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ABSTRACT

Sparsity and Nullity: Paradigm for Analysis Dictionary Learning

Report Title

Sparse models in dictionary learning have been successfully applied in a wide variety of machine learning and 
computer vision problems, and have also recently emerged with increasing research interest. Another interesting 
related problem based on linear equality constraint, namely the sparse null space problem (SNS), first appeared in 
1986 and has since inspired results on sparse basis pursuit.

In this paper, we investigate the relation between the SNS problem and the analysis dictionary learning problem, and 
show that the SNS problem plays a central role, and may be utilized to solve dictionary learning problems. Moreover, 
we propose an efficient algorithm of sparse null space basis pursuit, and extend it to a solution of analysis dictionary 
learning. Experimental results on numerical synthetic data and real-world data are further presented to validate the 
performance of our method.



SPARSITY AND NULLITY: PARAGIDMS FOR ANALYSIS DICTIONARY

LEARNING

XIAO BIAN∗, HAMID KRIM† , ALEX BRONSTEIN‡ , AND LIYI DAI§

Abstract. Sparse models in dictionary learning have been successfully applied in a wide variety of machine
learning and computer vision problems, and have also recently emerged with increasing research interest. Another
interesting related problem based on linear equality constraint, namely the sparse null space problem (SNS), first
appeared in 1986 and has since inspired results on sparse basis pursuit.

In this paper, we investigate the relation between the SNS problem and the analysis dictionary learning problem,
and show that the SNS problem plays a central role, and may be utilized to solve dictionary learning problems.
Moreover, we propose an efficient algorithm of sparse null space basis pursuit, and extend it to a solution of analysis
dictionary learning. Experimental results on numerical synthetic data and real-world data are further presented to
validate the performance of our method.

Key words. Dictionary learning, sparse coding, sparse null space problem
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1. Introduction. High dimensional data analysis has been the focus of research in diverse
areas, including machine learning, computer vision, and applied mathematics, on account of its
theoretical complexity, and its high relevance to big data problems. Dictionary learning has been
one of the key methodologies in addressing high dimensional data, and has successfully been applied
in feature extraction [12], for signal denoising [12] [10] [24], pattern recognition and classification [20],
etc.

Specifically, a set of atoms learned from a given dataset are considered as a dictionary, and are
expected to have the potential to analyze unknown incoming data. In order to construct an effective
dictionary, signal models play a key role. One common assumption is that high dimensional data
is concentrated in a low-dimensional manifold embedded in a high dimensional space. Dimension
reduction was hence a natural way to characterize the data, and was subsequently extended to a
larger family of algorithms, and often referred to as nonlinear dimension reduction [23][9]. With a
different perspective on the same issue, recent research has shown that sparse models may also be
very useful for learning discriminating and robust dictionaries from data (see [10] and references
within). While these were broadly applicable, a particularly well adapted structure of data, so-called
a union of subspaces (UoS), was revealing of the power of such approaches. In particular, using a
parsimony constraint on the number of atoms to represent the data at hand, helps effectively recover
the underlying basis of each subspace [13] [3]. In dictionary learning, synthesis and analysis models
were proposed, and their respective strengths and limitations in obtaing sparse representations of
data, are also of interest. On the one hand, synthesis models seek a synthesis dictionary D =
[d1, . . . ,dn] such that xi =

∑

j∈S djwij , ‖S‖0 ≤ k, where xi is the data of interest, dj is the jth

atom in the dictionary, and wij the associated coefficient. On the other hand, an operator H
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is sought in an analysis model, so that H ◦ xi yields a sparse coefficient vector for representing
xi [2][24].

Another interesting and seemingly unrelated problem, invoking sparsity is the sparse null space
problem (SNS), and was first proposed in 1986 by Coleman and Pothen [8]. As we elaborate further
in this paper, the SNS problem may be stated as searching for a sparse basis for the null space of
a given matrix A. We demonstrate that the sparse null space solution is instrumental in helping
understand the analysis dictionary learning problem, and in providing sufficient insight for achieving
systematic and applicable solutions.

In this paper, we examine the relation between the SNS problem and the dictionary learning
problem, and we prove that the SNS problem is equivalent to the analysis dictionary learning
problem (ADL). We then proceed to solve the ADL problem using methods for the SNS problem.
Specifically, inspired by the existing results for SNS problem and the state-of-the-art of sparsity
pursuit algorithms, we present a l1 minimization-based greedy algorithm to solve the SNS problem.
In contrast to current mainstream algorithms [10][24][20][15], the convergence of our method is
assured by both the convergence of the greedy algorithm and the convex l1 minimization. Moreover,
we demonstrate its superior performance on both synthetic numerical data and real-world data.

The remainder of this paper is organized as follows. In Section 2, we discuss the current state
of the art in the area of dictionary learning, specifically in ADL. In Section 3, we analyze the
relationship of the SNS problem to that of ADL, and show their equivalence. In Section 4, we
present an effective method to solve the SNS problem, and which essentially can also efficiently
solve the ADL problem. Finally, in Section 5 we validate our method on the analysis dictionary
learning problem by numerical experiments, and illustrate the effectiveness of our algorithm on
texture classification.

1.1. Notation. The notational conventions used throughout this paper are as follows: For an
m × n matrix X, the space spanned by its rows is denoted as row(X), and that spanned by its

columns col(X). Its null space is denoted by null(X). The sparsity of X, defined as ‖X‖0

mn
, is denoted

by ρ(X). Moreover, we denote by PX the projection matrix onto col(X), and by PX⊥ = I−PT
X
PX

the projection matrix onto null(X). Additionally, given a vector y ∈ Rn, operator (·)j returns the
value of the jth element of y. The adjoint operator of (·)j , denoted as (·)∗j , is hence as follows:
(c)∗j = v ∈ Rn, such that (v)j = c and (v)i = 0, if i 6= j. Finally, we denote the set of all sparse
vectors {x|‖x‖0 ≤ k} by Σk.

2. Related work. Much of the reseach in dictionary learning has primarily focused on synthe-
sis models such as [1][20][19][15], among many others. Remarkable performance has been achieved
in learning effective dictionaries which are well adapted to specific datasets, especially on imagery
data. The contribution of the atoms in the representation of the the training data was constrained
to be sparse. The same sparseness is exploited to recover an input signal from corrupted data [1]
or to classify signals into different clusters [14].

Specifically, the learned dictionary and the corresponding sparse coefficients are alternately
updated untill convergence or until a target performance attainment. With the sparse coefficients
in hand, learning each atom may be solved by the gradient descent or its variations, such as
the stochastic gradient descent [4]. With the dictionary atoms discovery, different approaches
have been proposed to determine the sparse coefficients. In K-SVD [1], for example, orthogonal
matching pursuit(OMP) is used to recover the sparse coefficient, while Lasso-LARS is chosen in
online dictionary learning for sparse coding [20].

A well known issue with synthesis dictionary learning is the poor stability in its signal repre-



Sparsity and Nullity: Paragidms for Analysis Dictionary Learning 3

sentation [25][11]. This is primarily due to the difficulty in controlling the coherence of the learned
dictionary, which may, in turn, lead to multiple representations of the same signal [5]. While this
phenomenon does not particularly adversely affect denoising [11], it may significantly impact a
consistent classification or clustering performance. In addition, the computational cost to process
new incoming data points, often calls for a procedure such as a matching pursuit procedure [1], or
a sparse coding routine such as Lasso [20], is too significant for purposed of large high dimensional
data sets.

While ADL is known to be difficult to train, it is free of the above-noted SDL limitations [25].
Additionally, upon learning the dictionary D, the representation of any data x is unique as it is
the result of one matrix-vector multiplication. The latter fact also yields a low computational cost
of processing new data which is both linear in the data dimension and in the sample size.

Analysis K-SVD [25] provides, to the best of our knowledge, the current state-of-the-art solution
to the ADL problem. In the learning procedure, a framework similar to K-SVD is designed to
alternately update the dictionary and the sparse coefficients. At each iteration, each atom is
independently updated by minimizing the covariance between the atom and a subset of data samples
that are “almost orthogonal” to the atom. The minimization may be formulated as searching for
the singular vectors corresponding to the minimal singular value of the data matrix of the subset
of samples. Analysis K-SVD generally achieves the best known performance in the recovery of the
original data space.

As a departure from Analysis K-SVD, we present in this paper an alternative ADL algorithm
which is closely related to SNS problem discussed next. By decomposing the DL problem into a set
of convex optimization subproblems, we can guarantee the convergence of our proposed algorithm.
Additionally, and in contrast to Analysis K-SVD, our proposed method can naturally adapt in
representing data of varying underlying sparsity with no prior knowledge.

3. From SNS to ADL. In this section, we reformulate the SNS problem and the ADL
problem in a matrix form, and then establish their equivalence.

Given any m×n matrix A such that row(A) ⊂ Rn, the SNS problem may be defined as follows,

SNS(A) = argmin
N

‖N‖0, s.t. col(N) = null(A).(3.1)

Let X = [x1, . . . , xn] be a generic data matrix, the ADL problem can then be rewritten as

ADL(X) = argmin
U

‖U‖0, s.t. DX = U, row(X) = row(U),(3.2)

whereD is an analysis operator in matrix form, andU is the associated sparse coefficient matrix. To
avoid a trivial solution such as U = 0, we further require row(X) = row(U). Essentially, this is the
maximum information we can preserve for X, since all rows of U is a linear combination of rows in
X, and hence row(U) ⊆ row(X). In practice, we may also consider the case that row(U) ⊂ row(X)
by further selecting a subset of di in D. We are focusing here on the generic formulation, i.e.
row(X) = row(U), for the sake of theoretical analysis, and will elaborate on this issue later in the
detailed discussion of the algorithm.

We note that finding a sparse representation of the null space in Problem 3.1, is equivalent to
sparsifying a given matrix N̂ such that col(N̂) = null(A). This coincides with the goal of Problem
3.2 where the row space of data matrix X is instead invoked. In particular, we formally have the
following result,

Theorem 3.1. Assume null(A) = row(X), then a matrix N is a minimizer of the SNS problem
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(as shown in Eq. (3.1)), if and only if NT is a minimizer of the ADL problem (as shown in Eq.
(3.2)) .

Proof. Assume N is a minimizer of (3.1), then the constraints in (3.1) ensure that null(A) =
col(N). Since col(XT ) = row(X) = null(A), we then have

col(XT ) = col(N).(3.3)

We next consider any optimizer U of problem (3.2). Since row(X) = row(U), when combined with
the condition row(X) = null(A), we have row(U) = row(X) = row(NT ). NT is therefore a feasible
solution of Eq. (3.2), and so is UT of Eq. (3.1). It follows that ‖U‖0 = ‖NT ‖0, and hence NT is
also a minimizer of (3.2) and as is UT for Eq. (3.1).

This essentially tells us that we can solve a sparse dictionary learning problem, should we have
access to an effective method of solving the corresponding SNS problem. Specifically, given a data
matrix X = [x1, . . . ,xn], the analysis dictionary for X may be constructed in the following three
steps:

1. Construct a matrix A such that row(A) = null(X), i.e. XAT = 0 and rank(A) +
rank(X) = n.

2. Find the sparse feature vectors UT by solving N = SNS(A).
3. Construct the analysis operator D from DX = U.

4. An iterative sparse null space pursuit. We have discussed the relation of SNS and
ADL in Section 3, and have shown that they may be cast in one unified framework of sparse null
space pursuit. Nevertheless, solving SNS is itself a difficult problem. Coleman and Pothen [8]
have proved that SNS is essentially NP-hard, hence ruling out a polynomial time algorithm. We,
however, show that it is still possible to approximate the sparse null space basis in polynomial
time. In this section, we propose an l1-based iterative optimization method for a sparse null space
pursuit.

4.1. A greedy algorithm for the SNS problem. Previous works on the SNS problem
have shed some light towards a solution in polynomial time. In [8], the authors proposed a greedy
algorithm for the SNS problem. For the sake of clarity and further discussion, we refer to it as
Algorithm 1. Additionally, it has been proved in [8] that Algorithm 1 can be used to construct a
sparse null space basis, as stated in Theorem 4.1 [8].

Algorithm 1 A greedy algorithm for sparse null space problem

Initialize: matrix A ∈ Rm×d, N = ∅
for i = 1, ... , q do

Find a sparsest null vector ni such that rank(N⊕ ni) = i.
N = N⊕ ni

end for

Theorem 4.1. A matrix N is a sparsest null basis of A if and only if it can be constructed by
the greedy algorithm.

It is worth noting that the maximum number of iterations q in Algorithm 1 is constrained by
the rank of A, i.e. q = d − rank(A). Moreover, this greedy algorithm can find the global optimal
solution for the SNS problem. This elegant result amounts to finding the sparsest null space basis
of A in exactly q steps. The subproblem of finding a sparsest null vector itself is, however, also
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a NP-hard problem [8]. We therefore next focus on finding a method to solve this subproblem in
each iteration of Algorithm 1.

4.2. l1-based search for sparse null space. We first reformulate the subproblem of finding
a sparsest null vector in Algorithm 1 as follows,

min
ni

‖ni‖0,

s.t. Ani = 0, PN⊥

i−1

ni 6= 0,(4.1)

where Ni−1 is the subspace spanned by the constructed null space vectors in the previous (i− 1)th

iteration. The condition P
N⊥

i−1

ni 6= 0 implies that ni is not in the current span of N, and hence

rank(Ni ⊕ ni) = rank(Ni) + 1.

There are two inherent difficulties in this formulation. First, ‖ · ‖0 is of combinatorial nature,
hence the reason of the NP-hardness of the problem. Second, the constraint in Eq. (4.1)

P
N⊥

i
ni 6= 0,(4.2)

defines a region that is neither compact nor convex. To address the first problem, we propose to
take advantage of established results on sparsity pursuit via l1 minimization [6][7]. To address the
second one, and to hence obtain a convex and compact feasible region, we propose to restate the
condition PN⊥

i
ni 6= 0 as follows,

∃j ∈ {1, . . . , d}, (PN⊥

i−1

ni)j = c,(4.3)

where c is a positive constant.

Additionally, we establish the following lemma to justify the variation on the constraint from
(4.2) to (4.3):

Lemma 4.2. The solution of Problem 4.1 remains invariant if the constraint (4.2) is substituted
by constraint (4.3). The proof of Lemma 4.2 is presented in Appendix A.

The meaning of Lemma 4.2 is that we may then separate the region defined by (4.3) into
compact and convex regions based on j, i.e. the location of the forced nonzero element. Since the
optimal solution must reside in one of these regions, we may search for the sparsest null vector in
each region from j = 1 to d. We subsequently have a convex formulation of l1 minimization for
each j. Algorithm 1 may then be specifically realized as Algorithm 2.

Algorithm 2 Sparse Null Space Basis Pursuit

Initialize: matrix A,N = ∅
for i = 1, ... , p do

for j = 1, ... , d do

Find n
j
i = argmin ‖n‖1, s.t. An = 0, (PN⊥n)j = c

end for

ni = argmin ‖nj
i‖0

N = N⊕ ni

end for
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This is tantamount to solving the following optimization problem for each j in Algorithm 2,

min
n

‖n‖1,

s.t. An = 0, (PN⊥n)j = c.(4.4)

It is worth noting that the exact recovery of each n via Eq. (4.4) is determined by the inco-
herence of the linear operator defined by the two constraints and the sparsity of each n. To solve
(4.4), we adopt the framework of augmented Lagrange method (ALM) on account of its superior
performance matrix-norm minimization problems [17] [18]. Specifically, we have the augmented
Lagrange function of (4.4) as

L(n,Y1,Y2, µ) = ‖n‖1 + 〈Y1,An〉+ 〈Y2, (PN⊥n)j − c〉

+
µ

2
‖An‖2 +

µ

2
‖(PN⊥n)j − c‖2.(4.5)

The primal variable n is first updated in each iteration with fixed dual variables Y1, Y2 and µ. By
introducing an auxiliary variable η, we have

nk+1 = T 1

µkη

(

nk −
n1
k + n2

k

η

)

,(4.6)

where T is the soft-thresholding operator, and ‖η‖2 ≥ ‖A‖2 + ‖PN⊥‖2, 1and

n1
k = AT

(

Ank +
Yk

1

µk

)

,(4.7)

n2
k = PN⊥

(

(PN⊥n)j − c+
Yk

2

µk

)∗

j

.(4.8)

Next, the dual variables Y1, Y2 and µ are updated as

Yk+1
1 = Yk

1 + µk (Ank+1) ,(4.9)

Yk+1
1 = Yk

1 + µk ((PN⊥n)j − c) ,(4.10)

µk+1 = min{ρµk, µmax}.(4.11)

The strategy of linearized ALM method provides a fast convergence rate [18]. This effectively
provides us a method (Algorithm 2), named Sparse Null Space Basis Pursuit (SNS-BP) in this
paper, to solve the SNS problem efficiently.

4.3. Solving the ADL problem via sparse null space basis pursuit. In Section 3, we
discussed the equivalence of the ADL problem and the SNS problem, and hence further describe
the details of solving the ADL problem (as in (3.2)) via SNS-BP.

For a typical ADL problem as in Eq. (3.2), the first step, as discussed in Section 3, is to
construct a matrix A whose transpose is the null space of X. Concretely, we have the following
problem,

Problem 1. Find A such that XAT = 0.

1The value of η is selected in this way to insure the convergence of the algorithm. The details are discussed in
[18].
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A simple way would be to consider a singular value decomposition of X, and keep the right
singular vectors with zero singular values coinciding with the rows of A. For a common scenario
where the data matrix X is contaminated by Gaussian noise, we can set A to the right singular
vectors with small singular values, instead of exactly zero. This in fact offers an additional advantage
of filtering out dense Gaussian noise from the data matrix X.

Upon constructing A, we proceed to obtain the sparse coefficient matrix UT = SNS(A). Note
that U is computed independently of the analysis operator D. In case D is required for further
processing incoming data, using DX = U, we may easily obtain D = UX†, where X† is the pseudo-
inverse of X. In particular, if all entries of the dataset are all independent, i.e. X is full row rank,
then X† = XT (XXT )−1.

While we formulated the ADL problem with the constraint row(U) = row(X) in Section 3, if
a more compact representation of X is preferred, we may opt for row(U) ⊂ row(X), hence further
reducing the dimension of the original data space.

5. Numerical experiments on SNS and ADL. For a quantitative evaluation of our al-
gorithm, we synthesize data that is compatible with the model of SNS and ADL, and show that
SNS-BP is able to reconstruct the sparse null space basis of the SNS problem/the sparse coefficients
of the ADL problem.

First, we synthesize a d × q sparse matrix N as the sparse null space basis of some matrix A,
where A may be constructed by exploiting the SV D decomposition of N, and by selecting its left
singular vectors corresponding to the zero singular values as the rows of A, i.e. AN = 0.

All elements in N follow a binomial distribution as zero/nonzero entries. Moreover, the ampli-
tude of each nonzero element is generated from a gaussian distribution.

The matrix A can then be seen as the input to SNS-BP, and we may therefore compare the
recovered nullspace basis N̂ with the ground truth N. In Fig.1, we show one example of exact
recovery of a sparse nullspace basis up to permutation and scale.

(a) Randomly generated sparse basis N

(b) Recovered sparse nullspace basis N̂

Fig. 1. An example of the result of SNS-BP

In Fig.2, we present the sparsity level of N̂ with the sparsity of N varying from 0.01 to 0.2, i.e.
1% nonzero to 20% nonzero. If our method works well, we would expect it to find the sparsest basis,
and therefore ρ(N̂) ≈ ρ(N), i.e. the relative sparsity ρ(N̂)/ρ(N) ≈ 1. In Fig.2, 10 experiments have
been carried out and the average sparsity is calculated. We can see that the sparse bases discovered
by SNS-BP have similar sparsity with N, with ρ(N) varying from 0.01 to 0.2. Additionally, we

define the relative error of N̂ as

err(N̂) =
‖N̂PΓ−N‖F

‖N‖F
,(5.1)
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Fig. 2. ‖N̂‖0/‖N‖0 vs Sparsity

where P is an arbitrary permutation matrix, and Γ is a diagonal matrix representing the scales of
each sparse basis. The average relative error of all the experiments with the sparsity of N varying
from 0.01 to 0.2, is 1.69%.

(a) Synthetic Data matrix X (b) Sparse coefficient matrix W

Fig. 3. Sample synthetic data matrix and its underlying structure

We next test the analysis dictionary learning via SNS-BP by exploring data samples with hidden
underlying sparse structures. In particular, data samples are randomly selected from a union of
low-dimensional subspaces S = S1∪S2 · · · , in which each subspace is also randomly constructed by
using the orthogonal basis of a set of uniformly distributed vectors. Under this setting, each sample
can be represented as a linear combination of other samples in the same subspace. The dataset,
written as a matrix X = [x1,x2, · · · ,xn] as shown in Fig.3(a), has a sparse intrinsic structure W
such that X = XW, where W is a block-diagonal matrix as Fig.3(b), and each block represents
one subspace. In our experiment, we have data points distributed in five 3-dimensional subspaces
within the ambient space R100. It hence implies that the nullspace of A constructed from X is of
dimension 15. An analysis dictionary D is then trained using SNS-BP, and the associated sparse
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coefficient matrix U is obtained as shown in Fig.4(a). Specifically, we can see that all nonzero
entries of each sparse vector are clustered together, corresponding to data samples from the same
subspace. In other words, for an atom di in the analysis dictionary D, all the data points that have
a significant response to it, are from one subspace, and the rest of the data have zero response.

(a) The sparse coefficient matrix U by ADL using SNS-BP

(b) Permute rows of U to show the structure of X

Fig. 4. Sparse coefficients using learned analysis dictionary

We next cluster the rows of U and permute them accordingly, as is presented in Fig.4(b). It is
interesting to see that a more compact block-diagonal structure emerges again. Note that in this
example we find in totality 15 atoms, with three atom sets each supporting the data samples (have
largely nonzero inner product) in a subspace. This number corresponds to the intrinsic dimension
of each subspace. Having trained D, it is subsequently simple to figure out which subspace a data
point belongs to: we may simply separate D into D = [D1,D2, · · · ], with Di being the set of atoms
supporting the ith subspace, and ultimately determine the maximal ‖Dix‖. It is therefore more
efficient to recover the underlying structure of a given dataset and represent this structure in a
more compact way.

5.1. In Relation to Analysis K-SVD. Analysis K-SVD arguably provides the state-of-
the-art solution for the ADL problem, and has achieved a much improved performance in signal
denoising by discovering the underlying UoS structure of a wide class of signals [25]. We next
comparatively evaluate the performance of SNS-BP and Analysis K-SVD in the recovery problem
of UoS of synthesized data.

The synthesis of data from a union of subspaces is similar to the setting in Section 5. In
particular, data samples are randomly chosen from a union of low-dimensional subspaces S =
S1 ∪ S2 · · · , in which each subspace is also randomly constructed by using the orthogonal basis
of a set of uniformly distributed vectors. In generating our data, we pick an ambient space of
dimension 100, and collectively 5 subspaces. We evaluate the performance of SNS-BP and Analysis
K-SVD by varying the intrinsic dimensions of each subspace. Interestingly, SNS-BP shows constant
performance with the increase of the intrinsic dimension of each subspace, while the performance
of Analysis K-SVD deteriorates when the intrinsic dimension of each subspace increases.
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(a) The sparse coefficient matrix U by ADL using SNS-BP

(b) The sparse coefficient matrix U by ADL using Analysis K-SVD

Fig. 5. Sparse coefficients for 5 subspaces with intrinsic dimension 3

As shown in Figs. 5 and 6, when the intrinsic dimension is low, both SNS-BP and Analysis
K-SVD can effectively learn atoms from the dataset which yield sparse coefficients to efficiently
reflect the underlying subspace of each data point. More precisely, each atom has a strong response
on data in only one subspace. and is rather absent in other subspaces. Five blocks corresponding
to five subspaces appear in the sparse coefficient matrix using both approaches. SNS-BP exhibits
a clearly improved performance over Analysis K-SVD, in recovering the intrinsic dimension of each
subspace, as shown in Fig. 5 where the intrinsic dimension of each subspace is 3, and in Fig. 6 as the
dimension increases to 5. This may be understood by recalling that the algorithm SNS-BP ensures
that the sparse vector determined at each iteration is orthogonal to the subspace spanned by the
previously found sparse vectors (i.e. truly novel). Equivalently said, the rows in Fig. 5(a)/Fig. 6(a)
are linearly independent- a property whichh provides an accurate estimate of the intrinsic dimension
of each subspace. In contrast, since Analysis K-SVD can possibly find collinear sparse vectors, it
yield more sparse vectors than the dimension of a given subspace, and may hence partially miss
another subspace.

(a) The sparse coefficient matrix U by ADL using SNS-BP

(b) The sparse coefficient matrix U by ADL using Analysis K-SVD

Fig. 6. Sparse coefficients for 5 subspaces with intrinsic dimension 5
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(a) The sparse coefficient matrix U by ADL using SNS-BP

(b) The sparse coefficient matrix U by ADL using Analysis K-SVD

Fig. 7. Sparse coefficients for 5 subspaces with intrinsic dimension 7

In Figs. 7, 8, 9 and 10, the intrinsic dimension of each subspace is 7, 11, 13 and 15, respectively.
As the intrinsic dimension increases, Analysis K-SVD begins to learn atoms which span two or more
subspaces. Such cases become more prevalent as the intrinsic dimension of each subspace increases.
In Fig. 10 for instance, the 5 coefficient blocks representing the 5 subspaces merge and display
significant responses from two or more subspaces. SNS-BP, in contrast, exhibits a more consistent
performance even as the intrinsic dimension of each subspace increases, thus resulting in recovering
a correct dimension for each subspace.
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(a) The sparse coefficient matrix U by ADL using SNS-BP

(b) The sparse coefficient matrix U by ADL using Analysis K-SVD

Fig. 8. Sparse coefficients for 5 subspaces with intrinsic dimension 11
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(a) The sparse coefficient matrix U by ADL using SNS-BP

(b) The sparse coefficient matrix U by ADL using Analysis K-SVD

Fig. 9. Sparse coefficients for 5 subspaces with intrinsic dimension 13
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(a) The sparse coefficient matrix U by ADL using SNS-BP

(b) The sparse coefficient matrix U by ADL using Analysis K-SVD

Fig. 10. Sparse coefficients for 5 subspaces with intrinsic dimension 15

In Fig. 11, we show a case of UoS with different randomly generated dimensions. It worth
noting that given the ambient space of R100, we limit the intrinsic dimension of each subspace
between 1 and 19, to avoid the extreme case that when every subspace is of dimension 20, then we
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may run into the situation that all samples are randomly chosen from R100 and lose any non-trivial
UoS structure. In this case, Analysis K-SVD misses one subspace with the lowest dimension entirely
after learneding 45 atoms, and a non-negligible portion of the dictionary fails to distinguish data
from different subspaces. SNS-BP shows a clear 5-subspace of the same dataset.

(a) The sparse coefficient matrix U by ADL using SNS-BP

(b) The sparse coefficient matrix U by ADL using Analysis K-SVD

Fig. 11. Sparse coefficients for 5 subspaces with intrinsic dimension randomly picked between 1 and 19 as 9,

8, 3, 12, 13

We further thoroughly test the performance of SNS-BP and Analysis K-SVD on a dataset
with intrinsic dimension from 5 to 16 using the measure of intra-cluster covariance ratio. For each
dimension, we repeat the process of data generation 20 times, to obtain the mean value of the
intra-cluster correlation ratios for both methods.

We define the intra-cluster covariance ratio as

CV (U) =
Intra-cluster covariance of U

total covariance of U
.(5.2)

In Fig. 12, we can see that the CV of Analysis K-SVD deteriorates from 1 to around 0.75 with
the increase of the intrinsic dimension of each subspace, While SNS-BP maintains a consistently
high performance throughout.
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Fig. 12. Intra-cluster covariance ratio for SNS-BP and Analysis K-SVD. The x-axis is the intrinsic dimension

of each subspace, and the y-axis is the CV value.

We further test the performance of SNS-BP and Analysis K-SVD by randomly choosing the
intrinsic dimension of each subspace between 1 and 19. In this experiment, the intrinsic dimension
of each subspace can be different. We repeat the data generation 100 times to obtain mean CV
values for both methods. The results show a higher CV value 1.00 of SNS-BP versus 0.97 of Analysis
K-SVD.

All these experiments in this part prove a more robust performance of SNS-BP compared
to Analysis K-SVD when the intrinsic dimension of each subspace is higher. Moreover, SNS-BP
demonstrates an ability of recovering the intrinsic dimensionality of each underlying subspace, and
of automatically avoiding redundant atoms.

5.2. Applications on real-world data. In this experimental section, we explore the infer-
ence potential of our method on images. The performance of our algorithm is evaluated on texture
images from the Brodatz database [22]. Each texture image is partitioned into a set of patches,
and their analysis operator is learned from patches of different textures. The latter is subsequently
applied to incoming data, which is also segmented into sets of patches. The properties of various
textures may lead to different patterns of the corresponding sparse coefficients. For example, the
texture with more randomness may lead to less sparsely structured coefficients and more coher-
ent/correlated textures, i.e. on account of a broadly spread distribution of its patches, discovered
upon applying the learned operator to incoming data. Note that we avoid the complexity of pro-
cessing the order of patches by considering the distribution of the coefficients instead of matching
the output vectors.

Specifically, we segment each texture image into 10× 10 patches, and randomly pick a subset
of 120 patches as the training set from each texture image, and the rest of the patches are used as
a testing set. The texture images from the Brodatz database [22], and the corresponding sample
patches are shown in Fig. 13. In our experiment, we first train the analysis operator by using
half of the data in the training set without knowing the label of each patch, and then calculate
the distribution of the coefficients Pi of the rest of the patches from the ith class of texture in the
training set. In the next testing stage, texture images are used as a set of patches, for which the
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distribution of the coefficients Uj = DXj with all Pi are compated. In particular, we assign Xj to
the class with the closest distribution, such as

class(Xj) = argmin
i

d(Pi, PUj
).(5.3)

We use the total variation distance in ((5.3), as defined in [16],

d(p, q) = ‖p− q‖TV =
1

2

∑

x∈Ω

|p(x)− q(x)|.(5.4)

Fig. 13. Textures and the corresponding patches for training

In this experiment, the classification rate is 97.78% for the texture images shown in Fig. 13.
The performance is higher than known state of the art methods based on predesigned features,
such as [26] with a 86.63% classification rate, and comparable to the supervised dictionary learning
algorithm [21]. It isimportant to note that, the training set in our case, is only composed of around
1% of the dataset. A less stringent training set implies a lower computational cost. This also
demonstrates the scalability of our method, in light of its competitive classification performance.

6. Conclusion. We have proposed in this paper, a novel approach for the sparse nullspace
problem, and have unveiled its equivalence to the ADL problem. We have presented the SNS-BP,
an iterative algorithm based on l1 minimization, to pursue the solution of the SNS problem. We
have further applied this algorithm to analysis dictionary learning, and show the efficacy of our
approach by experiments on both synthetic dataset and real-world data in texture classification.

Future work may include several aspects related to both SNS problem and ADL. The relation
between SNS and nonlinear dimension reduction needs further investigation and may lead to results
on graph embedding. Moreover, our future goal is to explore the potential application of ADL on
other high dimensional database, such as image/video classification.

Appendix. Proof of Lemma 4.2.

Lemma 4.2 states that the following optimization problems are equivalent.
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min
n

‖n‖0,

s.t. An = 0, PN⊥n 6= 0,(A)

min
n

‖n‖0,

s.t. An = 0, ∃j ∈ {1, . . . , d}, (PN⊥n)j = c.(B)

Proof. First, we show that if n is an optimal solution of (A), then for some real number α, αn
is also a minimizer of (B).

Any minimizer n′ of (B), also satisfies the constraints of (A). It hence follows that

‖n′‖0 ≥ ‖n‖0.(A.1)

Assume |(PN⊥n)k| = ‖PN⊥n‖∞, and noting that ‖PN⊥n‖∞ 6= 0, we construct

n̂ =
c

(PN⊥n)k
· n = αn.(A.2)

Since (PN⊥ n̂)k = c, n̂ is also feasible in (B). Suppose that ‖n̂‖0 = ‖n‖0 ≤ ‖n′‖0, and in combination
of Eq. A.1, we can conclude that n̂ = αn, and is also a solution of (B), and therefore ‖n̂‖0 = ‖n′‖0.

Then it is trivial to show that n′ is also a minimizer of (A), given the fact that n′ is a feasible
solution of (A) and ‖n′‖0 = ‖n̂‖0 = ‖n‖0, thus proving Lemma 4.2.
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