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1. Purpose. The purpose of this memorandum is to provide documentation of research
for the Army G3/5/7 Munitions Management Division and Center for Army Analy-
sis (CAA) by the TRADOC Analysis Center, Monterey (TRAC-MTRY). The focus
of the research is to improve the current methodology employed by CAA in model-
ing precision-guided munitions effects into the Joint Integrated Contingency Model
(JICM) scenarios to enhance munitions requirements estimate generation, especially
for high-cost low-density munitions like Excalibur.

2. Background. The Army Munitions Management Division develops ammunition re-
quirements in support of Army programming and the Army budget. When, as usually
happens, there are not sufficient resources to fill 100% of requirements, this office also
offers analysis on the risks associated with not filling the full requirement by munition.
Currently, CAA supports the Munitions Management office by using JICM to do Army
level analysis to support requirements and risks associated with tradeoffs in filling re-
quirements. CAA uses effects data provided by the Army Material Systems Analysis
Activity (AMSAA) and tactics, techniques, and procedures (TTPs) and related data
from subject matter experts at the Fires Center of Excellence (FCoE) to inform the
development of requirements for precision guided munitions (PGMs). Given the criti-
cal role that PGMs play in modern Joint warfare, it is of great importance to ensure
that CAA’s modeling represents PGM usage and effectiveness in an operationally ap-
propriate manner to inform risk analysis for not filling precision munitions to 100% of
requirements.

3. Methodology. The research team used two approaches to solve the JICM precision-
munitions effects modeling problem: an analytic model for the Carleton damage func-
tion, and a response surface model to predict the probability of damage, wounded
personnel, suppression effects. Appendix A shows constraints, limitations, and as-
sumptions used for our research methodology.

(a) The first approach refined the analytical solution to the Carleton damage func-
tion to compute the damage probability for multiple munitions fired at a unitary
target and area targets. Wang et al. in detail the derivation of their equations
(See Appendix C). First, Wang et al. determined the requisite parameters to
determine an exact damage probability using the Carleton damage function of M
weapons fired at a unitary target. Next, they utilized this solution to optimize
the aim-point distribution that provides the greatest probability of damage to the
target.1 The results of this research will allow the JICM developers to improve
their modeling methodology which does not evaluate the optimal probability of
multiple weapons systems fired at a unitary target. After determining the optimal
damage probability against a unitary target, Wang et al. identified the optimal
probability against an area target.2 Essentially, this research extends their previ-

1Hongyun Wang et al. “Explicit Exact Solution of Damage Probability for Multiple Weapons against a
Unitary Target”. In: American Journal of Operations Research 6.06 (2016a), p. 450.

2Hongyun Wang et al. Average damage caused by multiple weapons against an area target of normally
distributed elements. Tech. rep. TRAC-Monterey, 2016b.
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ous work to multiple target engagements and provides added capability for the
JICM developers to implement in their combat model.

(b) Although, the analytic methodology provided added benefits to the JICM model
by improving the number of munitions expended in the model, it still does not
ensure the fidelity of Battlefield effects required by the Army G-3/5/7 munitions
management personnel. The response surface modeling methodology addresses
this issue by computing a predicted probability of damage, wounded personnel,
and suppression based on the current inputs used in the JICM model. (See Ap-
pendix D). To start, Ahner and McCarthy computed a damage probability using
the Klopcic damage function, which is a combination of the Carleton damage
function and the cookie cutter function.3 Next, they used this damage function
and the JICM input parameters to build a design of experiments and a meta-
model to compute a predicted probability of damage based on the munition type
and target distance. They also developed a similar methodology to compute a
predicted probability of suppression and wounded personnel.4 Finally, Ahner and
McCarthy developed a risk value to model a commander’s risk tolerance for col-
lateral damage. Using this parameter will give a decision maker insight into the
amount of certainty they can have of damaging, wounding, or suppressing a partic-
ular target which is currently not a capability within the JICM model. Another
benefit of their methodology is that the CAA JCIM developers can implement
this algorithm into their current model or use a separately developed spreadsheet
model as a supplemental analysis tool.

4. Results. The project team briefed the final results to the sponsor on 27 October 2016
and the slides and notes from this briefing are contained in Appendix B.

3Darryl Ahner and Andrew McCarthy. Algorithm Development for the Combat Sample Generator
(COSAGE) Model. Tech. rep. Air Force Institute of Technology, 2016.

4Ibid.
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Appendix A
Study Plan

Problem Statement
To improve the current methodology employed by the Center for Army Analysis (CAA)
in modeling precision-guided munitions effects into JICM scenarios in order to enhance
munitions requirements estimate generation, especially for high-cost low-density munitions
like Excalibur.

Project Team

Sponsor Agency: Robert Grubbs
Munitions Management Division, HQDA G-3/5/7
robert.a.grubbs.civ@mail.mil

Project Stakeholder: David Knudson
Campaign Analysis Division Chief
Center for Army Analysis, Fort Belvoir, VA 22060
david.b.knudson.civ@mail.mil

TRAC Lead: Cardy Moten III
MAJ, LG/FA49
TRADOC Analysis Center - Monterey
cardy.moten3.mil@mail.mil

NPS Faculty: Dr. Hong Zhou
Applied Mathematics Department
Naval Postgraduate School, Monterey, CA
hzhou@nps.edu

AFIT Faculty: Dr. Darryl Ahner
Operations Research Department
Air Force Institute of Technology, Dayton, OH
darryl.ahner@afit.edu
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Constraints, Limitations, & Assumptions
• Constraint

– The project completion date is no later than 30 September 2016.

• Limitation

– The project will focus only on precision-guided munitions estimates and effects.

• Assumption

– THe project methodology can be implemented for other types of munitions within
JICM.

Methodology
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Timeline

06 JAN 16 IPR #1: Restated problem statement approval.
15 JAN 16 Complete literature review.
18 JAN 16 Develop modeling methodology.
9 MAR 16 IPR #2: Brief initial findings to CAA.
17 MAY 16 IPR #3: Brief initial findings to G3 Munitions.
27 SEP 16 Final IPR to CAA.
27 OCT 16 Final IPR to G3 munitions.
16 DEC 16 Deliver project documentation.
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Appendix B
Progress Report

The final IPR, presented to the sponsor on 27 October 2016, for this phase of the project is
on the following pages.
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In the current process, JICM produces an estimate of Excalibur rounds fired. This estimate is 

manually mapped to FIRESIM results. The problem with this method is that FIRESIM and 

JICM do not adjudicate their effects at the same resolution. 

Since FIRESIM is a higher resolution model than COSAGE,  the current process requires more 

subjective analysis of the results.
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This slide makes a simple depiction of why this problem is important. In essence, CAA sends 

an estimation of munitions requirements to the Army G3 Munitions office for their follow-on 

analysis. 

The Army G3 munitions office provides feedback to CAA in the form of updated munitions 

constraints for CAA to model and then provide updated munitions estimates. 

Since the estimates for precision-guided munitions are not adjudicated in enough detail to 

provide the Army G3 munitions division an assessment of the relative risk to mission, the 

Army G3 munitions office is having difficulty in providing adequate constraints model for 

CAA to improve the munitions estimates. 

Thus, our proposed model should provide a potential solution to this problem. 
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The current COSAGE methodology is as follows.

- Select 1 piece of critical equipment to target at random 

- Based on range from target a lethal area and associated round errors are determined for the 

piece of equipment selected at random

- Calculation of PK for 1 round

Center point of piece of equipment is the aim point (0,0)

Target size is based on the largest dimension of the target equipment size

Use a D0 value of 1.0

Use the Carlton Damage Function from ME to determine a PK

- Draw a random number to determine if the piece of equipment was killed or not

- There is no Collateral targets under consideration

To improve this methodology, we are going to explore more robust damage functions, and 

improve the target location algorithms. 
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The bottom line is that we feel that using our proposed model will help CAA to fill its 

current gap in adjudicating precision-munitions effects in COSAGE.
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The intent of our modeling methodology is to not only provide information on how many 

rounds were fired, but also other battlefield effects such as: damaged equipment, personnel 

killed, and wounded personnel. 
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For this case we consider the problem of shooting multiple weapons against a single target. 

We model the effects of the munitions using the Carleton damage function. We also will model 

the effects by analyzing both dependent error (aiming error) and independent error (ballistics 

errors).

In short, the impact point for the round is a combination of the aiming point and the effects 

from both the dependent and independent error. 
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We derived our kill probability solution from the Carleton damage function and will use 

this solution to examine the kill probability corresponding to various distributions of the 

aimpoints of M weapons. 
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The left panel shows a comparison of the case of all 𝑀 weapons aimed at (0,0) vs the case 

of using the optimal distribution of aim positions in the decay of 1-pkill. With the optimal 

distribution of aim points for 𝑀 weapons, we expect that 1-pkill(M) decays faster than in the 

case of aiming all 𝑀 weapons at the same position, which the left side chart confirms. 

In the right panel, we plot log(1-pkill) vs. 𝑀. It is clear that in the presence of dependent 

error, the survival probability decreases slower than the geometric decay.
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This chart shows an example of the type of problem we analyzed. In each graphic, there are 

12 targets normally distributed around the center of the target located at (0,0). Similar to the 

point target problem, the solution for the damage to these area targets are an average over all 

realizations of the targets.
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The goal of our method is to find simple and efficient “empirical” methods for calculating 

nearly optimal aiming positions. This approach greatly simplifies the numerical complexity of 

finding the optimal aiming points at the price of obtaining an approximate optimum. We 

considered 6 constrained patterns. The patterns of B-family aimpoints are M points on an 

ellipse that are uniform in polar angle. The pattern of A-family aimpoints analyzed M points 

along an ellipse that are uniform in parametric angle. 

Pattern 1 for both groups, depict M points uniform in either parameter or polar angle. 

Pattern two depicts one target located at (0,0) and the remaining (M-1) targets uniform in 

either parameter or polar angle. Pattern 3 depicts two targets along the x-axis and the 

remaining (M-2) targets uniform in either parameter or polar angle. 

Patterns 1 and 2 have three parameters: the parameter/polar weapon angle, effective radius 

of the ellipse, and the aspect ration of the ellipse. Patter 3 also contains these three parameters 

plus a fourth parameter for the aiming point for the x-axis targets.
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The left panel plots the optimal target damage fraction as a function of several values for 

the target radius (s) and a fixed value for the number of weapons M.

A practical question regarding resource allocation is the following. Given the radius of area 

target (s), what is the minimum number of weapons needed to achieve a given threshold of 

damage fraction? This question is answered in the chart on the right. This graphic shows that 

for any given threshold of damage fraction, the minimum number of weapons needed is an 

increasing function of the area target radius (i.e., larger area target requires larger number of 

weapons), which again is reasonable and consistent with our intuition.
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For an area target of radius s, we simply calculate/predict a set of nearly optimal aiming 

points using the scaling law shown above. We evaluate the performance of this efficient 

method by examining the damage fraction values achieved by these sets of nearly optimal 

aiming points. Specifically, for each area target, we calculate the damage fraction values 

corresponding to three sets of aiming points:

• Aiming points calculated in the unconstrained optimization.

• Aiming points calculated using the scaling law.

• All aiming points = (0,0).

The charts in the slide compare the damage fraction values caused by the 3 sets of aiming 

points described above for M = 6 weapons (left panel) and for M = 10 weapons (right panel). 

The damage fraction achieved by the set of nearly optimal aiming points calculated using 

scaling is indistinguishable from that achieved in the unconstrained optimization (true 

optimum) while the damage fraction corresponding to all weapons aiming at (0; 0) is much 

lower. Therefore, we conclude that the scaling law is an efficient and accurate method for 

calculating a set of nearly optimal aiming points.
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Carlton Damage Functions calculates PK as a function of 

distance from blast

munition impact angle

direct hit effectiveness

& weapon lethal area

But the Carlton damage function tends to underestimate damage in close proximity to the 

detonation point but does an excellent job approximating damage far from detonation point

In contrast, the cookie cutter function estimates damage a constant damage for close 

proximity points and PK = 0 for points farther away. 

This becomes especially important when analyzing fratricide and collateral damage, 

damage far away from detonation is an important consideration, which is more appropriate 

modeled by the Carlton Damage Function.

We therefore combine them taking the best characteristics from each.
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The damage function accounts for typical inputs to produce the effects of one munition. For 

multiple munitions, the effects are considered as independent events and is applied repetitively. 

Terrain affects are accounted for through the Lethal Area and Core Lethal Area inputs.

Target location area is the only uncertain factor entering into our equation. We treat it as a 

random variable that is distributed uniformly from 0 to its maximum value in all directions. 

This requires a simulation to determine the average effect since our damage function is 

nonlinear.
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Precision munitions can affect any object in their area. A target or other object, such as a 

civilian, can be affected over the entire spectrum from unaffected to killed. An enemy who is 

suppressed is unable to fire and there may be a time dependent component to this effect.

An enemy who is wounded may perform at less than peak effectiveness, but may or may 

not be suppressed

An enemy who is killed is eliminated from the scenario

The probability of being wounded or suppressed is modeled similarly to P(K), using a 

scaler to determine the size of the “wounding lethal area”
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The experimental design is a Nearly Orthogonal Latin Hypercube (NOLH), which is a 

space covering design that ensures the correlation between input variables will be negligible 

which has better space-filling properties than completely randomized variable selection

Variable correlation is restricted to being in the range (-.03, .03)

A minimum and maximum value must be set for each input variable
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Notice that we end up modeling the square root of Pk in order to satisfy fitting a linear 

model. R^2, the measure of model fit want close to one, changes from 0.66 to 0.79 with normal 

distribution of errors around the solid red line.

Unfortunately, there are still too many small values of PK that affect fit resulting in poor 

predicted larger PK values that we care about most. We therefore decided to use regression 

trees to construct the model piece wise.

Models were developed for different maximum values of TLE, Lethal Area, and distance 

from the origin (d and r)

Max TLEs of 15m, 50m, and 91m

Max Lethal Areas of 500m2, 1000m2, and 1500m2

Max d and r of 10m, 15m, 20m, 25m, and 50m
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The regression tree analysis showed that Deflection and Range were the two factors that 

accounted for the most variance in the prediction. Additionally, the analysis led to construct 

models by munition type. This resulted in four models as shown with the best models, 1A and 

2A, which are the most operationally relevant.
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Significant push in recent conflicts to reduce non-enemy damage (collateral damage and 

fratricide)

In order to meet this effort, a conservative adjustment can be made to better protect the 

safety of non-enemies

Based on the Model in use, a constant based on error distribution can be added to the 

model before it is squared

Example: To be 90% certain that PK is this value or less, add a civilian adjustment C
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We analyzed the optimal distribution of aim points initially for circular and elliptical 

shaped aiming areas.  The series of graphics on this slide depict our final analysis of aim 

position distribution without constraint to the target area.  We varied the number of weapons to 

aim at a target located at (0,0) from a minimum of five weapons to a maximum of 18 weapon 

systems firing a single round at the target. 
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To find a phenomenological fitting to the decay of survival probability as a function of 𝑀, 

we consider the form of  1 − 𝑝𝑘𝑖𝑙𝑙 𝑀 = exp −𝛼𝑀𝛽 . If the survival probability

approximately satisfies this relation, then the plot of log[− log (1 − 𝑝𝑘𝑖𝑙𝑙)] vs. log(𝑀) would 

approximately follow a straight line. In other words log[− log (1 − 𝑝𝑘𝑖𝑙𝑙)] = log 𝛼 +
𝛽log(𝑀). The left panel shows the plot is very close to a straight line. 

In the right panel, we plot 𝑝𝑘𝑖𝑙𝑙 vs. 𝑀 and the fitting function 1 − exp −0.35𝑀0.73 . For 

the set of parameters values used, phenomenologically we have the approximation of 𝑝𝑘𝑖𝑙𝑙 ≈
1 − exp(−0.35𝑀0.73).
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We compare the results of optimization over constrained patterns with those of the overall 

optimization. The charts show plots of the difference in optimal (maximal) damage fractions 

(popt) between constrained and unconstrained optimizations as a function of area target radius 

(s) for various number of weapons (M). The difference shows how accurate it is to optimize 

over a given pattern. For M ≤ 6 (top left panel), the best approximate optimal damage fraction 

is achieved by distributing the aiming points over an ellipse, uniformly in polar angle (Pattern 

B1). At M = 7 (lower left panel), the best approximate optimal damage fraction is achieved by 

placing an aiming point at center and placing the rest six aiming points over an ellipse, 

uniformly in polar angle (Pattern B2) . This is also true for M = 8 and M = 9. As the number of 

weapons increases, at M = 10 (top right panel), the best approximate optimal damage fraction 

is achieved by placing two aiming points on the x-axis and the rest eight aiming points over an 

ellipse, uniformly in polar angle (Pattern B3). The constrained optimum over Pattern B3 

remains very accurate at M = 12 weapons (lower right panel).
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To explore how the size of optimal aiming points scales with the area target radius, we 

plotted these two quantities against each other in a log-log plot. The left panel compares sets of 

scaled optimal aiming points of pattern B3 for s = 100, s = 200, s = 300, and s = 400. The 

comparison demonstrates that not only the spread of optimal aiming points scales as 𝑠 , the 

distribution of optimal aiming points after scaling is approximately invariant with respect to 

the area target radius. 

The right panel shows that the size of the optimal aiming points is approximately 

proportional to the square root of the area target radius (s). This observations suggests that we 

should normalize the aiming points by the square root of the area target radius.
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Appendix C
Analytic Solution Methodology

This appendix contains the technical report for the analytical solution of firing precision-
guided munitions at point and area targets, supporting MATLAB code used to implement
the methodologies, and finally a white paper detailing the functions produced in MATLAB.
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April 27, 2016

Abstract

We study the damage probability when M weapons are used against a unitary tar-

get. We use the Carleton damage function to model the distribution of damage proba-

bility caused by each weapon. The deviation of the impact point from the aimpoint is

attributed to both the dependent error and independent errors. The dependent error is

one random variable affecting M weapons the same way while independent errors are

associated with individual weapons and are independent of each other. We consider

the case where the dependent error is significant, non-negligible relative to independent

errors. We first derive an explicit exact solution for the damage probability caused by

M weapons for any M . Based on the exact solution, we find the optimal aimpoint

distribution of M weapons to maximize the damage probability in several cases where

the aimpoint distribution is constrained geometrically with a few free parameters, in-

cluding uniform distributions around a circle or around an ellipse. Then, we perform

unconstrained optimization to obtain the overall optimal aimpoint distribution and the

overall maximum damage probability, which is carried out for different values of M , up

to 20 weapons. Finally, we derive a phenomenological approximate expression for the

damage probability vs M , the number of weapons, for the parameters studied here.

Keywords: Damage probability; Carleton damage function; multiple weapons with de-

pendent errors; exact solution; optimal distribution of aimpoint

1 Introduction

The probability of killing or damaging a target depends heavily on how close a weapon

is delivered to the target. This delivery accuracy of a weapon may be affected by many

components. In general, the errors are usually divided into two main groups: the dependent

∗Corresponding author, hzhou@nps.edu
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error and independent errors. The dependent error is related to the aiming error that results

from a miscalculation of latitude, longitude, distance, wind effect, or uncertainty in locating

the target position. The dependent error results in the armament impacting away from the

desired target point and it affects all weapons the same way. The independent errors refer

to ballistic dispersion errors, which may result from variations in bullet shape, variations in

gun barrels, or variations in amount of explosive used inside each bullet [1].

Due to many uncertainties in the field of weapon effectiveness, Monte Carlo simulations

have been widely employed to estimate the probability of target damage [2]. Even though

Monte Carlo simulations can provide reasonable estimates, exact solutions are mathemat-

ically more attractive and practically more useful. The objectives of this paper are i) to

derive explicit exact solution for the damage probability caused by multiple weapons against

a single target, ii) to use the exact solution to maximize the damage probability with respect

to the aimpoint distribution of weapons, with or without geometric constraint(s) on the

aimpoint distribution, and iii) to study the relation of damage probability to the number of

weapons when the dependent error is significant. The results obtained here can be applied

to indirect fire artillery, or GPS/INS-guided weapons.

The remainder of this paper will progress as follows. Section II provides the detailed

mathematical formulation and explicit exact solution for the kill probability. Section III

considers the performances of various aimpoint distributions. Finally, Section IV presents

conclusions and future work.

2 Mathematical formulation

We consider a single point target in the two dimensional space. We establish the coor-

dinate system such that the target is located at the origin point ~xtarget = (0, 0). We use M

weapons with dependent and independent errors to fire on the target. Due to the presence

of significant dependent error, if all M weapons are aimed at ~xtarget = (0, 0), the M impact

points may be uniformly shifted away from the target by a significant distance, resulting in a

small damage probability. To make the damage probability less susceptible to the dependent

3
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error, we aim the M weapons at M different points distributed around the target. When the

dependent error shifts some impact points away from the target, it simultaneously shifts the

some other impact points toward the target. In this study all weapons are assumed to be

perfectly reliable. Gross errors due to anomalies such as catastrophic weapon system failure,

adverse weapon separation effects, and GPS jamming are neglected.

Let

• ~rj = the aiming point of weapon j.

• ~Y = miss distance from the aimpoint due to the dependent error of M weapons,

affecting the impact points of all M weapons uniformly.

• ~Xj = miss distance from the aimpoint due to the independent error of weapon j,

affecting only the impact point of weapon j individually. We assume that { ~Xj, j =

1, 2, . . . ,M} are independent of each other and independent of random variable ~Y .

The impact point of weapon j is given by

~wj = ~rj + ~Y + ~Xj

We model the dependent error ~Y as a normal random variable with zero mean:

~Y ∼ N




 0

0


 ,


 σ2

1 0

0 σ2
2






where σ1 and σ2 are standard deviations, respectively, in the two coordinate directions, which

give an indication of the spread of the dependent error in the two directions. We model each

independent error ~Xj as a normal random variable with zero mean:

~Xj ∼ N




 0

0


 ,


 d21 0

0 d22






Further, we assume that the independent errors of individual weapons { ~Xj, j = 1, 2, . . . ,M}
are independent of each other and are independent of the dependent error ~Y .
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We use the mathematical fact that the sum of two independent normal random variables

is a normal random variable. Suppose U ∼ N(0, σ2) and V ∼ N(0, s2). We have

Z ≡ V + U ∼ N(0, s2 + σ2) (1)

The probability density functions of U and V are given by

ρU(u) =
1√

2πσ2
exp

(−u2
2σ2

)

ρV (v) =
1√

2πs2
exp

(−v2
2s2

)

In terms of the probability density functions, we write equation (1) as

∫
1√

2πs2
exp

(−(z − u)2

2s2

)
1√

2πσ2
exp

(−u2
2σ2

)
du

=
1√

2π(s2 + σ2)
exp

( −z2
2(s2 + σ2)

)
for any z

Applying a change of variables unew = −u, denoting unew still by u for simplicity and

multiplying the equation by
√

2πs2, we get

∫
exp

(−(z + u)2

2s2

)
1√

2πσ2
exp

(−u2
2σ2

)
du

=

(
s2

s2 + σ2

) 1
2

exp

( −z2
2(s2 + σ2)

)
for any z

We rewrite the equation above in terms of expected values:

EU

[
exp

(−(z + U)2

2s2

)]
=

(
s2

s2 + σ2

) 1
2

exp

( −z2
2(s2 + σ2)

)
(2)

Here the notation EU indicates the average with respect to random variable U while z and

s2 are fixed, not varying with U . Equation (2) is valid for any normal random variable

U ∼ N(0, σ2), and for any z and s2 > 0. In the analysis below, we will use equation (2)

extensively.

We use the Carleton damage function to model the probability of killing by an individual

weapon. Let ~w = (w(1), w(2)) be the impact point of a weapon where w(1) and w(2) describe
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the impact points in the range and deflection directions from the target. The probability of

the target being killed by an weapon at impact point ~w is modeled mathematically as

Pr(target being killed by one weapon at impact point ~w)

= exp

(−w(1)2

2b21

)
exp

(−w(2)2

2b22

)
(3)

This is called the Carleton damage function or the diffuse Gaussian damage function [3].

The two parameters b1 and b2 in the Carleton damage function (3) represent the effective

weapon radii in the range and deflection directions, respectively. With the impact points of

the M weapons given by ~wj = ~rj + ~Y + ~Xj, j = 1, 2, . . . ,M , the probability of the target

located at the origin being killed by the M weapons is

Pr(target being killed by M weapons at impact points {~wj, j = 1, 2, . . . ,M})

= 1−
M∏

j=1

(
1− exp

(−wj(1)2

2b21

)
exp

(−wj(2)2

2b22

))
(4)

= −
M∑

k=1

(−1)k
∑

all k-combinations
(j1, j2, . . . , jk)

from (1, 2, . . . ,M)

k∏

l=1

exp

(−wjl(1)2

2b21

)
exp

(−wjl(2)2

2b22

)

= −
M∑

k=1

(−1)k
∑

(j1,...,jk)

k∏

l=1

exp

(−(rjl(1) + Y (1) +Xjl(1))2

2b21

)

︸ ︷︷ ︸
F1(j1, . . . , jk)

×
k∏

l=1

exp

(−(rjl(2) + Y (2) +Xjl(2))2

2b22

)

︸ ︷︷ ︸
F2(j1, . . . , jk)

We calculate the probability of the target being killed averaged over independent errors

{ ~Xj, j = 1, 2, . . . , N} and averaged over the dependent error ~Y . For that purpose, we only

need to calculate the average of each term inside the summation: E [F1(j1, . . . , jk)× F2(j1, . . . , jk)].

Notice that F1(j1, . . . , jk) involves only the horizontal components and F2(j1, . . . , jk) involves

only the vertical components of { ~Xj} and ~Y . Since the horizontal components and vertical
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components are independent of each other, we have

E [F1(j1, . . . , jk)× F2(j1, . . . , jk)] = E [F1(j1, . . . , jk)]× E [F2(j1, . . . , jk)]

Since F1(j1, . . . , jk) and F2(j1, . . . , jk) have exactly the same format, we only need to derive

the analytical expression for one. For conciseness, we denote rjl(1), Y (1), and Xjl(1) simply

by rjl , Y , and Xjl in the calculation of E [F1(j1, . . . , jk)]. We first average F1(j1, . . . , jk) over

independent errors {Xj ∼ N(0, d21)}.

E{Xj} [F1(j1, . . . , jk)] = E{Xj}

[
k∏

l=1

exp

(−(rjl + Y +Xjl)
2

2b21

)]

=
k∏

l=1

EXjl

[
exp

(−(rjl + Y +Xjl)
2

2b21

)]
(5)

Each term in the product is an average of the form on the left hand side of (2). Applying

equation (2), we write each average as

EXjl

[
exp

(−(rjl + Y +Xjl)
2

2b21

)]
=

(
b21

b21 + d21

) 1
2

exp

(−(rjl + Y )2

2(b21 + d21)

)

Substituting this result into equation (5), we obtain

E{Xj} [F1(j1, . . . , jk)] =
k∏

l=1

(
b21

b21 + d21

) 1
2

exp

(−(rjl + Y )2

2(b21 + d21)

)

=

(
b21

b21 + d21

) k
2

exp

(
−∑k

l=1(rjl + Y )2

2(b21 + d21)

)

=

(
b21

b21 + d21

) k
2

exp



−
(
Y 2 + 2Y

∑k
l=1 rjl/k +

∑k
l=1 r

2
jl
/k
)

2(b21 + d21)/k




=

(
b21

b21 + d21

) k
2

exp




(∑k
l=1 rjl/k

)2
−∑k

l=1 r
2
jl
/k

2(b21 + d21)/k


 exp



−
(
Y +

∑k
l=1 rjl/k

)2

2(b21 + d21)/k




Next we average over the dependent error Y ∼ N(0, σ2
1). Again, the average is of the form

on the left hand side of (2). Applying equation (2), we arrive at

EY


exp



−
(
Y +

∑k
l=1 rjl/k

)2

2(b21 + d21)/k





 =

(
(b21 + d21)/k

(b21 + d21)/k + σ2
1

) 1
2

exp



−
(∑k

l=1 rjl/k
)2

2((b21 + d21)/k + σ2
1)



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Thus, the overall average of F1(j1, . . . , jk) has the expression

E [F1(j1, . . . , jk)] =

(
b21

b21 + d21

) k
2
(

(b21 + d21)/k

(b21 + d21)/k + σ2
1

) 1
2

× exp




(∑k
l=1 rjl(1)/k

)2
−∑k

l=1 rjl(1)2/k

2(b21 + d21)/k
−

(∑k
l=1 rjl(1)/k

)2

2((b21 + d21)/k + σ2
1)


 (6)

Similarly, the overall average of F2(j1, . . . , jk) has the expression

E [F2(j1, . . . , jk)] =

(
b22

b22 + d22

) k
2
(

(b22 + d22)/k

(b22 + d22)/k + σ2
2

) 1
2

× exp




(∑k
l=1 rjl(2)/k

)2
−∑k

l=1 rjl(2)2/k

2(b22 + d22)/k
−

(∑k
l=1 rjl(2)/k

)2

2((b22 + d22)/k + σ2
2)


 (7)

The probability of target being killed, averaged over independent errors and dependent error,

is called kill probability, and is denoted by pkill(M weapons). It has the expression

pkill(M weapons) = −
M∑

k=1

(−1)k
∑

(j1,...,jk)

E [F1(j1, . . . , jk)]E [F2(j1, . . . , jk)] (8)

where E [F1(j1, . . . , jk)] and E [F2(j1, . . . , jk)] are given in (6) and (7) above. Together,

equations (6), (7), and (8), give us an explicit analytical expression for calculating the kill

probability.

After the completion of the above derivation, we discovered that similar approaches had

been taken separately by von Neumann [4] and by Washburn [5].

3 Performances of various aimpoint distributions of

multiple weapons against a single target

Now we apply the exact solution to examine the kill probability corresponding to various

distributions of the aimpoints of M weapons.
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Let AL denote the weapon lethal area or the fragmentation mean area of the effectiveness.

It describes the effect of a warhead against a target and includes the effects of direct hit,

blast, and fragmentation. We can calculate AL from the Carleton damage function (3) as

AL =

∫ ∞

−∞

∫ ∞

−∞
exp

(
− x2

2b21
− y2

2b22

)
dxdy = 2πb1b2 (9)

The aspect ratio of the weapon radii of the Carleton damage function a = b1
b2

is described by

the empirical formula:

a = max(1− 0.8 cos θ, 0.3) (10)

where θ is the impact angle.

Once the lethal area AL and the aspect ratio a are given, one can calculate the weapon

radii for the Carleton damage function (3) as follows:

b1 =

√
a× AL

2π
(11)

b2 =
b1
a

(12)

For all the cases considered in this paper, we choose AL = 2270 ft2, θ = 65o. This yields

b1 = 15.4640 ft and b2 = 23.3628 ft. Furthermore, we choose σ1 = σ2 = 30 for the dependent

error and d1 = d2 = 5 for the independent errors.

We first consider the case of M weapons with aimpoints uniformly distributed on a circle

as formulated below

~rj =

(
r cos

(
θ +

2π(j − 1)

M

)
, r sin

(
θ +

2π(j − 1)

M

))

where r is the radius and θ the phase off-set angle of the distribution. These are parameters

that we can tune to maximize the kill probability.

For each value of M , we maximize the kill probability with respect to (r, θ). This un-

constrained nonlinear optimization can be achieved by using MATLAB built-in function

fminsearch which is based on a direct search method of Lagarias et al. [6]. The results are

listed in Table 1.
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Table 1: The optimal distribution for M aimpoints when they are uniformly distributed

around a circle and the corresponding probability of kill. Here r is the radius and θ is the

phase off-set angle.

M ropt θopt pkill

1 0 *** 0.27597

2 16.246 0 0.43690

3 22.960
π

6
0.53834

4 26.948 0 0.62291

5 29.192
π

10
0.68212

6 31.086
π

6
0.72869

7 32.529
π

14
0.76474

8 33.731 0 0.79360

9 34.747
π

18
0.81702

10 35.63
π

10
0.83635

11 36.409
π

22
0.85251

12 37.105 0 0.86617

Note that the Carleton damage function we use is not isotropic. It has different effective

radii in the range and deflection directions. To accommodate this anisotropic property of the

Carleton damage function, we consider the case of M weapons with aimpoints distributed

on an ellipse as formulated below

~rj =

(
q
√
η cos

(
φ+

2π(j − 1)

M

)
,
q√
η

sin

(
φ+

2π(j − 1)

M

))

where η is the aspect ratio of the ellipse. In the formulation above, we elongate one axis by
√
η and simultaneously shrink the other axis by the same factor. In this way, the area of the
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Table 2: The optimal distribution for M aimpoints when they are uniformly distributed

around an ellipse and the corresponding probability of kill. Here φ is the off-set value in

the parametric equation of the ellipse. The cases of M = 1 and M = 2 are not affected by

aspect ratio.

M (major axis)opt (minor axis)opt φopt pkill

1 0 0 *** 0.27597

2 16.246 16.246 0 0.43690

3 25.637 17.639
π

6
0.53989

4 29.621 23.068 0 0.62477

5 30.411 27.235
π

10
0.68264

6 32.859 28.548
π

6
0.72958

7 34.292 30.095
π

14
0.76560

8 35.848 30.967 0 0.79469

9 37.135 31.75
π

18
0.81829

10 38.342 32.349
π

10
0.83784

11 39.436 32.861
π

22
0.85420

12 40.457 33.29 0 0.86806

ellipse is maintained at πq2, independent of the aspect ratio η. Parameter q has the meaning

q =

√
area of ellipse

π
=
√

(major axis)× (minor axis)

From q and η, we can determine the major axis and the minor axis as

major axis = q
√
η

minor axis =
q√
η

We should point out that parameter φ is not the polar angle of the aimpoint of weapon 1. φ

is the angular value used in the parametric equation of the ellipse to calculate the aimpoint
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of weapon 1. φ is the phase angle before the major axis is elongated and before the minor

axis is shrunk.

Table 3: The optimal distribution for M aimpoints when one of them is aimed at the origin

while the rest of aimpoints are uniformly distributed around an ellipse, and the corresponding

probability of kill. Here φ is the off-set value in the parametric equation of the ellipse. For

the cases of M ≤ 5, the kill probability is not improved by moving one of the M aimpoints

to the center.

M (major axis)opt (minor axis)opt φopt pkill

1 *** *** *** 0.27597

2 22.161 22.161 0 0.40957

3 25.412 25.412 0 0.53737

4 32.918 23.814
π

6
0.60947

5 34.369 30.581 0.1407π 0.67798

6 36.213 33.451
π

10
0.73052

7 38.374 34.765 0 0.77123

8 39.45 36.17
π

14
0.80221

9 40.859 36.86
π

8
0.8274

10 41.814 37.655
π

18
0.84766

11 42.838 38.163 0 0.86449

12 43.709 38.648
π

22
0.87853

For each value of M , we maximize the kill probability with respect to (q, φ, η). We obtain

the results in Table 2.

In the above, we calculated the performance of placing the aimpoints of M weapons along

a circle or an ellipse. We now examine the case of aiming one weapon at the center and

aiming the rest (M − 1) weapons at positions distributed on an ellipse. The aimpoints of M
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weapons are distributed as formulated below.

~rj =

(
q
√
η cos

(
φ+

2π(j − 1)

M − 1

)
,
q√
η

sin

(
φ+

2π(j − 1)

M − 1

))
, j = 1, 2, . . . ,M − 1

~rM = (0, 0)

For each value of M , we maximize the kill probability with respect to (q, φ, η). The

optimal results are reported in Table 3.

Next, we fully optimize the distribution of M aimpoints without constraining them on a

circle or an ellipse. We represent the M aimpoints in polar coordinates.

(rj, θj) , j = 1, 2, . . . ,M

The optimal solutions for M = 1, M = 2, M = 3 and M = 4 are listed in Table 4.

Figure 1 shows the optimal distributions of aimpoints for M = 1 (yellow circles) and

M = 2 (blue squares) while the optimal distributions for the cases of M = 3 (yellow circles)

and M = 4 (blue squares) are displayed in Figure 2.

0 20 40

 

 

M = 1
M = 2

Figure 1: Optimal distributions of aimpoints for M = 1 (yellow circles) and M = 2 (blue

squares).
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0 20 40

 

 

M = 3
M = 4

Figure 2: Optimal distributions of aimpoints for M = 3 (yellow circles) and M = 4 (blue

squares).

0 20 40

 

 

M = 5
M = 6

Figure 3: Optimal distributions of aimpoints for M = 5 (yellow circles) and M = 6 (blue

squares).

The optimal solutions for M = 5, M = 6, M = 7 and M = 8 are given in Table 5.
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Table 4: Optimal distributions of aimpoints and the corresponding probabilities of kill for

M = 1, M = 2, M = 3 and M = 4.

M = 1 M = 2 M = 3 M = 4

pkill = 0.27597 pkill = 0.4369 pkill = 0.53989 pkill = 0.62477

j rj θj rj θj rj θj rj θj

1 0 16.246 0 23.975 0.12211π 29.621 0

2 16.246 π 23.975 0.87789π 23.068 0.5π

3 17.411 1.5π 29.621 π

4 23.068 2π

Table 5: Optimal distributions of aimpoints and the corresponding probabilities of kill for

M = 5, M = 6, M = 7 and M = 8.

M = 5 M = 6 M = 7 M = 8

pkill = 0.68505 pkill = 0.73391 pkill = 0.77218 pkill = 0.80341

j rj θj rj θj rj θj rj θj

1 33.839 0.08879π 38.334 0 40.69 0 43.43 0

2 24.734 0.5π 27.589 0.33554π 34.456 0.32695π 36.016 0.28566π

3 33.839 0.91121π 27.589 0.66446π 34.456 0.67305π 34.191 0.5809π

4 26.353 1.3057π 38.334 π 40.69 π 40.507 0.85228π

5 26.353 1.6943π 27.589 1.3355π 34.456 1.327π 40.507 1.1477π

6 27.589 1.6645π 34.456 1.673π 34.191 1.4191π

7 0 36.016 1.7143π

8 0.6587 0

Figure 3 illustrates the optimal distributions of aimpoints for M = 5 (yellow circles) and

M = 6 (blue squares); Figure 4 shows the optimal distributions of aimpoints for M = 7

(yellow circles) and M = 8 (blue squares).

The optimal solutions for M = 9, M = 10, M = 11 and M = 12 are listed in Table 6.
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0 20 40

 

 

M = 7

0 20 40

 

 

M = 8

Figure 4: Optimal distributions of aimpoints for M = 7 (yellow circles) and M = 8 (blue

squares).

0 20 40

 

 

M = 9

0 20 40

 

 

M = 10

Figure 5: Optimal distributions of aimpoints for M = 9 (yellow circles) and M = 10 (blue

squares).

Figure 5 displays the optimal distributions of aimpoints for M = 9 (yellow circles) and

M = 10 (blue squares); the optimal distributions for M = 11 (yellow circles) and M = 12

16

C-17



Table 6: Optimal distributions of aimpoints and the corresponding probabilities of kill for

M = 9, M = 10, M = 11 and M = 12.

M = 9 M = 10 M = 11 M = 12

pkill = 0.82935 pkill = 0.85158 pkill = 0.86957 pkill = 0.88499

j rj θj rj θj rj θj rj θj

1 46.336 0 48.534 0 50.078 0.05606π 49.091 0.18972π

2 36.994 0.24837π 42.116 0.25814π 42.093 0.28098π 41.676 0.40044π

3 35.587 0.5π 38.162 0.5π 38.939 0.5π 41.675 0.59952π

4 36.994 0.75163π 42.116 0.74186π 42.093 0.71902π 49.089 0.81023π

5 46.336 π 48.534 π 50.078 0.94394π 52.524 1.062π

6 36.994 1.2484π 42.116 1.2581π 45.328 1.1852π 45.409 1.296π

7 35.587 1.5π 38.162 1.5π 38.882 1.395π 40.554 1.5π

8 36.994 1.7516π 42.116 1.7419π 38.882 1.605π 45.407 1.9379π

9 0 12.452 0 45.328 1.8148π 52.523 1.7578π

10 12.452 π 12.535 0.02372π 21.097 1.9977π

11 12.535 0.97628π 0.44808 1.5002π

12 21.097 1.0023π

(blue squares) are plotted in Figure 6.

As M (the number of weapons) increases, the optimal distribution of aimpoints has more

layers, covering a larger area with a more uniform distribution over the area. In Figure 7,

we plot the optimal distributions of aimpoints for M = 15 (yellow circles) and M = 18 (blue

squares).

Next, we study the optimal kill probability as a function of M . Let pkill(M) denote the

kill probability corresponding to the optimal distribution of aimpoints for the case of M

weapons. As M increases, the survival probability of the target, (1 − pkill(M)), decreases.

In the absence of dependent error and when the aimpoints are all fixed at one point, the

outcome of each weapon affected by its independent error is statistically independent of the
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M = 11

0 20 40

 

 

M = 12

Figure 6: Optimal distributions of aimpoints for M = 11 (yellow circles) and M = 12 (blue

squares).

0 20 40 60

 

 

M = 15

0 20 40 60

 

 

M = 18

Figure 7: Optimal distributions of aimpoints for M = 15 (yellow circles) and M = 18 (blue

squares).

outcome of other weapons affected by their own independent errors. In this situation, the

probability of surviving M weapons is simply the M -th power of the probability of surviving
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one weapon: 1 − pkill(M) = (1− pkill(1))M . In other words, in the absence of dependent

error, the log survival probability is a linear function of M .

log(1− pkill(M)) = M log(1− pkill(1))

In the presence of dependent error, however, the situation is completely different. The same

dependent error affects all M weapons. The outcomes of individual weapons are no longer

independent of each other. As a matter of fact, when the M weapons are all aimed at the

same position, the outcomes of individual weapons are highly correlated with each other. As

an example, we examine the case of aiming all M weapons at the origin. The averages of

F1(j1, . . . , jk) and F2(j1, . . . , jk) are calculated from equations (6) and (7) as

E [F1(j1, . . . , jk)] =

(
b21

b21 + d21

) k
2
(

(b21 + d21)/k

(b21 + d21)/k + σ2
1

) 1
2

E [F2(j1, . . . , jk)] =

(
b22

b22 + d22

) k
2
(

(b22 + d22)/k

(b22 + d22)/k + σ2
2

) 1
2

The kill probability is

pkill(M) = −
M∑

k=1

(−1)k
∑

(j1,...,jk)

E [F1(j1, . . . , jk)]E [F2(j1, . . . , jk)]

= −
M∑

k=1

(−1)k
(
M

k

)(
b1b2√

(b21 + d21)(b
2
2 + d22)

)k√
b21 + d21

b21 + d21 + kσ2
1

√
b22 + d22

b22 + d22 + kσ2
2

In the absence of dependent error, we have σ1 = σ2 = 0, and the kill probability is

1− pkill(M) =

(
1− b1b2√

(b21 + d21)(b
2
2 + d22)

)M

In the presence of dependent error, to simplify the analysis, we assume that the independent

errors are zero (d1 = d2 = 0) and assume that
σ2
1

b21
=
σ2
2

b22
≡ ω2. The kill probability becomes

1− pkill(M) = 1 +
M∑

k=1

(−1)k
(
M

k

)
1

1 + kω2

For the first few values of M , we obtain

1− pkill(1) =
ω2

1 + ω2
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1− pkill(2) =

(
ω2

1 + ω2

)(
2ω2

1 + 2ω2

)

1− pkill(3) =

(
ω2

1 + ω2

)(
2ω2

1 + 2ω2

)(
3ω2

1 + 3ω2

)

Using mathematical induction, we can prove that

1− pkill(M) =
M∏

k=1

(
kω2

1 + kω2

)

Clearly, when all M weapons are aimed at the same positon, 1 − pkill(M) decays less than

geometrically with M .
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Figure 8: Left panel: Comparison in the decay of survival probability (1−pkill), of the case of

aiming all M weapons at (0, 0) vs the case of using optimal distribution of aimpoints. Right

panel: Enhancement in the decay of survival probability (1− pkill) attributed to optimizing

the distribution of M aimpoints.

With the optimal distribution of aimpoints for M weapons, we may expect that 1 −
pkill(M) decays faster than in the case of aiming all M weapons at the same position. Indeed,

as demonstrated in the left panel of Figure 8, when the M weapons are aimed according

to the optimal distribution of aimpoints, 1 − pkill(M) decays much faster than in the case

of aiming all M weapons at (0, 0). The right panel of Figure 8 shows the enhancement

in the decay of survival probability (1 − pkill(M)) attributed to the optimal distribution

of aimpoints. Specifically, in the right panel of Figure 8, we plot the quantity below as a
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Figure 10: Left panel: plot of log[− log(1− pkill)] vs log(M). Right panel: plot of pkill vs M

Even with the optimal distribution of aimpoints, however, the log survival probability,

log(1− pkill(M)), does not decrease linearly with respect to M in the presence of dependent

error. In the left panel of Figure 9, we plot log(1−pkill) vs M . It is clear that in the presence

of dependent error, the survival probability decreases slower than the geometric decay.

After excluding the geometric decay, we explore the possibility of a power law decay for

the survival probability. Specifically we examine whether or not the survival probability
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obeys the power law 1− pkill(M) = αM−β. If the survival probability follows this power law

relation, then the plot of log(1− pkill) vs log(M) would be a linear function

log(1− pkill) = log(α)− β log(M)

In the right panel of Figure 9, we plot log(1−pkill) vs log(M). The plot demonstrates clearly

that the survival probability does not follow a power law decay.

To find a phenomenological fitting to the decay of survival probability as a function of M ,

we consider the form of 1−pkill(M) = exp(−αMβ). If the survival probability approximately

satisfies this relation, then the plot of log[− log(1 − pkill)] vs log(M) would approximately

follow a straight line.

log[− log(1− pkill)] = log(α) + β log(M)

In the left panel of Figure 10, we plot log[− log(1− pkill)] vs log(M). The plot is very close

to a straight line. In the right panel of Figure 10, we plot pkill vs M and the fitting function

1− exp(−0.35M0.73). For the set of parameter values used, phenomenologically we have the

approximation:

pkill ≈ 1− exp(−0.35M0.73)

4 Conclusion

We have considered the damage probability caused by multiple weapons against a single

target. Explicit exact solution was derived for the damage probability in the case of M

weapons with both dependent error and independent errors. Then we applied the explicit

exact solution to maximize the damage probability and find the corresponding optimal dis-

tribution of aimpoints. We observed that in the presence of significant dependent error, the

decay of the survival probablty corresponding to the optimal aimpoints distribution (i.e., 1

− optimal damage probability) is slower than the exponential decay with respect to M , the

number of weapons. This observation demonstrates that increasing M is much less effective

in overcoming the dependent error than in overcoming independent errors. We found that
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phenomenologically the survival probability decays exponentially with respect to a fractional

power of M . Presumably, the fraction power varies with the parameter values of the prob-

lem. The mathematics behind this phenomenological expression and the dependence of the

fraction power on the parameter values will be investigated in future studies.
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Abstract

This paper investigates the effect of launching multiple weapons against an area

target of normally distributed elements. We provide an analytical form of the average

damage fraction and then apply it to obtain optimal aimpoints. To facilitate the

computational efforts in practice, we also consider optimizations over given constrained
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patterns of aimpoints. Finally, we derive scaling laws for optimal aimpoints and optimal

damage fraction wtih respect to the radius of the area target.

Military OR application area: Strike Warfare

OR methodology: Probabilistic Operations Research; Decision in the presence of uncer-

tainty

1 Introduction

The theory of firing, which mainly concerns about aiming, kill probability and allocation

of munitions, was inspired by World War II and has been progressed significantly in the past

decades [1]. A brief history of firing theory can be found in Washburn and Kress’s book [2]

where the authors also presented a detailed discussion on shooting without feedback or with

feedback. Another good reference on weaponeering is given by Driels [3].

In this paper we are interested in studying the effect of precision-guided munitions such as

Excaliburs. These coordinate-seeking munitions are usually guided by radio, radar, or laser

and launched by a cannon. They are intended to hit a target accurately and cause minimal

collateral damage to civilians, friendly forces and infrastructure, especially hospitals, schools,

churches, and residential homes. The precision-guided weapons are in general subject to

target-location errors and ballistic dispersion errors. The target-location errors, or aiming

errors, result from inaccuracies associated with identifying a target’s location. In contrast,

the ballistic dispersion errors are caused by random weapons effects, which may vary from

one weapon to another and are assumed to be independent from shot to shot. When a single

weapon is fired, it is natural to aim it at the expected center of the target. However, when

multiple weapons are launched against a unitary target, the probability of damaging the

target can be improved significantly by spreading the aimpoints around the target and the

optimal distribution of aimpoints has been investigated in our recent work [4]. Our goal here

is to extend our previous studies to estimate the probability of destroying an area target of

normally distributed elements with multiple weapons. We will seek optimal aimpoints for

various number of weapons.
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The plan of this paper is to first review our previous analytical results for the case of

multiple weapons against a single target in section 2. Section 3 introduces the mathematical

problem of multiple weapons being released against an area target consisting of normally

distributed elements. Exact solution for the average damage fraction is then derived. Section

4 calculates the optimal aiming points and examines the relation among the radius of area

target, the number of weapons and the optimal (maximum) damage fraction. In addition to

the unconstrained overall optimization of the damage fraction, we also study empirical, fast

and robust constrained optimization over several prescribed patterns. The goal is to reduce

the computational complexity of optimization and to compute a set of nearly optimal aiming

points efficiently. Section 5 provides scaling laws for optimal aimpoints and optimal damage

fraction with respect to the radius of area target. Section 6 highlights conclusions.

2 Review of our previous analytical results for the case

of multiple weapons against a single target

Even though the world is three-dimensional, most targets are known to be on the surface

of the Earth and therefore the targets are assumed to be in a two-dimensional ground space.

Conventionally, we use two coordinates to define this ground plane: the range direction and

the deflection direction. The range direction is defined by the direction of the weapon’s

velocity vector, whereas the deflection direction is perpendicular to the range direction.

Previously [4] we have studied the case of multiple weapons with both dependent and

independent errors against a single target at ~xtarget = (0, 0). For reader’s convenience, we

review briefly the mathematical formulation of the problem. Let

• ~rj = the aiming point of weapon j for j = 1, 2, ...,M .

• ~Y = the dependent error of M weapons, affecting the impact points of all M weapons

uniformly. We assume Y is a normal random variable.

• ~Xj = independent error of weapon j, affecting only the impact point of weapon j
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individually. We assume that { ~Xj, j = 1, 2, . . . ,M} are normal random variables,

independent of each other and independent of normal random variable ~Y .

We model the dependent error ~Y as a normal random variable with zero mean:

~Y ∼ N

 0

0

 ,

 σ2
1 0

0 σ2
2


where σ1 and σ2 are standard deviations, respectively, in the range and the deflection direc-

tions, which give an indication of the spread of the dependent error in these two directions.

We model each independent error ~Xj as a normal random variable with zero mean:

~Xj ∼ N

 0

0

 ,

 d2
1 0

0 d2
2


The impact point of weapon j is given by

~wj = ~rj + ~Y + ~Xj

We use the Carleton damage function to model the probability of killing by an individual

weapon. Let ~w = (w(1), w(2)) be the impact point of a weapon where w(1) and w(2) describe

the impact point in the range and deflection directions from the target. The probability of

the target being killed by an weapon at impact point ~w is modeled mathematically as

Pr(target being killed by one weapon at impact point ~w)

= exp

(−w(1)2

2b2
1

)
exp

(−w(2)2

2b2
2

)
(1)

This is the well-known Carleton damage function or the diffuse Gaussian damage function

[2]. The two parameters b1 and b2 in the Carleton damage function (1) represent the effective

weapon radii in the range and deflection directions, respectively.

The probability of a target being killed by theM weapons, averaged over all random errors

(i.e., dependent and independent errors), is called the kill probability and is mathematically

denoted by pkill(target,M weapons). Note that in the notation for the kill probability, the

target identity is explicitly included. This will be very convenient later in the discussion of
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an area target with multiple target elements, in which we can study the kill probability for

each individual element.

With the impact points of the M weapons given by {~wj = ~rj + ~Y + ~Xj, j = 1, 2, . . . ,M},
we derived an analytical expression for the kill probability as a function of quantities

(σ1, σ2, d1, d2, b1, b2, {~rj, j = 1, 2, . . . ,M}).

pkill(target,M weapons) = G(σ1, σ2, d1, d2, b1, b2, {~rj, j = 1, 2, . . . ,M}) (2)

where function G is defined as

G(σ1, σ2, d1, d2, b1, b2, {~rj, j = 1, 2, . . . ,M})

= −
M∑
k=1

(−1)k
∑

(j1,...,jk)

E [F1(j1, . . . , jk)]E [F2(j1, . . . , jk)] (3)

E [F1(j1, . . . , jk)] =

(
b2

1

b2
1 + d2

1

) k
2
(

(b2
1 + d2

1)/k

(b2
1 + d2

1)/k + σ2
1

) 1
2

× exp


(∑k

l=1 rjl(1)/k
)2

−∑k
l=1 rjl(1)2/k

2(b2
1 + d2

1)/k
−

(∑k
l=1 rjl(1)/k

)2

2((b2
1 + d2

1)/k + σ2
1)

 (4)

E [F2(j1, . . . , jk)] =

(
b2

2

b2
2 + d2

2

) k
2
(

(b2
2 + d2

2)/k

(b2
2 + d2

2)/k + σ2
2

) 1
2

× exp


(∑k

l=1 rjl(2)/k
)2

−∑k
l=1 rjl(2)2/k

2(b2
2 + d2

2)/k
−

(∑k
l=1 rjl(2)/k

)2

2((b2
2 + d2

2)/k + σ2
2)

 (5)

Mathematically, F1(j1, . . . , jk) is the product, over k weapons {j1, . . . , jk}, of all factors

involving only components in the range direction (i.e., σ1, d1, b1, r(1)) while F2(j1, . . . , jk)

is the product, over k weapons {j1, . . . , jk}, of all factors involving only components in the

deflection direction (i.e., σ2, d2, b2, r(2)). Together, equations (2), (3), (4) and (5) form an

explicit analytical expression for the kill probability of the target, pkill(target,M weapons).
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3 Mathematical formulation: multiple weapons against

an area target of normally distributed elements

Now let us examine the situation where M weapons are used against an area target

centered at ~xtarget = (0, 0), consisting of N discrete elements, normally distributed around

the center. Let

• ~Zk = the location of element k of the area target, for k = 1, 2, ..., N .

• ~rj, ~Xj, and ~Y are the same as defined above. They are respectively, the aiming point,

the independent error, and the dependent error of weapon j.

In this situation, ~Zk, the location of element k of the area target, is modeled as a normal

random variable with zero mean:

~Zk ∼ N

 0

0

 ,

 s2
1 0

0 s2
2

 (6)

We assume that {~Zk, k = 1, 2, . . . , N} are independent of each other, and are independent

of ~Xj and ~Y .

Figure 1 shows a sample distribution for an area target of 20 elements normally dis-

tributed with s1 = s2 = 4.

To study the damage fraction caused by the M weapons on the area target, we examine

the kill probability of element k caused by the M weapons. The impact point of weapon j

relative to element k of the area target is given by

~w
(k)
j = ~rj + ~Y + ~Xj − ~Zk

≡ ~rj + ~Y (k,eff) + ~Xj (7)

where the effective dependent error of the M weapons relative to element k is defined as

~Y (k,eff) ≡ ~Y − ~Zk
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Figure 1: A sample distribution for an area target consisting of 20 random elements normally

distributed with s1 = s2 = 4, as described by (6).

Note that ~Y (k,eff) is a normal random variable with zero mean

~Y (k,eff) ∼ N

 0

0

 ,

 σ2
1 + s2

1 0

0 σ2
2 + s2

2


The kill probability of element k caused by the M weapons (averaged over random indepen-

dent errors { ~Xj, j = 1, 2, . . . ,M}, over the random dependent error ~Y , and over the random

element location ~Zk) is given by

pkill(element k,M weapons)

= G(
√
σ2

1 + s2
1,
√
σ2

2 + s2
2, d1, d2, b1, b2, {~rj, j = 1, 2, . . . ,M}) (8)

where function G is defined in equations (3), (4) and (5). Notice that in the case of an area

target of normally distributed elements, the kill probability of element k has exactly the

same form as in the case of a single target at (0, 0) with the exception that all instances of

σ2
1 be replaced by (σ2

1 + s2
1) and σ2

2 be replaced by (σ2
2 + s2

2).

Let χk be the Bernoulli random variable indicating whether or not element k is killed

(“1” corresponding to “killed”). The damage fraction (random variable) of the area target
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is the number of elements killed normalized by the total number of elements.

qdamage(area target,M weapons) ≡ 1

N

N∑
k=1

χk

The average damage fraction has the expression

E
[
qdamage(area target,M weapons)

]
= E

[
1

N

N∑
k=1

χk

]

=
1

N

N∑
k=1

pkill(element k,M weapons)

= G(
√
σ2

1 + s2
1,
√
σ2

2 + s2
2, d1, d2, b1, b2, {~rj, j = 1, 2, . . . ,M}) (9)

Expression (9) gives the exact solution for the case of an area target of normally distributed

elements.
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Figure 2: Statistics of the damage fraction for the case of a single shot against N = 20

normally distributed target elements with no firing error (σ1, σ2, d1, d2) = 0 and (b1, b2) =

(15, 25). The radius of area target is defined as s1 = s2 (the standard deviation of the

elements distribution). Left panel: mean of damage fraction vs radius of area target. The

analytical expression for the mean is valid regardless of the presence or absence of firing

error. Right panel: standard deviation of damage fraction vs radius of area target. The

analytical expression for the standard deviation (equations (11) and (12)) is valid only in

the absence of firing error, which is true for the simulations in this figure.
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Figure 3: Statistics of the damage fraction for the case of a single shot against N = 20

normally distributed target elements with s1 = s2 = 10, d1 = d2 = 0 and (b1, b2) = (15, 25).

The firing error is defined as σ1 = σ2. Left panel: mean of damage fraction vs firing error.

The analytical expression for the mean is valid regardless of the presence or absence of firing

error. Right panel: standard deviation of damage fraction vs firing error. The analytical

expression for the standard deviation (equations (11) and (12)) is valid only in the absence

of firing error, which is false for the simulations in this figure. The results of Monte Carlo

simulations show that the actual standard deviation of the damage fraction is larger than

the value predicted by applying equations (11) and (12) with non-zero (σ1, σ2, d1, d2).

When both the independent error ( ~Xj, j = 1, 2, . . . ,M) and the dependent error (~Y )

of the M weapons are absent, random variables {χk, k = 1, 2, . . . , N} are independent of

each other. In this situation, we can calculate analytically the standard deviation of damage

fraction (random variable). The variance of damage fraction has the expression

var
[
qdamage(area target,M weapons)

]
= var

[
1

N

N∑
k=1

χk

]

=
1

N2

N∑
k=1

var [χk] =
1

N
G(1−G) (10)

where shorthand notation G is defined as

G ≡ G(
√
σ2

1 + s2
1,
√
σ2

2 + s2
2, d1, d2, b1, b2, {~rj, j = 1, 2, . . . ,M}) (11)
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Note that this expression for the variance is valid only in the absence of dependent and

independent errors, for which we have (σ1, σ2, d1, d2) = 0. The standard deviation of damage

fraction is

std
[
qdamage(area target,M weapons)

]
=

√
1

N
G(1−G) (12)

When either the independent errors or dependent error or both are present, the standard

deviation of damage fraction is larger than the value predicted by applying equations (11)

and (12) with non-zero (σ1, σ2, d1, d2). We demonstrate this behavior numerically in Figures

2 and 3 below. We consider the model problem in which a single shot is fired against an

area target of N = 20 normally distributed elements. Monte Carlo simulations are carried

out with 106 runs for each set of parameter values and in each of the two situations below,

yielding accurate numerical results to compare with theoretical predictions.

In Figure 2, there is no firing error; the damage fraction is affected by the radius of

area target (the standard deviation of target elements distribution). In this case, both the

predicted mean and the predicted standard deviation of damage fraction are valid. As a

result, the accurate Monte Carlo simulations agree with the theoretical predictions.

In Figure 3, the radius of area target is fixed at s1 = s2 = 10; the damage fraction is

affected by the firing error (the total effect of dependent and independent errors; for a single

shot, there is no need to distinguish dependent and independent errors). In this case, only

the predicted mean of damage fraction is valid. The predicted standard deviation calculated

by applying equations (11) and (12) with non-zero (σ1, σ2, d1, d2) is invalid since equations

(11) and (12) are derived based on the assumption of zero firing error. The right panel of

Figure 3 clearly demonstrates the deviation of the accurate Monte Carlo simulations from

the invalid theoretical prediction.

4 Optimal aiming points for an area target

Next we investigate the optimal aiming points for the case of multiple weapons against

an area target of normally distributed elements. We use MATLAB build-in function “fmin-
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search” [5] together with formula (9) to find aimpoints which yields the largest damage

fraction. In this study, in addition to finding the unconstrained overall optimal aiming posi-

tions, we also consider optimizations over a set of given constrained patterns of aiming points.

The goal is to find simple and efficient “empirical” methods for calculating nearly optimal

aiming positions. This approach greatly simplifies the numerical complexity of finding the

optimal aiming points at the price of obtaining an approximate optimum. We consider 6

constrained patterns of aiming positions as listed below.

• Pattern A1: M points on an ellipse, uniform in parameter angle.

Specifically, the M aiming points are mathematically described by

θj = θ1 +
(j − 1)

M
2π, j = 1, 2, . . . ,M (13)

(xj, yj) = R

(√
η cos θj,

1√
η

sin θj

)
(14)

This constrained pattern has three parameters: θ1, R and η, over which we are going

to optimize the average damage fraction. Here θ1 is the parameter angle for weapon

1. R is the effective radius of the ellipse, satisfying

R =

√
area of ellipse

π

whereas η is the aspect ratio of the ellipse, satisfying

η =
major axis

minor axis

• Pattern A2: 1 point at center and (M − 1) points on an ellipse, uniform in parameter

angle.

One aiming point is placed at the center. The rest (M−1) aiming points are distributed

along an ellipse, uniformly in parameter angle θ, as described by equations (13) and

(14) where M is replaced by (M − 1). This constrained pattern has three parameters:

θ1, R and η.

• Pattern A3: 2 points on the x-axis and (M − 2) points on an ellipse, uniform in pa-

rameter angle.
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Two aiming points are placed, respectively, at (xa, 0) and (−xa, 0). The rest (M − 2)

aiming points are distributed along an ellipse, uniformly in parameter angle θ, as de-

scribed by equations (13) and (14) where M is replaced by (M − 2). This constrained

pattern has 4 parameters: θ1, R, η, and xa.

• Pattern B1: M points on an ellipse, uniform in polar angle.

The M aiming points are mathematically described by

φj = φ1 +
(j − 1)

M
2π, j = 1, 2, . . . ,M (15)

θj determined by the condition that the two vectors(√
η cos θj,

1√
η

sin θj

)
and (cosφj, sinφj) point in the same direction (16)

(xj, yj) = R

(√
η cos θj,

1√
η

sin θj

)
(17)

This constrained pattern has three parameters: φ1, R and η.

• Pattern B2: 1 point at center and (M − 1) points on an ellipse, uniform in polar angle.

One aiming point is placed at the center. The rest (M−1) aiming points are distributed

along an ellipse, uniformly in polar angle φ, as described by equations (15), (16) and

(17) where M is replaced by (M − 1). This constrained pattern has three parameters:

φ1, R and η.

• Pattern B3: 2 points on the x-axis and (M − 2) points on an ellipse, uniform in pa-

rameter angle.

Two aiming points are placed, respectively, at (xa, 0) and (−xa, 0). The rest (M − 2)

aiming points are distributed along an ellipse, uniformly in polar angle φ, as described

by equations (15), (16) and (17) where M is replaced by (M − 2). This constrained

pattern has four parameters: φ1, R, η, and xa.

In numerical simulations below, we choose the parameter values as follows.

M = 1 ∼ 12, number of weapons

(b1, b2) = (60, 100), parameters in Carleton damage function
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(σ1, σ2) = (5, 5), standard deviation (s.d.) of dependent error in firing errors

(d1, d2) = (5, 5), s.d. of independent errors in firing errors

s = s1 = s2 = 15 ∼ 300, radius of area target (s.d. of elements distribution)
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M = 6
ellipse (uniform in θ)
center + ellipse (uniform in θ)
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M = 7

ellipse (uniform in θ)
center + ellipse (uniform in θ)
2 points on x−axis + ellipse (uniform in θ)
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M = 10
ellipse (uniform in θ)
center + ellipse (uniform in θ)
2 points on x−axis + ellipse (uniform in θ)
ellipse (uniform in φ)
center + ellipse (uniform in φ)
2 points on x−axis + ellipse (uniform in φ)
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M = 12
ellipse (uniform in θ)
center + ellipse (uniform in θ)
2 points on x−axis + ellipse (uniform in θ)
ellipse (uniform in φ)
center + ellipse (uniform in φ)
2 points on x−axis + ellipse (uniform in φ)

(c) (d)

Figure 4: Difference in optimal damage fraction (popt) between constrained and unconstrained

optimizations as a function of area target radius (s) for various numbers of weapons (M).

(a) M = 6. (b) M = 7. (c) M = 10. (d) M = 12.

We compare the results of optimization over constrained patterns with those of the overall

optimization. Figure 4 plots the difference in optimal (maximum) damage fraction (popt)

between constrained and unconstrained optimizations as a function of area target radius (s)

for various numbers of weapons (M). The difference shows how accurate it is to optimize

over a given pattern. For M ≤ 6 (panel (a) of Figure 4), the best approximate optimal
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damage fraction is achieved by distribute aiming points over an ellipse, uniformly in polar

angle (Pattern B1 described above). At M = 7 (panel (b) of Figure 4), the best approximate

optimal damage fraction is achieved by placing an aiming point at center and placing the

rest six aiming points over an ellipse, uniformly in polar angle (Pattern B2) . This is also

true for M = 8 and M = 9. As the number of weapons increases, at M = 10 (panel (c) of

Figure 4), the best approximate optimal damage fraction is achieved by placing two aiming

points on the x-axis and the rest eight aiming points over an ellipse, uniformly in polar angle

(Pattern B3). The constrained optimum over Pattern B3 remains very accurate at M = 12

weapons (panel (d) of Figure 4).

In summary, as M increases, the best pattern of aiming points for obtaining approxi-

mately the highest damage fraction goes from Patterns B1 to B2 to B3. This transition

is clearly demonstrated in Figure 5 where the difference in optimal damage fraction (popt)

between constrained and unconstrained optimizations is shown as a function of M at s = 150

(radius of area target).
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s=150

ellipse (uniform in θ)
center + ellipse (uniform in θ)
2 points on x−axis + ellipse (uniform in θ)
ellipse (uniform in φ)
center + ellipse (uniform in φ)
2 points on x−axis + ellipse (uniform in φ)

Figure 5: Difference in optimal damage fraction (popt) between constrained and unconstrained

optimizations as a function of M at s = 150 (radius of area traget). In the horizontal

direction, all points should have integer values. To visually display points that are on top of

each other, they are shifted slightly in the horizontal direction in the plot.
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Figure 6: Comparison of unconstrained optimal aiming points and optimal aiming points

constrained to Pattern B3. Left panel: two sets of optimal aiming points for M = 10,

yielding p{opt, unconstrained} = 0.772604 and p{opt, Pattern B3} = 0.772398, respectively.

Right panel: two sets of optimal aiming points for M = 12, yielding p{opt, unconstrained} =

0.814997 and p{opt, Pattern B3} = 0.813372, respectively.

Figure 6 compares the unconstrained optimal aiming points and the optimal aiming

points constrained to Pattern B3, respectively for M = 10 and M = 12 at s = 150. At

M = 10, the optimal aiming points of Pattern B3 match almost exactly the unconstrained

aiming points. At M = 12, the optimal aiming points of Pattern B3 deviate from the

unconstrained aiming points. Despite the apparent discrepancy between these two sets

of optimal aiming points, the corresponding damage fractions are still very close to each

other: the optimal damage fraction for Pattern B3 is p{opt, Pattern B3} = 0.813372 while

the overall optimal damage fraction is p{opt, unconstrained} = 0.814997. The difference

between these two damage fraction values is less than 0.2%. It is important to notice out

the difference in computational complexity between these two optimizations. While the

constrained optimization over Pattern B3 has 4 variables, the unconstrained optimization

for M = 12 weapons has 24 variables, which converges much slower than the constrained

optimization.
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The optimal aiming points constrained to Pattern B1 for M = 6, the optimal aiming

points constrained to Pattern B2 for M = 7 and the corresponding unconstrained optimal

aiming points are displayed in Figure 7.
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Figure 7: Left panel: unconstrained optimal aiming points and optimal aiming points con-

strained to Pattern B1 for M = 6 weapons. Right panel: unconstrained optimal aiming

points and optimal aiming points constrained to Pattern B2 for M = 7 weapons.
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Figure 8: Damage fraction corresponding to the optimal aiming points. Left panel: damage

fraction as a function of M . Right panel: damage fraction as a function of s.

Figure 8 plots the optimal damage fraction, respectively, as a function of M for several

values of s (left panel), and as a function of s for several values of M (right panel). For a

16

C-41



fixed value of s, the optimal damage fraction increases with the number of weapons, M ; for

a fixed value of M , the optimal damage fraction decreases as the radius (s) of area target is

increased (i.e., damage fraction is lower for a larger area target). Both of these results are

reasonable and consistent with our intuition.

A practical question regarding resource allocation is the following. Given the radius

of area target (s), what is the minimum number of weapons needed to achieve a given

threshold of damage fraction? This question is answered in Figure 9. Figure 9 shows that

for any given threshold of damage fraction, the minimum number of weapons needed is an

increasing function of the area target radius (i.e., larger area target requires larger number

of weapons), which again is reasonable and consistent with our intuition.
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Figure 9: Minimum number of weapons needed for achieving a given threshold of damage

fraction vs. radius of area target. In the vertical direction, all flat steps should have integer

values. To visually display steps from different curves that are overlap with each other, they

are shifted slightly in the vertical direction in the plot.
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5 Scaling laws for optimal aiming points and optimal

damage fraction with respect to area target radius
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Figure 10: Sets of optimal aiming points for M = 10 weapons for several values of area

target radius (s). (a) s = 100. (b) s = 200. (c) s = 300. (d) s = 400.

Finally, we study how the optimal aiming points change with s, the radius of area target,

and explore if there is a scaling law relating sets of optimal aiming points at different values

of s. We start by examining the optimal aiming points for 4 different values of area target
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radius. The 4 panels in Figure 10 show the optimal aiming points for M = 10 weapons,

respectively, for s = 100, s = 200, s = 300 and s = 400. The spreading size of optimal aiming

points increases as the radius of area target (s) is increased. However, the increase does not

follow a simple proportional linear relationship. Figure 10 indicates that the increase in the

spread size of optimal aiming points is less than linear with respect to the area target radius.

This can be explained intuitively as follows. When the radius of area target is increased,

the set of aiming points needs to cover a larger region. On the other hand, to maximize the

damage fraction, the killing areas associated with individual weapons also need to maintain

a certain degree of overlapping with each other. These two needs contradict each other and

cannot be both accommodated simultaneously with a fixed number of weapons (M) as the

area target radius is increased. Thus, it is expected that as the radius of area target is

increased, the spread size of optimal aiming points will increase less than linearly. Here we

avoid using the term “radius of optimal aiming points” because the distribution of aiming

points is not circularly symmetric.

For the purpose of investigating the spread size of aiming points quantitatively, we define

the size of a set of M aiming points {~rj, j = 1, 2, . . . ,M} mathematically as

LAP ≡

√√√√ 1

M

M∑
j=1

|~rj|2 (18)

To explore how the size of optimal aiming points scales with the area target radius, we

plot these two quantities against each other in a log-log plot in the left panel of Figure

11, which also includes a fitting function of the form LAP ∝
√
s. The log-log plot along

the fitting function indicate that the size of optimal aiming points (LAP) approximately is

proportional to the square root of area target radius (
√
s). This observation suggests that

we should normalize the aiming points by the square root of area target radius and introduce

the scaled aiming points as

~r
(scaled)
j (s) ≡ 1√

s
~rj(s) (19)

The right panel of Figure 11 compares sets of scaled optimal aiming points of Pattern B3

for s = 100, s = 200, s = 300 and s = 400. The comparison demonstrates that not

only the spread size of optimal aiming points scales as
√
s, the distribution of optimal
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Figure 11: Comparison of optimal aiming points for different values of area target radius.

Left panel: spread size of optimal aiming points vs. radius of area target in a log-log plot.

Right panel: sets of scaled optimal aiming points of Pattern B3 for s = 100, s = 200, s = 300

and s = 400.

aiming points after scaling is approximately invariant with respect to the area target radius.

Mathematically, we have observed that approximately

~r
(scaled)
j (s) is invariant with respect to s (20)

This scaling property gives us an even more efficient way of calculating optimal aiming

points. We only need to calculate the optimal aiming points for an area target of typi-

cal/representative radius: {~rj(s0), j = 1, 2, . . . ,M}. We use s0 = 150 in our study. For an

area target of radius s, we simply calculate/predict a set of nearly optimal aiming points

from {~rj(s0)} using the scaling law.

~rj(s) =

√
s

s0

~rj(s0) (21)

We evaluate the performance of this efficient method by examining the damage fraction

values achieved by these sets of nearly optimal aiming points. Specifically, for each area

target, we calculate the damage fraction values corresponding to three sets of aiming points

• aiming points calculated in the unconstrained optimization
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• aiming points calculated using scaling law (21)

• all aiming points = (0, 0)
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Figure 12: Comparison in damage fraction performance of 3 sets of aiming points: i) aiming

points calculated in the unconstrained optimization, ii) aiming points calculated using scal-

ing, and iii) all aiming points = (0, 0). Left panel: M = 6 weapons. Right panel: M = 12

weapons.

Figure 12 compares the damage fraction values caused by the 3 sets of aiming points

described above for M = 6 weapons (left panel) and for M = 10 weapons (right panel). The

damage fraction achieved by the set of nearly optimal aiming points calculated using scaling is

indistinguishable from that achieved in the unconstrained optimization (true optimum) while

the damage fraction corresponding to all weapons aiming at (0, 0) is much lower. Therefore,

we conclude that scaling law (21) is an efficient and accurate method for calculating a set of

nearly optimal aiming points.

6 Concluding remarks

We have studied the average damage fraction of an area target by multiple weapons. The

area target was assumed to consist of normally distributed elements. Using the analytical

expression of the average damage fraction, we compared various distribution patterns of
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the aimpoints and gave optimal patterns for different number of weapons. Scaling laws for

optimal aimpoints and optimal damage fraction with respect to the radius of the area target

were derived. One prospective future research is to extend our current work to an area target

of uniformly distributed elements. Another avenue for future research is to consider an area

target where the elements are assigned different values and seek optimal aimpoints in order

to minimize the total average surviving value.
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MATLAB Code

Damage probability for multiple weapons against a unitary target

1 f unc t i on [ p]=prob_ex_sol (M, ra , b , d , s i g )
2 %%
3 %% By Hongyun Wang <hongwang@soe.ucsc.edu>
4 %% Unive r s i ty o f Ca l i f o rn i a , Santa Cruz
5 %% and Hong Zhou , Naval Postgraduate School , Monterey
6 %%
7 %% This code c a l c u l a t e s the k i l l p r obab i l i t y aga in s t a s i n g l e
8 %% targ e t at (0 , 0) , by M weapons with given aimpoints , d i s t r i b u t i o n
9 %% of dependent er ror , d i s t r i b u t i o n o f independent e r r o r s , and

10 %% the l e t h a l area ( Car leton damage func t i on )
11 %%
12 % Input :
13 % M: number o f weapons
14 % ra : M x 2 matrix conta in ing aimed po s i t i o n s o f M weapons
15 % b=[b (1 ) , b (2 ) ] : parameters in Car leton damage func t i on
16 % d=[d (1 ) , d (2 ) ] : s td o f independent e r r o r in 2 d i r e c t i o n s
17 % s i g =[ s i g (1 ) , s i g (2 ) ] : s td o f dependent e r r o r in 2 d i r e c t i o n s
18 %
19 % Output :
20 % p : k i l l p r obab i l i t y by M weapons
21 %
22 bs=b. ^2 ;
23 ds=d. ^2 ;
24 s s=s i g . ^2 ;
25 %
26 nc=2^M−1; % number o f a l l combinat ions
27 c f=ze ro s ( nc ,M) ;
28 tem=uint32 ( [ 1 : nc ] ’ ) ;
29 f o r k=1:M,
30 c f ( : , k )=b i t g e t ( tem , k ) ;
31 end
32 ka=sum( cf , 2 ) ;
33 %
34 tma=( c f * ra ( : , 1 ) ) . ^2 . /ka ;
35 tmb=c f * ra ( : , 1 ) . ^2 ;
36 F1=sq r t ( bs (1 ) /( bs (1 )+ds (1 ) ) ) . ^ka . * . . .
37 s q r t ( ( bs (1 )+ds (1 ) ) . /( bs (1 )+ds (1 )+s s (1 ) *ka ) ) . * . . .
38 exp ( (tma−tmb) /(2*( bs (1 )+ds (1 ) ) ) − tma. /(2*( bs (1 )+ds (1 )+s s (1 ) *ka ) ) ) ;
39 %
40 tma=( c f * ra ( : , 2 ) ) . ^2 . /ka ;
41 tmb=c f * ra ( : , 2 ) . ^2 ;
42 F2=sq r t ( bs (2 ) /( bs (2 )+ds (2 ) ) ) . ^ka . * . . .
43 s q r t ( ( bs (2 )+ds (2 ) ) . /( bs (2 )+ds (2 )+s s (2 ) *ka ) ) . * . . .
44 exp ( (tma−tmb) /(2*( bs (2 )+ds (2 ) ) ) − tma. /(2*( bs (2 )+ds (2 )+s s (2 ) *ka ) ) ) ;
45 %
46 p=sum(−(−1) . ^ka . *F1. *F2) ;
47 %
48 %
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Damage probability for area target with M aimpoints placed along
an ellipse uniformly in polar angle (EUPA)

1 f unc t i on [ z ]=p_eupa_G(M, r , eta , c0 , b , d , s i g , s )
2 %%
3 %% By Hongyun Wang <hongwang@soe.ucsc.edu>
4 %% Unive r s i ty o f Ca l i f o rn i a , Santa Cruz
5 %% and Hong Zhou , Naval Postgraduate School , Monterey
6 %%
7 %% This code c a l c u l a t e s the damage f r a c t i o n aga in s t an area t a r g e t
8 %% of normally d i s t r i b u t e d ta r g e t e lements around (0 , 0) , by M weapons
9 %% with aimpoints p laced along an E l l i p s e Unifromly in Poar Angle (EUPA) .

10 %% The s e t o f a impoints i s s p e c i f i e d by 3 parameters : major and minor
11 %% axes o f the e l l i p s e , and the o f f−s e t ang le
12 %% Later ( in ”p_op_eupa_G.m”) , an optimal s e t o f a impoints i s c a l c u l a t ed
13 %% by maximizing the damage f r a c t i o n over the 3 parameter s .
14 %%
15 % Input :
16 % M: number o f weapons
17 % r : average rad iu s o f e l l i p s e = sq r t (major ax i s * minor ax i s )
18 % eta : aspect r a t i o o f e l l i p s e
19 % c0 : c0* p i = o f f−s e t ang le
20 % b=[b (1 ) , b (2 ) ] : parameters in Car leton damage func t i on
21 % d=[d (1 ) , d (2 ) ] : s td o f independent e r r o r in 2 d i r e c t i o n s
22 % s i g =[ s i g (1 ) , s i g (2 ) ] : s td o f dependent e r r o r in 2 d i r e c t i o n s
23 % s=[ s (1 ) , s (2 ) ] : s td o f t a r g e t e lements d i s t r i b u t i o n in 2 d i r e c t i o n s
24 %
25 % Output :
26 % z : damage f r a c t i o n
27 %
28 phi=c0* p i +[0 :M−1] ’/M*2* pi ;
29 x0=cos ( phi ) / sq r t ( eta ) ;
30 y0=s in ( phi ) * sq r t ( eta ) ;
31 %x0=cos ( phi ) / sq r t ( eta ) ;
32 %y0=s in ( phi ) * sq r t ( eta ) ;
33 r0=sq r t ( x0 .^2+y0 . ^2) ;
34 x=(r * sq r t ( eta ) ) * x0 . / r0 ;
35 y=(r / sq r t ( eta ) ) * y0 . / r0 ;
36 ra=[x , y ] ; % matrix conta in ing aimed po s i t i o n s o f M weapons
37 %
38 s s=sq r t ( s i g . ^2+ s . ^2) ;
39 [ pex ]=prob_ex_sol (M, ra , b , d , s s ) ;
40 z=pex ;
41 %
42 %
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Optimized Damage probability for area target with M aimpoints
placed along an ellipse uniformly in polar angle (EUPA)

1 f unc t i on [ z ]=p_op_eupa_G(M, b , d , s i g , s )
2 %%
3 %% By Hongyun Wang <hongwang@soe.ucsc.edu>
4 %% Unive r s i ty o f Ca l i f o rn i a , Santa Cruz
5 %% and Hong Zhou , Naval Postgraduate School , Monterey
6 %%
7 %% This code maximizes the damage f r a c t i o n and c a l c u l a t e s the optimal
8 %% aimpoints when an area t a r g e t o f normally d i s t r i b u t e d ta r g e t e lements
9 %% around (0 , 0) i s attacked by M weapons with aimpoints p laced along

10 %% an E l l i p s e Unifromly in Poar Angle (EUPA)
11 %% In the cons t ra ined opt imizat ion , the s e t o f a impoints i s s p e c i f i e d by
12 %% 3 arameters : major and minor axes o f the e l l i p s e , and the o f f−s e t ang l e .
13 %% The damage f r a c t i o n i s maximized over the 3 parameter s .
14 %%
15 % Input :
16 % M: number o f weapons
17 % b=[b (1 ) , b (2 ) ] : parameters in Car leton damage func t i on
18 % d=[d (1 ) , d (2 ) ] : s td o f independent e r r o r in 2 d i r e c t i o n s
19 % s i g =[ s i g (1 ) , s i g (2 ) ] : s td o f dependent e r r o r in 2 d i r e c t i o n s
20 % s=[ s (1 ) , s (2 ) ] : s td o f t a r g e t e lements d i s t r i b u t i o n in 2 d i r e c t i o n s
21 % %
22 % Output :
23 % z : optimal s o l u t i o n ( a s t r u c tu r e conta in ing maximum damage f r a c t i on ,
24 % optimal aimpoints , . . . )
25 %
26 u0=[ l og (40) , l og (2 ) , 0 ] ;
27 G=@(u) −p_eupa_G(M, exp (u (1 ) ) , exp (u (2 ) ) , u (3 ) , b , d , s i g , s ) ;
28 opt ions = opt imset ( ’TolX ’ ,1 e−8, ’TolFun ’ ,1 e−16, . . .
29 ’ MaxIter ’ ,2000 , ’MaxFunEvals ’ ,2000 , ’ Display ’ , ’ o f f ’ ) ;
30 [ u , f va l , f l a g , output ]= fminsearch (@(u) G(u) , u0 , opt ions ) ;
31 %
32 pmax=−f v a l ;
33 ap=[exp (u (1 )+0. 5 *u (2 ) ) , exp (u (1 )−0 . 5 *u (2 ) ) , u (3 ) ] ;
34 rx=ap (1) ;
35 ry=ap (2) ;
36 phi=ap (3) * p i +[0 :M−1]/M*2* pi ;
37 x0=cos ( phi ) / rx ;
38 y0=s in ( phi ) / ry ;
39 r0=sq r t ( x0 .^2+y0 . ^2) ;
40 x=rx* x0 . / r0 ;
41 y=ry* y0 . / r0 ;
42 %
43 z=s t r u c t ( ’M’ ,M, ’pmax ’ ,pmax , ’ rx ’ , ap (1 ) , ’ ry ’ , ap (2 ) , ’ phi_1 ’ , ap (3 ) , ...

’ x ’ , x , ’ y ’ , y , . . .
44 ’ f l a g ’ , f l a g , ’ output ’ , output ) ;
45 %
46 %

C-51



Maximum damage probability of M weapons against N targets using
the optimized EUPA methodology

1 %%
2 %% By Hongyun Wang <hongwang@soe.ucsc.edu>
3 %% Unive r s i ty o f Ca l i f o rn i a , Santa Cruz
4 %% and Hong Zhou , Naval Postgraduate School , Monterey
5 %%
6 %% This code c a l c u l a t e s and p l o t s the maximum damage f r a c t i o n vs
7 %% the area t a r g e t s i z e .
8 %% I t a l s o p l o t s the optimal a impoints f o r a g iven area t a r g e t s i z e
9 %% PROBLEM SETUP:

10 %% An area ta r g e t o f N normally d i s t r i b u t e d ta r g e t e lements around (0 , 0 )
11 %% i s attacked by M weapons. The s i z e o f area t a r g e t i s de f i ned as the
12 %% standard dev i a t i on o f the t a r g e t element d i s t r i b u t i o n .
13 %%
14 c l e a r
15 c l f r e s e t
16 %
17 M=6; % Number o f weapons
18 N=20; % Number o f t a r g e t e lements
19 %
20

21 b=[60 , 100 ] ; % parameters in Car leton damage func t i on
22 d= [5 , 5 ] ; % std o f independent e r r o r in 2 d i r e c t i o n s
23 s i g = [ 5 , 5 ] ; % std o f dependent e r r o r in 2 d i r e c t i o n s
24 sa = [ 1 5 : 1 5 : 3 0 0 ] ;
25 % A sequence o f va lue s f o r the area t a r g e t s i z e .
26 % For each value , we maximize the damage f r a c t i o n
27 s0=150;
28 % Area ta r g e t s i z e f o r which the optimal a impoints are shown
29 %
30 m=s i z e ( sa , 2 ) ;
31 p_eupa=ze ro s (1 ,m) ;
32 f o r k=1:m,
33 s=sa (k ) * [ 1 , 1 ] ;
34 z=p_op_eupa_G(M, b , d , s i g , s ) ;
35 p_eupa (k )=z.pmax ;
36 end
37 %
38 f i g u r e (1 )
39 c l f r e s e t
40 s e t ( gcf , ’ p o s i t i o n ’ , [ 5 0 100 560 420 ] )
41 axes ( ’ p o s i t i o n ’ , [ 0 .15 , 0 .15 , 0 .75 , 0 . 75 ] )
42 %
43 p lo t ( sa , p_eupa , ’ l i n ew id th ’ ,2 . 0 )
44 s e t ( gca , ’ f o n t s i z e ’ ,14)
45 ax i s ( [ 0 , 3 05 , 0 , 1 . 1 ] )
46 x l ab e l ( ’ Area t a r g e t s i z e ’ )
47 y l ab e l ( ’Maximum damage f r a c t i o n ’ )
48 t ex t (100 , 1 .0 , [ num2str (M) , ’ weapons aga in s t an area ...

t a r g e t ’ ] , ’ f o n t s i z e ’ ,14)
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49 %
50 f i g u r e (2 )
51 c l f r e s e t
52 s e t ( gcf , ’ p o s i t i o n ’ , [ 600 200 560 420 ] )
53 axes ( ’ p o s i t i o n ’ , [ 0 .15 , 0 .15 , 0 .75 , 0 . 80 ] )
54 %
55 s=s0 * [ 1 , 1 ] ;
56 z=p_op_eupa_G(M, b , d , s i g , s ) ;
57 x=z .x ;
58 y=z .y ;
59 p lo t (x , y , ’ bh ’ , ’ l i n ew id th ’ ,1 .0 , ’ marke r f aceco lo r ’ , ’ y ’ , ’ markers i ze ’ , 14)
60 hold on
61 %
62 ct0 =[0 :64 ]/64*2* p i ;
63 x0=cos ( ct0 ) ;
64 y0=s in ( ct0 ) ;
65 p lo t (50*x0 ,50* y0 , ’−− ’ , ’ l i n ew id th ’ ,1 .0 , ’ c o l o r ’ ,0 . 6 * [ 1 , 1 , 1 ] )
66 p lo t (100*x0 ,100* y0 , ’−− ’ , ’ l i n ew id th ’ ,1 .0 , ’ c o l o r ’ ,0 . 6 * [ 1 , 1 , 1 ] )
67 p lo t (150*x0 ,150* y0 , ’−− ’ , ’ l i n ew id th ’ ,1 .0 , ’ c o l o r ’ ,0 . 6 * [ 1 , 1 , 1 ] )
68 p lo t (200*x0 ,200* y0 , ’−− ’ , ’ l i n ew id th ’ ,1 .0 , ’ c o l o r ’ ,0 . 6 * [ 1 , 1 , 1 ] )
69 %
70 s e t ( gca , ’ f o n t s i z e ’ ,14)
71 ax i s ( [−200 ,200 ,−180 ,180])
72 ax i s equal
73 s e t ( gca , ’ x t i c k ’ , [ −200 : 100 : 200 ] )
74 s e t ( gca , ’ y t i c k ’ , [ −200 : 100 : 200 ] )
75 x l ab e l ( ’Range d i r e c t i o n ’ )
76 y l ab e l ( ’ De f l e c t i on d i r e c t i o n ’ )
77 t ex t (−150 , 160 , [ ’ Optimal a impoints o f ’ , num2str (M) , ’ ...

weapons ’ ] , ’ f o n t s i z e ’ ,14)
78 %
79 %
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Carleton Damage Function Exact Solution in R
Cardy Moten III

December 27, 2016

Purpose

The purpose of this report is to explain the supporting code for the equations developed in Wang et al.
(2016a; 2016b). Dr. Hongyn Wang and Dr. Hong Zhou originally developed the code used in this report in
MATLAB.

M Weapons firing at a single target

Description

The code in this section calculates the damage probability against a single target at (0, 0), by M weapons
with given aim points, distribution of dependent error, distribution of independent errors, and the lethal area
(Carleton damage function).

Inputs

• M : Number of weapons.
• ra: M × 2 matrix containing aimed positions of the M weapons.
• b = [b1, b2]: parameters in the Carleton damage function that represent the effective weapon radii in

the range and deflection directions, respectively.
• d = [d1, d2]: standard deviation of the independent error in two directions.
• sig=[sig1, sig2]: standard deviation of dependent error in two directions.

Output

p: damage probability of the M weapons aimed at a single target at (0,0).

Function Code

The code for the function of the exact solution is below. This code follows the details, specifically equations
6-8, documented in Wang et al. (2016a). The code will execute the following:

1. Compute squared values for parameters b, d, and sig.
2. Declare a variable for the total number of hit combinations.
3. Create a matrix to store all the hit combinations. The number of rows will be equal to the number of

combinations, and the number of columns will equal the number of weapons fired.
4. Create a variable that is equal in length to the number of hit combinations.
5. For each row and column of the combinations fired matrix:

(a) Compute the bit value of the current index in the matrix.
(b) For example, if we fire two weapons at a target, the combinations fired matrix will contain three

rows and two columns. The bit values for each row would be (1,0), (0,1), and (1,1) respectively to
represent a hit from weapon 1, weapon 2, and weapons 1 & 2 respectively.
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6. Compute the row sum of the combinations fired matrix.
7. Compute the impact points in the x-direction.
8. Compute the average independent error.
9. Compute the impact points in the y-direction.

10. Compute the average dependent error.
11. Compute the final damage probability.

prob.ex.sol <- function(M,ra,b,d,sig){
bs <- b^2; ds <- d^2; ss <- sig^2;
nc <- 2^M-1 #Number of total hit combinations
cf <- matrix(0,nrow=nc,ncol=M) #Matrix to store all hit combinations
tmpCombinations <- 1:nc
for (j in 1:M){

#register hit and miss combinations
for(k in 1:nrow(cf)){cf[k,j] <- as.numeric(intToBits(tmpCombinations[k]))[j]
}

}
ka <- rowSums(cf) #Total hits per combination of weapons

#Impact points in the x-direction
tma <- (cf%*%ra[,1])^2/ka
tmb <- cf%*%(ra[,1])^2

#Equation 6 of the exact solution paper
F1 = sqrt(bs[1]/(bs[1]+ds[1]))^ka * sqrt((bs[1]+ds[1])/((bs[1]+ds[1])+ss[1]*ka)) *

exp((tma-tmb)/(2*(bs[1]+ds[1]))-tma/(2*(bs[1]+ds[1]+ss[1]*ka)))

#Impact points in the y-direction
tma <- (cf%*%ra[,2])^2/ka
tmb <- cf%*%(ra[,2])^2

#Equation 7 of the exact solution paper
F2 = sqrt(bs[2]/(bs[2]+ds[2]))^ka * sqrt((bs[2]+ds[2])/((bs[2]+ds[2])+ss[2]*ka)) *

exp((tma-tmb)/(2*(bs[2]+ds[2]))-tma/(2*(bs[2]+ds[2]+ss[2]*ka)))

#Equation 8 of the exact solution paper
p <- sum(-(-1)^ka*F1*F2)
return(p)
}

We will Compute the single shot damge probability for one weapon with the following parameters from Wang
et al. (2016a):

• M = 1
• ra = [0,0]
• b = [15.4640, 23.3628]
• d = [5, 5]
• sig=[30, 30]

M <- 1; ra <- matrix(c(0,0),ncol=2); b <- c(15.4640,23.3628); d <- c(5,5); sig <- c(30,30);
prob.ex.sol(M,ra,b,d,sig)

## [1] 0.2760992
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M weapons firing at an area target.

The code in this section calculates the kill probability where M weapons are used against an area target
cetered at −→x target = (0, 0), consisting of N discrete elements, normally distributed around the target center.
For this section, we will implement the code that depicts M aiming points on an elliptical taget, uniform in
polar angle as described in equations 15-17 of Wang et al. (2016b).

Kill probability for an area target

Description

This code calculates the damage fraction against an area target of normally distributed target elements
around (0, 0), by M weapons with aim points placed along an Ellipse Uniformly in Polar Angle (EUPA). The
set of aim points is specified by three parameters: weapon effective radius in the ellipse (r), aspect ratio of
the ellipse (η), and the off-set angle (c0).

Input

• M : number of weapons
• r: average effective radius of ellipse =

√
major axis ∗minor axis

• eta(η): aspect ratio of ellipse
• c0: c0 ∗ π = off-set angle
• b = [b1, b2]: parameters in Carleton damage function
• d = [d1, d2]: standard deviation of independent error in 2 directions
• sig = [sig1, sig2]: standard deviation of dependent error in 2 directions
• s = [s1, s2]: standard deviation of target elements distribution in 2 directions

Output

z: damage fraction

Function Code

To compute the damage probability over an elliptical target area, conduct the following:

1. Compute a vector off-set angles for each weapon.
2. Compute the off-set impact points scaled by the aspect ratio in the x and y direction.
3. Compute the radius of the scaled impact points.
4. Compute the x and y coordinates of the actual impact points.
5. Generate a matrix of the impact points.
6. Compute the standard deviation of the weapon error and target locations.
7. Compute the average damage probability.

p.eupa <- function(M,parameters,b,d,sig,s){
#Equation 15 of the area target paper
phi <- parameters[3]*pi+(0:(M-1))/M*2*pi #offset angle
if(parameters[2]==0){

parameters[2] <- .Machine$double.eps^(2/3)
}

if(parameters[2]<0){
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parameters[2] <- abs(parameters[2])
}
#Equation 16 of the area target paper
x0 <- cos(phi)/sqrt(parameters[2])
y0 <- sin(phi)*sqrt(parameters[2])
r0 <- sqrt(x0^2+y0^02)

#Equation 17 of the area target paper
x <- (parameters[1]*sqrt(parameters[2]))*x0/r0
y <- (parameters[1]/sqrt(parameters[2]))*y0/r0

ra = cbind(x,y)
ss = sqrt(sig^2+s^2)
pex <- prob.ex.sol(M,ra,b,d,ss)
return(-pex)

}

Note, we are making the final probability negative, because we will minimize this value in the next section.

Optimal aimpoints and Kill probability for an area target

The code below performs a constrained optimization of an elliptical target area that will produce nearly
optimal aiming points. The parameters we are optimizing are the effective radius (r), aspect ratio (η), and
the off-set angle (c0). According to Wang et al., “This approach greatly simplifies the numerical complexity of
finding the optimal aiming points at the price of obtaining an approximate optimum” (2016b). In MATLAB
Wang et al. (2016a; 2016b) used the fminsearch function for this optimization. In R, a similar function is
found in the pracma package.

The code below executes the following:

1. Set the starting conditions for the optimization.
2. Optimize to find the effective radius (r), aspect ratio (η), and off-set angle (c0).
3. Store the maximum probability.
4. Generate a vector of the optimal parameters (r, η, c0).
5. Generate the average radius in the x and y direction.
6. Generate a vector of off-set angles.
7. Compute the off-set impact points scaled by the aspect ratio in the x and y direction.
8. Compute the radius of the scaled impact points.
9. Compute the x and y coordinates of the actual impact points.

10. Store the following values in a list:

(a) Number of weapons.
(b) Max damage probability.
(c) x-axis effective radius (range direction).
(d) y-axis effective radius (deflection direction).
(e) Off-set angle.
(f) x-axis aiming points.
(g) y-axis aiming points.

if(!require(pracma)){
install.packages("pracma")

}
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## Loading required package: pracma

p.optim.eupa <- function(M,parameters=c(40,0,2),b,d,sig,s){
u0 <- parameters
opt.values <- fminsearch(p.eupa,c(u0[1],u0[2],u0[3]),M=M,b=b,d=d,sig=sig,s=s,

tol=1e-8,maxiter = 2000)
pmax <- -opt.values$fval
u <- opt.values$xval
ap <- c(u[1]+0.5*u[2],u[1]-0.5*u[2],u[3])
rx <- ap[1]
ry <- ap[2]
phi <- ap[3]*pi+(0:(M-1))/M*2*pi
x0 <- cos(phi)/rx
y0 <- sin(phi)/ry
r0 <- sqrt(x0^2+y0^2)
x <- (rx*x0)/r0
y <- (ry*y0)/r0
z <- list(M=M,pmax=pmax,rx=ap[1],ry=ap[2],phi_1=ap[3],x=x,y=y)
return(z)

}

Maximum Damage Fraction vs. Target Area Size

The code below is an analysis of the relationship of the size of the area target versus the maximum damage
probability. The initial conditions are below

• M = 6 weapons
• N = 20 targets
• b = [60, 100]
• d = [5, 5]
• sig=[30, 30]
• sa = sequence from 15 to 300 in increments of 15 to represent the size of the area target.

The code and supporting plot is below. As shown in the graphic, as the size of the target increases, the
damage probability decreases as expected.

M <- 6; N <-20; b <- c(60,100); d <- c(5,5); sig <- c(5,5);

#Generate a sequence of values for the area target size and
#an area target size (s0) to show the optimal aim points

sa <- seq(15,300, by= 15)

m <- length(sa)
p_eupa <- numeric(m)
for(k in 1:m){
s <- sa[k]*c(1,1)
z <- p.optim.eupa(M=M,b=b,d=d,sig=sig,s=s)
p_eupa[k] <- z$pmax
}
plot(0,0,type="n",xlim=c(0,305),ylim=c(0,1.1),xlab="Area Target Size",

ylab="Maximum damage fraction")
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lines(sa,p_eupa,col="blue",lwd=2)
title(paste(M," weapons against an area target",sep=""))
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6 weapons against an area target

This final section of code plots the locations of the optimal aiming points using the same initial conditions of
the previous analysis, however, the plot will focus on a target area size of 150 units2.

s0 <- 150
s <- s0*c(1,1)
z <- p.optim.eupa(M=M,b=b,d=d,sig=sig,s=s)
x <- z$x
y <- z$y
ct0 <- (0:64)/64*2*pi
x0 <- cos(ct0)
y0 <- sin(ct0)
plot(0,0,type="n",xlim=c(-210,210),ylim=c(-210,210),xlab="Range direction",

ylab="Deflection direction")
lines(200*x0,200*y0,type="l",lty=2)
lines(150*x0,150*y0,type="l",lty=2)
lines(100*x0,100*y0,type="l",lty=2)
lines(50*x0,50*y0,type="l",lty=2)
points(x,y,pch=20,col="red")
title(paste("Optimal aimpoints of ",M," weapons",sep=""))
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Appendix D
Response Surface Methodology

Response surface methodology results
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Precision Guided Munitions Project Notes 

Title: Algorithm Development for the Combat Sample Generator (COSAGE) Model 

Darryl Ahner and Andrew McCarthy, Air Force Institute of Technolgy 

Project Goals 

The United States military has been using precision-guided artillery rounds (as opposed to 

“conventional” rounds) in recent years, but analytical methods enabling effect analysis and tradeoffs 

between precision and conventional munitions are lacking. The main goal of this project is to develop an 

algorithm and methodology to accurately represent the high explosive (HE) precision munitions using 

the Carlton Damage Function. 

The motivation for this effort is to accurately model the desired and undesired effects of precision 

munitions. The algorithm will be developed for use in the Combat Sample Generator (GOSAGE) Model in 

use by the TRADOC Analysis Center – Monterey Naval Postgraduate School and the Center for Army 

Analysis – Army G-3. The COSAGE model simulates ground combat between a large number of U.S., Ally, 

and Enemy weapon systems over a 48-hour period and produces engagement results for U.S. versus 

Enemy and or Ally versus Enemy interactions.  

The algorithm developed during this effort will provide the Army G-3 a better representation of 

precision munitions effects in their Joint Integrated Contingency Model (JICM) simulation. 

Modeling Combat – Initial Setup 

 

Figure 1: Range and Deflection Grid 

When speaking about the grid or the firing area, everything is approached from the perspective of the 

person firing the artillery round. To start with, some fixed point is established as the origin. The “Range” 

direction is determined using a straight line from the weapon to the target. The “Deflection” direction is 

perpendicular to this line, and also intersects the origin. 

The entirety of the analysis is in metric units (meters). The standard data is that TLEs, lethal areas, and 

other measures are provided with in metric units.  
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For simulation probability results, a square, uniform grid is used. There is a specified distance between 

each grid point in the range direction and that same distance between grid points in the deflection 

direction. The size of the grid is arbitrary, but in order to get the most out of limited computer memory, 

should be as small as possible while still simulating all important distribution characteristics. 

Modeling combat – Damage 

The Carleton Damage Function is given by the equation: 

𝑃(𝐾) = 𝐷0 exp (−𝐷0

(𝑑 − 𝑑𝑎𝑖𝑚)2

2𝑏1
2 ) exp (−𝐷0

(𝑟 − 𝑟𝑎𝑖𝑚)2

2𝑏2
2 ) 

where 

 𝑃(𝐾) is the probability of being killed by that munition strike. To be more general, instead of 

saying “kill”, “destroyed” is better. This is because not all targets are living. P(K) is a probability 

and therefore has to be between 0 and 1. 

 𝐷0 is the P(K) for a direct hit. This is a function of both the target and the weapon system and 

ranges from 0 to 1. For example, if the weapon system has a 50% chance of destroying the 

target with a direct hit, D0 is equal to 0.5 

 𝑑 − 𝑑𝑎𝑖𝑚 is the distance between the point in question and where the munition detonated in 

the deflection direction 

 𝑟 − 𝑟𝑎𝑖𝑚 is the same concept, just in the range direction 

 𝑏1 and 𝑏2 represent in some way how far away you have to be from where the munition lands 

to be safe. To calculate these two numbers, you need to know the Lethal Area (𝐴𝐿) of the 

munition and the aspect ratio of the dangerous area. To figure out the aspect ratio, you need to 

know 𝜃. 

 𝜃 is the impact angle of the munition. This is the impact angle relative to the ground plane; if the 

munition detonates while pointing straight at the ground, θ = 90o. If the munition blows up 

parallel to the ground, θ = 0o. 

𝑎 = max(1 − 0.8 cos 𝜃 , 0.3) 𝑏1 = √
𝑎 ∗ 𝐴𝐿

2𝜋
 𝑏2 =

𝑏1

𝑎
 

 

If the lethal area (𝐴𝐿), the impact angle (𝜃), and the direct hit effectiveness (𝐷0), is known, the Carleton 

Damage Function estimates P(K) for any point relative to the explosion point. According to Klopcic 

(1990), the Carleton Damage Function does an excellent job of estimating damage done far away from 

the blast point. However, that same paper indicates the function underestimates damage in close 

proximity as can be seen when the Carlton Damage function is plotted (Figure 2). 

The Cookie Cutter function is another modeling tool used frequently by the U.S. military. It assigns 

everything in close proximity to detonation the same P(K) and everything farther away with a P(K) of 0. 
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Klopcic(1990) indicates the cookie cutter function is a woefully poor estimator of outlying damage, but 

actually better than the Carleton Damage Function for close proximity damage modeling. 

 

Figure 2: Carlton Damage Function 

In summary, the Carleton Damage Function tends to underestimate damage in close proximity to the 

detonation point, but does an excellent job approximating damage far from detonation point, while the 

Cookie Cutter Function is simple to implement, but underestimates effects of munitions on distant 

targets.  We therefore combine them taking the best characteristics from each.  In order to maximize 

how realistic our simulation is, we use this combined function which is called the Klopcic Hybrid 

Function: 

𝑃(𝐾) = {

                                                                                         
𝐷0

if "close"

𝐷0 (exp (𝐷0

(𝑑 − 𝑑𝑎𝑖𝑚)2 

2𝑏1
2 ) exp (𝐷0

(𝑟 − 𝑟𝑎𝑖𝑚)2

2𝑏2
2 )) if "not close"

 

Deciding whether or not you are “close” depends on a fourth input, the Core Lethal Area (𝐴𝐿0). Using 

this hybrid approach we can take into account not only the inputs, but also the how environmental 

conditions may affect those inputs as indicated in Figure 3. 
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Figure 3: Klopcic Hybrid Function Inputs and Outputs 

The Core Lethal Area and Lethal Area are functions of the weapon system and the terrain. The direct hit 

effectiveness, D0, is a function of the weapon system and the target type. This hybrid function will be the 

basis of analysis going forward and can be used for several different estimates of interest. A three shot 

hybrid result is illustrated in Figure 4 where total probability of kill as a function of location is depicted. 

 

Figure 4: Klopcic Hybrid Function 

As seen by the calculation, a closed form probability of kill can be obtained except that target location 

error exists. This uncertainty changes the deflection and range variables from fixed inputs  (d,r) to 

random variables (d+δ,r+ρ) where δ,ρ ~ Uniform (-TLE, TLE) as seen in Figure 5.  To account for the 

effects of this target location error random variable, several simulation runs are executed with the 

target location represented by uniformly distributed location errors from 0 to the maximum reported 

target location error. In this way, the average effect of a munition can be determined. That effect can 

take the form of an object being in one of four states. 
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Figure 5: Effect of Target Location Error 

Modeling Combat – States of Combatants 

There are four separate states that an object can exist: 

 Unaffected – The object (whether enemy or non-enemy, mobile or immobile) is functioning at 

the top of its game. It is at full power. 

 Killed – The object is completely destroyed and the prospects of rebuilding or replenishing the 

object are only plausible in the long term. 

 Wounded – An enemy or non-enemy who is not killed, but is slightly damaged. It is not 

functioning at the highest level of effectiveness, but is still armed and dangerous. 

 Suppressed – The object is not killed, but is temporarily unable to defend itself. This changes as 

a function of time, but is considered constant for the short time frame of this simulation. For 

example, if an enemy is held down and cannot return fire, that enemy is considered to be 

suppressed.  

If an object is destroyed (“killed”), it is not wounded or suppressed. However, an enemy can be both 

wounded and suppressed or either one alone. Being wounded and being suppressed are independent of 

one another. A wounded enemy is no more likely to be suppressed than a healthy enemy. The 

interrelation of these states is represented in Figure 5.  
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Figure 5: Interrelation of Targeted Object’s States 

The formula for estimating the probability that a combatant is killed is described earlier. To calculate the 

probability that an enemy is wounded, the same logic is applied as for this probability P(W), only the 

“Wounding” Lethal Area of the weapon is larger than the Lethal Area for the P(K) calculation. To arrive 

at the “Wounding” Lethal Area , the lethal area of the weapon is multiplied by some factor dependent 

on type of munition. Because a wounded object cannot also be killed, the Klopcic Hybrid analysis for 

wounding actually calculates P(W|Kc), not P(W). This quantity must be multiplied by the probability of 

not being killed: 

𝑃(𝑊) = (1 − 𝑃(𝐾)) ∗ 𝑃(𝑊|𝐾𝑐) 

The logic for calculating the probability of being suppressed works similarly. The Suppression lethal area 

of the weapon is the original lethal area of the weapon multiplied by some factor. Generally, this factor 

is larger than the wounding lethal area factor. Because suppression is independent of being wounded, 

P(S) is just multiplied by the probability of not being killed. The equation is: 

𝑃(𝑆) = (1 − 𝑃(𝐾)) ∗ 𝑃(𝑆|𝐾𝑐) 

 

Algorithm Development – Spreadsheet Simulation 

KlopcicHybrid.xlsm is the macro-enabled spreadsheet used to model the damage done by a munition or 

group of munitions while taking in affect the uncertainty caused by target location error. Excel was 

chosen to do all of the modeling due to its wide availability. It is limited in how much resolution you can 

examine the outcome, but offers the user an intuitive set of inputs. 

We describe the setup of the simulation in general here. The grid setup and weapon characteristics were 

discussed earlier and are needed to calculate the Klopcic Hybrid function. The battlefield characteristics 

are used to add a terrain factor to the weapon lethal area. Open, level terrain corresponds to a factor of 

1, while other terrain (wooded, urban, uneven) takes values less than 1 and shrinks the lethal area of the 

weapon. 

The user sets a number of enemies and places them in the formation chosen by the user. Another 

important input related to enemy location is the Target Location Error (TLE). TLE is not needed to set the 

grid or calculate P(K) at each point, but is a major factor in the analysis, especially when determining 

whether to use PGMs or conventional rounds. 

The value of TLE quantifies the uncertainty in target location. In the real world, a spotter or sensor of 

some kind is needed to determine enemy locations, but it is hard if not impossible to be exact. For 

example, if the spotter is fairly certain the target is within a circle of radius 10 meters from where we 

think it is, the TLE is 10 meters. The target is equally likely to be anywhere within 10 meters of the 

reported location. 
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To account for TLE in the spreadsheet, a macro called PofK goes through the entire grid point by point, 

adds up all the P(K) values that are within the TLE for the target in question, and then divides by the 

number of grid points in that space. 

The number of munitions launched and how they are aimed is the last input section, but to meet the 

first goal of the project, the analysis is restrained to analysis of single munitions. To describe how 

effective the munition strike is, several measures of effectiveness (MOEs) are listed. The expected 

number of kills simply adds up the probability of kill for each enemy in the simulation. The expected 

number of kills per munition divides the expected number of kills by how many munitions were 

launched .The average P(K) adds up the P(K) for every grid point and then divides by the number of grid 

points. Expected number of wounded and expected number of suppressed operate in the same fashion 

as expected number of kills. 

Algorithm Development – Experiment Design 

In order to measure the impact of each variable a Nearly Orthogonal Latin Hypercube (NOLH) design, a 

space filling design, is used to mitigate the large number of trials under various conditions while 

adequately capturing the full range of variability. An NOLH ensures the whole range of interest of each 

variable is considered, while having minimal correlation between input variables. This approach allows a 

full range of munition types to be considered without explicitly providing the particular performance 

parameters of munitions as long as the parameters are captured within the range of variables 

considered. A random design would ensure minimal correlation, but wouldn’t guarantee that all possible 

values of each variable are equally represented. The actual values used are given in Table 1. 

Table 1: Minimum and Maximum Variable Ranges 

 

The choice of minimum and maximum for each variable in the NOLH is very important. The Core Lethal 

Area is not yet a measured concept, and was set to be anywhere from 10% of the Lethal Area to 60% of 

the Lethal Area. The terrain coefficient was set to be between 0.5 and 1, and the wounding and 

suppression factors were set to be between 1.1 and 2.5. None of these factors had a meaningful effect 

Input Variable Minimum Maximum

Deflection Distance 0 meters 50 meters

Range Distance 0 m 50 m

D0 0.05 1.0

100 m2 1500 m2

Core Lethal Area

Terrain factor 0.5 1.0

Impact Angle 30o 90o

Target Location Error 2 m 91 m

Wound LA factor 1.1 2.5

Suppression LA factor 1.1 2.5
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on the eventual R2 values. Impact Angle can only vary between 0o and 90o, but any angle between 0o and 

30o provides the same result by the calculation. The assumptions of regression don’t work well when a 

large subset of a predictor gives the same answer, so the range chosen was 30o to 90o. 

That leaves distance in the range and deflection directions, the lethal area, D0 and TLE. The minimum 

distance away is 0 meters. You can’t get any closer than standing at the detonation point. The minimum 

TLE was set to 2 meters. If you have exact knowledge of the enemy’s location, the TLE could be as small 

as 0, but 2 ensures that with the resolution of the spreadsheet, at least 1 point would be within the TLE. 

Lethal Areas are classified, so the estimates are a relative shot in the dark. In the example that Major 

Moten gave us, the lethal area was 2,270 ft2 (211 m2). Based on this, the minimum value was set at 100 

m2. 

In terms of the maximum value for TLE and lethal area, we discussed with Mr. Robert Lillard of the Fires 

Center of Excellence whether our choices of maximum TLE and maximum lethal areas were 

representative of real values. A maximum lethal area of 1500m2 and a maximum TLE of 25m (for the 

most precise weapon system, Excalibur) were given a reasonable stamp of approval. It was then at our 

discretion to determine how much distance we want to analyze and what values of D0 to use. 

  

Table 2: Initial Experimental Range 

 

There are three types of tube-launched artillery rounds in question: Excalibur, PTK, and conventional 

rounds. Deciding which one to fire is mostly a function of the TLE. If the TLE is 25 meters or less, two 

Excalibur rounds are fired at the target. These currently cost around $5,000 per round, but presumably 

may become more expensive in the near future ($15,000-$20,000 or so). If the TLE is greater than 25 

meters but less than 100 meters, PTK rounds are fired. These are not as precise as Excalibur, but are still 

Variable Min Max

0 m 50 m

0 m 50 m

D0 0.05 1

CLA 0.1 0.6

LA 100 m2 1000 m2

Tfactor 0.5 1

ImpAng 30o 90o

TLE 2 m 91 m
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considered close to “precision-guided munitions”. How many are fired depends on the target, but these 

are generally fired in small groups.  

Any TLE above 100 meters will be fired upon using conventional rounds, generally in groups of 30-40 

rounds per attack. “Dumb” rounds cost around $1000 per round. After this initial firing, there is a re-

assessment period and the decision is made whether to attack again. Whatever kind of round is being 

fired, the target is called a unit. A unit could be anything from a small, single stationary object to several 

vehicles 50 to 75 meters apart. 

The simulation of these weapon systems can be three-dimensional, but the algorithm should not be. The 

Carleton Damage Function is not designed to be a three-dimensional equation. Also, the Excalibur 

weapon is not designed to perform area fires, where many rounds are fired at a group of targets in a 

large area. Conventional rounds are best suited for this purpose. 

),,,,,,,( 01 TLETAADrdfP LOLK   

Equation 1 

Initial experimentation is conducted to determine the overall fit of a regression model to a full range of 

factors. If the model is sufficient at this point no further model would be required.  

 

 

Figure 6: Initial Model 
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Algorithm Development – Experiment Results 

A NOLH was constructed using the ranges in Table 2 for the initial experiment. The initial model fitted a 

response service that allowed polynomial of degree terms and two-way interaction terms to be 

considered by a step-wise regression and is a function of terms shown in Equation 1. This resulted in a 

marginal fit with an adjusted R2 of .66 which is less than expected and is shown in Figure 6.  Additionally, 

the data displayed a nonlinear relationship with the fitted function indicating a transformation of the 

data may be required. A square root transformation was applied to the dependent variable P(k) to seek 

to correct this nonlinear relationship.  

issue.  

Figure 7: Initial Transformed Model SQRT(P(k)) 

 

The transformed P(k) regression is shown in Figure 7. Despite the increased adjusted R2 value of .79, 

there are concerns over whether this was a good fit across all variable values  or whether it was just a 

good fit for very low P(K) values far from the target and mediocre for close proximity points which have 

high P(K) as shown for the circled values in Figure 7. To mitigate this, models were developed for 

different maximum values of TLE, Lethal Area, and distance from the origin (d and r). Specifically 

different models were developed for maximum TLEs of 15m, 50m, and 91m, maximum Lethal Areas of 
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500m2, 1000m2, and 1500m2, and maximum d and r values of 10m, 15m, 20m, 25m, and 50m. In all, 

models were developed for 45 different testing configurations. The goal was to examine how R2 is 

affected by simply changing the range of several key input variables using R2 as the dependent variable. 

The result of this analysis was to verify that models with large TLEs, small Lethal Areas, and large values 

of d and r produce poor predictive models. While not surprising, it highlights that in order to develop a 

realistic model, the ranges of input variables had to be realistic and these parameter settings from the 

initial model do not add resolution to the model. 

Using this insight, separate models were developed for Excaliber, PGM, and conventional munitions 

using values less than 25 meters, 100 meters, and 1000 meters respectively.  Since from the original 

transformed model and further experimentation it was known that model fit may be effected by 

nonlinearity in some key variables, classification and regression trees were used to determine which 

variable created the most variability in the model.  As shown for the dataset with TLE < 25, there is a 

natural break at the deflection of 12.6 meters. This process was subsequently used to divide the data as 

shown in Table 3. 

 

Figure 8: Classification and Regression Tree for TLE<25 
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This process is followed to develop models for both Excaliber and PGK munitions as shown in Figure 9 

(See Appendices for equations) . This methodology creates the 4 models shown in Figure 9 with model 

goodness-of-fits that are both traceable and defendable for munition effects. The Fit adjusted R2 values 

are shown with the highest R2 values for the models with rounds landing closest to the target regardless 

of the lethal area which is the area of most importance. The Fit adjusted R2 values are for the modeling 

of the square root of P(k). Validation R2 values are for simulations of actual P(k) after the square root is 

transformed back to P(k). These validation runs used 500 randomly selected factor vectors. Again, the 

model performs extremely well for the area of most concern of higher P(k) values close to the target. 

 

Model Conditions 

Model 1A D and R < 12.6, TLE < 25 

Model 1B D or R > 12.6, TLE < 25 

Model 2A D and R < 25, 100 > TLE > 25 

Model 2B D or R > 25, 100 > TLE > 25 

 

Table 3: Data Breakpoints for Models 

 

Figure 9: Final Model Goodness-of-Fit and Validation Results 

Adjustment for Risk Averse Modeling  

While the preceding models capture well the average P(k) effect of a single mention round, planners 

sometimes want to be risk averse do to civilians or proximity of sensitive objects to impact. As with any 

good regression model, the preceding models had errors in prediction that were verified to be normally 

distributed . For risk averse modeling, we use this normal distribution of errors to adjust our model. 

Based on the Model in use, a constant based on error distribution can be added to the model before it is 

R2=.95 R2=.89 R2=.99 R2=.82Fit (sqrt(Pk))

Validation (Pk) R2=.95 R2=.77 R2=.96 R2=.67
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squared and then both the model function and added constant to predict a risk based P(k) as shown in 

Equation 2. 

2

02

02

]),,,,,,,([

),,,,,,,(

CTLETAADrdfP

CTLETAADrdfP

LOLK

LOLK








 

Equation 2 

The constant C is determined through a percentile plot of the error terms shown in Figure 10. 

Dependent on the level of risk aversion, C values for each model can be obtained. For Example, values 

for C are given for the 75th, 90th, and 99th percentile in Table 4. 

 

Figure 10: Error for Each Model 

 

Table 4: Error for selected percentiles for each model 

Application of Models  

To apply the models , traceable inputs for each scenario must be known. Given this information, each 

round is assumed to act independently. This model is typical in this type of modeling and does not 

account for a situation where one round may wound an individual and that same individual is 

“wounded”. The number of rounds fired in each situation is left to the modeler; however, this modeling 

approach allows the modeler to begin to approach the question of how many rounds are enough to 

achieve the desired effect. 

 

Model 1A Model 1B Model 2A Model 2B

Model 75% Adj 90% Adj 99% Adj

1A 0.014 0.032 0.10

1B 0.04 0.077 0.15

2A 0.005 0.011 0.04

2B 0.022 0.041 0.10
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Conclusion 

This effort developed an algorithm and methodology to accurately represent the high explosive (HE) 

precision munitions using the Carlton Damage Function for use with the COSAGE model  to accurately 

model the desired and undesired effects of precision munitions. This effort should enable the COSAGE 

model to better simulate precision munition weapon effects in  ground combat between a large number 

of U.S., Ally, and Enemy weapon systems over a 48-hour period and produce engagement results .  

Similar models can be developed for probability of wounding and probability of suppression. 
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APPENDIX 1 – Excaliber Models 

Trial 55 

Variable Min Max 

Deflection 0 m 25 m 

Range 0 m 25 m 

D0 0.25 1 

Lethal Area 100 m2 1500 m2 

Core Lethal Area 0.1 0.6 

Terrain Factor 0.5 1 

Impact Angle 30 90 

TLE 2 25 

 

APPENDIX 1A– Excaliber Model 1A 

SQRT(P(k) = 

0.3151885-0.012095*DEF-

0.006095*RAN+0.2659346*D0+0.0215783*CLA+0.0002081*LA+0.1779652*TFACTOR+0.0008161*IF(IM

PANG<30,30,IMPANG)-0.007863*TLE-0.000866*(DEF-5.73838)^2-0.000329*(RAN-5.77882)^2-

0.014571*(DEF-5.73838)*(D0-0.62775)-0.009837*(RAN-5.77882)*(D0-0.62775)-0.214067*(D0-

0.62775)^2+0.0000047582*(DEF-5.73838)*(LA-804.634)+0.0000035178*(RAN-5.77882)*(LA-

804.634)+0.0002606*(D0-0.62775)*(LA-804.634)-0.0000001878*(LA-804.634)^2+0.2768908*(D0-

0.62775)*(TFACTOR-0.75083)-0.0000738*(LA-804.634)*(TFACTOR-0.75083)-0.220381*(TFACTOR-

0.75083)^2+0.0001185*(DEF-5.73838)*(IF(IMPANG<30,30,IMPANG)-60.0127)-0.00008652*(RAN-

5.77882)*(IF(IMPANG<30,30,IMPANG)-60.0127)+0.0014057*(D0-

0.62775)*(IF(IMPANG<30,30,IMPANG)-60.0127)-0.000022*(IF(IMPANG<30,30,IMPANG)-

60.0127)^2+0.0012364*(DEF-5.73838)*(TLE-13.535)+0.0004483*(RAN-5.77882)*(TLE-13.535)-

0.008522*(D0-0.62775)*(TLE-13.535)-0.000226*(TLE-13.535) 

For 30 degrees <= alpha <= 90 

APPENDIX 1B– Excaliber Model 1B 

SQRT(P(k) = 

0.1821638-0.007924*DEF-

0.00459*RAN+0.000169*LA+0.160827*TFACTOR+0.0003699*IF(IMPANG<30,30,IMPANG)+0.0023676*T

LE+0.000081642*(DEF-26.9887)^2+0.000089675*(DEF-26.9887)*(RAN-26.9609)+0.000024447*(RAN-

26.9609)^2-0.00128*(RAN-26.9609)*(D0-0.62314)-0.000003489*(DEF-26.9887)*(LA-796.842)-

0.000002*(RAN-26.9609)*(LA-796.842)+0.00006377*(D0-0.62314)*(LA-796.842)-0.00000006079*(LA-

796.842)^2-0.003067*(DEF-26.9887)*(TFACTOR-0.7495)+0.0001227*(LA-796.842)*(TFACTOR-0.7495)-

0.00003078*(RAN-26.9609)*(IF(IMPANG<30,30,IMPANG)-60.0044)-0.00004532*(RAN-26.9609)*(TLE-

13.4792)+0.0055151*(D0-0.62314)*(TLE-13.4792)-0.000003057*(LA-796.842)*(TLE-13.4792) 
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APPENDIX 2 – PGK Models 

Trial 57 

Variable Min Max 

Deflection 0 m 100 m 

Range 0 m 100 m 

D0 0.25 1 

Lethal Area 100 m2 1500 m2 

Core Lethal Area 0.1 0.6 

Terrain Factor 0.5 1 

Impact Angle 30 90 

TLE 2 25 

 

APPENDIX 2A– PGK Model 2A 

SQRT(P(k) = 

0.2118496-0.00056*DEF-

0.000298*RAN+0.0247488*D0+0.0001617*LA+0.1465859*TFACTOR+0.0001839*IF(IMPANG<30,30,IMP

ANG)-0.003926*TLE-0.00003766*(DEF-9.1624)^2-0.00002676*(RAN-8.86918)^2-0.000000894*(DEF-

9.1624)*(LA-790.25)-0.0000005558*(RAN-8.86918)*(LA-790.25)+0.0000192*(D0-0.61069)*(LA-790.25)-

0.00000007661*(LA-790.25)^2+0.0000823*(LA-790.25)*(TFACTOR-0.74579)-0.103632*(TFACTOR-

0.74579)^2+0.00000024725*(LA-790.25)*(IF(IMPANG<30,30,IMPANG)-59.9399)+0.0000414*(DEF-

9.1624)*(TLE-58.6302)+0.000044243*(RAN-8.86918)*(TLE-58.6302)-0.00068*(D0-0.61069)*(TLE-

58.6302)-0.00000211*(LA-790.25)*(TLE-58.6302)-0.001881*(TFACTOR-0.74579)*(TLE-58.6302)-

0.00001285*(IF(IMPANG<30,30,IMPANG)-59.9399)*(TLE-58.6302)+0.000058223*(TLE-58.6302)^2 

 

APPENDIX 2B– PGK Model 2B 

SQRT(P(k) = 

0.0578981-0.001659*DEF-

0.001348*RAN+0.0000672*LA+0.0735056*TFACTOR+0.0011076*TLE+0.0000294*(DEF-53.0857)*(RAN-

52.9462)-0.000001108*(DEF-53.0857)*(LA-805.155)-0.0000007203*(RAN-52.9462)*(LA-805.155) 
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Appendix F
Glossary

ARO Army Research Office
CAPTTIM Cognitive Alighnment With Performance Targeted

Training Intervention Model
IGT Iowa Gambling Task
TRAC Training and Doctrine Command Analysis Center
WCST Wisconsin Card Sorting Test
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