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1.0 SUMMARY 

The DroidSafe project developed effective program analysis techniques and tools to uncover ma-
licious code in Android mobile applications. The core of the system is a static information flow 
analysis that reports the context under which sensitive information is used. For example, “Appli-
cation A has the potential to send location information to network address 128.6.21.6 on ‘Button 
B’ press”. The DroidSafe project invested significant time developing a comprehensive semantic 
model of Android run-time behaviors alongside the analysis to achieve acceptable precision, ac-
curacy, and scalability for real-world Android applications. The combined system has been 
demonstrated to be the most precise and accurate information flow analysis for Android appli-
cations. The analysis results can be used to automatically check applications for security policy 
violations, and the results can help a human analyst inspect sensitive behaviors of an app, increas-
ing accuracy and throughput of application vetting. For each of the last six APAC engagements to 
date, the DroidSafe team has been unsurpassed in malware diagnosis accuracy and human-analysis 
diagnosis throughput. 

To address subtle functional correctness bugs and vulnerabilities, we have produced a formal model 
of (part of) the Android system capable of supporting proofs of functional correctness of simple 
but non-trivial Android apps. 

We also explored how to move precise static analysis and verification techniques from specialized 
research tools to an approach that can feasibly be adopted by programmers in the real world. The 
critical issue in doing so is the lack of precision that such analyses inevitably encounter when 
analyzing programs that occur in practice. Our hypothesis is that, in existing programs, only a 
small percentage of the code (the code’s dark corners) is responsible for this lack of precision. 
We found that in many cases relatively straightforward code modifications can yield code that is 
analyzable and still practical. 
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2.0 METHODS, ASSUMPTIONS, AND PROCEDURES 

For all the research we performed in this program, we adopted an experimental approach driven by 
the evaluation scenarios. Our overarching goal was to produce systems that could aid an analyst 
(or make automated decisions) in settings much like the evaluation scenario, i.e., a trusted analyst 
inspecting an unknown Android application with no code modifications or implementation artifacts 
relating to the analyst tools. The metrics employed to evaluate our progress towards this goal are 
analyst throughput and accuracy, with second-order metrics of reduction in false positives and false 
negatives in the automated analysis results. 

For our research papers and program presentations, we chose to evaluate our developed systems 
on both previously released micro-application suites and the applications developed by the APAC 
Challenge Teams. We also reported our analyst throughput (average manual analysis time) and 
diagnosis accuracy for each of the APAC engagements. 

During the course of the program, we devoted a major effort to the packaging, testing, and usability 
of the system. Our releases included both unit and system tests (comprising our regression test). 
We also devoted major effort to documentation included with system deliverables, including walk- 
throughs and screencasts. Finally, a major effort was devoted to open-sourcing and releasing to the 
public all of our analyses, models, and tools. 

All of the systems that we developed run on open source infrastructure (e.g., Linux) and do not 
require proprietary software to build and run. 
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3.0 INTRODUCTION 

Application marketplaces provide a centralized location for application developers to place appli-
cations for potential users. This new model of software acquisition has been shown, in existing 
application marketplaces such as the iPhone App Store and the Android Market, to promote the 
effective development of sophisticated software that satisfies the needs of a broad range of users at 
unprecedentedly low cost. This model therefore holds out the promise of revolutionizing software 
acquisition for a broad range of organizations and not just individual consumers (which current 
application marketplaces target). 

A critical weakness with current application marketplaces, however,  is that users have  no  way to 
be sure that the applications in the marketplace are free of malware. This problem can lead to 
the widespread exploitation of users with consequences that include, for example, theft or the 
compromise of information that should remain confidential. The potential presence of malicious 
malware and the resulting possibility of widespread security vulnerabilities can even eliminate the 
ability of service organizations (such as the United States Department of Defense) with stringent 
security needs to use application marketplaces. 

During this program, we developed analyses and tools to improve the throughput and accuracy of 
application inspection and vetting. Our scenario is one in which an untrusted application is deliv-
ered to a trusted human analyst for review. Our tools enable an analyst to gain a rapid understanding 
of how the application interacts with sensitive API calls and verify functional correctness with for-
mal proofs. Also, we have taken significant steps towards automatically identifying portions of 
the program that introduce imprecision in static analysis, so that the program can be modified 
(through annotations or functionality swapping) or more expensive analysis can be applied to min-
imize imprecision. The following sections provide more specifics on the three branches of our 
work. 

3.1 Understanding Sensitive API Call and API Information Usage 

Android applications are written in a type-safe language (Java) whose design eliminates the possi-
bility of the low-level vulnerabilities to which most existing analyses are directed. Many Android 
malwares instead focus on insecure Android API call sequences which, for example, leak confi-
dential information to an untrusted external agent or corrupt locally stored information. During 
this program, we designed analyses and analyst tools that aid in understanding how a third-party 
Android application interacts with the API and how it uses API-derived data. Through our excep-
tional performance on the APAC evaluations, we have demonstrated that our analyses and tools 
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enable a major increase in human-analyst-assisted diagnosis accuracy and throughput. 

We developed a system, DroidSafe, a static information flow analysis tool that reports potential 
leaks of sensitive information in Android applications. DroidSafe combines a comprehensive, ac- 
curate, and precise model of the Android run-time with static analysis design decisions that enable 
the DroidSafe analyses to scale to analyze this model. This combination is enabled by accurate 
analysis stubs, a technique that enables the effective analysis of code whose complete semantics 
lies outside the scope of Java, and by a combination of analyses that together can statically resolve 
communication targets identified by dynamically constructed values such as strings and class des-
ignators. 

Furthermore, we developed a plugin for the Eclipse IDE that represents to the analyst the results 
of our analyses in a straightforward and usable manner. Employing our full system, the DroidSafe 
team achieved both the highest diagnosis accuracy and the highest manual analysis throughput for 
the last 6 APAC engagements. We also demonstrated that our analysis is unmatched in information 
flow accuracy and precision by comparing it to previous state-of-the-art tools. 

3.2 Verifying Functional Correctness 

Currently, the functional correctness of an application (whether it does the right thing) is usually 
validated by testing. However, testing can only cover a small fraction of the possible behaviors 
and can miss malware that is triggered only in certain places or at certain times. For example, a 
malicious route-planning application could lead a platoon down dangerous routes when used in a 
certain geographic area; this behavior would be difficult to discover with testing. 

During this program, we developed foundational models and tools to aid a trusted analyst with 
the task of verifying the correctness (or adherence to a functional specification) of a third-party 
Android application. Our work employs the ACL2 theorem prover to formally model the Android 
platform and to formally verify Android apps. Our approach allows the verification of the full 
functional correctness of apps (e.g., that a calculator app computes the correct numeric result) as 
well as security properties (e.g., that an app only sends data to certain URLs). Verifying an app 
with our system provides high assurance that it satisfies its specification. A major motivation for 
this work is to detect or prove the absence of “functional malware”, malicious app functionality 
that is triggered by complex conditions on state and whose malicious action is to cause the app to 
calculate the wrong results or otherwise behave incorrectly, unbeknownst to the user. 

Android is an event-driven system. Our formal model is an executable simulator of a growing 
subset of the Android platform, and app proofs are done by automated symbolic execution of the 
app’s event handlers using the formal model. By induction, we prove that an app satisfies an 
invariant, including the correctness properties of interest, for all possible sequences of events. To 
our knowledge, our formal Android model is the most detailed and our Android app verification is 
the most thorough, compared to other approaches. 
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3.3 Identifying Sources of Imprecision in Implementations 

Despite our major advances in analysis precision during this program, there are still sources of 
imprecision that cause either 1) unacceptable numbers of false positive alarms or 2) the use of 
unsound techniques that may leave errors uncovered. Our hypothesis is that, in existing pro-
grams, only a small percentage of the code is responsible for this lack of precision. 

We investigated this hypothesis on a set of widely used open source C programs that operate on 
untrusted inputs (such as direct network connections or files downloaded from the network). Our 
goal is to create versions of the programs for which we can verify memory safety. Examples of 
memory safety problems include out of bounds accesses, null pointer dereferences, and reading 
uninitialized values. The analysis would verify the absence of these properties in the modified 
versions of the programs. We are focusing on memory safety because it is a well-defined goal and 
because memory safety errors are the cause of many important security vulnerabilities. 

Our investigation had very encouraging results. In many cases, we were able to make relatively 
simple changes to the programs that allowed them to verify. We also learned a substantial amount 
about how a verification tool needs to operate and the features it needs if it to be of practical use to 
programmers. 

One critical issue in applying verification is identifying the parts of the code base that introduce 
analysis imprecisions. We added a logical abduction feature to our tool to identify the problematic 
parts of the code base. Logical abduction is a complementary form of logical reasoning to 
deduction. It is a form of backward logical reasoning, which allows inferring likely premises from 
a given conclusion. Given we know the desired outcome (e.g., this variable is not null), logical 
abduction allows us to identify the additional property we need to reach the desired conclusion. 

While our tool still requires some significant enhancements, we feel that we have identified an 
approach which could be successfully applied to moderate programs by their developers in a rea-
sonable time frame. 

3.4 Accomplishments 

Here we highlight the major accomplishments of the DroidSafe project over the course of the 
APAC program: 

• Most precise and accurate global static information flow analysis for Android: In [1], we
demonstrated that the DroidSafe static analysis system (discussed in Chapter 4) is the most
accurate and precise global static information flow analysis system to date. This system reports
all malicious flows in 24 APAC applications with explicit leaks of sensitive data, while prior
state-of-the-art analysis reported only 10% of the leaks.

• Most comprehensive and accurate Android semantic model for static analysis: In [1] we
demonstrated that our model of the Android run-time and API is the most comprehensive and
accurate model appropriate for static analysis. The model represents the semantics of the An-
droid run-time and API. See Chapter 4 for a full discussion.
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• Most detailed Android formal model, enabling most rigorous verification of app function-
ality: In [2] we demonstrated a system that enables an analyst to verify application functionality
via the ACL2 theorem prover. By induction, an analyst can prove that an app satisfies invariants
regarding correctness and security properties. See Chapter 7 for full discussion.

• Outstanding diagnosis accuracy and throughput on APAC engagements: Our team achieved
the highest diagnosis accuracy and highest human-analysis throughput for the last 6 APAC en-
gagements. This achievement was enabled by our tools, which enable human analysts to achieve
a rapid understanding of the security-sensitive behavior of applications.

• Implemented logical abduction: We added a logical abduction feature to the Concord memory
safety verification tool. The tool guides the user to the missing properties required to complete
the verification.

• Open-sourced and released static analysis tools: Our team has open-sourced and released the
static analysis, semantic model, and the Eclipse plugin. Our tools are being used by dozens of
researchers across the world.

• Technology transition to BBN’s Artemis tool: The static analysis described in Chapters 4  -
6 has been transitioned by Raytheon BBN Technologies into an alpha system being tested by
various branches of the US Department of Defense. We hope that work will continue on the
Artemis project so that our work will be used by analysts in the field.

• Publications: During the course of the project, we published outstanding papers in top research
conferences [1, 2, 3, 4, 5, 6]. Our papers have received over 100 citations as of June 2016.
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4.0 DROIDSAFE STATIC ANALYSIS SYSTEM RESULTS AND DISCUSSION 

4.1 Introduction 

Sensitive information leaks, as implemented by malicious or misused code (such as advertising 
libraries) in Android applications, constitute one of the most prominent security threats to the 
Android ecosystem [7, 8]. Android currently supports a coarse-grain information security model 
in which users grant applications the right to access sensitive information [9]. This model has been 
less than successful at eliminating information leaks [7], in part because many applications need to 
legitimately access sensitive information, but only for a specific limited purpose — for example, 
an application may legitimately need to access location information, but only with the right to send 
the information to authorized mapping servers. 

Motivated by this problem, researchers have developed a variety of systems that are designed to 
analyze or explore the information flows in Android applications. Dynamic analysis frameworks 
execute instrumented versions of Android applications and observe behaviors [10, 11, 12]. Poten-
tial downsides of this approach include missed information flows that are not exercised during 
testing and, in some cases, the ability of the malicious application to detect the testing and modify 
its behavior to avoid exercising the malicious flow [10]. They also suffer from denial-of-service 
attacks if malware is activated during application execution and the application is killed or func-
tionality is disabled. 

Static analysis frameworks attempt to analyze the application before it executes to discover all po-
tential sensitive flows [13, 14, 15, 16, 17, 18, 19]. Standard issues that complicate the construction 
of such systems are the challenges of 1) scaling to large applications and 2) maintaining precision 
in the analysis such that it does not report too many flows that do not actually exist in the applica-
tion. One particularly prominent issue with developing static analyses for Android applications is 
the size, richness, and complexity of the Android API and runtime, which typically comprises mul-
tiple millions of lines of code implemented in multiple programming languages. Because sensitive 
flows are often generated by complex interactions between the Android application, API, and run- 
time, any static analysis must work with an accurate model of this runtime to produce acceptably 
accurate results. 

Accuracy is critical for a static analysis seeking to calculate security properties of an application; 
any inaccuracies in the execution model provide a motivated attacker with the opportunity to insert 
malicious flows that will not be captured by an analysis. Also, imprecision in a model could lead to 
results that are unusable due to too many false positives; another target for a motivated attacker. To 
the best of our knowledge, the difficulty of obtaining an acceptably accurate and precise Android 



Approved for Public Release; Distribution Unlimited. 
8 

model has significantly limited the ability of previous systems to successfully detect the full range 
of malicious information flows in Android applications. 

4.1.1 DroidSafe 

For the APAC program we developed and present in this chapter a new system, DroidSafe, for 
accurately and precisely analyzing sensitive explicit information flows in large, real-world An-
droid applications. DroidSafe tracks information flows from sources (Android API calls that inject 
sensitive information) to sinks (Android API calls that may leak information). We evaluate 
DroidSafe on 24 complete real-world Android applications that, as part of the DARPA Automated 
Program Analysis for Cybersecurity (APAC) program, have been augmented with malicious 
information flow leaks by three hostile Red Team organizations. The goal of these organizations 
was to develop information leaks that would either evade detection by static analysis tools or 
overwhelm static analysis tools into producing unacceptable results (by, for example, manipu-
lating the tool into reporting an overwhelming number of false positive flows). DroidSafe accu-
rately detects all of the 69 malicious flows in these applications (while reporting a manageable 
total number of flows). A current state-of-the-art Android information-flow analysis system, 
FlowDroid [14] + IccTA [20], in contrast, detects only 6 of the 69 malicious flows, and has a larger 
ratio of total flows reported to true malicious flows reported. 

Additionally, we evaluate DroidSafe on DROIDBENCH, a suite of 94 Android information-flow 
benchmarks from the developers of FlowDroid and IccTA, and report the highest accuracy (most 
actual flows reported) and highest precision (fewest false positive flows reported) for this bench- 
mark suite to date, 94.3% and 87.6% respectively. DroidSafe fails to report only the implicit flows 
in DROIDBENCH. Finally, we evaluate DroidSafe on a suite of 40 Android explicit information- 
flow benchmarks developed by us to add coverage to DROIDBENCH; DroidSafe achieves 100% 
accuracy and precision for the suite, compared to FlowDroid + IccTA’s 34.9% accuracy and 79.0% 
precision. 

One advantage of working with applications that contain known inserted malicious flows is the 
ability to characterize the accuracy of our analysis (i.e., measure how many malicious flows Droid- 
Safe was able to detect). As these results illustrate, DroidSafe implements an analysis of unprece-
dented accuracy and precision. To the best of our knowledge, DroidSafe provides the first usable 
information-flow analysis for Android applications [13, 14, 15, 16, 17, 18, 19, 20]. 

4.1.2 The Android Model and Analysis Co-design 

Given the extensive and complex interactions between the Android execution environment and 
Android applications, an accurate and precise information-flow analysis for Android applications 
requires a comprehensive and accurate model of the Android environment. To obtain such a model, 
we started with the Android Open Source Project (AOSP) [21] implementation, which contains a 
Java implementation of much of the Android environment. The goal was to maximize accuracy 
and precision by directly analyzing as comprehensive a model of Android as feasible. 
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As we worked with AOSP, it quickly became apparent that the size and complexity of the Android 
environment made it necessary to develop the model and the analysis together as an integrated 
whole, with the design decisions in the model and the analysis working together synergistically to 
enable an effective solution to the Android static information-flow analysis problem. The result is 
the first accurate and precise model of the Android environment and the first analysis capable of 
analyzing such a model. 

Accurate Analysis Stubs: While the AOSP provides an accurate and precise model for much 
of Android, it is missing critical parts of the Android runtime. And for good reason — it is 
currently not practical to implement much of the Android runtime in Java. We therefore developed 
a novel technique, accurate analysis stubs, to enable the effective analysis of code whose full 
semantics lies outside the scope of AOSP. Each stub is written in Java and only incompletely 
models the runtime behavior of the modeled code. But the semantics of the stub is complete for 
the abstractions that the analysis deploys (in this case points-to and information-flow analyses). 
Examples of semantics missing in the AOSP and added via accurate analysis stubs include native 
methods; event callback initiation with accurate context; component life-cycle events; and hidden 
state maintained by the Android runtime and accessible to the application only via the Android 
API. 

Accurate analysis stubs simplify the development of the analysis — they eliminate any need to 
develop a library of method summaries written in a different specification language [22, 3], any 
need to conservatively hard code policies within the analysis that attempt to compensate for the 
missing semantics [14], or any need to analyze code written in multiple languages. They also sim-
plify the development of the model — they enable the developers of the model to work flexibly 
and efficiently within the familiar implementation language. And they support the use of sophisti-
cated language features such as inheritance, polymorphic code reuse, exceptions, and threads, all 
of which promote effective engineering of stubs that accurately and precisely model key aspects of 
the Android environment. 

In addition to code, accurate analysis stubs also support the use of Java objects to model otherwise 
hidden state maintained by the Android runtime. Examples of such state include Android Activity 
saved state, the global Application object, Intent, Parcel, shared preferences, and the file system. 
Accurate analysis stubs enable DroidSafe to be the first analysis to accurately model these key 
Android features. 

The AOSP implementation overlaid with our accurate analysis stubs represents our model of the 
Android API and runtime. We call this model the Android device implementation (ADI). Each 
application is analyzed in the context of the ADI, approximately 1.3 MLOC. For the information- 
flow analysis, we manually identified and classified 4,051 sensitive source methods and 2,116 
sensitive sink methods in the Android API. 

Scalable, Precise Points-To Analysis: Both our Android model and Android applications heavily 
use sophisticated language features (such as inheritance and polymorphic code reuse) that are 
known to significantly complicate static program analyses. To preserve acceptable precision, 
DroidSafe therefore deploys a modern global object-sensitive points-to analysis specifically de- 
signed to analyze code that uses such features [23]. DroidSafe further enhances scalability by 
identifying classes that are not relevant to the information flow and eliminating object sensitivity 
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for instances of these classes. This Android-specific optimization enables our global points-to anal-
ysis to achieve a context depth greater than what was achieved in prior work [24, 23], delivering a 
precise analysis appropriately tailored for solving Android information-flow problems. 

Flow-Insensitive Analyses: DroidSafe employs a flow-insensitive information-flow analysis. Many 
interactions between Android applications and the Android environment are mediated by asyn-
chronous callbacks. Because our DroidSafe implementation uses flow-insensitive points-to and 
information-flow analyses, it accurately considers all possible runtime event orderings that asyn-
chronous callbacks can trigger. Developers of flow sensitive analyses, in contrast, have had diffi-
culty obtaining a model that correctly exposes all of these event orderings to a flow sensitive 
analysis (see Section 4.9). Because the analysis does not consider all event orderings, it may miss 
sensitive flows. 

Critically, flow insensitivity also enables the analysis to scale to analyze an accurate and precise 
Android model and therefore to accurately and precisely track information flows through the An- 
droid environment. Scalability issues restrict flow-sensitive analyses to significantly less accurate 
and precise Android models characterized by imprecise conservative flow summaries and/or blan-
ket policies for Android API methods [15, 14, 17]. Our results show that the ability to analyze an 
accurate and precise model more than makes up for any loss of precision caused by flow insensi-
tivity (see Section 4.9). 

Static Communication Target Resolution: Information flows in Android apps may involve inter- 
component (between application components) and inter-application (between separate installed 
apps) communication; communication targets are identified by dynamically constructed values 
(such as String, Uri, and class designators) packaged in an Intent object. 

To precisely analyze such flows, DroidSafe combines 1) accurate analysis stubs, 2) an internal 
representation of all defined IntentFilter registrations, 3) an analysis of operations that construct 
strings; this analysis delivers regular expressions that accurately summarize the strings that the 
application will construct when it runs, 4) a novel points-to analysis that precisely tracks Strings, 
and 5) algorithms that rewrite the DroidSafe intermediate representation to directly invoke resolved 
targets. Because DroidSafe works with a comprehensive model of the Android environment, it 
supports precise resolution of communication targets whose identification (typically via an Intent) 
involves significant interactions with the Android API. 

These techniques enable DroidSafe to precisely analyze calls that start Activity components; start, 
stop, and bind Service components; invoke RPC calls on Service components; send and receive 
Service messages; broadcast messages to BroadcastReceiver components; and perform opera-
tions on ContentProvider components (shared databases). For Intent-based resolution, Droid- 
Safe incorporates IntentFilter registrations defined both in the Android manifest and those de-
fined programmatically in app code. We are aware of no other analysis that can provide compara-
ble or even usable levels of accuracy or precision for all of these critical Android communication 
mechanisms. 
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4.1.3 Contributions 

DroidSafe represents, for the first time, an effective point in the overall Android information-flow 
design space. Our overarching contribution is the identification of this design point and the result-
ing DroidSafe implementation. We attribute the ability of DroidSafe to operate at this design point 
to: 1) the identification of a set of techniques that work well together, 2) new implementations of 
known program analysis techniques that enable DroidSafe to deliver an analysis of unprecedented 
scalability, accuracy, and robustness, 3) a set of new mechanisms that enable these techniques to 
work together to provide a comprehensive, accurate, and precise information-flow analysis for An- 
droid applications, and 4) significant engineering effort that delivers a comprehensive model of the 
Android runtime. Specific contributions include: 

• Accurate Analysis Stubs: A novel technique that enables the rapid and accurate development
of semantics missing from a source code base. Each stub is written in the language of the
implementation of the API model, simplifying analysis. Stubs augment the implementation
with semantics possibly incomplete for the full runtime behavior, but complete for the analysis
abstractions.

• Android Device Implementation: A comprehensive and precise model of the Android API
and runtime system implemented in Java that accurately captures the semantics of life-cycle
events, callback context, external resources, and inter-component communication. The core of
the ADI includes 550 manually-verified Android API classes which cover over 98% of API calls
in deployed Android applications. The ADI currently models Android 4.4.3, because updating
the model for Android updates is not overly burdensome. Independent analysis tools can readily
employ this model.

• Static Analysis Design Decisions: Our analysis occupies a new design point for information-
flow analysis of Android: deep object sensitivity and flow insensitivity. Flow insensitivity en-
ables DroidSafe to accurately consider all possible event orderings. It also enables DroidSafe to
scale to analyze an accurate and precise model of the Android environment, which is critical for
the overall success of DroidSafe. Any loss of precision due to flow-insensitivity is more than
compensated for by the analysis’s ability to scale to analyze our accurate and precise Android
model.

• Static Communication Target Resolution: A comprehensive and precise model of inter-
component communication resolution in Android that links data flows between sender and
target. DroidSafe includes a global Intent and Uri value resolution analysis, IntentFilter
reasoning, and coverage of all common forms of communication. To our knowledge it is the
most complete such model to date.

• Experimental Evaluation: An evaluation demonstrating that 1) DroidSafe achieves unprece-
dented precision and accuracy for the information-flow analysis of Android and 2) DroidSafe
can detect malicious sensitive information leaks inserted by sophisticated, independent hostile
organizations, where a current state-of-the-art information-flow analysis largely fails.

• Full Implementation: A full open-source implementation of DroidSafe and our ADI is avail-
able.
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Figure 1: Android Activity Lifecycle. 

4.2 Background and Problem 

Android applications are implemented in Java on top of the Android API. The implementation of 
an application specifies handlers for the dynamic events that may occur during the execution of 
the application. Thus, Android applications are dynamic and event-driven by nature. Applications 
have multiple entry points, and interact heavily with the Android API via utility and resource access 
classes. The package for an Android application represents an incomplete program; the source 
package alone is not appropriate for analysis without an accompanying model of the Android API 
and runtime semantics to exercise all possible semantics in the application. 

The Android API version 4.4.3 includes over 3,500 classes visible to an application developer. 
Analyzing the complete source code for the API is exceedingly difficult because it is implemented 
over multiple languages and some of the implementation is device-specific. Thus, static analysis 
frameworks rely on modeling the Android API semantics. Manually producing summaries for all 
of the application-visible methods of the Android API is daunting task that is potentially error 
prone. For a high-precision analysis, it is also exceedingly difficult to model all semantics of 
the implementation regarding memory allocation, data flows, and aliasing. A blanket policy for 
generating flows for all API methods would risk being too imprecise and inaccurate. 
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Figure 2: Examples of the challenges present in the static 
information flow analysis of Android applications. 
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4.2.1 Event Dispatch and Ordering 

An accurate model of the event dispatch and ordering must represent all valid event orderings so 
that a static analysis can accurately capture possible runtime behavior. Otherwise, an attacker can 
hide flows in semantics not covered by the model. Android applications are composed of multiple 
components, each implementing one of four classes: Activity, Service, BroadcastReceiver, and 
ContentProvider. Each of these components has its own life-cycle defined with events for which 
a callback implementation can be provided. Figure 4.1 gives a partial picture of an Activity’s 
lifecycle events and their orderings. 

For example, Figure 4.2(a) provides an example of a single Activity that defines two life-cycle 
events. These events have the potential to run in many orders, and they are not called directly in 
application code. There exists a leak of sensitive information in one possible ordering, if onCreate 
is dispatched after onStop. This is possible if the activity is placed in the background by user 
interaction, and not reclaimed by the system before it is reactivated by the user. 

In addition to life-cycle state orderings, components can have different launching modes that spec-
ify whether a single object should handle all activations or if a separate object is spawned for each 
activation. Thus memory could be shared across separate activations of a component. 

4.2.2 Callback Context 

An Android application defines callback handler methods that are called for dynamically-dispatched 
runtime events. Many event handler methods include arguments passed by the runtime to the appli-
cation for processing. These arguments are generated by the runtime and could include data from 
the application (including tainted data), depending on the execution sequence prior to the event. 
We call the arguments to a callback handler its callback context. Figure 4.2(b) gives example of a 
flow through callback context. This example employs an Activity’s ability to save state when it 
is paused, and restore that state when resumed. An accurate model must represent these possible 
flow connections (of which there are possibly thousands). Policies such as injecting taint for all 
callback handler arguments or connecting callback argument flows conservatively risk generating 
an overwhelming number of false positives (see Section 4.9). 

4.2.3 Inter-component Communication (ICC) 

The Android framework relies heavily on inter-component communication (ICC) to allow indi-
vidual components to be independent and to better manage resources. Components initiate and 
connect to other components via android. content.Intent objects (which can themselves contain 
a payload). The resolution of Intent destination is complex [25]. An Intent can specify a class 
explicitly, or implicitly allow the Android system to select a destination based on a Uri and string 
fields. Components register for implicit Intent delivery programmatically or via their applica-
tion’s XML manifest. Service components additionally allow one to send and receive messages 
and perform remote procedure calls. 
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An accurate model of Android must represent the possible flows via ICC mechanisms. Fig-
ure 4.2(c) gives an example of three components that communicate via Intent objects and Ser-
vice messages. In the example, there is a flow through ICC from ICCSource through ICCService 
to ICCSink. In addition to representing the communication, a model must consider all possible 
orderings of component activations. 

A blanket conservative policy to deliver Intent objects and messages to all possible targets may 
not be acceptable because applications are typically constructed of many components. However, 
statically calculating the destination of each Intent requires resolution of Intent values such as 
Uri strings and action strings, and reasoning about components’ implicit IntentFilter registra-
tion. 

4.3    Threat Model and Limitations 

In our scenario the application developer (or re-packager) is malicious. This attacker seeks to 
exfiltrate sensitive data from a mobile device to her servers or to an area on the device that is 
unprotected so that a colluding application can perform the exfiltration. 

Our definition of sensitive data includes unique device ID, sensor data (location, acceleration, etc.), 
file data, image data and meta-data, email and SMS messages, passwords, network traffic, and 
screen-shots. All of these data items are retrieved or stored via the Android API; we define sources 
of sensitive data as flows initiated from calls to Android API methods that we have identified (see 
Section 4.4). 

The attacking developer intentionally routes sensitive data to a destination (on or off the device) 
that is not authorized by the user. We define sinks as Android API calls that may exfiltrate data 
beyond the application boundaries. Sinks include network, NFC, file system, email or SMS mes-
sage, or directly to a colluding application via ICC or RPC. All of these sinks are guarded by the 
Android API. Sinks are identified as described in Section 4.4. 

DroidSafe protects against explicit sensitive information exfiltration by tracking sensitive source to 
sink flows present in the application. DroidSafe analyzes an application before it is placed on an 
app store or before device install. Not every flow reported by DroidSafe is malicious; malicious- 
ness depends on the intent of the developer and the security policies of the user or organization. 
Thus, the user or a trusted entity reviews the information flows for malicious leaks. 

4.3.1   Limitations 

We assume the device has not been rooted, and dynamic code loading is not present in the appli-
cation. We do not aspire to detect leaks of sensitive data via side channels or implicit flows [26]. 
Our trusted computing base on a device is the Linux kernel and libraries, the Android framework, 
and the Dalvik VM. 

DroidSafe’s reporting is defined by the source and sink calls identified in the Android API. An 
attacker could exfiltrate API-injected information that is not considered sensitive by DroidSafe, or 
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via a call that is not considered a sink; and it would not be  reported. 

Our analysis does not have a fully sound handling of Java native methods, dynamic class loading, 
and reflection. However, we compensate for these idioms with aggressive best-effort policies and 
analyses. Our analysis has a blanket flow policy for native methods of an Android application, but 
an application could inject a sensitive flow in a native method, and DroidSafe would not report 
it. We attempt to aggressively resolve reflection targets in a fashion similar to [27] and [28], but 
if a reflected invoke cannot be resolved, we inject a special REFLECTION taint on the method’s 
arguments and return value (injected by DroidSafe). Thus we could miss a flow injected in an 
unresolved reflected call. 

Finally, we intend the DroidSafe ADI to accurately reflect the runtime semantics of Android with 
respect to the information flow and points-to information. While we believe we largely cover 
the semantics, given the size of the Android runtime and API we acknowledge that there may be 
some methods whose semantics the current ADI does not fully reflect. Different versions exist of 
Android, and we analyze an application in the context of Android 4.4.3. 

4.4 DroidSafe’s Android Device Implementation 

To our knowledge, our model of Android represents the most complete, accurate, and precise An- 
droid execution model suitable for static analysis. We accurately and precisely model complexities 
such as callback context, life-cycle events, data flows, heap object instantiations, native methods, 
and aliasing. Our Android model is expressed in a single language, standard Java, matching the 
source language of Android applications, and is appropriate for many existing analysis techniques. 
One could think of our Android model as a software implementation of an Android device; along 
with the application and harness. Thus we call our model the Android Device Implementation 
(ADI). 

The ADI is a simplified (thus easier to analyze) model of the actual Android system that, with 
respect to our analysis, represents a best-effort over approximation of the possible behaviors of 
the real system. The combination of an application, our ADI core, our harness, the semantic trans-
formations for ICC (see Section 4.6), and resources (unique for each application), creates a closed 
application for analysis of an Android application. 

4.4.1 ADI Core 

We seeded our ADI with the Java implementation of the Android API available from the Android 
Open Source Project (AOSP) [21], version 4.0.3, along with additional open-source libraries upon 
which the AOSP implementation depends. This created a code base with no missing dependencies 
that could be compiled. This code base was approximately 1.3 MLOC, however it was missing 
substantial portions of the semantics of the Android API and runtime such as native methods, event 
firings, callback initiation, and component life-cycle events. Furthermore, many commonly used 
classes included Java implementations that present difficulties for a static analysis. 
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We therefore developed a novel technique, accurate analysis stubs, to enable the effective analysis 
of code whose full semantics lies outside the scope of AOSP. Each stub is written in Java and only 
incompletely models the runtime behavior of the modeled code. But the semantics of the stub is 
complete for the abstractions that the analysis deploys (in this case points-to and information-flow 
analyses). 

We added accurate analysis stubs for 3,176 native methods to model the data flow, object instan-
tiation and aliasing of the missing native code. This was accomplished through a combination of 
automated and manual means, though all methods were reviewed manually. We developed con-
crete implementations of 45 classes for which concrete implementations are left to closed-source, 
commercial libraries. 

We automatically created classes for 421 classes defined via the Android Interface Definition Lan-
guage (AIDL) used for RPC contracts. 

We simplified the implementation of 117 classes in the Java standard library and Android library 
to increase precision and decrease analysis time. Examples include container classes, component 
classes, I/O classes, primitive wrapper classes, strings, and threading classes. We attempted to 
faithfully maintain the semantics of the original code with respect to its contract with an Android 
application and a flow-insensitive analysis. The base AOSP plus our additions and modifications 
enable our ADI to accurately and precisely track flows through the API. 

4.4.2 Event and Callback Dispatch 

We created a runtime implementation hooked into the API implementation that models component 
creation, shared and saved state, life-cycle event firing and argument context, and callback event 
firing and argument context. 

For callback handlers, we implement the callback registration method to invoke the application’s 
callback handler method with the appropriate arguments. For example, Android defines the ability 
for a component to register to be notified if a database has changed, and handle this change in a 
given method in a new thread. The application will define a callback handler object, and register 
this to be notified of database changes. The ADI implements this registration method via a stub 
that creates the thread directly, and calls the callback method on the registered database. Since our 
analysis is flow insensitive and our harness is wrapped in a loop (see below), DroidSafe considers 
all event orderings even though the stub API method invokes the callback handler method directly 
from the callback registration method (with the appropriate context). 

For arguments to callback handlers that are generated by the runtime system, our model creates a 
new object and passes it to the registered callback handler in the app. For example, to model a key 
press, our runtime system will create a new object to represent the key press, and call the callback 
handler with this object on each component. 

We developed a separate package for implementing component creation and life-cycle event mod-
eling. This package contains stubs for registration methods for each Android component type: 
Activity, Service, BroadcastReceiver, and ContentProvider.   The harness (discussed below) 
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instantiates each application component and passes the component object to the appropriate regis-
tration method. The registration methods model shared preferences, saved state, global context 
classes, and device configuration. This context is passed accurately to the life-cycle events of 
components. 

Since our runtime system makes explicit calls to all life-cycle events of each component, a flow- 
insensitive analysis can capture the flow between the two life-cycle events in the component in 
Figure 4.2(a). Also, since we accurately model saved state through the API and back into a callback 
handler, our model enables an analysis to report the flow in Figure 4.2(b). 

4.4.3 Identifying and Classifying Sources and Sinks 

We manually identified 4,051 sensitive source methods and 2,116 sensitive sink methods in the 
Android API. We also classified each source and sink with a high-level classification (e.g., location, 
device ID, file, network, and database) so that analysis results can be grouped for verification or 
consumption by a human. For example, a flow reported by the tool might be: “Location data can 
flow to the network.” 

Initially, we tested SuSi, a tool that automatically identifies sink and source methods in the Android 
API [29]. The automatically identified sources and sinks were incomplete. We compared our iden-
tifications of sources and sinks with the results of SuSi1 and found that SuSi is missing hundreds 
of important sources. For example, SuSi did not identify 53% of source calls as “sensitive sources” 
and 32% of sink calls as “sinks” for the malicious flows in the APAC malicious applications (see 
Section 4.9). These missing sources and sinks indicate the challenge of automatic identification. 

4.4.4 ADI Coverage and Keeping Current with Android Updates 

The core of our model includes 550 commonly-used Android API implementation classes. We 
manually reviewed, added accurate analysis stubs, and verified these 550 classes. For verification, 
we manually confirmed that the class implementation is not missing semantics for data flow, object 
instantiation, and aliasing; and that event callbacks defined in the classes are called explicitly by 
our model (with the proper context). For classes not in our core set, we still maintain high accuracy 
because we analyze the actual Java implementation (with accurate analysis stubs), however we may 
experience a higher level of imprecision for these classes if their implementation is complex. 

To measure the coverage of the ADI, we acquired a list of Android API method call frequencies 
accumulated over 95,910 Android applications downloaded from the Google Play Store. This list 
reports the number of invoke expressions to each Android API method over all the applications. 
Calls to the core 550 verified classes account for 98.1% of the total calls over these applications. 

We initially seeded the ADI with the AOSP version 4.0.3, and verified the core based on this 
version. We have since upgraded our model to Android 4.4.3. This process included reviewing 

1 We used the source and sink lists for Android 4.2 in the SuSi public repository under the directory 
SourceSinkLists/Android 4.2/SourcesSinks. 
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changes to classes in our core 550 classes between these versions; and accounting for and verifying 
any changes in the ADI. This process required one person-week of work, for an experienced Java 
and Android developer. For the update, the rest of the ADI classes were copied over from AOSP 
4.4.3, and accurate analysis stubs were created for native methods. This process required another 
person-week. We expect the update process for our ADI to continue to be relatively fast since there 
are few changes to the core of Android between version updates; historically new implementation 
has been contained in new packages. 
 

4.4.5 Harness 
 
Each analyzed application must be hooked into the ADI via a harness. In its first pass, DroidSafe 
generates this harness method automatically. DroidSafe scans the application source code for all 
classes that subclass one of Android’s four component types. It instantiates objects in the harness 
for all such classes found. We cannot rely solely on the Android manifest for the complete list of 
components, since the manifest is required to list only components that are exported and available 
to other applications. We represent each component with a single heap object to account for the 
complexities of the Android component memory model (see Section 4.2.1). In our harness, each 
instantiated component object is passed to the appropriate runtime method to exercise all of its life- 
cycle events. The harness method is wrapped in a loop; the loop is present to capture all possible 
orderings for callbacks that are called in the harness. 

XML Layout Incorporation: Android enables a developer to specify screen layout via XML decla-
ration files. DroidSafe parses these files, and inserts statements in the harness to build the declared 
GUI elements programmatically via the associated method calls in the Android API. DroidSafe 
also sets field values for each declaring GUI item based on the XML proprieties declared for the 
item, e.g., button names, completion hints, and text field values; 16 properties are supported. 

In the application, XML declared GUI elements are instantiated via a method that requires the 
ID of the XML element. DroidSafe maps these IDs to the fields it has created in the harness. 
XML layout instantiation calls (9 varieties of findViewById(int) and setContentView(ID)) in the 
application are translated into an access of the mapped field for the constant ID argument. If the 
argument cannot be resolved to a constant, then a special object is created with a special taint to 
denote it is un-modeled, and replaces the instantiation call. An onClick handler declaration 
defined for a button is transformed into calls to the onClick method in our harness, called on all 
components that inflate the button. 

We also support incorporation of String values defined in XML resources by translating methods 
that access the Strings into the constants defined in the resources. 

Incorporating GUI and String values from the XML resources enables our analysis to resolve more 
strings constant values (important for ICC resolution (Section 4.6). Also, the DroidSafe tool pro- 
vides this rich information in its results such that the context of sensitive flows can be quickly un-
derstood. For example, instead of only reporting flow endpoints, we can report that a flow from lo- 
cation to network is executed during the “Send” button press to the server “http://maps.google.com”. 
The name of the button is specified in the XML layout file, and server names are often given in the 
string resources. 

http://maps.google.com/
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Our ADI is precise enough for analysis that resolves string values throughout the API, and accurate 
enough to track data flows on large Android applications through API calls (Section 4.7). Our ADI 
implementation is available upon request to researchers who would like to utilize it for analysis of 
Android applications 

 
4.5 Object-Sensitive Points-To Analysis 

 
Points-to analysis (PTA) is a foundational static program analysis that computes a static abstraction 
of all the heap locations that a pointer (reference) variable may point to during program execution. 
In addition to the points-to relation, points-to analysis also constructs a call graph as modern lan-
guages require points-to results to calculate targets for dynamic dispatch and functional lambda 
calculations. Our goal was to employ much of the AOSP Android API implementation without 
modification, and achieve precise results for our client analyses. However, as with many static 
analyses there is a trade-off between scalability and precision; appropriate control-flow and data- 
flow abstractions must be chosen to avoid intractability and to calculate acceptably precise results. 

The DroidSafe system places heavy demands on a points-to analysis: 

1. Java source code is notoriously difficult to analyze given heavy object and method reuse in 
varying contexts. 

2. An Android application plus our ADI represent a large code base (+100K lines of reachable 
code). 

3. A precise call graph must be calculated to preclude unreachable code from analysis (remem-
ber our entire ADI is 1.3 MLOC). 

4. Our information flow analysis tracks thousands of sources and sinks in the API and has the 
ability to track user-defined flows, thus many queries of the PTA are expected. 

5. Our ICC resolution analysis tracks values for all String constants resolved in application 
code. 

Let us consider the difficulties of analyzing complex Java code with precision. Figure 4.3 lists sim-
plified ADI source code for two commonly used classes in the Android API: android.os.Bundle 
and java.util.HashMap. Bundle allocates a HashMap. The example also provides relevant code 
for two Android activities that each create a Bundle and store values to their Bundle; Activity1 
puts non-sensitive data in its Bundle while Activity2 puts sensitive data in its Bundle. Consider   
the difficulty presented to an analysis given this code.  To  precisely separate the two Bundle objects 
created (Ⓝ and Ⓢ), a PTA must separate multiple levels of allocations started at each Bundle allo-
cation (Bundle allocates a HashMap, Ⓗ, which allocates an array to store entries, Ⓣ). In other 
words, an analysis must be able separate analysis facts between the array of entries created in the 
two HashMaps objects of the two Bundle objects in this code. Otherwise, sensitive data put in one 
Bundle is conflated with data that can be retrieved from the other Bundle, decreasing precision. 
Our PTA algorithm is based on a whole-program, flow-insensitive, subset-based foundation [30] 
for Java on which we have added context sensitivity. Context sensitivity is a general approach 
where a PTA is able to separate analysis facts for a method m that arise at multiple call sites of  
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Figure 3: Example source code for our ADI and two Activity objects illustrating the chal-

lenges of points-to and information flow analysis. 

m. There are multiple choices for context, and the DroidSafe PTA implements object sensitivity. 
Accumulating evidence demonstrates that object sensitivity is the best choice for object-oriented 
languages [31, 32, 33, 23]. 

Object sensitivity is notoriously difficult to understand and implement [23]. Here we give the 
reader an intuitive description of object sensitivity and its scalability challenges. For a rigorous 
description of object sensitivity see [23] (note that our PTA implements a 3Full+2Heap analysis 
modified as described below). An object-sensitive analysis uses object allocation sites (new expres-
sions in Java) as context elements. In our analysis, a heap object, o, is represented by the allocation 
site of o, plus the allocation site of the object that allocated o, and so on, to a parameterized depth, 
k. For a given method, our analysis is able to separate facts depending on the heap object of the 
receiver on which the method is called. 

Considering again the example in Figure 4.3, our analysis is able to separate analysis facts calcu-
lated for the array table of two HashMap objects allocated from the two Bundle objects. When the 
Bundle objects are created on line 3 and line 4 of Activity1 and Activity2, respectively, a series 
of allocations is performed via constructors. The object-sensitive heap abstraction will have two 
separate elements representing the two table arrays, with context being their allocation history: 

 

     (Ⓣ ← Ⓠ ← Ⓝ) 

    (Ⓣ ← Ⓗ ← Ⓢ)
  Where a ← b denotes “a allocated in b”. 

The new expression on line 3 of Activity1 creates a heap object (Ⓢ), and the cascading allocations 
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from the constructors of Bundle and HashMap create (Ⓗ ← Ⓢ) and (Ⓣ ← Ⓗ ← Ⓢ) respec-
tively. 

When the Bundle.put(...) method of Activity2 is called (line 5), the method context (receiver) 
for the call is (Ⓢ), this triggers a call to HashMap.put(...) (line 7 of HashMap) with context (
Ⓗ   ← Ⓢ). In this context, the points-to set result for the reference to the field table on line 7 of      
HashMap is the array object (Ⓣ ← Ⓗ ← Ⓢ).  Any elements  placed in this array via the 
assignment of line 7 will only be reflected in this array heap object.
Thus, for the example, our PTA is able to separate analysis facts between the two Bundle objects 
in the two Activities via deep object-sensitivity.  For this example, the analysis requires a heap 
context depth of 3 (to distinguish (Ⓣ ← Ⓗ ← Ⓝ) from (Ⓣ ← Ⓗ ← Ⓢ)).

Object sensitivity has powerful precision but scalability presents a challenge. Our example re-
quires a depth of 3, and other commonly used classes require deeper depths, e.g., in the AOSP 
implementation, Intent allocates a Bundle (that allocates a HashMap...) requiring a depth of 4 to 
disambiguate the items placed in the Bundle of two Intent objects. We tested other whole-program 
object-sensitive frameworks, but found they could not scale to the required context depth [34] or 
did not maintain program information required for our client [23]. 

To solve this scalability challenge, our points-to analysis implementation operates on the pointer 
assignment graph (PAG) representation of the program [35], an explicit representation of the pro- 
gram. In the past, while explicit implementations provided the fastest running times, they would 
typically exhaust main memory for large programs [34, 36]. However, today, with the large and 
increasing size of available main memory, we found that an explicit implementation can now scale 
to large programs.  
Furthermore, our implementation is flexible and parameterized. This flexibility enables us to 
implement a series of client analysis-specific and Android-specific optimizations of our object- 
sensitive points to analysis. Without our optimizations 3 of the 24 APAC applications (see Section 
4.9) could not finish analysis in DroidSafe given a limit of 64GB of heap memory. With opti-
mizations, all applications now run in under 34GB of heap memory. The optimizations pro- vide a 
savings of 5.1x in total analysis time. We highlight the important optimizations here. 

4.5.1 Selectively Applying Context 
 
Typically, a points-to analysis keeps the same base context depth for all allocated objects. Initially, 
we tried this policy, at a depth of 3, for the applications in our APAC suite. However, our analysis 
would fail on 3 of our APAC applications because it exhausted 64GB of allocated heap memory. 
Instead we implement a targeted approach: we add context for an abstract heap location at the 
minimum depth that is required to achieve precision for one of our client analyses. The depth of 
context on abstract heap objects varies from 0 to 4. The context depth is calculated based on the 
following. 

By analyzing a suite of 211 Android applications for which we had source, we learned which API 
classes from our ADI could be analyzed content-insensitively without significant loss of precision 
for clients of the PTA. We performed our points-to analysis on our suite, and determined API 
classes that could never reach (via a series of local or field references) a String value our Intent 
resolution analysis was tracking, and could never reach a value that was tainted with sensitive 
information flow (across all Android applications in our suite)
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This set, S, contains 1489 Android API classes. Most of these classes are Android GUI objects and 
libraries through which sensitive data should never flow. For all c ∈ S, our client analyses will cal-
culate the same results regardless of whether an object of c in the heap abstraction of our PTA has 
context or not (for the 211 Android applications analyzed). This set represents 26% of the total 
classes of our ADI. We extrapolate that context-insensitivity analyzing the classes of S in our will 
give us an acceptable loss of precision across all Android applications. 

We modified our PTA to never attach context to an allocation of or a method call on an object of a 
class in S. This means that for a method m called on c ∈ S, the information-flow analysis analyzes 
m without context, conflating the analysis results of all calls to m on objects of c. For information- 
flow analysis, this relaxation means that, in m, if a sensitive taint flows to a field f of an object of a 
class c, the taint will (imprecisely) flow to f for all heap objects of class c. 

Conversely with a maximum context depth of 3, our points-to analysis is unable to disambiguate 
many important analysis facts. For example, we could not disambiguate the Bundle between sep-
arate Intent objects (as discussed above). To address this issue, we automatically increase the 
context depth to 4 for all heap objects of Array type. In the example of Figure 4.3, this means 
that the array object allocated at line 3 of HashMap has a depth of 4, giving it enough context to 
disambiguate the Intent object that allocated the Bundle that allocated the HashMap that allocated 
the array. This general strategy works across containers in the Java and Android API packages. 

4.5.2 Strings 
 
At uniform context depth of 3, 63% of all heap objects are Strings in our PTA across our APAC 
applications. Most object sensitive PTA implementations represent all dynamic string objects by 
the same abstract heap location for scalability [23]. We cannot make such a choice because String 
precision is required for our Intent resolution analysis and our information flow analysis. 

To achieve scalable analysis time, first we limit the context of Strings to depth 2. This sacrifices 
some precision, but the differences are negligible for the clients of our analysis. Second, we altered 
the implementation of the base java.lang.String class in our ADI to limit String object creation 
without sacrificing accuracy for our information flow. 

The most effective modification to the ADI’s implementation of java.lang.String concerns String 
operations, e.g., concat, substring, and replace. In the original AOSP implementation, each of 
these operations return a new string; causing a blowup in the number of objects in our abstract 
heap. We altered these operations to return a reference to the receiver string such that a new string 
is not created. In the body of each altered method, we are careful to respect the information flow 
effects of the operation. For example, the replace method transfers the flow from its arguments to 
the receiver object, and returns the receiver object. Thus fewer String objects are created, helping 
scalability. This technique can also improve the precision of our information flow analysis (see 
Section 4.7) by preventing the collapse of distinct string objects at the (now removed) allocation 
within the string operation. Scalability and Usability of Points-To Analysis 

 
For reference, over the APAC applications, the maximum number of edges in the context sensitive 
callgraph produced and analyzed by our PTA has 14 million edges. The largest context sensitive 
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callgraph size we have found reported in the literature is 9.5 million edges [23]. 

Finally, unlike most other available PTA tools (such as Doop [31] and Paddle [32]), our analysis 
implementation does not calculate its result on a compressed representation of the program. We 
sacrifice memory to decrease analysis time, taking advantage of growing RAM size in desktops. 

 
 

4.6 Improving the Precision of ICC Modeling 
 
Inter-component communication (ICC) is common in Android applications and must be mod-
eled both accurately and precisely.  However, the AOSP implementation of ICC-related classes is 
incomplete (relying on native methods for target resolution and payload delivery). To achieve pre-
cision, we implement our own model of ICC via accurate analysis stubs, aggressively resolve 
dynamic program values, and transform application code to increase precision. 

Intent objects describe ICC destinations. Values involved in the resolution include both java. 
lang. String and java. lang. Class objects. We resolve these values statically to guide precision- 
enhancing transformations. Our ADI provides us with an accurate and precise model for resolution 
analysis of values involved in Intent resolution. 

Strings are an essential base value type of many of the Intent fields. To resolve string values 
given the myriad operations performed on strings, we employ the JSA String Analyzer (JSA) [37]. 
JSA is a flow-sensitive and context-insensitive static analysis that includes a model of common 
operations on Java’s String type. For a given String reference, the analysis computes a multi- 
level automaton representing all possible string values. As a first pass, we run JSA (on only the 
application source) to resolve values for string references that are arguments to Android API calls. 
We convert each resolved automaton to a regular expression that represents the possible values of 
the string value. 

After JSA is run, we replace resolved string values in the application code with constants repre-
senting their computed regular expression, and perform a pass of our points-to analysis such that 
these values can be propagated globally. We run our points-to analysis and store the results of this 
analysis for all string references in the program, such that later we can query the resolved regular 
expressions representing values for all string references in application code. 

 

4.6.1 Resolving Explicit Intent Destinations 
 
Explicit Intent objects are initiated with the destination component’s fully-qualified class name 
or class constant object. Before the PTA is run, each class constant passed to a method of Intent 
is converted into a component name string constant representing the class. To determine the 
destinations of an Intent object in our abstract heap, we query the points-to information for the 
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Source Method Target Method Call Injected 
 

 

Context:  void send*Broadcast(Intent,. . .) [ 6 variants] BroadcastReceiver:  void  onReceive(Intent) 

Activity:  void  startActivity*(Intent,. . .) [ 6 variants] Activity:  void  setIntent(Intent) 

Context: void bindService(Intent, Connection) Service: void droidSafeOnBind(Intent, Connection) 

Context:  void startService(Intent) Service: void onStartCommant(Intent, ...)  

ContentResolver: insert, query, delete,  update ContentProvider: insert, query, delete,   update 
 

 

Figure 4: DroidSafe’s ICC source to target methods transformations. 
 

fields of component name. If all of the strings objects in the points-to set are constants, we consider 
the Intent object resolved. 

 

4.6.2 Resolving Implicit Intent Destinations 
 
Implicit Intent objects are Intent objects for which a component name is not specified; in our 
analysis these are Intent objects for which the component name field is null. Implicit Intent 
objects do not directly reference a destination but instead leave it to the Android system to de- 
liver them to the appropriate destination(s). A component registers as a destination of implicit 
Intent objects by declaring IntentFilter elements in the manifest or programmatically installing 
IntentFilter objects on components. IntentFilter registrations specify string constants that the 
component will accept for the action, category, data type, and uniform resource identifier (Uri) 
fields of a dispatched Intent. We parse the Android manifest, and keep a map of implicit Intent 
registrations, i.e., for each component the implicit Intent field values it accepts. We also support 
updating this map with programmatic registrations for BroadcastReceiver objects, by modeling 
IntentFilter. 

An implicit Intent object in our abstract heap is resolved if our PTA concludes that the points-to 
set for one of the action, category, data type, or Uri fields reference only constants (or is empty). 

For a resolved implicit Intent, i, we build i’s list of in-app targets by comparing to each com-
ponent’s intent filter. For component c, we test the action, category, data type, and Uri fields in 
sequence. For each field, if i’s field is unresolved, then the test passes. If the field of i is resolved, 
then if any of its string constants are in the set of strings accepts by c’s intent field for the field, 
then it is a match. All fields of i have to pass the test against the respective fields of c’s intent filter 
for i to be able to target c. 

There is additional complexity for programmatic intent filters, as DroidSafe may not be able to 
resolve all fields of an intent filter to constants. An intent filter field that cannot be resolved matches 
the respective field for all Intents. 

 

4.6.3 Transforming ICC calls to Improve Precision 
 
ICC initiation calls are methods that pass an Intent to Android’s runtime system to perform inter- 
component communication or binding. Our strategy for improving precision for ICC is to trans-
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form ICC initiation calls into appropriate method calls at the destination(s), thus linking the data 
flows between source and destination. 

Figure 4.4 presents a list of the most common ICC initiation calls, and the linkage calls that 
are inserted by DroidSafe to improve precision and accuracy. For example, for an invoke of 
startActivity(Intent), we transform this call into calls of the destination activities’ 
setIntent(Intent), linking the source and targets. Thus when a target Activity calls getIntent(), 
all Intent objects that could possibly be sent to the Activity are calculated by our PTA (we update 
the PTA result after all ICC transformations are completed). 

For ICC initiation calls on resolved Intent objects, we link the ICC initiation call to only the 
destination components that are specified by the Intent. This is achieved by calling the appropriate 
linkage method on the heap object allocated in our harness for the destination component. For 
unresolved Intent objects, we insert linkage calls to all components of the appropriate type. For 
example, a startActivity(Intent) call with an unresolved Intent is delivered to all Activity 
components. 

 

4.6.4 Android Services 
 
Android Services require additional sophistication because in addition to Intent-mediating com-
munication, messaging and RPCs can be performed. We illustrate our Service transformations via 
the examples in Figure 4.2(c). In this example, the Activity ICCSource binds and sends a messages 
to the Service ICCService. The important steps performed by DroidSafe to resolve this flow are as 
follows: 

1. Our manifest parser maps the Intent action string “ICCServiceAction” to ICCService. 

2. DroidSafe resolves the Intent object on line 15 as an Implicit Intent with action string “ICC- 
ServiceAction”. Consulting the implicit IntentFilter registration map, we see the Intent’s 
destination is ICCService. 

3. The call to bindService(...) on line 16 is transformed to a linkage call to the harness object 
representing ICCService. This linkage call is a new method we define in our ADI for Service, 
droidSafeOnBind(Intent, ServiceConnection). The linkage method performs the following 
(some details omitted): 

(a) Invoke ICCService’s (the receiver’s) onBind(Intent) method to retrieve the Binder object. 
The ADI model for android.os.Messenger.getBinder() creates a Binder that references 
the Messenger object which created it. 

(b) Invoke onServiceConnected(ComponentName, Binder) on the passed ServiceConnection 
object, passing the android.os. Binder returned from ICCService’s onBind() method. 

With the linkage methods called, the Binder object used to create the Messenger in ICCSource 
line 7 is connected to the IncomingHandler of line 8 of ICCService. The method android.os. 
Messenger.send(Message) has a stub to call the handleMessage(Message) method of its Handler 
object. Thus, the call mService.send(msg) on line 23 of ICCSource will deliver the message to the 
handleMessage(Message) method of ICCService’s Messenger object. 
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This is just one example of binding and message communication in Android that we support. The 
DroidSafe ICC model supports precision increasing transformations for common forms of ICC, 
and handles uncommon cases conservatively. 

 
 

4.7 Information-Flow Analysis 
 
Our information-flow analysis computes an over-approximation of all the memory states that occur 
during the execution of a program. The analysis is designed as a forward data-flow analysis. For 
each type of statement, we define a transfer function in terms of how it changes the state of memory. 

We divide memory into four separate areas that store local variables, instance fields, static fields, 
and arrays, reflecting the semantics of the Java programming language: 

Memory  = Local × Instance × Static × Array    
Local = Ctx × Var → InfoVal 

Instance  = Loc × Field → InfoVal 
Static  = Class × Field → InfoVal 
Array   = Loc → InfoVal 

Ctx, Loc  = AllocSitek 

 
Each of the memory areas is modeled as a function whose codomain consists of a set of information 
values. An information value is a tuple of the type of information and the source code location 
where the information was first injected. Our analysis can identify not only the kind of information 
being exfiltrated but the code location of the source. 

In the local variable area, Local, each method’s local variables are parameterized by their calling 
contexts (i.e. the heap location of a receiver object), so the precision of the analysis does not 
decrease when a method is called in various contexts. In other words, our information-flow analysis 
analyzes local variables in a flow-insensitive and object-sensitive fashion. 

The instance field area, Instance, is a function that takes as its arguments an abstract heap location 
and an instance field. The return value is information values that flow into the instance field of 
objects at the heap location. Note that an abstract heap location consists of a series of allocation 
sites (see Section 4.5). This area corresponds to what is colloquially called “context-sensitive (or 
object-sensitive) heap” or “heap cloning” in the literature [23]. Each static field of each class has 
an entry in the static field area, Static. Unlike the memory area for instance fields, the static field 
area is not parameterized by heap locations because, in Java, all objects of each class share the 
static fields of the class. 

The analysis collects all information values that are assigned to the elements of an array and stores 
the result at a single heap location of the array area, Array. That is, we analyze arrays in an 
array-index-insensitive fashion. 

An information value is injected into an appropriate memory area when a source API method is 
invoked from application code. More specifically, for the statement r = o.source(a) where r is of 
primitive type, the analysis puts an information value into an entry in the local variable area that 
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corresponds to the r variable in the current calling context; the stored information value consists 
of the statement’s location and the type of information associated with the source method. If r is 
a reference, the information value is stored in the special taint field of an instance that r refers to 
in the current calling context. 

For each o. sink (a, ...) statement that invokes a sink method, DroidSafe reports the information 
values for accessed memory addresses in the sink. For each argument (and the receiver o), Droid- 
Safe reports all the information values that are attached to memory addresses (and their taint 
field) read during the execution of the body of the sink method (among memory addresses reach- 
able from the argument). 

In Figure 4.3, the analysis injects an information value into the sensitive variable when Location. 
getLatitude (), a source API method, is invoked (line 3 of Activity2). The information value 
consists of the line number and the type of information (for this case, a user’s location). For the 
invocation of  Bundle.put() method (line 5 of Activity2), the transfer functions of the statements 
in the body of Bundle.put() convey the information value from the sensitive variable to the 
value field of an Entry object whose heap location is (Ⓔ ← Ⓗ ←Ⓢ). At the call to a sink 
API method (line 7 of Activity2), the analysis reports 1) a user’s location information is reachable 
from the bundle2 argument, 2) the information was generated first at line 3, and 3) whether the body 
of the sink method actually uses the information by reading the Entry.value field. On the other hand, 
for the call to a sink API method in Activity1 (line 6 of Activity1), the analysis correctly reports 
that a user’s location information is not reachable from the bundle1 argument. That is, even though 
the Entity objects in Activity1 and Activity2 are both created at the same program location Ⓔ, the 
analysis properly distinguishes information flows into them because each of them has its own heap 
location ((Ⓔ ← Ⓗ ← Ⓝ) and (Ⓔ ← Ⓗ ← Ⓢ), respectively). 

 
4.8 Implicit Flows 

 
The last section covers our information flow analysis with respect to explicit flows. This chapter 
focus on our implementation of tracking of implicit flows. An implicit information flow occurs 
when some sensitive data, though not directly leaked to output, can be inferred from the program’s 
control flow. For example, in the following program fragment: 

int secret ; 
 

void check ( int x) { 
if  ( secret  > x) 

print (‘‘ greater  than  ‘‘ + x); 
else 
print (‘‘ less  than  or  equal  to  ‘‘  + x); 

} 
 

The security-sensitive integer secret is not leaked via an explicit flow. However, information 
about it is leaked, i.e., whether it is greater than a given integer x. When invoked repeatedly with 
different values of x, the function check can ultimately leak the value of secret. 
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We have enhanced the information flow analysis in DroidSafe to track implicit flows as well as 
explicit flows. The implicit flow tracking can be turned on or off via a configuration parameter. 
Below we will describe how DroidSafe incorporates implicit flow tracking into its information flow 
analysis. 

 

4.8.1.1 Compute Control Flow Graphs 
 
Implicit flows leaks information through the program control flow. Therefore our implicit flow 
analysis first computes control flow graphs for the reachable methods in the given program. 

In a control flow graph each node in the graph represents a basic block, i.e. a straight-line code 
sequence with no branching. Directed edges are used to represent branching in the control flow. 

 

4.8.1.2 Augment Analysis State with Implicit Flow Data 
 
We used additional state variables to store the implicit flow data collected during the analysis: 

• blockIFlows = Block × Ctx → InfoVal 

Where Block represents a node in a program’s control flow graph, i.e. a basic block in the 
program body 

For each block that is implicitly tainted in a given context, this state variable stores the 
corresponding sources of taint. 

• locIFlows = Loc → InfoVal 

For each abstract heap location that is implicitly tainted, this state variable stores the corre-
sponding sources of taint. 

 

4.8.1.3 Compute Implicit Taints of Blocks on the Control Branches 
 
The information flow analysis is implemented as a forward data-flow analysis. For each type of 
statement, we apply a transfer function that modifies the analysis state. The implicit flow analysis 
added a transfer function for control transfer statements including the Java If statements and Switch 
statements. If the conditional or switch expression is tainted, the transfer function marks the blocks 
on the control branches and method blocks reachable from these blocks as implicitly tainted. Here 
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are the steps: 

1 curBlock ← the basic block containing the if/switch statement 
{ Compute the set of blocks on the control branches ’siblings’ as follows: } 

2 subGraph ← directSubGraph(curBlock) 
{ The directed subgraph of the control flow graph starting from ’curBlock’, with an entry block (through 

which control enters into the subgraph) and an exit block (through which all control flow leaves) added: } 
3 postDominatorTree ← the post dominator tree from the subGraph 

{ In a control flow graph, a block M postdominates block N if every path from N to the EXIT block has to 
pass through block M. A block M immediately postdominates block N if M postdominates N, and there is 
no intervening block P such that M postdominates P and P postdominates N. } 

{ The post dominator tree is a tree depicting the postdominator relationships of a given control flow graph. 
There is an arc from Block M to Block N if M is an immediate postdominator of N. This tree is rooted at 
the exit block. } 

4 siblings ← the sibling (and grand-sibling) blocks of curBlock in the post dominator tree. These are the 
blocks on the branches that will receive implicit taints 

5 foreach method context do 
6 taints ← collectTaints(<if/switch expression>) 
7 if taints /= empty then 
8 foreach sibling ∈ siblings do 
9 add taints to blockIFlows(sibling, context) 

10 end 
11 foreach method context reachable from the sibling blocks do 
12 foreach block in the method do 
13 add taints to blockIFlows(block, context) 
14 end 
15 end 
16 end 
17 end 
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4.8.1.4 Propagate Implicit Taints from Blocks to Abstract Heap Locations 
 

We have modified the transfer function for assignment statements to propagate implicit taints from 
blocks to abstract heap locations as follows: 

1 lhs = LHS of the assignment statement 
2 if lhs is not of primitive type then 
3 curBlock = the basic block containing the assignment statement 
4 foreach method × context do 
5 implicitTaints = blockIFlows(curBlock, context) 
6 if implicitTaints /= empty then 
7 foreach loc ∈ pointsToSet(lhs, context) do 
8 add implicitTaints to state.locIFlows(loc) 
9 end 

10 end 
11 end 
12 end 

 
 

4.8.1.5 Propagate Implicit Taints from Abstract Heap Locations to Method Blocks 
 

We have modified the transfer function for statements containing method calls to propagate implicit 
taints from the receiver to the blocks in the called methods as follows: 

1 receiver = receiver of the method call 
2 foreach callerContext do 
3 locs = pointsToSet(receiver, callerContext) 
4 implictTaints = union of state.locIFlows(loc) for loc in locs 
5 if implicitTaints is not empty then 
6 foreach calleeContext do 
7 foreach calleeBlock do 
8 add implicitTaints to state.blockIFlow(calleeBlock, calleeContext) 
9 end 

10 end 
11 end 
12 end 
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4.8.1.6 Incorporate Implicit Taints into Explicit Taints via Assignment Statements 
 

We have modified the transfer functions for assignment statements to add the implicit taints of the 
containing blocks to the explicit taints of the LHS as follows: 

1 curBlock = the basic block containing the assignment statement 
2 foreach method × context do 
3 implicitTaints = state.blockIFlows(curBlock, context) 
4 if implicitTaints is not empty then 
5 lhs = LHS of the assignment statement 
6 if lhs is a primitive variable then 
7 add implicitTaints to state.locals(context, lhs) 
8 end 
9 else if lhs is a primitive instance field then 

10 base = instanceFieldGetBase(lhs) 
11 field = instanceFieldGetField(lhs) 
12 foreach loc ∈ pointsToSet(base, context) do 
13 add implicitTaints to state.instances(loc, field) 
14 end 
15 end 
16 else if lhs is a primitive static field then 
17 field = staticFieldGetField(lhs) 
18 add implicitTaints to state.statics(field) 
19 end 
20 else if lhs is primitive array element then 
21 foreach loc ∈ pointsToSet(base, context) do 
22 base = arrayElementGetBase(lhs) 
23 end 
24 foreach loc ∈ pointsToSet(base, context) do 
25 add implicitTaints to state.arrays(loc) 
26 end 
27 end 
28 end 
29 end 
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4.8.1.7 Incorporate Implicit Taints into Explicit Taints via Return Statements 
 

We have modified the transfer functions for return statements to add the implicit taints of the 
containing blocks to the explicit taints of the LHS of their caller assignment statements as follows: 

1 curBlock = the basic block containing the return statement 
2 foreach calleeMethodContext do 
3 implicitTaints = state.blockIFlows(curBlock, calleeContext) 
4 if implicitTaints /= empty AND return type is primitive then 
5 foreach callEdge: incomingEdges(calleeMethodContext) do 
6 if callStatement is an assignment statement then 
7 lhs = LHS of callStatement 
8 add implicitTaints to state.locals(callerContext, lhs) 
9 end 

10 end 
11 end 
12 end 

 
 

4.8.1 Other Implicit Flows 
 

• In Java, the X instanceof Y operator is a boolean operator that returns true if the object X is 
of class (or subclass of) Y. If implicit flows tracking is enabled in DroidSafe, we modified the 
transfer function for statement, local = X instanceof Y such that the taints of the added taint 
field for all locations reachable from X (for all contexts) are transferred to local: 

1 foreach method × context do 
2 locs = pointsToSet(X, context) 
3 forall loc ∈ locs do 
4 taints = union of state.instances(loc, taintfield) 
5 add taints to state.locals(context, local) 
6 end 
7 end 

• For the statement, local = length_of(a), we transfer the taint on the taint field of arrays referenced 
by a to local: 

1 foreach method × context do 
2 locs = pointsToSet(a) 
3 forall loc ∈ locs do 
4 taints = union of state.instances(loc, taintfield) 
5 add taints to state.locals(context, local) 
6 end 
7 end 
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4.8.2 Reporting Implicit Flows 
 
As described above, for many types of implicit flows, in the statement transfer function the flow is 
added to a set that includes both implicit and explicit flows. Thus our existing means of reporting 
flows will capture many types of implicit flows. 

However, for sink calls that are predicated on tainted control flow, we have added a separate report 
on implicit information flows. For each sink method call that is in an implicitly tainted block, the 
implicit taints into this sink will be listed in this report. 

 

4.8.3 Tests 
 
DroidSafe repository includes 17 small system test apps to test implicit flow tracking and report-
ing. Twelve of the tests were written by our team, the other 5 were developed by the creators of 
FlowDroid [14]. 

Currently the DroidSafe analysis passes 15 of 17 tests, with 96% precision (1 false flow reported 
out of 25 flows reported). The analysis does not currently track implicit flows introduced by 
exceptional control flow, nor does it track implicit flows initiated by indexing into an array of 
references. 

 
 
4.9   Evaluation 

 
This section presents experimental results that characterize the effectiveness of DroidSafe’s infor-
mation-flow analysis. Our results indicate: 

1. DroidSafe achieves both higher precision and accuracy than FlowDroid [14] + IccTA [20] a cur- 
rent state-of-the-art Android information-flow analysis. [14] and [20] demonstrate that Flow- 
Droid + IccTA achieve both higher precision and accuracy than commercially available tools 
such as IBM’s AppScan Source [38] (which was specifically designed to analyze Android apps) 
and HP’s FortifySCA [39]. 

2. DroidSafe successfully reports all malicious leaks of sensitive information in a suite of mali-
cious Android applications developed by independent, motivated, and sophisticated attackers 
from three hostile Red Team organizations. 

3. DroidSafe successfully scales to analyze large Android applications analyzed in the context of 
our ADI. 

 

4.9.1 Methodology 
 
DroidSafe is developed on top of the Soot Java Analysis Framework [40]. We implemented our 
object-sensitive points-to analysis on top of Soot’s SPARK PTA framework [35]. DroidSafe com-
prises approximately 70K lines of Java code.  Figure 4.5 presents the architecture of DroidSafe 
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Application APK or Source 
 
 
 
 
 

Android Device Im-
plementation (ADI) 

 
 
 
 
 
 
 
 
 
 

Figure 5: Phases of the DroidSafe Tool. Double lines denote  
an update of the PTA result is calculated for the next phase. 

 
Table 1: DROIDBENCH results for DroidSafe and FlowDroid. 

 
 
Tool 

Missed Flows 
Explicit / Implicit 

 
Accuracy 

False 
Positives 

 
Precision 

DroidSafe 0/6 93.9% 13 87.6% 
FlowDroid 12/7 80.6% 30 72.5% 

 
(previous sections discuss the different phases of DroidSafe). DroidSafe can analyze an APK and 
Java source code. 

We compare DroidSafe’s information-flow results to FlowDroid + IccTA [14, 20], a flow-sensitive 
and object-sensitive static information-flow analysis system developed by academic researchers. 
This system incorporates Epicc [41] to resolve values for Intent objects used in ICC calls. For 
the remainder of this section we refer to this system as FlowDroid since FlowDroid is the under- 
lying information-flow analysis. We run FlowDroid with our list of sources and sinks described in 
Section 4.4. Both tools report flows at a fine granularity as the generating source method call ex-
pression and the sink method call expression (Soot IR representation of the analyzed application). 

We executed FlowDroid and DroidSafe on an Intel® Xeon® CPU E5-2690 v2 @ 3.00GHz running 
Ubuntu 12.04.5 with 64GB of heap memory for the JVM. We executed on a single core of the 
processor. We compare results for three application sets: 

DROIDBENCH: DROIDBENCH[14] is an evolving set of Android micro-applications designed by 
the authors of FlowDroid to test precision and accuracy (recall) of static information-flow anal-
yses. For our evaluation of DroidSafe, we employ DROIDBENCH version 1.2 plus the benchmarks 
developed for IccTA [20], which includes 94 benchmarks.  One of the goals of DROIDBENCH   is 
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Figure 6: APAC Information-Flow Applications: Size and malicious flows details. 
 

to exercise potentially problematic Java idioms such as exceptions, callbacks, reflection3, Android 
Inter-Component Communication (ICC), static initializers, and arrays. It is also designed to test 
the flow-, field-, and object sensitivity of the analysis. The largest DROIDBENCH application is 
under 200 lines of code. Reachable code including our analyzed Android ADI is always at least 
80,000 lines of code. The maximum FlowDroid analysis time across the benchmark suite is 11 
seconds. Despite the fact that it analyzes substantially more code than FlowDroid, the maximum 
DroidSafe analysis time is 222 seconds. 

Additional Android Micro-Applications: To get better test coverage of Android, we developed 
our own set of 40 information-flow Android micro-applications. These applications test common 
Java and Android idioms for which coverage is missing in the current version of DROIDBENCH. 
The largest app is 255 lines of code. Benchmarks include tests of: Parcel, Activity saved state, 
Fragment, asynchronous event orderings, global Application object, String to char conversion, 
callback context, SharedPreferences, and dynamic dispatch precision. Fourteen (14) of the bench- 
marks test Android ICC mechanism coverage such as: components not in manifest, event ordering 
between components, programmatic IntentFilter registration, Intent passed through API ob-
jects, and various mechanisms for creating explicit Intents. We are working with the developers 
of DROIDBENCH to incorporate our benchmarks into the DROIDBENCH suite. 

APAC: The APAC applications are complete real-world Android applications that, as part of the 
DARPA Automated Program Analysis for Cybersecurity (APAC) program, have been augmented 
with information-flow leaks by three independent hostile Red Team organizations. The goal of 
these organizations was to develop information leaks that would either evade detection by static 
analysis tools or overwhelm static analysis tools into producing unacceptable results (by, for ex- 
ample, manipulating the tool into reporting an overwhelming number of false positive flows). The 
APAC applications are unique because they are aggressive malware for which the ground truth 
for malicious information flows is defined. Furthermore, unlike much of the current generation of 
malware in the wild, which is delivered in over-privileged applications [42], many of the APAC ap-
plications contain malicious leaks to unauthorized destinations of sensitive data that the application 
is authorized to access based on its stated functionality. 

The APAC applications comprise 24 Android applications. The application sizes range from 200 
to 80,000 lines of Java code (not including library or Android run-time code). Reachable code 

including our analyzed Android ADI ranges from at least 80,000 to 180,000 lines.        DroidSafe 
 

 

3DroidSafe handles reflection using its String and points-to analysis to replace reflective calls in application code 
with direct calls to the target method, when applicable. The mechanisms of this transformation are similar to ICC 
transformation discussed in Section 4.6. 

 
Application 

Lines 
of Code 

Malicious Flow 
Source Sink 

AgentSmith 1,481 Clipboard Network 
AndroidGame 63,755 Image Metadata Network 
AndroidMap 8,491 Location Network 
AndroidsFortune 14,621 Device ID Network 
AudioSidekick 2,444 Mic Network 
AWeather 1,837 Network Network 
BatteryIndicator 5,319 Image Network 
Butane 2,506 SMS Network 

 

 
Application 

Lines 
of Code 

Malicious Flow 
Source Sink 

CalcF 861 User Input Network 
DeviceAdmin2 2,289 System Info Network 
FillInFun 82,602 Contact SMS 
KitteyKittey 962 Image Metadata Network 
PicViewer 221 Image Metadata Network 
Quickdroid 6,155 Contact, Bookmark IPC 
RunningApp 1,785 User Input NFC 
ShareLoc 372 Location Network 

 

 
Application 

Lines 
of Code 

Malicious Flow 
Source Sink 

ShyGuyCRM 3,811 Contact Email 
SmartWebCam 1,176 Camera AIDL 
SMSBackup 387 SMS, Image, Browser File 
SMSBlocker 3,775 SMS Network 
SMSPopup 17,953 SMS SMS 
SnapshotShare 13,461 Screenshot Network 
SourceViewer 208 Device ID Network 
UltraCoolMap 2,658 Location Network 
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analysis times for the APAC applications range from 4.4 to 27.5 minutes. 
 
 
4.9.2 DroidBench and Additional Micro-Applications 

 
Figure 4.1 presents results from the DroidSafe and FlowDroid analysis of the DROIDBENCH suite. 
The second column contains entries of the form X/Y, where X is the number of missed explicit 
flows across all 94 applications and Y is the number of missed implicit flows. Implicit flows have 
no direct flow of data from the source to the sink; the flow is instead created via control flow that 
depends on sensitive data. DroidSafe detects all of the 90 explicit flows in the benchmark suite. 
FlowDroid detects 78 of 90 explicit flows. Inaccuracies in the FlowDroid tool cause it to miss the 
10 flows: static initializers not modeled properly with respect to flow sensitivity, String to character 
conversions with unlinked flows, life-cycle event ordering inaccuracies, inaccurate fragments 
modeling, missing ContentProvider flows, and unresolved flows linked through reflected   calls. 

The fourth column of Figure 4.1 presents the number of false positives — i.e., the number of 
reported flows that do not actually exist in the 94 benchmark programs. Despite its greater accu-
racy, DroidSafe exhibits a lower false positive rate than FlowDroid. The final column presents the 
corresponding precision numbers for these false positives. 

DroidSafe reports 13 false positives. DroidSafe reports two false flows due to conflating all el-
ements of an array with tainted and untainted elements and two false flows due to accesses of a 
container (Map and List) with tainted and untainted elements. DroidSafe also reports four false 
flows due to flow insensitivity. We report two false positives because of our conservative (though 
accurate) model of life-cycle event orderings; in one benchmark the flow was connected by an 
order that could never occur at runtime (onCreate() called after onDestroy()). Two false flows 
are caused by conflating accesses of the Intent state map based on a string key. 

Eighteen (18) of the 30 FlowDroid false positives are due to a conservative “Callback” source type 
that FlowDroid always injects for callback handler arguments because it does not model callback 
context accurately. Conversely, DroidSafe accurately and precisely models callback context in the 
ADI, and does not have to conservatively inject these flows. The remaining 12 false positives in 
FlowDroid are due to various causes such as conflating array and container elements, imprecisions 
in analyzing callback de-registration, and flow insensitivity on field assignments. 

We now present results for the forty additional Android micro-applications developed by the au-
thors. There are 42 leaks of sensitive information in the 40 applications. DroidSafe achieves 100% 
precision and accuracy for the suite. DroidSafe’s comprehensive and precise Android model, the 
ADI, enables DroidSafe to capture all flows. FlowDroid (plus IccTA) achieves 34.88% accuracy 
and 79.0% precision. The low accuracy for FlowDroid is caused by the incomplete model of the 
Android environment that is included in the system. Examples of common Android idioms that 
FlowDroid currently does not model accurately nor conservatively include: API calls that access 
state (such as SharedPreferences and Application); taint transferred from an array index; String 
to char conversion; accounting for all legal asynchronous event orderings; callback context mod-
eling (flows through API callbacks); accounting for components not defined in manifest; event 
ordering between components; Service binding and messages; and programmatic IntentFilter 
registrations. 
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Application 

 
Mali-

cious 
 

DroidSafe FlowDroid 
Reachable Lines 
(including ADI) 

Analysis 
Time (sec) 

Reachable 
Source Calls 

Reachable 
Sink Calls 

Total 
Flows 

Missed 
Malicious Flows 

Analysis 
Time (sec) 

Total 
Flows 

Missed 
Malicious Flows 

AgentSmith 1 123,881 434 53 60 167 0 60 123 1 
AndroidGame 1 82,170 499 11 18 37 0 Did not complete 1 
AndroidMap 2 102,236 698 78 41 132 0 54 25 2 
AndroidsFortune 1 130,003 752 72 183 304 0 159 208 0 
AudioSidekick 2 126,223 507 62 50 89 0 41 28 2 
AWeather 1 126,218 491 35 30 72 0 116 57 1 
BatteryIndicator 1 122,132 846 64 135 113 0 106 176 1 
Butane 4 173,934 625 73 102 392 0 68 109 2 
CalcF 2 117,414 374 11 21 11 0 33 5 0 
DeviceAdmin2 2 137,046 358 17 33 5 0 47 6 2 
FillInFun 2 123,016 601 22 64 14 0 75 25 1 
KitteyKittey 1 110,584 271 4 1 2 0 47 1 1 
PicViewer 3 118,019 360 7 3 8 0 20 0 3 
Quickdroid 19 119,427 399 103 65 278 0 64 231 19 
RunningApp 1 126,629 579 51 34 59 0 75 94 1 
ShareLoc 4 119,771 1,051 6 4 7 0 28 7 4 
ShyGuyCRM 1 177,853 1,255 105 99 463 0 78 82 1 
SmartWebCam 1 126,029 1,649 101 267 21 0 50 30 1 
SMSBackup 10 108,317 269 25 7 26 0 20 0 10 
SMSBlocker 1 125,531 419 12 105 23 0 42 12 1 
SMSPopup 3 149,824 1,477 180 182 918 0 298 304 3 
SnapshotShare 1 130,111 590 89 29 108 0 92 71 1 
SourceViewer 1 118,943 384 13 11 8 0 23 4 1 
UltraCoolMap 4 121,507 407 14 9 12 0 34 42 4 
Total 69     3,269 0  1,640 63 

 

Figure 7: APAC Information-Flow Applications:  
DroidSafe and FlowDroid evaluation results. 

 

4.9.3 APAC Malicious Applications 
 
We next present analysis results for 24 real-world applications with malicious flows. Figure 4.6 
presents details on the source lines of code and the malicious flows. The most common type of sink 
is the network (when the flow exfiltrates sensitive information via the network). The developers of 
the APAC applications attempted to intentionally hide malicious flows. Some of the patterns they 
used include flows through raised exceptions, application native methods, reflection, and character 
and string manipulation. They also employ Android API methods that are difficult to model pre-
cisely and accurately such as Object.clone, System.arraycopy, and primitive to string (and vice 
versa) conversion. One application (SmartWebCam) leaks sensitive information (camera) via an 
AIDL-defined RPC call that could be called by a colluding application. Android-specific imple-
mentation decisions that complicate information-flow analysis include: 

1. ICC: In 17 of the applications, malicious flows cross components via Intents, messages, or 
RPCs. 

2. Callbacks: In 17 of the applications, either a) sources or sink calls are reachable via control 
flow initiated via a callback, or b) malicious flows are linked through callback arguments passed 
via the runtime. 

3. API Inter-method flows: In 6 of the applications malicious flows are linked through API 
method combinations with flows that are challenging to model. More specifically, method a  is 
called to assign a reachable field or static memory location to a tainted value, then method b 
is called that accesses this memory via static memory or a path of fields from its arguments. 
SharedPreferences are an example: one component could write taint to a preference, and an- 
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other component could read from that preference. 

4. Non-argument sink flows: In 7 of the applications, a malicious flow is not linked via the
arguments of the sink call. Instead the source taint is accessed beginning with a) memory
reachable from a field of the receiver, or b) memory reachable via a static access.

Figure 4.7 presents information-flow results. The column “Malicious Flows” gives the total num-
ber of malicious flows in the application. Many apps leak multiple sources of sensitive data; for 
example, UltraCoolMap leaks location information from four sources to the network. 

DroidSafe achieves an accuracy of 100%, reporting all 69 of the malicious flows in the APAC 
apps. The high accuracy of our Android model enabled this result; the malicious flows in these 
applications often attempt to exploit Android behavior that is difficult to model. For DroidSafe, 
the ratio of reported malicious flows to total flows is 2.1%. 

FlowDroid, in contrast, misses 63 of the 69 malicious flows, for an accuracy of 8.7%. Reasons for 
the low accuracy include missing ICC modeling, not considering all valid event orderings 
(exacerbated by FlowDroid’s flow-sensitive analysis), inaccurate modeling of many Android API 
calls (causing disconnection of flows), and inaccurate callback context modeling. FlowDroid’s 
ratio of found malicious flows to total flows is 0.3%. FlowDroid timed out after 2 hours for the 
AndroidGame application. 

The “Total Flows” column in Figure 4.7 reports the total number of flows from sources to sinks 
that the tools report. Even though these flows involve sensitive information, the majority are not 
malicious as the flow is part of the intended functionality of the application. For example, some 
legitimate flows in UltraCoolMap send location information via the network to a trusted server. 
The malicious flows, in contrast, send the location via the network to an untrusted destination. 

The APAC applications, as with all unknown applications, do not come with specifications that 
would enable DroidSafe or FlowDroid to distinguish malicious from legitimate flows. Instead, 
someone must understand the intended functionality of the application and make a subjective de- 
termination of which flows are malicious. Because all of the malicious flows that we report were 
inserted by the hostile Red Team, there is no doubt that at least these flows are malicious. We did 
not attempt to analyze all of the remaining reported flows to determine if the flows actually exist 
in the application or not. 

4.9.4 Intent Resolution in APAC Applications 

Section 4.6 presents our ICC modeling and defines resolved Intent objects. A resolved Intent 
is an Intent for which an analysis concludes that at least one of its field values is only a set of 
constants; resolved values can be used to reduce the number of true target components. Over all 
of the APAC applications, DroidSafe calculates that there are 213 Intent-based communication 
calls. DroidSafe resolves Intent objects in 95.8% of the calls. Of the calls with resolved Intents, 
59.2% of calls employ explicit Intent objects, and 40.8% calls employ implicit Intent objects. 
Of the resolved Intent-based calls, 74.0% target at least one component of the app; DroidSafe 
concludes that the other 26.0% cannot target a component of the app. On average, across the 
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APAC apps, calls with resolved Intent objects that target an in-application component resolve to 
1.03 destination components. 

FlowDroid relies on Epicc to resolve values for Intent. We inspected the output of Epicc to 
determine the percentage of Intent objects that are resolved based on our definition. We ignore 
the Uri data field since Epicc does not reason about Uri objects. Epicc finds 177 Intent-based ICC 
calls in the APAC applications, Epicc resolves the Intent object arguments for 85.9% of the calls 
(versus DroidSafe’s 95.8%). The lower number of total calls versus DroidSafe may be because 
of Epicc’s model of Android callbacks and reachable code. Causes for unresolved Intent objects 
include lack of support for some explicit Intent construction mechanisms and Intent objects 
passed through API methods. 

Across the APAC applications, there are 131 ContentProvider operations. Of the operations, 
66.4% use Uri objects that DroidSafe resolves. Of the resolved operations, 35.6% target a compo-
nents of the application, and each resolved operation targets 1.0 components. Epicc does not re-
solve Uri values, and consequently FlowDroid does not link flows through ContentProvider 
operations. 

4.9.5    Implicit Flows 

Tracking implicit flows will increase the number of sensitive flows reported by DroidSafe. We 
employed DroidSafe to analyze the 24 APAC applications with malicious leaks of sensitive infor-
mation. Enabling implicit flow tracking increased the number of sensitive flows reported by 2.2x 
and the information flow analysis time by 2.5x. 

4.10 Related Work 

Object-Sensitive Points-To Analysis: For robustness and flexibility, typical whole-program object- 
sensitive analysis implementations reduce program facts into representations appropriate for gen-
eral solvers; examples include logic relations [23], constraints [36], and binary decision dia-
grams [34, 43]. Our implementation differs from these systems in that it operates directly on 
the pointer assignment graph (PAG) representation of the program [35], an explicit representation 
of the program. Previous work has demonstrated that direct implementations of points-to analysis 
problems, when they fit in memory, are typically faster than general solvers [34, 36]. Today main 
memory sizes are large enough to accommodate our direct implementation of a context sensitive 
analysis of large programs. 

Tuning context-sensitivity of an analysis for precision and scalability has also received much work. 
Hybrid context sensitivity treats virtual and static method calls differently, and in addition to object 
sensitivity, attempts to emulate call-site sensitivity for static calls [44]. Our analysis implements 
hybrid context sensitivity by cloning static method calls for calls to application methods, and cer-
tain API factory methods. Type sensitivity is a form of object sensitivity that merges contexts based 
on types [23]. We tried type sensitivity for our client, but it did not provide adequate precision. 
An introspective analysis drops context sensitivity from program elements that could blow-up the 
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analysis [24], without regard for precision of the client. In client-driven approaches [45], a client 
analysis asks for more precision from the points-to analysis when needed. In contrast, our tech-
nique pre-calculates the set of classes (and thus allocations and methods calls) for which precision 
is historically not helpful for our problem. 

Information-Flow Security Analysis: DroidSafe follows a long history of information-flow anal-
ysis (sometimes called taint analysis) systems for security. Livshits and Lam [46] present an ap-
proach for taint analysis of Java EE applications that is demand-driven, uses call-site context sen-
sitivity, and shallow object sensitivity via inlining. TAJ [47] focuses on Java web application and 
employs a program slicing technique combined with a selective object-sensitive analysis. F4F [22] 
is a taint analysis for Java applications built on web frameworks that uses a specification language 
to describe the semantics of the underlying framework. 

Focusing on information-flow analysis for Android, FlowDroid [14] is a sophisticated, open-source 
static information flow analysis for Android applications. FlowDroid’s analysis is flow-sensitive, 
and thus, is more precise than DroidSafe, however the FlowDroid model of Android is not nearly as 
complete as DroidSafe’s. FlowDroid attempts to compensate with inaccurate blanket flow policies 
on unmodeled API methods. From testing, we discovered that FlowDroid does not accurately 
model all possible combinations of life-cycle or callback events, demonstrating the difficulty of 
modeling Android execution in a flow-sensitive system. FlowDroid’s analysis is on-demand and 
flow-sensitive as opposed to DroidSafe. However, each instantiation of the analysis is expensive; 
in preliminary experiments running FlowDroid with our ADI, the analysis completed only 7 of 24 
applications given a 2 hour timeout for each application. 

Epicc [41] is a tool that resolves Intent destinations in an application. Epicc developed a model 
of commonly-used classes and methods involved in the Android Intent implementation. Their 
analysis is on-demand and flow-sensitive. The DroidSafe system includes a more comprehensive 
model of classes and mechanisms used in inter-component and inter-application communication 
(for example Uri and Service messages). DroidSafe’s resolution can also reason about values 
created in and passed through API methods. 

IccTA [20] combines FlowDroid with Epicc and seeks to identify sensitive inter-component and 
inter-application information flows. DidFail [48] also combines FlowDroid and Epicc to discover 
sensitive flows across applications. Though not discussed here, DroidSafe includes an analysis to 
capture inter-application flows via a database of previously resolved Intent values and reachable 
source flows. This database is consulted and appropriate flows are injected before information 
analysis. 

There are other many other examples of static information flow analyses for Android. CHEX [13] 
detects information flow vulnerabilities between components. ScanDal [15] is a static analysis 
implemented as an abstract interpretation of Dalvik bytecode. CHEX and ScanDal employ analysis 
with k = 1 call-site context sensitivity. SCanDroid [17] resolves data flows between components 
using a limited model of Android, and conservative flow policies for API methods. Leak- Miner 
[18] tracks flows with a context-insensitive analysis.  AndroidLeaks [19] combines both 
context-sensitive and context insensitive analyses, but models flows through API methods with a 
blanket policy that reduces precision. DroidSafe includes a more precise analysis and has a more 
accurate and precise model of the Android API than these other tools. 
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Dynamic testing and monitoring approaches engender different tradeoffs compared to static anal-
ysis. Examples include the sophisticated dynamic taint-tracking tool TaintDroid [11], and Tripp 
and Rubin [49] who describe an approach for classifying information leakages by considering val-
ues that flow through sources and sinks. They do not have issues with reflection and dynamic 
class loading. But, if employed for triage, they require adequate test coverage. If used for 
dynamic monitoring they are susceptible to denial-of-service attacks if malware is activated during 
execution and the application is killed or functionality is disabled. This might be unacceptable for 
mission-critical applications. Similar to static analysis, they require user-mediated judgment for 
reported sensitive flows. 

DroidSafe’s list of sources and sinks was compiled manually. SuSi [29] employs supervised ma- 
chine learning to automatically designate source and sink methods in the Android API. Merlin [50] 
is a probabilistic approach that employs a potentially incomplete list of sources, sinks, and sanitizers 
to calculate a more comprehensive list. Merlin automatically infers an information flow specifi-
cation for an application from its propagation graph using probabilistic inference rules. While 
SuSi’s list proved incomplete for the APAC applications, Merlin’s technique is complementary to 
ours and a possible next step for helping the results of DroidSafe. 

 
 
4.11 Conclusion 

 
Malicious leaks of sensitive information pose a significant threat to the security of Android applica-
tions. Static analysis techniques offer one way to detect and eliminate such flows. The complexity 
of modern application frameworks, however, can pose a major challenge to the ability of static 
analyses to deliver acceptably accurate and precise analysis results. 

Our experience developing DroidSafe shows that 1) there is no substitute for an accurate and 
precise model of the application environment, and 2) using the model to drive the design decisions 
behind the analysis and supporting techniques (such as accurate analysis stubs) is one effective but 
(inevitably) labor-intensive way to obtain an acceptably precise and accurate analysis. As long as 
there are complex application frameworks, we anticipate that making an appropriate set of design 
decisions (such as the use of a scalable flow insensitive analysis) to successfully navigate the 
trade-off space that the application framework implicitly presents will be a necessary prerequisite 
for obtaining acceptable accuracy and precision. 

Our results indicate that the final DroidSafe system, with its combination of a comprehensive 
model of the Android runtime and an effective set of analyses and techniques tailored for that 
model, takes a significant step towards the final goal of an information flow analysis that can 
eliminate malicious information leaks in Android applications.
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5.0 COOKBOOK FOR INFORMATION FLOW POLICIES 

5.1 Overview 

The DroidSafe Android application analysis system performs a static, global information flow 
analysis that tracks possible sensitive sources and sinks. This chapter details how an organization 
can create an exhaustive list of unauthorized or sensitive information flows in an Android appli-
cation. The chapter is organized like a “cookbook” recipe with steps detailing how to create the 
information flow policy. 

Information flow sources and sinks are defined with respect to the Java Android API. Each source 
API call is labeled with one of 42 source categories. Each sink API call is labeled with one 
of 31 sink categories. The author of the information flow policy classifies each source-to-sink 
flow as either unauthorized, non-sensitive, or sensitive. Unauthorized flows are never allowed 
in an application. Non-sensitive flows are always allowed in an application. Sensitive flows are 
sometimes allowed in an application and the context of the sensitive flow defines whether it 
is authorized or unauthorized. 

An information flow policy can be utilized by DroidSafe to report flows that are sensitive and unau-
thorized for the organization, ignoring flows that are non-sensitive. A trusted analyst representing 
the organization can utilize the information flow policy while vetting an application to investigate 
each flow reported by DroidSafe. If an application does not include the possibility of any unau-
thorized or sensitive flows, then it is trivially authorized. If DroidSafe reports that the application 
could possible trigger an unauthorized flow, then it the analyst can either reject the application or 
investigate the implementation in more detail. Sensitive flows require the analyst to understand the 
context of the information flow to make the decision as to authorized. 

This chapter provides the reader with an understanding of how to classify information flows from 
the API with respect to the security needs of a particular organization. 

5.2 DroidSafe Information Flow Analysis Overview 

The DroidSafe [1] system (covered in Chapter 4) is a state-of-the-art static analysis system for 
Android applications. DroidSafe presents a report of possible security sensitive-information flows 
and actions in an application under test (AUT) for review by a trusted analyst. DroidSafe does 
not attempt to classify behaviors as intentionally malicious; DroidSafe presents possible sensitive 
behaviors for review.   The trusted analyst must consider the reported actions and flows of the 
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application with respect to the security and privacy policies of the organization she represents. 
Based on the policies of the organization, the application’s possible behaviors may be authorized 
or unauthorized. If an unauthorized behavior is found, the application can be rejected, and either 
sent back to the developer for re-implementation, and / or investigation into the intent and nature 
of the implementation can be initiated if malice is expected. 

The most prominent analysis in DroidSafe is information flow analysis. Information flow analysis 
tracks how sensitive information sources (such as the location sensors) flow through a program. 
For each value in a program (primitive locals and fields) the information flow analysis report if the 
value could be influenced by a particular sensitive information flow source. Having this result, it 
is then possible, for an application call to a sink API method (such as a network write), to know if 
a particular sensitive source could flow to a sink (such as, Does location flow to the network?). 

The analysis can conclude two types of facts: 1) A source could possibly flow to a value (or sink), 
and 2) A source will not flow to a value. The analysis cannot answer if a source will always flow 
to a value (or sink). 

Furthermore, DroidSafe’s information flow analysis reports on the context of a source-to-sink flow. 
Context provides the analyst with more information for how the source-to-sink flow is used in the 
application, under what conditions and with what parameters. Context for a source-to-sink flow 
include: 

• The user or system event that triggered the sink call. For example, was the sink call initiated 
by a user button press. 

• Possible values for primitive or string arguments passed to the source call. For example, if 
the source is a file read, the path of the file read. 

• Possible values for primitive or string arguments passed to the sink call. For example, if the 
sink is a network write, the IP address of the socket connection. 

Context can be employed to further understand flows and to restrict or authorize sensitive flows. 
For example, it may be authorized to send location to the network address www.google.com, but 
not any other address. 

 
 
5.3 Defining an Information Flow Policy 

 
Now that we have background on information flow analysis, it is time to discuss how to define an 
information flow policy for sensitive flows of the Android API. 

The Android API guards access to sensitive information, actions, and sinks. Sensitive information 
sources include location information, sensor data, device identification, etc. Sinks include any call 
that can export data beyond the boundaries of the application, e.g., inter-process communication, 
network write, file write, and other devices like audio or video output. 

The task of the author of the information flow policy is to decide what information sources are 
sensitive and what sinks are sensitive. Each source and sink should be categorized as one of the 
following: 

http://www.google.com/
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Table 2: Reviewing strategy for combinations of source–to-sink classifications 
 

 Sink 
Non-sensitive Sensitive Unauthorized 

 
Source 

Non-sensitive Non-sensitive ? Unauthorized 
Sensitive ? Sensitive Unauthorized 

Unauthorized Unauthorized Unauthorized Unauthorized 
 

1. Non-sensitive: The source or sink is not sensitive with respect to the security policy of the 
organization. 

2. Sensitive: The source or sink is sensitive with respect to the security policy of the organ-
ization and all possible uses of the source and sink need to be manually inspected and 
authorized by an analyst. This inspection could include source inspection and / or inspection 
of the context of the use of the source or sink. 

3. Unauthorized: The source or sink is never authorized for use. Any possible use of the 
source or sink is an automatic rejection of the AUT. 

DroidSafe has defined 4,051 source API calls and 2,116 sink API calls in the Android API version 
19. Obviously, it would not be feasible for the policy author to classify each of these calls. Thus, the 
DroidSafe system labels each call with a single high-level category. There are 42 source categories 
and 31 sink categories. The source categories are listed (with descriptions) in Table 5.2. The sink 
categories and descriptions are listed (with descriptions) in Table 5.3. 

Again, it is the task of the information flow policy author to understand each of the high-level 
categories, and classify each as either non-sensitive, sensitive, or unauthorized. 

Next, it is the task of the information flow policy author to decide on the strategy for reviewing 
combinations of source-to-sink classifications that are ambiguous in terms of need for review. 
Table 5.1 provides a matrix of the source-to-sink combinations. The information policy author 
must decide on the policy for the combinations marked with “?”: 1) sensitive source to non- 
sensitive sink, and 2) non-sensitive source to sensitive sink. The possible decisions are: non- sen-
sitive (meaning ignore and DroidSafe should not report) and sensitive (meaning DroidSafe 
should report and analyst review is required). 

For an example of a sensitive source to a non-sensitive sink, consider location information written 
to the log. If the information flow policy author has designated location as sensitive but the device 
log as insensitive, it still might be the case that this flow, should it appear, should be reviewed. By 
designating case 1) above as sensitive, DroidSafe will offer all sensitive source to non-sensitive 
sink flows for review. 

The next two sections provide the complete list of source and sink categories. 
 
 
5.4 Source Category Descriptions 
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Table 3: Source categories and their descriptions 
 

Source Category Data Derived From 
GUI A user-interface (UI) component that is not text (for example, 

the size of a button or the color of a text-box). 
ACCOUNT_INFORMATION The user account on the device such as user name. 
BLUETOOTH A Bluetooth connection’s data received on the device. 
BLUETOOTH_INFORMATION The settings or control of a Bluetooth connect (but not the data 

received over the connection). 
BROWSER_INFORMATION Web   browser   data   accessed   through   the   global browser 

databases or inter-application communication (for example, his- 
tory). 

CALENDAR Default calendar application data on the device. 
CLIPBOARD Global device clipboard data. 
CONTENT Information describing the context of an application’s Android 

runtime environment (for example, application name and per- 
missions). 

CONTACT_INFORMATION Default contact application data (for example, phone number of 
a contact on the phone). 

DATABASE_INFORMATION Settings or schema information for a database (for example, col-
umn names). 

DATABASE Information stored in an application’s database. 
EMAIL Default email application data (for example, sender of most re- 

cent email message received). 
EXIF_INFO Information embedded in an image on the device. 
FILE Information read from a file on the device. 
FILE_INFORMATION Settings and control data for file system, including file   names 

(but not include data read from a file). 
IMAGE Image data (either captured from the camera or on the file sys- 

tem). 
LOCATION Location information (could be current location, historical   lo- 

cation, or a calculated location). 
MEDIA Information read from a default media location on the    device 

(could include files at default media locations like music). 
NETWORK Values read from a network connection (could be local or re- 

mote). 
NFC Values read from the Near Field Communication device. 
PREFERENCES Values stored in the local application preferences. 
SHARED_PREFERENCES Values read from a global preferences file. 
RESOURCE Values read from an XML resource included with the  applica-

tion, e.g., strings or user-interface declarations. 
SCREEN Screen capture data. 
SMS_MMS Values received in an SMS or MMS message. 
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Source Category Data Derived From 
SECURITY_INFO Values related to default security settings for the application or 

device, for example encryption or key schemes employed or 
available. 

SYNCHRONIZATION_DATA Values derived from automated synchronization frameworks 
such as Google Sync. 

SYSTEM_SETTINGS Values that define various system settings such as default is 
roaming enabled. These are setting that are found in the “Set- 
tings” app on the device. 

SYSTEM_PROPERTY Values read from system environment variables. 
UNIQUE_IDENTIFIER Device unique identifiers such as IMEI. 
SENSOR Values read from a sensor on the phone that does not have its 

own category (such as accelerometer). 
IPC Values read from an external application. 
IO General category for values read from a Linux device, includes 

files and network streams. 
AUDIO Values derived from an audio clip, this could include     audio 

recorded from the microphone. 
USER_INPUT User input into a text-based UI component. 
OS_PROCESS Values read from the output of a running process on the phone. 

This could include a process started by the AUT. 
ANY_MEMORY Values read from any memory location accessible from the Java 

app. These are values that are read by the sun. misc. unsafe pack- 
age calls. These calls allow for reads of any memory address 
(unsafe) from Java. 

CAMERA Information captured directly from the camera through camera 
callbacks. 

DATE_TIME Information regarding data and time. Could include the current 
data and time. 

AD Values received from the Google advertisement framework. 
GOOGLE_SERVICES Values read from various Google services such as Google Drive. 
WEB Values read from a WebView embedded in the application   in-

cluding JavaScript console and HTTP control messages. 
 
 

5.5 Sink Category Descriptions 
 

 

Table 4: Sink categories and their descriptions 
 

Sink Category Data Flows To 
ACCOUNT_SETTINGS Writes to the centralized registry of user accounts on the de- 

vice, for example, Google and Microsoft Exchange. 
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Sink Category Data Flows To 
AD External library calls that send data to remote advertisement 

servers. 
ANY_MEMORY Writes in sun. misc. Unsafe package that allow writes to any 

memory address accessible by application. 
AUDIO Writes to setting that could affect audio controls like volume, 

audio focus, and current clip play. 
BLUETOOTH Writes to devices connected via Bluetooth. 
CLIPBOARD The system clipboard. 
CONTACT_INFORMATION The default contact information application’s database. 
DATABASE A write of information into a database owned by this ap-

plication. The application could be exported via a Content- 
Provider to other apps. 

EMAIL Commands that set fields of an email message including des-
tination and message. 

EXIF_INFO Calls that alter EXIF data embedded in an image. 
FILE Write calls for files either shared or private, internal storage 

or external storage. 
GOOGLE_SERVICES Google services calls that change parameters or write   data 

to connections to local or remote Google services such as 
Google Drive. 

IO Write calls to an I/O stream that could include files, seriali-
zation, network, or assets. 

IPC Communication between components of the AUT or to com-
ponents of an external application. The payload or target field 
destinations for Intent-based communication, Service mes-
sages or AIDL (RPC) calls. 

LOCATION Set location provide or set current location on device or a 
location-aware stock application. 

LOG The Android logging framework.  Since Android 15,  appli-
cations cannot read the log messages from other apps. 

NETWORK Network write calls to either a local address or remote    ad- 
dress. 

NFC Near-field Communication (NFC) write. 
OS_COMMAND Calls that set the command strings for starting command-line 

processes. 
PHONE_CONNECTION Commands that can modify phone connection actions such 

as initiating a call, hanging up from a call, or sending Dual- 
tone multi-frequency (DTMF). 

PHONE_STATE Commands that change setting of the device related to phone 
operation such as ringtone and connection notifications. 
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Sink Category Data Flows To 
PROCESS Calls that execute command-line processes.  The data flows 

to command-line arguments or the command name. 
REFLECTION Arguments passed to a reflected method invoke. 
SCREEN Calls that modify text displayed to user in UI widgets    and 

views. 
SERIALIZATION Serialization routines for converting objects to bytes and 

writing bytes to IO streams. 
SHARED_PREFERENCES Writes to shared and private persistent key / value stores. 
SMS_MMS Payload, control, and destination fields for SMS and M M S

messages. 
SYNCHRONIZATION_DATA Payload data sent to Android service for app data synchroni-

zation. 
SYSTEM_SETTINGS Writes to a variety of system settings that are found in the 

“Settings” app on the device include call forwarding, roam-
ing, radio state, etc. 

USB Writes to a USB-connected device. 
VOIP Commands that affect connection state and settings for VOIP 

and SIP protocols. 

5.6 Defining Authorized Context for Sensitive Source and Sink Flows 

When reporting on a sensitive source to sensitive sink flow, DroidSafe also reports the context of 
the flow. The context includes three pieces of information: 

• The user or system event that triggered the sink call. For example, was the sink call initiated
by a user button press.

• Possible values for primitive or string arguments passed to the source call. For example, if
the source is a file read, the path of the file read.

• Possible values for primitive or string arguments passed to the sink call. For example, if the
sink is a network write, the IP address of the socket connection.

The information flow policy can additionally decide for each sensitive source and sink, what con- 
text values are non-sensitive, sensitive, or unauthorized. The next two subsections provide more 
information. 

5.6.1 Triggering Event Context 

DroidSafe reports on the triggering runtime event that triggered the sink call. For example, a 
location-to-network flow could be triggered by a button press and an Activity lifecycle onResume() 
event. DroidSafe currently does not categorize triggering events into high-level categorizations, so 
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it is the task of the policy writer to consider all possible event types in the API, and decide if any 
required special attention. 

Also, for certain events addition context information is provided. For example, for a button press, 
DroidSafe attempts to resolve the name of the button (as defined in the XML user-interface re- 
sources or set programmatically), and DroidSafe presents the button name to the analyst. 

For example, it might be non-sensitive for a network write to be initiated by a button press that 
signals that data will be written to the network, the button is named “Send Location”. However, if 
the button name does not denote that it performs a network write, such as “Back”, the flow could 
be unauthorized, and the application rejected. 

As DroidSafe continues to mature, it may in the future include high-level classifications for trig-
gering event types to help an information flow policy author consider all possible triggering event 
types for sensitive sinks. 

 

5.6.2 Source and Sink Argument Value Context 
 
The effects of a source or sink API call is often controlled by the arguments to the call (including 
the state of the receiver object). For example, a read of a file stream is affected by the file object to 
which the stream is linked. For sensitive and unauthorized source-to-sink flows, DroidSafe reports 
additional context on the source arguments and the sink state. 

Table 5.4 provides an overview of the types of context resolved and reported by DroidSafe for 
sources and sinks that include the tracked state. 

The information flow policy writer should define restrictions or whitelists for any of the object 
types of importance to the security policy of the organization. For example, for network reads 
and writes, it might be required to limit them to a certain IP address range or hostname regular 
expression. This whitelist can be documented and provided to the analyst such that all network- 
related source and sink calls reported by DroidSafe are checked to target only addresses that are in 
the white list. 

Another illustrating example is to define a limit on Intent state. The policy writer should decide if 
applications should have the authorization to communicate with other applications, and if so, what 
are the actions (and data) and target applications that are authorized. 

It is strongly recommended that the policy author create whitelists of any of the values in Table 5.4 
(as opposed to blacklists). 

 
 
5.7 Using DroidSafe to Check an Application Against an Information Flow Policy 

 
To reiterate, it is the task of the information flow policy writer to: 1) provide the classification for 
each of the sources and sink categories, 2) provide classifications for the two combination cases, 
and 3) provide whitelists for sensitive object state types.  Once this is complete, the policy can 
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Table 5: Context object types and their state fields 

Object State Name Notes 

URL 

Protocol 

Each state component is a String regular expression 
(RE). 
See Java URL documentation for more information. 

Authority 
Host 
File 

User Info 
Path 

Query 
URI Value String RE for possible dynamic values. 

Socket 
InetAddress String RE for remote host name. 
Remote Port Remote port number. 
Local Port Local port number. 

Datagram Packet Address String RE for remote host name. 
Class (Reflection) Class Name String RE for dynamic class type 

File Streams File Name String RE for file path 
Intent Filter Actions String RE for actions filtered 

Component Name Package String RE for package of component. 
Class String RE for class of component. 

Process Builder Command String RE for command executed. 
Database Cursor URI String RE for database URI linked to cursor. 

Intent 

Categories List of String RE for categories. 
Action String RE for Action. 
Data String RE for URI describing data. 
Type String RE for Type. 

Package String RE for target class’s Package. 
Component Name Component Name for target Component 

Class String RE for target Class. 

Method (Reflection) Declaring Class String RE for declaring class.
Name String RE for name of method. 

be distributed to analysts for review and incorporation. Also, the policy can be translated into a 
DroidSafe reporting policy. 

Now, for each AUT analyzed by DroidSafe, DroidSafe will provide a list of all sensitive and 
unauthorized flows, with context when resolved. If a context state element is unresolved, it means 
that the analysis could not calculate values for the context element, and it should be interpreted 
that the state could take on any value. 

Screencast walkthroughs covering the procedure for vetting an application have been delivered 
during the APAC program by the DroidSafe team. These videos are the best training material for 
using DroidSafe to vet an application with respect to an information flow policy. 
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5.8 Conclusion 

This chapter covers how to create an information flow policy for Android applications. The infor-
mation flow policy classifies exfiltrations of sensitive information derived from the Android API 
as either non-sensitive, sensitive (requiring further analyst review), or unauthorized. For sensitive 
flows, context state can be utilized to make the determination as to whether the sensitive flow 
should be authorized. DroidSafe provides context state for source-to-sink flows, and the infor-
mation flow policy author has to reason about and create a whitelist for state that is authorized 
for sensitive flows. Finally, once the information flow policy is concretized, it can be employed by 
the analyst to interpret the DroidSafe results, and guide the decision as to whether to approve 3rd-
party Android applications. 
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6.0 ANDROID APPLICATION CODING STYLE GUIDE 

6.1 Overview 

The goal of this chapter is to provide an overview of the effects of coding styles and implementation 
choices on the precision, scalability, and accuracy of the DroidSafe analysis system. The chapter 
is organized by focusing on various important analyses, transformations, and semantic modelings 
in the DroidSafe system; and for each, a discussion of Android API coverage and how application 
implementation choices could affect the analysis result. 

This chapter should be read by both application developers and security analysts. For application 
developers, this chapter provides guidance on application implementation such that the developer 
can support the DroidSafe analysis and human analyst; the security analyst is likely to reject an 
application if implementation choices lead to imprecision or inaccuracies that confuse or look 
malicious, even if the application is benign. 

For security analyst, this chapter helps them to understand sources of imprecision and inaccuracy 
such that guidance can be given to application developers and informed decisions can be made 
regarding the intent and behavior (malicious or benign) of an application with respect to its Droid- 
Safe analysis result. 

6.2 Coding Style Overview 

The DroidSafe [1] system (covered in Chapter 4) relies on static analyses to resolve security sen-
sitive behaviors and context for those behaviors. The underlying static analysis is conservative. It 
must be able to statically prove the conclusions that it draws. In practice, this means security- 
relevant code should be “straight-forward”, e.g., little control flow, limited global variables, utilize 
constant values. It is often the case that existing Android applications follow these practices be- 
cause API calls accept values that are known at compile time: Intent action values, onClick han-
dlers, etc. If application code cannot be accurately analyzed, it could lead to unresolved context 
for API behaviors, or control flows / data flows that cannot be realized at runtime. 

6.3 DroidSafe Analysis Report 

The DroidSafe analysis system is a complex analysis system that includes a comprehensive and 
large model of the Android API and runtime. It is not possible to exhaustively describe the analysis 
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precision and accuracy effects of coding style and implementations decisions. Though this chapter 
covers the important implementation and coding-style choices that can affect precision and accu-
racy of the analysis, to best understand the specifics of a given application, the application should 
be analyzed with DroidSafe and the analyst or developer should inspect the output. 

For each run of the analysis, DroidSafe produces a report of implementation choices that may 
affect precision and accuracy. This report is produced in the working directory at droidsafe-gen 
/analysis-warning-report.txt. The report includes a listing of source code locations (and line 
numbers when available) that may trigger precision and accuracy issues. The report is prioritized 
by the severity of the issue. 

For the remainder of this chapter, the analysis report is given as the final reference for style and 
implementation decisions for each category with respect to an application under test (AUT). 

 
 

6.4 Android Device Implementation Model 
 
The DroidSafe system includes a comprehensive, precise, and accurate model of the Android API 
and runtime. Each AUT is analyzed in the context of the model, to exercise the application event 
callbacks and to account for the semantics of the API operations. The model is termed the Android 
device implementation (ADI), and it can be thought of as representing the semantics of the Android 
API and runtime for a theoretical device or phone. The ADI currently supports most commonly- 
used Android API operations and components of Android API level 19. However, it is not a 
complete model. Furthermore, it is not realistic to produce a list of the methods, classes, and pack-
ages that are modeled in this chapter. 

For an application under test, the analysis report includes output that describes possibly reachable 
Android API calls that are not modeled, and thus their use could produce precision or accuracy 
problems with the analysis of the AUT. For full confidence in the analysis conclusions, it is rec-
ommended that any un-modeled API calls be removed or reimplemented to use modeled API 
components. 

 

6.4.1    Fallback Modeling 
 
The ADI includes runtime modeling that exercises callbacks in the application. However, since the 
ADI is not a complete model of the Android system (due to its nature as a proof-of-concept), the 
analysis includes mechanisms to detect possible inaccuracies in the ADI and correct them 
automatically. One such mechanism will search for API callbacks in an application, and if they are 
not exercised by the modeling, the mechanism will exercise them in a way that is not completely 
accurate to the Android runtime, but will expose much of the semantics of the callback. Callbacks 
that had to be exercised by this fallback modeling mechanism are reported by the analysis report. 

Additionally, for API calls in the application that return a reference, but the points-to analysis 
concludes that the reference is always null are a good signal that the ADI model is inaccurate. 
This heuristic is used by the fallback modeling, and if a such a call is found, the fallback modeling 
will insert a generated object of the appropriate type (with a search for casts on the reference) 
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to attempt to account for the inaccuracy. The analysis report will list the code locations in the 
application where this transformation occurred. 

For both of the above heuristic transformations, if the analyst sees these warnings, the remediation 
is either 1) the application should be rewritten to use calls that are modeled by ADI or 2) inspect 
and correct the modeling issue in the ADI (a discussion of this is beyond the scope of this chapter). 

 
 

6.5 Application Resources and XML User-Interface Declarations 
 
The DroidSafe analysis system reasons about user-interface and string resources defined in XML 
files. The semantics of the declarations are incorporated into the AUT for commonly-used idioms 
for Android resource declarations. The next two sections give more specifics. 

 

6.5.1 User-Interface Resources 
 
DroidSafe parses XML files that define user-interface elements, and inserts semantics to into the 
AUT representation to capture the semantics of the objects created by the XML declarations. 

Common forms of the calls that inflate and return references to user-interface elements declared 
in XML are supported, e.g., findViewByID() and setContentView(). These calls must be passed 
resource identifiers that are constants. If a non-constant value is passed, the inflation will not be 
inserted, and semantics might be missed (thus leading to possible analysis inaccuracy). Also, the 
resource identifier passed as an argument must be either an application resource or a resource of 
the ADI. 

The analysis report will list all user-interface resource methods that could not be understood. 
 
 

6.5.2 String Resources 
 
Calls in the AUT that access string resources are replaced with the string declared in the US 
locale. DroidSafe does not support string replacement for non-constant accesses to resources. 
Non-constant accesses to strings resources will be reported in the analysis report. Currently, the 
DroidSafe Android resource transformation does not support localization. 

 

6.5.3 Application Manifest 
 
DroidSafe supports parsing of the Android manifest as defined in Android API 19. The component 
of the manifest that are important for the analysis are parsed and the semantics incorporated into 
the representation of the AUT. If there is a component of the manifest that is not supported, the 
analysis report will contain an entry detailing the issue. 
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6.6 String Values and DroidSafe’s String Analysis 
 
In many cases, string arguments to API calls determine the semantics of security-sensitive opera-
tions such as inter-component communication targets and file operations. String values that are 
passed to Android API calls should be built in a straightforward manner preferably from program 
constants. 

DroidSafe includes a powerful string value resolution analysis. This analysis attempts to resolve 
arguments to API calls from the application code. For each string argument in an API call, a back- 
wards analysis attempts to resolve a constant or a regular expression describing the language of 
the string. The string analysis result is then used by the inter-component resolution and file system 
precision transformation passes (see below) to increase precision while maintaining accuracy. 

If for some reason the pass does not finish, the analysis report will contain an entry denoting this 
condition. 

Briefly, the string analysis reasons about commonly-used string operations like concatenation. It 
can create an internal model of two strings that are concatenated (for example) when the result is 
used as an argument to an API call. If one of the strings is a program constant, then the analysis 
will “know” something about the string and could use that knowledge to disambiguate certain 
operations. 

In general, create and use strings arguments to API calls locally (within one method) and do not 
use containers to store and retrieve string arguments for API calls. 

If there exists security sensitive API calls for which one or more string arguments could not be 
resolved to a required level for precision transformations, there will be an entry in the analysis report. 
See below for more details on the individual transformations that are clients of the string analysis. 

 
 
6.7 Precision Increasing Transformations 

 
The designers of the Android API decided to favor flexibility and extendibility over analyzability. 
In the Android API dynamic values dictate many potentially security sensitive actions such as 
inter-component communication (via Intents), file operations, network operations, and database 
operations. 

To increase the precision of the DroidSafe result, it is necessary to apply the string value analysis 
resolve to dynamic values that affect security sensitive operations. For example, the action string 
of an Intent could dictate the target component for the Intent, and the string could be built through 
multiple string operations and user input. 

 

6.7.1 Inter-component Communication 
 
The Android API and runtime includes various calls for communicating between the building- 
block components of an application; we call these idioms inter-component communication (ICC). 
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Most of the same API calls are also used to communicate between different applications, and 
DroidSafe does include experimental support for resolving flows across applications, however, a 
discussion of these features is beyond the scope of the chapter. 

The DroidSafe analysis reasons about communication (flows) between components of a single 
application (AUT). Without sophisticated analysis of target resolution, an analysis must connect 
flows into the payload of a communication statement with all possible target components based 
simply on type. The DroidSafe system includes aggressive string analysis and Android-specific 
transformations that seek to increase the precision of target-component resolution. This section 
details the implementation decisions that affect precision of ICC target resolution. 

The target of ICC calls are in most cases defined by the android.content.Intent (hereafter re-
ferred to as Intent) passed to the call. Thus resolving values for Intents are crucial. 

6.7.1.1    Intent Guidelines 

There are two types of Intents in Android, explicit and implicit Intents. Explicit intents explicitly 
denote the target component via a class designation for the target. Implicit Intents denote an action 
and it is up to the runtime system to decide the target of the Intent based on the components that 
register to handle the action and arguments. 

The developer should strongly favor explicit Intents. If the component name or class fields 
are set in code, an Intent is considered explicit. If setting the explicit Intent target with a Class 
object, use the class constant returned from Clz.getClass(). If using android.content.Component-
Name, use string constants to create the component name. 

If an explicit Intent cannot be resolved by inspecting the component name or class fields, then it 
will conservatively target all appropriate components of the application given the ICC call. 

Implicit Intents require more machinery to resolve to targets. Resolution requires resolving poten-
tial runtime values for the action, categories, and type string fields; and also the data field which 
is a uniform resource identifier (URI). The string fields should be set from program constants (or 
local string operations on program constants). The URI type, if present, should be constructed 
from program constants. A failure to resolve all of the fields to constants (or not assigned) will 
result in a conservative estimate that the Intent can target all components of ICC call in which it is 
passed. 

For a resolved implicit Intent and an associated ICC call, the targets are defined by the application 
components that register Intent Filters. Intent filters are registered in the manifest of the appli-
cation, but can also be defined and registered dynamically for BroadcastReceivers. It is strongly 
recommended to define all Intent filters in the application manifest, though DroidSafe does try to 
aggressively resolve dynamic Intent filter registrations. 
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6.7.2 File System Operations 

It is very difficult for a static analysis to disambiguate flows through file system read and write 
operations. For example, to conclude that a value written to a file cannot be read by a particular 
file read, the file name used by the read and write operations must be resolved, and soundly con-
cluded to be different. Luckily, Android guards file operations via its API (for applications that 
do not include native code). By default, DroidSafe does not attempt to disambiguate file system 
operations, and reports the flows through the file system as if all operations target the same file and 
offset. 

However, DroidSafe includes a mode, disabled by default, that attempts to add precision by resolv-
ing file names and file objects and soundly disambiguating flows through file system operations. 
The following properties must hold for the high-precision file operation mode to be applicable to 
an AUT: 

• No use or allocation in the app of the following API classes: android.util.AtomicFile,
java.lang.ProcessBuilder, java.io.FileDescriptor, java.io.RandomAccessFile, and
android.content.res.AssestFileDescriptor.

• All file operations that open a file or file input / output stream must have a target parameter
that resolves to a constant. For example, for a call to Context.openFileInput(String), the
string analysis must be able to resolve the argument to a string constant. Thus the argument
must be constructed from program constants (or string resources).

If a target parameter (file name) for a file operation cannot be resolved by the analysis, then high- 
precision file operation mode will not be enabled (and the offending statement will be reported in 
the analysis report). 

The high-precision file operation mode includes support for predefined file locations accessed via 
the android.content.Context class, e.g., getFilesDir() and getObbsDir(). These predefined 
locations can be concatenated with strings or other file objects (e.g., via File constructors that 
accept a parent File object). 

6.7.3 Reflection Guidelines 

Reflection is an inherently dynamic idiom that has the potential to introduce significant loss of 
precision if used. It is strongly recommended not to use any of Java’s (Android’s) reflection library. 
However, DroidSafe does try to aggressively resolve precise targets for reflected methods and 
reflected allocations. 

If the developer must use reflected invokes, follow these guidelines: 

• The method must be invoked with java.lang.reflect.Method: invoke(Object, Object
...).

• The method must be retrieved with java.lang.Class.getMethod(...).
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• The Class object that is the receiver to getMethod() must be resolvable, e.g., the getClass()
method called on a static class name or a resolvable string.

If the developer must use reflected allocation, follow these guidelines: 

• The object must be created using the java.lang.Class: newInstance() method.

• The Class object that is the receiver to newInstance() must be resolvable, e.g., the getClass
() method called on a static class name or a resolvable string.

The analysis report will report on all uses of reflection, and highlight the cases where the reflection 
is not resolved. By default, unresolved reflection is not handled accurately. 

6.8 Conclusion 

This chapter provides an overview of the important implementation choices that could affect the 
precision, accuracy, and/or scalability of the DroidSafe Analysis. We hope that it is useful for ap-
plication developers seeking to support application vetting via DroidSafe and analysts that employ 
DroidSafe to increase the accuracy and throughput of application vetting. 
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7.0 FORMAL FUNCTIONAL CORRECTNESS PROOFS OF APPLICATIONS 

7.1 Introduction 

Android devices [51] are vulnerable to security compromises carried out by rogue apps that may 
abuse the user’s trust by masquerading as benign apps [52, 53]. The Android security mechanisms 
are coarse and complex [54, 55] and may be bypassed via exploitable flaws in the platform [56, 57]. 

A more detailed characterization of an app’s behavior, especially its access to user data, can enable 
users to make more informed decisions about trusting and installing the app. A suitable formal 
specification of the app can be used for this purpose, and trust can be established via a formal 
proof that the app’s code satisfies the specification. This requires a formal model of the platform 
that the app runs on—both language and API. 

The work described in this chapter contributes to the goal of establishing trust in apps based on 
formal specifications and proofs. We used the ACL2 theorem prover [58] to build a formal model 
of a subset of the Android platform that supports non-trivial apps. We developed a proof method- 
ology based on induction and symbolic execution of the app’s event handlers, showing that each 
handler preserves the app’s invariant, which includes all properties of interest, including functional 
correctness. 

We applied this proof methodology to verify the full functional correctness of a slightly simplified 
version of a calculator app written by one of the APAC Red Teams. For a version of the app that 
contains malware, the correctness proof fails in a way that reveals the malware. In the process 
of verifying the app, we also uncovered a subtle functional bug that may be representative of 
malware that is triggered by complex conditions on an app’s state and whose malicious action 
is the calculation of incorrect results. This “functional malware” differs from more explicit, and 
potentially more easily detectable, malware that, for example, sends private user data to a remote 
server when the device is in a certain location at a certain time. The latter kind of malware makes 
API calls to test the trigger conditions and perform the malicious actions, while functional malware 
may not make any suspicious API calls. For example, functional malware in a navigation app could 
deliberately lead users off course, perhaps even directing them to dangerous places. 

Our approach is sound, precise, and high-assurance. It complements DroidSafe’s static analysis 
approach, which focuses on undesired information flows. Our approach can prove virtually any 
true property about an app, with high assurance. Its main disadvantage is that it requires significant 
user effort, but we are working to improve the automation of the proof process. 

Our work makes the following contributions: 



Approved for Public Release; Distribution Unlimited. 
61 

• A formal model of a non-trivial subset of the Android platform.
• A formal proof methodology for Android apps.

7.2 Background 

7.2.1 Android 

Most Android apps are written in Java [59]. Besides using a subset of the standard Java API, these 
apps use the Android API, which provides access to hardware devices (camera, GPS, etc.), GUI 
elements (buttons, text boxes, etc.), inter-app communication (e.g., to open a given URL in a web 
browsing app), and so on. In addition to the Java source files, an app contains other resources, 
which often take the form of XML files. An app’s Java source code is compiled to Java Virtual 
Machine (JVM) bytecode [60] using a standard Java compiler. The Android development tools are 
used to convert the JVM bytecode to Dalvik bytecode [51], which is assembled with the XML and 
other resource files (e.g., images) into an installable app package. 

An Android app is structured in terms of ‘activities’, each of which is a single “screen” in the app’s 
GUI. Within an activity are various ‘views’—rectangular regions of the screen that represent GUI 
elements, such as text boxes and buttons that can be clicked. Events in Android include click events 
for these views. An app can register listeners for such events, either statically in its layout XML 
or programmatically by calling setOnClickListener(). When these events occur, the Android 
GUI thread invokes the appropriate methods of the registered listeners. An app’s XML ‘manifest’ 
indicates, among other things, the initial activity to be created when the app starts. 

Android also includes lifecycle events (Create, Start, Resume, Restart, Pause, Stop, and Destroy) 
that can be dispatched to the app. The sequencing of these events must be consistent with the 
activity lifecycle state machine [59] in Figure 4.1 (a typical flow is: Create, Start, Resume, Pause, 
Stop, Destroy) but can otherwise occur at any time. For example, a Pause event may occur when 
another app opens in front of the current app. Apps typically implement handlers to respond to 
these events (e.g., to save data when the app is paused) by overriding methods of the Activity 
class, such as onPause(). 

Various entities belonging to the app are identified using numeric resource IDs. These resource 
IDs are defined in special classes, namely the R class (‘resource’ class) and its inner classes, 
which are generated by the Android development tools.   For example, an XML layout entity 
<Buttonandroid:id="@+id/btnSeven"...> will cause the R\$id class to contain a final static field 
called btnSeven whose ConstantValue attribute is some large, unpredictable number, e.g., 
2131034114. In the Java source code of the app, the button object can be obtained by the method 
call findViewById(R.id.btnSeven), but in the bytecode only the numeric ID is present. 

Android includes a permission mechanism to limit apps’ access to hardware and other resources. 
For example, an app must possess the INTERNET permission to open network sockets and the 
CALL\_PHONE permission to initiate phone calls. An app declares, in its XML manifest, the set 
of permissions that it requests. When an app is about to be installed, the requested permissions 
are shown to the user, who decides whether to proceed with the installation, and thus grant the 
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app all the requested permissions. This permission mechanism is coarse-grained: for instance, the 
INTERNET permission gives an app carte blanche to connect to any host at any time to send any 
data. 

7.2.1.1   Malware 

Several kinds of malware affect Android devices [52, 53]. Tools like [61] can be effective at 
detecting malware that exfiltrates private user data by (necessarily) making suspicious API calls. 
The mere presence of certain API calls may be suspicious, e.g., an app that opens a network 
connection, when the app’s purported functionality does not involve the network. The presence of 
an API call may be legitimate, but the information that flows to the API calls may be suspicious, 
e.g., an app reads a user’s contacts and sends them over the network, when the app’s purported
functionality does not include that. 

A more stealthy kind of “functional malware” may not exfiltrate private user data, and instead 
intentionally calculate incorrect results. The severity of this kind of malware depends on how 
much the user relies on the app calculating correct results: it may range from an annoyance to loss 
of life, e.g., if a military navigation app sends a squad off-course to a dangerous place. Functional 
malware may be triggered under complex conditions on an app’s state variables, eluding detection 
via code inspection. Functional malware may involve API calls, but not necessarily suspicious 
ones; or it may not involve any API calls. 

Unlike many other approaches, our work addresses functional malware. Of course, it also ad- 
dresses inadvertent errors. The difference between functional malware and an unintentional bug is 
one of developer’s intent; but the impact may be similar. Our app verification approach establishes 
functional correctness, ruling out both intentional and unintentional bugs. 

7.2.2 ACL2 

The ACL2 theorem prover [58] consists of a first-order specification language based on side-effect- 
free Common Lisp and automated proof methods for reasoning about programs and models written 
in the language. Two strengths of ACL2 are its sophisticated term rewriter and its heuristic appli-
cation of induction [62]. ACL2 supports reasoning about programs written in languages other than 
its native Common Lisp dialect via embeddings that capture the languages’ semantics in terms 
of ACL2’s native language. Below we describe how we use this approach to reason about JVM 
bytecode representing Android apps. 

7.3 Platform Modeling 

Since our motivation for modeling the Android platform is app verification, our formal model 
describes not the internal structure and layers of the platform stack, but the top-level interface that 
the platform provides to apps. This interface consists of the language that apps are written in and 
the API calls exchanged between apps and platform, including callbacks. 
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7.3.1 Formal JVM Bytecode Model 

To reason about an Android app, we intercept its JVM bytecode during compilation (before Dalvik 
bytecode is generated). To assign semantics to this bytecode, we defined in ACL2 a formal model 
that is an executable interpreter of the Java Virtual Machine [63]. Our model is similar to the M5 
model developed by J Moore and others [64], but covers more features (e.g., exceptions, string 
interning, and class initialization). Theorems about JVM bytecode programs are expressed using 
this formal model; we prove that when the program of interest is executed on the model, starting 
from a state where certain properties hold, then certain other properties always hold on the resulting 
state. This follows the style pioneered in [65]. 

While we do not consider our JVM model to be a novel contribution of our work, we summarize 
its behavior here for concreteness. The state of the JVM in our model includes the Java heap, 
static area (where static fields are stored), and, for each thread, a call stack that includes invocation 
frames for each method that the thread is currently executing. Also included are auxiliary data 
structures for synchronization and locking, string interning, etc. 

Each JVM instruction is modeled by specifying the effect on the JVM state when that instruction 
is executed. For example, the iadd instruction for integer addition is modeled as follows: 
(defun execute-IADD (th s) 
(modify th s 

:pc (+ 1 (pc (top-frame th s))) 
:stack (push (bvplus 32 

(top (pop (stack (top-frame th s)))) 
(top (stack (top-frame th s)))) 

(pop (pop (stack (top-frame th s))))))) 

The function execute-IADD modifies the data structures of thread th in the JVM state s. In 
particular, it pops two operands off of the operand stack in the top invocation frame of the call 
stack, adds them, and pushes the sum back onto the operand stack. It then increments the program 
counter :pc by 1, which is the length of the iadd instruction. 

To run an entire program, we repeatedly step the machine state by fetching and dispatching on 
the next instruction. We use ACL2’s defpun utility to soundly introduce the JVM interpreter as a 
partial function [66]. 

A crucial feature of our JVM model is that, in addition to running bytecode programs on concrete 
inputs, it can be used for symbolic execution of bytecode programs on arbitrary inputs. A typical 
theorem says, in essence, “When we run the JVM model on this bytecode program, for any input 
satisfying this predicate, the resulting state has the following properties.” The symbolic execution 
is performed using the ACL2 rewriter to repeatedly step and simplify the state, symbolically exe-
cuting one instruction at a time and building up a symbolic representation of the current state in 
terms of the symbolic inputs. This technique is standard in the ACL2 community. In this way, our 
formal JVM model captures the semantics of the JVM bytecode language and allows us to reason 
about the code that constitutes Android apps. 
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7.3.2 Formal Android Model 

We extended the formal JVM model described above to a formal model of the Android platform, 
capable of executing and reasoning about simple Android apps. A state in the Android model 
contains a JVM state and several additional Android-specific state components More precisely, 
our model of the Android state contains: 

• A JVM state, as discussed above. This contains the persistent data used by the app, including
its heap and static fields.

• The app’s activity stack, including the current activity on top of the stack, and any activities
that are currently paused, below the top activity.

• The set of currently allowed events (e.g., button clicks) for which the app has registered
event handlers.

• A parsed representation of the app’s manifest—see Section 7.2.
• The app’s layout information, parsed from the app’s XML layout files and indexed by the

layouts’ numeric IDs. This includes information about the views (e.g., buttons) in the app’s
GUI and their associated event handlers (e.g., onClick listeners) and is used by our model
of the setContentView() API method when it constructs the GUI for an activity.

• A map from the addresses of View objects to their listeners, used to dispatch control when
handling events. A listener is a pair of a method (often, but not always, the onClick()
method of some class) and an object on which to invoke the method (often this is an Activity
object or an instance of an anonymous class whose sole purpose is to define the listener).
This map is updated by our model of the setOnClickListener() API method.

• A map from symbolic string names of views, used in the layout XML, to the corresponding
numeric resource IDs. This is used to translate events from user-meaningful form to internal
form. We build this map by inspecting the names and values of the static fields of the R\$Id
resource class generated when the app is built.

• A map from resource IDs to the addresses of their corresponding View objects. This is used
to determine the actual objects on which to dispatch events (e.g., click events) and by our
model of the findViewById() API method.

• The API call history, a ghost variable that lets us reason about the API calls that the app has
(and, critically, has not) made, including a record of the event whose handler made each API
call.

• The event history, a ghost variable that lets us talk about the sequence of events given to the
app so far. If we are verifying that the app implements an abstract state machine, we can
abstract this event history and feed it to the abstract state machine. The resulting abstract
state should then be the abstraction of the machine’s current concrete state. Proving that
this property is preserved by all event handlers in the app is the core step of our app proof
methodology described below.

• The event currently being handled, if any, so that we can record in the API history which
event was being handled when the API call was made. API calls may be allowed for some
events but not others. For example, a sound recorder app may be allowed to start recording
only when the user presses the Record button.
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7.3.2.1    Event Handling 

Our Android model supports running an app on a sequence of input events, by executing their 
event handlers in order. This can be done on a concrete sequence of events, to test an app. More 
importantly, it can be used for proof. We prove that, for any sequence of events, running the app’s 
handlers for those events preserves the app’s invariant. At this level, events are represented in 
terms that are meaningful to the user. For example, (:resume) represents the event that resumes 
the current activity, and (:click"myButton") represents a click of the button whose name in the 
layout is myButton. In order to actually handle these events, our model must determine the objects 
on which the handler methods should be invoked, so it first converts the events into an internal form. 
For lifecycle events, this adds to the event the heap address of the topmost activity object on the 
activity stack, giving something like (:resume12345). Click events are internalized by mapping 
the symbolic name of the button to a numeric resource ID and then to the actual address of the 
View object with that ID, giving something like (:click6789). Currently our model only handles 
lifecycle events and click events, but adding support for other events should be straightforward. 

Once the event has been elaborated to internal form, we dispatch it to the appropriate handler by 
executing the code for the handler using the underlying JVM model. For a lifecycle event, we 
execute an invokevirtual instruction for the appropriate handler method (e.g., onResume()) on 
the given Activity object, which causes the app’s onResume() handler method to run. Such 
methods almost always begin by calling through to the corresponding method of the parent class, 
e.g., super.onResume(). This causes code from the Android API implementation to run, e.g., 
android.app.Activity.onResume(). Our model includes special modeling for these lifecycle 
API calls. For example, the model for onResume() causes the onClick listeners in the resuming 
activity to again be added to the set of allowed events. To handle a click event, assuming it is 
already in internal form, we look up the onClick listener for the given View object and call the 
indicated method. In our model, handlers execute to completion and cannot be interrupted. This 
corresponds to Android’s use of an app’s main ‘UI thread’ to execute its handlers. Future work 
would include adding support for background services, which an app can use to offload expensive 
computation from its UI thread. 

The sequential processing of events in our model corresponds to the way in which the Android 
platform internally enqueues events and delivers them to an app’s unique UI thread. By proving 
properties over all possible event sequences, we ensure that the properties hold no matter how the 
Android platform enqueues and delivers the events. 

Events that are not currently allowed by the app (according to the set of allowed events in the 
Android state) are ignored, e.g., a click on a view that has no registered onClick listeners, or an 
illegal lifecycle event, such as stopping an activity that has not been started. Every event is also 
recorded in the event history, so that the invariant can refer to the state that the app should be in, 
given the events seen so far. 
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7.3.3    Formal API Model 

A major challenge in reasoning about Android apps is to properly model calls to API methods. 
We are following a “demand-driven” approach in which we add models of API methods as we en-
counter calls to them in apps that we want to verify. Some methods such as sendTextMessage() 
do not really need to be modeled because they affect only the external world, not the state of 
the app itself: we simply record them in the API history, so that we can express properties such 
as “the app has not sent any text messages”, and continue with execution. When the API call 
does affect the app’s state, if possible we simply execute on our model the actual code of the API 
from the Android implementation. API calls treated this way include many calls in java.lang 
(e.g., dealing with Strings and Enums) and setters and getters such as Activity.setTitle() 
and View.isClickable(). There are situations where simply executing the API call does not 
work, either because the code is unavailable (e.g., native methods) or too complicated, or because 
it affects parts of the Android state that we model. To model such methods, we define executable 
ACL2 functions and include them in our Android model. Methods that are modeled in this way in-
clude setOnClickListener(), findViewById(), setContentView(), and the activity lifecycle 
event handlers onStart(), onResume(), etc. 

Our model of running an app begins by building an initial Android state for the app (where many 
components, such as the API history, are initially empty) and then calling the app’s onCreate() 
method. Further events are then handled in order. 

7.4 App Verification 

Our platform model provides a formal semantics for non-trivial Android apps. This allows us to 
formally prove that apps satisfy their functional specifications, which implies the absence of the 
kind of functional malware discussed in Section 7.1. 

Our methodology is based on formulating an invariant for the app: a predicate over states of the 
Android model that is preserved as the app runs. The invariant characterizes correct behavior, 
often using an abstraction to a high-level state machine, and also makes many Android-specific 
assertions, such as specifying the set of currently active event listeners. Each event is proved 
to preserve the invariant, using the ACL2 rewriter to perform symbolic execution, as described 
below. Failed proofs may require the invariant to be strengthened. Once an inductively-strong 
invariant is obtained, an induction over event sequences establishes that the invariant holds for all 
possible event sequences. This section discusses the app verification process in more detail, using 
the running example of verifying a calculator app. 

7.4.1 Calculator App 

The Red Teams of the DARPA APAC Program [67] developed several apps, including a calculator 
that applies the four arithmetic operations to floating-point numbers. Since our JVM bytecode 
model does not include floating-point numbers yet, we modified the app to operate on integers 
instead, using Java’s normal modular arithmetic. We also slightly simplified the GUI of the app to 



not use features that are currently not covered by our model. The malware in the app replaces the 
running result with a random number under certain conditions described later, but we simplified it 
to return a fixed result of 88888888 instead, because we do not yet model random numbers. These 
simplifications do not fundamentally change the structure of the app. 

7.4.2 Representation 

Our Android model includes a parser, written in ACL2, that turns an app’s JVM bytecode class 
files and XML files into an S-expression-based ACL2 representation usable by our platform model. 

A parsed app, with the platform underneath, forms a state machine. The initial state S0 is defined by 
our model of app initialization discussed above. Each transition is triggered by a platform-initiated 
event (e.g., pause app, resume app) or a user-initiated event (e.g., click a button). The deterministic 
transition function T maps an input event E and a state S to the next state T(E, S); it is lifted 
to sequences of events by defining T∗((E1,..., En), S) = T(En,... T(E1, S) . . .), and T∗(ε, S) = S, 
where ε is the empty sequence. Our platform model currently supports a single app (state machine) 
at a time, but can be extended to support multiple apps. 

For the calculator app, the state machine has an input event for each calculator button (0123456789+ 
-*/=C) and each app lifecycle event. The state includes a TextView GUI object whose content is 
the string shown on the calculator display. The main correctness theorem for the app says that the 
contents of the display are always correct, given the sequence of input events supplied to the app 
so far.  We defined an output function O that maps a state S to this display string O(S).  Different 
output functions could be defined for different apps, each extracting from the state the app-specific 
observables of interest. 

7.4.3 Specification 

The execution of the parsed app on the platform model corresponds to a low-level state machine 
whose states are states of our Android model, as described above, and whose transitions are ex- 
pressed in terms of the execution of JVM bytecode and API calls. Often a functional specification 
for an app is naturally expressed as a higher-level state machine, whose states and transitions are 
defined in user-oriented terms rather than code-oriented terms. The correctness of the code with 
respect to the specification can then be expressed as a simulation [68] of the high-level machine by 
the low-level machine. 

A state machine specification for the calculator app is sketched in Figure 7.1. Each state has a name 
(in bold, e.g., value) and one or more state variables (in italics, e.g., val ); the underlined state 
variable is the one shown on the calculator display. In each state, val is the latest result, which is 
0 when the calculator starts or when C (clear) is entered. In value-op and value-op-value, op 
is the latest operator entered. In value-op-value, entering = or an operator op’ combines val2 
with val by applying op , completing the pending operation and replacing the latest result; if op’ 
was entered, it becomes the latest operator. Figure 7.1 does not show the expressions assigned 
to state variables when transitions are taken, e.g., a digit transition from value-op-value to 
value-op-value assigns 10 × val2 + digit to val2 . Exploiting that 0 is identity for addition, 
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Figure 8:  A state machine specification for the calculator app 

entering a digit in value sets val to 0, op to +, and val2 to digit , as if there were a pending 
0 + . . . operation. 

We formalized this state machine specification in ACL2. The formalization includes a constant s0
for the initial state, a deterministic transition function t that maps an input event e and a state s to 
the next state t(e, s) (and is lifted to t∗ over sequences of events, analogous to T∗ above), and an 
output function o that maps a state s to the content of the calculator display o(s). 

7.4.4 Invariants and Proofs 

Often the simulation relation between a low-level and a high-level state machine is defined as an 
abstraction function [69] from the low-level inputs and states to the high-level inputs and states. 
For the calculator app, the abstraction function α maps each calculator button press event to the 
corresponding input in Figure 7.1 and each app lifecycle event to no input in Figure 7.1; it also 
maps each app/platform state to a state in Figure 7.1. 

In our Android platform model, the app/platform state S includes the history of input events. Thus, 
given an abstraction function to a high-level state machine specification, the correctness of the app 
with respect to the specification can be expressed as a predicate over the low-level app/platform 
states. Intuitively, the app’s invariant says that the app is in fact in the state that it should be in, 
given the sequence of inputs seen so far. If H(S) is the history of input events in S, the predicate 
is Ω(S)≡ [O(S)=o(t∗(α∗(H(S)), s0))], i.e., the observable outputs that result from executing the 
app’s code on the inputs H(S), which take the initial state S0 to S, are the same that result from 
running the high-level state machine on the corresponding abstract inputs α∗(H(S)), where α∗
is the homomorphic lifting of α from events to event sequences. If Ω includes all the states S 
reachable from S0, i.e., if Ω(T∗((E1,..., En), S0)) holds for every event sequence E1,..., En, then 
the app’s code is observationally equivalent to the specification, i.e., it yields the same outputs 
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for the same inputs. For the calculator app, the code is observationally equivalent to Figure 7.1. 
Ω(T∗((E1,..., En), S0)) is provable by induction if Ω is an invariant, i.e., if Ω holds on the initial 
state (base case: Ω(S0)) and is preserved by each transition (induction step: Ω(S) =⇒ Ω(T(E, S))). 
Since Ω alone does not provide a sufficiently strong induction hypothesis, the following invariants 
are defined, and proved together: 

1. A stronger correctness predicate that involves not only outputs (the calculator display) but
also states: Σ(S) ≡ [α(S) = t∗(α∗(H(S)), s0) ∧ O(S) = o(α(S))], from which the weaker
Ω(S) is easily proved. While α, t, and S0 are specific to the app under verification, Σ has the
same form for every app whose specification is a state machine with an abstraction function,
e.g., the calculator app.

2. Code-level predicates on the app’s state, e.g., that a Java int field is never negative or is
always within a certain range. Formulating these predicates requires an understanding of the
app’s code, but failed proof attempts in ACL2 often suggest them.

3. Platform-level structural predicates about the Java heap containing the objects that form the
app under verification, the Android GUI objects being consistent with the XML files, Java
fields having values of the right types, and so on. These constraints are largely boilerplate and
we believe that they could be automatically generated at the same time as the app is parsed
into its ACL2 representation. For the calculator, we manually defined several predicates of
this kind, because their automatic generation is not implemented yet.

Once a sufficiently strong invariant has been defined, proving its establishment in the initial state 
and preservation by each transition can be carried out by symbolic execution using the ACL2 
rewriter. To prove preservation, we start with an arbitrary Android state assumed to satisfy the 
invariant. We then show that the execution of an arbitrary event results in a state that still satisfies 
the invariant. The proof naturally splits into cases for each possible allowed event (disallowed 
events have no effect on the state), and we usually prove each event separately. Some application- 
specific rewrite rules are often needed (e.g., rules about bit-vector math for the calculator app), and 
the proofs also use our growing library of rewrite rules about the Android model itself. Otherwise, 
proofs for simple apps are largely automatic; for the calculator app, the proof corresponding to each 
button click event is a single line of ACL2 code that invokes our tactic called def-event-proof. 
This tactic unfolds the application of the invariant to the initial state (to expose necessary assump-
tions for symbolic execution), performs the symbolic execution, often resulting in several cases, 
and finally, in each case, unfolds the invariant applied to the final state and simplifies the result. In 
successful proofs, everything simplifies to ‘true’. 

A key intermediate formula that arises in the proof of the preservation of the invariant is α(T(E, S)) = 
t(α(E), α(S)), i.e., each low-level transition has a corresponding high-level transition—a typical 
commuting diagram in simulation.  If an app’s code has no loops (as is the case for the calculator 
app), ACL2 can automatically prove the invariant’s establishment and preservation, provided that 
an appropriate set of rewrite rules is enabled. The absence of loops is not so uncommon in simple 
Android apps, where the platform already provides a GUI loop that reads inputs and invokes app 
code to process them.  Verifying apps whose event handlers contain loops is future work  and 
will likely involve formulating and proving appropriate loop invariants; Σ and the other invariants 
discussed above apply to the platform GUI loop. 
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We found it convenient to verify the calculator app in two stages. We defined an intermediate 
state machine whose structure closely resembles the Java code, but without involving any Java or 
Android concepts. Its states are records whose components correspond to the app’s Java fields, 
and its transitions are defined in terms of record component updates that correspond to the Java 
code. This intermediate state machine is an abstraction of the code in the ACL2 logic, which 
in particular does not involve the platform-level structural invariants discussed above. It may be 
possible to obtain this intermediate machine automatically, using the techniques in [63]. We prove 
that the app’s code simulates the intermediate machine and that the intermediate machine simulates 
the high-level machine. The two theorems are composed to obtain a proof of correctness of the 
calculator app with respect to Figure 7.1. 

 

7.4.5 Malware Discovery 
 
The calculator app keeps a count of the operations performed since the last = was entered (or since 
the app started), e.g., after entering ...=1+2*3 the count is 2. The malware (in our simplified 
version of) the app replaces the running result with 88888888 when the count reaches 3. This is 
functional malware, which does not involve API calls. 

We attempted to prove that the calculator app with malware satisfies the specification in Figure 7.1. 
As it should, the verification fails. The output from the failed ACL2 proof exposes the malware: a 
proof subgoal that cannot proved is that when the operation count is 3, the correct running result 
is 88888888. In general, failed proof subgoals can expose the conditions that trigger an app’s 
malware and the malicious computations that violate the functional specification. 

This is a very simple example of functional malware, which is also fairly easy to detect by the user. 
However, it is suggestive of more serious, and hard to detect, kinds of functional malware. An 
example is a military navigation app whose intentional miscalculations send a squad off-course to 
a dangerous place. 

 

7.4.6 Functional Bugs 
 
After manually removing the malware from the calculator app, we found two functional bugs in 
the app that prevented a successful proof. The bugs are also present in the original, unsimplified 
version. 

The operation count is stored in a Java int, which wraps around and becomes negative if 231 

operations are entered without entering =. Since the condition under which the display is updated 
includes that the count is larger than 1, the display stops updating as the count becomes negative 
(until it wraps around again to become positive). Since it is impractical to enter 231 operations, 
this bug has arguably only theoretical significance (some may argue that it is in fact not a bug). 
Nonetheless, we fixed this bug in the app code. 

The other bug may occur in practice: under certain easily achievable conditions, the display is not 
updated to show the running result.  For example, starting the calculator and entering -12345+ 
shows 12345 instead of −12345 on the display (the + should show the partial result 0 − 12345, 
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where 0 is the initial display). The details of this bug are unimportant, but are caused by what 
we regard as an unnecessarily complicated implementation of the calculator: this bug eluded our 
manual code inspection. While this bug was not malware planted by the Red Team, and is not 
earth-shattering in its significance, it may be representative of functional malware where a cleverly 
crafted, non-straightforward implementation may sometimes produce an incorrect result under 
conditions that cannot be easily detected by manual inspection. After fixing this last bug, we 
proved the correctness of the app with respect to Figure 7.1. 

7.5 Related Work 

In [70], JML [71] is used to specify contracts for API and application methods, and the KeY theo-
rem prover [72], which is based on dynamic logic [73], is used to verify that the Java code of those 
methods satisfies the contracts. Our formal model of the Android API is more comprehensive, 
e.g., we model callbacks, which are not modeled in [70]. The app specifications in [70] consist of
contracts for various app methods, which are implicitly informally “composed” into an overarch-
ing correctness argument for the apps. In contrast, our app verification is carried out with respect 
to an explicit overarching app specification expressed in user-oriented terms (not code-oriented 
terms like contracts). The translator from Java/JML to KeY in [70] embodies the dynamic logic 
semantics of Java and JML and is thus a critical component of that approach; in our approach, all 
the semantics is explicated in ACL2. 

In [74], a pencil-and-paper concrete and symbolic operational semantics for Dalvik and for a few 
Android API methods is defined, and used as the foundation to implement a symbolic executor of 
Android apps. The symbolic executor is connected to an SMT solver. The tool is shown to infer 
the conditions under which an example app performs certain privileged actions. Our approach also 
uses symbolic execution, but our semantics is mechanized inside a theorem prover, and we use 
ACL2’s rewriter for symbolic execution. It is not clear whether their approach can verify the full 
functional correctness of apps, due to the use of an SMT solver rather than a more general (but 
likely less automatic) theorem prover such as ACL2. 

In [75], a pencil-and-paper operational semantics for a few Dalvik instructions and a few Android 
API methods is defined, and a progress property is proved. The paper mentions work in progress on 
a symbolic executor, but no app verification results are reported. Our Android model is mechanized 
inside a theorem prover and covers more features of the Android platform. 

Other formal models of the Android platform [76, 77, 78, 79] are more abstract than ours, focused 
on security aspects and properties. These formal models are in a sense complementary to ours: it 
should be possible to formalize abstraction mappings from our model to those models, ensuring 
that the security properties of the more abstract models apply to the more concrete model. 

Static analysis of app code to help detect malware (e.g., [80, 81, 61]) is complementary to our 
approach. It is more automated (e.g., no functional specification is needed) but less precise; it 
cannot prove deep properties like functional correctness. 

In [82], post-conditions of API method calls are calculated from pre-conditions via an algorithm 
that processes propositional formulas.  It may be possible to use our API model and the ACL2 
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theorem prover for that purpose, which may lead to higher precision in the malware detection tool 
described in that paper. 

Proposals to improve the Android security mechanisms (e.g., [83, 84, 85]) or to add on-device 
virtualization (e.g., [86]) require extensions to the platform, which the developers of all the frag-
mented versions of Android would have to agree on. If implemented, these extensions may prevent 
certain classes of malware, but not the kind of functional malware that our approach addresses. 

Collecting data at run time and analyzing it to detect malware patterns (e.g., [87]) is likely to be 
more automatic than our approach but may allow malware to execute before it is detected. It also 
may raise privacy concerns if the analysis is performed off-device. 

Dynamic analysis in off-device sandboxes prior to deployment (e.g., [88]) has similar coverage 
limitations as conventional testing. In addition, some malware may detect when it is being run in 
an emulator and behave differently than when it is run on a device. 

Automatically transforming app code to enforce security policies (e.g., [89]) may affect perfor-
mance and potentially functionality and may not be agreeable to app developers. This approach 
may thwart certain classes of malware, but not the kind of functional malware that our approach 
addresses. 

7.6 Takeaways 

7.6.1 App Verification Methodology 

Many aspects of the app verification work described in Section 7.4 are not specific to the calculator 
app. We expect that the same proof methodology can apply to a large class of apps: 

• Automatically parse the app’s code and XML files into a deeply embedded representation
inside the theorem prover, obtaining a low-level state machine based on the formal semantics
of the JVM and of the Android platform, as in Section 7.4.2.

• Formalize the app’s specification as a high-level state machine, expressed in user-oriented
terms (not in internal Android-oriented terms), as in Section 7.4.3.

• Define an abstraction function from the low-level state machine to the high-level state ma-
chine, as in Section 7.4.4.

• Formulate a sufficiently strong state invariant on the low-level state machine (like Σ in Section
7.4.4) that implies the desired relation between the high-level state machine and the low-level
state machine (like Ω in Section 7.4.4).  The invariant includes not only   simulation conditions, but
also code-level invariants and platform-level invariants, as explained in Section 7.4.4.

• Use symbolic execution to prove that the low-level state machine’s invariant is established
by initialization and preserved by each event.

• If convenient, formalize intermediate state machines (between the low-level one and the
high-level one), staging the abstraction functions accordingly. Prove simulations of each
machine by the one immediately below it, and finally compose the simulation theorems into
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one overarching simulation of the high-level state machine by the low-level state machine. 
As mentioned in Section 7.4.4, for the calculator app we used an intermediate state machine. 

7.6.2 State Invariants vs. Trace Invariants 

By keeping suitable history (e.g., the sequence of events processed so far) in our model of the 
Android state, we are able to express properties of interest (such as Σ and Ω in Section 7.4.4) as 
state invariants instead of more complex trace invariants, which involve multiple successive states 
of execution. 

7.6.3 Iterative Invariant Strengthening 

It may be difficult to formulate a sufficiently strong invariant in one attempt. The first attempt 
typically results in an invariant that is too weak. However, the failed proof output from ACL2 
often readily suggests how to strengthen the invariant. The failed proof output consists of one or 
more proof subgoals, each consisting of a number of hypotheses and a conclusion. When these 
hypotheses express some impossible condition (e.g., that an integer variable is outside it possible 
range of values), the invariant must be strengthened to exclude that impossible condition (e.g., 
the range of the variable must be part of the invariant). Several iterations may be needed before 
reaching a sufficiently strong invariant. 

7.6.4 Bugs Uncovered by Failed Proof Attempts 

Bugs in the app (i.e., the fact that the app does not satisfy the specification) are often exposed by 
failed proof attempts. In some cases, the hypotheses of a failed proof subgoal, when they do not 
correspond to an impossible situation (i.e., the failed proof is not due to the invariant being too 
weak), reveal corner cases in which the invariant is broken. This may indicate either a bug in the 
app or perhaps a need to reformulate the invariant. 

7.6.5 An ACL2 Trick 

There are cases in which failed ACL2 proof subgoals do not explicitly expose the problem, because 
the ACL2 rewriter rewrites an untrue conclusion to ‘false’ and replaces it with the negation of one 
hypothesis—the untrue conclusion has disappeared from the proof subgoal. This happens, for 
instance, when attempting to prove that some term x equals a certain constant c, when instead the 
term equals some other constant cl:  The goal x = c is rewritten to ‘false’ and it disappears.     To 
debug this, we can introduce an uninterpreted nullary function f and attempt to prove x = f (). 
The new proof attempt will of course fail, but the rewriter will rewrite x to the correct constant 
cl, displaying the failed proof subgoal cl = f (). Then we can revise our original proof attempt to 
prove x = cl instead. 
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7.6.6 Android Platform Modeling 

The Android documentation informally describes the interaction of apps with the Android plat- 
form, without explicitly describing most of the internal state of the platform, aside from app life- 
cycle states and similar aspects. Formalizing the Android platform involves creating an explicit 
model of the internal Android state. In order to do that, we tried to imagine how the implementa-
tion could support the behaviors described in the documentation (e.g., maintain a mapping from 
resource IDs to references to View objects), and defined our state (and transition) model accord-
ingly. 

7.6.7 Android API Modeling 

The large size of the Android API makes its formal modeling challenging. We believe that the best 
approach to address this challenge is to model the API in a demand-driven fashion, i.e., formalize 
the API classes and methods as they are needed to verify apps. API methods written entirely in 
Java need not be explicitly modeled; instead, their code can be symbolically executed along with 
the app code. However, it may be beneficial to explicitly model API methods that have complex 
code that may complicate symbolic execution. It should be also noted that, as suggested in [82], 
typical apps use a relatively small “popular” subset of the Android API: thus, it is not necessary to 
model most of the Android API in order to verify interesting apps. 
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7.7 Conclusion and Future Work 

We have described our ongoing work on formally modeling the Android platform and verifying 
Android apps. Compared to existing research, our Android model has the highest coverage of 
Android features, and our Android app verification goes deeper to include proofs of full functional 
correctness. A major motivation for this work is to ensure the absence of functional malware in 
apps, which other detection approaches to do not address. Our approach can be used to prove deep 
properties of apps with high assurance. 

The proof methodology described in this chapter, based on state machines and simulations, can 
verify a large class of app properties. But the ACL2 logic and our Android model can express 
other kinds of assertions over the deeply embedded apps. Examples are program-level properties 
such as the fact that certain API calls are made only under certain conditions and with certain data, 
which enables much finer distinctions than coarse Android permissions such as INTERNET. Other 
examples are hyperproperties (i.e., predicates over multiple executions) [90], including security 
policies like non-interference [91], which could express the non-leakage of private user data to 
network sockets, text messages, and other destinations. To verify these kind of properties, exten-
sions to our proof methodology may be needed, e.g., invariants over multiple states from different 
execution traces. 

We are extending our formal model to cover more Android features and are tackling the verification 
of larger and more complex apps. We would also like to extend our approach to support reasoning 
about multiple apps, including their communication via Android’s ’intent’ mechanism. 
Another direction for future research is the modeling and proof of non-functional aspects of apps, 
e.g., to reason about resource usage or covert channels.
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8.0 CONCORD - VERIFYING MEMORY SAFETY 

In this part of the project, we set out to explore how to move very precise static analysis and 
verification techniques from the realm of specialized research tools to an approach that can feasi-
bly adopted by programmers in the real world. The critical issue is the lack of precision that 
such analyses inevitably encounter when analyzing the programs that occur in practice, no matter 
how advanced the automated techniques are. This lack of precision causes either 1) unacceptable 
numbers of false positive alarms or 2) the use of unsound techniques that may leave errors uncov-
ered. 

Our hypothesis we set out to test is that, in existing programs, only a small percentage of the code 
is responsible for this lack of precision. If this hypothesis is true, it opens up the possibility that we 
are much closer to a practical program analysis for verifying important security (and potentially 
other properties) than it currently appears. 

For this, we developed a focused prototype version of a highly precise verifier based on the Com- 
pass tool [92] we call Concord. While our tool is only a prototype, we were able to test and validate 
our initial hypothesis and concretise the key challenges currently limiting the impact of program 
verification as well as formulate initial solutions to these challenges. 

We have validated on real code that loss of analysis precision is generally caused by a small subset 
of the code. But more specifically, this insight leads to two technical challenges: 

1. Where the precision loss starts is often far from where a spurious error is reported and very
hard to identify by hand.

2. Once the piece of code too difficult to analyze is identified, non-expert programmers need to
specify a correct alternate description or implementation.

In our project, we propose using logical abduction to identify the parts of a code base that introduce 
analysis imprecisions. In order for non-expert programmers to annotate, replace and/or describe the 
behavior of code segments that are beyond automatic analysis capabilities, we propose a technique 
we call property programming where programmers rewrite the small sections of code that are too 
hard to analyze. Where this is not possible (e.g. stubbing libraries, or very critical code segments), 
a small set of intuitive annotation primitives are embedded into regular program constructs (such 
as loops) to allow non-expert programmers to easily and succinctly express difficult constraints 
and invariants. 
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8.1 Logical Abduction 

8.1.1 General Introduction 

The fundamental ingredient of automated logical reasoning is deduction, which allows deriving 
valid conclusions from a given set of premises. For example, consider the following set of facts: 

(1) ∀x. (duck(x) ⇒ quack(x)) 
(2) ∀x. ((duck(x) ∨ goose(x)) ⇒ waddle(x)) 
(3) duck(donald) 

Based on these premises, logical deduction allows us to reach the conclusion: 

waddle(donald) ∧ quack(donald) 
This form of forward deductive reasoning forms the basis of all SAT and SMT solvers as well as 
first-order theorem provers and verification tools used today. 

A complementary form of logical reasoning to deduction is abduction, as introduced by Charles 
Sanders Peirce [93]. Specifically, abduction is a form of backward logical reasoning, which allows 
inferring likely premises from a given conclusion. Going back to our earlier example, suppose we 
know premises (1) and (2), and assume that we have observed that the formula waddle(donald) ∧ 
quack(donald) is true. Here, since the given premises do not imply the desired conclusion, we 
would like to find an explanatory hypothesis ψ such that the following deduction is valid: 

∀x. (duck(x) ⇒ quack(x)) 
∀x. ((duck(x) ∨ goose(x)) ⇒ waddle(x)) 

ψ 

waddle(donald) ∧ quack(donald) 

The problem of finding a logical formula ψ for which the above deduction is valid is known as 
abductive inference. For our example, many solutions are possible, including the following: 

ψ1 : duck(donald) ∧¬quack(donald) 
ψ2 : waddle(donald) ∧ quack(donald) 
ψ3 :   goose(donald) ∧ quack(donald) 
ψ4       duck(donald) 

While all of these solutions make the deduction valid, some of these solutions are more desirable 
than others. For example, ψ1 contradicts known facts and is therefore a useless solution. On the 
other hand, ψ2 simply restates the desired conclusion, and despite making the deduction valid, gets 
us no closer to explaining the observation. Finally, ψ3 and ψ4 neither contradict the premises nor 
restate the conclusion, but, intuitively, we prefer ψ4 over ψ3 because it makes fewer assumptions. 
At a technical level, given premises Γ and desired conclusion φ , abduction is the problem of finding 
an explanatory hypothesis ψ such that: 

(1) Γ ∧ψ  |= φ 
(2) Γ ∧ψ  |= false 
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Here, the first condition states that ψ, together with known premises Γ, entails the desired conclusion 
φ , and the second condition stipulates that ψ is consistent with known premises. As illustrated by the 
previous example, there are many solutions to a given abductive inference problem, but the most 
desirable solutions are those that are as simple and as general as possible. 

Recently, abductive inference has found many useful applications in verification, including infer-
ence of missing function preconditions [94, 95], diagnosis of error reports produced by verification 
tools [96], and for computing under-approximations [97]. Furthermore, abductive inference has 
also been used for inferring specifications of library functions [98] and for automatically synthe-
sizing circular compositional proofs of program correctness [99]. 

In the context of the Concord project, our goal is to utilize abduction to identify the smallest and 
most general annotations required to verify a program. Assume that everything a static analysis 
could automatically learn about a program is encoded in constraint ψ and we are trying to prove a 
property encoded in constraint φ . By definition, if our tool reports a potential error, it must be that 

ψ |= φ 

Therefore finding a smallest root cause of the error reported can be directly mapped into logical 
abduction 

(1) Γ ∧ψ  |= φ 
(2) Γ ∧ψ  |= false 

where ψ is a smallest piece of information that, if true and annotated by the user, will make the 
original condition provable. Of course the smallest such fact may not actually be true, therefore we 
need to generate a sequence of abductive solutions of increasing difficulty until the programmer 
using the tool confirms one of them by placing the right annotations. 

8.1.2 Algorithm for Performing Abductive Inference 

In this section, we describe the algorithm used in for performing abductive inference at a high level. 
First, let us observe that the entailment Γ ∧ ψ |= φ can be rewritten as ψ |= Γ ⇒ φ . Furthermore, 
in addition to entailing Γ ⇒ φ , we want ψ to obey the following three requirements: 

1. The solution ψ should be consistent with Γ because an explanation that contradicts known
premises is not useful

2. To ensure the simplicity of the explanation, ψ should contain as few variables as possible

3. To capture the generality of the abductive explanation, ψ should be no stronger than any
other solution ψl satisfying the first two requirements

Now, consider a minimum satisfying assignment (MSA) of Γ ⇒ φ . An MSA of a formula ϕ is a 
partial satisfying assignment of ϕ that contains as few variables as possible. The formal definition 
of MSAs as well as an algorithm for computing them are given in [100].  Clearly, an MSA σ     of 
Γ ⇒ φ entails Γ ⇒ φ and satisfies condition (2). Unfortunately, an MSA of Γ ⇒ φ does not satisfy 
condition (3), as it is a logically strongest solution containing a given set of variables. 
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abduce(φ , Γ) { 
1. ϕ = (Γ ⇒ φ )
2. Set  X  =  find_mus(ϕ,  Γ,  free(ϕ), 0)
3. χ = elim(∀X.ϕ)
4. ψ = simplify(χ, Γ)
5. return ψ
} 

find_mus(ϕ,  Γ,  V ,  L)  { 
6. If V = 0/ or |V | ≤ L return   0/ 

7. U = free(ϕ) −V
8. if(  UNSAT  (Γ ∧ ∀U.ϕ)) return  0/

9. Set best = 0/ 
10. choose x ∈ V

11. if(SAT(∀x.ϕ))  {
12. Set  Y =  find_mus(∀x.ϕ,  Γ,  V \ {x},  L− 1);
13. If  (|Y | + 1  > L)  {  best  =  Y ∪ {x};  L = |Y | + 1  }

} 
14. Set  Y   =  find_mus(ϕ,  Γ,  V \ {x},L);
15. If  (|Y | > L)  {  best  =  Y   }

16. return best;
} 

Figure 9: Algorithm for performing abduction 

Given an MSA of Γ ⇒ φ containing variables V , we observe that a logically weakest solution 
containing only V is equivalent to ∀V. (Γ ⇒ φ ), where V = free(Γ ⇒ φ ) −V . Hence, given an 
MSA of Γ ⇒ φ consistent with Γ, an abductive solution satisfying all conditions (1)-(3) can be 
obtained by applying quantifier elimination to ∀V. (Γ ⇒ φ ). 

Thus,  to  solve  the  abduction  problem,  what  we  want  is  a  largest  set  of  variables  X  such  that 
(∀X .(Γ ⇒ φ )) ∧ Γ is satisfiable.  We call such a set of variables X  a maximum universal subset 
(MUS) of Γ ⇒ φ  with respect to Γ. Given an MUS X of Γ ⇒ φ  with respect to Γ, the desired 
solution to the abductive inference problem is obtained by eliminating quantifiers from ∀X.(Γ ⇒ φ 
) and then simplifying the resulting formula with respect to Γ using the algorithm from [101]. 

Pseudo-code for our algorithm for solving an abductive inference problem defined by premises Γ 
and conclusion φ is shown in Figure 8.1. The abduce function given in lines 1-5 first  computes an 
MUS of Γ ⇒ φ  with respect to Γ using the helper find_mus function. Given such a maximum 
universal subset X , we obtain a quantifier-free abductive solution χ  by applying quantifier elimi-
nation to the formula ∀X .(Γ ⇒ φ ).  Finally, at line 4, to ensure that the final abductive solution 
does not contain redundant sub-parts that are implied by the premises, we apply the simplification 
algorithm from [101] to χ. This yields our final abductive solution ψ which satisfies our criteria 
of minimality and generality and that is not redundant with respect to the original premises. 
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LOC analyzed 11,678 
Analysis Time 143s 
Number of lines changed 76 
Annotations placed 7 

Figure 10: Statistics on the OpenSSH analysis 

The function find_mus used in abduce is shown in lines 6-16 of Figure 8.1. This algorithm is 
based directly on the find_mus algorithm we presented earlier in [100] but excludes universal 
subsets that contradict Γ. At every recursive invocation, find_mus picks a variable x from the  set 
of free variables in ϕ. It then recursively invokes find_mus to compute the sizes of the universal 
subsets with and without x and returns the larger universal subset. In this algorithm, L is a lower 
bound on the size of the MUS and is used to terminate search branches that cannot improve upon 
an existing solution. Therefore, the search for an MUS terminates if we either cannot improve 
upon an existing solution L, or the universal subset U at line 7 is no longer consistent with Γ. The 
return value of find_mus is therefore a largest set X of variables for which Γ ∧∀X.ϕ is satisfiable. 

8.1.3 Using Abduction to Identify Imprecision Root Causes on Open SSH 

In this work, we created a self-contained version of OpenSSH that can be verified automatically, 
and used abductive inference to identify the missing pieces of information that we needed to add. 
This can range from simple additional assumptions to rewrites of code pieces to stubbing the 
behavior of sub-components. Table 8.2 gives a high-level overview of the changes needed  for our 
tool to establish absence of null pointer dereference errors as well as array/buffer overflow or 
underflow errors. 

As mentioned in the last section, the first key challenge is to identify possible small and relevant 
root causes from a spurious error report. All changes and annotations were identified using logical 
abduction, and we found this approach to be critical for any non-expert in identifying and 
remedying relevant precision losses. 

To give the reader an understanding of how abduction helps programmers identify relevant an- 
notations for error reports, consider the following sliced and condensed excerpt from OpenSSH. 
Observe that for keeping this example concise, we manually added one safety property that we 
want to prove, marked with static_assert on line 358 (In our full analysis, all necessary such 
checks are synthesized automatically). 

1 /*   Fatal   messages. This   function   never   returns.   */ 
2 void 
3 fatal ( const   char   * fmt ,...) 
4 { 
5 exit (1) ; 
6 } 
7
8 void * 
9 xmalloc ( size_ t   size ) 
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10 { 
11 void * ptr ; 
12 
13 if ( size == 0) 
14 fatal (" xmalloc :   zero size "); 
15 ptr   =   malloc ( size ); 
16 if ( ptr == NULL ) 
17 fatal (" xmalloc : u out  of   memory  ( allocating  % lu   bytes )",   ( u_ long ) 

size ); 
18 return ptr ; 
19 } 
20 
21 typedef struct { 
22 unsigned   int   num_ host_ key_ files ;         /*   Number of files for host keys.   */ 
23 int rhosts_ rsa_ authentication ;    /*   If true, permit rhosts RSA 
24 * authentication .   */
25 int  rsa_ authentication ;        /*  If true, permit RSA authentication */ 
26 int challenge_ response_ authentication ; 
27 int   password_ authentication ; 
28 }   Server Options ; 
29 
30 
31 
32 
33 
34 int errno ; 
35 /*   import   */ 
36 extern   Server Options   options ; 
37 extern   char   * __ progname ; 
38 extern uid_t original_ real_ uid ; 
39 extern uid_t original_ effective_ uid ; 
40 extern pid_t proxy_ command_ pid ; 
41 
42 
43 
44 void * 
45 xcalloc ( size_ t nmemb , size_ t size ) 
46 { 
47 void * ptr ; 
48 
49 if ( size == 0 || nmemb == 0) 
50 fatal (" xcalloc : u zero u size "); 
51 if ( SIZE_ T_ MAX / nmemb < size ) 
52 fatal (" xcalloc : u nmemb u* u size u>u SIZE_ T_ MAX "); 
53 ptr = calloc ( nmemb , size ); 
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54 if ( ptr == NULL ) 
55 fatal (" xcalloc : u out  of  memory  ( allocating  % lu  bytes )", 
56 ( u_ long )( size * nmemb )); 
57 return ptr ; 
58 } 
59 
60 void 
61 xfree ( void * ptr ) 
62 { 
63 if ( ptr == NULL ) 
64 fatal (" xfree :  NULL  pointer   given  as   argument "); 
65 free ( ptr ); 
66 } 
67 
68 
69 
70 
71 static   Authctxt   * authctxt ; 
72 /*   message   to   be   displayed   after   login   */ 
73 Buffer   loginmsg ; 
74 
75 /* 
76 *   Any   really   sensitive   data   in   the   application   is   contained   in   this 
77 *   structure .   The   idea   is   that   this   structure   could   be   locked   into memory   so 
78 *   that   the   pages   do   not   get   written   into   swap.  However ,   there   are some 
79 *   problems.   The private key contains   BIGNUMs ,   and   we   do   not   ( in principle) 
80 *   have   access   to   the   internals   of   them, and locking just the structure   is 
81 *   not   very   useful. Currently ,   memory   locking   is   not   implemented . 
82 */ 
83 struct { 
84 Key * server_ key ; /*   ephemeral   server   key   */ 
85 Key * ssh 1 _ host_ key ; /* ssh1 host key */
86 Key ** host_ keys ; /*   all   private   host   keys   */ 
87 int have_ ssh 1 _ key ; 
88 int have_ ssh 2 _ key ; 
89 u_char ssh 1 _ cookie [ SSH_ SESSIO N_ KEY_ LEN GTH ]; 
90 } sensitive_ data ; 
91 
92 void 
93 mm_ ssh 1 _ session_ id ( u_ char session_ id [16]) 
94 { 
95 Buffer   m; 
96 int i; 
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97 
98 debug3 ("% s   entering ", 
99 

100 buffer_ init (& m); 

__ func__ ); 

101 for  ( i =  0;  i  <  16;  i ++) 
102 buffer_ put_ char (& m,   session_ id [ i]); 
103 
104 mm_ request_ send (& m); 
105 buffer_ free (& m); 
106 } 
107 
108  
109 /* 
110 *   Decrypt   session_ key_ int using our private server and host key 

  111 *   ( key   with   larger   modulus   first). 
112 */ 
113 int 
114 ssh 1 _ session_ key ( BIGNUM   * session_ key_ int ) 
115 { 
116 int  rsafail  =   0; 
117 
118 if   ( BN_ cmp ( sensitive_ data . server_key -> rsa ->n, 
119 sensitive_ data . ssh 1 _ host_ key -> rsa -> n) > 0) { 
120 /*   Server   key   has   bigger   modulus.   */ 
121 if ( BN_ num_ bits ( sensitive_ data . server_key -> rsa -> n) < 
122 BN_ num_ bits ( sensitive_ data . ssh 1 _ host_ key -> rsa -> n) + 
123 SSH_ KEY_ BITS_ RESERVED )   { 
124 fatal (" do_ connection : u% s: u" 
125 " server_ key  % d <u host_ key  % d + u SSH_ KEY_ BITS_ RESERVED  % d", 
126 get_ remote_ ipaddr () , 
127 BN_ num_ bits ( sensitive_ data . server_key -> rsa -> n), 
128 BN_ num_ bits ( sensitive_ data . ssh 1 _ host_ key -> rsa -> n), 
129 SSH_ KEY_ BITS_ RESERVED ); 
130 } 
131 if ( rsa_ private_ decrypt ( session_ key_ int , session_ key_ int , 
132 sensitive_ data . server_key -> rsa ) <= 0) 
133 rsafail ++; 
134 if ( rsa_ private_ decrypt ( session_ key_ int , session_ key_ int , 
135 sensitive_ data . ssh 1 _ host_ key -> rsa ) <= 0) 
136 rsafail ++; 
137 } else { 
138 /*   Host   key   has   bigger   modulus   ( or   they   are   equal).   */ 
139 if ( BN_ num_ bits ( sensitive_ data . ssh 1 _ host_ key -> rsa -> n) < 
140 BN_ num_ bits ( sensitive_ data . server_key -> rsa -> n) + 
141 SSH_ KEY_ BITS_ RESERVED )   { 
142 fatal (" do_ connection : u% s: u" 
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143 " host_ key u % du<u server_ key u % du+ u SSH_ KEY_ BITS_ RESERVED u% d", 
144 get_ remote_ ipaddr () , 
145 BN_ num_ bits ( sensitive_ data . ssh 1 _ host_ key -> rsa -> n), 
146 BN_ num_ bits ( sensitive_ data . server_key -> rsa -> n), 
147 SSH_ KEY_ BITS_ RESERVED ); 
148 } 
149 if ( rsa_ private_ decrypt ( session_ key_ int , session_ key_ int , 
150 sensitive_ data . ssh 1 _ host_ key -> rsa ) < 0) 
151 rsafail ++; 
152 if ( rsa_ private_ decrypt ( session_ key_ int , session_ key_ int , 
153 sensitive_ data . server_key -> rsa ) < 0) 
154 rsafail ++; 
155 } 
156 return ( rsafail ); 
157 } 
158 
159 
160 /*   session   identifier ,   used   by   RSA - auth   */ 
161 u_char session_ id [16]; 
162 /*   variables   used   for   privilege   separation   */ 
163 int use_ privsep ; 
164 
165 /* Destroy the host and server keys. They will no longer be needed. */ 
166 void 
167 destroy_ sensitive_ data ( void ) 
168 { 
169 int i; 
170 
171 if ( sensitive_ data . server_ key ) { 
172 key_ free ( sensitive_ data . server_ key ); 
173 sensitive_ data . server_ key = NULL ; 
174 } 
175 for ( i = 0; i < options . num_ host_ key_ files ; i ++) { 
176 if ( sensitive_ data . host_ keys [ i]) { 
177 key_ free ( sensitive_ data . host_ keys [ i]); 
178 sensitive_ data . host_ keys [ i] = NULL ; 
179 } 
180 } 
181 sensitive_ data . ssh 1 _ host_ key = NULL ; 
182 memset ( sensitive_ data . ssh1_cookie ,   0 ,   SSH_ SESSION_ KEY_ LEN GTH ); 
183 } 
184 
185 /* 
186 *  SSH1 key exchange 
187 */ 
188 static void 

Approved for Public Release; Distribution Unlimited.



85 

189 do_ ssh 1 _ kex ( void ) 
190 { 
191 int i, len ; 
192 int rsafail = 0; 
193 BIGNU M   * session_ key_ int ; 
194 u_char   session_ key [ SSH_ SESSION_ KEY_ LEN GTH ]; 
195 u_char cookie [8]; 
196 u_int   cipher_type ,   auth_mask ,   protocol_ flags ; 
197 
198 /* 
199 * Generate   check   bytes   that   the   client   must   send   back   in   the   user
200 * packet   in   order   for   it   to   be   accepted;   this   is   used   to   defy   ip
201 * spoofing   attacks. Note   that   this   only   works   against   somebody 
202 * doing   IP   spoofing   from   a   remote   machine;   any   machine   on   the   local
203 * network   can   still   see   outgoing   packets   and   catch   the   random
204 * cookie. This   only   affects   rhosts   authentication ,   and   this   is   one 
205 * of   the   reasons   why   it   is   inherently   insecure.
206 */ 
207 arc 4 random_ buf ( cookie ,   sizeof ( cookie )); 
208 
209 /* 
210 * Send   our   public   key. We   include   in   the   packet   64   bits   of   random 
211 * data   that   must   be   matched   in   the   reply   in   order   to   prevent   IP
212 * spoofing.
213 */ 
214 packet_ start ( SSH_ SMSG_ PUBLIC_ KEY ); 
215 for  ( i =  0;  i  <  8;  i ++) 
216 packet_ put_ char ( cookie [ i]); 
217 
218 /*   Store   our   public   server   RSA   key.   */ 
219 packet_ put_ int ( BN_ num_ bits ( sensitive_ data . server_key -> rsa -> n)); 
220 packet_ put_ bignum ( sensitive_ data . server_key -> rsa -> e); 
221 packet_ put_ bignum ( sensitive_ data . server_key -> rsa -> n); 
222 
223 /*   Store   our   public   host   RSA   key.   */ 
224 packet_ put_ int ( BN_ num_ bits ( sensitive_ data . ssh 1 _ host_ key -> rsa -> n)); 
225 packet_ put_ bignum ( sensitive_ data . ssh 1 _ host_ key -> rsa -> e); 
226 packet_ put_ bignum ( sensitive_ data . ssh 1 _ host_ key -> rsa -> n); 
227 
228 /*   Put   protocol   flags.   */ 
229 packet_ put_ int ( SSH_ PR OTOFLA G_ H OST_ IN_ F W D_ OPEN ); 
230 
231 /*   Declare   which   ciphers   we   support.   */ 
232 packet_ put_ int ( cipher_ mask_ ssh 1 (0) ); 
233 
234 /*   Declare   supported   authentication   types.   */ 
235 auth_ mask = 0; 
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236 if ( options . rhosts_ rsa_ authentication )  
237 auth_ mask   |=   1   <<   SSH_ A UTH_ R H OSTS_ RSA ; 
238 if ( options . rsa_ authentication ) 
239 auth_ mask   |=   1   <<   SSH_ AUTH_ RSA ; 
240 if ( options . challenge_ response_ authentication == 1) 
241 auth_ mask   |=   1   <<   SSH_ AUTH_ TIS ; 
242 if   ( options . password_ authentication ) 
243 auth_ mask   |=   1   <<   SSH_ A UTH_ PASSW OR D ; 
244 packet_ put_ int ( auth_ mask ); 
245  
246 /*   Send   the   packet   and   wait   for   it   to   be   sent.   */ 
247 packet_ send (); 
248 packet_ write_ wait (); 
249  
250 debug (" Sent u% du bit u server u key u and u% du bit u host u key .", 
251 BN_ num_ bits ( sensitive_ data . server_key -> rsa -> n), 
252 BN_ num_ bits ( sensitive_ data . ssh 1 _ host_ key -> rsa -> n)); 
253  
254 /*   Read   clients   reply   ( cipher   type   and   session   key). */ 
255 packet_ read_ expect ( SSH_ CMSG_ SESSION_ KEY );  
256   
257 /*   Get   cipher   type   and   check   whether   we   accept   this. */ 
258 cipher_ type  =  packet_ get_ char ();  
259   
260 if   (!( cipher_ mask_ ssh 1 (0)   &   (1   <<   cipher_ type ))) 
261 packet_ disconnect (" Warning : u client u selects u unsupported u cipher ."); 
262 
263 /*   Get   check   bytes   from   the   packet. These   must   match   those   we 
264 sent   earlier   with   the   public   key   packet.   */ 
265 for  ( i =  0;  i  <  8;  i ++) 
266 if ( cookie [ i] != packet_ get_ char ()) 
267 packet_ disconnect (" IP  Spoofing  check   bytes  do   not  match ."); 
268 
269 debug (" Encryption   type :   %.200 s",   cipher_ name ( cipher_ type )); 
270 
271 /*   Get   the   encrypted   integer.   */ 
272 if (( session_ key_ int = BN_ new ()) == NULL ) 
273 fatal (" do_ ssh 1 _ kex :   BN_new   failed "); 
274 packet_ get_ bignum ( session_ key_ int ); 
275 
276 protocol_ flags = packet_ get_ int (); 
277 packet_ set_ protocol_ flags ( protocol_ flags ); 
278 packet_ check_ eom (); 
279 
280 /*   Decrypt   session_ key_ int   using   host/ server   keys   */ 
281 rsafail   =   PRIVSEP ( ssh 1 _ session_ key ( session_ key_ int )); 
282 

Approved for Public Release; Distribution Unlimited.



87 

283 /*  
284 * Extract   session   key   from   the   decrypted   integer.  The key is in the
 285 * least   significant   256   bits   of   the   integer;   the   first   byte   of   the
 286 * key   is   in   the   highest   bits.
287 */  
288 if (! rsafail ) { 
289 ( void )   BN_ mask_ bits ( session_ key_ int ,   sizeof ( session_ key )   *   8); 
290 len = BN_ num_ bytes ( session_ key_ int ); 
291 if ( len  <  0  || ( u_int ) len  >  sizeof ( session_ key )) { 
292 error (" do_ ssh 1 _ kex :  bad  session   key  len u from  % s:  " 
293 " session_ key_ int  % d >  sizeof ( session_ key )  % l ", 
294 get_ remote_ ipaddr () ,   len ,   ( u_long ) sizeof ( session_ key )); 
295 rsafail ++; 
296 
297

}  else  { 
 ( i k     0    i f ( i  k  ))298 BN_ bn 2 bin ( session_ key_ int , 

299 session_ key  +  sizeof ( session_ key )  -  len ); 
300 
301 derive_ ssh 1 _ session_ id ( 
302 sensitive_ data . ssh 1 _ host_ key -> rsa ->n, 
303 sensitive_ data . server_key -> rsa 

->n, 
304 cookie , session_ id ); 
305 /* 
306 * Xor   the   first   16   bytes   of   the

session   key   with   the 
307 * session   id.
308 */ 
309 for  ( i =  0;  i  <  16;  i ++) 
310 session_ key [ i] ^=  session_ id [ 

i]; 
311 } 
312 }  
313 if ( rsafail ) { 
314 int bytes = BN_ num_ bytes ( session_ key_ int ); 
315 u_char   * buf   =   xmalloc ( bytes ); 
316 M D 5 _ CTX   md; 
317 
318 logit (" do_ connection :   generating  a fake   encryption   key "); 
319 BN_ bn 2 bin ( session_ key_ int , buf ); 
320 M D 5 _ Init (& md); 
321 M D 5 _ Update (& md ,   buf ,   bytes ); 
322 M D 5 _ Update (& md ,   sensitive_ data . ssh1_cookie , 

SSH_ SESSION_ KEY_ LEN GTH ); 
323 M D 5 _ Final ( session_key ,   & md); 
324 M D 5 _ Init (& md); 
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325 M D 5 _ Update (& md , session_key , 16) ; 
326 M D 5 _ Update (& md , buf , bytes ); 
327 M D 5 _ Update (& md , sensitive_ data . ssh1_cookie , 

SSH_ SESSION_ KEY_ LEN GTH ); 
328 M D 5 _ Final ( session_ key   +   16 ,   & md); 
329 memset ( buf ,   0 ,   bytes ); 
330 xfree ( buf ); 
331 for  ( i =  0;  i  <  16;  i ++) 
332 session_ id [ i] =  session_ key [ i] ^ session_ key [ i +  16]; 
333 } 
334 /*   Destroy   the   private   and   public   keys.   No   longer. */ 
335 destroy_ sensitive_ data (); 
336 
337 if ( use_ privsep ) 
338 mm_ ssh 1 _ session_ id ( session_ id ); 
339 
340 /*   Destroy   the   decrypted   integer. It   is   no   longer needed. */ 
341 BN_ clear_ free ( session_ key_ int ); 
342 
343 /*   Set   the   session   key. From this on all communications will be encrypted .   */ 
344 packet_ set_ encryption_ key ( session_key ,   SSH_ SESSION_ KEY_ LENGTH , 

cipher_ type ); 
345 
346 /*   Destroy   our   copy   of   the   session   key. It   is   no   longer   needed.   */ 
347 memset ( session_key ,   0 ,   sizeof ( session_ key )); 
348 
349 debug (" Received   session   key ;  encryption  turned  on."); 
350 
351 /*   Send   an   acknowledgment   packet.  Note that this packet   is sent encrypted .   */ 
352 packet_ start ( SSH_ SMSG_ SUCCESS ); 
353 packet_ send (); 
354 packet_ write_ wait (); 
355 
356 
357 for ( i = 0; i < options . num_ host_ key_ files ; i ++) { 
358 static_ assert ( sensitive_ data . host_ keys [ i] == NULL ); 
359 } 

Observe that even in this sliced and self-contained code fragment, it is far from clear why the 
analysis is reporting this error and what information is missing or where precision was lost. Using 
logical abduction, our tool automatically identifies the following fact: 

“ If function destroy_sensitive_data() sets every element of  sensitive_data.host_keys 
in range[0, options.num_host_key_files] to NULL, this will prove the   assertion.” 
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More formally, we identify a simplest and most general solution to the abduction problem as: 

ψ :=   ∀i.(0 ≤ i < options.num_host_key_ files ∧ call(destroy_sensitive_data)) → 
(array(sensitive_data.host_keys, i) = 0) 

 
While the desired property clearly holds for the loop in destroy_sensitive_data(), the ver-
ification tool, for internal reasons that are obscure to the tool user, fails to understand this loop 
properly. In this case, this is clearly the case, and after annotating this missing piece of infor-
mation, the assertion is now provable. Specifically, we add the following simple annotation to 
line 176: 

assume(  (!(0<=_t  &&  _t  <=  i)) || ( sensitive_data.host_keys[_t]  ==  NULL)); 

where the syntax _t marks _t as a universally quantified variable. 

Observe that logical abduction helped us immediately pin down the root cause of this spurious 
report without any need for the user to be familiar with the internal reasoning and limitations of 
the analysis tool used. 

 

8.1.4 Code Changes and Annotations 
 

In order to complete the verification of memory safety properties, we also added a few key an- 
notations, as well as modified some lines of code in order to facility automated analysis of the 
code. This mostly involved expressing global object invariants as annotations, as well as replacing 
built-in macros that copy memory contents with explicit store statements. 

Here is a code snippet from clientloop.c to illustrate this: 
1 
2 //   Annotated   global   invariants 
3 assume ( options . num_ send_ env   <=   M AX_ SEND_ ENV ); 
4 assume ( options . num_ send_ env   >=0); 
5 assume ( env_ len * sizeof ( char *)   <=   buffer_ size ( env )); 
6 
7 /*   Transfer   any   environment   variables   from   client   to   server   */ 
8 if ( options . num_ send_ env != 0 && env != NULL ) { 
9 int   i,   j,   matched ; 

10 char * name , * val ; 
11 
12 debug (" Sending u environment ."); 
13 for   ( i   =   0;   i< env_ len ;   i ++)   { 
14 //   here   we   replaced   pointer   arithmetic   used   in 
15 //   the   original   code   with   an   explicit   array   reference style 
16 
17 /*   Split   */ 
18 name = env [ i]; 
19 
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20 if (( val = foo ( name , ’=’)) == NULL ) { 
21 xfree ( name ); 
22 continue ; 
23 } 
24 
25 * val ++  =  ’\0 ’;
26 
27 matched   =   0; 
28 for ( j = 0; j < options . num_ send_ env ; j ++) { 
29 if   ( match_ pattern ( name ,   options . send_ env [ 

j])) 
{ 

30 matched   =   1; 
31 break ; 
32 } 
33 } 
34 if   (! matched )   { 
35 
36 

debug3 (" Ignored u env u% s", name ); 
xfree ( name ); 

37 continue ; 
38 
39 

} 

40 debug (" Sending   env  % s =  % s", name , val ); 
41 channel_ request_ start ( id , " env ", 0); 
42 packet_ put_ cstring ( name ); 
43 packet_ put_ cstring ( val ); 
44 packet_ send (); 
45 xfree ( name ); 
46 } 
47 } 

Note that the key object invariants relating global values are annotated in order to allow the suc-
cessful analysis of this code segment. 

8.2    Dark Corners 

Sound static program analysis promises exhaustive detection of many classes of program errors 
and, ideally, verification that the program is free of these errors. Despite decades of effort investing 
in developing powerful static analyses, we are still far from having a static analysis that can analyze 
existing programs precisely enough to make verifying the absence of important errors (such as 
memory safety vulnerabilities) feasible in practice. The critical issue is the lack of precision that 
such analyses inevitably encounter when analyzing the programs that occur in practice. This lack 
of precision causes either 1) unacceptable numbers of false positive alarms or 2) the use of unsound 
techniques that may leave errors uncovered. 
Our hypothesis is that, in existing programs, only a small percentage of the code (the code’s dark 
corners) is responsible for this lack of precision.  If this hypothesis is true, it opens up the 
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possibility that we are much closer to a practical program analysis for verifying important secu-
rity (and potentially other properties) than it currently appears. Our work on analyzing the Java 
system libraries in DroidSafe [1] supports this. In many cases, small changes to the library 
code significantly increased the precision of the analysis 

We believe that once the small percentage is identified that there are reasonable techniques for 
addressing the complex code. For example: (1) Applying more expensive analysis techniques to 
this code; (2) Making manual changes to the code and/or adding annotations/dynamic checks to 
reduce the complexity; (3) Replacing the code with similar code from other projects (e.g., DARPA 
MUSE); (4) Providing an alternative implementation that is easier to analyze but can be shown to 
match the existing implementation (with respect to memory safety). 

We investigated this hypothesis on a set of widely used open source C programs from coreutils. 
Specifically mv.c and chroot.c Our goal was to create versions of the programs for which we can 
verify memory safety (out of bounds accesses), null pointer dereferences, and the use of   uninitial-
ized variables. 

We used a focused version of the Compass tool [102, 103, 92] (CONCORD) adapted and stream- 
lined for robustness and coverage for this study. 

8.2.1 Concord Features 

Concord analyzes C programs and processes some additional functions to aid in the analysis. It 
can check assertions added by the programmer and can automatically check for buffer overflows, 
null pointer dereferences, and the use of uninitialized variables. 

Concord supports a number of special functions. These are most commonly used in library routine 
summaries though there are use cases (primarily for static_assert) in the application as   well. 

The primary functions supported by Concord are: 

• void static_assert (<expr>) - Statically checks the specified expression.

• void assume (<expr>) - Assume that the specified expression is true

• <type> set_nonnull_<type> - Function that returns a value that is non-null (non-zero) for
the specified type. This function must be declared with the correct type. Concord does not
operate correctly if there are type mismatches between the return value of set_nonnull and
the variable it is assigned to.

• int unknown() - Returns an arbitrary initialized integer value

• void buffer\_safe (void *buffer, int offset) - Statically checks whether or not it is
safe to index into buffer at offset

• void assume\_size (void *buffer, int len) - Assume that the size of buffer is len

Approved for Public Release; Distribution Unlimited.



92 

8.2.2 Coding practices and analysis 

We discovered a number of coding practices that make a significant difference to the analysis. In 
most cases, the alternative easier to analyze version is basically equivalent in terms of coding effort 
and efficiency. 

8.2.2.1 Obscure loop iterations / indexing 

Concord attempts to find invariants as part of analyzing loops. One of its main approaches is to 
attempt to find a relationship between the loop counter (K) and various loop variables. This works 
well when the loop is straightforward (such as a loop over an array of values), but may fail to 
provide interesting information or timeout when the relationship is obscure. 

For example the C library function getopt() processes command line arguments.  Each call to 
getopt() returns the next valid option character. A typical loop that invokes getopt() looks like: 

1 while   (( c   =   getopt   ( argc ,   argv ," bfint : uvS : T")   !=   -1)   { 
2 //   switch   on   option   character 
3 switch   ( c) 
4 ... 
5 } 

To support this usage model, the internals of getopt() uses the external variable optind to keep 
track of the current argument and the static variable nextchar to keep track of the next argument 
and next option character within that argument. These variables are updated on each call. A greatly 
simplified version of getopt() shows roughly how this  works: 

1 int  getopt ( int  argc , char ** argv , char * options ) { 
2 { 
3 if ( nextchar ==  NULL ) || (* nextchar ==  ’\0 ’) { 
4
5 if( optind == 0) optind = 1; 
6 while   (( optind   <   argc )   &&   ( argv [ optind ][0]   !=   ’-’)) 
7 optind ++; 
8 if ( optind >= argc ) return -1; 
9 nextchar = argv [ optind ] + 1; 

10 } 
11 return   (* nextchar ++); 
12 } 

There is no straightforward relationship between the loop counter and any of the variables. In or-
der to create a simple interface for the caller, getopt() turns what might naturally be two nested 
loops into a single loop which significantly complicates the analysis. In this case, Concord times 
out while attempting to simplify the loop. 

If this were not a utility routine it could be implemented in a much more straightforward fashion 
as two nested loops.  The first loop is over each of the arguments and then within each option 
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argument (those that begin with a dash), a loop over each option character in the argument. For 
example: 

1 for ( i = 0; i < argc ; i ++) { 
2 char * arg = argv [ i]; 
3 if  (* arg ++  ==  ’-’) { 
4 while   (* arg   !=   0)   { 
5 ch = * arg ; 
6 switch   ( c) 
7 ... 

This version works fine in Concord. (and is arguably just as easy to use as the original) But some 
of the complexity is no longer hidden in a library routine. This could be resolved by creating two 
library routines (one to loop through the arguments and the other to process an argument). 

Another approach is to provide a simpler summary of the library method rather than analyzing 
the method itself. This has the downside of not proving correctness of the library routine, but can 
create a much more analyzable version for the application. In this case, we replaced getopt() by: 

1 int getopt ( int argc , char ** argv , char * options ) { 
2
3 static_ assert ( argv !=  NULL ); 
4
5 //   optind   is   guaranteed   to   point   into   argv 
6 optind = unknown (); 
7 assume (( optind  >=  1 >  &&  ( optind  <  argc )); 
8
9 //   optarg is a pointer   to   the   value   for   an   argument. An argument 

l l 10      //   value may   either   immediately   follow   the   option   character 

11 //  or be in the next   argument 
12 
13 

optarg  =  unknown (); 

14 //   Each   of   the   strings   in   argv   should   be   valid 
15 int ii; 
16 
17 

for  ( ii =  0;  ii <  argc ; ii ++)  { 
buffer_ safe   ( argv ,   ii); //   check that ii is a safe index 

18 check_ str_ nn  ( argv [ ii ]); 
19 } 
20 
21 //   The   return   value   is   either   a   character   or   -1 
22 int rval = unknown (); 
23 assume   (( rval   ==   -1)   ||   (( rval   >   0) &&   rval   <   255) ); 
24 return rval ; 
25 } 

This code checks all of its arguments for validity and sets up reasonable return values. This allows 
the caller to be verified by Concord. 
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This version is also handled correctly by Concord and shows that there are no errors in the client 
(mv, chroot, etc.) 

Unfortunately, the summary approach may miss some nuanced problems with the use of getopt() 
such as when there are arguments associated with options. The optarg value is only set when 
such an argument is encountered. The summary has to set optarg to a valid value on each call 
(because it does not know which calls will have an option value) It is possible that a caller may 
access optarg when it is not set which would lead to a memory error. 

This problem can be handled when options are handled as two nested loops. 
1 for ( i = 0; i < argc ; i ++) { 
2 char * arg = argv [ i]; 
3 if  (* arg  ==  ’-’)  { 
4 arg ++; 
5 while   (* arg ++)   { 
6 ch = * arg ; 
7 switch   ( c){ 
8 case ’b’: 
9 make_ backups = true ; 

10 break ; 
11 case ’f’: 
12 x. interactive   =   I_ AL W A YS_ YES ;
13 break ; 
14 case ’i’: 
15 x. interactive   =   I_ ASK_ USER ;
16 break ; 
17 case ’n’: 
18 x. interactive   =   I_ AL W A YS_ NO ;
19 break ; 
20 case ’t’: 
21 if (* arg ) { 
22 target_ directory = arg ; 
23 }   else   {   //   directory   is   in   the   next   argument 
24 target_ directory = argv [ i ++] 
25 } 
26 //   move arg pointer to the end of the argument to break the loop 
27 arg += strlen ( arg ); 
28 break ; 
29 case   ’T’: 
30 no_ target_ directory = true ; 
31 break ; 
32 case ’u’: 
33 x. update   =   true ;
34 break ; 
35 case ’v’: 
36 x. verbose   =   true ;
37 break ; 
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38 case   ’S’: 
39 make_ backups = true ; 
40 //   backup_ suffix_ string   =   optarg; 
41 break ; 
42 case_ GETOPT_ HELP_ CHAR ; 
43 case_ GETOPT_ VERSION_ C H AR   ( PROGRAM_ NAME ,   AUTHORS ); 
44 default : 
45 usage   ( EXIT_ FAILURE ); 
46 } 
47 ... 

8.2.2.2 Additional Checks 

Any static analysis can be confused by complex relationships between variables. It may be  that 
at a particular point in the program, that a certain condition must be true and the program is safe 
to assume that. The static analysis may not be able to reason about this and may produce a false 
positive. 

One simple solution to this problem is to add a redundant check for the condition where it is as-
sumed. For example, getopts() handles command line options that take an argument. If the argu-
ment is missing, getopts() will, be default, issue an error message and terminate. The application 
can thus safely assume that the argument is not null. This correspondence would be extremely 
difficult to determine analyzing the getopt() code and impossible when using the summary. 

However, it is easy to avoid the problem by simply adding an additional null check for the argument 
at its point of use. This was necessary only a few times in our example programs. 

8.2.2.3 Pointer Arithmetic 

Complex pointer arithmetic can be difficult to analyze and lead to inaccuracies in analysis. In 
many cases, this can be replaced by an array reference. This can make the relationship between 
the loop variable and the array reference more explicit. 

This is the change that we made in clientloop.c to allow the analysis to remove false positives. 

8.2.3 Verification Approach 

We verified several coreutils programs for memory safety as part of the project. The verification 
concentrated on the main file of the program. Calls to methods in the standard C library and the 
coreutils libraries were not included. These methods were summarized with respect to memory 
safety. Each summary checks the validity of each of the arguments to the function and sets any 
return values to the correct range of valid values. For example, the summary of stat() is: 

1 int  stat  ( char  const  * file , struct  stat  * st) { 
2 
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3 //   Make   sure   arguments   are   not   null 
4 static_ assert ( file != NULL ); 
5 static_ assert ( st != NULL ); 
6
7 //   Initialize   fields   to   non - zero   ints 
8 st -> st_dev = set_ nonnull_ int (); 
9 st -> st_ino = set_ nonnull_ int (); 

10 st -> st_ mode = set_ nonnull_ int (); 
11 
12 //   Return   normally   or   error 
13 if ( set_ nonnull_ int () == 1) 
14 return 0; 
15 else   {   //   simulated   error 
16 errno = set_ nonnull_ int (); 
17 return -1; 
18 } 
19 } 

Note that this initializes fields to non-zero values. This ensures that accesses to these field will not 
result in uninitialized read errors. 

8.2.4 Concord limitations 

While we addressed a number of limitations in Concord, there is additional work that would allow 
a wider range of programs to be verified and ease the work of doing so. Some of these are listed 
below. 

Valid Strings. Null terminated strings are a very basic type in C. It is difficult to define these 
efficiently using the building blocks currently available in Concord. A valid null-terminated string 
should consist of an array of initialized characters followed by the null character. The array of 
characters (including the null) should be less than or equal to the size of the buffer that contains 
them. In concord, such a check could be coded something like: 

1 void valid_ string ( char * str ) { 
2 int i; 
3 for ( int i =  0; str [ i] !=  ’\0 ’; i ++) 
4 char ch = str [ i]; 
5 static_ assert ( buffer_ size ( str ) > i); 
6 } 

Unfortunately, it is not as easy to specify that an unknown string (such as one read from a command 
line argument or a file) is a valid one. And Concord doesn’t currently have a mechanism to assign 
an arbitrary size to a buffer (such as might be returned from   getenv()) 

Given the prevalence of strings and string manipulations in C, it seems worthwhile to support them 
directly in Concord.  This could be accomplished by adding some new functions.  The function 
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check_str() would check for a valid string, the function set_str() would mark the string as valid 
or NULL, and the function set_str_nonnull() would mark the strings as valid and not null. This 
would allow functions that accept strings as arguments to perform checks on their inputs and return 
valid outputs. It would also make it straightforward to provide summaries for the standard C string 
functions. 

Object invariants. Object invariants are constraints on an object that should be true at entry/exit 
to all of the public methods of the object. The valid string checks described above are a special 
case of these. Object invariants can simplify static checking by providing assumptions that will 
always hold over an object of a particular type. If Concord were to be enhanced with sup- port 
for object invariants (possibly over C structures), it would be easier to verify more complex pro-
grams. 

Assumes. Currently Concord does not propagate information about variables specified by assumes 
(or implied by conditional statements) as cleanly as it propagates sets of possible values. This 
can lead to false positives when the necessary information to verify a property is available but not 
fully propagated. 

Loop Invariants. Concord attempts to learn relationships between the iterations of a loop and any 
variables that are manipulated in the loop. Allowing loop invariants to be specified would make 
it possible to handle more complex loops. 

Varargs. Concord doesn’t currently support variable argument lists, but this would be any easy 
enhancement. 

Memory Management Checks. With respect to memory safety, Concord checks for out-of- 
bounds buffer accesses, reading uninitialized values, and null dereferences. It could be enhanced 
to check for common memory management errors such as Memory leaks, double frees, etc. 

Non-deterministic. Due to low level implementation choices, some of the basic data structures 
used within Concord do not yield deterministic results (one run may timeout or show false positives 
while a subsequent run does not). It is a straightforward fix to change the underlying sets, lists, 
and maps to have a repeatable order. 

8.2.5 Debugging 

Debugging false positives (and differentiating between false positives and real problems) when 
verifying code can be challenging to the non-expert. However, as part of this project we discovered 
a relatively straightforward process for quickly finding the source of problems. 
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In some sense, debugging a verification error is very much like debugging a normal coding error. 
The static analysis indicates that a particular operation is not necessarily correct (e.g., it is derefer-
encing a possibly null variable or reading an uninitialized variable). If the assertion were checked 
at run-time, it would fail in a very similar fashion. A standard debugging technique would be to 
add debug statements to earlier points in the program to determine where the unexpected value 
came from. 

A very similar approach can be taken with Concord. One can add assertions earlier in the data-flow 
of the variable making the same check. Iteratively re-running the analysis and adding additional 
assertions can quickly narrow down the problem (perhaps using a rough binary search). Once the 
root cause of the problem is found, it is usually pretty straightforward to fix. 

This basic approach can be applied more generically as well. It is useful to add assertions at stand-
ard program points (such as function entry and exit points). They can help make the assumptions 
of the function and its results more clear. The systematic presence of such asserts will often un- 
cover problems much closer to the source. We found that to be the case when working with our 
library summaries. Calls to the libraries often triggered failures quite close to the actual problem 
that would otherwise have appeared much later. 

Not surprisingly, this approach works best when dealing with false positives. It is much less helpful 
in debugging problems that cause timeouts in the solver. 
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9.0 CONCLUSION 

Application marketplaces provide a centralized location for application developers to place appli-
cations for potential users. A critical weakness with current application marketplaces, however, is 
that users have no way to be sure that the applications in the marketplace are free of malware. The 
potential presence of malicious malware and the resulting possibility of widespread security vul-
nerabilities can even eliminate the ability of service organizations (such as the United States 
Department of Defense) with stringent security needs to use application marketplaces. 

The DroidSafe project developed effective program analysis techniques and tools to uncover ma-
licious code in Android mobile applications. The core of the system is a static information flow 
analysis that reports the context under which sensitive information is used. The DroidSafe project 
invested significant time developing a comprehensive semantic model of Android run-time behav-
iors alongside the analysis to achieve acceptable precision, accuracy, and scalability for real-world 
Android applications. To address subtle functional correctness bugs and vulnerabilities, we have 
produced a formal model of (part of) the Android system capable of supporting proofs of functional 
correctness of simple but non-trivial Android apps. 

The combined system has been demonstrated to be the most precise and accurate information flow 
analysis for Android applications. The analysis results can be used to automatically check appli-
cations for security policy violations, and the results can help a human analyst inspect sensitive 
behaviors of an app, increasing accuracy and throughput of application vetting. For each of the last 
six APAC engagements, the DroidSafe team was unsurpassed in malware diagnosis accuracy and 
human-analysis diagnosis throughput. 

We also explored how to move precise static analysis and verification techniques from special-
ized research tools to an approach that can feasibly be adopted by programmers in the real world. 
Our hypothesis is that, in existing programs, only a small percentage of the code (the code’s dark 
corners) is responsible for this lack of precision. We found that in many cases relatively straight- 
forward code modifications can yield code that is analyzable and still practical. 
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