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1. Introduction 

Gallium nitride (GaN) is a promising material for the development of high-power 
electronic devices due to its high-breakdown field and high-electron mobility 
(Table 1). These parameters influence the Baliga’s figure of merit (BFOM) for 
power electronics, expressed in Eq. 1:  

𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁 =  𝛆𝛆 ∗ 𝛍𝛍 ∗ 𝐄𝐄C𝟑𝟑 , (1) 

where 𝛆𝛆 is the dielectric constant, 𝛍𝛍 is the electron mobility, and 𝐄𝐄C is the critical 
electric field.1 With the reported critical electric field of GaN ranging from 3.3 to 
3.75 mV/cm, GaN’s BFOM is several times larger than that of silicon (Si) and 
silicon carbide (SiC) (Fig. 1).2 

Historically, the lack of lattice-matched substrates for nitride epitaxy has resulted 
in GaN-based device development on foreign substrates such as sapphire, SiC, and 
Si. The large lattice mismatch in these systems leads to highly defective 
heterostructures (108–1010 dislocations/cm2), which can ultimately limit device 
performance.3 Recent advances in GaN bulk crystal growth have increased the 
availability and use of high-quality native substrates, demonstrating an ideal route 
for achieving GaN-based device structures with low-threading dislocation density 
and low-impurity incorporation. Thus, it is expected that Schottky diodes (SDs) 
fabricated on bulk GaN single crystals will have improved device reliability and 
larger breakdown voltages compared to devices on heteroepitaxial GaN.  

Table 1 Comparison of material properties between GaN, Si, and SiC4 
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Fig. 1 Plot of specific on-resistance (RON-SP) vs. breakdown voltage (VB) of different GaN-
based SD structures. The lines indicate the theoretical maximum performance for each 
material. Image taken from Kizilyalli et al.2 

2. Micromanipulator P200L Semiautomatic Probing Station 

Forward and reverse current-voltage (I-V) measurements are routinely performed 
to characterize power devices including both diodes and transistors. However, such 
measurements can be very time-consuming due to manual operation of probes, slow 
data transfer for old systems, and lack of optimized data parsing and analysis. 
Ideally, a semiautomatic probing station is desirable, as it may be coupled with any 
device testing instrument to produce tens-to-hundreds of measurements in a matter 
of minutes. Creating an interface between a probing station and a device testing 
instrument can be challenging due to the extensive amount of programming 
involved. In this work, the Python programing language (version 2.7) was used to 
write a set of scripts to operate the Micromanipulator P200L semiautomatic probe 
station and integrate it with an Agilent 4155C Semiconductor Parameter Analyzer, 
which is used to routinely measure I-V curves of semiconductor devices at the US 
Army Research Laboratory. The P200L system setup can achieve device 
measurements within approximately 10–15 s depending on the number of data 
points selected by the user. Implementation of the P200L is a clear advantage to the 
original setup, which would take up to 2 min per single measurement. A technical 
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report on the programming aspects of the P200L semiautomatic probing station that 
will include the source code is currently in preparation. In this project, we 
demonstrate the capability of the semiautomatic probe system, and we report on the 
I-V curve measurements taken on the vertical GaN SDs fabricated on a bulk GaN 
substrate. 

3. Experiment 

In this work, vertical SD structures were prepared using a 500-µm-thick 
ammonothermally grown GaN bulk crystal provided by a commercial vendor. The 
substrate was cut from a (0001)-oriented crystal boule and was double-side 
mechanically polished. Chemical-mechanical polishing was further employed on 
the Ga-face to reduce gross mechanical damage from the boule sawing and 
mechanical polishing processing steps. As revealed by atomic force microscopy 
(AFM) imaging, the epi-polished Ga-face revealed a clear bilayer step morphology 
with a root mean square roughness of 0.27 ±0.07 nm (Fig. 2). 

Optical profilometry measurements revealed the presence of a large crack through 
the entire sample (Fig. 3). At present, the origin of the crack is unknown. Devices 
reported in this technical report are not located on the crack. 

Following materials characterization, vertical GaN SDs (Fig. 4) were fabricated 
following a series of steps, which are summarized in Fig. 5. The first step in the 
fabrication process for vertical SDs involved creating ohmic contacts on the N-
polar face (backside) of the GaN sample by depositing a 
titanium/aluminum/nickel/gold (Ti/Al/Ni/Au) (250/2200/600/500 Å) metal stack 
using electron beam evaporation. The contacts were then annealed at 750 °C in N2 
gas for 30 s using rapid thermal annealing.  

Next, photoresist was spun onto the Ga-face at 2000 rpm to give a resist thickness 
of approximately 2 µm. Following resist exposure, a soft bake was performed at  
95 °C for 60 s on a hot plate. The resist was then exposed to UV light for 4.2 s while 
in contact with the mask. To perform image reversal, the exposed resist was baked 
at 105 °C for 30 s on a hot plate and subsequently flood exposed for 8 s. After flood 
exposure, the sample was developed for 60 s in an AZ300 Metal Ion Free developer. 
Following development, the sample was placed in an oxygen plasma for 5 min to 
remove residual photoresist, a process referred to as descuming. The sample was 
then etched in hydrochloric acid for 30 s, rinsed with deionized water, and blown 
dry in nitrogen gas. Front-side Schottky contacts were created by depositing a 
Ni/Au (500/1500 Å) metal stack using electron beam evaporation. Following metal 
evaporation, we performed a liftoff procedure consisting of placing the sample in 
acetone for about 2 h until the metal is easily removed in regions that have 
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remaining resist. The metal Schottky contacts are circular, with device diameters 
of 50, 100, 200, and 300 µm. The diodes were in an array pattern across the entire 
1 cm2 sample to accommodate use of the P200L auto prober.  

All fabricated SDs were then measured and analyzed using the programmed P200L 
probing station coupled with the 4155C semiconductor parameter analyzer.  

 
 

a) 
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Fig. 2 AFM micrographs of the epi-polished Ga-face of the GaN bulk single crystal. Both 
the a) 15 µm2 and b) 1 µm2 micrographs reveal a smooth surface morphology, free of harsh 
mechanical damage, such as pits and deep scratches. 

 

Fig. 3 Optical profilometry image of GaN sample denoting the presence of a deep crack on 
the GaN crystal surface 

b) 
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Fig. 4 Schematic of the cross section of fabricated vertical GaN SD device structures. Image 
is not to scale. 

 

 

Fig. 5 Description of device fabrication process 

4. Results 

The fabricated GaN SDs are shown in Fig. 6, where the final device total was 
approximately 600. Among the fabricated devices, only about 13% had a small 
leakage current and a measurable reverse I-V curve.  

A majority of devices along the outer edge of the sample were nonconductive and, 
thus, did not show rectification. This outcome is expected since the process of 
spinning the photoresist onto the sample leads to photoresist buildup in these 
regions. It is possible that the developer needed a longer time to remove all the 

Schottky contact deposition (Ga-polar face)

Electron beam evaporation of Ni/Au metal stack of 500/1500 Å thickness, followed 
by liftoff procedure.

Mask photolithography

Mask was designed with AutoCAD and created using a Heidelberg Photomask 
writer. The mask consists of a repeating pattern of circular devices of 300, 200, 100, 
and 50 µm in diameter. 

Ohmic contact deposition (N-polar face)

Electron beam evaporation of Ti/Al/Ni/Au metal stack of 250/2200/600/500 Å
thickness, followed by annealing at 750 °C in N2 gas for 30 s.
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photoresist, resulting in an unsuccessful Schottky contact deposition process. In 
addition, during the ohmic contact deposition process, tape was employed on the 
sample edges to hold the sample in place during metal deposition. Consequently, it 
is also likely that ohmic contacts were not successfully created on the outer edges 
of the sample.  

 

Fig. 6 Optical microscope image of fabricated vertical GaN SDs of various sizes 

The VB of each device can be determined from the reverse I-V measurements by 
finding the voltage at which the current density falls below –10 mA/cm2. Figure 7 
shows the distribution of VB values according to each diode size with the standard 
deviation bars. Based on the average and standard deviation values calculated for 
all vertical GaN SDs, there is no observed dependence of VB with device size. This 
is an important observation, as device parameters such as VB ideally should not 
have a dependence on size. A plot of the reverse I-V for individual devices with the 
highest VB for each device size is shown in Fig. 8. The highest measured maximum 
VB value of 30.5 V is reported for the GaN SD as 50 µm in diameter.  
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Fig. 7 GaN SD device size vs. average breakdown voltage. Error bars indicate one standard 
deviation. 
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Fig. 8 Reverse I-V curve with highest VB observed for each device size. 50 µm (VB =  
30.5 V), 100 µm (VB = 28.5 V), 200 µm (VB = 26.2 V), and 300 µm (VB = 23.6 V). 

5. Conclusion 

While the device yield for this bulk GaN sample was relatively low, forward I-V 
curves on functioning devices denoted a source of high resistance. A high-backside 
ohmic contact resistance, low doping in the substrate, and/or subsurface damage on 
the epi-polished Ga-face are responsible for the observed low conduction in the 
forward I-V measurements. Future use of GaN substrates with a higher doping 
concentration (~1018 cm–3) is expected to significantly reduce the substrate 
resistance. Additionally, the identification of detrimental surface defects, such as 
contaminants, cracks, and remnant subsurface polishing damage, will be carefully 
employed prior to device fabrication by means of high-resolution X-ray diffraction 
and X-ray photoelectron spectroscopy to improve device performance. 
Additionally, a low N-polar contact resistance will be targeted by varying the metal 
stack configuration and annealing temperatures, as well as ion implantation. In 
addition, the reverse I-V data shows VB less than the theoretical maximum for GaN 
material. This result is not surprising, as neither edge termination nor field plate 
structures were used in this study. We also observed that VB does not vary with 
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device size—an important observation, as device properties should not vary with 
size across the wafer. It is expected that VB will increase with implementation and 
optimization of such structures as guard rings and/or field plates. All proposed 
changes are expected to significantly improve the VB of vertical GaN SD structures.  
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