experimental results, this proposed approach, in
which multi-feature learning is integrated in a graph-based
semi-supervised framework, performs action recognition
better than all the compared methods particularly when la-
beled training samples are insufficient. However, it is still
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worth noting the following facts: 1. Though the #2;-norm
loss function improves performances by handling noises, its
optimization requires an iterative algorithm which is more
expensive than the F-norm loss function. When efficiency is
a concern, the F-norm can be a substitution of the £o;-norm
in our proposed framework; 2. As indicated in [39], improved
performance is not guaranteed through exploiting unlabeled
data when a manifold assumption does not hold. Additionally,
complementary relationships between different features may
result in performance fluctuations.

V. CONCLUSION

In this paper, we have proposed an approach that exploits
multiple features to categorize human action videos by ex-
ploring the correlations between different visual words. Firstly,
the proposed method simultaneously discovers the intrinsic
relations between visual words in a low-dimensional subspace
to improve the performance of the holistic classification based
on each feature type. Secondly, the #5;-norm is applied to
make the framework robust for noises and outliers. Thirdly,
two assumptions have been utilized in the framework: 1) the
label prediction should be consistent with the ground truth
for each feature type; 2) the label prediction for each feature
type should also be consistent with the global prediction using
multiple features. Finally, the framework has been extended to
semi-supervised exploiting both labeled and unlabeled videos.
The framework for action video annotation has been evaluated
on three datasets including both the choreographed and the
realistic data. The experimental results show that our approach
outperforms all the compared algorithms. The advantage is
especially visible when the amount of labeled training data is
quite small.
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