
REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information. including suggestions for reducing the burden , to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to any penalty for fa iling to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (00-MM-YYYY) 1 2. REPORT TYPE 3. DATES COVERED (From - To)

12/12/2016 Final 07/01/2015-08/31/2016
4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER

Design and Implementation of Decoy Enhanced Dynamic Virtualization
Networks

Sb. GRANT NUMBER

N00014-15-1-2396

Sc. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) Sd. PROJECT NUMBER

Sun, Kun

Se. TASK NUMBER

Sf. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

The College of William and Mary, Office of Sponsored Programs, P.O. Box 8795, REPORT NUMBER

Williamsburg, VA 23187-8795

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

Office of Naval Research ONR

875 N Randolph St, Arlington, VA 22217 11 . SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for Public Release; Distribution is Unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Sophisticated adversaries usually initiate their attacks with a reconnaissance phase to discover exploitable vulnerabilities on
the targeted networks and systems. This attacking strategy works well due to the static nature of the network topology. To
mitigate the effectiveness of reconnaissance attacks, we propose to develop a defensive mechanism that dynamically
mutates network topology with a large number of decoys to invalidate the attacker's knowledge from network scanning. In
this work, we focus on solving two major challenges associated with dynamic network topology, namely, service availability
to legitimate users and service security against unauthorized users.

1S. SUBJECT TERMS

Moving Target Defense, Decoy, Network Function Virtualization

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER

a. REPORT b. ABSTRACT c. THIS PAGE
ABSTRACT OF

PAGES

u u u uu 8

19a. NAME OF RESPONSIBLE PERSON

Kun Sun
19b. TELEPHONE NUMBER (Include area code)

703-993-1715

Standard Form 298 (Rev . 8/98)
Prescribed by ANSI Std . Z39.18

"Design and Implementation of Decoy Enhanced Dynamic
Virtualization Networks"

PROJECT: ONR-BAA-15-001
Contract#: NOOO 14-15-1-2396

Final Technical Report
Reporting Period: 1 July 2015-31 August 2016

Principal Investigator: Dr. Kun Sun
Department of Computer Science, P.O. Box 8795

College of William and Mary
Williamsburg, VA 23187-8795

757-221-3457 (voice); 757-221-1717 (fax); ksun@wm.edu

Project Manager:
Dr. J. Sukamo Mertoguno

Mathematics Computers and Information Research
Office ofNaval Research

875 N. Randolph Street, Suite 1425
Arlington, VA. 22203

Contents

1 Major Goals ... 3

2 Accomplishment Under Goals .. 3
2.1 CyberMoat: Camouflaging Critical Server Infrastructures with Large Scale Decoy
Farm {1} .. 4
2.2 SPEAKER: Split-Phase Execution of Application Containers {2} ... 6

3 Training Opportunities .. 7

4 Results Dissemination .. 7

5 Honors and Awards ... 7

6 Participants .. 7

7 Publications .. 8

2

Design and Implementation ofDecoy Enhanced Dynamic Virtualization Networks

1 Major Goals
The relatively static configurations of networks and their hosts allow attackers to gather
intelligence, perform planning, and execute attacks at will. This project' s overall objective is to
protect the real system running on a host computer via mutable virtualized large-scale network
containers. Specific objectives include (1) increasing the attack surface and hiding the real system
in a large number of decoys, and (2) developing dynamic virtualized network topology on a host
computer. If successful, our host immunity system could be used by the Navy to better protect its
computer system from the existing attacks and enhance the resilience of the services and
applications when it is under attacks. Even if an attacker gains some access to the host, his ability
to exploit the penetration is limited because what he obtained is no longer true. As time goes on
our system knows more about the attacker while he knows less about our system.

This project focuses on developing a set of optimized, validated, and fully documented algorithms
and mechanisms. A successful system prototype will be delivered and lead to a powerful new
capability for using moving target defense mechanism to build resilient, adaptive, and secure
systems. The primary deliverable of this effort will be the actual secure system based on moving
target defense mechanisms, for deployment on commodity computers. The software will be
delivered as a series of software drops with incremental capabilities. There are no proprietary
claims associated with our deliverables.

This report is approved for public release; distribution is unlimited.

2 Accomplishment Under Goals
We perform two major tasks between 07/01/20 15 and 08/31/2016 before the PI moved from
College of William and Mary to George Mason University (GMU) in 09/2016. Related grant has
been transferred to GMU on 09/30/2016.

First, deception based cyber defense mechanisms have been largely constrained by the low decoy
fidelity, the poor scalability ofthe decoy platform, and the static decoy configurations. Attackers
greatly benefit from the unsophisticated decoy design, which allows them to identify and bypass
the deployed decoys. In this paper, we develop a decoy-enhanced defense framework that can
proactively protect critical servers against targeted attacks through deception. To achieve high
decoy fidelity and scalability, our system follows a hybrid architecture that separates lightweight
yet versatile front-end proxies from backend high-fidelity decoy servers. Moreover, our system
can further invalidate the attackers ' reconnaissance through dynamic proxy address shuffling. To
guarantee service availability, we develop a transparent connection translation strategy to maintain
existing connections during shuffling. Our evaluation on a prototype implementation demonstrates
the effectiveness of our approach in defeating attacker reconnaissance and remote exploitations
and shows that it only introduces small performance overhead.

Second, Linux containers have recently gained more popularity as an operating system level
virtualization approach for running multiple isolated OS distros on a control host or deploying
large scale microservice-based applications in the cloud environment. The wide adoption of

3

Design and Implementation of Decoy Enhanced Dynamic Virtualization Networks

containers as an application deployment platform also attracts attackers' attention. However,
Docker lacks a method to obtain and customize the set of necessary system calls for a given
application. Moreover, we observe that a number of system calls are only used during the short
term booting phase and can be safely removed from the long-term running phase for a given
application container. In this paper, we propose a container security mechanism called SPEAKER
that can dramatically reduce the number of available system calls to a given application container
by customizing and differentiating its necessary system calls at two different execution phases,
namely, booting phase and running phase. For a given application container, we first separate its
execution into booting phase and running phase and then trace the invoked system calls at these
two phases, respectively. Second, we extend the Linux seccomp filter to dynamically update the
available system calls when the application is running from the booting phase into the running
phase. Our mechanism is non-intrusive to the application running in the container. We apply
SPEAKER to the most popular web server and data store application containers from Docker hub,
and the experimental results show that it can reduce more than 50% and 35% system calls in the
running phase for the data store and the web server application containers with negligible
performance overhead.

2.1 CyberMoat: Camouflaging Critical Server Infrastructures with Large
Scale Decoy Farm [1]

Recent years have witnessed the explosion of targeted attacks against the critical server
infrastructures within both government organizations and businesses, and the number of data
breaches increases tremendously with the continuous proliferation of exploitable zero-day
vulnerabilities. Particularly, an advanced persistent threat (APT) may enable an unauthorized
attacker to bypass the traditional security measures such as firewalls and intrusion detection
systems (IDS) and stealthily gain access to the sensitive data on the victim servers.

Consequently, deception-based technique~ have re-emerged as an additional line of defense to
supplement the traditional preventive security measures. Instead of relying on monitoring
abnormal attack patterns, deception-based techniques use advanced luring techniques and
engagement servers to entice an attacker away from the valuable servers. As the average time to
identify and resolve a data breach for malicious attacks is 82 days, we can utilize specially crafted
decoys to detect attackers throughout the kill-chain cycle and prevent them from completing their
missions. Specifically, a decoy provides a carefully isolated environment for misdirecting attackers
and feeding them disinformation in the form of falsified data such as fake encryption keys,
database entries, and OS fingerprinting information. It also creates a trapped environment to gather
information about the attack and trigger an alarm of the forthcoming intrusion.

Most existing deception-based defenses adopt traditional honeypot technology to develop decoy
systems for attack detection and information gathering. However, their effectiveness has not met
the expectations of the security practitioners due to two major limitations. First, the number of
believable decoys is constrained by the limited system resources. There is a trade-off between the
fidelity of the decoys and the limited system resources. Low-fidelity decoys require less system
resources but may be easily identified by attackers. In contrast, high-fidelity decoys may not be
easily identified by attackers but require more system resources to mimic the real server. Second,
decoys are statically deployed . With sufficient support, APT attackers may finally identify all static

4

Design and Implementation of Decoy Enhanced Dynamic Virtualization Networks

decoys through either timing-based or fingerprinting-based analysis. It ts critical to design
believable, scalable, and dynamic decoys to solve these two challenges.

We design a decoy-based deception mechanism named CyberMoat that can protect critical servers
against targeted attacks with a large number of high-fidelity decoys, which can be dynamically
created and managed using limited system resources. CyberMoat adopts a hybrid architecture that
separates an extensive layer affront-end proxies that focus on network stack processing from back
end decoy servers that focus on serving the service requests. Since the size of the proxies is much
smaller than the decoy servers, we can create a proxy pool that consists of hundreds (or even
thousands) of lightweight proxies, which transparently redirect the network traffic between the
attackers (or legitimate users) and the backend decoy servers (or protected servers). We named the
proxies redirecting normal traffi·cs as secret proxy, and the proxies redirecting malicious traffics
as public proxy. We note that both secret proxies and public proxies have the same network
functions. The high-fidelity decoy servers closely resemble real servers with full-fledged operating
system and services but only provide false information. Due to the resource constraints, we may
only create a small number of high-fidelity decoy servers in a decoy server farm.

To further defeat APT attackers, we dynamically mutate the proxies ' addresses to invalidate
attackers ' efforts of identifying and then blacklisting the decoy servers. By shuffling the proxy
addresses, we can not only diffuse the traffic targeting at an overloaded proxy, but also invalidate
the attacker' s knowledge gained from prior network scanning. Indeed, network address shuffling
can reduce the effectiveness of reconnaissance for vulnerability discovery and further raises the
bar of remote exploitation based attacks. Since we shuffle both the secret proxy and the public
proxy, existing network connections will be disrupted when shuffling the proxy ' s IP and MAC
addresses. For legitimate users this implies degraded user experience; while for potential attackers,
it creates an obvious channel of discovering our shuffling enhanced deception mechanism so that
they can retreat early to avoid exposing their attack strategies. To guarantee service availability,
we develop a transparent connection migration strategy so that the previously alive sessions are
not interrupted during proxy address shuffling.

We implement a CyberMoat prototype. First, we use ClickOS [3] as the front-end proxies and use
full-fledged Xen virtual machines as the back-end decoy servers. The small size of ClickOS
enables us to create hundreds of proxies on one computer. Moreover, it has short boot time. It also
ensures secure isolation among the proxies by the hypervisor. The proxies redirect connection
requests to the back-end decoy servers that install the same set of software stack as the real server.
Second, based on the control plane of the software-defined networking, we design a centralized
CyberMoat control plane to manage the proxy address shuffling and seamless connection
migration. It is responsible for coordinating the creation of a hybrid decoy platform by
communicating with agents in the proxy pool and the decoy server farm. It also performs traffic
monitoring to direct the dynamic proxy address shuffling and ensure transparent network
connection migration for maintaining existing network connections during the proxy shuffling.
We evaluate the effectiveness of our prototype in disrupting network reconnaissance and remote
exploits and show that our system introduces small performance overhead.

In summary, we have made the following contributions. First, we develop a dynamic deception
mechanism that protects critical production servers with a large scale high-fidelity decoy pool ,

5

Design and Implementation of Decoy Enhanced Dynamic Virtualization Networks

which can be dynamically configured to further trap and misinform targeted attacks. Second, we
develop a highly scalable decoy system that combines an extensive layer of proxies with high
fidelity decoy servers. Through this hybrid decoy design we can successfully misdirect the
attackers and entice them away from the protected servers. Third, we introduce a proactive
approach of randomizing the decoy network addresses to invalidate the attacker' s reconnaissance
efforts and diffuse the network flooding against a single proxy. Moreover, we outline a strategy
for seamless connection migration to maintain those existing connections during the randomization
process. Fourth, we implemented a system prototype for our defensive framework, and our
evaluations demonstrate that the proposed approach can effectively evacuate critical servers from
remote exploit based attacks and introduce small performance overhead.

2.2 SPEAKER: Split-Phase Execution of Application Containers [2]
We use Linux container to create a large number of decoy agents and develop a fine-grained
control on the allowable system calls in each container. Linux containers have emerged as one
popular operating system level virtualization approach for running multiple isolated Linux systems
on a host OS or deploying large scale microservice-based applications in the cloud environment.
State-of-the-art container technologies such as Docker and Rocket are enabling the wide adoption
of application containers. According to the latest cloud computing trend, the overall Docker
container adoption has doubled through the past year.

A number of security mechanisms have been proposed or adopted to protect containers. Since the
system calls are the entry points for processes in the container into the kernel, seccomp has been
integrated into the most popular container management tool Docker to effectively limit the system
calls available to the container. In Docker, a whitelist of available system calls is recorded as a
seccomp profile file in the json format. However, Docker lacks a method to obtain and customize
the set of system calls in the seccomp profile for a given application. It only provides a coarse
grained setting recommendation that allows 313 system calls for all application containers.

We observe that an application container may require different sets of available system calls during
the lifetime of this container. Since most of the application containers are used to run long-term
services such as web servers and database servers, the lifetime of those containers can be generally
divided into two phases, the booting phase and the running phase. The booting phase is responsible
for setting the container environment and initializing the service. Typically it takes less than 70
seconds. In the running phase, the service begins to accept service requests and send back
responses. Due to the different functions demanded in these two phases, a number of system calls
invoked in the booting phase may no longer be needed in the application running phase. For
instance, compared to the default 313 available system calls through the entire lifetime of a Docker
container, our experiments show that 116 system calls are invoked in the container booting phase
and only 58 system calls are necessary for the long-term running of the MySQL database server.
However, it is a challenge to dynamically change the sec- comp profile to support different sets of
systems calls, since Docker only allows the seccomp profile to be set once when the container is
being launched.

We develop a dynamic system call reduction mechanism called SCARCE to enhance the security
of application containers. The basic idea is to first trace the system call profiles by monitoring the
container execution and then dynamically constrain the available system calls when the container

6

Design and Implementation of Decoy Enhanced Dynamic Virtualization Networks

boots up and runs. Both system call profiling and dynamic setting run outside the container. For a
given application container, it first traces the only necessary system calls required for the booting
phase and the running phase, respectively. In the Linux kernel, the available system call list can
be represented as an seccomp filter. Therefore, when one container runs, we may dynamically
configure the seccomp filter of the container with two sets of available system calls for two
different phases. Linux kernel provides two sys- tern calls prctl and seccomp for one container to
change its own seccomp filter. However, due to the security reason, we cannot allow processes
inside one container to change its available system calls. Instead, SCARCE changes one
container's seccomp filter from an outside process running on the host OS. Since all processes
inside one container share the same seccomp filter, we can change the seccomp filter of on~ process
to update the available system calls for the entire container. Since the changes happen outside the
container, we need to fill the semantic gap to find the data structure of seccomp filter before we
can make changes.

We apply our mechanism on two popular categories of application containers from Docker hub
web server containers and data store containers. We select the top four web server container images
(i.e., nginx, Tomcat, httpd, and php) and the top four data store container images (i .e. , MySQL,
Redis, MongoDB, and Postgres), which cover most of the popular web server platforms and data
store plat- forms. The experimental results show that SCARCE can reduce more than 50% and
35% system calls for the data store containers and the web server containers, respectively. The
number of system calls for web server containers may vary when deploying different web
applications; however, they share most of system calls since the primary functions of web servers
such as processing HTTP requests and web pages are the same. Actually, for all website
applications tested in our experiments, about 80% system calls will be invoked for just fetching
one web page.

3 Training Opportunities
Nothing to report.

4 Results Dissemination
Based on this project, we submitted another proposal to Cisco Systems, Inc. Since Moving target
defense is an emerging critical research area, Cisco awarded the PI an unrestricted gift of $1 OOK
to help develop the final hybrid decoy system.

5 Honors and Awards
Nothing to report.

6 Participants
PI: Kun Sun
Postdoc: Lingguang Lei
PhD students: Jianhua Sun, Kyle Wallace

7

Design and Implementation of Decoy Enhanced Dynamic Virtualization Networks

7 Publications
[1]. Jianhua Sun and Kun Sun, "CyberMoat: Camouflaging Critical Server Infrastructures with
Large Scale Decoy Farm". Under submission to conference. December 2016.

[2]. Lingguang Lei, eta!., "SPEAKER: Split-Phase Execution of Application Containers". Under
submission to conference. November 20I6.

[3]. J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco, and F. Huici, "Clickos
and the art of network function virtualization," in II th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14), 2014.

8

