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1. Introduction

Breast cancer is the most common malignant disease in women worldwide. The overall survival 

of breast cancer patients is greatly extended due to the improvement of diagnosis and treatment. 

However, there is a subpopulation of cancer cells, cancer stem cells (CSCs), which cannot be 

eliminated by current therapies, and resulted to recurrence and metastasis of breast cancer. 

Cancer stem cells (CSCs) are a rare population of cancer cell, they possess the characteristics of 

self-renewal and initiate and sustain tumor growth. Breast cancer stem cells (BCSCs) harbor 

CD44
high

/CD24 
low

 and ALDEFLOUR-positive (ALDH1) properties, and some epithelial

mesenchymal transition (EMT) markers.  EMT represents the series of events converting 

adherent epithelial cells into individual migratory cells able to invade the extracellular matrix, 

and EMT plays a crucial role in cancer cell invasion and the distal metastasis in epithelial 

cancers.  CSCs are largely regulated by Wnt/ β-catenin, Notch and Hedgehog pathways. These 

pathways are often dysregulated in many types of cancers, specifically within subpopulations of 

these cancers that possess stem cell properties. Therefore, it becomes important for 

understanding the features of cancer stem cells and blocking their activities in cancer therapy. 

Sirtuin 1 (SIRT1) belongs to a class III histone deacetylase (HDAC) that deacetylates histone 

and non-histone proteins to regulate gene transcription factors and protein functions. SIRT1 

regulations are involved in cell growth, apoptosis and tumorigesis. Recently, SIRT1 was found to 

play essential roles in the maintenance and differentiation of various cancer stem cells, 

moreover, it was described SIRT1 has strong expressions in many malignant diseases included 

breast cancer. SIRT1 has described to involve in several signal pathways to regulation, such as 

Bcl-2 and Wnt/β-catenin pathway. Therefore, SIRT1 is considered as an important role in 

tumorigenesis and a close correlation with cancer stem cells. However, the role of how SIRT1 

associates with breast cancer stem cells is unclear. 

For clarify those issues, we investigated how SIRT1 regulates BCSCs, then we tested the 

therapeutic effects of SIRT1 inhibition in xenograft mice carrying breast tumors. Finally we 

elucidated the underlying mechanisms of SIRT1 regulation to BCSCs. 

2. Keywords

Breast cancer, breast cancer stem cell (BCSC), epithelial mesenchymal transformation (EMT), 

invasion, migration, SIRT1, inhibitor, cambinol, EX527, Wnt pathway, xenograft, 

immunohistochemistry, near-infrared fluorescent (NIRF) dye, tissue growth factor, cancer cell 

line, lymphovascular invasion, flow cytometry, qRT-PCR 

3. Overall Project Summary

We designed 6 tasks to finish this project.  

Task 1. SIRT1 inhibitors can induce differentiation of CSCs in breast cancer cell lines.  

Task 2. Human breast cancer cells (from patient’s samples) with CSC features have SIRT1.  

Task 3. SIRT1 inhibition can decrease metastasis, induce differentiation of CSCs, reduce EMT, 

and increase tumor cell sensitivity to chemotherapy in xenograft mouse model. 

Task 4. Wnt pathway is highly activated in breast CSCs and EMT of human breast cancer 

specimens. 

Task 5. Wnt pathway is blocked in the SIRT1 inhibition xenograft tumor tissue, which is 

responsible for inducing differentiation of CSCs and reducing EMT (merged to task 3 and 4). 

Task 6. Using cell line in vitro study to demonstrate that SIRT1 regulates CSCs and EMT 

through activation of Wnt pathway via interaction with Dvl proteins.  

All tasks have been completed and we are in the process for submitting the manuscripts for paper 

publications. 
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Task 1. SIRT1 inhibitors can induce differentiation of CSCs in breast cancer cell lines. 

The task has been performed and completed. In order to study the breast cancer stem cell 

population in cancer cell lines, flow cytometry analysis for the most commonly used stem cell 

markers CD44/CD24 expression and ALDH1a activity had been used, and mammosphere 

functional assay also was performed.  

Breast cancer cell lines (MDA-MB-231, MDA-MB-478 and T-47D) were treated with SIRT1 

inhibitor cambinol and EX527. Flow cytometry analysis for CD44/CD24 expression showed a 

significant reduced expression of CD44 expression in the triple negative breast cancer cell line 

MDA-MB-231. MDA-MB-231 cancer cells were negative for CD24 and positive for CD44, 

supporting the high grade nature of the tumor cells. When the cells were treated with SIRT1 

inhibitors cambinol (25 µM) and Ex527 (50 µM) for 24 hours, the cells showed significantly 

decreasing CD44 expression with a marked left shift (Figure 1A and 1B). Another triple negative 

breast cancer MDA-MB-468 cells showed coexpression of both CD24 and CD44, which was 

different from MDA-MB-231. Studies had shown that CD24 expression in MDA-MB-468 cells 

was important for its invasive ability. With SIRT1 inhibitors cambinol (25 µM) and Ex527 (50 

µM) treatment, MDA-MB-468 cells showed significant loss of CD24 expression and only slight 

loss of CD44 (Figure 2A and 2B). The hormonal receptor positive, high grade breast cancer T-

47D cells had no significant CD44 expression. All studies had been repeated for at least 2 times 

and showed similar results. 

1A 1B 

Figure 1. Figure 1A shows the dot plot of flow cytometry analysis for CD24/CD44 expression in 

MDA-MB-231 cancer cells, and 1B shows the histograph and the overlap of the CD44 intensity 

in SIRT1 inhibitor treated cells comparing to DMSO control (orange-control; green-cambinol 

treated; blue-Ex527 treated).  
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2A                                                                             2B 

Figure 2. The histograph and the overlap of the CD24 intensity (2A) and the CD44 intensity (2B) 

in SIRT1 inhibitor treated cells comparing to DMSO control (orange-control; green-cambinol 

treated; blue-Ex527 treated) in MDA-MB-468 cells. 

Adeflour for ALDH1a was performed on MDA-MB-231 cells. SIRT1 inhibitor cambinol treated 

cells showed dramatic decreased ALDH1a positive population, from 45% in the DMSO control 

to 6.9% in the cambinol 25 µM treated cells (Figure 3). T-47D cells had only minimal ALDH1a 

positive cells. Mammosphere assay was performed according the manufactory instruction. 

Because triple negative breast cancer MDA-MB-231 and MDA-MB-468 did not form tight and 

large spheres, T-47D cells were used for the assay. The mammosphere assay showed a 

significant reduce of sphere formation in T-47D cells when treated cells with SIRT1 inhibitor 

cambinol and Ex527. 

Figure 3. Breast cancer MDA-MB-231 cells 

were treated with DESO and SIRT1 

inhibitor cambinol 25 µM for 24 hours. 

Cells were harvested and prepared 

according to the Adeflour manufactory 

instruction for the assay. For each sample, a 

half of the sample was inactived to serve as 

the sample negative control, and the 

ALDH1a positive cells were analyzed with 

flow cytometry. The DMSO treated MDA-

MB-231 cells had 45% of ALDH1a positive 

cells, and the cambinol treated cells had 

only 6.9% ALDH1a positive cells. The 

study had been repeated for 3 times with the 

similar findings.   
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On the next step, cancer stem cell gene expression profile with SIRT1 inhibitor treatment using 

qRT-PCR was performed on several cell lines, and stem cell genes including Nanog and SOX-2 

were analyzed. After cambinol treatment for 48 hours, MDA-MB-231 cells showed significantly 

gene expression down regulation for all genes (4A-B). T-47D cells showed similar findings (4C-

D) 

4A 4B 

4C 4D 

Figure 4.  Inhibition of SIRT1 significantly reduced stem cell markers and associated genes in 

breast cancer. qRT-PCR was performed to detect stem cell associated genes Nanog and Sox-2 in 

MDA-MB-231(A) and T47D cells (C) with the treatment of either DMSO or 25µM of cambinol. 

Three similar experiments were performed, representative results were shown. Expressions of 

Nanog and SOX-2 by western blot were shown in MDA-MB-231 cells (B) and T47D cells (D).  

T-47D cancer cells showed very good response to TGFβ1 stimulation compared to triple 

negative MDA-MB-231 cells, so T-47D was used to study for TGF β1 study. The western blot 

showed SIRT1 inhibitors cambinol and Ex527 also reduced the protein levels of Nanog and Sox-

2 in T47D cells, corresponding to the qRT-PCR results. Furthermore, specifically knock down 

SIRT1 expression with SIRT1 small inhibitor RNA significantly reduced SOX-2 protein and 

slightly decreased Nanog protein in T-47D cells. 
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Since cancer cells with stem cell characters share some similar features with cancer cells 

undergoing EMT, we studied some molecular markers of EMT on the cancer cell lines. For 

cancer cells undergoing EMT, they loss E-cadherin and gain expression of N-cadherin, vimentin 

and smooth muscle actin. T-47D cells were stimulated with 1 ng/ml TGFβ1 with DMSO or 

cambinol 25 µM, and the gene expression was compared after 24 hours. Using qRT-PCR, SIRT1 

inhibitor cambinol significantly blocked TGFβ1 induced vimentin, N-cadherin and SMA 

expression in T-47D breast cancer cells (5A). Using western blot, cambinol treatment 

significantly reduced claudin-1 and markedly increased E-cadherin, indicating cambinol 

blocking TGFβ1 induced EMT in T-47D cells (5B). 

. 

5A                                                                                           5B 

Figure 5. SIRT1 inhibitor cambinol significantly blocked TGFβ1 induced EMT in T-47D breast 

cancer cells showing in both qRT-PCR (5A) and western blot (5B). 

For further exploring SIRT1 inhibition influence stem cells, mammosphere functional assay had 

been performed. As shown in Figure 6, SIRT1 inhibitor cambinol and EX527 significantly 

reduced the mammosphere formation in T-47D cells. 

DMSO Cambinol 25µM EX527 50µM 

6A 6B 6C 

Figure 6. Inhibition of SIRT1 exhibited a decreased proportion and mammosphere formation 

capacity of breast cancer cells. T-47D was used for the mammosphere formation assay. Cells 

were cultured in conditional medium with DMSO, 25µm of cambinol and 50µm of Ex527 were 

added to the corresponding culture media. After 7 days in culture, mammospheres were counted 

and photographed.  

In summary, in vitro study in several breast cancer cell lines using flow cytometry analysis 

for CD24/CD44 expression and Adeflour for ALDH1a positive cells, functional study with 

mammosphere assay, and qRT-PCR for gene expression profile showed SIRT1 inhibitors 

T47D 

E-cadherin 

Tubulin 

Claudin-1 

TGF-β1 (µg)                   -             1      1     1 
SIRT1 Inhibitor(µM)    -             -           C25         E50 
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can induce cancer cell differentiation by reducing cancer stem cell population and blocking 

TGFβ1 induced EMT. 

Task 2. Human breast cancer cells (from patient’s samples) with CSC features have SIRT1. 

32 breast cancers with variable grades and stages had been selected after the IRB approval, and 

SIRT1, several CSC markers (CD44, ALDH1a, SOX-2, OCT-4, Nanog and CD133) and EMT 

markers (vimentin, E-cadherin, Snail and Twist) had been used for immunohistochemistry. 

CD44/ALDH1a double staining has been used. All markers were blindly scored using H score 

formula, with staining intensity (0-3) times the cell percentage (0-100). The scores ranged from 

0-300. Chi square and Pearson correlation coefficient were used for data analysis. The 

immnohistochemical results showed significant correlation between SIRT1 expression and breast 

cancer tumor grades, and grade 3 breast cancers had significantly high SIRT1 expression 

compared to grade 1/2 breast cancers (7A). Pearson correlation coefficient analysis showed 

significant positive correlation between SIRT1 and vimentin (p=0.0001) (7B). High grade breast 

cancers showed decreased E-cadherin, but the difference was not significant.  

7M 

Figure 7. The representative H&E images from different grades carcinoma grade 1 (A), grade 2 

(E) and grade 3 (I), the corresponding SIRT1 expression (B, F and J), E-cadherin (C, G, and K), 

and the viemntin (D, H and L). SIRT1 expression is positive related to the increasing vimentin 

expression in breast cancer samples (7M).  

The correlations between the individual cancer stem cell marker showed no significant 

correlation with tumor grades. All 32 tested breast cancers were negative for OCT-4, and Nanog 

showed some cytoplasmic staining in some cases but no nuclear positivity. However, evaluation 

of 2 or more CSC markers showed that ALDH1a/CD44 coexpression/co-localization was 

significantly associated with high grade breast cancers (56% G3 vs 7% G1/2, p=0.007), and 

ALDH1a co-localization with one or more other markers (CD44, CD133 or SOX-2) also 

observed more in high grade cancers (72% G3 vs 21% G1/2, p=0.01). Double staining with 

ALDH1a/CD44 was performed in the human breast cancer tissue. ALDH1a/CD44 double 

positive cells are significantly associated with high-grade breast cancer (10/18 of G3 vs 1/14 of 

G1 and G2 cancer).  

Vimentin scores 
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In summary, high grade breast cancers showed significant high SIRT1 expression, high 

vimentin expression, high percentage tumor cells positive for more cancer stem cells 

(especially double positive for ALDH1a/CD44).  

Task 3. SIRT1 inhibition can decrease metastasis, induce differentiation of CSCs, reduce 

EMT, and increase tumor cell sensitivity to chemotherapy in xenograft mouse model. 

The animal study protocol was approved by both UTHSC and DOD, the in vivo study was 

performed and whole body image with both PET and iRFP techniques by collaboration with Dr. 

Eva Sevick at the image core center, Institution of Molecular Medicine at UTHSC at Houston. A 

mammary fat pad cell injection was used to mimic the human breast cancer and hoped to observe 

the lymph node metastasis. The nude mice were used for MDA-MB-231 cell inoculation. MDA-

MB-231 cells were used because it had been shown to have high metastatic potential and high 

chance of tumor formation than other breast cancer lines.  

8C 

Figure 8. Xenograft tumor growth and metastasis using MDA-MB-231 cells. Figure 8A shows 

the tumor volume at different time points after MDA-MB-231 cell inoculation. Figure 8B shows 

the final tumor weights. Figure 8C shows the representative images of iRFP in lymph nodes, the 

lymphovascular invasion, the metastatic carcinoma in lymph nodes, and the lung tissue. 

The in vivo study with MDA-MB-231 cells showed very good and exciting results. SIRT1 

inhibitor cambinol treated mice (N=3) had significant slow tumor growth (indicated in the 

growth curve), and tumor volume showed minimal changes during the entire 3 weeks of therapy 

(8A). The DMSO control mice (N=5) had tumor volume tripled during the same period. 

Cambinol+cisplatin group (N=4) had similar tumor growth curve as the cambinol group with 

slightly large tumors. The cisplatin treated group (N=5) showed similar slow tumor growth curve 

at the first 2 week, but tumor started to grow very fast at the beginning of the 3
rd

 week and

reached to a similar tumor volume as the DMSO control group at the end. The growth curve 

indicated a gain of cisplatin resistance in animals treated with cisplatin only. When SIRT1 

inhibitor cambinol was used together with cisplatin, the tumor remained in a very slow growth 

curve compared to the control group. This result is highly suggested that SIRT inhibitor 

cambinol could block the resistance of MDA-MB-231 cells to cisplatin. The final tumor weight 

showed significant small tumors in the SIRT1 inhibitor cambinol treated mice. The 
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intramammary fat pad inoculation of MDA-MB-231 cells generated a very good model to study 

the lymph node metastasis. Our study showed significant lymph node metastasis than blood 

stream metastasis (only one lung metastasis). Using iRFP whole body image and lymph node 

image study, positive lymph node metastasis was found in 5/5 control mice and 15/37 nodes, 4/5 

cisplatin treated mice and 9/40 nodes, 3/4 cambinol+cisplatin treated mice and 5/40 nodes, and 

0/3 cambinol treated mice and 0/20 nodes. H&E sections of skin showed marked lymphovacular 

invasion in the control mice but not in the cambinol treated mice.  

9A 

9B 

Figure 9. Figure 9A shows the qRT-PCR results of down regulation of stem cell genes and EMT 

related genes in cambinol treated xenograft mice comparing to DMSO control mice. Figure 9B 

shows the western blot results of vimentin.  

Using tumor tissue collected from the xenograft mice, qRT-PCR gene expression study showed 

significant down regulation of cancer stem cell genes (CD44, Nanog, Pou5F1 and SOX-2) and 

EMT genes (TGFβ1, vimentin and SMA) in cambinol treated mice compared to DMSO control 

mice (N=2) (9A). Western blot showed low vimentin protein levels in all treated groups 

compared with DMSO controls (9B). 

SIRT1 inhibitors block breast cancer cell invasion was also confirmed in in vitro invasion assay 

Three triple negative breast cancer lines (MDA-MB-231, MDA-MB-468 and BT-549) were 

treated with cambinol 25 µM with DMSO as control. After 48 hours, the invasive cells were 

stained with Diff-Quik and counted. Cambinol treatment significantly blocked all 3 cancer cell 

invasion. Result showed cambinol dramatically blocked breast cancer cell invasion (Figure 10A). 

The percentage of invasion is 47.6%, 48.7% and 39.0% separately (Figure 10B). 
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                                           10A                                                           10B                                          

Figure 10. The In vitro invasion assay showed that cambinol treatment significantly blocked iht 

invasion on all three triple negative breast cancer cells to 40-50%.  

 

In summary, xenograft model with nude mice and MDA-MB-231 cells demonstrated that 

SIRT1 inhibitor cambinol decreased breast cancer growth, blocked cancer metastasis in 

vivo and invasion in vitro, and possible rescued cancer cells from resistance to cisplatin. 

Gene expression profile indicated SIRT1 inhibitor cambinol down regulated cancer stem 

cells in vivo. Our data supported SIRT1 inhibitor blocks EMT and reduced the 

differentiation of stem cells in xenograft tumor tissue.   

 

Task 4. Wnt pathway is highly activated in breast CSCs and EMT of human breast cancer 

cell lines and specimens. 

We investigated whether Wnt/β-caternin signaling has involved SIRT1 inhibition. There are 

various of target genes of Wnt pathway such as c-Myc, cyclinD1, and c-Jun. So we tested those 

Wnt pathway downstream genes using both MDA-MD-231 and T47D cells with cambinol 

(25µM) treatment. qRT-PCR results showed significant down regulation of cyclinD1, c-Myc and 

c-Jun (Figure 12 A and C), and the corresponding western blot showed the same findings (Figure 

12 B and D). The results indicated SIRT1 inhibition blocked Wnt/β-catenin pathway. 

  

Dishevelled (DVL) is an element component in Wnt/β-catenine signals. Dvl proteins interact 

with other Wnt pathway proteins to form complex and conduct canonical and non-canonical Wnt 

cascade. The evidence of SIRT1 binding Dvl proteins to regulate Wnt/β-catenin in cancer 

 

 

 

Figure 12. Wnt/β-caternin pathway is 

inhibited by SIRT1 inhibition with 

cambinol treatment. The qRT-PCR 

(Figure 12 A and C) and western blot 

(Figure 12 B and D) show the Wnt/β-

caternin target genes including cyclinD1, 

c-Myc and c-Jun are significantly down 

regulated after the SIRT1 inhibition. 
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contexts has been revealed and the mechanism of regulation been investigated. We focus on 

analyzing the relationship of DVL-3 with SIRT1 in breast cancer. So we examined Dvl-3 

expression levels in the existence of SIRT1 specify inhibitor Ex527.  Result showed Ex527 block 

mRNAs of Dvl1 and Dvl3 other than SIRT1 itself (Figure 13A). As expected, DVL-3 was 

obviously down-regulated with the treatment of SIRT1 inhibitors cambinol and Ex527 in T47D 

cells (Fig13B) by western blot.  These results concluded that SIRT1 inhibitors block Wnt/β-

Catenin pathway via DVL-3. 

A    B     C 

Figure 13. SIRT1 inhibitor cambinol down regulates DVL-3 protein of Wnt/β-catenin pathway. 

Figure 13A shows the results of qRT-PCR, 13B shows the western blot of cambinol and EX527 

treatment, and 13C shows the results of siRNA treatment.  

Finally we examined whether DVL-3 expression is correlated with SIRT1 expresssion in breast 

cancer patients. Results showed DVL-3 expression is significantly high in high grade breast 

cancer (p=0.03 G1/2 vs G3), and DVL-3 expression is positively correlated with SIRT1 and 

Vimentin expression in tumor cells (Fig8A). These results concluded DVL-3 expression is 

significantly high in high grade breast cancer; DVL-3 expression is positively correlated with 

SIRT1 expression and associated with BCSCs blocking in breast cancers (Fig7B). 

       A B 

Figure 14. Figure 14A shows 

the representative images of 

H&E, SIRT1 and DVL-3 in 

low grade and high grade 

breast cancer. Figure 14B 

shows the positive correlation 

between SIRT1 and DVL-3.  
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In summary, Wnt/β-caternin appears to be the pathway involving in SIRT1 regulation of 

cancer stem cells and EMT, and DVL-3 is the likely target of the regulation. 

Task 5 . Wnt/β-catenin pathway is blocked in the SIRT1 inhibition xenograft tumor tissue, 

which is responsible for inducing differentiation of CSCs and reducing EMT. 

Task 5 have been addressed in both task 3 and task 4. 

Task 6. Using cell line in vitro study to demonstrate that SIRT1 regulates CSCs and EMT 

through activation of Wnt pathway via interaction with Dvl proteins. 

As Figure 13 showed, DVL-3 and Wnt pathway were inhibited by SIRT1 inhibitor cambinol and 

EX527. For further elucidating the active β-catenin accumulated in cytoplasm or nuclear fraction 

in the breast cancer cells, we separated the lysate for cytoplasm or nuclear enrichment in T-47D 

cells (Figure 15). Cells were treated with different concentrations of cambinol, whole cell lysate 

(WL) was loaded as control amount of individual detected proteins. We found that SIRT1 

existed in both cytoplasm fraction and nuclear fraction. Both the active and non-active β-catenin 

were down-regulated by SIRT1 inhibitor cambinol and the nuclear fraction of active β-catenin 

had the greatest decrease than the non-active β-catenin. Next, we examined the phosphorylated 

or whole GSK3ab, which is the main degrade factor of β-catenin in Wnt pathway, and results 

showed as expected that P-GSK3ab was up-regulated by the inhibition of SIRT1 in cambinol 

treatment (13B) but no significant changes in siRNA inhibition (13C).  

Figure 15. The cytoplasmic and nuclear distribution of active β-catenin (non-p-β-catenin), 

inactive β-catenin (p-β-catenin) and DVL-3 in T47-D cells.   

In summary, SIRT1 inhibitors are likely regulated Wnt pathway by regulation of DVL3 

protein.  

We also explored the possibility of the role of SIRT1 regulation of TGFβ1 pathway in the EMT 

signal transduction and stem cell associated genes. We found that SIRT1 clearly regulated 

TGFβ1activity (Figure 16), which is a novel finding, and further study will be performed.       
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16A                                      16B                                     16C 

Figure 16. SIRT1 inhibition down regulates TGFβ1 pathway in breast cancer cells. 

4. Key Research Accomplishments

A.  

Using 32 breast cancer samples, SIRT1 expressions is high in high grade of breast cancers, high 

SIRT1 expression is associated with cancer EMT, and high SIRT1 expression is associated with 

cancer stem cells with ALDH1a/CD44 double stain technique. The results support SIRT1 

expression is associated with cancer stem cell features. 

B.  
Breast cancer stem cell markers CD24

low
/CD44

high
 and ALDH1a are highly expressed in high

grade, triple negative breast cancer cell lines MDA-MB-231 and MDA-MD-468, and inhibition 

of SIRT1 with inhibitor cambimol and EX527 significantly reduced the stem cell population in 

the triple negative breast cancer. Mammosphere functional assay shows SIRT1 inhibitors 

significantly reduce mammosphere formation in T-47D cells. Our results indicate that inhibition 

of SIRT1 can induce differentiation of CSCs in breast cancer cell lines.  

C.  

SIRT1 inhibitor can inhibit tumor growth, metastasis, and rescue drug resistance in xenograft 

mouse model with MDA-MB-231 cells, and SIRT1 inhibitors can block breast cancer cell 

invasion in several triple negative breast cancers. Our results indicate that SIRT1 possesses a 

potential therapeutic target in high grade and high stage breast cancer.  

D.  

Wnt/β-catenin pathway is regulated by SIRT1. SIRT1 inhibition can significantly reduce β-

catenin protein especially active β-catenin in the nuclei, and significantly reduce the Wnt 

pathway downstream genes such as cyclinD1 and c-Myc. DVL-3 protein appears to be the 

regulation protein involved in Wnt pathway. DVL-3 is highly correlated in breast cancer samples 

by immunohistochemistry. These data indicated SIRT1 is significantly associated with cancer 

stem cell Wnt pathway. Our limited data also indicates that TGFβ pathway, another cancer stem 

cell pathway, is regulated by SIRT1.  

In summary, our study demonstrate that SIRT1 plays an important role in breast cancer stem 

cells, and our results provide some clear evidences that SIRT1 is a potential therapeutic target in 

breast cancer. 

5. Conclusion

The role of SIRT1 in tumorigenesis remains controversial, i.e. whether it acts as a tumor 

promoter or a tumor suppressor, and the role of SIRT1 in breast cancer stem cells has not been 
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well explored. SIRT1 is strongly expressed in embryonic stem cells, and SIRT1 downregulation 

is necessary to establish correct and specific cell differentiation. Cancer stem cells may serve as 

cancer reservoir for breast cancer recurrence and distant metastasis. One significant challenge of 

cancer stem cell study is to identify possible stem cells with specific markers. The current study 

has been designed to study the import and critical issues about finding the cure for breast cancer 

by targeting the cancer stem cells.  

Over the three years period, we achieved significant understanding about the role of 

SIRT1 in breast cancer stem cells. Our results show that SIRT1 is an important regulator of 

breast cancer stem cells and SIRT1 inhibition can significant reduce cancer stem cells and lead 

cancer cell differentiation. SIRT1 inhibition can block tumor cell growth, invasion and 

metastasis, and can rescue drug resistance. SIRT1 inhibition can block cancer cell to epithelial 

mesenchymal transition and block the cancer metastasis. Our data suggest that the important 

signal transduction pathway of Wnt/β-catenin and TGFβ is highly regulated by SIRT1.  

The significant findings of the current study prove that SIRT1 can be used as a therapeutic target, 

especially in high grade and metastatic breast cancer with some small molecular weights of 

SIRT1 inhibitors such as cambinol or EX527. The future study includes subclincal trial using 

SIRT1 inhibitors on primary tumor tissue and primary tumor xenograft model, using SIRT1 

inhibitors in CSF metastatic mouse model, and using SIRT1 inhibitors in locally advanced breast 

cancer. 
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