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1 SUMMARY 

This report documents the work performed for the project entitled “Relative Motion Modeling and 
Autonomous Navigation Accuracy” being performed at Texas A&M University under contract to 
the Air Force Research Laboratory. The PIs of this project are Drs. Kyle T. Alfriend and Srinivas 
R. Vadali. 

The objectives of this project are:  

 To develop a methodology for determining the required accuracy of the dynamic model
based on system requirements, the relative navigation accuracy and thruster accuracy.

 To extend the Gim-Alfriend state transition matrix (GA-STM) for relative motion to
include non-conservative forces and the effect of higher order gravitational terms on the
mean motion.

 Validate the developed models using numerical simulation.

In current practice, the dynamical model in a spacecraft navigation algorithm is often set ad hoc 
without explicit regard for the level of measurement, guidance, or control errors expected. The 
dynamic model for the relative motion of two satellites should be consistent with the accuracy of 
the relative navigation system and the control system, otherwise fuel will be wasted or unnecessary 
computation will be performed. For example, including more perturbations in the relative motion 
dynamic model that improve the predicted motion over a few orbits by a few centimeters provides 
no real improvement if the relative navigation accuracy is no better than 10’s of centimeters. The 
purpose here is to develop a methodology that would simplify the workflow of designing 
navigation systems so that the trade space between navigation system parameters and dynamical 
model fidelity could be quickly surveyed in lieu of performing massive numerical simulations for 
numerous scenarios and system parameter variations. First, the cost of a particular dynamical 
model within the navigation algorithm was expressed as a combination of the computation cost 
and the maneuver impulse, ∆v, cost to rectify the expected state error. A confidence value 
accompanies the ∆v cost through its Mahalanobis distance with respect to the state estimate 
uncertainty. Then two methods are introduced to reduce the cost computation burden. First, the 
state transition matrices of different dynamical models were approximated as functions of the time 
derivatives of the kinematic states. Then, a simplified form of the linear sensitivity of maximum a 
posteriori state estimates with respect to errors in the state transition matrix was derived. The 
accuracy of these approximations is deemed sufficient through a Monte Carlo simulation for a 
wide range of formation geometries in low Earth orbit. 

The GA-STM was the first development to include the effect of the absolute and differential effects 
of the equatorial bulge term, J2, in the linearized equations for the relative motion of satellites. The 
second objective of this project is to improve the dynamic modeling of the relative motion by 
adding the effects of higher order gravitational perturbations, lunar-solar effects perturbations, and 
the non-conservative perturbations to the GA-STM. This has been achieved. The accuracy of the 
expanded GA-STM was evaluated using numerical simulations with the Goddard General Mission 
Analysis Tool (GMAT).   
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The results show that 

 Including the effects of the higher order geopotential short period effects on the calculation 
of the relative initial conditions reduces the secular drift. The 2

2J  effects are the most 

dominant. 
 Including the secular and long period effects of the lunar perturbations on the relative 

motion of high altitude satellites, e.g., geosynchronous, is important.   
 The use of an exponential density model for the relative, not necessarily the absolute 

motion of the Chief or reference satellite, improves the accuracy of the relative motion.  

Other developments are 

 The evaluation of using other variables, such as Hoots variables, for the relative motion, 
and 

 A generalized formulation for computing the effects of higher order geopotential terms on 
the relative motion. 

The results of this program will improve the precise maintenance of satellite formations and 
provide an approach for selecting the appropriate dynamic model used for the type of relative 
motion mission. This will save costs in the analysis and formation design, and in the development 
of on-board software because the dynamic model will be consistent with the required performance 
and relative navigation system. 
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2 INTRODUCTION 

Accurate analytic modeling of inter-satellite relative motion is indispensable for fast and reliable 
prediction, fuel-efficient formation maintenance, space situational awareness, and proximity 
operations. In contrast to numerical propagation, analytic or semi-analytic solutions not only effect 
faster long-term propagation of the system states, but also provide valuable insight for mission 
analysis and parametric studies. One of the main challenges underlying the development of a 
satellite relative motion theory for low and medium Earth orbits is the modeling of the effect of 
nonspherical Earth gravity and other perturbations such as differential drag, third-body gravitation 
and solar radiation pressure.  For guidance, control, and navigation, the analytical model in the 
form of a state transition matrix (STM) is most desirable. In addition, the sensing or navigation 
modules of spacecraft use estimation theory to provide estimates of states, which are derived from 
Kalman filters.  The complexity of the dynamic model implemented in a Kalman filter to estimate 
the relative motion of two satellites should be consistent with the accuracy of the relative 
navigation system and the control system, otherwise fuel will be wasted or unnecessary 
computation will be performed. For example, including more perturbations in the relative motion 
dynamic model that improve the predicted motion over a few orbits by a few centimeters provides 
no real improvement if the relative navigation accuracy is no better than 10’s of centimeters. 

This report presents work performed to address the two main issues raised above.   

2.1 Objective 

The objectives of this project are: 

1. To extend GA-STM [1] for relative motion to include non-conservative forces and the 
effect of higher order gravitational terms. 

2. To develop a methodology for determining the required accuracy of the dynamic model 
based on system requirements, the relative navigation accuracy and thruster accuracy. 

3. Validate the developed models using the GMAT [2]. 

2.2 Tasks 

The tasks undertaken under this contract are:  

1. Dynamic Model for Earth gravitational perturbation: This task extends the GA-STM to 
include the mean and periodic effects of the higher order Earth gravitational perturbations, 
i.e., the zonal and tesseral harmonics.   

2. Dynamic Model Expansion to include non-Earth gravitational perturbations: Inclusion of 
differential drag, luni-solar third body, and solar radiation pressure perturbations. 

3. A method to determine consistency between the dynamic model, navigation accuracy and 
thruster accuracy. 
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2.3 Organization of the Report  

Section 3 of the report presents the methods, assumptions, and procedures used.  Section 3.1 of the 
report presents the research undertaken to develop an extended GA-STM for Earth gravitational 
perturbations.  Section 3.2 of the report includes the development of the STM for non-Earth 
gravitational effects.  The analysis and the development of a method to determine consistency 
between the dynamic model, navigation accuracy and thruster Accuracy is presented in Section 
3.3. Section 4 presents the results and discussion. The report concludes with recommendations for 
future research, the subject of Section 5.  
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3 METHODS, ASSUMPTIONS, AND PROCEDURES 

3.1 Dynamical Model for Earth Gravitational Perturbations 

This section presents the development of relative motion theories to model zonal and tesseral 
harmonics.  The principal tool used for developing analytical satellite theories is the method of 
averaging, either by formal perturbation theories [3, 4] or the perturbation approach of Kaula [5].  
Lie-series based approaches can be used to determine long period and short period effects that 
are closed form in eccentricity (at least for the zonals) and the algorithm is extendable to 
compute effects up to any order. In contrast, Kaula’s approach produces compact expressions for 
first-order short period effects due to the zonals and tesserals using eccentricity functions, which 
involve infinite-series in eccentricity. These methods and their applications are discussed briefly 
in the following subsections.  

3.1.1 Principles of Averaging  

The principles of averaging, as applied to satellite theory, are illustrated by using the zonal 
harmonics expansion of the geopotential. For the zonal problem, the geopotential in terms of 
spherical harmonics can be expressed as 

(1) 

The symbols ݎ, ߶, ܴ௘, ,ߤ  and ௡ܲ represent the satellite radius, its geocentric latitude, radius of	௡ܬ
Earth, gravitational parameter, zonal geopotential coefficients, and the Legendre polynomial of 
the nth degree, respectively. The corresponding Hamiltonian can be expressed as a power series 
in ܬଶ using a combination of Delaunay and classical orbital elements. The Delaunay and classical 

elements are related: 2 / , 1 , cos ,  ,  , and L a G L e H G i l M g h         . 

3.1.1.1 Deprit’s Method 

The Hamiltonian for the complete zonal problem can be written as 

(2) 

where 
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The above Hamiltonian ܪ for the complete zonal problem can be normalized using Deprit’s Lie-
transform based canonical perturbation method. This approach works by separating the secular 
and periodic effects with the help of two successive Delaunay normalizations of the gravitational 
potential. The first normalization averages out the short period terms containing mean anomaly, 
݈, and produces a short period generating function. The resulting singly-averaged Hamiltonian 
includes long period as well as secular terms. The second normalization is necessary to separate 
the long period terms containing the argument of perigee angle, ݃, to produce a doubly-averaged 
Hamiltonian (or Kamiltonian) consisting of only the secular terms. The Lie-transform based 
perturbation equations up to third-order used for separating the secular and periodic effects can 
be written as 

where  ܭ଴, ܭଵ, ܭଶ, and ܭଷ are the Kamiltonians of successive orders and similarly, ଵܹ, ଶܹ, and 
ଷܹ are the generating functions of successive orders. The parentheses represent the Poisson 

brackets, which are evaluated in terms of the canonical Delaunay element set D = 
[݈, ݃, ݄, ,ܮ ,ܩ  up to	up to order 3 and the generating function, ܹ, ,ܭ ,The total Kamiltonian .[ܪ
order 2 are respectively,  

 Because ܬଶ is considered as the only first-order perturbation, the first-order Kamiltonian ܭଵ and 
short-period generating function ଵܹ obtained during the first normalization of ܪ, have no 
contributions from the other zonals. The second-order perturbations in ܪଶ appear for the first 
time at the second order in the perturbation equations and involves computation of Poisson 
brackets only at the third-order. As a result, the second-order contributions ܭଶ,௡ to the total 

(3)

(4)
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Kamiltonian ܭଶ and ଶܹ,௡ to the total short-period generating function ଶܹ due to any zonal 
harmonic ܬ௡ (n ≥ 3) can be computed as 

The subscript ݌ of the integral sign indicates that the integration is performed for the periodic 
part of the integrand only, i.e., terms involving cosine and sine functions of true or mean 
anomaly. By making use of definition of the perturbing potential, the above integrals can be 
written as 

(6) 

The above integrals can be computed in closed form for an arbitrary zonal to produce 
expressions for the single-averaged Hamiltonian and short period generating function. A similar 
procedure can be used to perform the second normalization to average out the long-period terms 
dependent on the perigee angle, ݃, to derive the long period generating function. Once the 
expressions for averaged Hamiltonian and generating functions are available, the secular as well 
as periodic effects on a satellite due to these perturbations can be easily computed. The secular 
variations of the orbital elements can be derived using Hamilton’s canonical equations, which 
propagates the mean elements, ࣟ௠ in time using the singly or doubly-averaged Hamiltonian. The 
periodic contributions to the mean elements up to second-order can be computed using the 
following near-identity transformation to get the osculating elements, ࣟ௢: 

ࣟ௢ ൌ ࣟ௠ ൅ ,ଶሺࣟ௠ܬ ଵܹሻ ൅
ଶܬ
ଶ

2!
ቀ൫ሺࣟ௠, ଵܹሻ, ଵܹ൯ ൅ ሺࣟ௠, ଶܹሻቁ ൅ ܱሺܬଶ

ଷሻ (7) 

3.1.1.2 Kaula’s method 

Kaula’s approach [4] treats the full geopotential expansion, including zonal and tesseral harmonics. 
The potential is expressed in terms of the classical elements as 

											ܷ ൌ ఓ

௥
൅ ∑ ∑ ∑ ∑ ఓ

௔
ቀோ೐
௔
ቁ
௟
௟௠௣ሺ݅ሻஶܨ

௤ୀିஶ
௟
௣ୀ଴

௟
௠ୀ଴

ஶ
௟ୀଶ ௟௣௤ሺ݁ሻܩ ௟ܵ௠௣௤ሺ߱,ܯ, Ω,      ௌ்ሻ           (8)ீߠ

(5)



Approved for public release; distribution is unlimited. 
8

The S functions contain the gravitational coefficients and the F and G functions are the inclination 
and eccentricity functions, respectively, and   

ܵ ൌ
௟௠ܥ cos Θ ൅ ௟ܵ௠ sinΘ ,		if	ሺ݈ െ ݉ሻ	even
െ ௟ܵ௠ cos Θ ൅ ௟௠ܥ sinΘ ,		if	ሺ݈ െ ݉ሻ	odd	 (9) 

where 

               Θ ൌ Θ௟௠௣௤ ൌ ሺ݈ െ ሻ߱݌2 ൅ ሺ݈ െ ݌2 ൅ ܯሻݍ ൅݉ሺΩ െ ௌ்ሻீߠ

where l is the zonal degree, m is the tesseral order, p is the index of inclination function F, q 
is  the power of the eccentricity function G and ீߠௌ் is the Greenwich Sidereal Time. 
Explicit forms of the F and G functions have been tabulated in Kaula [5]. The averaged 
Hamiltonian for J2 is obtained by setting in Eq. (8),   ݈ ൌ 2,݉ ൌ 0, ݌ ൌ 1, ݍ ൌ 0	and the 
averaged Hamiltonian for J4 is the potential when	݈ ൌ 4,݉ ൌ 0, ݌ ൌ 2, ݍ ൌ 0. 

Kaula’s linear solutions are useful for modeling short period corrections to the classical orbital 
elements, especially for orbits of small eccentricity. The series expansions in the G functions can 
be truncated at a suitable order for small eccentricities.  According Kaula’s theory [5], the first 
approximations to the perturbations of the orbital elements or the solutions of the Lagrange 
planetary equations for the geopotential model are expressed as 

Δܽ௟௠௣௤ ൌ 2 ఓோ೐
೗

௡௔೗శమ஀ሶ
௟௣௤ሺ݈ܩ௟௠௣ܨ െ ݌2 ൅ ሻݍ ௟ܵ௠௣௤ (10)

Δ݁௟௠௣௤ ൌ
ఓோ೐

೗

௡௔೗శయ௘஀ሶ
ሺ݈ߟ௟௣௤ሾܩ௟௠௣ܨ െ ݌2 ൅ ሻݍ െ ሺ݈ െ ሻሿ݌2 ௟ܵ௠௣௤ (11)     

Δ݅௟௠௣௤ ൌ
ఓோ೐

೗

௡௔೗శయఎ ୱ୧୬ ௜஀ሶ
௟௣௤ሾሺ݈ܩ௟௠௣ܨ െ ሻ݌2 cos ݅ െ ݉ሿ ௟ܵ௠௣௤ (12)    

Δ߱௟௠௣௤ ൌ
ఓோ೐

೗

௡௔೗శయ஀ሶ
௟௠௣ܨሾ݁ିଵߟ

డீ೗೛೜
డ௘

െ cot ݅
డி೗೘೛

డ௜
௟௣௤ሿܵ௟̅௠௣௤ܩ (13) 

ΔΩ௟௠௣௤ ൌ
ఓோ೐

೗

௡௔೗శయఎ ୱ୧୬ ௜஀ሶ
డி೗೘೛

డ௜
௟௣௤ܵ௟̅௠௣௤ܩ (14) 

Δܯ௟௠௣௤ ൌ
ఓோ೐

೗

௡௔೗శయ஀ሶ
ሾെି݁ߟଵ

డீ೗೛೜
డ௘

൅ 2ሺ݈ ൅ 1ሻܩ௟௣௤ሿܨ௟௠௣ܵ௟̅௠௣௤ (15) 

For near circular orbits, Kaula’s solution to the J2 problem is obtained by setting q=0 and l-2p+q≠ 
0: 
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Δܽ௦௣ ൌ ∆ܽଶ଴଴଴ ൅ ∆ܽଶ଴ଶ଴ ൎ െ ଷ௃మோ೐మsinమ௜

ଶ௔
cos ߣ2 (16) 

Δ݅௦௣ ൌ ∆݅ଶ଴଴଴ ൅ ∆݅ଶ଴ଶ଴ ൎ െ ଷ௃మோ೐మ ୱ୧୬ ଶ௜

଼௔మ
cos 	ߣ2 (17) 

ΔΩ௦௣ ൌ ∆Ωଶ଴଴଴ ൅ ∆Ωଶ଴ଶ଴ ൎ െ ଷ௃మோ೐మ ୡ୭ୱ ௜

ସ௔మ
sin ߣ2 (18) 

3.1.2 The Gim-Alfriend State Transition Matrix 

An analytic satellite theory can be used to propagate multiple satellites using the results from the 
previous section. Relative motion between satellites can be discerned by differencing the orbital 
elements or the states of any two satellites in a formation. Even though this approach is 
reasonable and applicable to arbitrary formation sizes, the drawback is the computational time 
and the information exchange required. In addition, a direct analytic solution for the relative 
motion problem also benefits in formulating guidance and control algorithms for rendezvous and 
proximity operations. For formation control, especially for proximity operations, the differential 
orbital elements of a deputy can be represented as a first-order variation of the orbital elements 
of the reference or chief satellite. These differential orbital elements can be directly propagated 
in time in the presence of the gravitational perturbations using the differential perturbation 
effects. This approach originally used for computing the state transition matrix for the relative 
motion in the presence of  ܬଶ perturbation up to first-order, is known as GA-STM. It directly 
propagates in time the relative states of the deputy in a curvilinear frame attached to the chief.  

The GA-STM is composed of three different matrices: the geometric transformation matrix Σ, 
the relative mean-to-osculating transformation matrix ܦ, and the relative mean STM ߮. The 
relative mean STM propagates in time the relative mean elements of the deputy with respect to 
the chief, using the mean rates of the chief’s orbital elements. The relative mean orbital elements 
are then converted into the relative osculating elements when operated on by ܦ. Finally, the 
geometric transformation matrix transforms the relative osculating orbital elements into the 
curvilinear orbit frame. Using these three matrices, GA-STM, Φ, can be written as  

Φሺݐ, ଴ሻݐ ൌ Σሺݐሻܦሺݐሻ߶ሺݐ,  ଴ሻ (19)ݐ଴ሻΣିଵሺݐଵሺିܦ଴ሻݐ

where the propagation of the relative position and velocity states in the curvilinear coordinate 
system is achieved from time ݐ଴ to ݐ. 

3.1.2.1 The Geometric Transformation Matrix 

The geometric transformation matrix converts the relative orbital elements into the relative 
position and velocity states in the curvilinear orbit frame. The curvilinear frame is defined with 
respect to an imaginary circle with its origin at the chief and its radius taken as the geocentric 
radius of the chief. The relative position with respect to the chief can be defined in terms of three 
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coordinates: ݔ represents the difference in the radii of the two satellites, and ݕ and ݖ represent the 
curvilinear distances from the chief, along and normal to the imaginary circle, respectively. If ࢞ 
represents the relative states in the curvilinear frame and ∆ࢋ represents the relative orbital 
elements, then the geometric transformation matrix is defined as 

ሻݐሺ࢞ ൌ ΣሺݐሻΔࢋሺݐሻ (20) 

where ࢞ ൌ ሾݔ, ,ݕ ,ݖ ሶݔ , ሶݕ , ࢋሶሿ் and Δݖ ൌ ௗࢋ െ  and ܿ indicate the deputy and	௖. The subscripts ݀ࢋ
chief, respectively, and the boldface letters represent vectors. The geometric transformation 
matrix can be computed by taking the first variation of the chief’s radial distance and its 
direction cosine matrix. The first three rows of Σ represent the position equations and are given 
as follows [1]: 

ሾ࢞ሿ௖ ൌ ሾࢉࡾߜሿࢉ ൅ ௖௜ܥߜ௖௜ܥ
் ሾࡾ௖ሿ௖ (21) 

where	ሾࡾ௖ሿ௖ ൌ ሾܴ௖	0		0ሿ்,ሾ࢞ሿ௖ ൌ ሾݔ	ݕ	ݖሿࢀ, and ܥ௖௜ ൌ ܴଷሺ݂ ൅ ߱ሻܴଵሺ݅ሻܴଷሺΩሻ	. 

The notation ሾ	ሿ௖ represents a vector with components expressed in the chief’s orbital frame and 
the prefix δ represents the variation of the quantity. The symbol ܴ represents the simple rotation 
matrix, with the subscript specifying the type of rotation. In a similar fashion, the relative 
velocity of the deputy in the curvilinear frame can also be computed by making use of the 
transport equation: 

ሾ࢞ሶ ൅ ߸ ൈ ሿ௖࢞ ൌ ሾߜ ௖ܸሿ௖ ൅ ௖௜ܥߜ௖௜ܥ
் ሾࢂ௖ሿ௖ (22) 

where ሾࢉࢂሿ௖ ൌ ሾ ௥ܸ	 ௧ܸ		 ௡ܸሿ். The symbols, ௥ܸ, ௧ܸ, and ௡ܸ  represent the chief’s velocity 
components in the radial, tangential and normal directions, respectively. The symbol ߸ 
represents the angular velocity of the chief satellite, which can be expressed in terms of the 
osculating orbital elements as 

߸ ൌ ቈ
Ωሶ sin ݅

sinሺ݂ ൅ ߱ሻ
0

ඥ݌ߤ
ܴ௖ଶ

቉

்

(23) 

where 	Ωሶ ൌ ଵ

௡௔௕ ୱ୧୬ ௜

డோ೛
డ௜
				and		ܴ௣ ൌ   .ଵܪଶܬ

The symbols, ݌, ݊, and ܾ represent the parameter of the chief’s orbit, mean motion, and the 
semiminor axis, respectively. The symbol ܴ௣ represents the perturbing potential and is needed to 
compute the nodal angle rate. In the case of original GA-STM, ܴ௣ consists of ܬଶ effects only, 
however the effects due to an arbitrary zonal harmonic can be incorporated by including the 
corresponding perturbing potential in ܴ௣. The equations for relative position ࢞ and relative 
velocity ࢞ሶ  can be expressed in terms of the orbital elements. Expressions for the elements of Σ in 
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terms of nonsingular and equinoctial elements for the first-order ܬଶ problem are given in [1]. The 
inverse of Σ is required to transform the initial relative osculating states in the curvilinear frame 
to the relative osculating orbital elements; it can either be computed numerically or by reversion, 
using symbolic algebra.  

3.1.2.2 The Relative Mean-to-Osculating Transformation Matrix 

The matrix ܦ converts the relative mean elements into the relative osculating elements. It 
captures the short-period and long-period effects on the differential orbital elements and is 
defined as the Jacobian of the contact transformations as given in Eq. (7). The ܦ matrix can be 
computed using the following relations 

ܦ ൌ  ௅௉ (24)ܦௌ௉ܦ

where	ܦ௅௉ ൌ ቂడࣟಽು
డࣟ೘

ቃ and ܦௌ௉ ൌ ቂడࣟೄು
డࣟಽು

ቃ. 

In the above relations, the symbols ࣟ௠, ࣟ௢, ࣟ௅௉ represent the chief’s mean elements, the 
osculating elements and the elements with short-period effects averaged out, respectively. 

3.1.2.3 The Relative Mean STM 

The relative mean STM,߶, propagates in time the relative mean differential elements of the 
deputy relative to those of the chief. It models the secular effects on the differential mean 
elements by using the first-order variation of the mean rates of the chief. The following equations 
define the relative mean STM: 

߲ࣟ௠ሺݐሻ ൌ ߶ሺݐ,  ଴ሻ (25)ݐ଴ሻ߲ࣟ௠ሺݐ

where	߶ሺݐ, ଴ሻݐ ൌ
డࣟ೘ሺ௧ሻ

డࣟ೘ሺ௧బሻ
 and the symbols ࣟ௠ሺݐሻ and ࣟ௠ሺݐ଴ሻ represent the chief’s mean elements 

at time ݐ and initial time ݐ଴, respectively. 

3.1.3 Extended Relative Motion Model based on Nonsingular Elements  

The addition of the higher-order corrections to the orbit theory allows one to extend the 
capabilities of the GA-STM.  Brouwer’s theory [3] incorporates the secular, short periodic
long periodic effects J2, and the secular and long periodic effects of J2

2 and J3-J6.  For the 
geopotential, the magnitudes of J2

2 and the higher coefficients are of the same order. Thes
effects have been used to extend the GA-STM significantly.  In addition, the short period e
of J2

2 have also been incorporated. The nonsingular elements are: ሾܽ, ߣ ൌ ܯ ൅ ߱, ݅, ଵݍ ൌ
݁ cosሺ߱ሻ, ଶݍ ൌ 	݁ sinሺ߱ሻ , ݄ ൌ Ωሿ. 
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3.1.3.1 Short Period Terms due to J2
2 

Kinoshita [6], in his third-order theory, provides an expression for the short-periodic generating 
function of O( J2

2 ) valid for small eccentricity.  His expressions for the mean-osculating 
transformation can be simplified considerably by setting eccentricity to zero and retaining 
second-order accuracy.  These correction terms for the nonsingular elements are   

ଵݍ
௦௣ଶଶ ൌ

ଶܬ
ଶ

଼ܮ
ሾ൬െ

21
64

ଶ݅ݏ ൅
51
128

ସ൰݅ݏ cos ߣ5 ൅

ሺെ
9
16

൅
173
64

ଶ݅ݏ െ
449
128

ସሻ݅ݏ cos ߣ3 ൅ ሺ
81
16

െ
75
8
ଶ݅ݏ ൅

231
64

ସሻ݅ݏ cos  ሿ (26)ߣ

ଶݍ
௦௣ଶଶ ൌ

ଶܬ
ଶ

଼ܮ
ሾ൬െ

21
64

ଶ݅ݏ ൅
51
128

ସ൰݅ݏ sin ߣ5 ൅

ሺെ
9
16

൅
155
64

ଶ݅ݏ െ
395
128

ସሻ݅ݏ sin ߣ3 ൅ ሺ
63
16

െ
21
2
ଶ݅ݏ ൅

465
64

ସሻ݅ݏ sin  ሿ (27)ߣ

௦௣ଶଶߣ ൌ
ଶܬ
ଶ

଼ܮ
ሾ൬
9
32

െ
3
64

ଶ݅ݏ െ
39
64

ସ൰݅ݏ sin ߣ4 ൅൬െ
15
4
ଶ݅ݏ ൅

99
32 ݅ݏ

ସ൰ sin 2ߣሿ            (28) 

݄௦௣ଶଶ ൌ
ଶܬ
ଶ

଼ܮ
ܿ݅ሾ൬െ

9
32

െ
3
32

ଶ൰݅ݏ ݊݅ݏ ߣ4 ൅
9
8
ଶ݅ݏ ݊݅ݏ  ሿ (29)ߣ2

௦௣ଶଶܮ ൌ
ଶܬ
ଶ

଻ܮ
ሾ
15
64

ସ݅ݏ cos ߣ4 ൅൬
15
8
ଶ݅ݏ െ

27
8
ସ൰݅ݏ cos ߣ2

൅ ൬
9
8
െ
45
16

ଶ݅ݏ ൅
141
64

 ସ൰ሿ݅ݏ
(30) 

where ݅ݏ ൌ sin ݅, ܿ݅ ൌ cos ݅.	From these expressions, the corrections to the other elements are 

ܽ௦௣ଶଶ ൌ  ܽ√௦௣ଶଶܮ2

݅ௌ௉ଶଶ ൌ
௦௣ଶଶܮ

ܮ
cot ݅ 

ௌ௉ଶଶߠ ൌ ௦௣ଶଶߣ ൅ ଵݍ2
௦௣ଶଶ sin ߣ െ ଶݍ2

௦௣ଶଶ cos ߣ

(31) 
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3.1.3.2 STM with Kaula’s Theory for Zonal and Tesseral Harmonics   

Assuming small eccentricity, the Kaula’s corrections for the nonsingular elements are computed 
as [7]: 

Δܽ௟௠௣௤ ൌ 2 ఓோ೐
೗

௡௔೗శమΘሶ
௟௣௤ሺ݈ܩ௟௠௣ܨ െ ݌2 ൅ ሻݍ ௟ܵ௠௣௤ 

Δߣ௟௠௣௤ ൌ
ఓோ೐

೗

௡௔೗శయΘሶ
ܵ௟̅௠௣௤ ቂሾܨߟ௟௠௣

డீ೗೛೜
డ௘

ቀ ௘

ଵାఎ
ቁ െ cot ݅

డி೗೘೛

డ௜
ଵିߟ௟௣௤ܩ ൅

2ሺ݈ ൅ 1ሻܨ௟௠௣ܩ௟௣௤ቃ            

                Δ݅௟௠௣௤ ൌ
ఓோ೐

೗

௡௔೗శయఎ ୱ୧୬ ௜Θሶ
௟௣௤ሾሺ݈ܩ௟௠௣ܨ െ ሻ݌2 cos ݅ െ ݉ሿ ௟ܵ௠௣௤ 

                Δݍଵ௟௠௣௤ ൌ Δ݁௟௠௣௤ cos߱ െ ሺ݁Δ߱ሻ௟௠௣௤ sin߱

               Δݍଶ௟௠௣௤ ൌ Δ݁௟௠௣௤ sin߱ ൅ ሺ݁Δ߱ሻ௟௠௣௤ cos߱

              ΔΩ௟௠௣௤ ൌ
ఓோ೐

೗

௡௔೗శయఎ ୱ୧୬ ௜஀ሶ
డி೗೘೛

డ௜
௟௣௤ܵ௟̅௠௣௤ܩ

  (32) 

For the numerical example, gravity coefficients of the 20x20 gravity field are obtained from the 
JGM-2 Model.  The above equations are used to obtain the orbital elements of the chief and 
deputy, using their respective mean elements. The unit sphere approach is used to compute the 
relative motion variables in the local vertical local horizontal frame. Equivalent results from 
GMAT are also obtained for the 20x20 gravity field.  

3.1.4 STM for the Complete Zonal Perturbation Problem 

The nonspherical gravitational problem, including all the zonal harmonics is referred to as the 
complete zonal problem. This subsection describes in brief the methodology for deriving the 
STM for satellite relative motion that includes the perturbation effects, closed-form in 
eccentricity, due to zonal harmonics up to an arbitrary degree. The secular as well as the periodic 
effects up to second-order of any zonal harmonic on the orbital elements of a satellite are 
modeled using the Deprit’s method. By making use of the GA-STM framework described in the 
previous subsection, these effects were then incorporated into a STM solution for the relative 
motion problem. Secular or mean rates up to 3rd order, long-period and short-period effects up to 
2nd order for two different sets of orbital elements have been computed: the nonsingular set 
(nonsingular for zero eccentricity) and the equinoctial set. The nonsingular set is singular for 
equatorial orbits, but the equinoctial element set is completely nonsingular for equatorial and 
circular orbits. It is noted that the expressions for secular and periodic variations of the 
equinoctial elements are significantly larger than those for the nonsingular set.  

A complete second-order analytic solution for an artificial satellite as well as a STM for relative 
motion incorporating the perturbation effects due to ܬଶ െ  ଺ has been computed for theܬ
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nonsingular element set [9]. Even for nonsingular elements, the expressions for secular and 
periodic effects, especially short-period effects at 2nd order, are too large and cumbersome for 
computations by hand. Therefore, the Maple symbolic algebra package was used to compute the 
STM in terms of nonsingular element sets. Because of the use of nonsingular elements, this 
version of relative motion STM has singularities for reference orbits that lie in the equatorial 
plane. Additionally, extending this STM beyond ܬ଺ by computing expressions explicitly for each 
zonal proved to be a very time consuming and computer resource expensive process, even with 
the use of a symbolic algebra package. 

To address these limitations, a slightly different approach was used to compute the STM in terms 
of equinoctial elements. This approach extended the earlier work done by Saedeleer [8], in which 
generalized expressions for first-order averaged Hamiltonian and generating function for the 
short-period effects, closed form in eccentricity, due to an arbitrary zonal harmonic were given. 
These formulae were originally derived for the classical orbital elements. Using the Deprit’s 
method, generalized analytic formulae were derived for second-order secular and short-period 
and first-order long-period variations of the equinoctial elements due to an arbitrary zonal 
harmonic ܬ௡ (n ≥ 3). To derive the STM, analytic formulae for partial derivatives of the mean 
rates, short-period and long-period transformations with respect to equinoctial elements were 
also derived by hand. All these formulae are valid for any elliptic reference orbit without any 
singularities related to zero eccentricity or inclination values. Because ܬଶ causes the dominant 
effect, it is considered as a first-order perturbation while all the higher zonals as second-order 
perturbations. To validate the accuracy of the proposed STM, results were compared with direct 
numerical propagation using GMAT. The following subsection provides the analytic expressions 
for propagating a single satellite used to propagate the equinoctial elements of the chief. It is 
noted that the analytic propagation of the chief is needed to compute the STM for the relative 
motion. 

3.1.4.1 Secular Effects   

This subsection presents the secular effects on the equinoctial elements of an artificial satellite 
for the complete zonal problem. For any harmonic ܬ௡ (n ≥ 3), the generalized analytic formulae 
for second-order mean rates are provided here. For ܬଶ, the expressions for secular rates up to 
third-order are explicitly computed using Maple. By using the analytic formulae, the 
contributions to the secular effects due to the zonal harmonics ܬ௡ (n ≥ 3) can be conveniently 
added to the ܬଶ secular rates without having to go through the process of two Delaunay 
normalizations of the perturbing potential. In order to derive the secular effects due to an 
arbitrary zonal, the closed-form expression for the doubly-averaged Hamiltonian or Kamiltonian 
 ଶ,௡ is sought. Equation (6) provides the integrals necessary to be evaluated for findingܭ
expressions for ܭଶ,௡. Appendix A.1 provides helpful formulae for evaluating the integrals in Eq. 
(6).   

Using the expressions for ܭଶ,௡ , the formulae for the secular or mean rates of the orbital elements 
can be derived by using the Hamilton’s canonical equations. It is noted that the Equinoctial 
elements are not canonical. Therefore, the secular rates of the Delaunay elements are computed 
first, which can then be used to compute the rates of the Equinoctial elements. Using the 
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canonical equations of motion, the formulae for the mean rates of Delaunay elements ࣞ due to 
even harmonics are computed as follows: 

 (33)

where 

The total secular rates of the Delaunay elements, ࣞ, are found by adding the secular rates due to 
ଶ, ௃ࣞమܬ , to the contributions of the higher degree zonal harmonics, ࣞ௡,from the above formulae, 
as shown below: 

(34) 

The Equinoctial elements (a , ݁, and	݅ represent the three classical orbital elements: semimajor 
axis, eccentricity and inclination, respectively.) are 
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(35) 

The Equinoctial elements of the reference satellite can be propagated from the initial time ݐ଴ to 
time ݐ as follows: 

(36) 

3.1.4.2 Short Period Effects 

Using the expansion formulae given in Appendix A.1, the analytic expression for the second-
order short-period generating function	 ଶܹ,௡, closed form in eccentricity, corresponding to an 
arbitrary zonal ܬ௡ (n ≥ 3) can be computed from Eq. (6). This expression for ଶܹ,௡ can be written 
succinctly as: 

where 

 (38)

   (37) 
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 (39)

 (40)

 (41)

 (42)

In the above equations, the square-bracketed terms applies for odd harmonics and ܿ ൌ ݊ െ 2݆ െ
 ≤ ௡ (nܬ The formulae for second-order short period contributions due to any zonal harmonic .݌2
3) can now be derived by evaluating the Poisson brackets with equinoctial elements. The
formulae for these short-period contributions are derived by hand in this work and are given as 
below: 

 (43)
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 (44)

 (45)

 (46)

 (47)

 (48)
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In the above equations, frequently occurring expressions are replaced by defining new terms to 
save space. The definition of these terms are provided in Appendix A.2. The expressions for 
short-period corrections up to second-order due to ܬଶ are computed explicitly by using the Maple 
software. The osculating equinoctial elements ࣟ௢ can be computed by using the following near-
identity transformations:  

In the above equations, ଵܹ
ௌ௉ represents the first-order generating function due to ܬଶ and ଶܹ

ௌ௉ 
represents the complete second-order generating function due to ܬଶ and higher zonals. The 
second of the above equations is the inverse near-identity transformation. 

3.1.4.3 Long Period Effects   

Once short-period effects are averaged out, a second Delaunay normalization of the singly-
averaged Hamiltonian is required to compute the long-period generating function. Since the 
long-period generating function is not a function of ݈, the perturbation equations given in Eq. (3) 
simplify because the first Poisson bracket involving ܪ଴ vanishes. As a result, the first-order long-
period generating function ଵܹ

௅௉ can be computed using the following second-order perturbation 
equation 

In the above equation, ܪଶ represents the second-order singly-averaged Hamiltonian that includes 
long-period terms dependent on ݃ due to the zonals ܬ௡ (n ≥ 3), ܭଶ is the second-order 
Kamiltonian with only the secular terms. Because the ܬଶ potential has no long-period terms 
dependent on ݃, ܪଵ = ܭଵ. The Poisson bracket in the above equation can be evaluated to result in 
the following equation for ଵܹ,௡

௅௉ for an arbitrary zonal hamronic ܬ௡ (n ≥ 3). 

The subscript ݈݌ on the integral sign denotes the integration of the long-periodic terms of the 
integrand only. The first-order Kamiltonian ܭଵ has contributions from ܬଶ only and its value is 
given as [9]. 

  (49)

  (50)

  (51)

  (52)
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Substituting the above value for ܭଵ and the formulae for ܭଶ,௡, the formulae for the first-order 
long-period generating function for even zonal harmonics (n ≥ 3) can be written as  

where 

 (54)

 (55)

 (56)

 (57)

Using the above expression for the long-period generating function, the analytic formulae for the 
long-period effects due to any zonal harmonic ܬ௡ (n ≥ 3) can be computed by evaluating the 
Poisson brackets for the equinoctial elements. These formulae for the first-order long-period 
effects are derived and given as follows: 

(58) 

  (53)
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(59) 

(60) 

(61) 

(62) 

(63) 

It is noted that the order of terms in a product in the above equations must be preserved because 
of presence of the summation indices. The long-period effects can be added to the mean  
Equinoctial elements ࣟ௠ to compute Equinoctial elements with short-periods effects averaged 
out, ࣟ௅௉, using the following near-identity transformation up to second-order. 

  (64)
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3.1.4.4 STM for the Perturbed Relative Motion 

The perturbations effects computed in the previous subsections due to an arbitrary zonal 
harmonic ܬ௡ (n ≥ 3) were incorporated into the GA-STM framework by computing the partial 
derivatives of the formulae for mean rates, long-period and short-period effects with respect to 
the equinoctial elements. These analytic formulae for the partial derivatives are derived by hand 
and implemented in a MATLAB code, however they not included in this report to save space. 
The partial derivatives of the mean rates are incorporated into the differential mean STM, 
whereas the partial derivatives of the long-period and short-period formulae are used to update 
the ܦ௅௉ and ܦௌ௉ matrices of the GA-STM as defined in the previous subsections. To update the 
geometric transformation matrix given in Subsection 3.1.2.1, the chief’s nodal angle rate 
formulae must be updated to include the effects of higher zonals by using the following 
perturbing potential (This equation is not numbered.) 

ܴ௣ ൌ ଵܪଶܬ ൅
ଶܬ
ଶ

2!
ଶܪ

3.1.5 Gim-Alfriend State Transition Matrix in Terms of Hoots Elements 

This portion of the study reformulated the GA-STM for linearized satellite relative motion in 
terms of Hoots elements [10].  The Hoots elements are ݕଵ ൌ ଶݕ ,ݎ ൌ ሶݎ ଷݕ , ൌ ݎ ሶ݂, ݕସ ൌ
sin ݅ 2⁄ sin ହݕ ,ݑ ൌ sin ݅ 2⁄ cos ଺ݕ and ,ݑ ൌ ݑ ൅ ݄, where ݎ is the orbit radius, ݂ is the true 
anomaly, ݅ is the inclination, ݄ is the right ascension of the ascending node, ݑ ൌ ݂ ൅ ݃ is the 
argument of latitude, and ݃ is the argument of perigee.  The Hoots elements are completely 
nonsingular for all eccentricities and inclinations. 

3.1.5.1 Sensitivity Matrix ࡰ 

The sensitivity matrix ܦሺݐሻ is defined as ܦ ൌ ݕ߲ ൗ′′ݕ߲ , the Jacobian of the osculating elements 

with respect to the mean elements.  Considering the osculating elements as a vector of nonlinear 
functions of the mean elements, and expanding the elements for a deputy satellite as a Taylor 
series about the reference or chief satellite, yields the following:  

ሻݐௗሺݕ ൌ ሻݐ௖ሺݕ ൅
ݕ߲

′′ݕ߲
ቤ
௬ᇱᇱ೎

൬ݕ′′ௗሺݐሻ െ ሻ൰ݐ௖ሺ′′ݕ ൅⋯ 

This shows that ܦ can function as a linearized operator for relative motion, mapping the 
differences in mean Hoots elements into differential osculating Hoots elements:  

ሻݐሺݕߜ ൌ ሻݐሺܦ ቂݕ′′ௗሺݐሻ െ  ሻቃݐ௖ሺ′′ݕ

  (65)
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Importantly, this relationship can be inverted at the initial time, providing a way to convert the 
osculating initial conditions to mean relative initial conditions:   

଴ሻݐሺ′′ݕߜ ൌ ଴ሻݐଵሺିܦ ቂݕௗሺݐ଴ሻ െ  ଴ሻቃݐ௖ሺݕ

Given correction terms ݕ െ  from the mean-to-osculating transformation of a particular ′′ݕ

perturbation theory, we can compute the sensitivity matrix as ܦ ൌ ଺ൈ଺ܫ ൅
డቀ௬ି௬ᇱᇱቁ

డ௬ᇱᇱ
, where ܫ is the 

identity matrix.  If the perturbation theory uses successive transformations (for example, long-
period and short-period corrections), then we can apply the ܦ operators in succession:  

ܦ ൌ ௅௉ܦௌ௉ܦ ൌ
డ௬

డ௬ᇱ

డ௬ᇱ

డ௬ᇱᇱ
ൌ ቆܫ଺ൈ଺ ൅

డቀ௬ି௬ᇱቁ

డ௬ᇱ
ቇ ቆܫ଺ൈ଺ ൅

డቀ௬ᇱି௬ᇱᇱቁ

డ௬ᇱᇱ
ቇ  

It is possible to compute ܦ based on the first-order ܬଶ-only corrections from Hoots theory 
(equivalent to Brouwer theory, but with singularities removed and certain other improvements) 

as ܦ ൌ ଺ൈ଺ܫ ൅ ሺ௟௣ሻܦ ൅ ሺ௟௣ሻܦ ሺ௦௣ሻ, whereܦ ൌ
డቀ௬ᇱି௬ᇱᇱቁ

డ௬ᇱᇱ
ሺ௦௣ሻܦ , ൌ

డቀ௬ି௬ᇱቁ

డ௬ᇱ
, and the product 

′ݕ ଶ.  Once the correction termsܬ ሺ௟௣ሻ has been neglected as second-order inܦሺ௦௣ሻܦ െ ݕ and ′′ݕ െ

 ሺ௦௣ሻ is aܦ ሺ௟௣ሻ andܦ are expressed in terms of only the Hoots elements, forming matrices ′ݕ

straightforward matter of taking partial derivatives.  Note that using mean elements ݕ′′, rather 

than intermediate elements ݕ′, as inputs when computing ܦሺ௦௣ሻ would constitute yet another 

approximation, introducing error of second order in ܬଶ. 

3.1.5.2 Mean State Transition Matrix ࣐࢟ 

Considering the state ݕ′′ሺݐሻ as a vector function of the initial conditions, and expanding the state 

for a deputy satellite as a Taylor series about the chief, yields the following:  

ሻݐௗሺ′′ݕ ൌ ሻݐ௖ሺ′′ݕ ൅
ሻݐሺ′′ݕ߲

଴ሻݐሺ′′ݕ߲
ቤ
௬ᇱᇱ೎ሺ௧బሻ

൬ݕ′′ௗሺݐ଴ሻ െ ଴ሻ൰ݐ௖ሺ′′ݕ ൅ ⋯

or ݕߜ′′ሺݐሻ ൌ
డ௬ᇱᇱሺ௧ሻ

డ௬ᇱᇱሺ௧బሻ
ฬ
௬ᇱᇱ೎ሺ௧బሻ

଴ሻݐሺ′′ݕߜ ൅ ⋯ 
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This shows that ߮௬ሺݐ, ଴ሻݐ ൌ
డ௬ᇱᇱሺ௧ሻ

డ௬ᇱᇱሺ௧బሻ
ฬ
௬ᇱᇱ೎ሺ௧బሻ

 is the linearized relative state transition matrix 

(STM), so that (neglecting terms of second order in the relative coordinates) ݕߜ′′ሺݐሻ ൌ

߮௬ሺݐ,  ሻ with respect to the initial conditions isݐሺ′′ݕ ଴ሻ. Finding the partial derivatives ofݐሺ′′ݕߜ଴ሻݐ

most conveniently accomplished through a change of variables to a set of elements ݔ  :ݔଵ ൌ ܽ, 
ଶݔ ൌ ݁ sin ଷݔ ,݈ ൌ ݁ cos ସݔ ,݈ ൌ sin ݅ 2⁄ sin ହݔ ,݄ ൌ sin ݅ 2⁄ cos ݄, and ݔ଺ ൌ ݈ ൅ ݃ ൅ ݄, where ݁ is 
eccentricity and ݈ is mean anomaly.  Then we can say that  

ሻݐሺ′′ݕ߲

଴ሻݐሺ′′ݕ߲
ൌ
ሻݐሺ′′ݕ߲

ሻݐሺ′′ݔ߲
ሻݐሺ′′ݔ߲

଴ሻݐሺ′′ݔ߲
଴ሻݐሺ′′ݔ߲

଴ሻݐሺ′′ݕ߲
 

Hoots found the partial derivatives of ݕ with respect to ݔ , and these can be assembled into ࣤ ൌ
డ௬

డ௫
, the geometric transformation between the two sets, which has the same form whether 

computed using mean, intermediate, or osculating elements (i.e., 
డ௬ᇱᇱ

డ௫ᇱᇱ
ൌ

డ௬ᇱ

డ௫ᇱ
ൌ

డ௬

డ௫
).  The vector ݔ 

is expressed in terms of the initial conditions as  

ଵݔ
ᇱᇱሺ௧ሻ ൌ ଵݔ

ᇱᇱሺ௧బሻ

ଶݔ
ᇱᇱሺݐሻ ൌ ଶݔ

ᇱᇱሺݐ଴ሻ cosൣ൫݊ᇱᇱ ൅ ݈ሶ௣ᇱᇱ൯ሺݐ െ ଴ሻ൧ݐ ൅ ଷݔ
ᇱᇱሺݐ଴ሻ sinൣ൫݊ᇱᇱ ൅ ݈ሶ௣ᇱᇱ൯ሺݐ െ  ଴ሻ൧ݐ

ଷݔ
ᇱᇱሺݐሻ ൌ െݔଶ

ᇱᇱሺݐ଴ሻ sinൣ൫݊ᇱᇱ ൅ ݈ሶ௣ᇱᇱ൯ሺݐ െ ଴ሻ൧ݐ ൅ ଷݔ
ᇱᇱሺݐ଴ሻ cosൣ൫݊ᇱᇱ ൅ ݈ሶ௣ᇱᇱ൯ሺݐ െ  ଴ሻ൧ݐ

ସݔ
ᇱᇱሺݐሻ ൌ ସݔ

ᇱᇱሺݐ଴ሻ cosൣ ሶ݄ ௣ᇱᇱሺݐ െ ଴ሻ൧ݐ ൅ ହݔ
ᇱᇱሺݐ଴ሻ sinൣ ሶ݄ ௣ᇱᇱሺݐ െ  ଴ሻ൧ݐ

ହݔ
ᇱᇱሺݐሻ ൌ െݔସ

ᇱᇱሺݐ଴ሻ sinൣ ሶ݄ ௣ᇱᇱሺݐ െ ଴ሻ൧ݐ ൅ ହݔ
ᇱᇱሺݐ଴ሻ cosൣ ሶ݄ ௣ᇱᇱሺݐ െ  ଴ሻ൧ݐ

ሻݐ଺′′ሺݔ ൌ ଴ሻݐ଺′′ሺݔ ൅ ൫݊ᇱᇱ ൅ ݈ሶ௣ᇱᇱ ൅ ሶ݃௣ᇱᇱ ൅ ሶ݄
௣
ᇱᇱ൯ሺݐ െ  ଴ሻݐ
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where ݊ ൌ ඥߤ ܽଷ⁄  is the mean motion (so that ݊′′ ൌ ඥߤ ⁄଴ሻଷݐଵ′′ሺݔ ) and the subscript ݌ indicates 
the secular rates due to perturbations (which can be found from Brouwer theory [3]).  Let 

߮௫ሺݐ, ଴ሻݐ ൌ
డ௬ᇱᇱሺ௧ሻ

డ௬ᇱᇱሺ௧బሻ
.  Then

߮௬ሺݐ, ଴ሻݐ ൌ ࣤሺݐሻ߮௫ሺݐ, ଴ሻࣤݐ
ିଵሺݐ଴ሻ 

where all initial conditions are for the chief satellite. Note that ݔ and ߮௫ሺݐ,  ଴ሻ are nonlinearݐ

functions of the perturbed mean secular rates and will have to be re-derived to account for ܬଶ
ଶ or 

higher zonal harmonics. 

3.1.5.3 Relative Transformation Map ࢳ 

Reference [1] reports expressions for the spherical curvilinear coordinates of a deputy satellite’s 
relative position ݎሺݐሻ and velocity ݒሺݐሻ in terms of the chief’s osculating nonsingular elements 
ଵݍ ,݅ ,ݑ ,ܽ) ൌ ݁ cos ଶݍ ,݃ ൌ ݁ sin ݃, and ݄) and the deputy’s relative osculating nonsingular 
elements (ݍߜ ,݅ߜ ,ݑߜ ,ܽߜଵ, ݍߜଶ, and ݄ߜ).  These can be easily mapped into expressions in terms 
of chief and relative classical orbit elements using the variations, ݍߜଵ ൌ cos ݃ ݁ߜ െ ݁ sin݃  ,݃ߜ

ଶݍߜ ൌ sin݃ ݁ߜ ൅ ݁ cos ݃ ݑߜ ,݃ߜ ൌ ݃ߜ ൅ ݂ߜ and ,݂ߜ ൌ డ௙

డ௘
݁ߜ ൅ డ௙

డ௟
 ሻݐሺݒ Some terms in  .݈ߜ

depend on the perturbed rates of change in ݑ and ݄, which can be found from Gauss’s Variational 
Equations in terms of the perturbing acceleration vector due to the Earth’s gravitational zonal 
harmonics. The expressions for ݎሺݐሻ and ݒሺݐሻ can then be transformed into Hoots elements via 
the following relationships (all derived from the definitions of the Hoots elements given above):  

sin ݑ ൌ ௬ర
ୱ୧୬௜ ଶ⁄

, cos ݑ ൌ ௬ఱ
ୱ୧୬௜ ଶ⁄

, sin ݂ ൌ ௬మఎ

௡௔௘
, cos ݂ ൌ ଵ

௘
ቀ௔ఎ

మ

௬భ
െ 1ቁ, ܽ ൌ ௬భమ௬యమ

ఓఎమ
, sin ݅ 2⁄ ൌ

ඥݕସଶ ൅ ହଶ, and cosݕ ݅ 2⁄ ൌ ඥ1 െ ସଶݕ െ ߟ ହଶ, whereݕ ൌ √1 െ ݁ଶ.  Solving these relations for the 
final variable, ݁, yields a 4th-order polynomial whose only root on ݁ ∈ ሾ0,1ሻ is ݁ ൌ
ଵ

ఓ
ඥݕଵଶݕଷସ ൅ ଷଶݕଶଶݕଵଶݕ െ ଷଶݕଵݕߤ2 ൅  ଶ.  The differential elements are transformed using aߤ

linearized map containing the partial derivatives of the classical orbit elements with respect to 
the Hoots elements.  Finally, the coefficients of the differential Hoots elements are formed into 
matrix ߑሺݐሻ, so that 

ሾݎሺݐሻ் ሻ்ሿ்ݐሺݒ ൌ  ሻݐሺݕߜሻݐሺߑ

The portion of the transformation due to the perturbing acceleration can be partitioned into a 
separate map ܤሺݐሻ, so that ߑሺݐሻ ൌ ሻݐሺܣ ൅  .ሻݐሺܤ
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3.2 Dynamical Model Expansion: Non-Earth Gravitational Perturbations 

The dominant perturbation on satellite motion for objects in LEO is the equatorial bulge term, J2. 
Atmospheric drag affects objects up to about 1000 km altitude.  At higher altitudes, particularly, 
geosynchronous altitude, the perturbations resulting due to the moon and sun can be as large as 
the Earth gravitational effects and need to be evaluated. Also, at these altitudes the solar radiation 
effects, which are not a function of altitude, can also have a significant effect. At altitudes under 
1000 km atmospheric drag effects can be significant and need to be considered.  The effect of 
these perturbations on the relative emotion of satellites are addressed in this chapter.  Lunar and 
solar effects are addressed in Section 3.2.1, solar radiation effects are covered in Section 3.2.2 
and atmospheric drag in Section 3.2.3.  These effects are incorporated into the Gim-Alfriend 
STM.  

3.2.1 Dynamic Model Expansion: Third Body Perturbations 

The effects of lunar perturbations on satellites have been studied extensively, using perturbation 
methods and averaging. The first lunisolar disturbing function was developed for the secular and 
long periodic terms in the 1950s by Kozai [11] and expanded by Musen et al [12].  Kaula [5] 
investigated a general method to represent the disturbing potentials in terms of orbital elements. 
The advantage of this approach is that specific terms can be studied in a convenient and general 
manner. For example, for the secular motion, the averaged Hamiltonian is the potential obtained 
by setting the coefficients depending on the satellite mean anomaly and argument of perigee to 
zero. The method was revisited by Giacaglia [13] and a treatment is presented in Vallado [14]. 
Although this infinite series summation method provides a general formulation, efficient 
numerical implementations require recursive formulations [15]. Kozai [11] developed an 
alternative method to compute the lunisolar perturbations. The disturbing function was expressed 
in terms of the orbital elements of the satellite and the polar geocentric coordinates of the Sun 
and the Moon. From the disturbing function form, the short periodic terms can be eliminated by 
taking the average with respect to the mean anomaly of satellite motion. The summation of the 
terms in the potential is carried up to order five.  Prado [16] applied a double averaging 
technique to obtain the third-body disturbing potential using the formulation of the restricted 
three-body problem. Since the short periodic terms are removed from the model, it is convenient 
for the study of long-term orbit stability and leads to fast computations. Recently, the accuracy of 
the doubly-averaged model has been improved by including the lunar orbit’s eccentricity and 
inclination in the studies presented in References [17-19]. 

Since the perturbed relative motion problem is very complex, our effort has focused on 
simplifying the dynamic models of relative motion. This section considers the third-body 
perturbation to extend the fidelity of the GA STM, based on the previous work by Roscoe, Vadali 
and Alfriend [12, 21]. The second-order effect of the averaged lunar perturbation is modeled with 
nonsingular elements. For nonlinear simulations, the relative motion of the Moon with respect to 
the Earth is incorporated from ephemerides data obtained from the Jet Propulsion Laboratory’s 
HORIZONS website. The initial conditions for the averaged model are determined by a least 
squares method developed in Reference [18]. The nonlinear solution is validated by the General 
Mission Analysis Tool (GMAT) [2].   
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3.2.1.1 Averaged Disturbing Potential 

In the following, the subscript “m” refers to the variable related to the Moon and the symbols “S” 
and “C”, written with subscripts, stand for sine and cosine functions, respectively. The disturbing 
potential due to the Moon is 

 
2 2 2 cos

m e m

m m

G m m
R

r r rr S

 


 
(76) 

where ߤ௠ ൌ ݉௠ ሺ݉௘ ൅ ݉௠ሻ⁄ ,  G is the gravitational constant, me is the mass of Earth mass, mm 
is the mass of the Moon, r is the distance from Earth to a satellite, and rm is the Earth-Moon 
distance.  The included angle between the vectors r and rm , denoted by S , can be obtained from 
the dot product of the unit vectors r and rm. 

In the Earth centered inertial (ECI) frame, the unit vector ࢘ො௠ can be expressed in terms of the 
components 

ˆ

ˆ

ˆ

m m m m m

m m m m m

m m

m i

m i

m i

x C C S S C

y S C C S C

z S S

 

 



 

 

 

 



(77) 

The ECI components can be expressed in the perifocal frame as 

   
   

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆˆ ˆ

p

p

p

m i m i m i m

m i m i m i m

m i m i m i m

x C C S S C x S C C S C y S S z

y C S S S C x S S C C C y C S z

z S S x C S y C z

    

    

   

   

 

    

      

  

(78) 

In the perifocal frame, the unit vector ࢘ො has components 

ˆ cos

ˆ sin

ˆ 0

p

p

p

x f

y f

z







(79) 

where  f  is the true anomaly.  From Eqs. (77-79), we have 

cos cos sinS f f   (80) 

where 

ߙ ൌ ሺܥ୼ஐܥఠ െ ܵ୼ஐܵఠܥ௜ሻܥఏ೘ ൅ ൫ܥ୼ஐܵఠܥ௜ܥ௜೘ ൅ ܵ୼ஐܥఠܥ௜೘ ൅ ܵఠ ௜ܵ ௜ܵ೘൯ܵఏ೘ 
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ߚ ൌ െሺܥ୼ஐܵఠ ൅ ܵ୼ஐܥఠܥ௜ሻܥఏ೘ ൅ ൫ܥ୼ஐܥఠܥ௜ܥ௜೘ െ ܵ୼ஐܵఠܥ௜೘ ൅ ఠܥ ௜ܵ ௜ܵ೘൯ܵఏ೘ 

ΔΩ ൌ Ω െ Ω௠ 

Equation (76) is expanded in terms of the Legendre polynomials as 

R 


m
G m

0
 m

m 
r

m

r

r
m






n2




2

Pn cos S  (81) 

Taking only the first term in the summation, the approximate disturbing potential is obtained as  

R 
mG m0  mm 

rm

r

rm







2

Pn cosS 
n2





R 
mnm

2 a2

2

am

rm







2
r

a






2

3cos2 S 1 
(82)

The time-averaged potential is defined by the relation 

〈ܨ〉 ൌ
1
ߨ2

න ሺܨሻ݀ܯ
ଶగ

଴
 

where M is the mean anomaly and F is an arbitrary potential function. Taking the first average 
over the mean anomaly of the satellite orbit [7] yields the averaged potential 
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  (83) 

The identities 〈ܵఏ೘
ଶ 〉 ൌ ఏ೘ܥ〉

ଶ 〉 ൌ ଵ

ଶ
 and 〈ܵఏ೘ܥఏ೘〉 ൌ 0 have been used to derive the above 

equation. 

The second average is taken with respect to the lunar period. Considering the lunar orbit’s 

eccentricity, we have from [20], 〈ሺ௔೘
௥೘
ሻଷ〉 ൌ ሺ1 െ ݁௠ଶ ሻ

ିయ
మ. Hence, the second average of Eq. (83) is
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where 
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3.2.1.2 Secular and Long Period Rates 

Lagrange’s planetary equations can be obtained for the double-averaged potential as  
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where n is the mean motion and ߟ ൌ √1 െ ݁ଶ.  The required partial derivatives are  
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(96)

The doubly-averaged lunar perturbation model is obtained by substituting Eq. (84) into the 
Lagrange’s planetary equations (85). 

3.2.1.3 Extended GA STM Including Third Body Perturbations 

The development of the STM for long period effects of the 3rd body perturbations is now 
addressed, hence, set ܦሺݐሻ as the identity matrix. 

3.2.1.3.1 Secular and Long Period Terms 

The STM of the current set of orbit elements with respect to the initial orbit elements, 
߶ത௘,	considering only the secular and long period terms, can be calculated from the following 
relationships: 

(97)             

where the subscript “0” means the initial state and ∆߱ ൌ ሶ߱ ሺݐ െ  ଴ሻ. The STM is obtained byݐ
assuming that the orbit element rates Ωሶ , ω	ሶ , and	λሶ 	 are constant and that ∆߱ is small. The details 
of the derivations are presented in Appendix B. 
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3.2.1.3.2 Geometric Transformation Matrix 

The relative motion is best visualized in a local vertical local horizontal (LVLH) frame centered 
on the chief or a curvilinear system [2]. The Σሺݐሻ matrix is used to transform the osculating 
elements to LVLH coordinates. The normal acceleration is 

(98) 

From Lagrange equations 

(99) 

3.2.1.4 Nonlinear Simulation Model and Initial Conditions 

The ECI reference epoch is set at the J2000 epoch. The XY plane is the plane of the Earth’s orbit 
at the reference epoch. The X axis points to the ascending node of the instantaneous plane of the 
Earth’s orbit and Earth’s mean equator at the reference epoch. The Z axis is perpendicular to the 
XY plane in the directional sense of the Earth’s North Pole at the reference epoch. The Y axis is 
determined by the right-hand rule. The simulations include the gravitational perturbations and the 
lunar perturbations. The high fidelity ephemerides data for the lunar motion are obtained from 
the Jet Propulsion Laboratory’s HORIZONS website; the data is then interpolated using the 
method described in Reference 23. 

Lagrange’s planetary equations provide the rates of change of the classical orbital elements due 
to the doubly-averaged lunar perturbation. However, because the disturbing potential has been 
averaged, these now represent the rates of a new set of “lunar”-averaged orbital elements, rather 
than the instantaneous osculating elements. If equation (85) is applied without correcting the 
initial conditions for these differences, the results will become increasingly inaccurate as the 
equations are propagated forward in time. In the absence of an accurate conversion between the 
osculating and averaged elements, a least squares method is used to correct the initial conditions.  

In our problem 

࢞∆ ൌ ሺܽ௢௦௖଴ െ ܽ௟௦, ௢௦௖଴ߠ െ ,௟௦ߠ ݅௢௦௖଴ െ ݅௟௦, ଵ௢௦௖଴ݍ െ ,ଵ௟௦଴ݍ ଶ௢௦௖଴ݍ െ ,ଶ௟௦଴ݍ Ω௢௦௖଴
െ Ω௟௦଴ሻ 

(100) 

෥࢟ ൌ ሺܽ௟௦, ,௟௦ߠ ݅௟௦, ,ݏଵ௟ݍ ,ଶ௟௦ݍ Ω௟௦ሻ (101) 
݂ሺ࢞ෝሻ ൌ ሺܽ௢௦௖, ,௢௦௖ߠ ݅௢௦௖, ,ଵ௢௦௖ݍ ,ଶ௢௦௖ݍ Ω௢௦௖ሻ (102) 

where the subscript “osc” stands for osculating elements and “ls” represents long and secular 
averaged elements, while “0” refers to initial values. 
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3.2.2 Dynamic Model Expansion: Solar Radiation Effects 

Solar radiation pressure (SRP) is a nonconservative perturbation. For high altitude orbits, solar 
radiation pressure can be the dominant perturbative force, particularly for satellites with large 
area to mass ratio.  By intentionally aligning a satellite’s orientation with respect to the sun, this 
perturbative force can be used to maneuver the vehicle. For many years, the focus of SRP studies 
was confined to the minimization of its effects on spacecraft. More recently, considerable effort 
has been put into the development of applications to exploit the SRP effects for purposes of 
interplanetary propulsion, namely with solar sails [22]. Zeng, et al. [23] presented a time-optimal 
trajectory design for a novel dual-satellite sailcraft to accomplish mid or far-term interstellar 
missions 

Application of SRP for formation flying has been investigated by various researchers. Williams 
and Wang [24] considered a satellite formation with a solar wing and it was shown that a solar 
torque can be generated roughly along the orbit direction. This torque can prevent the secular 
out-of-plane growth in a low-Earth orbit formation that is caused by differential nodal drift. 
Kumar, et al. [25] and Gong, et al. [26] demonstrated the feasibility of using SRP for maintaining 
the desired satellite formation for different scenarios.  

In this section the GA STM is extended to include the differential SRP for relative motion. The 
SRP model is developed and the short and long period dynamics due to SRP are presented. Only 
the SRP perturbation is considered. The differential SRP is primarily caused by the differential 
area-to mass ratio (AMR) perturbations. The contribution here is that a new variable AMR is 
introduced to the GA STM to deal with the AMR perturbations. Numerical results show relative 
position errors are significantly reduced after the differential SRP is included in the GA STM. 

3.2.2.1 Solar Radiation Pressure Model 

The acceleration due to SRP is [14, 27] 

 cos
ˆ ˆ ˆ2 cos 1
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PA C
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 
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  (103) 

where P is  the solar radiation pressure (P=4.56e-6 N/m2), A is the cross sectional area, m is 
mass, inc  is the incident angle, n̂  is the unit vector of the cross sectional plate, ŝ  is the unit 

vector from the satellite to the Sun, and , ,a d sC C C  are the coefficients of absorption, diffuse and 

specular reflectivity, respectively. Notice 1a d sC C C   and assume the satellite is spherical  
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where 
2

1
3s dk C C    and the area-mass-ratio is  B

A
C

m
  .  
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The components of the acceleration in the radial, transverse and normal direction are 
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and 

cos cos sin sin cos

sin cos cos cos cos sin cos sin sin sin

sin sin cos cos sin sin cos cos sin sin

r e e

t e e e

h e e e

U

U i i i

U i i i

  

    

    

   

     

    

  (106) 

3.2.2.2 Secular, Long Period Rates and Short Period Terms 
3.2.2.2.1 Secular	and	Long	Period	Rates	

Substituting Eq. (106) into the nonsingular Gauss equation yields 
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Assuming small eccentricity gives 
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Substituting Eq. (108) into Eq. (107) gives 

(109) 

Averaging Eq. (109) by the mean argument of latitude over one orbit and ignoring the shadow 
effects yields the long period and secular rates [28]. 
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(110) 

3.2.2.2.2 Short	Period	Terms	

According to the method of averaging the zero order terms of the right sides of Eq. (109) should 
keep the same formulations, but in terms of the mean elements. Subtracting Eq. (110) from the 
zero order expansion of Eq. (109) and integrating the remaining terms, the short period terms are 
[28] 
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The elements on the right sides of Eqs. (110-111) are the averaged or mean elements. 
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3.2.2.3 Extended GA STM Including SRP Perturbations 
3.2.2.3.1 Differential	Mean	Elements	

The STM or the partial derivative matrix of the current orbit elements with respect to the initial 

orbital elements in the mean space is represented by  
e

t,t
0   e

e
0

 . Assume the secular and 

long period rates are constant. The mean propagation equations are 

              (112) 

The expressions for ߶ത௘ are presented in Appendix C. 

3.2.2.3.2 Mean	to	Osculating	Transformation	

The osculating elements are obtained as functions of the mean elements 

 e e e   (113) 

where e  are the  mean elements and e  are the short period terms as shown in Eq. (112) and Eq. 
(113), respectively. Taking derivatives with respect to the mean elements for Jacobian matrix, we 
have the mean to osculating transformation matrix or D matrix, as shown in the Appendix C. 

3.2.2.3.3 Geometric	Transformation	

The Sigma matrix,  , is used to transform osculating elements to LVLH coordinates. Although 
the solar radiation pressure or atmospheric drag is a nonconservative perturbation, the velocity 
components have the same formulations as those of two-body problem. The normal accelerations 
are given in Eq. (105).  

3.2.3 Dynamic Model Expansion: Drag Perturbations 

Atmospheric drag is one of the major perturbations that influence satellite motion, especially for 
satellites in low earth orbit (LEO). Extensive modeling has been accurately built up for the 
gravitational field, but analytical treatment of atmospheric drag is very difficult since 
atmospheric density is fluctuated and tabular due to solar activity. It is well known the dynamic 



Approved for public release; distribution is unlimited. 
37

system with drag is nonlinear and nonconservative and the analytical solutions of the dynamic 
system are unavailable.  The best we can do is to derive approximate analytical solutions with 
desired accuracy. 

Brouwer and Hori [29] obtained the analytical solutions for gravity and drag perturbations using 
von Zeipel transformations in Brouwer [3] on the basis of an exponential density model. The 
density function was expanded into a series of the ratio of the eccentricity to the density scale 
height. The resulting theory is limited to Earth satellite orbits with small eccentricities. Lane, et 
al. [30] improved the Brouwer-Hori work. By using a power law density model, the expansion of 
the density function was avoided so that a better convergence for low perigee heights is 
achieved. Hoots [31] further improved Lane's theory by eliminating small eccentricity divisors in 
the differential equations. Moreover he applied an averaging method so that the differential 
equations, rid of the mean anomaly, could be integrated more easily. 

The differential drag has been used for controlling relative positions between satellites [32-33]. 
For formation flying, the difference between the effective cross sectional areas leads to the 
differential drag, either by change satellite attitude or by using deployable drag panels. Most 
papers about differential drag for formation control are based on CW equations or more 
accurately based on Schweighart and Sedwick equations [34] in which the differential drag is 
projected into the LVLH frame or along-track direction.  

Reid and Misra [35] revised the Schweighart and Sedwick equations to include differential drag 
and extend the equations for reference orbits with small eccentricity. Recently Kumar, et al [36] 
examined the feasibility of formation maintenance using environmental forces, especially solar 
radiation pressure and aerodynamic forces. It is assumed that the satellites are equipped with 
solar flaps or aerodynamic flaps. By appropriate rotation of these flaps, it is possible to influence 
the relative motion between satellites in a formation. 

Most authors considered the differential drag as a means to control satellite formations. Mishne 
[37] introduced mean rates due to drag into relative motion, which is a basis for control. Carter 
and Humi tried to include the aerodynamic forces into the analytical solutions of relative motion. 
Carter and Humi modified the Clohessy-Wiltshire equations to include the effects of atmospheric 
drag in two separate papers. The relative motion equations developed included a drag force that 
was proportional to linear velocity [38]. Then the relative motion equations developed included 
the effects of a more realistic drag model, one where drag is proportional to the square of 
velocity [39]. Based on these simplifying assumptions, a set of linear differential equations were 
obtained which can be solved in terms of integrals. This enables the representation of the 
solution of the problem in terms of a state-transition matrix. Palmerini et al. [40-41] showed the 
performance based on the Carter and Humi solutions is more efficient than CW equations if the 
aerodynamic perturbations are modeled into the analytical solutions. 

In this report we extend the GA STM [1] to include differential drag. The exponential 
formulation is selected as the density model. The method of averaging is used for setting up the 
STM for mean element propagation. The short period terms are ignored. The extended GA STM 
includes parameter variables that allow modeling different ballistic coefficients. 
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3.2.3.1 Drag Perturbations 

The satellite accelerations due to atmospheric drag are given by 

1
2 D BC C v U v    (114) 

Assume a non-rotating atmosphere, the acceleration in the normal direction is zero and the radial 
and tangential components are 
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where 
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and ρ is the atmospheric density, v is the speed of the satellite relative to the atmosphere, v is a 
velocity vector in the direction motion, CD is the dimensionless drag coefficient.  

The atmospheric density model in Eq. (114) is 

 pr r

pe
    (116) 

where  ݎ௣ is perigee altitude and ߚ is the inverse of the atmospheric scale height. 

3.2.3.2 Secular, Long and Short Period Terms from Drag Perturbations 

Since the normal perturbed acceleration is zero, the extended nonsingular Gauss equation 
becomes 
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Assuming small eccentricity, we have approximately 
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With small eccentricity assumption, expanding Eq. (116) to the second order by Taylor series 

     2 2 2 2 2 2
1 2 1 2 1 2

1 1 1
exp 1 cos sin cos 2 sin 2

4 4 2p e e q q q q q q                    
 (119) 

where a  .  

Substituting Eq. (115) and Eqs. (118-119) into (117) gives 
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(120) 

Averaging Eq. (120) over the mean argument of latitude over one orbit, we obtain the long 
period and secular rates 

(121) 
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The zero order terms of the right sides of Eq. (120) should keep the same formulations, but in 
terms of the mean elements. Subtracting Eq. (121) from the zero order expansion of Eq. (120) 
and integrating the remaining terms the short period terms are 
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(122) 

The long period and secular rates Eq. (121) are obtained through the second order expansion of 
the density function; however, a more accurate method to obtain the mean rates is to use 
modified Bessel functions of the first kind [14]: 

(123) 
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where  
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or 
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3.2.3.3 Extended GA STM Including Drag Perturbations 
3.2.3.3.1 Extended	GA	STM	for	Differential	Mean	Elements	

It can be shown that the solution difference is very small between Eq. (121) and Eq. (123) for 
small eccentricity. Here we use Eq. (123) to set up the mean STM. Assume the constant mean 
rates 
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where 
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From Eq. (125), we have 
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We can remove the zero eccentricity in the function f3 

       21 1
3 0 2 1 32 41 1 3 expD B Pf anC C a I a I e I I ae              (129) 

Taking the derivative of Eq. (126) with respect to the initial mean elements, we have the mean 
STM, as shown in Appendix D. 

3.2.3.3.2 Mean to Osculating Element Transformation 

Taking the derivative of Eq. (122) with respect to the mean elements yields the DD matrix, as 
shown in Appendix D. 

3.2.3.3.3 Geometric	Transformation	Matrix	

Since Uh , the normal acceleration caused by drag perturbations, is zero, substituting in Eq. 
(126) gives the geometric transformation matrix. 

3.2.3.4 Drag and Gravity Combined Perturbations 
3.2.3.4.1 Extended	GA	STM	for	Mean	Elements	

The combined mean element propagation 

(130) 

Taking the derivatives of Eq. (130) with respect to the initial mean elements, gives the mean 
STM for drag and gravity combined perturbations. 
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3.2.3.4.2 Mean to Osculating Element Transformation 

The mean to osculating transformation is 

D  D
G
 D

D
(131) 

The drag perturbations do not change the geometric transformation matrix. 

3.2.3.5 Correction for Coupling Effects from Combined Perturbations 

The complexity of the oblateness and drag interactions was illustrated by Brouwer and Hori [30]. 
Green [41] expanded the combined perturbations to the second order and considered the crossing 
terms to be the coupling effects. The simple way to deal this problem is to use osculating height 
for air density when calculating mean drag functions [10, 42-43]. This is because the osculating 
height variations due to the Earth oblateness for LEO satellites can be several kilometers, which 
greatly influence the atmospheric density.  

The correction for the height or radial distance [4] is 
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Notice the variables on the right sides of Eq. (132) are the mean variables. The corrected density 
is 

 pr r r

pe
      (133) 

Substituting Eq. (132) into (133) then Eq. (130) gives the mean rates for the combined 
perturbations. 

3.2.4 Semi-Analytic Extended GA STM Including Drag and Gravity Perturbations  

Accurate modeling of drag perturbations can be achieved by the use of semi-analytic schemes.  
Arsenault et al [44] suggested using a lower-order numerical integration scheme for drag 
perturbations. Hoots [10] applied the Gauss-Legendre formula to integrate the averaged drag 
functions.  

Since the short period terms are averaged out, we use the lower order integration methods to 
propagate the mean elements. The Euler method is an example: 

 1 1 1,n n n nx x f x t h      (134) 
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where h is the step size. The GA STM semi-analytic propagation is achieved using the steps 
outlined by Eqs. (135-137). The differential orbital elements at the initial time 0t are obtained 

from the initial relative state vector as  

       1 1
0 0 0 0t D t t t   e X (135) 

The averaged elements of the chief and deputy are propagated for an arbitrary time period 

 0 , Nt t  by using the Euler method with n steps 
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Finally, the relative state vector at the desired final time is obtained as 

          N N N D N C Nt t D t t t  X e e (137) 

where e is the vector of the averaged elements and the subscripts C and D indicate the chief and 
deputy satellites, respectively. An alternative option is to use integration methods with variable 
step sizes, such as ODE45 in MATLAB. The averaged semi-major axis and eccentricity values are 
obtained by the Legendre-Gauss-Lobatto integration rule over one orbit using the rates 
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(138) 

ρ is the atmospheric density model, which in general is represented by a complex model, such as 
a tabular data model, here  the exponential model is used as an example.

3.3 Dynamic Model, Navigation Accuracy and Thruster Accuracy Consistency 

Although the guidance, navigation, and control (GNC) subsystems are commonly grouped 
together in the spacecraft design process, in practice, there are still inefficiencies caused by a 
lack of interdependency between them.  Notably, the dynamical model in the navigation 
algorithm is often set ad hoc without explicit regard for the level of measurement, guidance, or 
control errors expected.  We understand qualitatively that the “best” dynamical model will meet 
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some user-defined criteria on state uncertainty and maneuver cost while minimizing 
computational effort.  For example, it is operationally suboptimal to implement a high-fidelity 
gravity model when the measurement hardware is known to be wildly inaccurate [46].  On the 
other hand, maneuvers executed to cancel out the effects of known yet ignored perturbations, if 
frequent enough, would deplete on-board fuel very quickly and shorten mission lifespan.  A 
quantitative study is thus warranted, preferably via an analytical approach, on the consistency of 
GNC hardware subsystems versus dynamical modeling algorithms. 

In this chapter, we tackle a subset of this problem: namely, we develop methods to quickly 
survey the trade space between navigation system parameters and dynamical model fidelity.  We 
focus our efforts on forces that have precise deterministic physical models, e.g., the Earth's 
gravity, such that modeling errors may be regarded as biases.  Our contributions are as follows.  
First, we show that a change in the dynamical model may be related to its corresponding change 
in STM via an explicitly defined vector function.  This result not only allows us to compute the 
state transition matrix for multiple dynamical models efficiently, but also demonstrates that the 
change in the STM is typically on the order of 100 % over tens of orbit periods of the chief 
satellite.  As such, as our second contribution, the linear sensitivity relating dynamical model 
fidelity to maximum a posteriori state estimate bias is derived.  Although the dynamical model 
error cannot be factored out as a linear operator like the observation covariance or cadence, we 
may still gain approximate yet quick design insight into choosing an appropriate dynamical 
model for a set of given navigation system requirements.  Finally, the cost of employing a 
particular dynamical model will be characterized through a maneuver metric first proposed by 
Schaub and Alfriend [47].  That is, the state deviation of the estimated trajectory from the 
reference is analytically transformed into a ∆ݒ via Gauss' planetary equations.  The three results 
presented will simplify the workflow of designing GNC systems by mitigating the need to 
conduct a large-scale numerical validation of system performance. 

3.3.1 Relating Dynamical Model and State Transition Matrix Fidelity 

Suppose ࢞ሺݐ; ሶ࢞ ଴ሻ is the trajectory given by a high-fidelity dynamical model࢞ ሺݐ;  ଴ሻ that we࢞
regard as truth, and ࢞୊ሺݐ; ሶ࢞ ଴ሻ is that given by the approximated dynamics࢞ ୊ሺݐ;  ଴ሻ.  The࢞
semicolon separates the time variable ݐ from the initial conditions ࢞଴, which are treated as 
parameters.  We define a scaling function ࢓ሺݐሻ such that 

for all t and all i, where the superscript indicates a vector or matrix index.  We assume that the 
vectors are expressed in an inertial reference frame. 

The state transition matrix (STM) of the true dynamics is given by 

Then, for Φij
F ≠ 0, 

  (139)

  (140)
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(141)

where ej is a small variation along the j-direction with magnitude ε << 1.  Now, 

Applying integration by parts, 

׬ ሶ࢓ ௜ሺ߬ሻ࢞୊ሺ߬, ଴ሻd߬࢞
௧
଴ ൎ ૙ is a good assumption to order 100 % or better over 100 days for many 

Earth orbiters.  Therefore,  

;ሺ0࢓ ଴ሻ࢞ ൎ ;ሺ0࢓ ଴࢞ ൅ ௝ሻࢋ ൎ ૚ is, again, a good assumption to order 100 % or better.  Thus, we 
can rewrite Eq. (141) as 

As such, one may compute the STM of the approximated dynamics ΦF(t; x0) solely through the 
solution flow of the true dynamics x(t; x0), its corresponding STM Φ(t; x0), and the function 
m(t), which is readily available via xF(t; x0).  That is, for some t such that mi(t) ≠ 0, 

Since there is no need to solve ODEs for each component in ΦF, the method above significantly 
speeds up the propagation of the secondary, assuming it is within the linear dynamical regime of 
the primary.  Furthermore, the scaling function m(t) provides insight into the accuracy of the 
approximated STM with respect to the truth. The difference between the true and approximated 
STMs ΔΦ is given as 

(147)

  (142)

  (143)

  (144)

  (145)

  (146)
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where M(t) is a matrix with m(t) along its diagonal and I is the identity matrix. 

For instance, consider the simple 1-dimensional case 

ሶݔ ൌ  ݔ

ሶ୊ݔ ൌ  ݔ݉

where m is held constant.  Then, the solution flow for the true dynamics is given as ݔሺݐ; ଴ሻݔ ൌ
  ,଴e௧ି௧బ.  Nextݔ

ிݔ ൌ න ଴݁ఛି௧బݔ݉
௧

௧బ

݀߬ ൅ ଴ݔ ൌ ଴݁௧ି௧బݔ݉ ൌ  ݔ݉

such that Φி ൌ ݉Φ as derived. 

3.3.2 Linear Sensitivity Analysis Between Dynamical Model Fidelity and Maximum A 
Posteriori State Estimates 

We now derive below such a function for the batch least squares. 

Nominally [48], 

(150)

(151)

(152)

where ࢞ෝ଴ and P0 are the state deviation estimate and associated covariance at epoch, respectively, 
Λ is the information matrix, N is the normal vector, Ri is the observation covariance, തܲ଴ is the a 
priori covariance, yi is the observation deviation vector from the reference trajectory, ܪ෩௜ is the 
linear observation-state relationship, and Φሺݐ௜; ଴ሻ࢞ ≝ Φ௜ is the STM.  Subscripts indicate values 
for the i-th observation, and the summation is over all N observations.  We assume that the 
observations are uncorrelated in time; thus, both the information matrix and normal vector may 
be accumulated as a summation. 

Now, suppose we have an approximate dynamical model such that the new trajectory is given as 

  (148)

   (149) 
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Then, let 

denote the state deviation estimate and associated covariance, respectively, obtained from the 
approximate model.  The goal is to express analytically Δ࢞ෝ଴ ൌ ෝ୊,଴࢞ െ  ,ෝ଴, ΔP0 = PF,0 – P0.  First࢞
simply plug in 

where Δܪ௜ ൌ   ,෡௜ΔΦ௜ and any second-order terms are ignored.  Similarlyܪ

Now, given ࢟ி,௜ ൌ ௜࢟ ൅ Δ࢟௜ ൎ ௜࢟ െ ௜ࢅ ௜ since࢞෩௜Δܪ െ ୊,௜൯࢞൫ࡳ ൌ ௜ࢅ െ ௜ሻ࢞ሺࡳ ൅ Δ࢟௜ ⇔ Δ࢟௜ ൌ
௜ሻ࢞ሺࡳ െ  ,୊,௜ሻ࢞ሺࡳ

So, 

where 

(160)

Note that for some square matrix Q such that Qn  0 (n  ∞), 

(I + Q)–1 ≈ I – Q  (161)

Then, for some square matrices A and B with the same dimensions and A is semi-positive 
definite, 

  (155)

  (153)

  (154)

  (156)

  (157)

  (158)

   (159) 
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(A + B)–1 ≈ A–1 – A–1BA–1 (162)

if (A–1BA–1)n  0 (n  ∞).  Substituting A = Λ and B = L, 

where P = Λ–1 and again ignoring second-order and higher terms.  So, 

(164)

These expressions show that, unlike the measurement covariance matrix (if assumed constant 
over all observations) or the measurement cadence, the effects of STM bias cannot be factored 
out from the normal equation.  Nonetheless, if we substitute Eq. (159) into the expression for ΛF, 

But ܯ௜ܪ෩୘ܴ௜
ିଵܪ෩௜ܯ௜ ൏ ሺ݉௜

ெሻଶܪ෩௜
୘ܴ௜

ିଵܪ෩௜ where ݉௜
ெ is the component of ࢓ሺݐ௜ሻ ≝  ௜ with the࢓

maximum absolute value.  Thus, 

where ݉ெ
ெ is the maximum of ݉௜

ெ over all observations.  If ݉ெ
ெ െ 1 is on the order of 10-3 as in 

Fig. 43, then the difference in the information matrix between the two models is also, at most, on 
the order of 10-3.  In conclusion, a small bias in the STM has an equally small effect on the 
information matrix, and thus the estimated covariance. 

Although we omit the details of the derivation for brevity, we may derive similar results for the 
Kalman filter such that, for the i-th observation, 

where 

  (163)

  (165)

  (166)

  (167)
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4 RESULTS AND DISCUSSION 

4.1 Gravitational Perturbations 
4.1.1 Kinoshita and Kaula Models 

Figure 1 shows the errors in the three components as well as the r.m.s. error in the relative 
position obtained from the Kinoshita theory when compared with a numerical simulation.  The 
effects included are J2, augmented with those due to the mean and long periodic effects of J2

2, J4, 
and J6. 

Figure 1. Modeling J2, J2
2, J4, J6 (mean and long-periodic effects) 

Effects of the J2
2 Short-periodic terms 

Figure 2 shows the effects of including the short periodic contributions from J2
2.   It shows the 

errors resulting from modeling J2 (mean, short and long periodic) and including J2
2 mean, long 

and short periodic effects.  Figure 2 shows that the errors are uniformly lower in all the three 
axes with respect to those in Figure 1.  Hence, modeling the J2

2  short-periodic terms, albeit for 
e=0, is beneficial and improves the accuracy of the relative motion STM. Figures 3-5 show the 
differences between the augmented Kaula and GMAT solutions in the radial, along-track and 
cross-track directions. 
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Figure 2. Error from first order of J2, J4 and J6 modeling plus 
J2

2 mean rate and short period 

Figure 3. Difference between the Kaula and GMAT with 20x20 
gravity field without J22 secular and short period terms 
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Figure 4. Difference between the Kaula and GMAT with 20x20 
gravity field with J2

2 secular terms and without J2
2 short 

period terms 

Figure 5. Difference between Kaula and GMAT with 20x20 
gravity field with J2

2 secular and short period terms 
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Table 1. Root mean square error for the Extended GA-STM 
propagation (10 days) 

Effects modeled for 
determining the initial 
conditions 

Modeling Perturbations 
in the extended GA STM 
for propagation  

ICs obtained from the 
classical Kaula model 
(km) 

J2 only  J2 only 0.009433 
J2, J2

2 J2, J2
2 0.006497

J2, J2
2, J2

2 sp J2, J2
2 0.004661

J2, J2
2 , J2

2 sp, J3 J2, J2
2 and J3 0.006539

J2, J2
2, J2

2 sp, J3, J4 J2, J2
2,J3, J4  0.005952 

J2, J2
2, J2

2 sp, J3, J4, J5 J2, J2
2, J3, J4, J5  0.006566 

J2, J2
2, J2

2 sp, J3, J4, J5,  
J6 

J2, J2
2, J3, J4, J5, J6 0.005540

4.1.2 GA-STM with Hoots Variables 

The Hoots version of the GA-STM can be evaluated via MATLAB simulation.  Its error (versus 
a numerically integrated trajectory) can be compared with the results from directly differencing 
the analytically propagated trajectories of both chief and deputy satellites.  These numerically 
computed differences can then be mapped into relative space, forming a rough lower bound on 
the error for closed-form relative motion approximations (such as the GA-STM). 

In Figure 6, the satellites are in a near-PCO (Projected Circular Orbit) formation:  the zero-drift 
constraint on ܽߜ is turned off, the relative orbit size is 1 kilometer, and the deputy's initial phase 
angle is 0.  The chief's osculating initial conditions are semi-major axis 7100 kilometers, 
eccentricity 0.01, inclination 50 degrees, and all other classical elements 0.  ܬଶ is considered as 
the only perturbation.  The relative position and velocity error magnitudes are shown for the 
Hoots-element GA-STM as well as for direct differencing of first-order orbit theories due to 
Hoots [10] and to Kinoshita [6].  In this scenario, the STM shows error characteristics 
competitive with the direct differencing models, especially for position error. 
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Figure 6.  First-order theory comparison:  Direct differencing 
vs. GA-STM 

The new version can also be compared against previous versions of the GA-STM formulated in 
terms of nonsingular elements and equinoctial elements.  Figure 7 shows results from a chief 
satellite in a near-circular low-Earth orbit; the LVLH components and the magnitude of the 
relative position error are shown for all three STMs, as well as for both versions of direct 
differencing.  For this case, the STM errors are not significantly greater than those for direct 
differencing. 
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Figure 7.  Relative position error for near-circular orbit 

Figure 8 shows the same relative position error plots for a different scenario.  In this case, the 
chief's eccentricity is approximately 0.1.  Here, the STMs perform slightly worse than the direct 
differencing models, not an unexpected result. 
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Figure 8.  Relative position error for eccentric orbit 

Figure 9 shows the relative position error for a formation in geostationary orbit.  Because the 
chief's orbit is equatorial, both Kinoshita theory and the nonsingular-element STM are singular 
and are not shown. 
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Figure 9.  Relative position error for geostationary orbit 

Note that in many cases the STM errors are nonzero even at the initial time.  In order to 
propagate the relative orbit accurately with an STM, the relative initial conditions must 
themselves undergo a linearizing transformation--this transformation introduces an offset at the 
initial time, but prevents an accumulating error over the course of the propagation. 

4.1.3 Numerical Verification using GMAT and a Graphical User Interface (GUI) 

The analytic formulae for the second-order short-period effects, the first-order long-period 
effects and second-order secular effects have been verified for the zonals ܬଷ and ܬସ with the 
published results. A MATLAB-based code for the relative motion STM, including all the 
expressions for ܬଶ effects computed by using Maple, and the generalized analytic formulae for 
the higher zonals, has been developed. A graphical user interface (GUI) has also been 
implemented to easily configure and run simulations, as well as analyze results. An interface to 
National Aeronautics and Space Administration (NASA) GMAT software is also implemented as 
part of the GUI in order to compare the analytic STM accuracy with the direct numerical 
propagation using GMAT. Figure 10 shows the screenshot of the Matlab-based Simulation GUI.
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For comparing the accuracy of the STM, two satellites: chief and deputy, are simulated using the 
NASA GMAT software with 70 × 0 JGM-3 gravity model. The mean initial conditions of chief 
are chosen with a= 7100 km and node angle, perigee angle as well as the mean anomaly all as 
zero. Two different reference orbits are simulated: eccentricity 0.01 with inclination 50◦ and 
eccentricity 0 with inclination 0◦. The mean initial conditions of deputy are computed according 
to a projected circular orbit type formation with a baseline distance of 1 km. The osculating 
initial conditions of chief and deputy required for numerical propagation are computed 
analytically using the mean to osculating transformations as described in the previous sections. 
The orbits of chief and deputy are propagated for ten days in GMAT and the relative position and 
velocity states in the curvilinear frame are computed. Using the extended GA-STM, the same 
relative states are also directly propagated for ten days. The maximum degree up to which zonal 
harmonics are included in the extended GA-STM was successively increased. Figure 11 shows 
the absolute position and velocity root-sum-square (RSS) error plots for chief satellite with 
eccentricity 0.01 and inclination 50◦ after ten days of propagation as the maximum degree of the 
extended GA-STM is increased. Figure 12 shows the relative position errors for a PCO type 
formation with 1 km of baseline distance for the same chief reference orbit. It is noted that with 
the maximum degree of the GA-STM ܬଶ଴, the absolute position errors were reduced to less than 1 
km and relative position error less than 1 m after ten days of propagation. Figure 13 and 14 
shows the absolute and relative errors when the reference orbit is chosen as equatorial and 
circular. The similar trend in the absolute motion as well as relative motion was observed for this 
case. 

Figure 11. Absolute Position and Velocity Error vs. Degree of 
the Extended GA-STM. 

0 5 10 15 20 25 30

Degree

0

5

10

15
Abs. Pos and Vel Error against 70x0 GMAT, 10 day, e=0.01,i = 50

0 5 10 15 20 25 30

Degree

0

0.005

0.01



Approved for public release; distribution is unlimited. 
61 

Figure 12. Relative Position Error Versus Degree of the 
Extended GA-STM 

Figure 13. Absolute Position and Velocity Error Versus Degree 
of the Extended GA-STM for Equatorial Circular Reference 
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Figure 14. Relative Position Error Versus Degree of the 
Extended GA-STM for the Equatorial Circular Reference 

Orbit. 

4.2 Non-Earth Gravitational Perturbations 

4.2.1 Third Body Perturbations 

A representative example for which the lunar perturbation is significant is the NASA 
Magnetospheric Multiscale (MMS) mission, designed to study magnetic reconnection, charged 
particle acceleration, and turbulence in key boundary regions of the Earth’s magnetosphere. The 
MMS orbit is highly eccentric and lunar perturbation cannot be ignored. The starting epoch is 
August 5, 2013. The mean inclination, eccentricity, and right ascension of the lunar orbit are 
assumed to be 19.65o, 0.0497, and 350.36o, respectively. The lunar position data at 30 minute 
intervals is taken from the Jet Propulsion Laboratory Horizons website.  

The reference orbit is assumed to have the following initial mean elements: a=42095 km, 
e=0.81818, i=28.5o, Ω=357.857o, ω=298.2253o, and M0=180o.  The initial phase angle α0 is 
selected to be zero and the relative orbit size ρ, is 10 km. Because of the high eccentricity, the 
relative orbit undergoes an expansion near perigee and therefore, ρ as well as the relative orbit 
element differences do not remain constant along the orbit.  The simulation time is 100 days. 
Earth's gravitational perturbations are not included in the simulations presented in this section.  
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4.2.1.1 Results for the Reference Orbit 

The equations of motion for the chief are propagated and the position and velocities are 
converted into osculating orbital elements. In Fig. 15, these results are compared with the 
respective solutions obtained from Eqs. (85). 

Figure 15. Averaged Lunar Model vs. Nonlinear Model  

The blue lines represent the averaged model, while the green lines stand for the nonlinear model 
in Fig. 15. One can see that there are obvious differences in the semi-major axis and eccentricity 
for the two models due to the use of the same initial conditions for both the simulation models. 
The initial conditions for the nonlinear simulation should be corrected to fit the averaged model. 
Application of the least squares method to correct the initial conditions results in the plots in Fig. 
16. 
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Figure 16. Averaged Lunar Model vs. Nonlinear Model after 
Correction 

Figure 16 indicates that the averaged model predicts the long-term behavior very well, providing 
confidence that the effects of the third-body have been incorporated correctly. Only the first term 
is taken in the infinite series represented in Eq. (81) for the averaged potential. From Fig. 16, we 
can see the (n=2) term dominates the third-body perturbation, akin to the gravitational potential 
of the Earth, in which J2 plays the dominant role. Figures 15-16 also show that it is important to 
include the lunar orbit’s inclination in the averaged model for higher accuracy, as concluded in 
Reference 8. 

We compare the nonlinear simulation results with GMAT for further validation, as shown in Fig. 
17. 
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Figure 17. Differences between Nonlinear Simulation and 
GMAT 

GMAT is an open-source space mission design tool to model and optimize spacecraft trajectories 
in flight regimes ranging from low Earth orbit to lunar, libration point, and deep space missions. 
GMAT has been developed by a team of NASA, private industry, and public and private 
contributors. Note that only the lunar perturbations are included in both the simulations. 

4.2.1.2 Simulation Results for Relative Motion 

The process outlined previously for the simulation of the reference orbit is repeated for the 
deputy's orbit.  In this section, numerical results produced by the extended GA STM are 
presented. To isolate the third-body effects, we neglect the Earth’s gravitational perturbations 
first. Figures 18-19, respectively, show the errors in relative position with and without modeling 
the third-body effect.  
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Figure 18. Relative Position Errors, Two-body STM vs. Lunar-
perturbed Nonlinear Model 

 

Figure 19. Relative Position Errors, STM includes Averaged 
Lunar Perturbations 

Note that the reference orbit for this example has a large semi-major axis and is also highly 
eccentric. Figure 18 shows that the in-track component of the relative position error vector has 
the largest growth, while the smallest error results in the cross-track direction. Comparing Figure 
18 with Fig. 19, it is seen that the accuracy greatly improves with the inclusion of the lunar 
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perturbation model in the GA-STM, especially in the cross-track direction. The residual errors 
are mostly caused by absence of the short period lunar effects. 

The J2 perturbation is three orders of magnitude larger than that due to the higher-order Earth 
gravitational perturbations. It is necessary to investigate the combined effects of the J2 and the 
third-body perturbations.  In the examples presented for error comparisons, the initial conditions 
for the numerical integration models are determined by the least squares approach. 

Figure 20.  Relative Position Errors, Two-body STM vs. 
Nonlinear Simulation With J2  

Figure 20 shows the position errors as a result of neglecting J2, arising from the use of the two-
body STM model.  A comparison of Figures 18 and 20 confirms that the position error due to the 
J2 perturbation is larger than that caused by the Moon; although the semi-major axis of the MMS 
orbit is large, about 42,000 km.  

Figures 21-22 present the improvements obtained from the use of the extended GA STM for 
propagating relative motion and for the least squares corrections for the initial conditions.  The 
extended GA STM models the J2 and third-body perturbations.  The in-track position error varies 
significantly between apogee and perigee, proportional to the size of the relative orbit. 
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Figure 21.  GA STM vs. Nonlinear Simulation including J2 and 
Lunar Perturbation 

 

Figure 22. Extended GA STM with Lunar Effect vs. Nonlinear 
Simulation including J2 and Lunar Perturbation 

4.2.2 SRP Numerical Results 

The mean orbit element of the chief satellite is  a=43527.7589899 km; e=0.0005671; Ω= 18.88 
deg; ω=321.5388 deg; M=38.4719. The cross sectional area is 5.02 m2 and the satellite mass is 
611 kg. The simulation time is 10 days. Only the SRP perturbation is included in the simulations. 
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The inclination i is set as 113 deg so that the satellites will be illuminated all the time to avoid 
the shadowing effects. 

4.2.2.1 SRP Model Verification 

Figures 23 and 24 show the accuracy of the analytical model, with and without corrections for 
the initial conditions of the analytical model, respectively. The solid lines stand for the solutions 
from Eq. (107) and the circles represent the results from Eq. (110). Biases in the semi-major axis 
and right ascension are observed in Figure 23. Generally, a least squares method is applied to 
correct the initial conditions to remove these biases. Here we apply the short period corrections 
of Eq. (111) at the initial time to remove the biases, as shown in Figure 24.  

 

 

Figure 23. Comparisons Between Numerical and Analytical 
Simulations Without Corrections for the Initial Conditions of 

the Analytical Model 
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Figure 24. Comparisons Between Numerical and Analytical 
Simulations With Corrections to the Initial Conditions of the 

Analytical Model 

4.2.2.2 Relative Errors for Formation of Identical Satellites 

The deputy satellite has the same area and mass as the chief satellite. The mean orbit of the 
deputy is determined from e

0
 e

0
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0
. The initial phase angle 0  is selected to be zero and 

the relative orbit size   is 1 km. Using the corrected initial conditions, Eq. (107) is integrated 
for the chief and deputy satellite, respectively. Then nonlinear relative position and velocity are 
obtained by the unit sphere approach [18], which are the reference values for evaluating the 
accuracy of the extend GA STM. 

Figures 25 and 26, respectively, show the effects of differential SRP due to orbital element 
differences for a formation.  The relative position error due to the use of a two-body STM is less 
than 0.06 m in 10 days, and it is reduced to 0.03 m by modeling differential SRP due to orbital 
element differences. Notice part of the relative errors is from nonlinearity. The theory does not 
include the effects due to differences in solar areas of the satellites, which is a more significant 
effect.  
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Figure 25. Relative Motion Errors: Two-Body STM Vs 
Nonlinear Simulation  

Figure 26. Relative Motion Errors: STM Including Differential 
SRP Due to Orbital Element Difference Vs Nonlinear 

Simulation 
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4.2.2.3 Relative Position Errors From Differential Area 

Now we assume the cross sectional area of the deputy satellite is 5.07 m2 or about 1% more than 
that of the chief satellite, as shown in Figures 27-28. 

 

Figure 27. Relative Motion Errors: STM Including Differential 
SRP Due to Orbital Element Difference Vs Nonlinear 

Simulation 

 

Figure 28. Relative Motion Errors: STM Including Differential 
SRP Due to Orbital Element And Differential Area Vs 

Nonlinear Simulation 
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Figures 27 and 28 show relative motion errors between the solutions of the extended GA STM 
and nonlinear simulations. The effect of differential area is modeled into the solutions of the 
extended GA STM in Figure 28 while the differential SRP due to only orbital element difference 
is included in the solutions of the extended GA STM. Comparing Figure 27 with Figure 28, one 
can see the relative motion errors due to the effects of differential area are much larger than those 
due to orbital element differences. The reason is described as follows: taking the normal 
direction of the acceleration due to SRP as example and differentiating Eqs. (105-106), we have 

1 2

h h h

h

Pk Pk
U U A A U

m m
Pk A

U C i C
Am A

  

  

  

      
 

(168) 

where 

1

2

sin cos cos cos cos sin cos sin sin sin

cos sin cos sin sin sin cos
e e e

e e

C i i i

C i i

    
  

    

   

From Eq. (112), we have 

(169) 

The long and secular rates are assumed constants. The estimated values are approximately 10-16/s 
for the inclination and right ascension right rates at the initial time. Substituting Eq. (112) into 
Eq. (169), then Eq. (168) after ignoring the rate terms, we have 

1
0

h h

Pk A
U U C

Am A a

 
 

   
 

(170) 

Equation (170) clearly demonstrates even one percent of the area variation will dominate the 
differential SRP. 

Similar to the drag problems, modeling differential area into the STM is very important as this 
can be seen in the same scale of Figures 27-28. The root mean square (RMS) is 0.686 m with 
modeling differential area while it is 4.18 m without modeling differential area into the extended 
GA STM for one percent difference between the cross sectional areas of the chief and deputy 
satellite. Table 2 shows the effect of modeling differential area into the STM to deal with the SRP 
perturbations due to different differential area among the satellites and presents the RMS 
variations as the percentage of the area difference increases for a 10 day simulation. There is 
about six times reduction for relative motion errors for the example. 
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Table 2 RMS Variation With Area Difference 

Deputy Area (m2) Area Diff (%) RMS without Diff 
Area (m) 

RMS with Diff Area 
(m) 

5.07 1 4.18 0.69
5.12 2 8.36 1.37
5.17 3 12.54 2.06
5.22 4 16.71 2.74
5.27 5 20.90 3.43

4.2.3 Perturbations due to Drag 

The Chief satellite orbit is a=6700km, e=0.004, i=48deg, Ω=0, ω=10 deg, and M=120 deg. The 
simulation time is 3 days. The satellite is 100 kg and the cross sectional area is 1 m2. The relative 
orbit size is 1 km and initial phase angle is zero. The deputy satellite orbit is determined in the 
usual manner for the PCO. All the initial conditions are obtained by analytical methods. 

4.2.3.1 Drag Only Problem 

We use the two-body GA STM to get the solutions of relative motion, and integrate nonlinear 
equations including drag perturbation only for the chief and deputy orbits and get the real 
relative solutions. The errors are the differences between the former and latter, as shown in Fig. 
29. Then we analytically model the drag into the extended GA STM, the corresponding errors are
shown in Fig. 30. 

Figure 29. Relative Position Errors From Two-Body Modeling 
For Drag Only Problem 
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Figure 30. Relative Position Errors From Modeling Drag Into 
Extended GA STM for Drag Only Problem 

There is more than one order of magnitude improvement by including drag in the extended GA 
STM, as shown in Figs. 29-30.  Since the assumption on the constant rates perturbed by drag is 
inaccurate [44], the accuracy is not high. 

The cross sectional areas are the same for the chief and deputy. Now we assume there is one 
percent difference in the area, i.e. the area of the deputy is 1.01e-6 m2 and the chief area is still 
1.00e-6 m2. The simulation time is one day, as shown in Figs. 31-32. 

Figure 31. Relative Position Errors Without Modeling Diff. 
Area Into Extended GA STM 
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Figure 32. Relative Position Errors With Modeling Diff. Area 
Into Extended GA STM 

Figures 31-32 indicate the differential area has significant effects on the accuracy, especially in 
the in-track direction. Modeling the differential area into the extended GA STM remarkably 
alleviates the effect. As the differential area percent increases, it is necessary to modeling the 
differential area into the extended GA STM, as shown in Fig. 33 for a one day simulation. 

Figure 33. Effect of Modeling Differential Area in the Extended 
GA STM 

Figure 33 demonstrates it is important to introduce the area-mass-ratio variable Cb into the 
extended GA STM, especially for the perturbations sensitive to the cross sectional area. 
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4.2.3.2 Drag and Gravity Combined Perturbations 

Comparing Figs. 29-30 with Figs. 34-35, one can see the effect of the gravity perturbation is 
about four times more than that of the drag perturbation for this example. The accuracy modeling 
J2 is much higher than that modeling the drag perturbations since the mean rates caused by the 
gravity perturbations are exactly constants. 

The accuracy of the extended GA STM is shown in Fig. 36 for the drag and J2 combined 

perturbations. 

Figure 34. Relative Position Errors From Two-Body Modeling 
For J2 Only Problem 

Figure 35. Relative Position Errors From GA STM For J2 Only 
Problem 
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Figure 36. Relative Position Errors From Modeling Combined 
Perturbations Without Height Corrections 

The errors for the combined perturbations are larger than those obtained by a superposition of the 
individual effects, due to a coupling effect.  

Figure 37. Relative Position Errors From Modeling Combined 
Perturbations With Height Corrections 

Fig. 37 illustrates the coupling effects are greatly reduced by applying the height correction given 
by Eq. (132). The cross sectional areas are the same for both the chief and deputy for the 
combined perturbations. Now we want to see the effect of the differential area on the drag and 
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gravity combined perturbations for one day simulation. Fig. 37 shows the RMS position errors 
vary with the differential area percent changes. 

Figure 38. Effect of Modeling Differential Area Into Extended 
GA STM For Combined Perturbations 

Figure 39. Relative Position Errors From Modeling Drag and 
J2 By Semi-Analytical Method 

Fig. 38 indicates there are little changes if the combined perturbations are considered for the 
effect of the cross sectional area, possibly due to gravity perturbations being insensitive to 
variation of the area. Figure 39 shows the results of using the semi-analytic STM. Comparing 
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with Fig. 38, one can see the relative position errors are effectively reduced by using the semi-
analytic STM. 

4.2.3.3 Effects of Different Density Models 

We only consider perturbations from drag only. All the simulations are nonlinear. We integrate 
the equations of motion for the drag only problem for chief and deputy, respectively, and then get 
relative distances that are compared with the GMAT solutions with the same initial conditions. 
The density model is the Jacchia-Roberts model in GMAT simulations. We use two kinds of the 
density models, the first one is the 1976 US standard atmosphere and the second is Harris-
Priester density model.[45] 

The epoch time for GMAT simulations is April 15, 00:00:00, 2015. Fig. 40 shows the relative 
distance error from nonlinear two-body simulation and GMAT simulation with Jacchia-Roberts 
model. Fig. 41 illustrates the relative distance error from nonlinear simulation with 1976 US 
standard density model and GMAT simulation with the Jacchia-Roberts model. Fig. 42 shows the 
relative distance error from nonlinear simulation with the Harris-Priester density model and 
GMAT simulation with Jacchia-Roberts model. 

The standard density model only considers a spherical atmosphere while the Harris-Priester 
density model introduces the effects of oblateness and diurnal bulge. From Figs. 40-42 we can 
see the nonlinear modeling errors obviously decrease as we use more accurate density models. 
Assuming we exactly model nonlinear systems by the extended GA STM with the standard 
density model or Eq. (116), there is about an  0.8 km errors at the end of three day simulation if 
we compare with Jacchia-Roberts model, as shown in Fig. 41. 

Figure 40. Relative Position Errors By Using Two-Body and 
Jacchia-Roberts Model 
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Figure 41. Relative Position Errors By Using Standard Density 
and Jacchia-Roberts Model 

Figure 42. Relative Position Errors by Using Harris-Priester 
and Jacchia-Roberts Model 
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4.3 Navigation and Thruster Inaccuracies 

Figure 43. Time history of Φij
F/Φij – 1 (lines) and mi – 1 

(crosses) color coded by i (1 = blue, 2 = green, 3 = red, 4 = teal, 
5 = purple, 6 = gold) for all j.  Values plotted once every orbit 

for clarity. 

As a practical example, suppose the true dynamics include zonal terms of the Earth gravity up to 
sixth order whereas the approximate dynamics include those only up to second order.  Figure 43 
is the time history of Φij

F/Φij – 1 compared with mi – 1 over 40 orbital periods for an object 
whose orbital elements are 

at epoch.  We see that the two plots match well for the entire analysis timespan of 3.0256 days. 

We further find in Fig. 43 that the difference between values in the two STMs are on the order of 
0.1 %, suggesting that a linear function relating STM bias and maximum a posteriori state 
estimates will sufficiently capture sensitivities between them for many relative navigation 
scenarios of interest.   
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We now demonstrate how the tools developed in this research enable rapid design of relative 
navigation algorithms.  Consider a formation of two spacecraft where the initial orbital elements 
for the chief are as given and the differences in orbital elements between the chief and deputy at 
epoch are 

For this work, we assume the absolute state of the chief is perfectly known and that the true and 
reference relative trajectories are set equal.  This assumption shall be relaxed in future work.  
The observations are instantaneous range measurements made every 0.081001 seconds, 
corresponding to approximately 100 measurements over the course of a single orbital period for 
the chief.  Measurement noise is assumed to be Gaussian white noise with a constant standard 
deviation of 1 meter.  The measurements are simulated over 3.0256 days or approximately 40 
orbital periods of the chief, resulting in 4001 range measurements total. 

A batch processor is run for the true case whose dynamical model includes a 40 × 40 gravity 
field.  State estimate and covariance biases are then computed for three approximate models 
which includes a 20 × 20, 10 × 10, or 2 × 0 gravity field.  Any deviation from the estimated 
trajectory based on the true dynamics would indicate extraneous fuel expenditure attributed to 
dynamical model error.  The total deviation ∆ࢄ෡ is the sum of the state estimate bias and the 
deviation in the reference state 

(171)

This vector may be converted into an approximate Δv cost as a consequence of Gauss' planetary 
equations.  Suppose ∆ࢄ෡ሺݐሻ ൌ ሺܽߜ, ,݁ߜ ,݅ߜ ,Ωߜ ,߱ߜ  ሻ are expressed in the mean orbitalܯߜ
elements.  An osculating-to-mean transformation including first-order J2 effects such as Brouwer 
theory [3] will suffice for this computation regardless of dynamical model used.  Then, assuming 
that the sensitivity between the mean and osculating elements are sufficiently close to unity, 

(172)

where subscripts h, r, and t indicate that the thrust is made along the angular momentum 
direction, radial direction, or a direction perpendicular to the two, respectively, and subsubscripts 
p and a indicate that the maneuver is executed at periapsis or apoapsis, respectively. 
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The state estimate uncertainty, however, may be so high such that ∆ࢄ෡ cannot be distinguished 
from noise.  Here, noise is attributed solely to measurement error, but in subsequent studies, we 
hope to add the effects of process noise.  We would, nonetheless, like to compute another metric 
characterizing the magnitude of ∆ࢄ෡ with respect to true state deviation estimate ࢞ෝ; i.e., if ∆ࢄ෡	is 
much smaller in magnitude compared to representative values of ࢞ෝ, then it may safely be 
ignored.  We define a non-dimensional distance d, similar to the Mahalanobis distance [49], 
where ∆ࢄ෡ is normalized by the diagonalized true state estimate covariance ℙ 

݀ሺݐሻ ൌ ට∆ࢄ෡ሺݐሻ୘ℙሺݐሻିଵ∆ࢄ෡ሺݐሻ (173)

Thus, a d metric value of 1 would indicate that the magnitude of ∆ࢄ෡ሺݐሻ in each coordinate 
direction is equal to their respective true 1-σ uncertainty level.  We choose to ignore the 
correlations in P as we are not interested in quantifying the direction of ∆ࢄ෡ሺݐሻ with respect to the 
state uncertainty for this particular metric. 

We find for this problem that, in under 10 orbits, ΔHi becomes small such that 

ෝ࢞∆ ൎ ࣁܲ ൎ ܲ ቄ෍ൣܪ௜
୘ܴ௜

ିଵ∆࢟௜൧ቅ 
(174)

based on Eqs. (160) and (164).  ࣁ is nearly parallel to ࡺ ൌ ௜ܪ∑
୘ܴ௜

ିଵ࢏࢟ as the STM term 
dominates (4).  Therefore, after running the true batch processor, one only needs to compute Δyi, 
which is often available as a closed-form function of the solution flow, and subsequently ࣁ 
across approximate dynamical models to evaluate 

ሻݐ෡ሺࢄ߂ ൎ Φሺݐ; ࣁ଴ሻܲ࢞ ൅ ∆Φሺݐ; ଴ (175)࢞଴ሻ࢞

accurate to order of magnitude.  Table 3 corroborates this reasoning based on numerical 
simulations.  That is, the truncated expression Eq. (175) for ∆ࢄ෡ሺݐሻ results in the d distance metric 
computed accurately to at least order of magnitude. 

Table 3 compares for each approximate dynamical model, the non-dimensional distance metric d 
using the truncated form of ࢄ߂෡ሺݐሻ	in Eq. (175) (dTrunc) and subsequently substituting into Eq. 
(173), and by running individual batch processors to compute ࢄ߂෡ሺݐሻ	 (dFull).  Δ is the relative 
error of the two methods in terms of percentage. 
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Table 3 Metric Comparison For Various Gravity Models 

Gravity dTrunc dFull Δ [%] 
20 × 20 5.0496 × 10-2 4.6012 × 10-2 9.7454
10 × 10 2.8434 × 10-1 2.8231 × 10-1 0.7177
2 × 0 2.5473 × 100 5.7479 × 100 -55.682

For both the 20 × 20 and 10 × 10 models, the total deviation of the state estimate due to 
inaccurate dynamical modeling is an order of magnitude smaller than the magnitude of the state 
estimate noise.  If we are to implement these in our navigation algorithms, then, it is unlikely that 
fuel will be spent to correct effects due to unmodeled terms in the geopotential.  The same cannot 
be said, however, for the 2 × 0 model, as the magnitude of the bias in the state estimate is well 
over the 3-σ level of the diagonalized state covariance, as indicated by dFull = 5.7479.  For the 
given measurement parameters, then, a 2 × 0 model may be deemed insufficient as it leads to 
wasted fuel.  On the other hand, the dimensional value of ∆ࢄ෡ሺݐሻ	throughout the analysis 
timeframe is, at most, meter-level in position and mm/s-level in velocity.  Qualitatively, we 
expect that correcting such a small state deviation is within the bounds of thruster error.  Future 
work is to directly relate the Δv value based on Eq. (172) and control system errors. 

Finally, we note that, if the sensor were precise to 0.1 meters 1-σ, then without running any 
additional simulations, linearity suggests that d will accordingly increase by approximately an 
order of magnitude compared to those in Table 3, bringing the bias of the 10 × 10 model close to 
3-σ level of the estimate noise.  

We have thus shown how, with the tools developed in this work, one is able to bypass running 
multiple batch processors per each dynamical model we'd like to test in navigation algorithm 
design.  Further computational gains may be reaped by applying analytical STMs or by 
computing the STM bias based on a vector scaling function between said models.  In order to 
apply this methodology to a wider range of measurement types and mission scenarios, we are 
working to develop a way to automatically determine ignorable terms in the linear sensitivity 
function. 
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5 CONCLUSIONS  

The conclusions of this program sponsored by the Air Force Research Laboratory are: 

 A systems approach for the selection of the dynamic model that is based on the accuracy 
of the relative navigation system and the accuracy of the thrusters has been developed. 
The methodology simplifies the workflow of selecting the dynamic model and designing 
navigation systems so that the trade space between navigation system parameters and 
dynamical model fidelity could be quickly surveyed in lieu of performing massive 
numerical simulations for numerous scenarios and system parameter variations. 

 Including the short period terms of higher order geopotential effects, especially 2
2J  , in 

calculating the relative state initial conditions can reduce the secular error drift. 
 Including the secular and long period effects of the lunar perturbations can improve the 

accuracy of the relative state prediction for high altitude formations.   
 The correction of the deputy semi-major axis for negating in-track secular drift has been 

expanded to include higher order geopotential terms and this expansion will further 
reduce the drift. 

 The GA-STM uses a set of nonsingular variables for non-equatorial orbits and equinoctial 
elements for near equatorial elements. Other sets of nonsingular variables, such as Hoots 
variables, were evaluated and compared to those in the GA-STM. In some cases the 
performance was better and others it was not. No general methodology for evaluating 
different sets of variables was found. 

The recommendations from this project are: 

 The system methodology for selecting the dynamic model and relative navigations 
system based on relative navigation requirements and thruster accuracy should be used to 
reduce the analysis required in making these selections in formation design.  

 To help reduce secular drift the higher order geopotential short period terms should be 
included in the calculation of the relative state initial conditions.  

 The extensive analysis performed in this project has revealed the need for Air Force 
Research Laboratory to have a detailed formation system simulation that includes all 
relevant perturbing forces, control forces and modules for thruster control, and modules 
for different types of relative navigation.  
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APPENDIX A. FORMULAE FOR ZONAL HARMONICS  
A.1 Expansion Formulae 

The following formulae are helpful in computing closed-form expressions for the integrals given 
in Eq. (6). These formulae include the definition of Legendre polynomials and formulae for 
converting powers of trigonometric functions into sums of their arguments. 

  (A.1)

  (A.2)

  (A.3)
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A.2 Intermediate Terms for Short-Period Corrections 

The following intermediate terms are used in the analytic formulae for short-period contributions 
due to an arbitrary zonal harmonic with degree greater than two.  

  (A.4)

  (A.5)

  (A.6)

  (A.7)

  (A.8)

  (A.9)

   (A.10)

  (A.11)
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   (A.12)

   (A.13)

   (A.14)

   (A.15)
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APPENDIX B.   MATRIX FOR THIRD BODY PERTURBATIONS 

Derivatives for a 
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   (B.1) 

Derivatives for 
0
  

     (B.2) 
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Derivatives for i 

(B.3) 

Derivatives for q2 

(B.4) 
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Derivatives for q2 

(B.5) 

Derivatives for   

(B.6) 
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where 

(B.7) 
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APPENDIX C.   AND D MATRIX FOR SRP PERTURBATIONS 
C.1   Matrix 

Derivatives of a 
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Derivatives of    
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Derivatives of  i 

     (C.3) 

Derivatives of qq 
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Derivatives of q2 
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Derivatives of    
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Derivatives of CB 
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C.2 D Matrix 

Derivatives of  a   
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Derivatives of    

  


a

 1 2q1 cos  2q2 sin  
a

+2sin
q1

a
 2cos

q2

a



 1 2q
1
cos  2q

2
sin  


+2sin

q1


 2cos

q2



+2 q
1
sin  q

2
cos  


+2cos 


q

1
 2sin 


q

2
 


i

 1 2q1 cos  2q2 sin  
a

+2sin
q

1

i
 2cos

q
2

i

q1

 1 2q1 cos  2q2 sin  
q1

+2sin
q1

q1

 2cos
q2

q1

 2 cos


q2

 1 2q1 cos  2q2 sin  
q2

+2sin
q

1

q2

 2cos
q

2

q2

 2 sin




 1 2q
1
cos  2q

2
sin  


+2sin

q
1


 2cos

q
2



CB

 1 2q1 cos  2q2 sin  
CB

+2sin
q

1

CB

 2cos
q

2

CB

 (C.10) 



Approved for public release; distribution is unlimited. 
103 

Derivatives of  i   
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Derivatives of 1q   
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

      


  



     


 

   

 

1 2
1 1

1
1 22

2 2 2

1
1 2 1 22

2 1 2

n sin3 cos

5sin sin3 3cos cos3 cos cos
4

cos2 cos 5 sin cos3 sin3
4

sin 2 3 cos 3 sin co

t

B
r t

B r

U q q i
q q

q PkC
U U q q i i

q n a q q

q PkC U
q q q q

n a

q q q





  

      

     

  

        
               

 
       

    

 

 

1 2

1
1 2 1 22

2 1 2 1 2

s3 sin3 cos

cos 2 cos 5 sin cos3 sin3
4

sin 2 3 cos 3 sin cos3 sin3 cos

t

r

t
B

U
q q i

q Pk
q q q q U

a n a

q q q q U q i
C

 

     

    

  
  


      

       

  (C.12) 
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Derivatives of 2q   

 

 

 

 

 

2 2 1 2 12

1 2 1 2

2
2 1 2 12 2

1 2 1 2

2cos 2 3 sin 3 cos 3 sin 3 3 cos3
4

2sin 2 5 sin cos 3 sin 3 3 cos3

sin 2 3 cos 3 sin cos3 sin 3
2

cos 2 5 cos sin cos3 sin 3

B
r

t

B
r

t

PkC
q q q q q U

n a

q q q q U

q PkC
q q q q U

a n a

q q q q U

     

    

     

    

     

     
      

     

 

 

 

1

2
2 1

2
2 1 2 12

1 2 1 2

1 1

2
2

1

cos

cos

sin 2 3 cos 3 sin cos3 sin 3
4

cos 2 5 cos sin cos3 sin 3

cos sin

3sin sin 3 5c
4

B r

t

B
r

q i
a

q
q q i

q PkC U
q q q q

i n a i

U
q q q q

i

q i q i
i

q PkC
U

q n a





  
  
     

    

 

  

 
 

   
 

  
 

      


       
 

  



    


 

   

 

2 1
1 1

2
2 12

2 2 2

2
2 1 2 12

1 2 1

os cos3

cos cos

3cos cos3 sin sin 3 cos
4

sin 2 3 cos 3 sin cos3 sin 3
4

cos 2 5 cos sin cos

t

B
r t

B r

U

q i q i
q q

q PkC
U U q q i

q n a q q

q PkC U
q q q q

n a

q q q





 

 

     

     

  

  

  
  

 
            

 
      

     

 

 

2 1

2
2 1 2 12

1 2 1 2 1

3 sin 3 cos

sin 2 3 cos 3 sin cos3 sin 3
4

cos 2 5 cos sin cos3 sin 3 cos

t

r
B

t
B

U
q q i

q Pk
q q q q U

C n a

q q q q U q i
C

 

     

    

  
  


     

           (C.13) 
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Derivatives of    

 

 
PkC

B
U

h

2n2asin i
2sin  q

1
sin2  q

2
cos2 


a


PkC

B
U

h

n2a2 sin i
2cos  1

2
q

1
cos2  1

2
q

2
sin2










 





i


PkCB

2n2asin i
U

h
cot i

Uh

i







2cos  1

2
q

1
cos2  1

2
q

2
sin2








q

1


PkCBUh

4n2asin i
cos2 


q

1


q2


PkCBUh

4n2asin i
sin2 


q2





PkC

B

2n2asin i
2cos  1

2
q1 cos2  1

2
q2 sin2






U

h




C

B


PkUh

2n2asin i
2cos  1

2
q

1
cos2  1

2
q

2
sin2







  (C.14) 

where 
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 
PkCB

n2a
cos  2q1 cos2  2q2 sin2 Ur  sin  2q2 cos2  2q1 sin2 Ut

 


a


2PkC

B

n2a2
sin  q

1
sin2  q

2
cos2 Ur

 cos  q
2
sin2  q

1
cos2 Ut

 



a

cos i




 








cos i


i


PkCB

n2a
sin  q1 sin2  q2 cos2  Ur

i
 cos  q2 sin2  q1 cos2  Ut

i











sin i  cos i

i


q

1


PkC

B

n2a
U

r
sin2 U

t
cos2   


q

1

 cos i

q

1


q

2

 
PkC

B

n2a
U

r
cos2 U

t
sin2   


q

2

 cos i

q

2





PkC

B

n2a
sin  q1 sin2  q2 cos2  Ur


 cos  q2 sin2  q1 cos2  Ut












cos i




C

B


Pk

n2a
sin  q

1
sin2  q

2
cos2 Ur

 cos  q
2
sin2  q

1
cos2 Ut

 



CB

cos i

 (C.15) 

Derivatives of C
B
  

C
B

a

C

B



C

B

i

C

B

q
1


C

B

q
2


C

B

C
B

 0   (C.16)

where 
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Ur

i
 0

U
r


 sincos

e
 cossin

e
cos

U
t

i
 sinsin icos

e
 cossin isin

e
cos  cos isin

e
sin

U
t


 coscos icos

e
 sincos isin

e
cos

U
h

i
 sincos icose  coscos isine cos  sin isine sin

Uh


 cossin icose  sinsin isine cos

  (C.17) 
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APPENDIX D.    AND D MATRIX FOR DRAG PERTURBATIONS 
D.1   Matrix 

Derivatives for a 

    (D.1) 

Derivatives for i 

 

i  i
0

i

i
0

 1

i

a
0


i


0


i

q
10


i

q
20


i


0


i

C
B0

 0

   (D.2) 
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Derivatives for q1 

 

 

    (D.3) 
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Derivatives for q2 

    (D.4) 

 

Derivatives for    

 

0

0

0 0 0 10 20 0

1

0
Ba i q q C

  






     
     

     

   (D.5) 
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Derivatives for    

 

    (D.6) 

where 

 

f
1
 I

0
 2eI

1
 3

4 e2 I
0
 I

2  exp ae 
f

2
 I

1
 1

2 e I
0
 I

2   1
8 e2 3I

1
 I

3  exp ae 
f

3
 ank2

p

f
2

e
 ank2

p
f

4

f
4
 1

2 1 a  I
0
 1 a  I

2
 1

4 e 3I
1
 I

3  exp ae 

   (D.7) 

Derivatives of 1 3 4, ,f f f   

 

     

   

1 3
0 1 0 1 1 1 0 2 24

11

1 3
11 1 0 22

2 2 2 exp

2 exp

f
e I I eI I a eI e eI eI eI I a ae

a
ef

f
a f I e I I ae

e

   



 


            




      

  (D.8) 
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2 2 23 41
4 42

2 23 4
4 42

p
D B p D B p D B

p
D B p D B p D B

f f
nC C f anC C anC C f

a a a

f f
anC C e f anC C anC C f

e e e


    


   

 
  

  
 

  
  

(D.9)

   
     

     

     

2 14 3 3 31
0 12 4 4 4

1 2 2 11 1
2 34 4

2 24 3 31 1 1 1 1
0 1 32 4 4 4 4 2 2

2 2 2 21 1 1 1
2 43 3 4 12

[ 1 2

2 3 ]exp

[ 1 2 1

1 1 ]exp

f
e e ae I a e eI

a

a e e ae I a e eI ae

f
ae a e e a aI e aI ae I

e

ae a e e a aI a a eI ae

   

     

     

      



 


       


      


         


       

 (D.10) 

D.2 D Matrix 

Derivatives of a

1 1 2
2 1

2
1

1 1 2 2
2 1

1 1 1 1 1

1 1 2 2
2

2 2 2 2

0

p

p

p

p

p

p

a a aa
a a

a a a a

aa
a

a

i

a a a aa
a a

q q q q q

a a a aa
a

q q q q

    


 
  


     
 

    
 

   
         

 


  





       
               
     

            

 

1
2

2
2

0

expD P
B

a
q

a

a
a C e a

C





   

 
 
 







  


(D.11) 

where 
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a  a
1
a

2

a1  a2CDCB p exp e 
a2    3  q1 sin  q2 cos   1

8
 2 q1

2  q2
2 sin2  1

4
 2q1q2 cos2

   (D.12) 

 

a
1

a
 aC

D
C

B


p
exp e  e 2 

a
1

q
1

 a2C
D
C

B


p
 exp e cos

a
1

q
2

 a2C
D
C

B


p
 exp e sin

a1


p

 a2C
D
C

B
exp e 


p

a
 


0

H
exp 

r
p
 r

0

H









 1 e 


p

q
1

 
0
 exp 

r
p
 r

0

H









 cos

 p

q2

 0 exp 
rp  r0

H









 sin

  (D.13) 

 

 a
2

a


1

H
q

1
sin  q

2
cos   

4H
q

1
2  q

2
2 sin2  

2H
q

1
q

2
cos2

 a
2


   3  q

1
cos  q

2
sin   

2

4
q

1
2  q

2
2 cos2  

2

2
q

1
q

2
sin2





1

1 2q1 cos  2q2 sin

H 
1



   (D.14) 

Derivatives of  i   

 
 i

a

 i



 i

i

 i

q
1


 i

q
2


 i



 i

C
B

 0    (D.15) 
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Derivatives of q
1
  

 

q1

a


q11

a

q11


p


p

a









 q

12

q12

a
q

11

q
1


 q

11

q
12





q
1

i
 0

q
1

q1


q

11

q1


q

11

 p

 p

q1









 q12 

q
12

q1


q

12



q1







q11

q1

q
2


q11

q
2


q11


p


p

q
2









 q

12


q12

q
2


q12



q

2







q

11

q
1


 0

q
1

C
B

 
1

2
aC

D


P
exp e q

12

  (D.16) 

where 

 

q
1
 q

11
q

12

q11  
1

2
aCDCB p exp e 

q
12
 2

3

4
 2q

1
2 

1

4
 2q

2
2





sin  1

2
 2q

1
q

2
cos 

1

2
  3  q1 sin2  q2 cos2   1

12
 2 q1

2  q2
2 sin3 

1

6
 2q1q2 cos3

  (D.17) 

 

q
11

a
 

1

2
C

D
C

B


p
exp e  1e 

q
11

q
1


1

2
aC

D
C

B


p
 exp e cos

q
11

q
2


1

2
aC

D
C

B


p
 exp e sin

q
11


p

 
1

2
aC

D
C

B
exp e 

   (D.18) 
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q12

a


3

2
q1

2 
1

2
q2

2





H

sin  
H

q1q2 cos 

1

2H
q

1
sin2  q

2
cos2   1

6


H

q
1
2  q

2
2 sin3  1

3


H

q
1
q

2
cos3

q12


 2

3

4
 2q

1
2 

1

4
 2q

2
2





cos  1

2
 2q

1
q

2
sin 

  3  q1 cos2  q2 sin2   1

4
 2 q1

2  q2
2 cos3  1

2
 2q1q2 sin3

q
12

q
1


 2

2
3q

1
sin  q

2
cos     3

2
sin2  

2

6
q

1
sin3  q

2
cos3 

q12

q
2


 2

2
q

2
sin  q

1
cos     3

2
cos2  

2

6
q

2
sin3  q

1
cos3 
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Derivatives of q
2
  

 

q2

a


q21

a

q21


p


p

a









 q

22

q12

a
q

21

q
2


 q

21

q
22





q
2

i
 0

q
2

q1


q

21

q1


q

21

 p

 p

q1









 q22 

q
22

q1


q

22



q1







q21

q2

q
2


q21

q
2


q21


p


p

q
2









 q

22


q22

q
2


q22



q

2







q

21

q
2


 0

q
2

C
B

 
1

2
aC

D


P
exp e q

22

  (D.20) 

Derivatives of    

 

a







i



q

1



q

2







C

B

 0   (D.21) 
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Derivatives of    


a

 1 2q1 cos  2q2 sin  
a

+2sin
q1

a
 2cos

q2

a



 1 2q
1
cos  2q

2
sin  


+2sin

q1


 2cos

q2



+2 q
1
sin  q

2
cos  


+2cos 


q

1
 2sin 


q

2
 


i

 1 2q1 cos  2q2 sin  
a

+2sin
q

1

i
 2cos

q
2

i

q1

 1 2q1 cos  2q2 sin  
q1

+2sin
q1

q1

 2cos
q2

q1

 2 cos


q2

 1 2q1 cos  2q2 sin  
q2

+2sin
q

1

q2

 2cos
q

2

q2

 2 sin




 1 2q
1
cos  2q

2
sin  


+2sin

q
1


 2cos

q
2



CB

 1 2q1 cos  2q2 sin  
CB

+2sin
q

1

CB

 2cos
q

2

CB

 (D.22) 

where 


a


1

a

1


p


p

a









 2


2

a


1




 
1


2






i

 0


q

1


1

q
1


1


p


p

q
1









 2


2

q
1


2



q

1









1


q

2




1

q
2




1


p


p

q
2









 2




2

q
2




2



q

2









1




 0


C

B


1

2
aC

D


P
exp e 2

(D.23)

and 
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  
1


2

1 
1

2
aCDCB p exp e 


2
 q

1
cos  q

2
sin

(D.24)


1

a


1

2
C

D
C

B


p
exp e  1e 


1

q
1

 
1

2
aC

D
C

B


p
 exp e cos


1

q
2

 
1

2
aC

D
C

B


p
 exp e sin


1


p


1

2
aC

D
C

B
exp e 

(D.25)


2

a
 0


2


 q1 sin  q2 cos

2

q1

 cos


2

q2

 sin

(D.26)
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LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS 

Acronym/ Abbreviation Description 

AMR Area-to mass ratio  
GA-STM Gim Alfriend-State Transition Matrix
GMAT Goddard General Mission Analysis Tool 
GNC Guidance, navigation, and control  
GUI Graphical User Interface 
LEO Low earth orbit 
LVLH  Local vertical local horizontal 
MMS Magnetospheric Multiscale 
NASA National Aeronautics and Space Administration 
PCO Projected Circular Orbit 
RMS Root mean square
SRP Solar radiation pressure  
STM State Transition Matrix



Approved for public release; distribution is unlimited. 
121 

DISTRIBUTION LIST 

DTIC/OCP 
8725 John J. Kingman Rd, Suite 0944 
Ft Belvoir, VA 22060-6218  1 cy 

AFRL/RVIL 
Kirtland AFB, NM 87117-5776 2 cys 

Official Record Copy 
AFRL/RVSV/T. Alan Lovell                 1 cy 



Approved for public release; distribution is unlimited. 
122 

(This page intentionally left blank) 




