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A Human Factors Analysis of Proactive Support in
Human-robot Teaming

Yu Zhang, Vignesh Narayanan, Tathagata Chakraborti and Subbarao Kambhampati

Abstract— It has long been assumed that for effective human-
robot teaming, it is desirable for assistive robots to infer the
goals and intents of the humans, and take proactive actions
to help them achieve their goals. However, there has not
been any systematic evaluation of the accuracy of this claim.
On the face of it, there are several ways a proactive robot
assistant can in fact reduce the effectiveness of teaming. For
example, it can increase the cognitive load of the human
teammate by performing actions that are unanticipated by the
human. In such cases, even though the teaming performance
could be improved, it is unclear whether humans are willing
to adapt to robot actions or are able to adapt in a timely
manner. Furthermore, misinterpretations and delays in goal
and intent recognition due to partial observations and limited
communication can also reduce the performance. In this paper,
our aim is to perform an analysis of human factors on the
effectiveness of such proactive support in human-robot teaming.
We perform our evaluation in a simulated Urban Search
and Rescue (USAR) task, in which the efficacy of teaming
is not only dependent on individual performance but also on
teammates’ interactions with each other. In this task, the human
teammate is remotely controlling a robot while working with an
intelligent robot teammate ‘Mary’. Our main result shows that
the subjects generally preferred Mary with the ability to provide
proactive support (compared to Mary without this ability). Our
results also show that human cognitive load was increased with
a proactive assistant (albeit not significantly) even though the
subjects appeared to interact with it less.

I. INTRODUCTION

The efficacy of teaming [8] is not only dependent on
individual performance, but also on teammates’ interactions
with each other. It has long been assumed that for effective
human-robot teaming, it is desirable for assistive robots to
infer the goals and intents of the humans, and take proactive
actions to help them achieve their goals. For example, the
ability of goal and intent recognition is considered to be
required for an assistive robot to be socially acceptable
[22], [5], [16], [2], [24]. This claim is also assumed in
other human-robot teaming tasks, such as collaborative man-
ufacturing [25] and urban search and rescue (USAR) [23].
However, there has not been any systematic evaluation of the
accuracy of this claim.1

*This work was supported in part by the ARO grant W911NF-13-1- 0023,
and the ONR grants N00014-13-1-0176, N00014-13-1-0519 and N00014-
15-1-2027.

The authors would like to thank Nathaniel Mendoza for help with the
simulator as well as the anonymous participants in the study.

The authors are with the Department of Computer Science and
Engineering, Arizona State University, Tempe, AZ 85281, USA
{yzhan442,vnaray15,tchakra2,rao}@asu.edu

1The authors in [13] considered anticipatory action in interaction scenar-
ios involving repetitive actions and the task settings are for human-robot
teaming with proximal interactions.

Fig. 1. Illustration of our USAR task in which the human teammate
remotely controls a robot while working with an intelligent robot ‘Mary’.
We intend to compare Mary with and without a proactive support ability.

There are several ways a proactive robot assistant can
in fact reduce the effectiveness of teaming. For example,
it can increase the cognitive load of the human teammate by
performing actions that are unanticipated by the human. In
such cases, even though the teaming performance could be
improved, it is unclear whether humans are willing to adapt
to robot actions or are able to adapt in a timely manner.
Furthermore, misinterpretations and delays in goal and intent
recognition due to partial observations and limited commu-
nication can also reduce performance. For example, consider
a case in which you want to make an omelet and need eggs
to be fetched from the fridge. Even if an assistive robot has
started to fetch the eggs (after recognizing your intent), you
may decide that the robot is too slow and fetch the eggs
by yourself although you could improve the performance by
letting the robot fetch the eggs while you preheat the pan.
On the other hand, adapting to the robot’s actions in such
scenarios to improve teaming performance can increase the
human cognitive load, which leads to unsatisfactory teaming
experience. These conflicting factors make us investigate the
utility of Proactive Support (PS) in human-robot teaming.

In this paper, we start this investigation in a simulated
USAR task with a general way to implement the proactive
support ability on a robot in similar scenarios. Previous work
[13] that investigates the effects of this ability is restricted
to human-robot teaming with more proximal interactions.
Meanwhile, to maintain the generality of this task, we only
introduced a few necessary simplifications. In our task,
the human teammate is remotely controlling a robot while
working with an intelligent robot ‘Mary’ (as shown in Fig.
1). The human-robot team is deployed during the early phase



of an emergency response where they need to search, rescue
and provide preliminary treatment to casualties.

This USAR scenario considers many of the complexities
(e.g., partial observations) that often occur in real-world
USAR tasks and we intend to learn whether these complex-
ities influence the overall evaluation of the intelligent robot
(i.e., Mary) with a proactive support (PS) ability, compared
to Mary without this ability. We also aim to investigate
the various trade-offs, e.g., mental workload and situation
awareness through this human factors study.

II. RELATED WORK

There are many early works on goal and intent recognition
(e.g., [15], [14], [4]). More recently, a technique to compile
the problem of plan recognition into a classical planning
problem is provided [20]. There is also a rich literature
in the area of plan adaptation, which handles how robots
plan under human-introduced constraints (e.g., social rules
[24]). Using simple temporal networks (STNs), there has
been development in efficient dispatchers that perform fast,
online, least-commitment scheduling adaptation [6]. There
are also a number of adaptation techniques that focus on
integrated planning and execution [7], [21], [1].

There are existing systems that combine both goal and
plan recognition and plan adaptation to achieve a proactive
support ability on robots. In [13], [12], the authors propose a
cost based anticipatory adaptive action selection mechanism
for a robotic teammate to make decisions based on the
confidence of the action’s validity and relative risk. However,
only repetitive tasks are considered and the task settings are
for human-robot teaming with more proximal interactions
compared to that in USAR scenarios. In [5], a human-
aware planning paradigm is introduced where the robot only
passively interacts with the human by avoiding conflicts with
the recognized human plan. In USAR scenarios, it is also
desirable for the robot to proactively provide support to the
human. A recent paper proposes a planning for serendipity
paradigm in which the authors investigate planning for
stigmergic collaboration without explicit commitments [3].
In [17], the authors propose a unified approach to concurrent
plan recognition and execution for human-robot teams, in
which they represent alternative plans for both the human
and robot, thus allowing recognition and adaptation to be per-
formed concurrently and holistically. However, the limitation
is that the plan choices must be specified a priori instead of
dynamically constructed based on the current goal and intent
of the human. This renders the approach impractical for real-
world scenarios since even moderate number of choices (i.e.,
branching factors) can make the approach infeasible.

Part of our goal is to provide a general way to achieve
a proactive support ability in scenarios that are similar to
our USAR task, in which the task is composed of subtasks
with priorities that are dependent on the current situation.
Note that a framework to achieve general proactive support
can be arbitrarily complex depending on the task and level
of support that is needed. In our work, similar to [23], we
use the plan recognition technique in [20] and then feed its

outputs to a planner which determines the priorities of the
subtasks and computes a plan accordingly. The main goal of
this work is to start the investigation of humans factors for
proactive support in various human-robot teaming scenarios.

Regarding the benefits of automation in human-robot
teaming, it is well known that automation can have both
positive and negative effects on human performance. Empir-
ical proofs have been provided in four main areas: mental
workload, situation awareness, complacency and skill degra-
dation [19]. We also aim to study the influence of proactive
support on these factors in our USAR task.

III. BACKGROUND

A. USAR Task Settings Overview

In our simulated USAR task, the human and intelligent
robot (i.e., Mary) share the same set of candidate goals
(i.e., subtasks), and the overall team goal is to achieve
them all (which will be distributed among the human and
Mary). These goals are not independent of each other. In
particular, the priorities of goals are dependent on which
goals are achieved in the current situation. Given these task
settings, we aim to investigate the influence of a proactive
support (PS) ability on a robot. We compare two cases:
Mary (i.e., the intelligent robot) has a PS ability and Mary
does not have this ability. During the task execution, in
both cases, Mary chooses her own goal to maximize the
teaming performance accordingly to the human’s current
goal. When Mary does not have a proactive support ability,
she can only know the human’s current goal when the human
explicitly communicates it to her. When Mary has this ability,
if the human does not inform Mary of his/her current goal,2
Mary can infer it based on her observations. To summarize,
Mary in both cases can adapt to human goals while Mary
with a PS ability can adapt in a more “proactive” fashion
(hence proactive support). Finally, in both cases, Mary has
an automated planner (see a brief description below) that
can create a plan to achieve her current goal and she can
autonomously execute the plan.

B. Automated Planner

In our settings, a task or subtask is compiled into a
problem instance for an automated planner to solve. The
planner creates a plan by connecting an initial state to a goal
state using agent actions. A planning problem can be spec-
ified using a planning domain definition language (PDDL)
[11]. Depending on the task, there are many extensions of
PDDL (e.g., [9], [10]) that can incorporate various modeling
requirements. We use the extension of PDDL described in
[9] to model the USAR domain. Using an automated planner
allows an agent to reason directly about the goal. Human
factors study on the incorporation of automated planners for
human-robot teaming has appeared previously in [18].

2In both cases, when the human (optionally) informs Mary of his/her
current goal, it is used directly by Mary assuming that this information is
accurate.



(a) (b)

Fig. 2. (a) Simulated Environment for our USAR task. (b) The environment
(from robot X’s cameras) that the human subject actually sees.

C. Goal and Intent Recognition
To recognize the human intents and goals, assuming that

humans are rational, we use the technique in [20]. In our
task, Mary maintains a belief of the human’s current goal
(denoted by GX ) as a hypothesis goal set YX , in which
YX corresponds to all remaining candidate goals. Given a
sequence of observations q that are obtained periodically
from sensors (on Mary or fixed in the environment), the
probability distribution Q over G 2 YX is recomputed using
a Bayesian update P(G|q) µ P(q |G), where the prior is
approximated by the function P(q |G) = 1/(1+ e�bD(G,q))
in which D(G,q) = Cp(G�q) � Cp(G+q). Cp(G+q) and
Cp(G�q) represent the cost of the optimal plan to achieve G
with and without the observation of q , respectively. Having
known the probability distribution Q, the goal that has the
highest probability is assumed to be the current goal of
the human. This goal is correspondingly taken out of the
consideration of Mary and Mary then adapts her current
goal if necessary (from her remaining goals) to optimize
the teaming performance. Mary then makes a plan using
an automated planner described previously to achieve her
current goal.

IV. STUDY DESIGN

A. Hypotheses
We aim to investigate the following hypotheses:
• H1) Mary with a proactive support (PS) ability enables

more effective teaming (e.g., less communication and
more efficiency) in our task settings.

• H2) Mary with a PS ability increases human mental
workload (e.g., due to unanticipated actions from Mary).

In our study, we also make efforts to maintain the task
settings as general as possible. For a discussion on the
generalization of the results, refer to the conclusion section.

B. Environment
Fig. 2(a) shows the simulated environment (created in

Webots) in our USAR task, which represents the floor plan
of an office building where a disaster occurs (e.g., a fire). Fig.
2(a) is the visual feedback from the remotely controlled robot

Fig. 3. Example puzzle problem used in our USAR task.

(i.e., robot X in Fig. 1) that the human subject actually sees.
The environment is organized as segments, and each segment
is identified by a unique label (e.g., R01). Furthermore, the
segments are grouped into four regions: medical kit storage
region (represented by segments starting with ‘S’), casualty
search region (starting with ‘R’), medical room region where
treatment (or triage) is performed (starting with ‘M’), and
the hallway region (starting with ‘H’). Each region can be
accessed via a door that connects to a hallway segment and R
regions are further divided into rooms that are also connected
by doors. The doors are initially closed and can be pushed
open by the robots. The doors remain open after being
pushed open. Both the remotely-controlled robot (denoted by
‘X’) and Mary work inside this environment. There are two
networked CCTV cameras that Mary can obtain observations
from and the field of views of these cameras are also shown
in Fig. 2(a).

C. Task Settings
The overall team goal is to find and treat all the casualties

in the environment, which includes searching for casualties in
the R regions, carrying casualties to medical rooms, fetching
medical kits and performing triages. In Fig. 2(a), the two
colored boxes (i.e., red and blue) in R regions represent
casualties and the white boxes in S regions represent medical
kits.

We impose two constraints on the agents: 1) either robot
X or Mary can carry only one medical kit or one casualty
at one time. 2) The triage can only be performed by robot
X for which the human subject needs to solve a few puzzle
problems (see Fig. 3 for an example) in 2 minutes. Out of
the two casualties, we assume that one is critically injured
(i.e., the red box in R02) who should be treated immediately
after being found. The other one is lightly injured (i.e., the
blue box in R05). It is also assumed that a medical room
can only accommodate one casualty and each medical kit
can only be used towards one casualty.

D. Interface Design
In this USAR task, the human subject needs to manually

control robot X while interacting with Mary. To create a more
realistic USAR environment, the human subject only has
access to the visual feeds from robot X . In other words, the
human subject can only observe the part of the environment
from robot X’s “eyes” (i.e., two cameras, one mounted above
the other).

The interaction interface between the human subject and
robot X is shown in Fig. 4. More specifically, robot X
displays a list of applicable actions that it can perform given



Fig. 4. Interaction interface between the human subject and robot X .

the current state. The human subject interacts with robot X
to choose an action from the list of applicable actions. When
the chosen action is completed by X , the interaction interface
displays the next set of actions. This process is repeated
until the task is finished (i.e., all the casualties are found
and treated). Following are the list of all possible action
types that the human can choose. Compare the list with that
shown in Fig 4. This interface also allows the human subject
to optionally inform Mary about his/her current goal so that
Mary can remove it from consideration and adapt her goal
accordingly when necessary.

• move X H01 H02 - Move robot X from hallway
segment H01 to hallway segment H02.

• pushdoor X R01 R02 - Push the door between
room R01 and room R02.

• grab medkit X S01 - Grab the medical kit from
storage room S01.

• carry casualty X R01 - Carry the casualty at
room R05.

• drop medkit X M01 - Drop the medical kit in med-
ical room M01.

• lay down casualty X M01 - Lay down the casu-
alty in medical room M01.

• perform triage X M01 - Perform medical triage
in medical room M01.

• Press ‘i’ - Inform Mary about the human subject’s
current or intended goal. (A list of all remaining candi-
date goals will be displayed to be chosen.)

Note that these actions are modeled to respect the
constraints that we discussed in Sec. IV-C. For ex-
ample, lay down casualty X M01 is only available
when there is no other casualties in medical room M01;
perform triage X M01 is only available when there is
a casualty and a medical kit in M01.

The interaction interface between the human subject and
Mary is shown in Fig. 5. This interface is first used by Mary
to update the human subject about her current goal. When
the human subject wants to take over the goal that Mary is

Fig. 5. Interaction interface between the human subject and Mary.

Fig. 6. Experimental setup in the USAR task

acting to achieve, this interface is also used to display the
choices (to be selected by the human subject) for Mary to
terminate her current (uncompleted) goal.

E. Study Setup and Flow

The study was set up in our lab space, similar to that
shown in Fig. 6. Before the beginning of the task, the human
subject is given the floor plan without the annotations of
the casualties (i.e., colored boxes). Furthermore, the human
subject is informed that there are two casualties (that cannot
move) and they are located inside the casualty search regions.
However, no information about their exact locations is pro-
vided (i.e., which rooms the casualties are in). The human
subject is also informed that the casualty that is represented
by a red box is seriously injured, and should be treated as
soon as possible. Note that Mary has no more information
than the human subject. The remotely controlled robot X and
Mary start in the same segment H01, which is specified by
the green arrows.

Subjects were assigned alternately to team up with either
Mary with a PS ability or without. Each subject is only



allowed to take part in one experimental trial to avoid perfor-
mance fluctuation due to experience. All subjects completed
the consent form before participating in the study. Prior to
each run, the subject was asked to read the instruction mate-
rials that contain the background knowledge and the above
information. The subject was then exposed to the simulator
and the interface and was asked to experiment with them to
gain some familiarity. The subject was asked to collaborate
with Mary to find and treat the two casualties. After the trial,
the subject was asked to complete a questionnaire (in Likert
scale).

F. Example Scenario
Next, we walk through an example scenario in our USAR

task. Consider a scenario in which the human subject found
the critically injured casualty and the current goal (GX )
of the human subject becomes ‘bring the critically injured
casualty to the top medical room in Fig. 2(a):

goal(X,‘bring the critically injured
casualty to the top medical room’) =
{ (at critically injured casualty M01)}

However, assume that the human subject failed to inform
Mary of his/her current goal. Also, assume the following
states for the medical kits: {(at med kit 1 S01),
(at med kit 2 S04)}, and that Mary at that time is
still searching the casualties in the other casualty search
region. When robot X enters the field of view of the
CCTV cameras the action and state of X are detected by
the cameras and are fed to Mary as observations. In this
example, some of robot X’s actions, such as {(move X
H02 H03), (move X H04 H08)} will be observed by
Mary, which triggers the goal and intent recognition process.
After computing the probability distribution Q for all goals
in the candidate goal set for the human, the goal that has the
higher probability (and falls above a pre-specified threshold)
is assumed to be the current goal of the human (GX ), which
in this case is ‘bring the critically injured
casualty to the top medical room’. Mary now
knows that the critically injured casualty has been found and
can remove this goal from her own candidate goal set.

Furthermore, given this information, Mary recomputes
the priorities of the remaining goals in the current situation
and adapts her goal accordingly. In particular, although the
searching task is still undergoing, Mary realizes that in this
case helping the human subject by bringing a medical kit to
M01 would achieve a better utility for the team. Note that
should the casualty found by the human subject be lightly
injured instead, Mary would decide to continue her search;
also, should the casualty found by the human subject be
lightly injured but the critically injured casualty has already
been treated, Mary would choose to help the human fetch
the medical kit. Note also that in the case that Mary does
not have a PS ability, the above update can only occur in a
timely manner if the human subject chooses to inform Mary
about his/her current goal. In our running example, the goal

that Mary chooses is:

goal(GM,‘bring med kit 1 to the top
medical room’) =
{(at med kit 1 M01)}

Having chosen her current goal GM , Mary then uses an
automated planner to generate a plan (PM) that achieves the
goal. Meanwhile, Mary will update the human subject with
her current goal. Assuming that Mary is at segment H01 at
the time, the following plan would be generated:

PM = h(pushdoor Mary H01 S03),
(move Mary H01 S03),
(move Mary S03 S04),
(grab medkit Mary S04),
(move Mary S04 S03),
(move Mary S03 H01),
(move Mary H01 H02),
(move Mary H02 H03),
(move Mary H03 H04),
(move Mary H04 H08),
(pushdoor Mary H08 M02),
(move Mary H08 M02),
(move Mary M02 M01),
(drop medkit Mary M01)i

Note that various other scenarios can arise in this task,
which may not always favor Mary with a PS ability. For
example, the human subject may decide to deliver the
medical kits to the medical rooms even before finding any
casualties. or the human subject may walk robot X to the
medical room empty-handed. These can confuse the goal
and intent recognition process on Mary and lead to reduced
teaming performance. Although not all of these scenarios
occurred during our experimental study, they demonstrate
the conflicting factors for proactive support in human-robot
teaming tasks. It is also clear that these tradeoffs are de-
pendent on the task and robot settings, which require more
investigations in future work.

V. RESULTS

The study was performed over 4 weeks and involved
16 volunteers (9 males, 7 females), Volunteers have ages
with M = 24 and SD = 1.15. Subjects were recruited from
students on campus. Due to the requirement of understanding
English instructions, subjects must indicate that they are
confident with English communication skills before taking
part in the study. We also asked about the subject’s familiarity
with computers (M = 6.56, SD = 0.63), robots (M = 4.19,
SD = 0.91), puzzle problems (M = 3.19, SD = 0.83) and
computer gaming (M = 4.69, SD = 1.49), in seven-point
scales after the study (with 1 being least familiar and 7
being most familiar). The subjects reported familiarity with
computers, but not so much with robots, puzzle problems or
computer gaming.



Fig. 7. Results for objective performance and measures. ⇤ denotes p< 0.05,
⇤⇤ denotes p < 0.01, ⇤⇤⇤ denotes p < 0.001.

A. Measurement
A post-study questionnaire is used to evaluate three of

four areas that are often used to assess automated systems:
mental workload, situation awareness, and complacency [19].
Furthermore, we also use the questionnaire to evaluate
several psychological distances between individuals and the
environment (including robots), which include immediacy,
effectiveness, likability and trust. Immediacy describes how
realistic the subject felt about the task and Mary. Effective-
ness describes the subject’s feeling about how effective the
subject considered Mary as a teammate. Likability describes
how likable the subject felt about Mary. Trust describes
whether the subject felt that Mary was trustworthy. We also
collect the subjects’ opinions on whether they considered that
Mary should be improved (i.e., improvability).

One way fixed-effects ANOVA tests were performed to
analyze the objective performance and measures, as well as
the subjective questions. The fixed factor in the tests is the
type of Mary, the intelligent robot, which is either Mary with
a PS ability or without (denoted by No-PS).

B. Objective Performance
We first investigate the objective performance and mea-

sures. The overall performance (presented in in Fig. 7) is
evaluated based on the total time taken for the team to find
and treat the critically injured casualty, and the total time
taken for the team to finish the entire task (i.e., find and
treat both casualties). It is interesting to observe that while
there is a significant difference between PS and No-PS for
the time taken to complete the entire USAR task (F(1,14) =
8.34, p < 0.01), we do not find any significant difference for
treating the critically injured casualty. This may be due to the
fact that humans are proficient at prioritizing goals. However,
this may negatively impact the teaming performance since
the subject may more often choose to neglect the help of
Mary when he/she does not feel comfortable with entrusting
Mary with important goals. This conjecture is also consistent
with the results in Fig. 8, which is discussed next.

We provide a more detailed analysis of task performance
in Fig. 8. We compare the average number of times the
subject stopped Mary from executing her current goal and
the average number of times the subject had goal conflicts
with Mary. The results show that these numbers are generally

Fig. 8. Results for task performance and measures. ⇤ denotes p < 0.05,
⇤⇤ denotes p < 0.01, ⇤⇤⇤ denotes p < 0.001.

smaller for the PS case but we did not find any significant
difference. However, we did find a significant difference for
the average number of times the subject informed his/her
goal to Mary (F(1,14) = 18.27, p < 0.001). This shows that
the subject felt less necessity to inform Mary in the PS
case. There is also a significant difference in the number
of goal updates the subject received from Mary (F(1,14) =
7.58, p < 0.05), This confirms that Mary changed her goal
less frequently in the PS case.

We also compare the accuracy of the puzzle problems for
the triage operations. To discourage subjects from guessing
the answers to the puzzle questions, they were told that
each incorrect answer would give them negative scores.
Our analysis, interestingly, shows a significant difference
on this performance measure (F(1,14) = 4.64, p < 0.01),
which suggests that the human mental workload may have
been reduced in the PS case, which is not consistent with
the second hypothesis (i.e., H2). Furthermore, as we show
in the evaluation of subjective measures, this interpretation
contradicts with the results there.

C. Subjective Performance

In this section, we investigate the subjective performance
based on the questionnaire (23 questions in total). For these
23 questions, we categorize them into 8 different (partially
overlapping) groups. This includes 3 groups for evaluating
automation: mental workload (3 items, Cronbach’s a =
0.713), situation awareness (1 item), and complacency (2
items, Cronbach’s a = 0.769). Furthermore, we also evaluate
several psychological distances between the human subject
and environment (including Mary), which include immediacy
(1 item), effectiveness (7 items, Cronbach’s a = 0.724),
likability (1 item), and trust (3 items, Cronbach’s a = 0.871).
We also include improvability (1 item). The answers to the
questions are in seven-point scales. The results are presented
accumulatively in Fig. 9.

1) Mental Workload: For mental workload, we include
questions that inquire about the ease of working with Mary,
and questions to rate the subject’s mental workload to interact
with Mary during the task. Although our analysis does not
find any significant difference (p = 0.404), the subjects still
reported some difference in their mental workloads. This is
an interesting result that confirms our hypothesis (i.e., H2):



Fig. 9. Results for subjective measures. ⇤ denotes p < 0.05, ⇤⇤ denotes p < 0.01, ⇤⇤⇤ denotes p < 0.001.

although the PS ability enables more effect human-robot
teaming, it also tends to increase the human mental workload
at the same time. It is also worth noting that even though the
subjects in the PS case reported increased mental workload,
they also tended to perform well on the puzzle problems.
This may be due to the fact that subjects felt less necessity
to communicate with Mary and thus can concentrate more
on these problems.

2) Situation Awareness: For situation awareness, we in-
clude questions that inquire about whether the subject felt
that he/she had enough information to determine what the
next goal should be. Our analysis does not show a significant
difference (F(1,14) = 2.78, p = 0.35), although the subjects
reported slightly more situation awareness in the No-PS case,
which is consistent with the side effects of automation in
general. Although the number of updates for the No-PS case
was significantly more than that for the PS case, the fact that
situation awareness of the subject was not reduced much in
the PS case is encouraging. We attribute this to the fact that
the subject still needed to occasionally interact with Mary
when they had goals conflicts, and the subject could gain
situation awareness through such interactions.

3) Complacency: For complacency, we include questions
about the comfort and ease of the teaming, as well as how
well the subject felt about their performance in the task. Our
analysis shows a significant difference (F(1,14)= 11.29, p<
0.001). This is consistent with the objective performance and
measures, which shows that the human subject generally felt
more satisfied and confident working with Mary in the PS
case. This is important for human-robot teaming.

4) Immediacy, Effectiveness, Likability & Trust: For im-
mediacy, we include questions about how much the subject
considered the simulated task as a realistic USAR task,
and Mary as a teammate. Our analysis shows a significant
difference (F(1,14) = 11.63, p < 0.001), which is consistent
with our prior results.

For effectiveness, we include questions about the perceived
effectiveness of the team, the balance of workload between
the team members, and whether or not the subject felt that
Mary performed expectedly. Our analysis shows a significant
difference (F(1,14) = 6.57, p < 0.05). This result suggests

that the proactive support ability indeed increases teaming
effectiveness.

For likability, we include questions about whether the
subject felt that Mary was a good teammate. Our analysis
shows a significant difference (F(1,14) = 23.26, p < 0.001),
which suggests that the subjects preferred Mary with a PS
ability for teaming.

For trust, we include questions about the evaluation of the
Mary’s trustworthiness with the assignments (or tasks) she
took and with her updates during the task. Our analysis did
not show any significant difference with F(1,14) = 3.78, p=
0.072, although subjects in the PS case reported slightly
higher trust.

5) Improvability: For improvability, we include questions
about how much the subject felt that Mary could be im-
proved, and how the subject evaluated his/her interaction
with Mary. Our analysis shows a significant difference for
improvability with F(1,14)= 17.80, p< 0.001, which, again,
suggests that the subjects preferred Mary with a PS ability.

D. Summary

In summary, our results are mostly consistent with our
hypotheses. Our main result shows that the subjects generally
preferred Mary with a PS ability. With the PS ability,
the human cognitive load was indeed increased (albeit not
significantly), even though the subjects appeared to inter-
act less with Mary. More specifically, while the result on
mental workload confirms our hypothesis, it also seems to
be conflicting with the objective performance on the puzzle
problems. This is likely due to the fact that the subject
felt less necessity to interact with Mary in the PS case.
Furthermore, given that situation awareness was not reduced
significantly in the team with Mary having a PS ability, and
that the subjects had positive feelings towards her, it seems to
suggest that intelligent robots with a PS ability is welcomed
in general. This is, of course, largely dependent on the fact
that the subject’s cognitive load is not increased significantly,
which may change when the human needs to adapt to the
robot’s action more frequently in more complex tasks, and
more communication may be needed. More investigations



are needed to be conducted in such scenarios where the task
and robot settings largely differ.

VI. CONCLUSIONS

In this paper, we aim to start the investigation of humans
factors for proactive support in human-robot teaming. We
start in a simulated USAR task with a general way to
implement the proactive support (PS) ability on a robot in
similar scenarios in which the task is composed of subtasks
with priorities that are dependent on the current situation.
Meanwhile, to maintain the generality of this task, we only
introduced a few necessary simplifications. However, given
the richness of USAR scenarios, more in depth studies are
required to generalize the conclusions to scenarios where
the task and robot settings largely differ. In such cases, our
plan recognition and plan adaptation approaches may also
need to be extended to implement proactive support. Note
that a framework to achieve general proactive support can
be arbitrarily complex depending on the task and level of
support that is needed (e.g., whether the support is active
[13] or passive [5] and whether it is commitment sensitive
or not [3]).

In our task, the human teammate is remotely controlling a
robot while working with an intelligent robot Mary to search
for and treat casualties. Our results show that, in general, the
human teammates prefer to work with a robot that has a PS
ability. However, our results also show that teaming with
PS robots also increases the human’s cognitive load, albeit
not significantly. This is understandable since working with
a proactive teammate may require more interactions and/or
mental modeling on the human side in order to achieve
better teaming performance. Furthermore, we also show that
situation awareness when working with robots with a PS
ability is not significantly reduced compared to working with
robots without it. This seems to suggest that intelligent robots
with a PS ability is welcomed in general.
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