
DAHLGREN DIVISION
NAVAL SURFACE WARFARE CENTER
Dahlgren, Virginia 22448-5100

NSWCDD/TR-16/103

REVIEW OF KNOWLEDGE ENHANCED ELECTRONIC
LOGIC (KEEL) TECHNOLOGY

BY ABID MEHMOOD
 GUNENDRAN SIVAPRAGASAM

 TECHNOLOGY INTEGRATION SAFETY BRANCH (R44)

READINESS & TRAINING SYSTEMS DEPARTMENT

SEPTEMBER 2016

DISTRIBUTION STATEMENT A - Approved for public release; distribution is unlimited.

NSWCDD/TR-16/103

i

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE
ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
12-09-2016

2. REPORT TYPE
Technical

3. DATES COVERED (From - To)
1 January – 30 September 2016

4. TITLE AND SUBTITLE
Review of Knowledge Enhanced Electronic Logic (KEEL) Technology

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Mehmood, Abid
Sivapragasam, Gunendran

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

NSWCDD/TR-16/103

Naval Surface Warfare Center, Dahlgren Division
Technology Integration Safety Branch (R44)
5375 Marple Road, Suite 154
Dahlgren VA 22448

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S
ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Distribution Statement A – Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This report contains a review of the Knowledge Enhanced Electronic Logic (KEEL) technology, which provides a

method of encoding expert knowledge for system control. KEEL allows a user to use drag-and-drop features of a Graphical
User Interface (GUI) to reflect complex interrelationships between variables of a system. This allows the user to simulate the
operation of the system in real time and fine-tune the relationships between inputs and expected system behavior. Once
complete, KEEL can auto-generate code that can be inserted into applications to replicate the decision-making process of the
expert. This review of KEEL consisted of analyzing the features of KEEL software and conducting testing to verify that the
software accurately generated Java conventional code based on the design developed on the GUI.

15. SUBJECT TERMS
Knowledge Enhanced Electronic Logic, KEEL, Review, Testing, Verification, Analysis
16. SECURITY CLASSIFICATION OF:

17. LIMITATION
OF ABSTRACT

UL

18. NO. OF
PAGES

34

19a. NAME OF RESPONSIBLE
PERSON Gunendran
Sivapragasam

a. REPORT
UNCLASSIFIED

b. ABSTRACT
UNCLASSIFIED

c. THIS PAGE
UNCLASSIFIED

19b. TELEPHONE NUMBER (include

area code) 540-653-7709
Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39.18

NSWCDD/TR-16/103

ii

(THIS PAGE INTENTIONALLY LEFT BLANK)

NSWCDD/TR-16/103

iii

FOREWORD

This report contains a review of the Knowledge Enhanced Electronic Logic (KEEL)
technology. KEEL, which provides a method of encoding expert knowledge for system control,
allows a user to use drag-and-drop features of a Graphical User Interface (GUI) to reflect
complex interrelationships between variables of a system. This allows the user to simulate the
operation of the system in real time and fine-tune the relationships between inputs and expected
system behavior. Once complete, KEEL can auto-generate code that can be inserted into
applications to replicate the decision-making process of the expert or user. This review of KEEL
consisted of analyzing the features of KEEL software and conducting testing to verify that the
software accurately generated Java conventional code based on the design developed on the GUI.

Abid Mehmood and Gunendran Sivapragasam of the Naval Surface Warfare Center,
Dahlgren Division (NSWCDD), Technology Integration Safety Branch (R44), prepared this
document with the concurrence of Thomas M. Keeley, Compsim Limited Liability Company
(LLC). This document was reviewed by Rebecca Sullivan, Head, Technology Integration Safety
Branch (R44).

Approved by:

LEO T. ZALOGA, Deputy Department Head
Readiness and Training Systems Department

NSWCDD/TR-16/103

iv

(THIS PAGE INTENTIONALLY LEFT BLANK)

NSWCDD/TR-16/103

v

CONTENTS

Section Page

1 INTRODUCTION .. 1-1
1.1 PURPOSE .. 1-1
1.2 SCOPE ... 1-2
1.3 BACKGROUND ... 1-2

2 SYSTEM DESCRIPTION .. 2-1
2.1 SYSTEM OBJECTIVE ... 2-3
2.2 TYPES OF KEEL ENGINES .. 2-3
2.3 DEVELOPMENT HISTORY ... 2-4
2.4 SYSTEM CAPABILITIES .. 2-4
2.5 CONFIGURATION .. 2-5
2.6 USER INTERACTION ... 2-5

3 SYSTEM OPERATIONS ... 3-1
3.1 TRAINING .. 3-1

4 KEEL ASSESSMENT .. 4-1
4.1 ASSESSMENT APPROACH ... 4-1
4.2 SUMMARY OF ANALYSES AND TESTS PERFORMED 4-2

4.2.1 Thermostat Design ... 4-2
4.2.2 Arbitrary Design .. 4-3

5 CONCLUSIONS AND RECOMMENDATIONS ... 5-1
5.1 CONCLUSIONS ... 5-1
5.2 RECOMMENDATIONS ... 5-1

DISTRIBUTION... (1)

ILLUSTRATIONS

Figure Page

 2-1 KEEL DESIGN FOR RISK OF A MISHAP DUE TO SPEED, TRAFFIC, AND
WEATHER ... 2-1

 4-1 THERMOSTAT DESIGN ... 4-2

 4-2 DESIGN WITH ALL POSSIBLE KEEL FUNCTIONS .. 4-4

 4-3 TEST APPLICATION RESULTS .. 4-5

NSWCDD/TR-16/103

vi

(THIS PAGE INTENTIONALLY LEFT BLANK)

NSWCDD/TR-16/103

vii

GLOSSARY

ASCII American Standard Code for Information Interchange

CMT Compsim Management Tool

DGL Dynamic Graphical Language

GUI Graphical User Interface

IBIS Issue-Based Information System
IDE Integrated Development Environment

KEEL Knowledge Enhanced Electronic Logic

LLC

Limited Liability Company

MAC Macintosh
MIL-STD Military Standard

NSWCDD Naval Surface Warfare Center, Dahlgren Division

PC Personal Computer

SME Subject Matter Expert

US

XML

United States

Extensible Markup Language

NSWCDD/TR-16/103

viii

(THIS PAGE INTENTIONALLY LEFT BLANK)

NSWCDD/TR-16/103

ix

EXECUTIVE SUMMARY

This review provides an overview of Knowledge Enhanced Electronic Logic (KEEL)
technology and describes testing and analysis that was conducted on the KEEL Toolkit to
determine if it accurately auto-generates Java conventional code that replicates models that have
been designed in its Graphical User Interface (GUI). KEEL provides tools to develop portions of
a system where decisions need to be made based on certain complex interrelationships and
provides the capability for a Subject Matter Expert (SME) to design a model of these
relationships that will provide the best decision based on the inputs provided. SMEs can use
KEEL to test a model extensively before using KEEL to translate the model into conventional
code.

This report addresses the ability of KEEL technology to translate these expert models
into Java conventional code. Two models were developed and KEEL was used to translate both
models into Java code. Simulators were used to provide inputs to the generated code, and the
outputs of the code were compared to expected system behavior. Software analysis tools like
PMD, FindBugs, and SonarQube were used to analyze code quality and investigate possible
weaknesses in the Java conventional code that was generated. The results of the conducted
analysis and testing showed that KEEL technology accurately generated Java conventional code
that reflected the two chosen models without any errors.

NSWCDD/TR-16/103

x

(THIS PAGE INTENTIONALLY LEFT BLANK)

NSWCDD/TR-16/103

1-1

1 INTRODUCTION

Compsim Limited Liability Company (LLC) was founded in 1999, and the first product it
developed was the Compsim Management Tool (CMT). CMT is a software application that runs
on a Windows-based Personal Computer [PC] and provides users a process to facilitate the
collection and validation of information in order to make rational and explainable decisions.
CMT uses a process called Issue-Based Information System (IBIS) (conceived by Dr. Horst
Rittel in the 1970s) on computers.

IBIS is a process that organizes data and targets “WICKED” problems – problems that
are difficult or impossible to solve because of incomplete, contradictory, changing requirements
and complex interdependencies that are often difficult to recognize. Dr. Rittel proposed that, if
all issues, positions, and arguments on any given topic were organized, then it would be easier to
make the best decision. Additionally, he asserted that “WICKED” problems are too complex to
be solved by writing a formula to produce a correct solution.

The IBIS process was initially executed on notecards. Compsim LLC implemented the
IBIS process on computers in the form of the CMT product, which organizes information in a
knowledge tree. A human then uses the knowledge tree to make a decision. Knowledge
Enhanced Electronic Logic (KEEL) was developed as the next step, to use the information in the
knowledge tree to make the most optimized decision.

A KEEL model was first used for a software-based weapon system. It was quickly
discovered that the initial KEEL model did not have much flexibility, addressing only one
structured problem at a time (as was addressed with CMT). KEEL was then expanded to address
multiple problems at a time that had interrelated and sometimes conflicting characteristics.
Compsim LLC introduced KEEL wires to connect variables together and define the relationships
between those variables. The wires defined a functional relationship type and, over time, more
wires were introduced to define other needed functional relationships. This allowed the user to
build a model with complex webs of interrelationships. The three main characteristics of the
current KEEL can be summarized as below:

 A developmental environment

 A tool to create a model for accumulating supporting and objecting arguments in
order to make a decision or take an action

 A small footprint engine that processes sensors’ data or other inputs according to
the design of a system created in the development environment

1.1 PURPOSE

This report has been developed to support a Cooperative Research and Development

NSWCDD/TR-16/103

1-2

Agreement, a joint effort between the Naval Surface Warfare Center, Dahlgren Division, and
Compsim LLC. The purpose of this report is to provide a review of the KEEL technology,
providing an independent analysis on whether there are any hurdles to using KEEL technology in
United States (US) Navy applications. It should be noted that this review is focused only on the
ability of KEEL technology to translate expert models into Java conventional code. KEEL
technology is an already developed and mature technology and is not a milestone-driven
program.

1.2 SCOPE

The main purpose of this technology is not to provide tools to develop an entire system
but just portions of the system where decisions need to be made based on certain complex
interrelationships. When this portion is integrated into a complete system, the user still has to
develop an application package and write methods to provide input into the KEEL Engine and
receive output from it. KEEL was developed so complex (dynamic, nonlinear, interrelated,
multidimensional) models could be developed by a Subject Matter Expert (SME) without
dependence on the use of higher level mathematics (e.g., predicate calculus) and to avoid long
development and debug cycles (because the code is always the same). With KEEL, the objective
is that the complex models can be developed and initially tested by the SME before ever
translating the models into conventional code.

This report addresses the ability of KEEL technology to produce a KEEL Engine from a
model developed in the KEEL Toolkit for one of the languages supported by KEEL, Java,
through analysis and in-depth safety testing. Software analysis tools like PMD, FindBugs, and
SonarQube have been used to ensure code quality and point out possible errors in the KEEL
Engine. No assessment was done on the KEEL Toolkit that is responsible for generating the
KEEL Engine. In summary, in-depth testing verified that the KEEL Toolkit generates the
intended design or KEEL Engine in Java. However, it is still recommended that users of this
technology developing safety significant code should perform software safety analysis per the
prescribed Military Standard (MIL-STD)-882E software safety analysis procedure. The
appropriate level of rigor should be applied to the code that is generated by the KEEL Toolkit to
minimize the possibility of a mishap.

1.3 BACKGROUND

KEEL has been around for more than a decade by now and is currently used in many
different industrial applications. This technology has potential use in fields like Modeling and
Simulation where it can provide Rapid Development Cycle capability, an accurate representation
of target system behavior, and improvements in life-cycle cost management. Also, KEEL is very
useful when dealing with nonlinear complex problems where it is very difficult to predict
behavior using mathematical formulations, and where relationships between components are
very dynamic. Finally, KEEL could potentially be used in military applications, e.g., in
autonomous systems (Unmanned Autonomous Vehicles, Unmanned Ground Vehicles), where
these systems make decisions based on given conditions such as the environment, situation, and
priorities.

NSWCDD/TR-16/103

2-1

2 SYSTEM DESCRIPTION

The KEEL development environment is very different from an Integrated Development
Environment (IDE) of a conventional programming language. All components of KEEL become
active parts of the system as soon as a user drops them in the development environment. All
components work simultaneously, which is a big shift in the thinking process as compared to a
conventional programming language that usually has a sequential flow. Because of that, input
validation (if input A=Input B, then execute …) can’t be implemented. Despite this, KEEL
Engines will function correctly as components of a system coded in a conventional way. The
KEEL Engine is called when complex decision-making (system judgment and reasoning) is
required.

KEEL allows human decision-making to be replicated in software using knowledge from
SMEs. The experience and know-how of these SMEs are captured in the KEEL Toolkit using
supporting and objecting arguments in order to make a decision or to take an action. An example
of a decision-making structure using the KEEL Toolkit can be seen in Figure 2-1 below:

FIGURE 2-1. KEEL DESIGN FOR RISK OF A MISHAP DUE TO SPEED, TRAFFIC, AND WEATHER

The KEEL Dynamic Graphical Language (DGL) is the actual “KEEL Source Code” in
the KEEL Toolkit. The KEEL DGL makes use of the interactive nature of computer graphics to
create the KEEL Engine. In the figure above, icons representing elements of the KEEL DGL are
dropped on the screen and linked together by wires representing specific functional relationships

NSWCDD/TR-16/103

2-2

between data items. The user stimulates the system (through slider icons) and observes the
system response.

The design above uses variables like speed, traffic, and weather to determine the risk of a
mishap. The vertical scroll bars with green and red indicators at the bottom of each of the actions
(positions) are supporting and blocking inputs. The wires in the diagram show that different
actions and/or inputs can be linked together to affect actions.

Once an SME has created a design, this graphical source code can be translated to a
conventional code (e.g., C, C#, C++, JAVA, FLASH, Visual Basic, etc.). The KEEL Engine is
produced in the form of a text (.txt) file that is copied and pasted into the user’s development
environment to be compiled.

Two KEEL Engine processing models are available for most languages: The “Normal
Model” processes information as if it was processed on an analog computer (thus the high
Cyclomatic Complexity discussed further in Section 4.2.2). Inputs and outputs are balanced until
a stable set of inputs and outputs is achieved. The “Accelerated Model” is created after the
KEEL Toolkit calculates an optimal processing path. The Accelerated Model contains one
additional table to control the processing order. The user selects the most appropriate model for
the target application.

The KEEL Engine takes the data in the design and stores it in tables that define the values
and relationships of the inputs and actions. The code then creates arrays in which this data is
stored and manipulates the data to reflect the design.

The artifacts of the KEEL Engine are the KEEL “dodecisions” function and the KEEL
“tables” (1- and 2-dimension arrays; or 1 multidimensional array for the Accelerated Code).
Depending on the conventional programming language selected, there may be an initialization
routine (initializefixedtables) or a constructor if an object-oriented language is selected.

In summary, a KEEL Engine includes code to process tables of information in a
consistent way (all KEEL Engines will be the same). The “code” is approximately 381 lines of
Normal version uncommented code (for C). While this is conventional code, it is of no use in
understanding the entire problem being solved, because the problem definition is maintained in
the arrays, not the code. The code manipulates the data in the arrays according to the design that
was created in the KEEL Toolkit.

The objective is that the 381 lines of code will only need to be validated one time,
because the code will always be the same. Following are three examples of how the KEEL code
has been used for applications written in C:

1. Obstacle analysis and collision avoidance code for a land robot: 381 lines of C
code

NSWCDD/TR-16/103

2-3

2. Analysis of the results of a hematological analyzer to determine the type of
anemia: the same 381 lines of C code

3. Assessment of a target moving through varying terrain to determine the instant to
shoot written in C: the same 381 lines of C code

2.1 SYSTEM OBJECTIVE

KEEL includes a graphical language with vertical scroll bars; up/down arrows; upward
arrows in circles; and lines representing positions, supporting/objecting arguments, thresholds,
and relationships between them. These icons represent “information items” and “connection
points” with which to define functional relationships (rather than scripting “code” in the
conventional sense).

KEEL allows users to make human-like decisions based on the arguments, thresholds,
relationships, and priorities. It allows users to model very simple linear to very complex
behavior, which could be very difficult to capture with a mathematical formulation or other
computer program. The graphical language also makes it easy to “see” the functional
relationships and the dynamic (interactive) nature of the language, allows one to interact with a
design and see the impact of the relationships as they are being defined.

Once the design is complete, a KEEL Engine is created by the KEEL Toolkit –
conventional code can be generated for the design in any language of choice in text format. The
user has the choice of creating either unoptimized (Normal Type) code or optimized
(Accelerated Type) code.

2.2 TYPES OF KEEL ENGINES

KEEL technology was originally developed to be used in embedded systems. Embedded
systems sometimes have additional considerations such as:

 Smallest possible memory space

 Fastest possible operation and to be more deterministic (as far as processing time)

To achieve these two goals, two different types of KEEL Engines can be created. There is
very little difference between the two types. They are labeled Normal and Accelerated. The
Normal code is slightly smaller, and slightly slower (in most cases), with slightly more execution
cycles of non-used functionality. The Accelerated code is slightly larger, slightly faster (in most
cases), with slightly fewer execution cycles.

The difference between the two versions is that the Accelerated code includes one
additional multidimensional table that defines an optimal way to process the information. This
takes more memory space but accelerates the processing (in most, but not all, cases).

NSWCDD/TR-16/103

2-4

2.3 DEVELOPMENT HISTORY

Soon after Compsim LLC started in 1999 with its first product – CMT, Thomas Keeley
and Helena Keeley came up with the idea of KEEL upon realizing the patented CMT
information fusion model (US 6,833,842) could be used by machines to make more complicated,
judgmental types of decisions. KEEL was leveraged off CMT, which was a tool developed to
organize information and to make and explain “subjective decisions” (e.g., feature selection for a
project, risk analysis, vendor selection, project prioritization).

During initial tests, when applying the CMT model to an autonomous weapon system,
there was recognition that an autonomous robot did not have the luxury of solving one problem
at a time. It had its primary objective; a number of intermediary goals; the need to change goals;
the need to allocate resources across multiple goals; the need to manage its own survival; the
potential for operation under degraded capabilities; and the need to monitor its environment and
to change “everything.” So rather than CMT’s structured problem solving, KEEL evolved to its
present state of addressing webs of interrelationships that have to be addressed “collectively.” A
series of KEEL-related patents has since been applied for and granted.

The first three KEEL patents were filed on October 2002, with application numbers US
10/289,663, US 10/289,517, and US 10/289,477, resulting in granted patents: 7,039,623 (5/2/06),
7,009,610 (3/7/06), and 7,159,208 (1/2/07). These covered the information fusion model, the
method for processing information in the KEEL Engine, and the DGL. In October 2004,
application number US 10/960,626 covered a KEEL Engine that could be released in silicon
(without a microprocessor) and also served for the Accelerated Processing Model (Patent number
7,512,581 (3/31/2009)). In June 2006, application US 11/446/801 was submitted to support
additional functional relationships with graphics and processing. Patent 7,685,528 was granted
on 3/23/2010. On March 2014, application US 14/202,736 was submitted to handle additional
inverted functional relationships with graphics and processing.

2.4 SYSTEM CAPABILITIES

KEEL Engines are delivered as functions or class methods in many source code
languages including C, C++, C#, Objective C, DART, Flash, HAXE, Java, Java Script, Octave,
Python, SCILAB, and Visual Basic with many different “wrappers” for different development
environments. KEEL Engines can be compiled and then executed by most digital micro-
controllers and computers in existence today.

KEEL makes it easy to capture complex SME knowledge using the KEEL DGL and then
producing conventional code for a KEEL Engine that replicates that knowledge. The KEEL
Toolkit Graphical User Interface (GUI) is very simple and easy to learn. Any dropped
component in KEEL’s development environment becomes active and part of the overall system
instantly.

The KEEL GUI also enables the user to see the functional relationships between
components of a KEEL Engine. A user can create relationships of all types and sorts. The user

NSWCDD/TR-16/103

2-5

considers how pieces of information combine to influence other pieces of information, drags a
wire between connection points, and observes the functional relationship in operation, getting
immediate feedback.

2.5 CONFIGURATION

The KEEL Toolkit can be used on the PC and Macintosh [MAC] platforms. The KEEL
Engines (created by the KEEL Toolkit) do not have any special hardware requirements and can
be run on any microcontroller or commercial computer with basic hardware. No external
libraries are required for the basic KEEL Engine when inserted into the user’s application. It
should be noted that there is a significant advantage to using a system with multiple, large
displays when working with the KEEL development environment (KEEL Toolkit). A single
display (1024x768) is an absolute minimum.

Additionally, an internet connection with a fixed IP address is needed for the Evaluation
License validation and access to on-line training. There are many factors that determine the
scope of the production license (e.g., individual product/application, product line, market area,
exclusive/nonexclusive, royalty/fixed price) and this should be discussed directly with Compsim
LLC.

2.6 USER INTERACTION

For user interaction, a GUI is provided for the KEEL Toolkit as mentioned above. A user
can start a new project using the ‘File’ menu from the list. The “New Position” and “New
Challenge” menu items are used to drop positions and challenges of certain values and types.
Using mouse clicks, a user can create wires to create relations between components of the KEEL
Engine. When a user creates a KEEL Engine in the KEEL environment, an Extensible Markup
Language [XML] file is created behind the scenes that can be used to pull up the same design the
next time it is needed. Also using the ‘File’ menu, a user can select the conventional code of
choice. As mentioned earlier, no study has been conducted to investigate how this code is created
from an XML file/graphical source code to a text file. For this report, a KEEL Engine was
produced in Java to conduct testing to verify that the KEEL Toolkit produces the intended KEEL
Engine.

NSWCDD/TR-16/103

2-6

(THIS PAGE INTENTIONALLY LEFT BLANK)

NSWCDD/TR-16/103

3-1

3 SYSTEM OPERATIONS

3.1 TRAINING

Compsim LLC offers a variety of training, including a Web-based training course
consisting of 11 modules, which walks a trainee step by step through various topics. Here, each
component of KEEL is explicitly explained with examples. Also a quiz is offered at the end of
each module to quickly check the knowledge gained from the module. Additionally, a training
manual has been developed with practical examples. The manual is more advanced than the
11 basic Web-based modules and is available for download from the KEEL menu. Lastly,
Compsim LLC also offers face-to-face code walk-through training.

NSWCDD/TR-16/103

3-2

(THIS PAGE INTENTIONALLY LEFT BLANK)

NSWCDD/TR-16/103

4-1

4 KEEL ASSESSMENT

In this review, KEEL technology was assessed by choosing two designs to model and
generate KEEL Engines. The generated KEEL Engines were assessed using in-depth testing to
validate that the KEEL Engine in conventional code had the same functionality that was
designed in the KEEL development environment. Also, line-by-line code analysis and code
analysis using static code analysis tools were performed to capture any defects in the code. No
assessment has been done on the KEEL DGL or Toolkit code that produces the conventional
code for any particular design made utilizing the KEEL technology. It is recommended that
thorough safety analysis of any safety-significant function created using KEEL technology be
conducted prior to employment of that KEEL Engine.

4.1 ASSESSMENT APPROACH

The KEEL Toolkit is assumed to be consistent in creating KEEL Engines in multiple
languages (e.g., Java, Visual Basic, C++).

The 381 lines of KEEL code (for C) will always remain the same for all Normal engines
created by the KEEL Toolkit1. It is only the arrays that are different based on the design created
by the user in the KEEL Toolkit. As such, analysis was conducted to determine that a KEEL
Engine with every possible feature or function that can be created in one language (Java) does
the following:

 Creates the data tables or arrays correctly

 Manipulates the data in those arrays correctly

This would provide confirmation that, in a limited example, the KEEL Engine created
correctly implements the developer’s design in the KEEL Toolkit.

Note: Users using the KEEL Toolkit to develop safety-significant code should conduct
software safety analysis utilizing the process outlined in MIL-STD-882E. The appropriate level
of rigor should be applied to the code that is generated by the KEEL Toolkit to minimize the
possibility of a mishap.

The KEEL Toolkit was reviewed using the following approach:

a) Due to limited resources, it was assessed utilizing one language – Java.

1 A user option is available to optimize the small KEEL Engine code segment to eliminate code
that is not required.

NSWCDD/TR-16/103

4-2

b) First, KEEL models were created using KEEL features and functions.
c) Then the ‘Snap’ feature was used to log the inputs and outputs from the KEEL

Toolkit. The Snap ‘feature’ is a menu item in the KEEL Toolkit that generates an
XML file (or snapshot) of all output and input variables. This allows an analyst to
ensure that the model is performing as intended, generating the right outputs
based on the inputs provided.

d) Finally, the engine that was created (text file) was analyzed to see if the tables
created and the handling of the data in those tables was equal to the design seen in
the KEEL Toolkit.

This is a process similar to what is used by the developer to verify proper creation of
KEEL Engines when a new programming language is added to the KEEL Toolkit. In fact, while
this is the first time an independent review of the KEEL Toolkit has been performed, the process
and methodology used are the same as what the developer used earlier to verify the
implementation of the Java language in the KEEL Toolkit.

4.2 SUMMARY OF ANALYSES AND TESTS PERFORMED

4.2.1 Thermostat Design

A KEEL Thermostat design was used as an example to illustrate the above methodology
to verify the code. Figure 4-1 below is a Thermostat design snapshot taken from the KEEL
Toolkit environment. This design was made very simple to illustrate the behavior of the KEEL
Engine for this design.

FIGURE 4-1. THERMOSTAT DESIGN

NSWCDD/TR-16/103

4-3

This design takes only one input from the user (sensor’s temperature) and provides a
discrete output to turn on/off the furnace. In this design there are two thresholds, a lower
threshold and an upper threshold, which are set at 67 and 70 respectively. Note that these
thresholds can also be made variable, which allows the user to change them dynamically, but
again, these arguments were fixed for simplicity. The wires between the variables are the
functional relationships of those variables.

Initially, the input was set at 0 and the output was set at 100, which indicates a sensor
input of 0 degrees Fahrenheit resulting in the Thermostat turning on the furnace (output at 100).
When the input is increased from 0 to 70 (which is the upper threshold), the output stays at 100,
which indicates that the Thermostat keeps the furnace on. If the sensor input is increased any
further than 70 (say 70.01), the output goes to 0 turning off the furnace. Now if the sensor input
is decreased, say from 70.01 to 68, the output stays at 0 because it is still greater than the lower
threshold. If the sensor input is decreased further to 66 (below the lower threshold), the output
jumps once again to 100 (furnace turns on).

For the Thermostat design, Java code was generated in the text format. To verify this
code, the text file was copied into a Java class using a NetBeans IDE. To interact with this class,
another main Java class was written to insert inputs into the KEEL Engine and to receive outputs
from it. In this case, there was only one input for the temperature and one output for furnace
on/off. The above test case scenarios conducted in the KEEL Toolkit were repeated in the
NetBeans IDE and the results were the same.

4.2.2 Arbitrary Design

The previous example was limited and the full functionality of the KEEL Toolkit was not
expressed in the design. To address this, an arbitrary design with every function that is available
in the KEEL Toolkit was developed. A snapshot of this design from the KEEL environment is
shown in Figure 4-2 below.

NSWCDD/TR-16/103

4-4

FIGURE 4-2. DESIGN WITH ALL POSSIBLE KEEL FUNCTIONS

This design is more complex than the previous Thermostat design and a “Test
Application” built by Compsim LLC was used to verify/validate the design. This “Test
Application” is a Java swing application that takes inputs and outputs from the XML design files,
which are captured by the ‘Snap’ function of KEEL, and then inserts those inputs into the KEEL
Engine (Java code generated for the design) and extracts the outputs. The “Test Application”
then takes these outputs from the KEEL Engine and compares them against the outputs obtained
from the XML file.

Figure 4-3 is a snapshot taken from the NetBeans IDE environment for the “Test
Application.” The first column in the snapshot shows the inputs taken from the XML file that are
used as inputs to the KEEL Engine in the NetBeans IDE for Java. The second column contains
the outputs taken from the XML file. The third column notes the differences between the outputs
from the XML file and the outputs from the KEEL Engine.

NSWCDD/TR-16/103

4-5

FIGURE 4-3. TEST APPLICATION RESULTS

In this case, the third column is empty because those two systems perform identically. It
is possible to have some differences based on how different languages are compiled and the fact
that floating point numbers are being sent from the KEEL Toolkit to the Test Application as
American Standard Code for Information Interchange [ASCII] strings. The differences (if they
are detected) usually are in the range of the fourteenth decimal place.

Additionally, a line-by-line code review was done to find possible bugs (e.g., infinite
loops, uninitialized variables, incorrect array lengths, inaccessible code). No bugs were found
during the manual code review.

For further confidence, “FindBugs,” “PMD,” and SonarQube static code analysis tools
were used to find bugs in the code that are difficult to detect with manual code review (e.g.,

XML Inputs XML Outputs
Differences of XML Outputs
with KEEL Engine Outputs

NSWCDD/TR-16/103

4-6

overflows, integer truncation, race conditions). Again, no bugs were found using these tools.
However, the tools did provide suggestions on how the code could be further improved. As an
example, the code has many nested loops, which results in high Cyclomatic Complexity. In this
case, the Cyclomatic Complexity of the dodecisions method was found to be 92, which is higher
than the complexity of 15 recommended by the Motor Industry Software Reliability Association.
While maintaining a low Cyclomatic Complexity is good practice, there is no indication that the
nested loops in the KEEL Engine introduce weakness in the code.

NSWCDD/TR-16/103

5-1

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS

No review of the KEEL Toolkit code that creates KEEL Engines has been performed.
Rather, it has only been verified that Java source code in the text file created by KEEL (known
as the KEEL Engine) contains code that correctly defines the data tables (arrays) and correctly
manipulates the data in those tables (“dodecisions” function) according to the KEEL DGL model
developed in the KEEL Toolkit. No issues were detected in the review of the KEEL Toolkit or
example-generated Java code that would inhibit the use of KEEL in U.S. Navy applications.

5.2 RECOMMENDATIONS

Listed below are recommendations for Compsim LLC and users of the KEEL technology
based on the review conducted:

a) Ensure that there is version control for the KEEL Toolkit and specifically for the
creation of engines in each language.

b) A new user to KEEL should use the code verification process defined in the
Compsim LLC White Paper – “Certifiable Code and KEEL Technology” to
ensure that the engine built by the KEEL Toolkit properly reflects the intended
design of the user.

c) Those using the KEEL Toolkit to develop safety-significant code should conduct
software safety analysis utilizing the process outlined in MIL-STD-882E. The
appropriate level of rigor should be applied to the code that is generated by the
KEEL Toolkit to minimize possibility of a mishap.

NSWCDD/TR-16/103

5-2

(THIS PAGE INTENTIONALLY LEFT BLANK)

NSWCDD/TR-16/103

(1)

DISTRIBUTION

 Copies
 Paper/CD
DOD ACTIVITIES (CONUS)

DEFENSE TECHNICAL INFORMATION
 CENTER
8725 JOHN J KINGMAN ROAD
FT BELVOIR VA 22060-6218 0/2

NON-DOD ACTIVITIES (CONUS)

ATTN DOCUMENT CENTER 1/1
CNA
3003 WASHINGTON BOULEVARD
ARLINGTON VA 22201

ATTN THOMAS M. KEELEY 1/1
COMPSIM LLC
P O BOX 532
BROOKFIELD WI 53008

ATTN GOVERNMENT DOCUMENTS

SECTION 4/4
LIBRARY OF CONGRESS
101 INDEPENDENCE AVENUE SE
WASHINGTON DC 20540-4172

INTERNAL

1033 (TECHNICAL LIBRARY) 2/2
R44 (ABID MEHMOOD) 1/1
R44 (GUNENDRAN SIVAPRAGASAM) 4/4

